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ABSTRACT

Using Regge high energy behavior, the chiral algebra of charges,
and pion pole dominance of the divergence of the axial-vector current,
all the strong interaction sum rules which hold for elastic pion-hadron
scattering amplitudes at t=0 are derived. These include charge algebra
sum rules as well as superconvergence relations. We distinguish between
"pure” t=0 sum rules (Class I) and "extrapolated' sum rules (Class IT)
and relate them to the evenness or oddness of the helicity flip in the
t-channel. Using the explicit crossing relations for the relevant heli-
city amplitudes, the connection of Class I superconvergence relations to
the charge algebra sum rules is established, and the algebraic structure
of Class I sum rules is then discussed in terms of representations of the
SU(2) X sU(2) chiral algebra of charges, for particle states moving with
infinite momentum. The properties of the mass operator in SU(2) X sU(2)
are analyzed and it is shown that even in the presence of SU(2) X SU(2)
symmetry breaking the (mass)2 values of all the (mixed) eigenstates of
an irreducible representation of the algebra are predicted to be equal.
Since these eigenstates can be determined from the matrix elements of the
vector and axial-vector charges, a large number of non-ftrivial mass rela-
tions are obtained. élass II superconvergence relations, sum rules for
t%O, and sum rules for the derivative with respect to t of the scattering
amplitude at t=0 are briefly discussed. Many applications of the strong
interaction sum rules are presented including a model consisting of I=0
and I=1 scalar, pseudoscalar, vector, and axial-vector mesons. The pre-
dictions of the model as well as those of the other sum rules are derived

and found to be in satisfactory agreement with experiment.



I. Introduction

A large number of_sum rules involving amplitudes for strong inter-
action scattering processes have been derived in the last few years using
various theoretical ideas including ordinary dispersion relations, the
algebra of currents, Regge pole theory and pole dominance of the weak and
electromagnetic currents. The procedure followed in most cases is to use
experimental information or theoretical prejudices in deciding which ampli-
tudes may satisfy unsubtracted dispersion relations, to write down such
relations for the amplitudes at threshold and to derive low energy theorems
for the relevant amplitudes at the chosen low energy points. The connection
between the sum rules and our experimental knowledge is often made by a
"saturation assumption"” which asserts that in most cases the dispersion
integrals are dominated by the contributions of a few low-lying single
particle states. It is this assumption which enables us to utilize sum
rules for experimentally unrealistic processes such as w-p or n~-N¥ scattering
and to obtain new dynamical relations among strong coupling constants and
masses. The saturation hypothesis is, in most cases, the weakest link in
the long chain of assumptions that we use in deriving sets of strong inter-
action sum rules. Moreover, in some specific cases we may apriori expect
saturation to provide us only with very crude approximations. This does
not mean, however, that we should abandon it completely as a powerful tool
for studying the various sum rules, particularly in view of the fact that
explicit scattering data for most of the relevant processes do not and will
not exist in the foreseeable future.

The strong interaction sum rules that we discuss stem from two main



sources: Some are typical current aslgebra sum rulesl in which the low
energy theorems are provided by the use of current commutators and the
partially conserved axial vector current hypothesis (PCAC). Other sum rules
follow from the so-called superconvergence relations2 which state that if
a scattering amplitude A(s,t) obeys an unsubtracted dispersion relation

and satisfies:

lim sA(s,t) =0 (1)

S—-—)OO

then

+ x

f Im A(s,t)ds = 0 (2)
-

Some of the most interesting questions that have recently been raised
involve the problem of saturating a continuously infinite set of strong
interaction sum rules (e.g. for all values of the invariant momentum transfer
of a given amplitude) by finite or infinite discrete sets of single p@rticle
statesB. Although we will briefly touch on this point, we would like to
address ourselves in this paper to a less ambitious problem which has not
been fully analyzed before, and which is a necessary step in understanding
many aspects of the strong interaction sum rules. We refer to the general
question of strong interaction sum rules for forward (t=0) amplitudes, their
algebraic structure, self-consistency, agreement with experiment and con-
nection to the algebra of weak and electromagnetic charges.

In particular, we discuss the following guestions: What is the general
connection between the superconvergence relations for forward amplitudes and

the sum rules derived from PCAC, vector dominance and the algebra of charges?

What are all the possible t=0 sum rules which can be derived for a
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general strong interaction scattering process, using the theogetical tools
menticned in the opening paragraph?

What, if any, is the significance of the large number of "SU(6) results"
or "higher symmetry results"” which were obtained by imposing specific satura-
tion assumptions on various t=0 superconvergence relations?

What can we say about the possible algebraic structure of t=0 strong
interaction sum rules?

Which sets of t=0 sum rules can be saturated by which single-particle
states without leading to internal inconsistencies?

How good is the agreement with experiment of the various sum rules and
saturation assumptions?

What happens in the neighborhood of t=07%

What dynamical information can we obtain from the strong interaction
sum rules, with respect to the mass spectrum and coupling constants of the
hadrons?

We will generally adopt the approach of considering the saturated sum

rules as sets of equations in the masses and coupling constants of the

intermediate states, and will study the possible solutions of such sets of
equationsh.

In Section ITI we.formulate and discuss the assumptions which are used
throughout the paper. The special importance of the I=2 amplitudes is
discussed in detail. The necessary kinematics, including some of the
explicit crossing relations for the relevant helicity amplitudes are pre-
sented in Section III. In Section IV we derive all t=0 strong interaction
sun rules which follow from our assumptions for m-x scattering (where x is
any hadron) and discuss the connection between the superconvergence relations

and the PCAC and charge-algebra sum rules. We distinguish between "pure"



(class I) t=0 sum rules and "extrapolated" (class II) sum rules. In

Section V we proceed to discuss the algebraic structure of the class I

sum rules in terms of the representationsvof the SU(2) x sU(2) chiral

algebra of charges. 1In particular we analyze the properties of the mass
operator in SU(2) X 8U(2) and present a few examples in which we illustrate
our general results. Section VI deals with sum rules for t%O. We briefly
discuss sum rules for t # O, Class II superconvergence relations and the sum
rules obtained by taking the derivative with respect to t of scattering ampli-
tudes at t=0. TIn Section VIL we present the analysis of a model consisting
of I=0 and I=1 scalar, pseudoscalar, vector and axial vector non-strange
mesons and discuss its possible relation to the experimental situation. A
few other applications of complete sets of t=0 sum rules are discussed in
Section VIIT. In Section IX we summarize our results and outline some of

the many related problems which remain open.

II. General Assumptions

The assumptions used throughout this paper fall into four categories:
(a) The algebra of charges; (b) Pole dominance of currents; (c) High energy
behavior; (d) Saturation. In this section we explicitly state our assump-

tions and discuss the‘theoretical and experimental evidence supporting them.

A. The Algebra of Charges

We assume that the isotopic spin vector and axial vector charges

(i = 1)2;3>:

O
]

P v e (3)

]
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obey, at equal times, the commutation relations of the chiral 8U(2) X su(2)

algebra5:
[@7,07] = 1e, " (5)
[05,07] = 1e, ¥ (6)
[a,03] = ie, Q" (7)

This suggestion is strongly suppofted by the success of the Adler-Weisberger
calculationl of g, as well as by a few other successful applications6 of the
commutator (7). The isospin charges Q; are conserved by the strong inter-

actions:

Lt =0 8)

What can we say about the time derivatives of the axial charges? We define:

%g Q;(t) = Di(t) (9>

Taking the time derivative of both sides of Eq. (6) we learn that D™ (t) is

a vector in isospin space:

i j . k
[Dh,q7] = leijkD (10)

Differentiating (7) with respect to t gives:

i 3 _ J A1
[D ,Q5J = [D ,Q5] (11)

The commutator [D,Q5] must therefore be symmetric in isospin and may include
only I=0 and I=2 parts. Most of the Lagrangian models that have so far been
proposed as possible underlying structures for the su(2) x SU(Q) charge

algebra (including the d—model7 and the free quark mode18) indicate that



the I=2 part of the [D’Q5] commutator is absent. This assumption may be
based on grounds of simplicity, but it could also be intuitively related
to the striking absence of any evidence for I=2 currents, particles or

resonances. We therefore assume:

i J -
where S8(t) is an isoscalar quantity, and thus satisfies:
[s(£),@"1 =0 , (13)

S(t) corresponds to the integrated o-density in the o model and is propro-

tional to a scalar charge IWTBWdB

x in the free quark model. Could the com-
mutator (12) vanish? It turns out that as long as Q5(t) is not a conserved

charge (D(t) # O) the commutator (12) does not vanish and, furthermore:
[5(6),25(8)] = p'(t) (1)
This can be easily deduced from the Jacobi identity:
i ] k J k i k i J _
([D ;Q5])Q5] + [[Q5;Q5];D 1+ [[Q5;D ]’Q5] 0 (15)

which leads directly to Eq. (14). Egs. (10)-(14) demonstrate that the four
operators D (t)(i=1,2,3),5(t) transform into each other under commubtation
with the generators of SU(2) X SU(2) and therefore belong to a 4 dimentional

9

,5) representation of the algebra”.

B. Pole Dominance

The commutation relations of the weak and electromagnetic currents
lead to predictions for strong interaction parameters, when supplemented

by pole dominance assumptions such as PCAC and vector meson dominance.
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Since most of our analysis deals with pion-hadron scattering Qé will mainly
use PCAC, namely: we,assumelgaat the pion pole dominates the matrix ele-
ments of the divergencé of the axial current at q2= O+ . Inserting this
divergence between single-nucleon states then leads to the Goldberger-
Treiman relationll:

) VEngmN

gnN

iy
T

(16)

2
g
where g, = 1.18, me is the nucleon mass, H%E = 14.6 and £ is the decay

constant of the charged pion. The expression for the pion decay rate is:

5.2
1 2 2 nt o2
Pﬂ =g (G cos GC) mom 1 - ;5 £ (17)
T

where G = 1.02 X lO-Bm;T2 is the weak interaction coupling constant, QC is

the Cabibbo angle and m and mu are the masses of the x and p. The experi-

+ 2
mental w lifetimel gives:

£ = 135 MeVv (18)

C. High Energy Behavior

The success of Regge pole theory in explaining the energy dependence
of many scattering processes at high energies leads us to believe that it
can serve as a reliable criterion for the convergence of various sum rules.
According to Regge theory (or any other theory based on the dynamical impor-
tance of t-channel exchanges at high energy and small momentum transfer) the
energy dependence of a strong interaction scattering amplitude is essen-
tially determined by its t-channel quantum numbers. In the next section we

=t (1)

construct t-channel helicity amplitudes f (s,t) for the process
kcxd’Kaxb



d+b —c+ a (viewed in the s-channel) which are free from kihematic

singularities. As s — these amplitudes satisfy:

=t (T) ozI(t)-A
B a,a (8t) =8
c’d’a’d

(19)

where I 1s the isotopic spin in the t-channel, li are t-channel helicities,
aI(t) is the position of the leading trajectory having the appropriate

t-channel guantum numbers and:

A = max{\kc- Kd\,\ka- Xb‘} (20)

The two components which determine the high energy behavior (Eq. (19)) are

of different character. The parameter A represents the kinematic structure
of the helicity amplitudes and will be discussed in detail in Section IIT,
while Oi(t) represents the dynamical information of the Regge model. Since
in this paper we deal mainly with t=0 amplitudes we have to make specific
assumptions only with respect to ai(o). Moreover, the convergence of all

the sum rules discussed here is determined by whether aI(O) =1,

0 < oi(o) <1 or QI(O) < O and does not depend on the precise numerical value
of & We will assume that, for the leading trajectories which couple to the
n-7 system: ab(o) = 1, ai(o) <1, a,(0) <o.

The first of these assumptions, Ob(o) = 1, means that total cross-
sections are finite as s —». TIn Regge language it corresponds to an inter-
cept Ob(o) = 1 for the Pomeranchuk trajectory, but it could also follow,
independent of Regge theory, from a diffraction type picture for elastic

processes or merely from the statement of maximal strength of the strong

. . 1
interactions
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The assumption Qi(O) < 1 follows in Regge theory from thetfact that
all T=1 trajectories have t=0 intercepts which are smaller than unityl
The same statement follows, however, from the Pomeranchuk theorem on the
asymptotic charge independence of cross sections and would probably be cor-
rect in almost any other reasonable theory. Oi(o) < 1 is also strongly
supported by the energy dependence of the forward amplitude for ﬂ-p ~*non.l5
The assumption2 ae(o) < 0 is the most crucial assumption that we make
here. Within the framework of Regge theory we simply observe that an I=2
meson has never been seen and it is probably safe to assume that below
1.5 - 2 BeV there is no such state with an appreciable coupling to the n-n
system. Using the slope of the known trajectories as a guide, we can then
deduce that even if an I=2 particle is found at a higher mass value, its
trajectory intercepts t=0 well below @ = 0. It is amusing that the quark
model leads to the same conclusion, at least for forward elastic amplitudesl

If the forward scattering amplitude at high energy is given by a sum over

guark-quark scattering amplitudes, the highest isospin that can be exchanged

is I=1 (which is the highest possible isospin in the qq system) and there-

fore all I=2 t-channel amplitudes should vanish, corresponding to QE(O) < 0.
It is very hard to perform a direct experimental test of this assumption.

