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ABSTRACT 

Using Regge high energy behavior, the chiral algebra of charges, 

and pion pole dominance of the divergence of the axial-vector current, 

all the strong interaction sum rules which hold for elastic pion-hadron 

scattering amplitudes at t=O are derived. These include charge algebra 

sum rules as well as superconvergence relations. We distinguish between 

"pure" t==O sum rules (Class I) and "extrapolated" sum rules (Class 11) 

and relate them to the evenness or oddness of the helicity flip in the 

t-channel. Using the explicit crossing relations for the relevant heli- 

city amplitudes, the connection of Class I superconvergence relations to 

the charge algebra sum rules is established, and the algebraic structure 

of Class I sum rules is then discussed in terms of representations of the 

SU(2) X SU(2) chiral algebra of charges, for particle states moving with 

infinite momentum. The properties of the mass operator in SU(2) X SU(2) 

are analyzed and it is shown that even in the presence of SU(2) X SU(2) 

symmetry breaking the (mass)' values of all the (mixed) eigenstates of 

an irreducible representation of the algebra are predicted to be equal, 

Since these eigenstates can be determined from the matrix elements of the 

vector and axial-vector charges, a large number of non-trivial mass rela- 

tions are obtained. Class II superconvergence relations, sum rules for 

t#O, and sum rules for the derivative with respect to t of the scattering 

amplitude at t--O are briefly discussed. Many applications of the strong 

interaction sum rules are presented including a model consisting of I=0 

and I=1 scalar, pseudoscalar, vector, and axial-vector mesons. The pre- 

dictions of the model as well as those of the other sum rules are derived 

and found to be in satisfactory agreement with experiment. 
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‘. 
I. Introduction 

A large number of sum rules involving amplitudes for strong inter- 

action scattering processes have been derived in the last few years using 

various theoretical ideas including ordinary dispersion relations, the 

algebra of currents, Regge pole theory and pole dominance of the weak and 

electromagnetic currents. The procedure followed in most cases is to use 

experimental information or theoretical prejudices in deciding which ampli- 

tudes may satisfy unsubtracted dispersion relations, to write down such 

relations for the amplitudes at threshold and to derive low energy theorems 

for the relevant amplitudes at the chosen low energy points. The connection 

between the sum rules and our experimental knowledge is often made by a 

'saturation assumption" which asserts that in most cases the dispersion 

integrals are dominated by the contributions of a few low-lying single 

particle states. It is this assumption which enables us to utilize sum 

rules for experimentally unrealistic processes such as rr-p or n-N* scattering 

and to obtain new dynamical relations among strong coupling constants and 

masses. The saturation hy-pothesis is, in most cases, the weakest link in 

the long chain of assumptions that we use in deriving sets of strong inter- 

action sum rules. Moreover, in some specific cases we may apriori expect 

saturation to provide us only with very crude approximations. This does 

not mean, however, that we should abandon it completely as a powerful tool 

for studying the various sum rules , particularly in view of the fact that 

explicit scattering data for most of the relevant processes do not and will 

not exist in the foreseeable future. 

The strong interaction sum rules that we discuss stem from two main 
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sources: Some are typical current algebra sum rules1 in which the low 

energy theorems are provided by the use of current commutators and the 

partially conserved axial vector current hypothesis (PCAC). Other sum rules 

follow from the so-called super-convergence relations2 which state that if 

a scattering amplitude A(s,t) obeys an unsubtracted dispersion relation 

and satisfies: 

lim sA(s,t) = 0 
s --+cG 

(1) 

then 

Im A(s,t)ds = 0 (2) 

Some of the most interesting questions that have recently been raised 

involve the problem of saturating a continuously infinite set of strong 

interaction sum rules (e.g. for all values of the invariant momentum transfer 

of a given amplitude) by finite or infinite discrete sets of single particle 

3 states . Although we will briefly touch on this point, we would like to 

address ourselves in this paper to a less ambitious problem which has not 

been fully analyzed before, and which is a necessary step in understanding 

many aspects of the strong interaction sum rules. We refer to the general 

question of strong interaction sum rules for forward (t=O) amplitudes, their 

algebraic structure, self-consistency, agreement with experiment and con- 

nection to the algebra of weak and electromagnetic charges. 

In particular, we discuss the following questions: What is the general 

connection between the superconvergence relations for forward amplitudes and 

the sum rules derived from PCAC, vector dominance and the algebra of charges? 

What are all the possible t=O sum rules which can be derived for a 



general strong interaction scattering process, using the theoretical tools 

mentioned in the opening paragraph? 

What, if any, is the significance of the large number of "su(~) results" 

or "higher symmetry results" which were obtained by imposing specific satura- 

tion assumptions on various t=O superconvergence relations? 

What can we say about the possible algebraic structure of t=O strong 

interaction sum rules? 

Which sets of t=O sum rules can be saturated by which single-particle 

states without leading to internal inconsistencies? 

How good is the agreement with experiment of the various sum rules and 

saturation assumptions? 

What happens in the neighborhood of t=O? 

What dynamical information can we obtain from the strong interaction 

sum rules, with respect to the mass spectrum and coupling constants of the 

hadrons? 

We will generally adopt the approach of considering the saturated sum 

rules as sets of equations in the masses and coupling constants of the 

intermediate states, and will study the possible solutions of such sets of 

4 equations . 

In Section II we.,formulate and discuss the assumptions which are used 

throughout the paper. The special importance of the I=2 amplitudes is 

discussed in detail. The necessary kinematics, including some of the 

explicit crossing relations for the relevant helicity amplitudes are pre- 

sented in Section III. In Section IV we derive all t=O strong interaction 

sum rules which follow from our assumptions for n-x scattering (where x is 

any hadron) and discuss the connection between the superconvergence relations 

and the PCAC and charge-algebra sum rules. We distinguish between "pure" 
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(class I) t=O sum rules and Itextrapolated" (class 11) sum rules. In 

Section V we proceed to discuss the algebraic structure of the class I 

sum rules in terms of the representations of the SU(2) X SU(2) chiral 

algebra of charges. In particular we analyze the properties of the mass 

operator in SU(2) X SU(2) and present a few examples in which we illustrate 

our general results. Section VI deals with sum rules for t#O. We briefly 

discuss sum rules for t $ 0, Class II superconvergence relations and the sum 

rules obtained by taking the derivative with respect to t of scattering ampli- 

tudes at t=O. In Section VII we present the analysis of a model consisting 

of I=0 and I=1 scalar, pseudoscalar, vector and axial vector non-strange 

mesons and discuss its possible relation to the experimental situation. A 

few other applications of complete sets of t=O sum rules are discussed in 

Section VIII. In Section IX we summarize our results and outline some of 

the many related problems which remain open. 

II. General Assumptions 

The assumptions used throughout this paper fall into four categories: 

(a) The algebra of charges; (b) Pole dominance of currents; (c) High energy 

behavior; (d) Saturation. In this section we explicitly state our assump- 

tions and discuss the'theoretical and experimental evidence supporting them. 

A. The Algebra of Charges 

We assume that the isotopic spin vector and axial vector charges 

(i = 1,2,3): 

Qi = I V$,t)d3x (3) 

(4) Q; = 1 A$,t)d3x 
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obey, at equal times, the commutation relations of the chiral SU(2) X Su(2) 

5 algebra : 

[Q~,Q~I = i.EijkQk (5 

[Q$Qjl = icijkQ5 (6 

h+Q5 i j] = ieijkQk (7) 

This suggestion is strongly supported by the success of the Adler-Weisberger 

calculation1 of g 6 
A as well as by a few other successful applications of the 

commutator (7). The isospin charges Qi are conserved by the strong inter- 

actions: 

s Qi(t) = 0 

What can we say about the time derivatives of the axial charges? We define: 

k Q;(t) 5 Di(t) 

Taking the time derivative of both sides of Eq. (6) we learn that D'(t) is 

a vector in isospin space: 

L&Q~! = i.c ijk' 
k 

Differentiating (7) with respect to t gives: 

[D~,Q$ = [D~,Q;] 

The commutator [D,Q 1 must therefore be symmetric in 5 isospin and may i nclude 

00) 

01) 

only I=0 and I=2 parts. Most of the Lagrangian models that have so far been 

proposed as possible underlying structures for the SU(2) X SU(2) charge 

algebra (including the a-model' and the free quark model') indicate that 
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the I=2 part of the [D, 
% 

I commutator is absent. This assumption may be 

based on grounds of simplicity, but it could also be intuitively related 

to the striking absence of any evidence for I=2 currents, particles or 

resonances. We therefore assume: 

where S(t > is an i soscalar quantity, and thus satisfies: 

s(t ) corresponds to the integrated a-density in the 0 model and is propro- 

tional to a scalar charge /$+Bqd3x in the free quark model. Could the com- 

mutator (12) vanish? It turns out that as long as Q5(t) is not a conserved 

charge (D(t) f 0) th e commutator (12) does not vanish and, furthermore: 

[n’(t),Q;(t)l = sijS(t) p 

b(t),Q? = 0 e 03) 

[s(tLQ$t)l = Di(U 04) 

This can be easily deduced from the Jacobi identity: 

[:&Q$Q~I + [[Q$Q~I,D~I + [CQ$D~I,Q$I = o 05) 

which leads directly to Eq. (14). Eqs. (lo)-(14) d emonstrate that the four 

operators Di(t)(i=1,2,j),S(t) t ransform into each other under commutation 

with the generators of SU(2) X SU(2) and therefore belong to a 4 dimentional 

(2,s) representation of the algebra 9 . 

B. Pole Dominance 

The commutation relations of the weak and electromagnetic currents 

lead to predictions for strong interaction parameters, when supplemented 

by pole dominance assumptions such as PCAC and vector meson dominance. 
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Since most of our analysis deals with pion-hadron scattering we will mainly 

use PCAC, namely: 
10 

we assume that the pion pole dominates the matrix ele- 

ments of the divergence of the axial current at q2= 0 * Inserting this 

divergence between single-nucleon states then leads to the Goldberger- 

Treiman relationll: 

where g A = 1.18, “rJ is the nucleon mass, = 14.6 and f fl is the decay 

constant of the charged pion. The expression for the pion decay rate is: 

rfl = & (G cos ff (17) 

where G = 1.02 X 10 -'cl2 is the weak interaction coupling constant, BC is 

the Cabibbo angle and rnK and m 
CL 

are the masses of the r( and 1-1. The experi- 

mental fl+ lifetime 12 gives: 

fx = 135 MeV 

C. High Energy Behavior 

The success of Regge pole theory in explaining the energy dependence 

of many scattering processes at high energies leads us to believe that it 

can serve as a reliable criterion for the convergence of various sum rules. 

According to Regge theory (or any other theory based on the dynamical impor- 

tance of t-channel exchanges at high energy and small momentum transfer) the 

energy dependence of a strong interaction scattering amplitude is essen- 

tially determined by its t-channel quantum numbers. In the next section we 

-w> construct t-channel helicity amplitudes fX x x 
a33 

(s,t) for the process 
c d' 



d -I- b --+c I- a (viewed in the s-channel) which are free from kidnematic 

singularities. As s -rm these amplitudes satisfy: 

i;t (1) hchd’Aalb(s+) a s 
g(t)-n 

(19) 

where I is the isotopic spin in the t-channel, Xi are t-channel helicities, 

CXI(t) is the position of the leading trajectory having the appropriate 

t-channel quantum numbers and: 

The two components which determine the high energy behavior (Eq. (19)) are 

of different character. The parameter .4 represents the kinematic structure 

of the helicity amplitudes and will be discussed in detail in Section III, 

while g(t) represents the dynamical information of the Regge model. Since 

in this paper we deal mainly with t=O amplitudes we have to make specific 

assumptions only with respect to ol,(O). Moreover, the convergence of all 

the sum rules discussed here is determined by whether CXI(0) = 1, 

0 ,< q(O) < 1 or (XI(O) < 0 and does not depend on the precise numerical value 

of a. We will assume that, for the leading trajectories which couple to the 

7[-n system: ho@) = 11, y(o) < 1, a,(o) < 0. 

The first of these assumptions, a,(O) = 1, means that total cross- 

sections are finite as s -+a. In Regge language it corresponds to an inter- 

cept a,(O) = 1 for the Pomeranchuk trajectory, but it could also follow, 

independent of Regge theory, from a diffraction type picture for elastic 

processes or merely from the statement of maximal strength of the strong 

13 interactions . 



The assumpt ion al(O) < 1 fol -lows in Regge theory from the--fact that 

all I=1 trajectories have t=O intercepts which are smaller than unity 14 . 

The same statement follows, however, from the Pomeranchuk theorem on the 

asymptotic charge independence of cross sections and would probably be cor- 

rect in almost any other reasonable theory. CXl(0) < 1 is also strongly 

supported by the energy dependence of the forward amplitude for n-p -TT"n.15 
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The assumption' (X2(0) < 0 is the most crucial assumption that we make 

here. Within the framework of Regge theory we simply observe that an I=2 

meson has never been seen and it is probably safe to assume that below 

1.5 - 2 BeV there is no such state with an appreciable coupling to the J(-R 

system. Using the slope of the known trajectories as a guide, we can then 

deduce that even if an I=2 particle is found at a higher mass value, its 

trajectory intercepts t=O well below cx = 0. It is amusing that the quark 

model leads to the same conclusion, at least for forward elastic amplitudes 16 . 

If the forward scattering amplitude at high energy is given by a sum over 

quark-quark scattering amplitudes, the highest isospin that can be exchanged 

is I=1 (which is the highest possible isospin in the qc system) and there- 

fore all I=2 t-channel amplitudes should vanish, corresponding to q(O) < 0. 

It is very hard to perform a direct experimental test of this assumption. 

The only simple process which can be measured relatively easily and which 

corresponds to a pure I=2 exchange is n-p +JC+N*-. In order to l'measurett 

(32(O) one has to find the cross section for this process at small values of 

t over a wide energy range (e.g. 5-15 BeV). The n'N*- final state is seen 

in the n+flr-n events which are overwhelmingly dominated by pan production. 

The present available data 1-7 are mostly at low energies (< 5 BeV) and 

indicate that the forward z"N*- production rate is very much smaller than 
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that of any fip --+nN* cross section which can proceed via I=1 ekchange and that 

it is, in fact, consistent with zero. The smallness of the I=2 t-channel 

amplitude is encouraging in the sense that it demonstrates the absence of 

important I=2 trajectories. It is, however, discouraging from the experi- 

mental point of view, since it is very difficult to measure the energy 

dependence of a cross section for a process which cannot be separated from 

its background 18 , Other I=2 exchange processes which are even more dif- 

ficult to analyze are fi+td +n-pN* +-I- and f;p --+ N*-N*-. A possible experi- 

mental test which might be feasible but has never been done is simply to 

count the number of high energy n-' s emitted at 0' from a ~r+p interaction 

at various beam energies, 

There are at least two indirect ways of testing the assumption 0+(O) < 0. 