The only simple process which can be measured relatively easily and which

corresponds to a pure I=2 exchange is n p — T In order to "measure”

ag(o) one has to find the cross section for this process at small values of

t over a wide energy range (e.g. 5-15 BeV). The 7 N*" final state is seen

in the ﬁ+n_n events which are overwhelmingly dominated by pon production.

The present available datal7 are mostly at low energies (545 BeV) and

indicate that the forward n+N*_ production rate is very much smaller than
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that of any np —nlN* cross section which can proceed via I=1 eichange and that
it is, in fact, consistent with- zero. The smallness of the I=2 t-channel
amplitude is encouraging in the sense that it demonstrates the absence of
important I=2 trajectories. It is, however, discouraging from the experi-
mental point of view, since it is very difficult to measure the energy
dependence of a cross section for a process which cannot be separated from
its backgroundlB, Other I=2 exchange processes which are even more dif-
ficult to analyze are s d —x pN* ' and pp —* &ztﬁ*-. A possible experi-
mental test which might be feasible but has never been done is simply to
count the number of high energy n 's emitted at o° from g ﬂ+p interaction
at various beam energies.

There are at least two indirect ways of testing the assumption 04 (0) < 0.
One of them is to pursue the (Regge theory or quark model) line of reasoning
that led to this assumption and to suggest that all double charge exchange
processes exhibit a similar energy dependence, except for the exchange of
an W*TT (the only known doubly-charged resonance). In particular, we could
propose that the full 27 representation of SU(3) has ®(0) < O or that the
10 and 10 meson representations have @(0) < 0. Such assumptions can be
tested by studying the high energy behavior of the forward amplitudes for
1D —+K+Z—, Kp —>n+2i? Kp —>KﬁE_, Dp ~>£ti—, the total cross-section com-
bination™? [at(K+p) - Ot(K_p) + at(K"n) - ct(K+n) + Ot(ﬂ—p) - ct(n+p)] or
the backward scattering amplitudes for K p =K p, Kp —n &', etc. In all
of these cases the same picture appearsgoz The relevant amplitudes are
very small and in many cases still consistent with zero. At any given
energy it is certainly justified to neglect the double charge exchange

amplitude with respect to the single charge exchange. The energy dependence

of these small amplitudes cannot, however, be determined and one cannot rule
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out the possibility of a tiny but persistent I=2 exchange conﬁéibution.
Another indirect way of testing the Oé(o) < O assumption is, of course,
to use it in deriving as many theoretical predictions as possible and to
try to find whether or not it leads to inconsistencies or contradictions
with experiment. A large number of interesting results21 have been derived
from this assumption, so far, and many more are presented in this paper.
None of them lead to contradictions, while most of them can definitely be
considered és successful predictions. We therefore believe that this
assumption is valid,vbut suggest that some experimental effort be directed

into verifying it by one or more of the tests suggested here.

D. The Saturation Assumption

In most cases we will assume that the strong interaction sum rules at
t=0 are saturated by the s-channel contributions of the known single-particle
states having the appropriate quantum numbers. In a few cases we will have
theoretical or experimental reasons to omit some of these states, while in
other cases we will study the possible necessity of a sizeable contribution
from so far undiscovered states. It is clear that this flexibility makes
it difficult to prove that a given sum rule is incorrect, and that it reduces
the significance of those predictions which turn out to be very successful.
This is, however, a price that we have to pay if we want to study a large
number of sum rules and saturation schemes, without having a complete theory.
At this point we only remark that we certainly do not exploit this freedom
too much (we do not "invent" two new particles for every new sum rule) and
that every one of our basic assumptions plays a role in deriving a large
number of sum rules, so that the fallure of one of these assumptions would

almost certainly lead either to a highly artificial saturation scheme or



-12-

simply to contradictions that cannot be reconciled.

We close this section by restating our assumptions:
1. 8uU(2) x sU(2) chiral algebra of charges.

i i i j . .
2. For D~ = d4/dt Q5’ [D ,Q5] = 8ijs where S is an isoscalar.
3. PCAC.

aI(o)-A

h, g behavior for s —« and t=0 for an amplitude with helicity

flip A and isospin I in the t-channel.

5. Qb(o) =1, Qi<o> <1, oé(o) < 0.

I1I. Helicity Amplitudes and Crossing Matrices at t=0

The strong interaction sum rules for pion-hadron scattering which
follow from the algebra of charges and PCAC are most easily expressed in
terms of s-channel helicity amplitudes. On the other hand, the supercon-
vergence sum rules are most naturally written for t-channel helicity ampli-
tudes whose energy dependence for large s and fixed t is given by Eq. (19).
In order to have a unified treatment of both families of sum rules it is
necessary to evaluate the relevant kinematic relations, including the heli-
city crossing matrices at t=0. 1In this section we present some of the
relations which will be required for our various applications. For com-

pleteness we also include a review of some basic results concerning the

asymptotic behavior of the t-channel helicity amplitudes.

A. Asymptotic Behavior of t-channel Helicity Amplitudes

In order to study the asymptotic behavior of scattering amplitudes

22
for particles with spin we consider the t-channel helicity amplitudes
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t D
fy RYRY Kb(s »t) for the process a + b —c + d where t = —(pa+ pb) s

= —(p - P, ) The amplitude fk Y Kb(S)t) has the t-channel partial
d,

wave expansion:
£y (s t) § (27 + 1)FK RYSY kb(t ( » (e1)

where A = ka— Kb’ B o= KC- Xd and Gt is the scattering angle in the t-channel

between particles a and c¢. The differentiagl cross~-section is given by:

do(ab —~ed) _ 1 'pcd' ‘ % ,f; (s t)’e

das 2 > (22)
‘pabl

where Ecd’ Eab are the final and initial three-momenta in the center of mass

23,2k4,25,26

system. We notice that cos Qt is an analytic function of s and

that every term in the partial wave expansion (21) contains the factor
+ -
diu(et) which can be expressed as [(cos 29 ) “% i ‘%Qtjx “5 times a Jacobi

polynomial in cos 8 We may thus divide f; N k (s,t) by

d)
-
[(cos %thk “'(sin-%@tfk Hl] without 1nuroduc1ng additional singularities

£

in s, obtaining a new set of amplitudes:

t
fk N k (s,t)

2
£) = 2

:—;)x o (8 D\+T o (23)
cd’ axb (cos %Qt) H (sin %Gt)

f

We are interested in the large s behavior of the amplitudes defined in

(23). In order to study it we notice that, for large s and fixed t:

> sA (2k)

8§ —>o

[ (cos %Gtﬁx+“'(sin %et)h‘“’]

X (s,t) is asymptotically

. t
where A = max{ M|, lulf  If the amplitude f
, a’



(s,6) —— B(t)sX(E)2

g (25)
>Lc)\d’}\a}\b 8§ —+w

While & depends on the dynamics of the process (and can be determined by

measuring %%), the factor A is clearly of kinematic origin and is inde=-

an
<

pendent of the

10 PR pa
behavior of Eg. (25), some of the kinematic-singularity-free amplitudes
defined in Eq. (23) have, for s —w, a sufficiently rapid fall-off in s
to satisfy the superconvergence relation (Eq. (2)) discussed in the

., 2
Introduction .

The s~-channel helicity amplitudes £5 (s,t) are defined in ana-

A l’, dkb
l

logy to those in the t-channel, only now we define: = ké—ké, p'= ké— x;

and 9 is the scattering angle between particles d and c. The amplitudes

N . (s,t) are then defined by:
K A deb
. fx Y xdxg(s’t>
fk x"xdkg(sjt) = (k ey ] (26)
(cos %@S) (sin-%@s)
T -
The factor [ (cos %GS) (sin 29 ) ] can again be seen to be present in

every term of the partlal wave expansion of f . (s, t), or alternately,
Al k ,xdxb
since angular momentum conservation leads to the vanishing of £5

)

s t
x A ’deb

at @ 0° (unless NM'= u') and o, = 180° (unless A'= -u'), one flnds that

s

it

exactly such a factor must be present in £° (s,£). The amplitudes
X Al deb
defined in Eq. (26) are free from kinematlc s1ngular1ties in t and non-

vanishing at QS = 0 and 180°. The transformation between the helicity ampli-

27 .

tudes in the t-channel and s-channel is given by ' :
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J Jb

3 J
t .a c d s
dy vy (X a0 (5)d, 7, (X )ay 0 (X)E 0 4 (8,8) (27)
aa Halhn By o e M B

f =
kcxd’xaxb lékgkélé

where J; and hi(ki) are the spin and t-channel (s-channel) helicity of
particle i. The Xi's are functions of s,t and the particle masses and are

given explicitly in Reference 27.

B. Forward (t=0) Elastic Pion-Hadron Scattering

We now proceed to the specific case of forward (t=0) elastic scattering

2
of massless pions 8 on a hadron with mass M and spin J. We will use Egs.

(23)-(27) for the case in which a,b are pions (mﬂ= 0), c,d are identical
hadrons and t — 0 in the physical region for s-channel scattering. TIn this

particular case the kinematics simplifies greatly and we find:

e
cos 55 ~> 1 cos 6 —1
s
fal
¥ ' 2
sin §§-~+——ji—7§ v—t sin 6_ ~*——Jéz%§€ -t (28)
s - M s - M
2 2
cos O ——)E...:._.M_ gsin 6 —>S—M

LR VRV S RSV e

The angles Xi needed in Eq. (27) for crossing the helicity amplitudes have

2
the following behavior (up to linear terms in V-t 7:

2 2 2
¢ M s - M
(29)
1 J—t s + M
-y
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22
Parity conservation implies

. }\l_}\!
s d ¢ _.s
f}\!o’)\vo(sft) = (“l) f_)\lo)_)tlo(sjt) (30)
C d C d
while time reversal invariance gives:
Al
s d "¢ _s
f}\!o}}\lo(s)t) = (—l) f)\.'O,)\lO(S)t> (31)
c d d c
At t=0 it proves convenient to define:
2
v=3(s - M) (32)

Under crossing from the s-chamnel to the u-channel Vv < -V and the ampli-
tudes defined in Eq. (23) have the simple property:

DS

f§i§2)00<—v> — 1y ° @ %§£§2,00<v> (33)

where I is the total isotopic spin in the t-channel. From Eqs. (23) and

(28) we also note that the amplitudes ft(v,t) which are free from kinematic

singularities in VvV are obtained from the amplitudes £t (v,t) by dividing by:

2l \2-p)
Y = (& sin Qt)‘“‘m v'“‘= vA ,

(cos 6 (sin %6

t) t

since A = 0 for pion-hadron scattering.
If an amplitude g(v) is even under crossing and proportional to VB'
for large v it will, at best:

(a) Satisfy a once-subtracted dispersion relation in v if B > 0.

(b) satisfy an unsubtracted dispersion relation if O > B > -2.
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(¢) Satisfy a superconvergence relation of the form:

[e)

vaIm f(v)av = 0 (3h)
0

where N is an odd integer, if -(N + 1) > 8 > -(N + 3).

An odd amplitude (h(v) = -h(-v)) which is proportional to WP

for
large v will, at most:

(a) Satisfy a once-subtracted dispersion relation in Vv if B > 1.

(b) Satisfy an ﬁnsubtracted dispersion relation if 1 >p > -1.

(c) sSatisfy a superconvergence relation (Eq. (34)) with even N if:
-(N+1)>p>-(N+ 3).

Assuming the asymptotic behavior given by Eq. (19) and using the
crossing relation Eq. (33) we conclude:

1. If GE(O) < O all the I=2 t-channel helicity amplitudes may satisfy
unsubtracted dispersion relations in Vv at t=0. All I=2 t-channel helicity
amplitudes for pion-hadron scattering having A =3lc~ kdlz 1 obey super-

convergence relations of the form:

va—lIm 7 () (yav = o (35)
0

2. If Qi(o) < 1 all the I=1 t-channel helicity amplitudes for pion-
hadron elastic scattering obey unsubtracted dispersion relations. Amplitudes

having A > 2 obey superconvergence relations of the form:

f VAP m 'ft(l>(v)dv =0 (36)
0
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3. If ao(o) = 1 all I=0, A > 1 t-channel helicity amplitudes obey
unsubtracted dispersion relations. All amplitudes with A > 3 obey super-

convergence relations of the form:

[ev]

of VA m 'f’t(o)(v)dv =0 (37)

C. Helicity Crossing Relations for Superconvergent Pion-Hadron Amplitudes

We are now fully equipped for writing down the crossing relations of
those t-channel helicity amplitudes for forward pion-hadron elastic scat-
tering, which satisfy superconvergence relations of the form (35)-(37).
In particular, we discuss the cases where the target hadron has spin

1 3

J = BL 1, 5 and 2 and consider all amplitudes having A > 1. TFor J = O we

obviously have A = 0 and no superconvergence relations exist.

1. 0+% —0+3

There are two independent s-channel amplitudes which we choose as

ff 1~ and fsl 1~ and two independent t-channel amplitudes: ffl (with
50,50 -50,30 22,00
2
A = 0) and £ (with A = 1). Only (ftll (v,t)/ (viFE)) 9 may be super-
~5%,00 -5%,00
convergent for I=2. As t —0:
2 -
t V-t s + M =s =S
f f + 5 F 38
1,00 T0 - e o,k T ¥ %O,%OJ (32
In terms of the usual invariant amplitudes for n-N scattering:
& .
f13,000/%) 1
= —= B(V,0) (39)

V-t t=0 M
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where B is defined byBO:

— pa+ pb
T(v,t) = U(pd)[A(V,t) -1 7‘(——2-———)B(V,t)]u(pc) (k0)

2, 0+1—=0+ 1

There are four independent helicity amplitudes in each channel. We

S s s s .
choose them to be flO,lO’ fO0,00’ fl0,00 and flO,-lO in the s-channel and
t t t , £
it = 1 = . = 2
11,00 00,00 (with A = 0), £61,00 (with A = 1), and £213 00 (with A )

in the t-channel. [fgl Oo(v’t)/(vvjy)]t—o is superconvergent for I=2 and
, =

satisfies:
t 3 V—t é + M2 =S s + M2 —S qugs' —g
fo1,00 Tb 5 T10,10 ¥ ~ 2 To0,00 ~ ~ 7 £10,00{ ()
’ ZEM ?"M ’ s - 2 s - M »
t 5 29
£ 11 OO(V’O)/V 1 is superconvergent for I=1,2 and obeys:
]

t -3 -5
—Y 1 - 42
£13,00 150 2 (F10,10" T00,00’ (42)

The relation between the A > 1 t-channel helicity amplitudes and the per-

t ’ :
LM] = [—2-\21 A(v,0) + B(v,oﬂ
vy-t £=0 M

£ 1
-11,00(V:0) = - —5 A(v,0)

M

turbative invariant amplitudes is:

=

(43)

i

1
“é—f
Vv
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where A, B are defined by2:

T(v,t) = (e, P)(eg-PIA(V,E) + 5 [(e - B)(e,-Q) + (e,-P)(e_Q)] B(v,t) +
(k)
+ (e

e (eg-Q)C, (v,8) + (e .e,)C,(V,t),

€.» €4 are the polarizations of the spin-one particles and P = %(pa+ pb>’

1
Q = é—(pc-'- pd)‘

PO

3. 0+ g -0 +

There are six independent amplitudes. In the s-channel we choose

and fs . In the t-channel:

; f ; £° IS N
- 50,70 - 50,50

3, 3
20,20

f\)!)!——‘

3 and ftl 1 (with A = 1);
2,00 - 5 5,00

(with A = 3). The A = 1 amplitudes

13 33
5 5% "5

13 (v,t)/(vvcf)]tzo and [ftl 1 (V,t)/(vwcgj]tzo obey superconvergence
é--é-,OO - §—2—)OO

relations for I=2 and have the s-channel expansions:

] — 2
f§3 P— —tz[ﬁ(S&B&M)?z 3+‘£2-fi 3"
7 50 § - M 50,30 39,50
2 LI_E'
. 3¢3 (s + M) 7S + #@E-fs (45)
&M 11 ¥ 5.1
50,70 277
and
fr—r 2 o
ftll t -0 _t2 3(3;41\”?2 3+"§E—§ 3.7
H
-3300 "7 - Pp 7 opd
(46)
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2
[ftl 3 (v,0)/v"] is superconvergent for I=1,2 and obeys:
"2 &9
t : : f? =5 =S
f T f - f L
134 t7O0E [ 20,20 L1 } )
T 27027 30350
t 35 29 .
Lastly [f (v,t)/ (v{-t)] is superconvergent for I=0,1,2 and
- 00 =

0

b

hel [
o

has the s-channel expansion:

Fa— 2 2
t . N-t 3(s + M ) =s 3(s + M) =s ¥3s =
S 00 P70 g ou féo 2 Wl 1, TR 1 3,
L s - 5575 5905 595
(48)
] éég 7 ‘\
1.1
- 030 -

h, 0+2 -0+ 2

In this case there are nine independent s-channel amplitudes, which we

S
-10,10?

d

take to be fo4 503 T10,205 T00,20° T-10,20% T-20,20° T10,10% fo0,10°

s . . t t
00,00 Our corresponding t-channel amplitudes are f22,oo’ fll,OO an

. t t t t
with A = 0); 12 00 @4 o1 o0 (A =1); £52,00 2 T 141 00 (A = 2);

(A= L).

f

and

t
00,00 (
t

-12,00

T

(A= 3) and £°

t ~22,00

The possible superconvergence relations are as follows:

t | t .
[flg’oo(v,t)/(vvfg)]t=o and [fOl)OO(v,t)/(vJ??)]tzo satisfy superconvergence

relations for I=2 and have the s~channel helicity decompositions:

2 : - oo
t -t M 2 ARy
£ > s 7S S + M s s + =S
12,00 & —0 5 + T * ’é'g"g'
s s - M 3M 20,20 2M 10,10 M fOO,OO

(49)
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and
. 2
t V-t (s + M) = 7S {“Ys + M §s
01,00 ¢t s 8M 20, 20 LM 10,10
(50)
@gks s ) 7S d6 S_ S EZT?
8M 00, OO n lO 20 2 00,10
[ft (v,0 /v ] and [f (v O)/ve] satisfy superconvergence relations
~11,00 02,00'"”

for I=1,2. Their expansion in terms of s-channel helicity amplitudes is:

t -5

1
11,00 T=8% F20,20 - T10,10) (51)
and
t {a' —
£02,00 T 58 8 (T 20,20 ~ f00,00 (52)
£

[f_12 oo(v’t)/(VBv'tSthg is superconvergent for I1=0,1,2 and has the
, =

s-channel decomposition:

(" 5 %fgr 3(s + Mg) 75 3(s + M2) =8
f12,00 7t —0 s - [ BM 20,20 = T Bu T00,00
« (53)
3{" ~"S _ 6 S ?S
A 10,20 I~ 00,10

“ 29
Finally, [ft22 OO(V,O)/VM] superconverges for I=0,1,2 and is given by:
- 3

]__Y

t 1 =8

—S 3
-22,00 & =38’ L s

f 20,20 ~ 2 *10,10 7 8 00,00 (54)

The asymptotic behavior, crossing properties and type of non-trivial
dispersion or superconvergence relation holding for the kinematic-singu-

larity-free amplitudes discussed above are summarized in Table T.
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IV. ©Strong Interaction Sum Rules for Forward Pion-Hadron Scagkering

We now proceed to write down the complete set of t=0 strong inter-
action sum rules for elastic pion-hadron scattering, using the assumptions
of Section II.

A. Charge Algebra JSum Rules

The t=0 charge algebra sum rules are derived from the commutators:

i}

o+ -
[Q5,Q5J 2Q (55)

(56)

!
O

+ +
[D ;Q5] =

which follow from Egs. (7) and (12), respectively. If we insert these

commutators between hadron states moving with equal and infinite momenta

and having identical helicities A, we obtain sum rules for the amplitudes
s

10 XO<V’O>' In particular the commutator (55), supplemented by PCAC, leads
2

to the (generalized) AdlerJWeisbergerl sum rule (for an I=1 hadron):
2 av =s(1 8
- f Im f (1) (v,0) = = (57)
T3 ,

where f  is defined by Egs. (16)-(18). Eq. (57) can be interpreted as a
forward dispersion relation for the amplitude for scattering of a massless
pion on a hadron with spin J and s-channel helicity A, evaluated at threshold

and supplemented by a low energy theorem which states: The threshold wvalue

2
for fs(l) is independent of X and equals 8m /f . This X-independence
20, A0 T

becomes obvious when we recall that at threshold only s-wave scattering

contributes, and as long as =0 it is clear that the scattering is indepen-
dent of the polarization of the target. The actual magnitude of the thres-~

hold amplitude is, of course, determined by PCAC and the commutator (55).
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Eq. (57) represents J+1 (J+5) independent sum rules for the scattering of
pions on a target having integer (half-integer) spin J, with total isotopic
spin I=1 in the t-channel. The convergence of the integral in Eq. (57) is

guaranteed if a. (0) < 1.

1

A second set of forward sum rules is obtained for scattering with
total isospin I=2 in the t-channel. The commutator (56), supplemented by

PCAC, leads to:

rav —s(2) B
Of & By 5o(v,0) = 0 (58)

Here, again, the sum rule can be interpreted as a statement that ?iézio
2

satisfies an unsubtracted dispersion relation in Vv and that its value at

31

threshold vanishes” . (In other words, the s-wave scattering length for
x-hadron scattering with I=2 in the t-channel vanishes.) The convergence
of Eq. (58) follows from the assumption ozg(o) < 0.

We do not obtain any sum rules for I=0 exchange amplitudes of the

s(0)

form ka,lO’

since at least one subtraction is then required in the dis-

32

persion relations

B. Superconvergence Sum Rules: Class I and Class IT

From the analysis of Section III where the relations of the t-channel
to s-channel helicity"amplitudes were given for the scattering of massless
pions on spin J < 2 targets, we see explicitly that the amplitudes satisfying
superconvergence relations fall into two categories. Those that correspond
to even A = max{)ll,lp” are related to s-channel helicity amplitudes which

33

contribute to the forward (t=0) scattering””, while those that correspond
to odd values of A are proportional to V—t as t - 0. The coefficient of

V—t generally involves helicity amplitudes which, in principle, can only be
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obtained by extrapolation from & £ O to the forward direction’'. We find

it convenient to divide the superconvergence sum rules for amplitudes at

. Lo
t=0 into two classes : Class I sum rules are those involving "pure" £=0

amplitudes and the Class IT sum rules will be those in which we are forced

to extrapolate to t=0, and the sum rules are therefore not directly related

35

to the physical forward scattering amplitude™ .

The superconvergence relations for pion~hadron scattering are not

necessarily independent of the charge algebra sum_rule836. The crossing

relations between the t-channel and s-channel helicity amplitudes which we
have presented in Section III-C enable us to rewrite the superconvergence
relations on the t-channel helicity amplitudes in terms of integrals over
the s-channel amplitudes ?i o,xdo(v’o)’ some of which appear in the charge
algebra sum rules. When wecdo so, we find the following general results

(1) All t-channel helicity amplitudes having even values of A are, at t=0,

linear combinations of s~-channel amplitudes of the form fio KO(V,O) and
)

35

therefore correspond to Class I sum rules” . Moreover, for every even

S

A # 0 the sum of the coefficients of the various f
0,20

components vanishes.
(2) Given a t-channel helicity amplitude for pion~hadron scattering with
A = 2 the (Class I) superconvergence relations that it satisfies (for I=1,2)

are linear combinations of differences of charge algebra sum rules.

(3) All Class II superconvergence relations are on amplitudes corresponding

to odd values of A and are not related to the charge algebra sum rules.

(4) Whenever a t-channel helicity amplitude satisfies more than one super-

convergence relation (and therefore has A > 3), all relations of the form

[ee]

)'vN Im f(v)av = O (59)
0
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with N > 2 are, at t=0, linear combinations of other superconvergence
relations with smaller values of A. For example, for the scattering of

pions on spin 2 hadrons the superconvergence relation on the amplitude

50 (v,0)/v"7:

22 00

2 t(1)

v Im[f_gg’oo(v,o)/vu] av = 0 (60)

O

is a linear combination of sum rules on [fgélgo(v 0 /v ] and [ft(l) (V,O)/Ve]:
2

[o+]

Oflm [foé c))o<v o)/v Jav = 0
(61)

4ﬁ Im [fEii?OO(v,o)/vz]dv = 0.

This can be easily verified from the crossing relations of Section III-C.
The general proof of these statements is straightforward. In order to
prove the results (1) and (3) we consider the crossing relation Eq. (27)

for pion-hadron (spin J) elastic scattering:

t J J s
007 Z. a5y (XJdy 0 (T 10,210 (62)
AL cc ad a
¢’ d
. 2]
T( V—t s + M [ r 1
As t =0, Xd—->jr—XC 5 + —§M<——~——§ and fk O ! O — 0 unless XC = kd = A,

s - M

On using parity conservation to restrict the summation over A" to values
of A' > 0, we have

t J
5N hgr00 Z: [dx '\ c>dx'xd<““xc)

(63)
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1
Now, using d&’M(X) = (—l)J+M d&,_M(ﬂ—X), we find

£
Ty 2,00 t© QE:::: . a (3) x'xd(z)[l+< -85, o,,'0" o(/-t} (64)

-0
ca’ A" >0
t
A = = - 2a_1.
where bl IXC d' Thus for even values of A, £ 2,00 is &
linear combination of fk 10,010 amplitudes with coefficients

2a?,. (&) .. (£). The sum of these coefficients vanishes since for
AR DB

even A > 03

L)

2 4 &, B a., & -=o (65)
At >0 c d
Eq. (64) also shows generally that only even A amplitudes contribute to
the scattering at t=0 and therefore satisfy Class I superconvergence
relations, while odd A amplitudes vanish like =t as t — 0 and satisfy
Class II superconvergence relations.

The truth of assertion (2) that A = 2 amplitudes for pion-hadron
scattering satisfy superconvergence relations which are linear combina-
tions of differences of charge algebra sum rules is easily established by
comparing the superconvergence relations for A = 2, I = 1 and 2 amplitudes
given in Section III-B with the charge algebra sum rules given in IV-A
and using Eq. (6L4) toqrelate one to the other at t=0.