One of them is to pursue the (Regge theory or quark model) line of reasoning 

that led to this assumption and to suggest that all double charge exchange 

processes exhibit a similar energy dependence, except for the exchange of 

an N* +' (the only known doubly-charged resonance). In particular, we could 

propose that the full 27 representation of SU(3) has a(O) < 0 or that the 

10 and ??? meson representations have a(O) < 0. Such assumptions can be 

tested by studying the high energy behavior of the forward amplitudes for 
- 

-I- - n-p +K C , K-p -+n+Z- +,- 
<' K-p -+K 2 , Fp 4-C-, the total cross-section com- 

binationl' [cr,(K'p) - at(K-p) c at(K-n) - c,(K+n) f at(x-p) - ct (fi’p)l or 

the backward scattering amplitudes for K-p -+K-p, K-p +11-.X+, etc. In all 

20 of these cases the same picture appears : The relevant amplitudes are 

very small and in many cases still consistent with zero. At any given 

energy it is certainly justified to neglect the double charge exchange 

amplitude with respect to the single charge exchange. The energy dependence 

of these small amplitudes cannot, however, be determined and one cannot rule 
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out the possibility of a tiny but persistent I=2 exchange contribution. 

Another indirect way of testing the C$(O) < 0 assumption is, of course, 

to use it in deriving as many theoretical predictions as possible and to 

try to find whether or not it leads to inconsistencies or contradictions 

with experiment. A large number of interesting results 21 have been derived 

from this assumption, so far, and many more are presented in this paper. 

None of them lead to contradictions, while most of them can definitely be 

considered as successful predictions. We therefore believe that this 

assumption is valid, but suggest that some experimental effort be directed 

into verifying it by one or more of the tests suggested here. 

D. The Saturation Assumption 

In most cases we will assume that the strong interaction sum rules at 

t=O are saturated by the s-channel contributions of the known single-particle 

states having the appropriate quantum numbers. In a few cases we will have 

theoretical or experimental reasons to omit some of these states, while in 

other cases we will study the possible necessity of a sizeable contribution 

from so far undiscovered states. It is clear that this flexibility makes 

it difficult to prove that a given sum rule is incorrect, and that it reduces 

the significance of those predictions which turn out to be very successful. 

This is, however, a price that we have to pay if we want to study a large 

number of sum rules and saturation schemes, without having a complete theory. 

At this point we only remark that we certainly do not exploit this freedom 

too much (we do not 'invent" two new particles for every new sum rule) and 

that every one of our basic assumptions plays a role in deriving a large 

number of sum rules, so that the failure of one of these assumptions would 

almost certainly lead either to a highly artificial saturation scheme or 
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simply to contradictions that cannot be reconciled. 

We close this section by restating our assumptions: 

1. SU(2) X SU(2) chiral algebra of charges. 

2. For D1 = d/dt 4, [D$Q$ = fiijs h w ere S is an isoscalar. 

3. PCAC. 

4. s 
qw 

behavior for s -+a and t=O for an amplitude with helicity 

flip a and isospin I in the t-channel. 

5. al,(o) = 1, 04(o) < 1, oi2(o) < 0. 

III. Helicity Amplitudes and Crossing Matrices at t=O 

The strong interaction sum rules for pion-hadron scattering which 

follow from the algebra of charges and PCAC are most easily expressed in 

terms of s-channel helicity amplitudes. On the other hand, the supercon- 

vergence sum rules are most naturally written for t-channel helicity ampli- 

tudes whose energy dependence for large s and fixed t is given by Eq. (19), 

In order to have a unified treatment of both families of sum rules it is 

necessary to evaluate the relevant kinematic relations, including the heli- 

city crossing matrices at t=O. In this section we present some of the 

relations which will be required for our various applications. For com- 

pleteness we also include a review of some basic results concerning the 

asymptotic behavior of the t-channel helicity amplitudes. 

A. Asymptotic Behavior of t-channel Helicity Amplitudes 

In order to study the asymptotic behavior of scattering amplitudes 

for particles with spin we consider the t-channel helicity amplitudes 22 
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t 
f~c~d,hahp) f or the process a 4 b -+c f d where t = +. 2 

a 
2 

-(P -t. pb) , 

s = -(Pa- P,) l 

t The amplitude fXchd,ha$ (s,t) has the t -channel partial 

wave expansion: 

f:A x c d' 
a\(O) =)‘(2J + lb; x 

J c d' 
Xa?h(t)d;v(@t) 

where X = X a- Ab, ~1 = kc- hd and Bt is the scattering angle in the t-channel 

between particles a and c. The differential cross-section is given by: 

da(ab -+cd) 
ds1 (22) 

where p' cd' 'ab are the final and initial three-momenta in the center of mass 

system. We notice23'24'25'26 that cos 8 
t is an analytic function of s and 

that every term in the partial wave expansion (21) contains the factor 

dJhl,(et) which can be expressed as [(cos 30,) 1x-t-p I (sin lE9 J'-I-I$ 2 t times a Jacobi 

polynomial in cos et. t We may thus divide fXchd,kaXb (s,t> by 

[(CO, 18 )Ih+pl 2 t (sin $Gt)Ih-'i'] without introducing additional singularities 

in s, obtaining a new set of amplitudes: 

(23) 

We are interested in the large s behavior of the amplitudes defined in 

Eq, (23). In order to study it we notice that, for large s and fixed t: 

C ( cos se, )Ix+pl (sin +e$-ut ]--s--,r sn 

where A = max{iXl, luI$ If the amplitude fl x h a<s,t) is asymptotically 
c d' 
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proportional to s a(t) we then find 26 : 

(25) 

While cx depends on the dynamics of the process (and can be determined by 

measuring g),thef t ac or A is clearly of kinematic origin and is inde- 

pendent of the particular dynamical model that we use. Given the asymptotic 

behavior of Eq. (23), some of the kinematic-singularity-free amplitudes 

defined in Eq. (23) have, for s --+m, a sufficiently rapid fall-off in s 

to satisfy the superconvergence relation (Eq. (2)) discussed in the 

Introduction2. 

The s-channel helicity amplitudes fS qp!&(5't) are defined in ana- 

logy to those in the t-channel, only now we define: A'= q-s, p '= A;- "; 

and 8 S is the scattering angle between particles d and c. The amplitudes 

are then defined by: 

IX ‘+cI ‘I 
The factor [(cos &,) 

ix ’ -p ‘I 
(sin $0,) 1 can again be seen to be present in 

every term of the partial wave expansion of fi,h, A x c a, ; pA or alternately, 

since angular momentum conservation leads to the vanishing of fS y, 1d.s (SA 

at f3 S = 0' (unless A'= p') and Bs = 180’ (unless A'= -CL'), one finds that 

exactly such a factor must be present in fS hAAa,XAAb(s,t). The amplitudes 

defined in Eq. (26) are free from kinematic singularities in t and non- 

vanishing at es = 0 and 180’. The transformation between the helicity ampli- 

tudes in the t-channel and s-channel is given by 27, 



J Jb 
d,l,(xa)d~,(-,)d~~*e(x~)d::~diXd)f~;"d;"d::'"'t) (*7) 

where Ji and Ai are the spin and t-channel (s-channel) helicity of 

particle i. The Xi's are functions of s,t and the particle masses and are 

given explicitly in Reference 2'7. 

B. Forward (t=O) Elastic Pion-Hadron Scattering 

We now proceed to the specific case of forward (t=O) elastic scattering 

of massless pions 28 on a hadron with mass M and spin J. We will use Eqs. 

(23)-(27) for the case in which a,b are pions (ma= 0), c,d are identical 

hadrons and t -+O in the physical region for s-channel scattering. In this 

implifies greatly and we find: particular case the kinematics s 

8 
cos -2 -tl 2 

e 

sin + 
s-M 

cos 8 S - M2 -+ t 
MG t 

cos 8 -+l 
S 

sin8 -+ 2447 
S *i--T 

s-M 

sin8 -+ s - M2 
t Mm 

(28) 

The angles Xi needed in Eq. (27) for crossing the helicity amplitudes have 

the following behavior (up to linear terms in J)27: 

(29) 
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Parity conservation implies 22 : 

A’-X’ S f~fO,hp’t) = c-1) d c fshlO,-X’O(s,t) 
C C d 

while time reversal invariance gives: 

S fh’O,X;Ob,t) = (-1) 
X;-h; s 

c 
fyO,X’ow) 

c 

(30) 

(31) 

At t=O it proves convenient to define: 

V = +(s - M2) (32) 

Under crossing from the s-channel to the u-channel Y td -V and the ampli- 

tudes defined in Eq. (23) have the simple property: 

F;';' oo(-v) = "c-'dl+' -t(I) (-1) (,, 
c d' fAchd, 00 (33) 

where I is the total isotopic spin in the t-channel. From Eqs. (23) and 
-t (28) we also note that the amplitudes f (V,t) which are free from kinematic 

singu larities in V are obtained from the amplitudes ft(V,t by dividing by: 

\X+PI h-4 
(COS $Ot) (sin+-et) = (+ sin @t)lp'~ vtcl'= vn , 

since X = 0 for pion-hadron scattering. 

If an amplitude g(V) is even under crossing and proportional to V’ 

for large V it will, at best: 

(a) Satisfy a once-subtracted dispersion relation in v if S > 0. 

(b) Satisfy an unsubtracted dispersion relation if 0 > B 2 -2. 
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(c) Satisfy a superconvergence relation of the form: : 

co 
J VNIm f(V)dV = 0 

0 
(34) 

where N is an odd integer, if -(N + 1) > S > -(N I- 3). 

An odd amplitude (h(V) = -h(-V)) which is proportional to v' for 

large V will, at most: 

(a) Satisfy a once-subtracted dispersion relation in V if B > 1. 

(b) Satisfy- an unsubtracted dispersion relation if I> @ > -1. 

(c) Satisfy a superconvergence relation (Eq. (34)) with even N if: 

-(N -I- 1) > fi > -(N -I- 3). 

Assuming the asymptotic behavior given by Eq. (19) and using the 

crossing relation Eq. (33) we conclude: 

1. If a,(O) < 0 all the I=2 t-channel helicity amplitudes may satisfy 

unsubtracted dispersion relations in V at t=O. All I=2 t-channel helicity 

amplitudes for pion-hadron scattering having LJ =!hc- hd/> 1 obey super- 

convergence relations of the form: 

00 

J p-1 Im ?(*)(V)dV = 0 
0 

(35) 

2. If al(O) < 1 all the I=1 t-channel helicity amplitudes for pion- 

hadron elastic scattering obey unsubtracted dispersion relations. Amplitudes 

having n > 2 obey superconvergence relations of the form: 

00 
I ,n-2 Im ?(')(V)dV = 0 
0 

(36) 
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3. If CXo(0) = 1 all 1=0, n > 1 t-channel helicity amplitudes obey 

unsubtracted dispersion relations. All amplitudes with n > 3 obey super- 

convergence relations of the form: 

$-31m ?;it (0) (v)dv = 0 (37) 
0 

C. Helicity Crossing Relations for Superconvergent Pion-Hadron Amplitudes 
. 

We are now fully equipped for writing down the crossing relations of 

those t-channel helicity amplitudes for forward pion-hadron elastic scat- 

tering, which satisfy superconvergence relations of the form (35)-(37). 

In particular, we discuss the cases where the target hadron has spin 

J =- ;, and 2 and consider all amplitudes having a > 1. For J = 0 we 

obviously have A = 0 and no superconvergence relations exist. 

1. 0 +$-to ++ 

There are two independent s-channel amplitudes which we choose as 

S S t 

f$o,+o and f+o,+o and two independent t-channel amplitudes: fll 
-2-Ftoo 

(with 

A= 0) and f&,oo (with n = 1). Only (f:g,oo(v,t)/(vfl)) 29 may be super- 

convergent for 1=2. As t -to: 

t \I2 
f+,oo t s _ M2 

In terms of the usual invariant amplitudes for n-N scattering: 

(38) 

(39) 
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where B is defined by 30 : 

T(V,t) = u(pd)[A(V,t) - i yeyI( 
"a+ 'b 2 )Bb'd)luh$ (40) 

2. 0+1+0+1 -- 

'There are four independent helicity amplitudes in each channel. We 

choose them to be fS S S S 

10,10; fOO,OO; flO,OO and flO,-10 in the s-channel and 
t 

fll,OO' , ftio 00 = l),and fFll,oo (with n = 2) 

in the t-channel. [f" is superconvergent for I=2 and 

satisfies: 

ft 01,oo T-3 
s f M2 -s 2M$3 -s 

+- s _ M2 foo,OO - s _ M2 flO,OO 1 (41) 
29 

is superconvergent for 1=1,2 and obeys: 

ft - 5 -11,oo t -to cqo lo- F;. 00 > ) (42) 7 

The relation between the n > 1 t-channel helicity amplitudes and the per- 

turbative invariant amplitudes is: 

(43) 
5 ft -11,&o) = - 1 A(v,O) 
V 2M2 
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where A, B are defined by2: '. 

a(v,t) = (yP)(cd.P)A(Y,,t) f $ ~(E/)(E~.&) + k,J?k-;Q)l B(U) + 

(44) 
+ (yQ)(~,.Q)C,(v,t) +- (tc-fd)C2(V&)~ 

E C’ ed are the polarizations of the spin-one particles and P = &Pa+ Pb), 

Q = ;(P,+ p,). 

3. 0-i-g 3 -+0-L-- 2 

There are six independent amplitudes. In the s-channel we choose 

f; 3 ; f! 3 ; fSl 3 ; fs3 3 ; fs 1 and fSl 1 . In the t-channel: 
20 $4 - $b$ - $b$J z?@ - ;ip>$ 

and ft 
g $00 

(with LJ = 0); ft 
13 and ft (with LY = 1); 
7 poo - 

t f 1 3 (with n = 2), and ft3 3 (with n = 3). The LJ = 1 amplitudes 
- F;oo - ppoo 

Cf” 
$ $00 

(v,t)/(~fi)I~=~ and Iftl 1 
- gy poo 

(v,t)/(v&~lt=o obey superconvergence 

relations for I=2 and have the s-channel expansions: 

+ 36 (s + M2) -s 6-s 
8M fl l+4fl 1 

9qJ-o - $@ 3 

and 
t 

fll -F;,OO 

+ 5b I- M2) ‘T $s -s 
8M ll+Tfll 

$w 1 --F--p 

(45) 
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[ftl 3 (V,O)/V 
2 ] is super-convergent for 1=1,2 and obeys: : 

- 7 poo 

(47) 

Lastly [ft 3 3 (W/(V3Fw 29 is superconvergent for 1=0,1,2 and 
- F poo t=o 

has the s-channel expansion: 

4. 0-k2404-2 

In this case there are nine independent s-channel amplitudes, which we 

S S S S S S S 
take to be f20,20; 50,20; foo,20; f-10,20; f-20,20; flO,lO; fOO,lO; fSlO,lO' 

S 

and fOO, 00' Our corresponding t-channel amplitudes are fg2 oo, f':l o. and 
? ? 

t 
foO o. (with A = 0); f:2 o. and fkl o. (A = 1); fL2 o. and f' (A = 2); 

f5 00 , (A = 3) and f~22~oo (A = 4): 
Y -1+1,00 

The possible superconvergence relations are as follows: 

t 
[f12 ooW)/bJ$Wt=O and ~f~l,oo~~,~~I~~~~It~O satisfy superconvergence ? 

relations for I=2 and have the s-channel helicity decompositions: 

-s f 
S 00,oo 

l/z -s 
(49) 

+ -J-T f10,20 + 
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and 

(50) 
+ \T(s -I- M2) -s G-2 -s i-2-s 

8M fOO,OO -I- 4 f10,20 + 2 fOO,10 

[ftll oo(v,0)/v2~ and [f~2,00(vyO)/~21 satisfy superconvergence relations 
f 

for 1=1,2. Their expansion in terms of s-channel helicity amplitudes is: 

t 
f-11,00 -y-z# (i'" 20,20 - FFo,lo > 

and 

f~2,00~-73%TS0,20 - %o,oo) 

rft _,,,,,~~?~~/~~3~~1,_, is superconvergent for 1=0,1,2 and has the 

s-channel decomposition: 

f!l2,00 -7-3 
sfyM2 rb; 2) ~~~~~~ _ 3(s ;M2) ~;o,oo 

. 
-+ 3w-s flo,20 

4-c-L-s 
-T- - 4 fOO,10 1 

(51) 

(52) 

(53) 