Statement (4) is more difficult to prove. For hadrons with spin
J < 2 it can be verified explicitly from the relation of t-channel to
s-channel helicity amplitudes given in Section III-C. In general, the
required relation(s) on t-channel helicity amplitudes at t=0 needed to
prove (4) can be established by considering an s-channel amplitude
fS , with Ké % ké so that it vanishes as t -> 0, and relating it by

1 1
210,210
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the inverse of the crossing relation (27) to a linear conbination of

37

t-channel amplitudes which must also vanish in the forward direction™ .

C. Class I Sum Rules as Threshold Relations on Forward Amplitudes

We have just seen that Class I superconvergence relations on ampli-
tudes with A = 2 are related to differences of charge algebra sum rules,
which in turn can be interpreted as forward dispersion relations evaluated
at threshold and supplemented by a low energy theorem. Reversing the line
of argument, it is apparent that Class I supefconvergence relations for
forward amplitudes could have been "discovered" as follows: we write
unsubtracted dispersion relations for the forward pion-hadron scabtering

amplitude38 evaluated at the threshold value of V(=VO):

-+ o0
=S _ P d( av' =S .
fxo’lo(v—vo,t—o) =X v Im fxo’ko(v ,1£=0) (66)
Now, at threshold fio 20 is independent of X and essentially equal to the
)
s-wave scattering length, while Im fio 20 has the expansion39
2
Im N (v,t=0) = q(a,+ b q2+ c ql¥+ ces) (67)
20,20 AT A ?

where g 1s the center-of-mass three-momentum satisfying:

(v+vo)
— (v—vo) (68)

and ax’bk’cx)"' are constants. a, is independent of A and is propor-

A

tional to the s-wave cross-section at thresholduo. If we form the
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amplitude

(v,t=0) - ?igo,x o (V,£=0)1, (69)

g(v) = 7= [T .

VO lO,llO

where A, and A, are two different hadron helicities, then g(v) is free
of kinematic singularities since the only place such a singularity might

occur is threshold and we are assured that Im g(V) is finite there by

Eqs. (67)-(68) and the fact that a, = a, . The amplitude g(Vv) then satisfies

Kl KZ
the superconvergence relation
+ o0
1
= av Im g(v) = 0, (70)

obtained by subtracting the two versions of Eq. (66) with helicity X

and xg, respectively. TIn the case of massless pion-hadron scattering

VO: O and the algebra of currents predicts the actual value of the s-wave
scattering length fio ko(v:vo,t=0). Note, however, that the super-
2

convergence sum rule (70) is independent of the particular value of ay

and is correct for on-mass-shell pions.

For hadrons of spin J > 2 there exist combinations of forward ampli-
tudes such that not only do the a, terms in Eq. (67) cancel, but also the
bx terms which depend, on the s-wave effective range and the p-wave scat-

tering lengths (and are A dependent). Such a combination of amplitudes

is divisible Dby qum (v-v and still free from kinematic singularities.

o)

An example of this occurs in pion-hadron (spin 2) scattering where

t _ 1 =5 1l == 3 =8
00 00(¥:0) = 7 Tog po(¥50) = 5 T 16(V:0) + 5 T 00(¥50) (71)

2
is divisible by (V—VO) .
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Thus by careful enough analysis of s-channel forward amplitudes and

their relations at threshold one can derive all the Class I t=0 super-

convergence relations considered in this paper by starting from unsub-

tracted dispersion relations for the purely forward scabttering amplitudes
and forming appropriate differences of them. Combinations of sum rules
which eliminate the s-wave parameters lead to the superconvergence rela-
tions on amplitudes with A = 2, while eliminating p-wave, d-wave,..

parameters leads to the superconvergence relations on amplitudes with

A= L,6,

D. Counting of Independent Sum Rules for Pion-Hadron Scattering

From the preceding analysis it is evident that the following super-
convergence relations are obtained for the scattering of pions on J < 2
targets:

(1) Ao =1, I =2 t-channel amplitudes satisfy the Class II superconvergence

29

relation 7,
J»[Im T x 1)x Oo(v,t)/(v¥:?)}tzo av = 0. (72)

(2) A=2,I=1and I =2 t-channel amplitudes obey the Class I super-

convergence relations

JﬂI [f%§lg \, 00 v,o)/v2] av = 0 (73)
and
f v;cm[f‘z@)mo(v,o)/vgj av = 0 (74)

0

which are differences of the charge algebra sum rules (57) and (58), respec-

tively.
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(3) A=3, I=0,1and 2 t-channel amplitudes obey the independent

¢lass IT superconvergence relations

J mi£5{0))) 0o(v,8)/ ()] - o, (75)

E!V Im[f(i 3)N, OO(V t)/(VBYrq)]t oY =0, (76)
and

Of 1)) o0/ (Vg @ = 0, (717)
as well as the relation for I=2,

Ofv mief Pl o8/ e = 0, (78)

which is a linear combination of A =1, I = 2 sum rules.
(4) A =4, I =0, 1, and 2 t-channel amplitudes obey independent Class I

superconvergence relations of the form:

0o

.(V Im[f%){?i)}\ OO(V;O)/VMJ av = 0, <79>
O b4
fI [ft<l (v,o)/v”] av = 0 (80)

(x-k)x,00
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and -

[vs]

wgﬂv Im[f%£?i)x,oo(v’o)/vu] av = 0, (81)
while the relations
grvglm[f%§}ﬁ>k,oo(v,o)/vu] av = 0 (82)
and
) VBIm{f%§?3>X,OO(v,O)/Vu] av = 0 (83)

are linear combinations of A = 2 sum rules.
The case of np scattering furnishes a good example of the counting

h
of independent sum rules for a given process . There are two charge

+
>

of target p-meson helicity O and 1, respectively. Likewise, there are two

algebra sum rules arising from the commutator [Q ,Q;] = QQZ for the cases

+
,Q5]

convergence relations, there is one t-channel amplitude with A = 1,

sum rules arising from the commutator [D = 0. With respect to super-

2
[ft( ) (V,t)/(VVCE)] , which satisfies a Class II superconvergence
01,00 £=0

relation, Eq. (72), and which is essentially the superconvergence relation
on the B(g)(v,o) amplitude discussed in Refs. 2 and 4. The only A = 2

amplitude, ft (v,0) obeys the Class I superconvergence relations, Egs.

-11,00
(73) and (74), which are differences of the charge algebra sum rules.
Thus we arrive at five independent sum rulesu: two arising from the com-

mutator [Q;,Q;] = 2Q%, two arising from [D+,Q;] = 0, and one Class II

2
superconvergence relation on the B( >(V,O) amplitude of Ref. 2.
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vvvvv

relations which could have been obtained either as differences of the
charge algebra sum rules or directly from the asymptotic behavior of the
A = 2 amplitudes. The counting of independent sum rules at t=0 for other
pion-hadron processes is just as simple as in the np case, and is sum-

marized in Table IT.

V. Representations of the Algebra of Charges and

Class I Superconvergence Relations

We have shown that a large class of superconvergence relations for
plon-hadron scattering can be expressed as linear combinations of charge
algebra sum rules. The algebraic structure of such relations can be
analyzed in terms of the infinite momentum classificat:'Lonu2 of particles
into representations of chiral SU(2) X SU(2). In particular, we find

!

that, with the exception of a few "aceidents', the only superconvergence

43

relations which lead to the so-called "SU(6)-results" - are those which
can be expressed in terms of charge algebra sum rules. On the other hand,
we have already pointed out that the Class II superconvergence relations
are not related to charge algebra sum rules, and we will show in Section VI
that, in general, there is no reason for them to lead, in some saturation
limit, to "SU(6) results".

In this section we consider sets of "pure" t=0 sum rules (both charge
algebra sum rules and Class I superconvergence relations) and show that
they can be properly described in terms of infinite momentum representations
of sU(2) X sU(2). We also show that our assumptions with respect to I=2

t-channel amplitudes lead to relations among the masses of the particles

which are assumed to saturate the sum rules.



A.

=3k

Saturated Charge Algebra Sum Rules and the Infinite Momentum Classification

The .axial charges Q; are generators of the chiral SU(2) X SU(Q) algebra
and therefore have non-vanishing matrix elements only between states belong-
ing to the same irreducible representation (IR) of the algebra. We have
good reasons to believe that at p, —e the su(2) x sU(2) classification of
single particle states is the simplestuu, and that the charge algebra sum
rules are approximately saturated by a relatively small number of such
states. In particular, if one assumes that the SU(2) X SU(2) classification
of particles at infinite momentum is the one implied by a simple SU(6)-type
picture, one finds that the complete set of intermediate states allowed
to contribute to sum rules of the form (57) is given by the 35 mesons or
the 56 baryons, as long as the target hadron belongs to one of these groups

L5

of states Alternately, we find that if, without referring explicitly
to the representations, we saturate a set of Adler-Weisberger type sum

rules by a set of states which "happens"” to include only members of the

35 mesons or 56 baryons, and then solve the equations for the matrix elements

of Q5 (or for the pionic coupling constants), we obtain "SU(6) results"

2 e 2 . .
ot mpgwpﬂ, ete. A typical example is the case of

such as gy = %, b

4]

sum rules for m-p scattering. We have two sum rules of the form (57):

A fdv —s(1) 8
= ~— Im f (v,0) = =% (84)
T3 v2 10,10 fi
e f %) 0 -8 (85)
A NS 00,008 77/ 7 2

I
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If we now assume that the only s-channel resonances which ¢ontribute
to the sum rules are the Y=0, G = -1 pseudoscalar and vector mesons

(rr,w,9) we obtain the equai:ionS)Jr :

2 2 8
+ =
Bopn * Fopr = 2 (86)
s
hgiﬂﬂ 8
z =2 (87)
m T
o T
If, furthermore, we identify ¢ as the particular SU(3) octet-singlet
)
mixture which does not couple to the =np System+7, we may omit its con-
tribution to Egq. (86) and obtain the usual "SU(6) result':
2
hg
2 prt 8
o = (88)
WO m2 f2
o) 7

From the experimental point of view this result is of little interest,
since it is clear that additional states have appreciable couplings to
the np system, and our saturation assumption is inadequate. Algebraically
we have demonstrated here that "solving' the equations obtained from the
saturated sum rules leads to the same results as classifying the states
into the IR's of 8U(2) X su(2) at infinite momentum. For the #,p,® and
¢ states this classification is the following: For A=1, pand w are in
(3,3) and @ is in (0,0). For A = O, p and w are in (1,0) + (0,1), ® and
¢ are each in a (0,0).

What happens if we make the same saturation assumptions for sum rules

of the type (58)7 For np scattering we have:
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av =s(2)
JV Im flo)lo(v,o) =

=0 (89)
av . 7s(2) -
f(.\’ Im.foo’oo(v,o) = 0. (90)
Saturating these with n and w leads to:
2 2 2
(my = m)) 8y = O (91)
g2
2 2 prm
(- my) —%5— =0 (92)
m
p
Since g g2 £ 0, Egs. (91) and (92) lead to:
w7’ T ’ : :
2 2
m o= (93)
2 2
mo=m (9%)

We conclude that in this saturation limit, the sum rules for I=2 t-channel

amplitudes predict that all the intermediate state masses are equal to the

target mass. In order to understand this last result we must study the
properties of the mass operator in chiral SU(2) X 8U(2), to which we now

turn.

B. Particle Masses and Chiral SU(2) X SU(2)

In Section II-A we have assumed that the commutator [Dl,Q%] does not

have an I=2 piece and have shown that this is sufficient to prove that the

: .
operators D' (i=1,2,3) and S = [D ,Q5] transform according to the (5,%)
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representation of SU(2) X sU(2). We now consider single particle states
ja >, |B > which for pz—?m belong to the same (arbitrary) irreducible
representation of 8U(2) x SU(2). Replacing the time derivative of Q5 by

L,us

its commutator with the total Hamiltonian of the system we find

1 o (of0Y[B) = - & (5 - i) (alal|e). (95)
pZ—>oo

Since, by assumption, & >, |B > are in the same IR and D belongs to the

(%:%) representation:

(@|p'ls) = o. (96)
Purthermore, in general:
(a|Q;|B) # 0. (97)
We therefore concludeugz
2 2
n =g . (98)

The (mass)2 values of all particles belonging to an (unmixed) IR of

su(2) x su(2) are therefore predicted to be equal in spite of the fact

that the axial charge is not conserved and does not commute with the energy
densityh; The case of the m-p sum rules, saturated by = and w intermediate
states, which we have discussed in the previous section, can now be easily

understood. We have already noted that the saturation assumption is

equivalent to assigning p and ® to the (3,3) IR for helicity A = 1 and p

and n to the (1,0) * (0,1) IR's for X = 0. Egs. (95)-(98) then explainSO

2 2 2
why we found that m =m =m .
w e} T
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We have indicated that the pure representation case, althoﬁgh
interesting, is of no particular relevance to the real world in which
most (if not all) singlé particle states correspond at pz~*m to mixtures
of IR's of the chiral algebra of charges. We therefore have to study
the case in which |& > and IB > are eigenstates of the same IR, but

describe linear combinations of single particle states with known mixing

coefficients. We consider a set of n particle states lXi > having the
same isotopic spin I, which belong to various known mixtures of n irredu-
cible representations of SU(2) X SU(2) and assume that the eigenstates

lai > of these representations are given by:

n
'ai > = Z aij'Xj >
j=1
(99)
n
= a
| X, > Z aji‘ 5>
J=1
. . . 51,
In addition we have m particle states ]Yj > with isospin”™ I' # I,
described in terms of SU(2) X SU(2) eigenstates ‘Bi >
m
P, > = Z , bij\Yj >
J=1
(100)
m
v, > = 2 b8 >
i =1 9t

We now prove the following theorem: If 'Oé > and tBt > are in the same

IR:
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n

2 e X)—Zb (v, (101)

J=1

i.e., the weighted averages of the (mass)2 values of all states in the

same TR of SU(2) X 8U(2) are equal even in the case when all single

particle states correspond to mixtures of the IR's of the chiral charge

algebra. The proof of this statement is straightforward:

n m
0= 1lim 21p |D|B ) = lim 21p :E: 2 a by, < X.'D'Yk > =
pz'-'*)oo p —> 0 J:l k=1 J J
n m
= E E a_.b [mQ(Y ) - mg(X 1. jas]y, ) = (102)
1 sj tk k j sl Tk
2
= a_.a [m (Y Y - m (X)) {aplLlB.) =
j,%:l 1e1 S {g tk ik 3 {J 5| i

> 25::' la a{;E PPy km Yk>(QQjQ5\Bi) -

=1 k,i=l j=

n

z z 2
2::: ‘ 2
K,i=1 P’ 1k () O las 1850 - g?%gi agsapgm (X5)(%plasiPy)

since (o }as|B;) = B, (@ laglBy) and (ylagiB,) = e op(alaglpy) we

obtain:
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0 = (as‘q5\at){%§;i bfkmg(yk) - a_.m (X.)} ) (103)

T s T

and Eq. (101) follows.