Finally, [f" 4 29 
~~~,oo(vw~ I superconverges for 1=0,1,2 and is given by: 

fi:22 00 t 3 1 FS Y 309 20,203 , IL qo 10 + i? Go 00 Y (54) 

The asymptotic behavior, crossing properties and type of non-trivial 

dispersion or superconvergence relation holding for the kinematic-singu- 

larity-free amplitudes discussed above are summarized in Table I. 
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IV. Strong Interaction Sum Rules for Forward Pion-Hadron Scattering 

We now proceed to write down the complete set of t=O strong inter- 

action sum rules for elastic pion-hadron scattering, using the assumptions 

of Section II. 

A. Charge Algebra Sum Rules 

The t=O charge algebra sum rules are derived from the commutators: 

[Q;,Q51 = 2Qz (55) 

(56) 

which follow from Eqs. (7) and (12), respectively. If we insert these 

commutators between hadron states moving with equal and infinite momenta 

and having identical helicities X, we obtain sum rules for the amplitudes 

S 
f~o,~o(w). In particular the commutator (55), supplemented by PCAC, leads 

to the (generalized) Adler-Weisberger 1 sum rule (for an I=1 hadron): 

m 

-s 
2 

* 0 v2 
2 Im Y$~!o(V,O) = $- 

x 
(57) 

where f ~ is defined by Eqs. (16)-(18). Eq. (57) can be interpreted as a 

forward dispersion relation for the amplitude for scattering of a massless 

pion on a hadron with spin J and s-channel helicity h, evaluated at threshold 

and supplemented by a low energy theorem which states: The threshold value 

for f'(l) xo hO is independent of X and equals 8mfl/fz. This h-independence 
f 

becomes obvious when we recall that at threshold only s-wave scattering 

contributes, and as long as &O it is clear that the scattering is indepen- 

dent of the polarization of the target. The actual magnitude of the thres- 

hold amplitude is, of course, determined by PCAC and the commutator (55). 
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Eq. (57) represents J+l (J+$) independent sum rules for the scattering of 

pions on a target having integer (half-integer) spin J, with total isotopic 

spin I=1 in the t-channel. The convergence of the integral in Eq. (57) is 

guaranteed if q(O) < 1. 

A second set of forward sum rules is obtained for scattering with 

total isospin I=2 in the t-channel. The commutator (56), supplemented by 

PCAC, leads to: 

m dV I v Irn fhO x0 -d2) (v,o) = 0 
0 I (58) 

Here, again, the sum rule can be interpreted as a statement that -42) fXO hO 
Y 

satisfies an unsubtracted dispersion relation in V and that its value at 

threshold vanishes 31. (In other words, the s-wave scattering length for 

3c-hadron scattering with I=2 in the t-channel vanishes.) The convergence 

of Eq. (58) foll ows from the assumption a,(O) < 0. 

We do not obtain any sum rules for 140 exchange amplitudes of the 

40) 
form fXO, 10, since at least one subtraction is then required in the dis- 

32 persion relations . 

B. Superconvergence Sum Rules: Class I and Class II 

From the analysis of Section III where the relations of the t-channel 

to s-channel helicity amplitudes were given for the scattering of massless 

pions on spin J < 2 targets, we see explicitly that the amplitudes satisfying - 

superconvergence relations fall into two categories. Those that correspond 

to even n = maxC(h(,jpj) are related to s-channel helicity amplitudes which 

contribute to the forward (t=O) scattering 33 , while those that correspond 

to odd values of n are proportional to fl as t -to. The coefficient of 

\(-t'generally involves helicity amplitudes which, in principle, can only be 
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obtained by extrapolation from t # 0 to the forward direction 34 ‘* . We find 

it convenient to divide the superconvergence sum rules for amplitudes at 

t=O into two classes4: Class I sum rules are those involving "pure" t=O 

amplitudes and the Class II sum rules will be those in which we are forced 

to extrapolate to t=O, and the sum rules are therefore not directly related 

35 to the physical forward scattering amplitude . 

The superconvergence relations for pion-hadron scattering are not 

36 necessarily independent of the charge algebra sum rules . The crossing 

relations between the t-channel and s-channel helicity amplitudes which we 

have presented in Section III-C enable us to rewrite the superconvergence 

relations on the t-channel helicity amplitudes in terms of integrals over 

the s-channel amplitudes Ft o x o(V,O), some of which appear in the charge 
c! 'd 4 

algebra sum rules. When we do so, we find the following general results : 

(1) All t-channel helicity amplitudes having even values of n are, at t=O, 

linear combinations of s-channel amplitudes of the form ffo xo , ho) and 

35 therefore correspond to Class I sum rules . Moreover, for every even 

n # 0 the sum of the coefficients of the various fro hO components vanishes. 
, 

(2) Given a t-channel helicity amplitude for pion-hadron scattering with 

~3 = 2 the (Class I) supereonvergence relations that it satisfies (for 1=1,2) 

are linear combinations of differences of charge algebra sum rules. 

(3) All Class II super-convergence relations are on amplitudes corresponding 

to odd values of n and are not related to the charge algebra sum rules. 

(4) Whenever a t-channel helicity amplitude satisfies more than one super- 

convergence relation (and therefore has a > 3), all relations of the form 

co 
I VN Im f(V)dv = 0 
0 

(59) 
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with N > 2 are, at t=O, linear combinations of other superconvergence 

relations with smaller values of LL For example, for the scattering of 

pions on spin 2 hadrons the super-convergence relation on the amplitude 

['~~;)oo~v,o~/"41: , 

M 

I v2rm[fE~:io,(v,o)/v41 dv = 0 
0 

t(1) is a linear combination of sum rules on [fo2 o. (v,0)/v2] and 
? 

m 

I 
0 

Im [f$'~,(v,O)/V*]dV = 0 
, 

cc 

I 
0 

Im [f~~~)00(v,0)/Y2]dv = 0. 
> 

cft (1) 
-11,oo ,(v,o)/v21: 

(60) 

61) 

This can be easily verified from the crossing relations of Section III-C. 

The general proof of these statements is straightforward. In order to 

prove the results (1) and (3) we consider the crossing relation Eq. (27) 

for pion-hadron (spin J) elastic scattering: 

' As t -+O, X -+II-X~ -$-I- d 
+O unless X' = Xd = 1'. C 

On using parity conservation to restrict the summation over X' to values 

of X' > 0, we have 
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Now, using <,M(X) = (-l)JfM'G,-M(x-X), we find 

dJ, (")dJ (“)rl+(-l)nlf;*o A Xc ’ “‘d ’ ., (64) 

where n = 1 CL 1 = /hc- Xd]. Thus for even values of A, fi x o. is a 
c d' 

linear combination of fT,o x,o amplitudes with coefficients 
9 

2dfrh ($, d;th ($,a The sum of these coefficients vanishes since for 
c d 

even a > 0: 

(65 > 

Eq. (64) also shows generally that only even LL amplitudes contribute to 

the scattering at t=O and therefore satisfy Class I superconvergence 

relations, while odd LL amplitudes vanish liken as t +O and satisfy 

Class II superconvergence relations. 

The truth of assertion (2) that n = 2 amplitudes for pion-hadron 

scattering satisfy super-convergence relations which are linear combina- 

tions of differences of charge algebra sum rules is easily established by 

comparing the superconvergence relations for LL = 2, I = 1 and 2 amplitudes 

given in Section III-B with the charge algebra sum rules given in IV-A 

and using ~q. (64) t o relate one to the other at t=O. 

Statement (4) is more difficult to prove. For hadrons with spin 

J < 2 it can be verified explicitly from the relation of t-channel to 

s-channel helicity amplitudes given in Section III-C. In general, the 

required relation(s) on t-channel helicity amplitudes at t=O needed to 

prove (4) can be established by considering an s-channel amplitude 

S 
fX10 h,O, with “G # “i so that it vanishes as t 30, and relating it by 

C 'd 



-28- 

the inverse of the crossing relation (27) to a linear conbination of 

t-channel amplitudes which must also vanish in the forward direction 37 . 

c. Class I Sum Rules as Threshold Relations on Forward Amplitudes 

We have just seen that Class I superconvergence relations on ampli- 

tudes with A = 2 are related to differences of charge algebra sum rules, 

which in turn can be interpreted as forward dispersion relations evaluated 

at threshold and supplemented by a low energy theorem. Reversing the line 

of argument, it is apparent that Class I superconvergence relations for 

forward amplitudes could have been 'discovered' as follows: we write 

unsubtracted dispersion relations for the forward pion-hadron scattering 

amplitude 38 evaluated at the threshold value of Y(=Yo): 

+a 

-S f xo XO(V=VO,t=o) = 2 
Y 

J * Im ~~o,AO(V'~t=o) 
--Do 0 

-S Now, a-t threshold fXO,hO is independent of h and essentially equal to the 

s-wave scattering length, while Im ?lo xo has the expansion 39 
Y 

Im FS AO,hO(V,t=O) = q(aX+ bAq2+ cXqLt+ ..*>, (67) 

where q is the center-of-mass three-momentum satisfying: 

w-v0 > 
q2= s (v-v, > (68 > 

and aX,bh,cX,... are constants. ax is independent of h and is propor- 

tional to the s-wave cross-section at threshold 
40 

. If we form the 
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amplitude 

g(v) = &- 
0 

[F ~lo)~lo(vY~=“) - ~~20)h20@Jt=o > I, (69) 

where h 1 and X2 are two different hadron helicities, then g(V) is free 

of kinematic singularities since the only place such a singularity might 

occur is threshold and we are assured that Im g(V) is finite there by 

Eqs. (67)-(68) and the fact that ax = ax . The amplitude g(V) then satisfies 
1 2 

the superconvergence relation 

-l-m 

- J 1 
31 

dV Im g(V) = 0, (70) 
- ix) 

obtained by subtracting the two versions of Eq. (66) with helicity Xl 

and X2, respectively. In the case of massless pion-hadron scattering 

Vo= 0 and the algebra of currents predicts the actual value of the s-wave 

'-S scattering length flo,xo (V=VO,t=O). Note, however, that the super- 

convergence sum rule (70) is independent of the particular value of a x 
and is correct for on-mass-shell pions. 

For hadrons of spin J > 2 there exist combinations of forward ampli- - 

tudes such that not only do the ax terms in Eq. (67) cancel, but also the 

bX terms which dependson the s-wave effective range and the p-wave scat- 

tering lengths (and are h dependent). Such a combination of amplitudes 

is divisible by q4= (V-Vo)2 and still free from kinematic singularities. 

An example of this occurs in pion-hadron (spin 2) scattering where 41 

t 
f-22,00(vJo) = + ~~o)20(v)o 

is divisible by (V-Vo)2. 

) - 2 ~;o,lo(v,o) -I- 3 FS B oo)oo(vJo > (71) 
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Thus by careful enough analysis of s-channel forward amplitudes and 

their relations at threshold one can derive all the Class I t=O super- 

convergence relations considered in this paper by starting from unsub- 

tracted dispersion relations for the purely forward scattering amplitudes 

and forming appropriate differences of them. Combinations of sum rules 

which eliminate the s-wave parameters lead to the superconvergence rela- 

tions on amplitudes with A = 2, while eliminating p-wave, d-wave,... 

parameters leads to the super-convergence relations on amplitudes with 

n = 4,6, . . . . 

D. Counting of Independent Sum Rules for Pion-Hadron Scattering 

From the preceding analysis it is evident that the following super- 

convergence relations are obtained for the scattering of pions on J < 2 

targets: 

0) A = 1, I = 2 t-channel amplitudes satisfy the Class II super-convergence 

relation29, 

(72) 

(2) n = 2) I = 1 and I = 2 t-channel amplitudes obey the Class I super- 

convergence relations 

a3 
I ~‘“[f~~~?),t~~(~J”)/v2~ dV = 0 
0 

and 
c3 

s 

0 
VIrn~f~~~~~~,,,(V,0)/V2] dV = 0 

(73) 

(74) 

which are differences of the charge algebra sum rules (57) and (58), respec- 

tively. 



-31- 

(3) a = 3, I = 0, 1 and 2 t-channel amplitudes obey the independent 

Class II superconvergence relations 

co 
t(1) 

v ‘“‘f(X-3p,oo( V t)/(V3~)lt.o”v = 0, ’ 

and 

as well as the relation for 1=2, 

co 

I 
v21m[f~~~~~,,oo(~,t)/(~3~)lt=odV =: 0, 

0 

(75) 

(76) 

(77) 

(78) 

which is a linear combination of A = 1, I = 2 sum rules. 

(4) n = 4, I = 0, 1, and 2 t-channel amplitudes obey independent Class I 

superconvergence relations of the form: 

03 
J 
0 

v Im[f;.!yl,,, oo(V,0)/V41 dV = 0, 
, 

co 

J- 

0 
Im [f~!'l,h,oo(V,0)/V4] dv = 0 

(79) 



-32- 

and 

co 

-J 
0 

V Im[f~~~~),,oo(V,o)lv4] dv = 0, 

while the relations 

co 

.I V21m[f~~~~)h,oo(V,0)/V4] dV = 0 
0 

and 

a, 

I v31m[f;!f{)X,oo(V,0)/V4] dV = 0 
0 

(81) 

(82) 

(83) 

are linear combinations of A = 2 sum rules. 

The case of fro scattering furnishes a good example of the counting 
4 

of independent sum rules for a given process . There are two charge 

algebra sum rules arising from the commutator [Q' Q ] = 2Qz for the cases 5’ 5 
of target p-meson helicity 0 and 1, respectively. Likewise, there are two 

sum rules arising from the commutator [D',Q~] = 0. With respect to super- 

convergence relations, there is one t-channel amplitude with A = 1, 

[f~~2~o(v,t)/(V~)lt=O' which satisfies a Class II superconvergence 
, 

relation, Eq. (72), and which is essentially the superconvergence relation 

on the B(*) (V,O) amplitude discussed in Refs. 2 and 4. The only A = 2 

amplitude, ft -11 oo(V,O) obeys the Class I superconvergence relations, Eqs. 
7 

(73) and (74), which are differences of the charge algebra sum rules. 

Thus we arrive at five independent sum rules4: two arising from the com- 

mutator [ $,,,I = 2Qz, two arising from [D+,Q;] = 0, and one Class II 

superconvergence relation on the B (2)(V,0) amplitude of Ref. 2. 
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This way of counting already includes the two Class I superconvergence 

relations which could have been obtained either as differences of the 

charge algebra sum rules or directly from the asymptotic behavior of the 

n = 2 amplitudes. The counting of independent sum rules at t=O for other 

pion-hadron processes is just as simple as in the np case, and is sum- 

marized in Table II. 

V. Representations of the Algebra of Charges and 

Class I Superconvergence Relations 

We have shown that a large class of superconvergence relations for 

pion-hadron scattering can be expressed as linear combinations of charge 

algebra sum rules. The algebraic structure of such relations can be 

analyzed in terms of the infinite momentum classification 
42 of particles 

into representations of chiral XU(2) X SU(2). In particular, we find 

that, with the exception of a few "accidents", the only superconvergence 

relations which lead to the so-called "SU(6)-results ,,43 are those which 

can be expressed in terms of charge algebra sum rules. On the other hand, 

we have already pointed out that the Class II superconvergence relations 

are not related to charge algebra sum rules, and we will show in Section VI 

that, in general, there is no reason for them to lead, in some saturation 

limit, to "su(~) results". 

In this section we consider sets of tlpure" t=O sum rules (both charge 

algebra sum rules and Class I superconvergence relations) and show that 

they can be properly described in terms of infinite momentum representations 

of sup) x sup). We also show that our assumptions with respect to I=2 

t-channel amplitudes lead to relations among the masses of the particles 

which are assumed to saturate the sum rules. 
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A. Saturated Charge Algebra Sum Rules and the Infinite Momentum Classification 

The-axial charges 
% 

i are generators of the chiral SU(2) X SU(2) algebra 

and therefore have non-vanishing matrix elements only between states belong- 

ing to the same irreducible representation (IR) of the algebra. We have 

good reasons to believe that at p, --+m the SU(2) X SU(2) classification of 

single particle states is the simplest 44 , and that the charge algebra sum 

rules are approximately saturated by a relatively small number of such 

states. In particular, if one assumes that the SU(2) X SU(2) classification 

of particles at infinite momentum is the one implied by a simple SU(6)-type 

picture, one finds that the complete set of intermediate states allowed 

to contribute to sum rules of the form (57) is given by the 35 mesons or 

the 56 baryons, as long as the target hadron belongs to one of these groups 

of states45. Alternately, we find that if, without referring explicitly 

to the representations, we saturate a set of Adler-Weisberger type sum 

rules by a set of states which "happens" to include only members of the 

35 mesons or 56 baryons, and then solve the equations for the matrix elements 

of Q ~ (or for the pionic coupling constants), we obtain "su(~) results" 

such as g = -, ' 4~:~~ = mEgton, etc. 
A 3 

A typical example is the case of 

sum rules for n-p scattering. We have two sum rules of the form (57): 

(84) 

(95) 
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If we now assume that the only s-channel resonances which eontribute 

to the sum rules are the Y=O, G = -1 pseudoscalar and vector mesons 

(TT,w,'~) we obtain the equations 46: 

8 g:pn + g&G = 2 fz 

If, furthermore, we identify cp as the particular SU(3) octet-singlet 

mixture which does not couple to the go system 
1+7 , we may omit its con- 

tribution to Eq. (86) and obtain the usual "su(~) result": 

g* 

4g:m 8 
z----z- 

WJfi 
2 m 
P f:: 

(86) 

(87) 

(W 

From the experimental point of view this result is of little interest, 

since it is clear that additional states have appreciable couplings to 

the up system, and our saturation assumption is inadequate. Algebraically 

we have demonstrated here that "solving" the equations obtained from the 

saturated sum rules leads to the same results as classifying the states 

into the IR's of SU(2) X SU(2) at infinite momentum. For the JI,P,U! and 

cp states this classification is the following: For X = 1, p and w are in 

($?,$) and q is in (0,O). For h = 0, p and fl are in (1,O) * (O,l), w and 

CQ are each in a (0,O). 

What happens if we make the same saturation assumptions for sum rules 

of the type (38)? For ZP scattering we have: 
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00 
4 F Im f10 10 -y (v,o) = 0 

co 

/ 
0 F Irn fOO 00 

-y (Y,O) = 0. 

Saturating these with 71 and LU leads to: 

2 

4(x*: - m:) % = 0 

mP 

+. 

(89) 

(90) 

(91) 

(92) 

Since gzpn, gElrlr # 0, Eqs. (91) and (92) lead to: 

(93) 

(94) 

We conclude that in this saturation limit, the sum rules for I=2 t-channel 

amplitudes predict that all the intermediate state masses are equal to the 

target mass. In order to understand this last result we must study the 

properties of the mass operator in chiral SU(2) X SU(2), to which we now 

turn. 

B. Particle Masses and Chiral SU(2) X SU(2) 
. . 

In Section II-A we have assumed that the commutator [D~,Q;] does not 

have an I=2 piece and have shown that this is sufficient to prove that the 

operators Di(i=l,2,3) and S = [D+,Q;] transform according to the ($F,%) 
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representation of SU(2) X SU(2). We now consider single particle states 

10, >,lB > which for p, 303 belong to the same (arbitrary) irreducible 

representation of SU(2) X SU(2). Replacing the time derivative of Q3 by 

its commutator with the total Hamiltonian of the system we find 4,48 

(95) 

Since, by assumption, la >,I@ > are in the same IR and D1 belongs to the 

(+,*) representation: 

(a{D$@) = O* (96) 

Furthermore, in general: 

@\Q$P) + 0. (97) 

We therefore conclude 49: 

2 2 =m "(3 a' (98) 

The (mass) 2 values of all particles belonging to an (unmixed) IR of 

SU(2) X SU(2) are therefore predicted to be equal in spite of the fact 

that the axial charge is not conserved and does not commute with the energy 

density'. The case of the x-p sum rules, saturated by 71 and cu intermediate 

states, which we have discussed in the previous section, can now be easily 

understood. We have already noted that the saturation assumption is 

equivalent to assigning p and LU to the ($,$) IR for helicity A = 1 and p 

and fl to the (1,O) f. (0,l) IR's for h = 0. Eqs. (95)-(98) then explain?' 

why we found that rnz 2 2 =m =m. 
P JI 



We have ind icated that the pure representat ion case, although 

-3% 

interesting, is of no particular relevance to the real world in which 

most (if not all) single particle states correspond at pz-+~ to mixtures 

of IX's of the chiral algebra of charges. We therefore have to study 

the case in which 10~ > and If3 > are eigenstates of the same IR, but 

describe linear combinations of single particle states with known mixing 

coefficients. We consider a set of n particle states IXi > having the 

same isotopic spin I, which belong to various known mixtures of n irredu- 

cible representations of SU(2) X SU(2) and assume that the eigenstates 

IoJi > of these representations are given by: 

I 
(99) 

n 

\Xi b =C a..(a. > 
j=l J’ J 

In addition we have m particle states IYj > with isospin 51 I' # I, 

described in terms of SU(2) X SU(2) eigenstates \Si > : 

pi>=2 
j=l 

bij\Yj > 

I Yi > = ~ bjil’j ’ 
j=l 

We now prove the following theorem: If Ic", > and iSt > are in the same 

IR: 
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m 

(Xj) =xb2 m2(Yk), 
k=l tk 

(101) 

i.e., the weighted averages of the (mass)2 values of all states in the 

same IR of SU(2) X SU(2) are equal even in the case when all single 

particle states correspond to mixtures of the IR's of the chiral charge 

algebra. The proof of this statement is straightforward: 

n m 

o = lim 2ipZ(nsiD(Dt) = lim 2ipz > x asjbtk < XjlD)Yk > = 
I!--+w z PZ-,W j=l k=l 

=ce asjbtk [m2(Yk) - m2CXj)I(xjIQ51yk) = 
j=l k=l 

= 2 ii asja&jbtkbik 

j,&l i,k=l 
[m2(Yk) - m2(Xj)I(adQylPi) = 

= 
kl bt,kbikm2(yk)(“slQ5j~i) - gl a .m2(X "sj &J j 

, I 

Since (",\Q5\Si) = Sit(Qs\Q51Bt) and (at\Qp\@t) = “st(asIQ51f3t) we 

obtain: 

(102) 
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n 

) - zazjm2(Xj 
j=l 

: 
)I ? 003) 

and Eq. (101) follows. 

The significance of this result stems from the fact that the mixing 

coefficients a.., b.. are, in principle, 
iJ iJ 

completely determined by the 

weak and electromagnetic transitions among the physical states, and Eq. 

(101) then provides us with non-trivial relations between the particle 

masses, This situation is similar to the usual SU(3) picture in which, 

for example, the a-cp mixture which belongs to the octet can be determined 

from the decays p -+nn and cp +fi and is then predicted to satisfy the 

Gell-Mann-Okubo mass formula. The SU(2) X SU(2) "mass formula' is, 

however, much simpler since it simply states that all (mass)' values are 

equal for a given IR. 

The part of the Hamiltonian which breaks SU(2) X SU(2) is essentially 

proportional to the isoscalar operator S. This follows directly from the 

commutation relation (14) of Section II. Had we allowed an isotopic 

spin 2 term in the commutator [D,Q ] we would, in principle, find addi- 5 
tional symmetry breaking terms which transform according to higher repre- 

sentations of the type (k,k). In particular a (1,l) symmetry breaking 

term might connect two states belonging to the same IR of SU(2) X SU(2) 

and thus would contribute a "diagonal" mass splitting term within the 

representation. It is the assumption on the absence of I=2 terms in 

[~pl, which led to the general mass formula Eq. (101). 
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‘. 
c. Representation Mixing at Infinite Momentum: z-p Scattering 

The saturation assumptions used in SectionzA were highly unrealistic, 

since all the relevant single particle states were assumed to correspond 

to "pure" (unmixed) IR's of SU(2) X SU(2) at pz-+m. Unfortunately, the 

real world is more complicated and the non-conservation of the axial 

charge breaks SU(2) X SU(2) symmetry and induces large amounts of repre- 

sentation mixing for the lowest lying baryons and mesons, even for p --+co Z 
where , presumably, the classification is the simplest 42 . That the low- 

lying states are strongly mixed can be seen from many different experi- 

mental facts, some of which are: the importance of many I = * N*'s in the 

Adler-Weisberger sum rule, the (factor 2) discrepancy between Eq. (87) and 

experiment, the prediction GA = 2, 3 the wrong predicted width for 52 

I'(N*-+Nn) and (assuming [D+,Q+] = 0) the n-p mass difference, N-N* mass 
5 

difference, etc. The "art" of determining the mixing coefficients for 

various single particle states from various weak, electromagnetic and 

pionic matrix elements still involves much guessing, especially in view of 

the absence of experimental data for most of the relevant transitions. A 

few successful mixing schemes for various sets of particles have been pro- 

posed, however, and we would like to discuss here one of them which we have 
4 first introduced in a previous paper . We refer to the saturation of all 

t=O sum rules for n-p scattering by the n,u! and Al intermediate states. 

In this section we will mainly be interested in the algebraic aspects of 

this idea and in Section VII we will return to some of the more phenomeno- 

logical points. 

We again consider the four sum rules (84),(85),(89), and (90) but now 

assume that the dispersion integrals are dominated by the contributions of 
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fi[,O? and Al intermediate states. With the exception of the cp and A2 

these are all the known single-particle states which couple to the x-p 

system. At this point we neglect the (small) contribution of (i, and A2 

and we will return to them later, when we discuss (in Section VII) the 

sensitivity of our assumptions. There are two independent Alpn couplings 

and we choose them as the longitudinal coupling 

(P-4)4 
9 ky 

(P*q)Px 

d P2 
> eXep ' and the transverse coupling 

I_ p~Yp'B'Y gT 
2 P,9BPa1gpleXep' where P(q) and e(e') are the momentum and 

"Al 

polarization of the Al(o). The saturated sum rules read: 

2 

2 
vA1 2 8 

mP 
22 gL=F 

m~mAl 31 

3 

v g2 
vAl 2 

iucupfi- c gT = ' 

1 

3 
vAl 2 

4v,g',,,+ T gL = 0 

mAl 

(104) 

(105) 

(106) 

(107) 

2 2 
where V = -$(mx - mo). X 
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We first consider the two "longitudinal" sum rules, whose s'aturated 

versions are Eqs. (105),(107). If the Al were not coupled to no, Eq. 

(105) would collapse into its Munmixed" version, Eq. (87). However, in 

the present model the Al contributes part of the sum rule and we can 

parametrize its contribution by defining a mixing angle $' satisfying 

4g:~n 8 2 

- = 7 cos 2 
+ m 

P Tl 

2 

'"1 2 8 2 
22 = - sin $ 

m~mAl 
gL f2 

n 

The "unmixed" case corresponds to $ = 0. Substituting this into the I=2 

longitudinal sum rule we obtain: 

VflCOS2$ -I- VA sine* = 0 (109) 
1 

or: 
2 2 mRcos $ f m2 

Al 
sin2jf 2 = m 

P (110) 

The experimental width I'(p -+cR) enables us to determine +, thereby pre- 

dicting gL and obtaining one new relation between the n,p and Al masses. 

Instead of obtaining Eqs, (108)-(110) d irectly from the saturated 

SWI rules, we could have assumed instead that, while the X = 0 component 

of the p is still in the [(l,O)+(O,l)] IR (as it was in the 'unmixed' 

case), the 7[ and Al are mixed and the [(l,O)-(O,l)] eigenstate is given 

by cos qifii > i- sin +(A: >. This would immediately lead to the same set 
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of equations including (108) and (110). The actual value of $ as deter- 

mined from the p-width is around 45', and its precise determination 

depends on the particular values used'for r(p -+rrn.) and mo, as well as 

on whether or not the external pion is taken to be massless 53 . 

For $ = 45' we find 4954: 

2m m 
p Al 

gL = fRVA 
1 

r(A,+ mc, longitudinal) = = 110 MeV 

1 

2 2 2 2m -m "'AI= p 'II = (1070 MeV)', 

(111) 

(112) 

(1x3) 

in excellent agreement wi.th the experimental A1 mass 55(108~ MeV). The 

experimental width'of the Al is 130 k 40 MeV. Eq. (112) then implies ‘chat 

the transverse Alpn coupling gT is consistent with zero, and in any case, 

does not contribute more than 60 MeV to the total width. 

We now turn to the saturated 'transverse" sum rules (Eqs. (104) and 

(106 )) and, again, parametrize the LU and Al contributions: 

2 

VAl 2 
c QT = %=i sin2x 

1 fn 
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Eq. (106) then leads to: 

2 2 
Vwcos x - VA sin x = 0 

1 
(1-15 > 

We immediately notice that the "unmixed" case (x=0) is, in this case, 

consistent with the data since it leads to 

= 21 BeV -1 
g wpfi (116) 

gT = 0 (117) 

m =m u! P (11~) 

In order to study the possible effect of the small co-p mass difference 

on Eqs. (114),(115) we notice that for m = 0.78, mo = 0.76, m LD Al 
= 1.08 

(in BeV) Eq. (115) leads to x N 10' and: 

= 20 BeV -1 
g wfi (119) 

2fi rni 
3 

gT = fn YA L sin x 

1 

(120) 

r (Al4 Pfi , transverse) = 20 MeV 021) 

We therefore find that the total width for A l-+px is between 54 

70-140 MeV, gLuPfl = 20-21 BeV-' (to be compared with gLupn= (17 21 3) BeV -1 

as obtained from the Gell-Mann-Sharp-Wagner model 56 for w -+~cr) and 

gTigL is consistent with zero and smaller than 0.2. This last ratio 

is consistent with the present inconclusive data on the decay Al-+px. 



I t is ex tremely interesting to note that we predict that the Al does not 

decay to prr predominantly via the s-wave coupling and that, in fact, the 

d-wave may dominate57. 
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Thus, the addition of the Al contribution to the four c-p t=O charge 

algebra sum rules has a dramatic effect on the agreement of the saturated 

sum rules with experiment. 

D. Symmetry Results and Class I Superconvergence Relations 

In the previous sections we have shown that (1) Charge algebra sum 

rules for the amplitudes ?To xo lead to the so-called “SU(G)-results ,,43 
., 

in the (unrealistic) case in which they are all saturated by the 35 

mesons or 56 baryons, (2) The contributing additional states can be 

analyzed in terms of the IR's of SU(2) X SU(2) and (3) The strongest 

Class I t=O superconvergence relation for any even-n t-channel helicity 

amplitude [ft (h_n)b,oo(~J)lvnl is a linear combination of charge algebra 

sum rules. It is now evident that this particular class of t=O super- 

convergence relations should, in the limit of zero external pion mass, 

lead to "su(~) results" when saturated by the 35 mesons or 56 baryons 58 . 

It is also clear that these superconvergence relations will be consistent 

with the charge algebra for any other (more realistic) saturation assump- 

tion that we may wish to suggest. Note, however, that the overall scale 

of the predictions, which in the charge algebra sum rules was supplied 

by the [Q$g,l commutator and PCAC is lost when we restrict ourselves to 

the superconvergence relations alone. 

For pion-hadron scattering on targets with spin J < 2 there is one 

case in which a Class I superconvergence relation cannot be written as a 
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. . 
linear combination of charge algebra sum rules. We refer to the sum 

rules (79)-(81) f or amplitudes of the type [ft (h-4)h,oo(W/v41. The 

amplitude itself corresponds, at t=O, to a linear combination of s-channel 

helicity amplitudes fS ).O,J&O)J and the sum rules (82)-(83) that it 

obeys are combinations of charge algebra sum rules. The sum rules (79)- 

(31) can be obtained by making a zero-energy subtraction in the dispersion 

-s relations for fXO,hO and selecting a particular combination of the once- 

subtracted dispersion relations in which the subtraction constants cancel. 
ext The assumption rnR = 0 is natural when we deal with strong inter- 

action sum rules which are derived from PCAC and the algebra of charges. 

In principle, it is totally unnecessary when we discuss only superconver- 

gence relations, which are independent of PCAC. We find, however, that 

our algebraic understanding of the saturated t=O superconvergence sum 

rules stems from their relation to the charge algebra sum rules and from 

our ability to analyze these in terms of the representations of SU(2) X 

sup). This algebraic structure as well as the self-consistency of the 

saturation by an arbitrary set of states are valid only for m ext = 0. We 'II 

are therefore led to believe that, to the extent that the Class I super- 

convergence relations have the algebraic structure of the SUE, SU(3) X 

SU(3) or SU(2) X SU(23) type, it emerges from the related charge algebra 

sum rules and is valid only for massless pions 59* The more practical 

problem of whether neglecting the pion mass results in any major effect 

on the comparison with the data, will be discussed in Section VII. 
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VI. CLASS II AND NON-FORWARD SUM RULES 

A. Class II Superconvergence Relations 

In Section IV the connection of Class I superconvergence relations 

to sum rules arising from the algebra of charges was established, and in 

the preceding section we have used the chiral SU(2) X SU(2) algebra of 

the vector and axial-vector charges to elucidate the algebraic structure 

of Class I superconvergence relations. As Class II superconvergence 

relations are not sum rules on purely forward amplitudes in the s-channel 

and therefore not related directly to charge algebra sum rules, it is 

clear that the chiral SU(2) X SU(2) algebra will not be directly useful 

in analyzing the algebraic structure of Class II superconvergence rela- 

tions. However, in a few cases the Class II superconvergence relations 

happen to be satisfied when saturated using the "su(~) results I,43 for 

masses and coupling constants obtained from specific saturation schemes 

for Class I superconvergence relations. In other cases Class II super- 

convergence relations are either inconsistent with "su(~) results 
,,@ OX? 

help in fixing certain mixing angles between SU(2) X SU(2) representations 

(often forcing them to be zero) which are left free by Class I and charge 

algebra sum rules. 

A good example of this is again provided by sp scattering where the 

t-channel amplitude [fol o. which is essentially the 

R(2)(v,0) amplitude of Rif. 2, satisfies a superconvergence relation, 

(122) 



v = (s - ?/2): 

[ft(2) 
01,oo (v,t )/(qF 
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which is in Class II. We recall from Section III that the relaiion of 

rf~~2~o(v,t)liv~)It=o t o s-channel helicity amplitudes is (recall 
, 

(123 > 

From the preceding section, we know that saturating the charge algebra 

sum rules (and Class I superconvergence relations) with only the JX and w 

states yields the "su(~) results", 4gFfln/rnE = gEPL = 8/f: 
2 2 2 and m =m =m. 
P u! fl 

For I=2 in the t-channel, the 31 and CD, with equal masses, then contribute 

with equal magnitude but opposite sign to the first and second terms, 

respectively, on the right hand side of Eq. (123). The last term on the 

right hand side receives no contribution in this approximation, since the 

cu intermediate state contributes only to transverse (helicity X = + 1) and 

the pion intermediate state contributes only to longitudinal (helicity 

X = 0) no scattering, but not to both. Thus the superconvergence rela- 

tion, Eq. (122), will be satisfied by the "EN(~) results' obtained from 

the charge algebra sum rules. 

If we expand the saturation scheme to include the fl[, w, and Al mesons 

(see Section V), the last term in Eq. (123) no longer vanishes in general, 

as the Al intermediate state in rrp scattering contributes in principle to 

both the transverse and longitudinal amplitudes, and therefore to the 