The significance of this result stems from the fact that the mixing
coefficients aij’ bij are, in principle, completely determined by the
weak and electromagnetic transitions among the physical states, and Eq.
(101) then provides us with non-trivial relations between the particle
masses. This situation is similar to the usual SU(3) picture in which,
for example, the w-¢ mixture which belongs to the octet can be determined
from the decays p —7nn and @ — KK and is then predicted to satisfy the
Gell-Mann-Okubo mass formula. The SU(2) X SU(2) "mass formula" is,
however, much simpler since it simply states that all (mass)2 values are
equal for a given IR.

The part of the Hamiltonian which breaks SU(2) X SU(2) is essentially
proportional to the isoscalar operator S. This follows directly from the
commutation relation (14) of Section II. Had we allowed an isotopic
spin 2 term in the commutator [D,QS} we would, in principle, find addi-
tional symmetry breaking terms which transform according to higher repre-
sentations of the type (k,k). In particular a (1,1) symmetry breaking
term might connect two states belonging to the same IR of SU(2) X SU(2)
and thus would contribute a "diagonal’ mass splitting term within the

representation. It is the assumption on the absence of I[=2 terms in

[Q5,D], which led to the general mass formula Eq. (101).
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C. Representation Mixing at Infinite Momentum: x-p Scattefing

The saturation assumptions used in Section ¥-A were highly unrealistic,
since all the relevant single particle states were assumed to correspond
to "pure" (unmixed) IR's of sU(2) X SU(2) at p,~ . Unfortunately, the
real world is more complicated and the non-conservation of the axial
charge breaks SU(2) X SU(2) symmetry and induces large amounts of repre-
sentation mixing for the lowest lying baryons and mesons, even for pZ~>m
where, presumably, the classification is the simplestug. That the low~
lying states are strongly mixed can be seen from many different experi-
mental facts, some of which are: the importance of many I = 2 N*'s in the
Adler-Weisberger sum rule, the (factor 2) discrepancy between Eq. (87) and
experiment, the prediction GA = %, the wrong predicted width for52

+
I(N*¥-> Nn) and (assuming [D ,Q+] = 0) the n-p mass difference, N-N* mass

>
difference, etc. The "art" of determining the mixing coefficients for
various single particle states from various weak, electromagnetic and
pionic matrix elements still involves much guessing, especially in view of
the absence of experimental data for most of the relevant transitions. A
few successful mixing schemes for various sets of particles have been pro-
posed, however, and we would like to discuss here one of them which we have
first introduced in a previous paperu. We refer to the saturation of all
t=0 sum rules for n-p scattering by the ﬁ,@ and Al intermediate states.
In this section we will mainly be interested in the algebraic aspects of
this idea and in Section VII we will return to some of the more phenomeno-
logical points.

We again consider the four sum rules (84),(85),(89), and (90) but now

assume that the dispersion integrals are dominated by the contributions of
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,w, and Al intermediate states. With the exception of the ¢ and A,

these are all the known single-particle states which couple to the w-p
system. At this point we neglect the (small) contribution of ¢ and A2
and we will return to them later, when we discuss (in Section VII) the
sensitivity of our assumptions. There are two independent Alpﬂ couplings

and we choose them as the longitudinal coupling

(b-a)a, (p-a)py ' ‘
gL(pH- ~—_§__—)(qk- ———E———)ekeu and the transverse coupling
a S
g 1 1
T APy pa'gly v ' ;
5 € € PdaPor 8168, where p(q) and e(e') are the momentum and

m
Al

polarization of the Al(p). The saturated sum rules read:

V2
A
2 1 2 8
mA fn
1
>
o v
hg A
o7 1 2 §_
5~ T35 8,75 (105)
m mmA fﬂ
P pA
;
2 1 2
Vuﬁmpn" I &g 0 (106)
R\
' 1
v
2 1 2
L Bt T B = 0 (107)
iy
1
o )
_ 1 -
where V_ = 2<mx mp).
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We first consider the two "longitudinal” sum rules, whose saturated

versions are Egs. (105),(107). If the A, were not coupled to np, Eq.

(105) would collapse into its "unmixed" version, Eq. (87). However, in

the present model the A, contributes part of the sum rule and we can

1

parametrize its contribution by defining a mixing angle ¥ satisfying:

M 2
Eonn 8 2
%) = —-§ cOoS \If
m fjr
P (108)
V2
Mo2_8 2
57 gL 5 sin
m m £
o) Al 7

The "unmixed' case corresponds to ¥ = O. Substituting this into the I=2

longitudinal sum rule we obtain:

2
VY cos ¥ + V¥ singw = 0 (109)
s A
1
or:
2 2 2 . 2 2
mcos ¥ +m_ sin™y =m (110)
1 Al @

The experimental width I'(p —>nn) enables us to determine ¥, thereby pre-
dicting gr, and obtaining one new relation between the n,p and Al masses.

Instead of obtaining Egs. (108)-(110) directly from the saturated
sum rules, we could have assumed instead that, while the A = O component
of the p is still in the [(1,0)+(0,1)] IR (as it was in the "unmixed"

case), the n and A, are mixed and the [(1,0)-(0,1)] eigenstate is given

1
by cos Y| > + sin WQAi >, This would immediately lead to the same set
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of equations including (108) and (110). The actual value of ¥ as deter-

mined from the p-width is around hSO, and its precise determination

depends on the particular values used for I'(p —*nx) and mp, as well as
53

on whether or not the external pion is taken to be massless”™~.

For ¥ = 45° we fina b,

2mpmAl
g = E;FE;-— (111)
1
"
P(Al—>pﬂ, longitudinal) = -~§£§— =110 MeV (112)
3nf my
A
2 2 2 2
m. =2m - m_ = (1070 MeV), (113)
Al P b1

in excellent agreement with the experimental A, mass55(lO8O MeV). The

experimental width of the A, is 130 * L0 MeV. Eq. (112) then implies that

1
the transverse Alpn coupling & is consistent with zero, and in any case,
does not contribute more than 60 MeV to the total width.

We now turn to the saturated "transverse” sum rules (Egqs. (104) and

(106)) and, again, parametrize the w and Ay contributions:

2 8 2
gwpﬁ = =% cos X
f
7
(11k4)
V2
A& 2 g o
I gT = = sin y
m f
A o
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Eq. (106) then leads to:

2
, Sinx =0 (115)

v COSQX Vv
@ 1

We immediately notice that the "unmixed" case (y3=0) is, in this case,

consistent with the data since it leads to

Eon = 21 Bev L (116)
g = 0 (117)
m = m (118)

In order to study the possible effect of the small w~p mass difference

on Egs. (114),(115) we notice that for m, = 0.78, m = 0.76, m, = 1.08
1

(in BeV) Eq. (115) leads to x ~ 10° and:

-1 '
= 2

8o 0O Bev (119)

EVE.mi
_ L qin (120)

Er TV, x

i

I'(A,~ o, transverse) = 20 MeV (121)

We therefore find that the total width for Al—>pn is between5u

= -1 . _ + -1
70-140 MeV, Bpr = 20-21 BeV ~ (to be compared with B o™ (17 £ 3) Bev

56

as obtained from the Gell-Mann-Sharp-Wagner model for w —ny) and
gT/gL is consistent with zero and smaller than 0.2. This last ratio

is consistent with the present inconclusive data on the decay Al—>pn.
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It is extremely interesting to note that we predict that the Al does not

decay to pr predominantly via the s-wave coupling and that, in fact, the

o1

d-wave may dominate” .

Thus, the addition of the A, contribution to the four sn-p t=0 charge

1
algebra sum rules has a dramatic effect on the agreement of the saturated

sum rules with experiment.

D. Symmetry Results and Class I Superconvergence Relations

In the previous sections we have shown that (1) Charge algebra sum

rules for the amplitudes fio Lo Lead to the so-called "SU(6)—results"18
2

in the (unrealistic) case in which they are all saturated by the 35
mesons or 56 baryons, (2) The contributing additional states can be
analyzed in terms of the IR's of SU(2) X SU(2) and (3) The strongest

Class I t=0 superconvergence relation for any even-A t-channel helicity

t

(X_A)K’OO(V,O)/VA] is a linear combination of charge algebra

amplitude [f
sum rules. It is now evident that this particular class of t=0 super-

convergence relations should, in the limit of zero external pion mass,

58

lead to "SU(6) results" when saturated by the 35 mesons or 56 baryons
Tt is also clear that these superconvergence relations will be consistent
with the charge algebra for any other (more realistic) saturation assump-
tion that we may wish to suggest. Note, however, that the overall scale
of the predictions, which in the charge algebra sum rules was supplied
by the [Q;,Qé] commutator and PCAC is lost when we restrict ourselves to
the superconvergence relations alone.

For pion-hadron scattering on targets with spin J < 2 fhere is one

case in which a Class I superconvergence relation cannot be written as a
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linear combination of charge algebra sum rules. We refer to tﬁé sum
rules (79)-(81) for amplitudes of the type [f%x—h)K OO(V,O)/Vu]. The
s

amplitude itself corresponds, at t=0, to a linear combination of s-channel

S

helicity amplitudes f‘O 20
Fi% ;)

(v,0), and the sum rules (82)-(83) that it
obeys are combinations of charge algebra sum rules. The sum rules (79)—
(81) can be obtained by making a zero-energy subtraction in the dispersion
relations for ?io,xo and selecting a particular combination of the once-
subtracted dispersion relations in which the subtraction constants cancel.
The assumption miXt = 0 is natural when we deal with strong inter-
action sum rules which are derived from PCAC and the algebra of charges.
In principle, it is totally unnecessary when we discuss only superconver-
gence relations, which are independent of PCAC. We find, however, that
our algebraic understanding of the saturated t=0 superconvergence sum
rules stems from their relation to the charge algebra sum rules and from
our ability to analyze these in terms of the representations of SU(2) X
SU(2). This algebraic structure as well as the self-consistency of the
saturation by an arbitrary set of states are wvalid only for miXt = 0. We
are therefore led to believe that, to the extent that the Class I super-
convergence relations have the algebraic structure of the SU(6), SU(3) X
SU(3) or suU(2) x sU{(2) type, it emerges from the related charge algebra
59

sum rules and is valid only for massless pions The more practical
problem of whether neglecting the pion mass results in any major effect

on the comparison with the data, will be discussed in Section VII.
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VI. CILASS II AND NON-FORWARD SUM RULES

A. Class II Superconvergence Relations

In Section IV the connection of Class I superconvergence relations
to sum rules arising from the algebra of charges was established, and in
the preceding section we have used the chiral SU(2) X SU(2) algebra of
the vector and axial-vector charges to elucidate the algebraic structure
of Class T superconvergence relations. As Class II superconvergence
relations are not sum rules on purely forward amplitudes in the s-channel
and therefore not related directly to charge algebra sum rules, it is
clear that the chiral SU(2) X SU(2) algebra will not be directly useful
in analyzing the algebraic structure of Class II superconvergence rela-
tions. However, in a few cases the Class II superconvergence relations
happen to be satisfied when saturated using the "SU(6) reSults”u3 for
masses and coupling constants obtained from specific saturation schemes
for Class I superconvergence relations. TIn other cases Class II super-
convergence relations are either inconsistent with "SU(6) results"6O or
help in fixing certain mixing angles between SU(2) X SU(2) representations
(often forcing them to be zero) which are left free by Class I and charge
algebra sum rules.