amplitude fS 1o o. which involves a cross-term between transverse and longi- 
I 

tudinal scattering. The explicit form of the saturated version of 
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Eq. (122) is: 

2 
VA 

- -+ k,- g,)" = '9 

mAl 

(124) 

However, when we 'saturate" the charge algebra sum rules by the x, cu, 

and Al, we find that Eq. (122) can be consistently saturated by the same 

states only if the last term in Eq. (123) is forced to be zero, so that 

either the transverse or longitudinal Alprr coupling must vanish. As the 

charge algebra sum rules and I'(p +~n) give a non-vanishing value for the 

longitudinal coupling (see Section V), the transverse Alon coupling must 

vanish (corresponding to x=0). 

We also know that "su(~) results" are consistent with the Class II 

superconvergence relation on the amplitude [f ~~joobJA/b431t.o for 

fiC scattering 61 . However, for RN* elastic scattering "su(~) results" are 

incansistent with some of the Class II sum rules 60 . The fip and G cases 

thus appear to be "lucky accidentstr due to low spins, mass degeneracy of 

the states assumed to saturate the sum rules, and the vanishing of certain 

amplitudes containing cross-terms between different helicity states when 

very simple saturation schemes are used. The inconsistency of the Class II 

superconvergence rela'tions for nN* -+nN* just provides an explicit example 

of what we expected, namely: as Class II superconvergence relations are 

not related to sum rules on purely forward amplitudes, we do not expect 

any general connection between them and the "su(~) results" obtained from 

the charge algebra sum rules on forward amplitudes. 
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B. Sum Rules for llSmal1" t#O and df/dt 
-. 

In this paper we have been interested in sum rules at t=O, in large 

part because the charge algebra sum rules are on forward amplitudes and 

we can gain some insight into the algebraic structure of at least Class I 

superconvergence relations from the charge algebra. Moreover, the t=O 

charge algebra sum rules are the only inhomogeneous sum rules that we have 

and they fix the overall scale of the coupling constants and axial transi- 

tions. The Class II superconvergence relations on non-forward amplitudes 

extrapolated to t=O, were the only t#O information that we have discussed 

so far. However, in addition to these, one can obtain additional sum 

rules by considering values of t#O, or by taking the derivative with 

respect to t of superconvergence relations and evaluating the result at 

t=o. 

For small values of t, say It/ - rnz, we expect that the superconver- 

gence relations are saturated in approximately the same way as at t=O, 

since neither the contribution of the low lying states nor the high energy 

continuum are drastically changed. However, the saturation of sum rules 

obtained by taking the derivative with respect to t of sum rules at t=O 

can be entirely changed from that Of the original t=O sum rules because 

of the important contribution of the large slope of the forward peak at 

high energy. As an example, consider again np scattering and the super- 

convergence relation (Class I) on the amplitude [fell o. y (W/V21, which 

is essentially the amplitude A (')(v,t) of Ref. 2. Let us assume satura- 

tion of the superconvergence relation by z, u), and Al, as given in Section 

V, except that we take an additional contribution of the typical form 

aelot (t g t' 2 
ne a lve in the physical region and in units of BeV ) arising 
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from the forward peak above the low energy region, and which we.‘have 

neglected in our saturation by fl, cu, and A 1' We normalize the high 

energy contribution at t=O to lCY$ of the largest contribution (from the 

u)) to the sum rule, i.e., we assume we have made a 1% error in neglect- 

ing the high energy contribution in our saturation scheme. (See Table III) 

This 1% estimate is probably realistic for the region above, say &?= 

2 BeV and, in fact, in the Adler-Weisberger sum rule for fiN scattering 

the contribution from above 2 BeV is of this size relative to the largest 

single particle terms (N,N*). 

From Table III we see that at t = -mz there is very little change in 

the saturation of the sum rule, but when we consider the sum rule obtained 

by taking the derivative with respect to t at t=O, the high energy slope 

in t yields a major contribution to the resulting sum rule, while the pion, 

a major contributor at t=O, yields a vanishing contribution. The sum rule 

for the second derivative at t=O 'loses' the contributions of all three 

states aI, u), A 1 and only J > 2 states and high energy terms contribute. 

It is therefore, apriori, more dangerous to saturate derivative sum rules 

at t=O by low lying resonances and to neglect high energy contributions and 

intermediate energy (high spin) s-channel resonances. We believe that 

within the framework of an analysis which ignores the high energy contri- 

butions, we can make a careful selection of the sum rules that are best 

saturated by a few states. We should remember that: (1) Derivative sum 

rules are apriori worse canditates, since they tend to enhance high energy 

contributions. (2) Sum rules for 'small" (- ', values of t are saturated 

as well as those at t=O and could replace them (but not be added, since 

that would be effectively equivalent to using derivative sum rules!). 
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(3) Sum rules at larger values of/t/ (say,/t/- rni) could lead $0 strong 

enhancement of high spin intermediate energy states for which}t\- rnz is 

already in the unphysical region, lcos @I > 1 and the absolute magnitude 

of the contributions of a spin J partial wave grows like 1~0s eiJ. The 

immediate neighborhood of t=O seems to be the most appropriate place for 

applying the saturation assumption, as long as we have no information on 

the scattering at high energy. 

VII. A MODEL FOR THE LOW-LYING MESONS 

In this section we discuss a simple model for the low-lying mesons. 

We assume the existence of a certain set of mesons, write all t=O charge 

algebra and superconvergence relations for the scattering of pions on 

these mesons, and assume that all sum rules are approximately saturated 

by the same set of mesons. Had we chosen these mesons to be n, 7, p, and 

CL) we would end up with the "su(~) results" for the 35-meson representation. 

However, in view of the well-known importance of additional states (such 

as the A1 in the fip sum rules) we now propose to extend the set of mesons 

to include 0' and If mesons, thereby improving the agreement with experiment. 

A. The Model 

We consider only non-strange mesons with isotopic spin 1 or 0 and 

assume that we have scalar, pseudoscalar, vector and axial-vector mesons, 

with one isotriplet and one isosinglet for every spin-parity. The quantum 

numbers of these particles are summarized in Table IV. At this stage we 

ignore the interesting possibility of having two isosinglets for each 

value of J P , but we will return to it later. 
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The total number of t=O charge algebra and superconvergenck rela- 

tions for the scattering of (massless) pions on any of the particles of 

Table IV can be easily read off from Table II: For a-x scattering there 

are two independent sum rules and only the IJ and p can contribute as 

s-channel resonances; for n-6 scattering we have two sum rules and the 

contributing states are X0 and D; there are four "pure" t=O x-p sum rules 

(plus one of Class II) and the contributing states are R, u), and Al; 

finally, we have four more "pure" t=O sum rules (and one of Class II) for 

7(-A 1 scattering with contributions from (T, p, and D. There are no sum 

rules for the scattering of pions on any of the isosinglet states of our 

model. 

We now list the 12 sum rules which can be derived from the charge 

algebra. Four of them can be alternately derived as Class I superconver- 

gence relations. In the saturation limit the sum rules read 62: 

4g2 a plrlr+g2 =- 
mL OJlfi f2 

P ll 

- g:p, 2 8 + Cm: 4 ‘)e 
4m A 

g?, = 7 
7r. 

4 gT = 0 
4m A 

025) 

(127) 

WV 
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--I- 4gE,n Cm: 22 - mp) 2 8 
2 m 

4m2m2 gL = 7 
D PA Jr. 

- 2 mzj2 2 8 
gDA7( + 

Cm: 
brn4 

A 
gT = 3 

31 

(m: 
- mE) gEAn - 4 mEj3 gT 2 = 0 

4m A 

--I- ‘gfAg 
2 

(mp 
22 

- mA) 2 a 
2 

"A 
4m2m2 gL = 7 

AP Jl 

- 4(mz (m: mEI 2 - mz) %Afi 2 - 
4m2 gL =o 

P 

a 

< 

+g2 =2 
X&l 

f3[ 

(129) 

(130) 

(131) 

(132) 

(133) 

0341 

(135) 

(136) 

We have 11 independent equations (as it turns out that there is a linear 

relation among Eqs. (125),(126),(129),(130),(131), and (134)) in 17 
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unknowns: The eight particle masses and the 9 coupling constan%s gPfin, 

g om’ gq3Jt ' gT' gL' gDA~' gaAfi gD63-r ' gx6Tc' We can, therefore, express 

all the masses and coupling constants in terms of six free parameters 

which we choose to be m fiy mxy mpy rnco and two mixing angles $ and c which 

we define by: 

4g:m 8 2 
2 = -yj- cos qf 

mP fn 

Since the experimental value for P(p -+IIJI) leads to 53 jt = 45' we 

will use this value in solving the set of equations (125)-(136). We 

find: 

m =m cs P 

2 

mAl 
= 2mE - rnz 

4 
g2,n = - 

f2 fi 

2 
gL = 

16rnE(2rnE - rnz) 

fz(m2 - mz)2 
P 

2 
2 

gOAn 
"A =- 

f: 

2 2 

(137) 

(138) 

(1-39) 

040) 

(141) 

(142) 

(143) 
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2 2 

2 32 (2 m - 
gT = 7 

P 

fl (rn: - 

2 2 
2 8 

gDAn 
mp - “Tc 

=Fm2 -m 2 
Tc w 7( 

< = 3m2 - rnz - rnz 
P 

2 
gD6fl = > (3rnE - rnz - mz) sin2[ 

3I 

4 = mzcos'{ -f- (3mE - rnz - mz)sin*[ 

045) 

PW 

047) 

(148) 

(149) 

2 
values m = 0.02 BeV*, m2 = 0.92 BeV2, Ini - ~38, 7c X 

Using the experimental 

m2 = 0.61 we predict 63 
u! 

I$7 --%I) - 650 MeV 

mu 
N 765 MeV 

InAi 
N 1070 MeV 

r(Al+ m; longitudinal) - 110 MeV 

r(Al+afi) * 55 MeV 

- 20 BeV -1 
g umr( 

(150) 

(151) 

(152) 

053) 

(154) 

055) 
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r(A14 PR; transverse) -20 MeV 

- 20 BeV -1 
gDAn 

?D - 1060 MeV 

2 
gD6fi - 110 sid[ 

_-“,.l---- 
,.I -.-..- x 

“6 - 

96oF+ 0.21 sin*; MeV 

(156) 

(157) 

(158) 

(159) 

(160) 

B. Comparison with Experiment and Sensitivity Tests 

Three questions are immediately raised in view of the predictions 

(150)-(160). (1) What can we say about particles such as 0, S and D which 

are not yet identified experimentally? (2) How good is the agreement 

with experiment of those predictions which are related to,known particles? 

(3) How sensitive are the results to approximations such as neglecting 
ext ignoring the contributions of higher mesons (especially the J P m 71 ' = 2+ 

mesons f ' and A2), and ignoring the contributions of other isosinglet 

states, especially the cp and v? We now present a long list of comments 

which are related to 'these questions and in which we try to evaluate the 

reliability of our model-calculation. 

1. The o-meson (Jp = O+, ICG = O'+) has not been found experimentally 

Many theorists and experimentalists have expressed "proofs", arguments or 

hopes that it does or does not exist, at masses between 300 and 800 MeV 

and with widths of 200 to 600 MeV 64 . The "missing" contributions to the 

n-a Adler sum rules was one possible piece of evidence for the existence 
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65 of a large s-wave r[-n interaction . We find that, in addition; the 

Jr-A 1 sum rules would be extremely hard to understand in the absence of 

a strong p-wave n-Al interaction with J P = o+, fG = o++ and which lies 

in the same energy region as the strong 71-n contribution. This may 

hint that both these interactions are actually related to a (very wide) 

n-n resonance which is also a n-Al 'bound' state. On the other hand, 

it is conceivable that the general similarity between the properties of 

Al and J( (especially if they dominate the axial current and its diver- 

gence, respectively) might lead to similar effects in 3(-n and n-Al 

scattering without explicitly demanding that the CI "particle" exists. 

In any event, our predicted mass value and width make it extremely dif- 

ficult to find the 0, especially if its production cross section in up 

reactions is small. The 7(+-rc- decay mode will be "buried" under the 

huge o-meson peak, while the fl"no mode is extremely difficult to detect, 

and could be easily confused with nay decays of the p or w, if the (5 

production cross section is a few percent of that of the p. 

2. The predicted width of the 0 is somewhat sensitive to the assumed 

mass of the external pion. Using our value for gGflrt but taking both pions 

on the mass shell we find: 

r(0 331~) = 570 MeV 

3. The predicted appreciable decay Al-+x0 makes the process 

n+N-tA, + N -+TI I- 0 -t- N a likely candidate for producing a large 

(161) 

number of U'S, The decays At +0 ++- 
-+n P ‘7l n Yl should be very similar to 

I!z If: ++- 
and A' 

It 
Al 

too -+Tt u-+n n fl 1 -+n u 4x 7[ II cannot be detected. On the other 

hand, '1; --+flOu is allowed while A0 +~l’p’ 1 is forbidden by charge conjuga- 

tion (or isospin). A z+fi- enhancement around the p mass in events for 
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-f--o which the ?I fl n system is in the Al peak would indicate a no0 decay. 

Alternately, if such a situation actually occurs, and if the possibility 

of a u-meson is ignored, we would have an apparent flop0 decay together 

with n'p- and sr-p + and we would conclude that we see a new isoscalar fip 

state in the Al mass region, while the A" 1 itself would not be seen. 

Whether this has in fact happened we do not know, but we would like to 

point out that while no evidence for the existence of the A: has been 

published so far (although numerous experiments found the At peaks) 

another neutral meson, known as H, decaying into ,~'p+ and flop0 has been 
66 found by two groups in two different experiments around 980 MeV (i.e. 

100 MeV below the Al mass). It might be interesting to study the 

(admittedly speculative) possiblity that the H is the A; and its flop0 

decay mode is actually fl"D. 

4. The relation between F(A1 -+~p) and the coupling constants gI, 

and g T involves the fifth power of the three-momentum of the pion in the 

Al rest frame. ext This momentum is changed by about 1% between mR =o 

and 140 MeV, so that the effect on I'(A l-+p~) is to reduce it by a factor 

of 1.6. Since PCAC is used in deriving the magnitude of gT and gL we 

consider this sensitive dependence of I? on m as ameasure of the ambi- 7t 

guity introduced by neglecting mfl. The proper way to state our results 

for l?(A -+p31) would then be to say that it may have any value between 

70 and 140 MeV, depending on the precise values taken for m 
P' 

ext mAly and 
m. Tr 

5. The total width of the Al is therefore predicted to be between 

110 and 200 MeV in satisfactory agreement with the experimental value 

r(Al) = 130 t- 40. The detailed branching ratios for longitudinal and 

transverse Al-+pi decay are not known experimentally. 
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6. The D meson should be the isoscalar companion of the Al and 

would correspond to some octet-singlet mixture in SU(3). Since we pre- 

dict N mA 
"D 1 

we are at least not very far from whatever predictions 

SU(3) would yield. So far the only reasonable candidate for these 

quantum numbers (Jp = If, ICG = O++) is the D(12'80). 

7. In order to test our prediction for g we have used the Gell- 
WPfi 

Mann-Sharp-Wagner model and computed I?("' -+ 3n) and I'(0 -+sy). We find56: 

r((~ -+ 330 = 14 If: 3 MeV 

J?(~ -+n -I- r) = 1.5 + 0.3 MeV 

to be compared with 10.7 k 1.5 MeV and 1.15 + 0.25 MeV, respectively 12 . 

8. Our value for "s (Es. (160)) is between 960 and 1050 MeV, prob- 

ably closer to 960. We suggest that the state 6 be identified with the 

observed narrow peak at 960 MeV in the missing mass spectrometer experi- 

ments. It is possible that the observed I=1 s-wave e interaction just 

above the 6 threshold is related to the same state (which is then a 

bound state of the 6 system). 

9+ The possible contributions of additional isoscalar states have 

been neglected in our, model. Had we included them, we would be forced to 

use additional experimental numbers as input, since the number of unknowns 

would increase without adding any new sum rules. The cp, for example, 

would then appear in Eqs. (127),(128) and the experimental value for 

r(cp +p~) would be an additional input quantity. The contribution of the 

(p meson to the left hand side of the sum rule (127) is gipn, corresponding 

to a width for cp +pn of 

2 3 
r((p -+ pz) = 
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where q is the three-momentum of the p in the rest system of the decaying 

cp meson. The experimental upper limit 12 on r(cp +fl++~-~~), including 

J% +vd, 

r(v -+-PI) < .5 MeV, 

2 
gives gqprr < l/BeV2, which is less than 0.3% of the right hand side of 

Eq. (84), 8/f;. The total effect of including the cp would therefore be 

very small and all the predictions would remain essentially unchanged. 

The v-meson might contribute to the n-6 sum rules. We would then take 

I'(6 4 nv) from experiment and find that the contribution of the 7 to the 

sum rule (135) is of the order of 1% of the right hand side, even if the 

6 decays only to SV, as long as the 6 is identified with the narrow 

Cr N 5 MeV) peak at 960 MeV. A possible candidate for a second I=0 

scalar meson is the J P = o+, ICG = o+-+ K?? state at io6o MeV12. Since 

this state does not decay into two pions, its contributions to the JIM sum 

rules may be safely neglected. The overall picture that we find here is 

that it is probable that additional isoscalar states exist, but it is 

also likely that they do not couple to non-strange mesons and therefore 

do not have appreciable contributions to our sum rules. 

10. The neglecte,d contributions of higher spin mesons can be esti- 

mated directly from experiment in a few cases. The f" contributes less 

than 1% to the fin sum rule, Eq. (lZ>), while the Jp = 3- Regge recur- 

rence of the p may also add a few percent to the left hand side. If we 

assume that both a sequence of I=0 flfl states with Jp = O+, 2', l+'... and 

another sequence of I=1 states, with J P = l-, 3-, 5-. . . exist, their con- 

tributions will all have the same sign in Eq. (l25), thereby decreasing 

our predicted value for F(o +r[n) 67 , while in Eq. (126) their contributions 
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will have opposite 

extent, leading to 

The situation 

signs and will tend to cancel each other to a large 

a small change in the predicted 0 mass. 

for the A2 contribution is similar, It contributes 

to the sum rules (127),(128). In order to evaluate its contribution to 

Eq. (127) we write the Of- A p 2 71 coupling as g a BI-c~~p~pr ew eP 
A orrpfie where 

2 nA 2 

I?, and PA are the pion and A2 momenta, e w 
2 

is the A2 polarization tensor, 

and e' the p polarization vector. The width for A2 --+p~ is then 

2 5 

l?(A2' ofi) = 
gA20n9 

2ofl ’ 

where q is the p three-momentum in the decaying A2's rest system, and the 

A2 contribution to the left hand side of Eq. (127) is s g2 A20fiv: 'M2 2 A2 

where V 2 = A2 (M - *2 
ME )/2. The experimental value for the width, I'(A2-+pn) 

= 80 MeV then yields $ g 2 2 
v /M2 = 38/Bev2, which is less than % of the 

A2 A2 A2 
8/f: on the right hand side of Eq. (127). 

If, again, we assume that a sequence of high spin I=0 and I=1 states, 

each contributing a small amount, should be added to these two sum rules, 

the total effect would probably be mainly to decrease g Lup~ (in the right 

direction!) without modifying much elsewhere. The same characteristic 

situation is relevant'to all sum rules on I=1 targets (see also the n-C 

sum rules in the next section). All I=0 and I=1 s-channel resonances 

contribute with the same sign to the sum rules for t-channel isospin I=l. 

The saturation assumptions therefore usually lead to overestimates for 

the coupling constants. For t-channel I=2 sum rules the s-channel iso- 

scalar and isovector states contribute with opposite signs and cancel 

each other to a large extent. This may explain the success of most of 

our predictions for masses, since those follow only from the I=2 sum rules. 



-64- 

‘. 

C. Algebraic Interpretation 

Our model includes 8 particles. All of them have helicity h = 0 

components, while the four spin-one states have X = 1 as well. We first 

consider the h = 1 components of p, (u, Al and D. There are only two 

ways to accommodate these states: We may have two (*&) representations 

or two (0,O) IR's, a (1,O) and a (0,l). Any other combination will 

either include additional states or violate charge conjugation (which 

requires equal amounts of (1,O) and (0,l)). The second possibility 

immediately implies g 
UPfi = 'AIDfi = 0 and m = mA , and is therefore 

P 1 
physically uninteresting (although formally it is a solution of our set 

of equations corresponding to $ = 90' in Eq. (137) and I'(p -+M) = 0). 

We are therefore immediately led to two (-$,-$) IR's. One mass formula 

then follows: 

This is obtained independent of any mixing angles and is, of course, con- 

sistent with Eqs. (140) and (147). Another trivial conclusion is: 

which, in the language of sum rules, could be obtained by comparing Eqs. 

(127) and (131). At this stage there is one free parameter left and we 

can write: 

2 2 
g,& = giupn = !3 2 

(165 > 
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cm: - m$2 2 8 . 2 

4m 4 gT = 7 sln x A lf 

< ' sin x + m z ~0s'~ = rnf 

< ' cos x i- m z sin2x = rnz 

(166 > 

(167) 

(168) 

The mixing angle x can be calculated from any one of these equations 
68 using experimental information and is found to be very close to zero . 

The classification of h = 1 states is (for x = 0): p and w are "purely" 

in a ($,s) IR, while D and Al are 'purely' in a different (-$,$). For 

x fi 0 there is some mixing which allows the Al to couple to the p with 

h = 1. 

The analysis of X = 0 states follows similar lines and we conclude 

thatfor$=45', [=O:Uand ' 
3' 

x + A,) are in a ($,$); p is in 

(LO) + PA; $'n - Al) in (1,O) - (0,l); D and LU are each in a (0,O); 

and 6 and X0 in a ($,-$). This immediately leads to Eqs. (139)-(149). 

It is clear that including additional states (B,A2,f,(P,q, etc.) would 

introduce changes in this classification and will complicate the situation 

tremendously without dramatically improving the agreement with experiment. 

Since the criteria of a successful model are both the agreement with 

experiment and its simplicity, we consider our model as a reasonable des- 

cription of the low-lying non-strange mesons, p rovided that the 0, 6 and D 

mesons are found to exist and to have properties which approximately agree 

with our predictions. 

We have also considered an expanded version of our model in which 

"abnormal" 1+ mesons (like the Bmeson) and the usual 2+ mesons are 
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included. This would correspond to the L = 0 and 1 mesons of the qi 

system in the quark model. We found that the complications introduced 

by the additional states are not compensated by the improved agreement 

with experiment, while we know that these additional states individually 

do not contribute more than 1% to any of the Adler-Weisberger sum rules. 

The sum rules for a-A2 scattering are briefly discussed in the next 

section. 

VIII. OTHER APPLICATIONS OF t=O STRONG INTERACTION SUM RULES 

We present in this section a few other applications of complete sets 

of t=O sum rules. We include the application of our results to baryons, 

31A 2 scattering, and the extension of our methods to SU(3) X SU(3) and 

mesons with non-zero strangeness. 

A. Sum Rules for rrN and nN* Scattering 

If we saturate all "pure" t=O charge algebra sum rules and Class I 

superconvergence relations for nN +nN, RN --f JON*, and nN* + nN* with the 

N and N* states themselves, where the N* is the Jp = (3/Z) +, isospin 3/2 

state at 1236 MeV, we find a unique solution with mN = mN* and the "su(~) 

resultslt for the coupling constants4 (like gA = 5/3). Algebraically 

this saturation assumption is equivalent to putting the helicity X = -$ N 

and N* in the (1,s) representation of chiral SU(2) X SU(2). 

As we know, however, the saturation of all t=O sum rules by one IR 

does not agree with experiment, nor in this case with the Class II super- 

convergence relations 60 for nN* -+ TIN*, and a consideration of the contri- 

butions to the Adler-Weisberger sum rule shows that many other states have 

non-negligible contributions. The mixing coefficients of these additional 
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states can be obtained from the weak, electromagnetic, and pionic transi- 

tions between the N and N* and the various additional states 69,70,71 A . 

study of these transitions indicates that the h = l/2, (l,-$) represen- 

tation includes the "pure" ~*(1236) together with a mixed isospin l/2 

state, cos @IN > -I- sin @IX > , where X includes components from the 

P~~(~~oo), D,~(YQo), s,,(~%o), ~~~(1-670)~ ~,~(1688), ~~~(1700) isospin 

112 nucleon resonances. We immediately obtain the mass formula from our 

theorem in Section V, 

cos 0 
“6 

+ sin'@ < = <, , 069) 

where $ is the weighted average (i.e., weighted by the squares of the 

mixing coefficients) of the (mass) 2 values of the isospin l/2 resonances. 

If we substitute the experimental values for mN and %+, and" cos 8 = 

0.8, we find that mX = 1.64 BeV, which is clearly in the expected mass 

range. As the actual mixing coefficients can be obtained only from the 
* 

so far undetermined rates for the processes N1 -+~*(1236) -t- TT, a more 
F 

detailed analysis of all the sum rules is not yet feasible. 

B. Sum Rules for TLZ Scattering 

For LE scattering at t=O we have in total three sum rules: there 

are two charge algebra sum rules, one from the commutator [Q$Q~] = 2Qz 

and one from the commutator [D+,Q+] = 0, as well as one Class II super- 5 
convergence relation on the amplitude [f t~~oo~~,~~/~~~~~lt~o. Although 

we do not yet have the amount of data for the pionic transitions of the C 

that we have for the nucleon, there does exist enough information to make 

possible at least the rough testing of these sum rules. 
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Let us begin by writing the sum rules in the limit of saturating 

them by the A, C, and Yp intermediate states. In this limit the two 

charge algebra sum rules read 72 : 

and 

(1-70) 

where V 
X 

= j!j(rnz - 4). 

3 

The class II superconvergence relation reads 

It is immediately clear that the "su(~) results", 

(173) 

and 

“c =m A=?; ' 

are a solution of both the charge algebra sum rules and the superconver- 

gence relation. As in the pion-nucleon case, however, there is a large 

discrepancy with experiment or with results inferred from experiment: 
2 2 the values of gllcJr and gccfl in Eq. (173) are roughly 5C$ larger than the 
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2 value obtained from gflNpJ using a D/F ratio of 2/l and the predibtion 
2 

gYlC3r = 8/$ is about a factor of two larger than the experimental 
2 -2 value g YICTf = 24.6 BeV obtained from l?(Yi; -+ G)/I'(Y; + all) = 8. 

All this is, of course, not surprising since we know that the C has 

pionic transitions to states other than to just the A, C, and Yy, so 

we would assume that the C, like the nucleon, is a mixture of several 

IR's of SU(2) X SU(2). For example, the YE(1405) is not far above the 

nC threshold and could make a large contribution to the sum rules. 

The results of attempting to saturate the three sum rules with the 

known Yi; and Y* resonances 12 
1 are presented in Tables V, VI, and VII. 

For purposes of comparison with previous work we have written the charge 

algebra sum rules in a somewhat different form. In Table V we have 

listed the contributions of the known resonances to the Adler-Weisberger 

sum rule for 3G scattering, which we have rewritten in the form 

for the A-C and where g A c 
A and g A are the axial-vector coupling constants 

C-C transitions 73 , and 0 TJc+ 
T is the total cross section 

- 
for zero-mass 

+ Tc mesons on C + 's. We have used the narrow resonance approximation 74 

and corrected for the zero mass of the external pions by multiplying 
ext ext 

the cross section in the &'th partial wave by (q% =0 m, /q 
2& 

="n) . 

In Table VI we have the resonance contributions to the charge algebra 

sum rule which comes from the commutator [D+,QG] = 0, 

2 - I 
31 0 

f! Im fl --yo(v,o) = 0. (175 > 
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We have chosen, however, to separate out the A and C pole contributions 

and to write the sum rule in a form analogous to the one used by Adler 

for pion-nucleon scattering 31 , 

03 
2 - 
71 I 

vO 
$! Im A (176) 

where A(2)(V,t) is the usual invariant amplitude 30 with I=2 in the 

t-channel. Finally in Table VII we present the numerical results for 

the Class II superconvergence relation, which we have rewritten in terms 

of the B(2) 30 (V,t) invariant amplitude : 

The numbers in Tab le VII are essentially those of Babu et al 61 . -- 

2 
-I dv Im B(2)(v,0) = 0 
JI 0 "c 

(177) 

From the tables we see that the consistency relation and super- 

convergence relation on the I=2 amplitudes are roughly (and about equally 

well) satisfied, with the result being very dependent on the cancellation 

of the large Born terms, which is very sensitive to the D/F ratio. 

The Adler-Weisberger sum rule for ~TC scattering, Eq. (174), is not 

saturated7' using the presently known Y*'s. Changing the D/F ratio has 

little effect in this case. However, it is not yet clear if some com- 

bination of: (1) Contributions to the sum rule from low partial wave 

background at low energies; (2) An increase in some of the Y* partial 

widths into %C; (3) Contributions from yet to be discovered Y*'s in the 

1.5 to 3 MeV mass region; and (4) The contribution of, say, 1% of the 

right hand side of Eq. (174) f rom a high energy tail above 3 BeV, will 

not yet make the agreement of experimental data with the sum rule satis- 

factory. Note that, assuming that no I=2 Y*'s exist, these contributions 
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are of the same sign and in the correct direction to improve the situation. 76 

Comments (1) -through (4) hold even more strongly for the consistency con- 

dition and superconvergence relation (although the signs here are not the 

SaJneL and we must await better data before asserting proof of the agree- 

ment or disagreement of the RC sum rules with experiment. 

c. Sum Rules for nA2 Scattering 

As we have shown in Section IV, there are 14 independent sum rules 

for firA scattering, with 9 of them either charge algebra sum rules or 

independent Class I superconvergence relations. In spite of the large 

number of sum rules, we find it very difficult to deduce any useful 

information (i.e., comparable to present experiments) using the pre- 

sently known states to saturate the sum rules because: (1) The only 

pionic transition of the A2 known with any certainty is A2-+o3(, and it 

contributes less than 1% of the helicity X = 1 generalized Adler- 

Wesiberger relation for "A2 scattering; (2) The contributions to the 

generalized Adler-Wesiberger sum rules for a state X are proportional 

to r/v3 2 2 
X’ 

whereV =s(m -m),misthemasS of the target hadron (here 
X X 

the A2), and r is its width into X + fl[. Thus contributions of states 

3 with masses near the target hadron's mass are emphasized by the Vx in the 

denominator. For '~rp scattering the fact that (V /VA )3 N 8 
A2 1 

is the pri- 

mary reason the contribution of the A2 is suppressed relative to the Al. 

For flA2 scattering, however, the contributions of particles with masses 

near the A2 mass are emphasized, given roughly equal widths for A2-+X f JI 

or X -+A 2 -I- 7[j (3) While superconvergence relations on amplitudes like 

are expected to converge very rapidly for large V because 
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of the V 
4 in the denominator, contributions from states with masses near 

the A2 mass are again very strongly emphasized. We know very little 

about these particular pionic transitions , particularly those to states 

with masses greater than the A2 mass. Thus we find little reason to 

attempt to saturate all the t=O sum rules by, say, the q, p, 13, D, and 

fO25OL when we expect higher states to give very important contributions. 

A curious result which may or may not be significant is obtained if 

we consider only the n--A2 sum rules of the form (57),(58) for helicity 

h = 2. Among the above mentioned states the f(l250) is the only state 

having a h = 2 component. If the f dominates the two sum rules we find: 

2 8 
gfA2fl = 7 

II 

leading to: 

=m lllA2 f 

(178) 

Experimentally: m(f) = 1250 MeV, m(A,) = 1310 MeV. 

D. su(3) x lSU(3) and Sum Rules for n-K* Scattering 

Since all the known strange mesons seem to have isotopic spin I = 3, 

we can only write sum rules for I=1 t-channel amplitudes for T(-K or n-K* 

scattering. The absence of I=2 amplitudes (and sum rules) prevents us 

from deriving mass relations among different K*'s, In the language of 

the IR's of chiral SU(2) X SU(2), we find that the absence of I > 2 K*'s 
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implies that all the known K* states are in combinations of the'(*,O) 

and (O,$) IR's. Since every such IR contains only one isospin multi- 

plet our general mass formula Eq. (101) is useless in this case.' Only 

if we use the full SU(3) X SU(3) can we derive relations among the 

masses of various K*'s. 

We now generalize our theorem of Section V-B to the SU(3) X SU(3) 

case. We assume that all commutators of the form [~~,ti~b] where G is a 

(vector or axial) generator of the chiral SU(3) X SU(3) algebra of 

charges and G is its time derivative, do not contain terms belonging to 

any SU(3) representation larger than the octet. We can then prove: In 

the limit of exact SU(3) all eigenstates of a given IR of SU(3) X SU(3) 

have the same (mass)2 values, in spite of the mixing of states intro- 

duced by the breaking of SU(3) X SU(3). The proof follows the lines of 

the analogous theorem for SU(2) X SU(2), and intuitively it can be made 

plausible from the fact that the only SU(3) X SU(3) breaking, but SU(3) 

conserving,term belonging to an IR in which the highest SU(3) multiplet 

is an octet,is the SU(3) singlet of the (3,7) or (7,3) representation, 

and these representations cannot connect an arbitrary IR to itself. 

This theorem is not very useful since SU(3) breaking is, in general, 

appreciable and it follows a non-trivial SU(3) X SU(3) pattern. However, 

there is one simple result that we can derive, even if SU(3) is broken. 

The SU(3) b reaking terms presumably belong to the (8,1),(1,8),(3,9) and 

(7,3) representations 77 . None of these can connect an (8,l) to a (1,8). 

Furthermore, the SU( 3) conserving terms belong to (l,l), (3,7) and (7,3) 

and are also unable to contribute to such a matrix element. We therefore 

conclude: 

w3,~,lM21 LW = 0 (lW 
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The practical implication of Eq. (181) is the predicted equality"'between 

the (mass) 2 values of a state belonging to (L8 P-(8,1> and another 

state of the same hypercharge and isospin belonging to Ww3,~) - 

We now consider the sum rules for P-~*(890) scattering. We have 