A good example of this is again provided by =np scattering where the
t-channel amplitude [ft<2) (v’t>/(vdj€)]t=o’ which is essentially the

01,00
2)

B< (v,0) amplitude of Ref. 2, satisfies a superconvergence relation,

OJ/[fnggO(v,t)/(vvr:E)]tzo av = 0, (122)
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which is in Class IT. We recall from Section III that the relaﬁion of
t(2)
01,00
2
v=(s-M)/2):

[f (V,t)/(vqt%)]tzo to s-channel helicity amplitudes is (recall

> 2
t(2) - 2 v e M s(@) v M =s(2)
[f01,oo(v’t>/(vd't>]t=o T ant] M f10,10 * T3 Too,00

(123)

l 2 =s(2)
-\ kv + 2Mm fl0,00i}'

From the preceding section, we know that saturating the charge algebra
sum rules (and Class I superconvergence relations) with only the x and
2 2 2 2 2
1 5 " 6 " = = = = »
states yields the "SU(6) results”, Mgpﬂﬁ/mp B o B/fn and my = my =

For I=2 in the t-channel, the x and w, with equal masses, then contribute

with equal magnitude but opposite sign to the first and second terms,
respectively, on the right hand side of Eq. (123). The last term on the
right hand side receives no contribution in this approximation, since the
o intermediate state contributes only to transverse (helicity A = * 1) and
the pion intermediate state contributes only to longitudinal (helicity
A = 0) np scattering, but not to both. Thus the superconvergence rela-
tion, Eq. (122), will be satisfied by the "SU(6) results" obtained from
the charge algebra sﬁg rules.

If we expand the saturation scheme to include the =, w, and Al mesons
(see Section V), the last term in Eq. (123) no longer vanishes in general,

as the A. intermediate state in np scattering contributes in principle to

1
both the transverse and longitudinal amplitudes, and therefore to the

s

amplitude fl0,00

which involves a cross-term between transverse and longi~

tudinal scattering. The explicit form of the saturated version of
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Eq. (122) is:
V2
TR T =y ¥ =0 12)
w Bwpx o mE €p” &g/ =V (
Al

However, when we "saturate' the charge algebra sum rules by the =, w,
and A,, we find that Eq. (122) can be consistently saturated by the same

states only if the last term in Eq. (123) is forced to be zero, so that

either the transverse or longitudinal Alpn coupling must wvanish. As the
charge algebra sum rules and I'(p — ) give a non-vanishing value for the
longitudinal coupling (see Section V), the transverse Alpﬁ coupling must
vanish (corresponding to yx=0).

We also know that "SU(6) results" are consistent with the Class II
superconvergence relation on the amplitude [fﬁégfoo(v,t)/(vsz)]t=o for
7% scattering6l. However, for nlN* elastic scattering "SU(6) results" are

&
incaonsistent with some of the Class II sum rules O. The wp and =2 cases

thus appear to be "lucky accidents'" due to low spins, mass degeneracy of
the states assumed to saturate the sum rules, and the vanishing of certain
amplitudes containing cross-terms between different helicity states when
very simple saturation schemes are used. The inconsistency of the Class IT
superconvergence relations for znN¥ — nN* just provides an explicit example
of what we expected, namely: as Class II superconvergence relations are

not related to sﬁm rules on purely forward amplitudes, we do not expect

any general connection between them and the "SU(6) results" obtained from

the charge algebra sum rules on forward amplitudes.
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B. Sum Rules for "Small" t#0 and af/dt

In this paper we have been interested in sum rules at t=0, in large
part because the charge algebra sum rules are on forward amplitudes and
we can gain some insight into the algebraic structure of at least Class I
superconvergence relations from the charge algebra. Moreover, the t=0
charge algebra sum rules are the only inhomogeneous sum rules that we have
and they fix the overall scale of the coupling constants and axial transi-
tions. The Class II superconvergence relations on non-forward amplitudes
extrapolated to t=0, were the only t%O information that we have discussed
so far. However, in addition to these, one can obtain additional sum
rules by considering values of t%O, or by taking the derivative with
respect to t of superconvergence relations and evaluating the result at
t=0.

For small values of t, say lt, ~ mf, we expect that the superconver-
gence relations are saturated in approximately the same way as at t=0,
since neither the contribution of the low lying states nor the high energy
continuum are drastically changed. However, the saturation of sum rules
obtained by taking the derivative with respect to t of sum rules at t=0
can be entirely changed from that of the original t=0 sum rules because
of the important contribution of the large slope of the forward peak at

high energy. As an example, consider again np scattering and the super-

£ (1)

2
117 00(vs8)/v7], vnich
2

convergence relation (Class I) on the amplitude [f
is essentially the amplitude A(l>(V,t) of Ref. 2. ILet us assume satura-
tion of the superconvergence relation by =, w, and Al’ as given in Section
V, except that we take an additional contribution of the typical form

2
aelot (t negative in the physical region and in units of BeV ) arising
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from the forward peak above the low energy region, and which wéxhave
neglected in our saturation by =n, w, and Al' We normalize the high

energy contribution at t=0 to 10% of the largest contribution (from the

w) to the sum rule, i.e., we assume we have made a 10% error in neglect-
ing the high energy contribution in our saturation scheme. (See Table IIT)
This 10% estimate is probably realistic for the region above, say {s =

2 BeV and, in fact, in the Adler-Weisberger sum rule for =l scattering

the contribution from above 2 BeV is of this size relative to the largest
single particle terms (N,N¥).

From Table III we see that at t = —mi there is very little change in
the saturation of the sum rule, but when we consider the sum rule obtained
by taking the derivative with respect to t at t=0, the high energy slope
in t yields a major contribution to the resulting sum rule, while the pion,
a major contributor at t=0, yields a wvanishing contribution. The sum rule
for the second derivative at t=0 "loses" the contributions of all three
states 1, w, Al and only J > 2 states and high energy terms contribute.

It is therefore, apriori, more dangerous to saturate derivative sum rules
at t=0 by low lying resonances and to neglect high energy contributions and
intermediate energy (high spin) s~channel resonances. We believe that
within the framework of an analysis which ignores the high energy contri-
butions, we can make a careful selection of the sum rules that are best
saturated by a few states. We should remember that: (1) Derivative sum
rules are apriori worse canditates, since they tend to enhance high energy
contributions. (2) Sum rules for "small" (~ mi) values of t are saturated
as well as those at t=0 and could replace them (but not be added, since

that would be effectively equivalent to using derivative sum rules!).
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(3) Sum rules at larger values of [t (say, |tl~ mi) could lead to strong
enhancement of high spin intermediate energy states for which}t[N mi is
already in the unphysicél region, |cos 9‘ > 1 and the absolute magnitude
of the contributions of a spin J partial wave grows like lcos Q‘J. The
immediate neighborhood of t=0 seems to be the most appropriate place for
applying the saturation assumption, as long as we have no information on

the scattering at high energy.

VII. A MODEL FOR THE LOW-~LYING MESONS

In this section we discuss a simple model for the low-lying mesons.
We assume the existence of a certain set of mesons, write all t=0 charge
algebra and superconvergence relations for the scattering of pions on
these mesons, and assume that all sum rules are approximately saturated
by the same set of mesons. Had we chosen these mesons to be n, 7, p, and
w we would end up with the "SU(6) results" for the 35-meson representation.
However, in view of the well-known importance of additional states (such
as the A. in the np sum rules) we now propose to extend the set of mesons

1

+ +
to include O and 1 mesons, thereby improving the agreement with experiment.

A. The Model

We consider only non-strange mesons with isotopic spin 1 or O and
assume that we have scalar, pseudoscalar, vector and axial-vector mesons,
with one isotriplet and one isosinglet for every spin-parity. The guantum
numbers of these particles are summarized in Table IV. At this stage we
ignore the interesting possibility of having two isosinglets for each

value of JP, but we will return to it later.
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The total number of t=0 charge algebra and superconvergence rela-
tions for the scattering of (massless) pions on any of the particles of
Table IV can be easily read off from Table II: For n-n scattering there
are two independent sum rules and only the ¢ and p can contribute as
s-channel resonances; for n-d scattering we have two sum rules and the
contributing states are X° and D; there are four "pure" t=0 x-p sum rules
(plus one of Class II) and the contributing states are x, w, and Al;

1"

finally, we have four more "pure' t=0 sum rules (and one of Class II) for

ﬂ—Al scattering with contributions from ¢, p, and D. There are no sum
rules for the scattering of pions on any of the isosinglet states of our
model.

We now list the 12 sum rules which can be derived from the charge

algebra. Four of them can be alternately derived as Class I superconver-

62
gence relations. In the saturation limit the sum rules read :

2
g
o L2 8
2 onx | 2 (125)
m T
o 7
hg™
o 2. "By o 2. 2
- e - = 2
o - a) B - (u - m) g, = O (126)
. P
(m2 m2)2
2 A T 2 8
= I 2
T (127)
A i
o - a2y
2 2 2 A o 2
(mw mp) g(bpn— T &p = 0 (128)
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2 ) 0.2
ngTT( + (mA - mp) 2 B .8“—
D 5D g, T 75
m Ly f
0 A 7T
o2 - 5y
2 2, 2 A o 2
u(mﬂ B mp) gpﬂn * Iy 2 ey, 0
m
A
o - nd)
2 + o) my 2 _ _8__
EDAx n 8p = 72
hm f
A Eie
o 0.3
o2 - n?) & (m, -m) o o
My = WpJ Bppg T - &p =
m
A
o 2 0.2
HgaAﬂ + <mO ) mA) 2 8
2 22 8y, 7 2
iy M 5
(> 22y’
2 o, 2 o~ "a 2
M(mg - my) &py " s~ &, =0
U
2
gD&ﬂ + 2 B §_
2 v 2
o) x

Ngg
2 2 DOR 2 2 2
(mD - mS) 2 + (mx - mB) gx&ﬂ =0

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

We have 11 independent equations (as it turns out that there is a linear

relation among Egs. (125),(126),(129),(130),(133), and (134)) in 17
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unknowns: The eight particle masses and the 9 coupling constants gpﬂﬁ,

SIS gmpn’ gT, gL, gDAn’ gﬁAn gD6ﬂ’ gx&n' We can, therefore, express

all the masses and coupling constants in terms of six free parameters

which we choose to be m m mp, m . and two mixing angles ¥ and £ which

we define by:

2
g 2
o = 25 cos"y (137)
mp fﬂ
2 8 2
ngn =0 cos € (138>
f
7

Since the experimental value for I'(p — nn) leads £o2 ¥ o= 45° we

will use this value in solving the set of equations (125)-(136). We

fingd:
my = m (139)
n° = Zmo - m- (140)
A o] 7
1
2 in
o = 22 (1)
f
T
5 l6m§(2m§ - mn)
8, = "5 5 B> (142)
(m” - m)
1 p 7
m2
2 A
Eoax T T (143)
f
7
0o - m°
2 8 o m
g == (1hh)
WP f2 m2 _ m2
T W T
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2
2 3 (Cm~ - m )
T 2 2
L (m~ - mi) (m

o 2
2 §* mp - m
ppn =B B 2
f " m -m

s w JC

I
il
0
=
]
=
1
=]

2 2
Enax 2
7t

H

i

2
e

2 2 2 . 2
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(1L6)

(147)

(148)

(149)

2 2 2
Using the experimental values m_ = 0.02 BeVg, mi = 0.92 BeV , m, -~ 0.58,

2

m_ = 0.61 we predict63:

m, ~ 765 MeV

mA:L ~ 1070 MeV

(o —qn) ~ 650 MeV
F(Al—+pn; longitudinal) ~ 110 MeV
P(Al->0n) ~ 55 MeV
1

g  ~ 20 BeV~
WP

(150)

(151)

(152)

(153)

(154)

(155)



-58-

P(Al—>pn; transverse) ~ 20 MeV (156)
g .~ 20 Bey t (157)
DArn
my 1060 MeV (158)
2 .2
By ~ H10 sin'h (159)
I 1
My ™~ 960§1 + 0.21 sin t MeV (160)

B. Comparison with Experiment and Sensitivity Tests

Three questions are immediately raised in view of the predictions
(150)-(160), (l) What can we say about particles such as o, & and D which
are not yet identified experimentally? (2) How good is the agreement
with experiment of those predictions which are related to-known particles?

(3) How sensitive are the results to approximations such as neglecting

ext -+

mo ignoring the contributions of higher mesons (especially the JP = 2

mesons f° and Ag), and ignoring the contributions of other isosinglet
states, espécially the 9 and 11?7 We now present a long list of comments
which are related to these questions and in which we try to evaluate the
reliability of our model-calculation.

1. The g-meson (o = o, 1°0 = o™)

has not been found experimentally
Many theorists and experimentalists have expressed 'proofs', arguments or
hopes that it does or does not exist, at masses between 300 and 800 Mev

and with widths of 200 to 600 MeV64. The "missing' contributions to the

n~n Adler sum rules was one possible piece of evidence for the existence
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of a large s-wave n-u interaction65. We find that, in addition; the
ﬂ—Al sum rules would be extremely hard to understand in the absence of
a strong p-wave z-A; interaction with J° = O+, 1°% - 0% and which lies
in the same energy region as the strong sn-n contribution. This may
hint that both these interactions are actually related to a (very wide)
w-n resonance which is also a m-A; "bound" state. On the other hand,
it is conceivable that the general similarity between the properties of
Al and 7 (especially if they dominate the axial current and its diver-

gence, respectively) might lead to similar effects in w-x and n—Al
scattering without explicitly demanding that the o "particle" exists.
In any event, our predicted mass value and width make it extremely dif-
ficult to find the o, especially if its production cross section in np
reactions is small. The n decay mode will be "buried" under the
huge p-meson peak, while the ﬂoﬂo mode is extremely difficult to detect,
and could be easily confused with ﬂoy decays of the p or w, if the o
production cross section is a few percent of that of the p.