two sum rules of the 78 form (57) f or h = 0 and X = 1. We consider only 

the h = 0 sum rule. The possible contributing states are all K*'s having 

JP = o- ) 1+, 2-... The only known such states are the K meson and a 

possible Jp = l+ KA-meson. If these are the only contributing states, 

the sum rule reads 78 : 

4g:*Kn 
(GA- <*I2 4 

G* 

+ 

4;*GA 

g2 = - 

f,' 
(182) 

If we now assume that the h = 0 component of ~(890) is purely in 

(8A+W> (' in analogy to the classification of the p given in Section 

VII-C) we can use the experimental value of I'(K* +Krc) and find the mixing 

angle +, defined by: 

lig;*Kfi 4 2 
cos $ 

K 

We then predict: 

r(K + K*R, longitudinal) = A 
sin2$ K 

083) 

(184) 

2 2 
mK* = cos qJK "K 2 -t sin2diK < 

A 
085) 
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For12 P(K*+ Kn ) = 30 MeV we find 79 $, = 50°, and: 

%A= logo MeV 
W) 

P(K + K*n, A longitudinal) = 30 MeV (187) 

There are indications for various K* states between 1000 and 1400 

MeV, and at least one of them, KA(1320), is likely to be a I* meson. 

Its total width is given 12 as 80 * 20 MeV. If both the Al and B meson 

exist and have J P = l+ they presumably have corresponding axial K* 

mesons. While B cannot contribute to n-p scattering because of G-parity, 

the corresponding K* could contribute to Eq. (182) and our predictions 

(186),(187) would then correspond to some weighted average of the two 

axial K*-mesons 80 . 

IX. DISCUSSION AND SUMMARY 

Our detailed analysis has mainly been concerned with sum rules for 

elastic pion-hadron scattering amplitudes at t=O, which were assumed to be 

saturated by several low-lying resonances or bound states. A few questions 

are immediately raised: 

(1) Could we fruitfully extend our discussion to inelastic processes? 

(2) Would we reach similar conclusions by analyzing other elastic 

meons-baryon or baryon-baryon scattering amplitudes? 

(3) Is t=O really the best place to apply the saturation assumptions, 

or are we losing a huge amount of relevant, accessible physical information 

by excluding other values of t? 
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(4) Could we parametrize the contribution of intermediate knergy 

resonances in a way that will enable us to include them in the analysis 

without introducing an (almost) infinite number of parameters? 

(5) IS it possible to include the possible high energy contributions 

for sum rules involving physically unrealistic processes such as n-p 

scattering? 

One basic decision has to be made before we can try to answer these 

questions. We have to decide: are we trying to create a horribly compli- 

cated (but highly realistic) model of the world with a very large number 

of particles, Regge trajectories, non-resonating partial wave amplitudes, 

etc., which will enable us to explain an equally large number of experi- 

mental facts, or are we content, at this stage, with simplifying approxi- 

mations, 2O-3W$ errors in our predictions, but a sufficiently simple 

picture which indicates that at least our basic assumptions and general 

approach are in reasonable agreement with the existing data and present 

experimental trends. If we take the first point of view, namely, we 

decide to try and 'solve the world)l, then we should probably extend our 

analysis to inelastic processes for any projectile and any target, at all 

values of t, with a large (or infinite) number of resonances and a suit- 

ably parametrized high energy contribution. We are convinced that all of 

this is technically possible. The more simple-minded attitude, which we 

have obviously adopted in this article, would tend to answer that the 

extension of our work to all of these domains would not yield a much 

better understanding of what we are doing, at least as long as we are 

dealing with reactions which cannot be carried out in the laboratory. We 

find it necessary, however, to give a very brief discussion of the first 

few steps that we would have taken, had we decided to extend our investigation 
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and to try and guess some of the general conclusions that would emerge 

from such an analysis. 

First of all, our analysis could be extended without difficulty to 

processes such as K-hadron or vector meson-hadron forward elastic scat- 

tering. In deriving the current algebra sum rules we then would have to 

use PCAC for the strangeness-changing axial current and vector meson 

dominance for the vector current. The off-mass-shell extrapolations 

become more questionable but all our general results remain valid, includ- 

ing the relation between the Class I superconvergence relations and the 

t=O charge algebra sum rules, as well as the clear algebraic distinction 

between the Class I and Class II sum rules. In the case of K-hadron 

scattering we lose the I=2 t-channel amplitudes, while for vector meson- 

hadron scattering the current algebra sum rules involve moments of currents 

rather than charges, thus complicating the analysis in terms of the chiral 

algebra. 

We can write superconvergence relations for general inelastic reactions, 

baryon-baryon elastic scattering, and other processes, but the current 

algebra information is then not applicable. The saturated superconvergence 

relations yield dynamical relations among coupling constants and masses, 

and these should probably be studied in great detail. We do not know how 

to to this in a systematic way, but suggest that a complete analysis of 

the "pure" t=O sum rules for, say N-N and N-f elastic scattering would be 

a useful first step towards understanding the algebraic structure of the 

general superconvergence sum rules. 

The question of choosing the "best" value of t for the saturation 

assumption is perhaps the most crucial one from the practical point of view. 
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Since saturation is, at best, approximate we must find clever ways of 

minimizing the effects of those terms that we are forced to neglect 

because of our ignorance, These effects are the relatively 'smooth" 

high energy terms in the dispersion integrals and the contributions of 

possible resonances in the 1.5-2.5 BeV region, some of which could have a 

considerable effect on the sum rules. If we believe the Regge picture 

we will immediately conclude that at positive (timelike) values of t 

the high energy terms are enhanced compared to t=O, and for sufficiently 

large positive t we may even face a divergent sum rule. For negative 

(spacelike) t the convergence is improved and the high energy terms 

become unimportant. Thus, for example, the high energy contributions to 

LJ = 2, I = 1 t-channel amplitudes for pion-hadron scattering should be 

the smallest for the value of t satisfying so(t) = 0 (t = -0.6 Be?)). 

This would probably be the best place to assume saturation, if we had an 

"infinitely good' phase shift analysis of the low energy region. In the 

absence of such an analysis (which does not exist even for flN scattering, 

let alone JC-p or n-N* scattering), values of t such as t N -0.6 BeV' are 

extremely dangerous, since they are usually in the unphysical region for 

most of the important low energy region. In rc-p scattering, for example, 

t = -0.6 Rev2 is unphysical for 6< 1.28 BeV. This implies that the con- 

tributions of states such as u and Al as well as the non-resonating s, P 

and d-waves for G< 1.28 BeV grow like polynomials in cos 8, where 

jcos 0l> 1. In fact for the mass region of the Al, where all kinds of 

unknown effects occur in E-P scattering, cos 8 = -4 at t = -0.6 BeV2. 

All the uncertainties in the low-energy contributions are therefore grossly 

enhanced for sufficiently large spacelike values of t, and the saturation 

by a few discrete states is presumably very dangerous. Two cases in which 



the ambiguities for large (negative) t and low energies may not"be so 

important are n-x and n-N scattering, in which all the relevant resonances 

are above threshold at t=O, and remain physical for relatively large 

values of t; but even in these cases we are not confident that going to 

large t actually improves the approximation introduced by saturation. 

Since the data for R-N scattering hints that most of the error introduced 

by the saturation originates from the resonances around 1.5-2.5 BeV and 

not from the high energy "tail", we believe that large negative values 

of t are probably less appropriate for applying the assumption of satura- 

tion by a few low-lying states. As far as the immediate neighborhood of 

t=O is concerned, we have already demonstrated in Section IV that any 

small value of t will do, provided that we do not use a doubled number of 

sum rules which effectively implies using the derivative with respect to t. 
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The inclusion of more and more resonances in the saturation scheme 

would in general improve the agreement with experiment, and reduce the 

uncertainty with respect to various low-energy effects at the expense of 

adding many more parameters. We can see two alternative ways of deter- 

mining these parameters: We can either write sum rules for various values 

of t ( a procedure which becomes more reasonable and less dangerous if a 

sufficiently large number of states is included), or propose some "smooth" 

parametrization for the masses and widths of the different resonances 

corresponding to a given Regge trajectory in the s-channel. We believe 

that the second possibility may be more relevant to our present state of 

experimental knowledge and we consider this as a possible way of analyzing 

particularly simple systems such as Z-X or fi-p which couple only to a few 

trajectories. Some qualitative features of such a possibility have already 

been presented in our discussion of the sensitivity to the inclusion of 
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additional states of the model of Section VII. 

The parametrization of the high energy part for physically unfea- 

sible processes is obvious but not very useful. The Regge prescription 

is probably a valid parametrization in many cases. However, every t- 

channel helicity amplitude with a given isospin will include at least one 

unknown residue function. Every sum rule will therefore include one 

additional parameter which does not appear in any other sum rule and 

which cannot be determined experimentally. The best we could hope to do 

is to compute these residue functions, assuming that the rest of the dis- 

persion integral comes from some low-lying resonances, and then to check 

the consistency of various residue functions with the factorization theorem. 

Our present confusion with respect to the status of the low energy reson- 

ances discourages us from pursuing this line of investigation, although 

eventually it may prove useful. 

To conclude, let us summarize the main results of our work: We have 

explained the connection between sum rules derived from the chiral algebra 

of charges and t=O superconvergence relations. We found that some of these 

superconvergence relations (those having even t-channel helicity flip) are 

simply linear combinations of charge algebra sum rules and therefore are 

subject to the same algebraic analysis. We have also demonstrated that 

the other superconvergence relations at t=O are not related to the algebra 

of charges and therefore should not (and do not) obey similar algebraic 

relations. This explains the "mysterious" consistency of some saturated 

sum rules with higher symmetry results while others seem to contradict 

them. We have found a simple mass formula for the infinite momentum eigen- 

states of the irreducible representations of chiral SU(2) X SU(2). This 

formula, which states that the (appropriately averaged) (mass)2 values of 



all states in a given IR are the same, becomes very powerful when the 

mixtures of physical states corresponding to the IR's are known. We 

suggest that more effort be directed into finding these mixed states 

either by the group-theoretical method or by solving sets of saturated 

"pure" t=O sum rules. We have presented many applications of our sets 

of sum rules, generally with satisfactory agreement with experiment, and 

we believe that the overall picture obtained, strongly supports our 

assumptions concerning the absence of I=2 terms in the commutator 

[Q5, & 5 Q ] and in the amplitudes for t=O high energy pion-hadron 

tering. 

scat- 
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Ref. 12, except for the Y6(1405), which is from J. Kim, private 

communication. 

75. For another attempt at saturating the CX Adler-Wesiberger sum rule 

see G. Shaw, Phys. Rev. Letters 18, 1025 (1967). Our values for the 

resonance contributions differ somewhat from his due to different 

widths for the resonances in some cases, the use of f ll = 135 MeV 

(from the pion lifetime) instead of fl gA%/gflN (the Goldberger- 

Treiman prediction for f,), the correction we use for zero mass pions, 

and the narrow resonance approximation. All these tend to increase 

the value of the left hand side of the sum rule to the maximum pos- 

sible, and the sum of our contributions is greater than Shawls, but 

the sum rule is still only about 7% saturated. 

76. See Section VII-B for a discussion of the same situation for the pion- 

meson (isospin 1) scattering sum rules. 

77. This follows from our initial assumption above that the SU(3) breaking 

terms belong to representations no larger than octet. 

78. Eq. (57) for isospin l/2 targets has 4/f: rather than 8/f: on the 

right hand side. 
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79, Again we are calculating using massless pions. For massive:pions we 

find JIK =L 45’ and 
mKAl 1160 Mev* 

The coupling constants are similar 

to the no case with K**(8gO)K" 3( analogous to pfifi and K KjCfi A analogous 

to Alofi. 

80. We can also use the transverse sum rules, if we wish, to obtain the 

K*(890)K*(@0)~ coupling, but the size of the errors and the lack of 

any experimental number to compare the result with make this mostly 

a formal exercise. 
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Asymptotic behavior, crossing properties and type of non-trivial 

dispersion or superconvergence (S.C.) relation holding for the kinematic- 

singularity-free amplitudes for pion-hadron scattering at t=O, where the 

hadron spin is J- < 2. I is the t-channel isospin and (Xl(O) = 1, al(O) < 1, 

n;(o) < 0. For a given spin J only the first 2J f 1 lines of the table 

are relevant (A ,< 2J). 

Amplitude 

t 
fXh, oo(v’o 

-J<X<J - - "- 

-J -t 4 <Id-4 <J 

I=0 

even 

1 subtraction 

vaO-1 

odd 

No subtraction s-#IsYILLIII 
a -2 

v" 

even 

No subtraction 

odd 

S. C. (N=O) 

even 

S.C.(N=l) 

No subtraction 

val-l 

even 

No subtraction 
,I- 

a -2 
v1 

odd 

S.C. (N=O) 

a -3 
V1 

even 

S.C.(N=l) -I- --I- 
a -4 

vl 

odd 

S.C.(N=2,0) 
- 

I=2 
,e; . e-e.-- 

va2 

even 

No subtraction 

/2-l 

odd 

S. C. (N=O) I- 
v9-2 

even 

S.C.(N=l) 

va2-3 

odd 

S.C.(N=2,0) 
a -4 

v2 

even 

S.C.(N=3,1) 
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TABLE II 

The number of possible charge-algebra and Class I and II super- 

convergence relations for pion-hadron (spin J) forward elastic 

scattering. I is the t-channel isospin, and asterisks denote the sum 

rules which are linear combinations of other t=O sum rules: 

J 

0 

1 
F 

1 

3 
F 

2 

:harge Algebra 

I=1 I=2 

1 1 

1 1 

2 2 

2 2 

3 3 

Class I 

1* 1* 

1" 1* 

1 1+3* 1+3* 

Class II 

I=0 I=1 I=2 
---- --I- 

1 

1 

1 1 3-t-1* 

jWl rules 

2 

3 

5 

9 

14 

Total number 
zf independent 
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TABLE III 

Contributions of the n,, w, and Al intermediate states and the high 

energy region to the sum rule (73) for n-p scatter.ing, assuming g 
2 
pxlt = 

-1 lot = 21 GeV , gT = 0, r(A,+ pfi> = 110 MeV> f(“~~ ) o: ae for 
p(c)fl 

large V and normalizing a so that the high energy contribution at t=O 

is 1% of that of the LU. 
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TABIX IV 

Quantum numbers of mesons in the model of Section VII. 

Particle JP I G 
---wl---I --1_ 

Jl 0- 1 

X0 0- 0 + 

6 0+ 1 

P 1- 1 f 

u) 1- 0 

Al 1+ 1 

D 1+ 0 + 
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TABLE V 

Contributions to the Adler-Weisberger sum rule for nrC scattering, 

from the bound states and resonances with known ZC couplings. 

JP 
r 

I? fit 
Resonance or Contribution to left 
Bound State 

tot r,o, 
hand side of sum rule. 

(MeV) 6) 

WY- 
(l/2)+ 
c3m+ 

(l/2)- 

(3/2)- 

c3/2'>- 

c5/2r 

(5/2)+ 

WY 

D/F = 2/l 3/2 
.41 .33 

-31 '45 

40 9 .22 

50 100 .33 

16 51 .04 

50 30 .03 

89 <l < .002 

83 11 .Ol 

60 3 < .002 

sum = 1.35 1.41 
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TABLF: VI 

Contributions to the left hand side of the sum rule, 

00 

/ $! Im A (2)(v,o) = 0 

vO 

from the bound states and resonances with known nC couplings. 

JP 
r 

Resonance or r nc -_I_ 
tota1 rtotal 

Contribution (l/BeV) 
Bound State 

(MeV) 6) 

D/F = 2/l 3P 

(lWf -143 

(I-m+ 110 

(3/d- 40 9 

(l/G- 50 100 

(3/w- 16 51 

(3/G- 50 30 

(5/Q- a9 <I 

(5/e a3 11 

(5/a+ 60 3 

-36 

+a 

-16 

+15 

-116 

160 

-1 

-6 

+1 
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TABLE VII 

Contributions to the left hand side of the superconvergence relation 

cu 
2 
n / dY Im B(')(V,O) = 0 

0% 

from the bound states and resonances with known nC couplings. 

JP 
r 

Resonance or r rrc 
Bound State tota1 rtotal 

(MeV) (9' > 

Contribution (l/BeV) 

W193) 

Ypl335) 

Y$l405) 

Y$1520) 

y;( 1660) 

Y31770) 

YE ( 1'320) 

Ypl9w 

(l/a* 
D/F = 2/l 312 

+140 +113 

(l/2)* -110 -160 

(3W 40 9 +41 

wa- 50 100 +1 

(3/V 16 51 +19 

(3/c- 50 30 -18 

(5/2)- a9 <1 <+1 

WY- a3 11 +3 

(5/C 60 3 -2 