2. 'The predicted width of the o is somewhat sensitive to the assumed

mass of the external pion. Using our value for gcﬂﬂ but taking both pions

on the mass shell we find:
(o —qx) = 570 MeV (161)

3. The predicted appreciable decay Al~>no makes the process

w + N —*Al + N —x + 0 + N a likely candidate for producing a large

+ + 4
number of o's. The decays A, —xn po —~x x n should be very similar to
+ + + +

+ + 4+ - * +
Al —qn 0 2> x n and Al —n 0 =% ﬂoﬂo cannot be detected. On the other

+

hand, Ai —>ﬁoa is allowed while Ai —>nopo is forbidden by charge conjuga-

. . . + .
tion (or isospin). A m m enhancement around the p mass in events for
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which the ﬂ+ﬂ_no system is in the A1 peak would indicate a noclaecay.
Alternately, if such a . situation actually occurs, and if the possibility
of a o-meson is ignored, we would have an apparent ﬂopo decay together
with ﬁ+p— and n—p+ and we would conclude that we see a new isoscalar np
state in the Al mass region, while the Ai itself would not be seen.

Whether this has in fact happened we do not know, but we would like to

point out that while no evidence for the existence of the A, has been

+ = O

published so far (although numerous experiments found the Al peaks)

. . * F o o
another neutral meson, known as H, decaying into x p and w p has been

66

found by two groups in two different experiments around 980 MeV ~ (i.e.

100 MeV below the Al mass). It might be interesting to study the

o]

1 and its ﬂopo

(admittedly speculative) possiblity that the H is the A
decay mode is actually noo.

L. The relation between F(Al~>ﬂp) and the coupling constants g
and & involves the fifth power of the three-momentum of the pion in the
Al rest frame. This momentum is changed by about lO% between m:Xt = 0
and 140 MeV, so that the effect on F(Al*>pﬂ) is to reduce it by a factor
of 1.6. Since PCAC is used in deriving the magnitude of gp and g we
consider this sensitive dependence of I' on mﬂ as a measure of the ambi-
guity introduced by neglecting mﬂ. The proper way to state our results

for I'(A — pr) would then be to say that it may have any value between

70 and 140 MeV, depending on the precise values taken for mp, m, , and

ext 1
m .

s

5. The total width of the Al is therefore predicted to be between
110 and 200 MeV in satisfactory agreement with the experimental value
P(Al) = 130 * 40. The detailed branching ratios for longitudinal and

transverse Al—>pn decay are not known experimentally.
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6. The D meson should be the isoscalar companion of the Ai and

would correspond to some octet-singlet mixture in SU(3). Since we pre-

dict mD ~m, we are at least not very far from whatever predictions

1
SU(B) would yield. So far the only reasonable candidate for these
+
quantum numbers (JP =1, 0 - o* ) is the D(1280).

7. In order to test our prediction for gwpn we have used the Gell~

Mann-Sharp-Wagner model and computed I'w — 37) and I'(w —>xy). We find56:

I

D{w + 3x) = 14 £ 3 Mev
(162)

MNMw~x +y) =15 % 0.3 MeV

to be compared with 10.7 * 1.5 MeV and 1.15 % 0.25 MeV, reSpectivelylg.

8. Our value for me, (Eq. (160)) is between 960 and 1050 MeV, prob-
ably closer to 960. We suggest that the state & be identified with the
observed narrow peak at 960 MeV in the missing mass spectrometer experi-
ments. It is possible that the observed I=1 s-wave KX interaction just
above the KK threshold is related to the same state (which is then a
bound state of the KK system).

9. The possible contributions of additional isoscalar states have
been neglected in our, model. Had we included them, we would be forced to
use additional experimental numbers as input, since the number of unknowns
would increase without adding any new sum rules. The ¢, for example,
would then appear in Egs. (127),(128) and the experimental value for
T'(p —pr) would be an additional input quantity. The contribution of the
@ meson to the left hand side of the sum rule (127) is gipﬂ, corresponding

to a width for ¢ — or of
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where q is the three-momentum of the p in the rest system of the decaying
2 -
¢ meson. The experimental upper limitl on I'(o —>ﬂ+ﬂ no), including

I‘(Cp ﬁp“),’
T(p = pr) < .5 MeV,

gives gépn < 1/BeV2, which is less than 0.3% of the right hand side of
Eq. (84), 8/fi. The total effect of including the ¢ would therefore be
very small and all the predictions would remain essentially unchanged.
The n-meson might contribute to the n-d sum rules. We would then take
I'(d - nn) from experiment and find that the contribution of the n to the
sum rule (135) is of the order of 1% of the right hand side, even if the
& decays only to =n, as long as the © is identified with the narrow

(T ~ 5 MeV) peak at 960 MeV. A possible candidate for a second I=0
scalar meson is the J° = O+, %% = 0™ K% state at 1060 MeVlg. Since
this state does not decay into two pions, its contributions to the nx sum
rules may be safely neglected. The overall picture that we find here is
that it is probable that additional isoscalar states exist, but it is
also likely that they do not couple to non-strange mesons and therefore
do not have appreciable contributions to our sum rules.

10. The neglected contributions of higher spin mesons can be esti-
mated directly from experiment in a few cases. The £° contributes less
than 10% to the =mx sum rule, Eq. (125), while the ¥ =3 Regge recur-
rence of the p may also add a few percent to the left hand side. If we
assume that both a sequence of I=0 nn states with JP = O+, 2+, 4+... and

another sequence of I=1 states, with JP =1, 3‘, 5 ... exist, their con-

tributions will all have the same sign in Eq. (125), thereby decreasing

6
our predicted value for I'(c — nx) 7, while in Eq. (126) their contributions




will have opposite signs and will tend to cancel each other to é large
extent, leading to a small change in the predicted ¢ mass.
The situation for the A2 contribution is similar. It contributes

to the sum rules (127),(128). 1In order to evaluate its contribution to

+ -
Eq. (127) we write the App n  coupling as g pO%B“GT GpT eaB e" where
2 Agpn i s A2

ap

P and p are the pion and A, momenta, e
T A2 2

and eu the p polarization vector. The width for A2 —>px is then

is the A2 polarization tensor,

2 5
g q
Agpﬂ

Pay=>en) = —350—

where g is the p three-momentum in the decaying A2's rest system, and the

A, contribution to the left hand side of Eq. (127) is % g2 Ve /Mg
2 AQDH A2 A2
2
where v, = (Mi - Mp)/E, The experimental value for the width, P(AE"*pﬂ)

2 2
o
= 80 MeV then yields % gi vi /Mi = 38/Bev”, which is less than 9% of the
2 fp P

8/fi on the right hand side of Eg. (127).

If, again, we assume that a sequence of high spin I=0 and I=1 states,
each contributing a small amount, should be added to these two sum rules,
the total effect would probably be mainly to decrease gwpn (in the right
direction!) without modifying much elsewhere. The same characteristic
situation is relevant to all sum rules on I=1 targets (see also the n-%
sum rules in the next section). All I=0 and I=1 s-channel resonances
contribute with the same sign to the sum rules for t-channel isospin I=1.
The saturation assumptions therefore usually lead to overestimates for
the coupling constants. For t-channel I=2 sum rules the s-channel iso-
scalar and isovector states contribute with opposite signs and cancel
each other to a large extent. This may explain the success of most of

our predictions for masses, since those follow only from the I=2 sum rules.
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C. Algebraic Interpretation

Our model includes 8 particles. All of them have helicity A = O
components, while the four spin-one states have X = 1 as well. We first
consider the M = 1 components of p, w, Al and D. There are only two
ways to accommodate these states: We may have two (%,%) representations
or two (0,0) IR's, a (1,0) and a (0,1). Any other combination will
either include additional states or violate charge conjugation (which
requires equal amounts of (1,0) and (0,1)). The second possibility
and is therefore

immediately implies =0andm =m
y 19) gwp o

= g )
b Aan Al

physically uninteresting (although formally it is a solution of our set
of equations corresponding to V¥ = 90° in Eg. (137) and I'(p =) = 0).
We are therefore immediately led to two (%,%) IR's. One mass formula
then follows:

]

T

m§ + mi = m2 + m (163)

This i1s obtained independent of any mixing angles and is, of course, con-

sistent with Eqs. (140) and (147). Another trivial conclusion is:

2 2
= 6h
gwpn gDAyr (l )

which, in the language of sum rules, could be obtained by comparing Egs.
(127) and (131). At this stage there is one free parameter left and we

can write:

) ) 8

S COSEX (165)
1T
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o2 - uf)
- 2 8 2
o gy = S st (166)
mA fﬂ
2 .2 2 2 2
my sin"x +m cos X = my (167)
2 2 2 .2 2
my cos Ty +m o sinTy = m, (168)

The mixing angle x can be
using experimental informa
The classification of A =
in a (3,2) IR, while D and
x # O there is some mixing
A= 1.

The analysis of A =0
that for ¥ = 45°, ¢ = 0: o
(1,0) + (0,1); —i— (- A))

and 5 and X° in a (3,3).

calculated from any one of these equations
tion and is found to be very close to zero
1 states is (for x = 0): p and ® are "purely"
A, are "purely" in a different (3,3). For
which allows the Al to couple to the p with

states follows similar lines and we conclude

and —= (n + Al) are in a (3,3); o is in
2

in (1,0) - (0,1); D and o are each in a (0,0);

This immediately leads to Egs. (139)-(149).

It is clear that including additional states (B,Ag,f,¢,n, etc. ) would

introduce changes in this

classification and will complicate the situation

tremendously without dramatically improving the agreement with experiment.

Since the criteria of a su
experiment and its simplic
cription of the low-lying
mesons are found to exist
with our predictions.

We have also consider

+ .
"abnormal” 1 mesons (like

ccessful model are both the agreement with
ity, we consider our model as a reasonable des-
non-strange mesons, provided that the o, & and D

and to have properties which approximately agree

ed an expanded version of our model in which

+
the Bmeson ) and the usual 2 mesons are
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included. This would correspond to the L = O and 1 mesons of the qa
system in the quark model. We found that the complications introduced
by the additional states are not compensated by the improved agreement
with experiment, while we know that these additional states individually
do not contribute more than 10% to any of the Adler-Weisberger sum rules.
The sum rules for n—A2 scattering are briefly discussed in the next

section.

VIIT. OTHER APPLICATIONS OF t=0 STRONG INTERACTION SUM RULES

We present in this section a few other applications of complete sets
of t=0 sum rules. We include the application of our results to baryons,
nhA, scattering, and the extension of our methods to SU(3) X SU(3) and

mesons with non-zero strangeness.

A. Sum Rules for xN and zN* Scattering

If we saturate all "pure"

t=0 charge algebra_sum rules and Class I
superconvergence relations for aN — xN, =N — nN*, and sN* — xN* with the
N and N* states themselves, where the N¥ is the JP = (3/2)+, isospin 3/2
state at 1236 MeV, we find a unique solution with m, = my, and the "su(6)
results" for the coupiing constantsLL (like g, = 5/3). Algebraically
this saturation assumption is equivalent to putting the helicity A = % N
and N* in the (1,3) representation of chiral SU(2) X SU(2).

As we know, however, the saturation of all t=0 sum rules by one IR
does not agree with experiment, nor in this case with the Class II super-
convergence relations6o for nlN¥ — nN¥, and a consideration of the contri-

butions to the Adler-Weisberger sum rule shows that many other states have

non-negligible contributions. The mixing coefficients of these additional



-67-

states can be obtained from the weak, electromagnetic, and pionic transi-

69,70,71‘ A

tions between the N and N* and the various additional states
study of these transitions indicates that the A = 1/2, (l,%) represen-
tation includes the "pure" N¥(1236) together with a mixed isospin 1/2
state, cos 6N > + sin 6}X > , where X includes components from the

1400), D13(1520), 311(1560), F.._(1670), Dl5{l688), 511(1700) isospin

P 15

1/2 nucleon resonances. We immediately obtain the mass formula from our

theorem in Section V,
2 2 2
cos 6 my + sin29 mi = Ty (169)

where mi is the weighted average (i.e., weighted by the squares of the
mixing coefficients) of the (mass)2 values of the isospin 1/2 resonances.
If we substitute the experimental values for My and My and7l cos 0 =
0.8, we find that m. = 1.64 BeV, which is clearly in the expected mass
range. As the actual mixing coefficients can be obtained only from the
so far undetermined rates for the processes NI — N¥(1236) + 7, a more

2

detailed analysis of all the sum rules is not yet feasible.

B. Sum Rules for nX Scattering

For nZ scattering at t=0 we have in total three sum rules: there
+ -
are two charge algebra sum rules, one from the ccmmutator [Q5,Q5] = QQZ
+ +
and one from the commutator [D ,Q5] = 0, as well as one Class II super-
t(2)

convergence relation on the amplitude [f 31

‘éi’oo(v,t)/(vJ?€)]t=o. Although

we do not yet have the amount of data for the pionic transitions of the Z
that we have for the nucleon, there does exist enough information to make

possible at least the rough testing of these sum rules.



Let us begin by writing the sum rules in the limit of saturatin
them by the A, Z, and Yf intermediate states. In this limit the two

charge algebra sum rules read72:

(H]Yae + mz>2
N g -8 (170)
€ Avr Ern T 3 2 gYI;ﬁ - f2 7
ng* 7
1
and
(myy + mz)2
V(S ) w v ety ) v (s —E gy 5 ) = O (172)
VAR VY LY CLEa Y*i3 a2 Y2 ’
l LJI]Y_X_ 1
1
here v = i(m- - m). The class IT lati a
W, r % = 5 mX I'l’].Zl B e class Superconvergence relation reads
2 2 2
2 (m,, + m.) (mi, - k& L +om)
u(mAerz))z o kY E Sy TN T e
2y, Ean T Bsmg T3 T 2 W2 €y ox
c_mY* l’I’lzl 1
1
Tt is immediately clear that the "SU(6) results”,
2 2 2 8
12g 5 = 1oggs = 9ngZ;r = 'f_e (173)
T

and

are a solution of both the charge algebra sum rules and the superconver-
gence relation. As in the pion-nucleon case, however, there is a large
discrepancy with experiment or with results inferred from experiment:

2 2
the values of gAZﬂ and gZZn in Eq. (173) are roughly 50% larger than the

(172)
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value obtained from giNN using a D/F ratio of 2/1 and the predi&tion
gi Z = 8/9f2 is about - a factor of two larger than the experimental
value gilz = 24,6 Bev -2 obtained from P(YT *>Zﬂ)/P(Yi —all) = 9.
All this is, of course, not surprising since we know that the X has
pionic transitions to states other than to just the A, 2, and Yi, 50
we would assume that the 2, like the nucleon, 1s a mixture of several
IR's of SU(2) X sU(2). For example, the Yé(1405) is not far above the
2. threshold and could make a large contribution to the sum rules.

The results of attempting to saturate the three sum rules with the
known Yé and YE resonances12 are presented in Tables V, VI, and VIT.
For purposes of comparison with previous work we have written the charge
algebra sum rules in a somewhat different form. In Table V we have

listed the contributions of the known resonances to the Adler-Weisberger

sum rule for =nZ scattering, which we have rewritten in the form

2 2

() + (g) + (o (174)

i
T

|
Ala o
o s
<|2
1
™
+
N
=
i
Q
=
S
+
N
<
e
o

where gﬁ'and gi are the axial-vector coupling constants for the A-Z and

73 ¥t

Z-2 transitions 7, and © is the total cross section for zero-mass

T
Th

+ +

g mesons on 2 's. We have used the narrow resonance approximation

and corrected for the zero mass of the external pions by multiplying
ext_o m.x - o

the cross section in the L'th partial wave by (g ~°/q"% = ")

In Table VI we have the resonance contributions to the charge algebra

sum rule which comes from the commutator [D ,Q ]

2 av 2)
; Of 5 Im f 0720(\))0) = 0. <l75)
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We have chosen, however, to separate out the A and Z pole contributions
and to write the sum rule in a form analogous to the one used by Adler

31

for pion-nucleon scattering ,

2 2 2
In Al >(v,o) = 2(m, + mp)gys - bmogss (176)

alm
O< 8
<l%

30 with I=2 in the

2
where A( )(V,t) is the usual invariant amplitude
t-channel. Finally in Table VII we present the numerical results for

the Class II superconvergence relation, which we have rewritten in terms

of the B(g)(v,t) invariant amplitudeBO:
2 v 2
= f 1 53 (v,0) = 0 (177)
61

The numbers in Table VII are essentially those of Babu et al .

From the tables we see that the consistency relation and super-
convergence relation on the I=2 amplitudes are roughly (and about equally
well) sztisfied, with the result being very dependent on the cancellation
of the large Born terms, which is very sensitive to the D/F ratio.

The Adler-Weisberger sum rule for =L scattering, Eq. (174), is not

[

saturated using thelpresently known Y¥'s. Changing the D/F ratio has
1ittle effect in this case. However, it is not yet clear if some com-
bination of: (1) Contributions to the sum rule from low partial wave
background at low energies; (2) An increase in some of the Y* partial
widths into nZ; (3) Contributions from yet to be discovered Y*'s in the
1.5 to 3 MeV mass region; and (4) The contribution of, say, 10% of the
right hand side of Eq. (174) from a high energy tail above 3 BeV, will

not yet make the agreement of experimental data with the sum rule satis-

factory. Note that, assuming that no I=2 Y¥'s exist, these contributions
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are of the same sign and in the correct direction to improve the situation.

Comments (1) through (4) hold even more strongly for the consistency con-
dition and superconvergence relation (although the signs here are not the
same), and we must await better data before asserting proof of the agree-

ment or disagreement of the nZ sum rules with experiment.

C. Sum Rules for ﬁAg Scattering

As we have shown in Section IV, there are 14 independent sum rules

for mA,. scattering, with 9 of them either charge algebra sum rules or

2
independent Class I superconvergence relations. In spite of the large
number of sum rules, we find it very difficult to deduce any useful
information (i.e., comparable to present experiments) using the pre-
sently known states to saturate the sum rules because: (1) The only
pionic transition of the A2 known with any certainty is A2—>pn, and it
contributes less than lO% of the helicity A = 1 generalized Adler-
Wesiberger relation for ﬂAg scattering; (2) The contributions to the
generalized Adler-Wesiberger sum rules for a state X are proportional

3 1 2
to P/VX, where V. =3 (mX

- mg), m is the mass of the target hadron (here
the Ag), and T' is its width into X + wn. Thus contributions of states
with masses near the target hadron's mass are emphasized by the Vi in the
denominator. For wmp scattering the fact that (VAE/VAl)3 =~ 8 is the pri-
mary reason the contribution of the A2 is suppressed relative to the Al'

For wA. scattering, however, the contributions of particles with masses

2

near the A2 mass are emphasized, given roughly equal widths for A2~>X + 5

or X = Ay + 7; (3) While superconvergence relations on amplitudes like

t(1)

v, t VLL are expected to converge very rapidly for large V because
~-22,00

f

76
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of the v in the denominator, contributions from states with masses near
the A2 mass are again very strongly emphasized. We know very little
about these particular pionic transitions, particularly those to states
with masses greater than the A2 mass. Thus we find little reason to
attempt to saturate all the t=0 sum rules by, say, the n, p, B, D, and
£(1250), when we expect higher states to give very important contributions.
A curious result which may or may not be significant is obtained if

we consider only the n-A, sum rules of the form (57),(58) for helicity

A = 2, Among the above mentioned states the £(1250) is the only state

having a A = 2 component., If the f dominates the two sum rules we find:

2 8
g =5 (178)

fAzﬂ f2

7

2 2, 2
(mA2 - mf>ng2ﬂ= 0 (179)
leading to:

mA2 = mg (180)

Experimentally: m(f) = 1250 MeV, m(Ag) = 1310 MeV.

D. SU(3) x8U(3) and Sum Rules for n-K* Scattering

Since all the known strange mesons seem to have isotopic spin I = %,
we can only write sum rules for I=1 t-~channel amplitudes for =n-K or n-K¥
scattering. The absence of I=2 amplitudes (and sum rules) prevents us
from deriving mass relations among different K¥'s. 1In the language of

the IR's of chiral SU(2) X SU(2), we find that the absence of I > —23- K*'s
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implies that all the known K* states are in combinations of the" (%,0)
and (0,2) IR's. Since every such IR contains only one isospin multi-
plet our general mass formula Eq. (101) is useless in this case. Only
if we use the full SU(3) X SU(3) can we derive relations among the
masses of various K*¥'s.

We now generalize our theorem of Section V-B to the SU(3) X SU(3)

case. We assume that all commutators of the form [Ga’éb] where G is a

(vector or axial) generator of the chiral SU(3) X 8U(3) algebra of

charges and G i1s its time derivative, do not contain terms belonging to

any SU(3) representation larger than the octet. We can then prove: In

the limit of exact SU(3) all eigenstates of a given IR of SU(3) X SU(3)

have the same (mass)2 values, in spite of the mixing of states intro-

duced by the breaking of SU(3) X SU(3). The proof follows the lines of
the analogous theorem for SU(2) x SU(2), and intuitively it can be made
plausible from the fact that the only SU(3) X SU(3) breaking, but SU(3)
conserving, term belonging to an IR in which the highest SU(3) multiplet
is an octet,is the SU(3) singlet of the (3,3) or (3,3) representation,
and these representations cannot connect an arbitrary IR to itself.

This theorem is not very useful since SU(3) breaking is, in general,
appreciable and it follows a non-trivial SU(3) X SU(3) pattern. However,
there is one simple result that we can derive, even if SU(B) is broken.
The SU(3) breaking terms presumably belong to the (8,1),(1,8),(3,3) and
(3,3) representationsYY. None of these can connect an (8,1) to a (1,8).
Furthermore, the SU(3) conserving terms belong to (1,1), (3,3) and (3,3)
and are also unable to contribute to such a matrix element. We therefore

conclude:

(8, )M} (1,8)) = 0 (181)
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The practical implication of Eg. (181) is the predicted equalitytbetween
the (mass)2 values of a state belonging to (1,8)+(8,1) and another
state of the same hypercharge and isospin belonging to (1,8)-(8,1)

We now consider the sum rules for w-K*(890) scattering. We have
two sum rules of the form78 (57) for A = 0 and A = 1. We consider only
the X = O sum rule. The possible contributing states are all K*'s having
The only known such states are the K meson and a
possible JP = l+ KA-meson. If these are the only contributing states,
the sum rule reads7
2

2 2
(e, = )

Mgg
KK & = (182)

2 L 2 2 f2
Mo Mt x

Tf we now assume that the X = O component of K¥(890) is purely in
(8,1)+(1,8) (in analogy to the classification of the p given in Section
VII-C) we can use the experimental value of I'(K¥ — Kx) and find the mixing

angle wK defined by:

bg”
—~§%E£ = E? cosg\lfK (183)
Mhex fn
We then predict:
2 2 3
(g = )

P(Kﬁf>K*n, longitudinal) = L 5 A 3 sin WK (184)

16% f mK

T A
Myx = cosE\lfK mi + sing\lfK mi (185)

A
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2
Forl I'(K*> Kn) = 50 MeV we find79 WK = 500, and:

m, = 1090 MeV (186)
A

P(KAf>K*n, longitudinal) = 30 MeV (187)

There are indications for various K* states between 1000 and 1400
MeV, and at least one of them, KA(lBEO), is 1likely to be a 1" meson.
Its total width is given12 as 80 * 20 MeV. If both the Al and B meson
exist and have JP = l+ they presumably have corresponding axial K*
megons. While B cannot contribute to n-p scattering because of G-parity,
the corresponding K* could contribute to Eq. (182) and our predictions

(186), (187) would then correspond to some weighted average of the two

axial K¥-mesons

TX. DISCUSSION AND SUMMARY

Our detailed analysis has mainly been concerned with sum rules for

elastic pion-hadron scattering amplitudes at t=0, which were assumed to be

saturated by several low-lying resonances or bound states. A few questions

are immediately raiseé:

(1) Could we fruitfully extend our discussion to inelastic processes?

(2) Would we reach similar conclusions by analyzing other elastic
meons~baryon or baryon-baryon scattering amplitudes?

(3) Is t=0 really the best place to apply the saturation assumptions,
or are we losing a huge amount of relevant, accessible physical information

by excluding other values of t7?
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(4) Could we parametrize the contribution of intermediate energy
resonances in a way that will enable us to include them in the analysis
without introducing an (almost) infinite number of parameters?

(5) Is it possible to include the possible high energy contributions
for sum rules involving physically unrealistic processes such as n-p
scattering?

efore we car

£ 4+ orgctren Lo cs
Lry L0 allswelr uliese

o’

One basic decision has to be made
questions. We have to decide: are we trying to create a horribly compli-
cated (but highly realistic) model of the world with a very large number
of particles, Regge trajectories, non-resonating partial wave amplitudes,
ete,, which will enable us to explain an equally large number of experi-
mental facts, or are we content, at this stage, with simplifying approxi-
mations, 20-30% errors in our predictions, but a sufficiently simple
picture which indicates that at least our basic assumptions and general
approach are in reasonable agreement with the existing data and present
experimental trends. If we take the first point of view, namely, we
decide to try and "solve the world”, then we should probably extend our
analysis to inelastic processes for any projectile and any target, at all
values of t, with a large (or infinite) number of resonances and a suit-
ably parametrized high energy contribution. We are convinced that all of
this is technically possible. The more simple-minded attitude, which we
have obviously adopted in this article, would tend to answer that the
extension of our work to all of these domains would not yield a much
better understanding of what we are doing, at least as long as we are
dealing with reactions which cannot be carried out in the laboratory. We
find it necessary, however, to give a very brief discussion of the first

few steps that we would have taken, had we decided to extend our investigation
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and to try and guess some of the general conclusions that wouldtemerge
from such an analysis.

FPirst of all, our analysis could be extended without difficulty to
processes such as K-hadron or vector meson-hadron forward elastic scat-
tering. In deriving the current algebra sum rules we then would have to
use PCAC for the strangeness~changing axial current and vector meson
dominance for the vector current. The off-mass-shell extrapolations
become more questiongble but all our general results remain valid, includ-
ing the relation between the Class I superconvergence relations and the
t=0 charge algebra sum rules, as well as the clear algebraic distinction
between the Class I and Class II sum rules. In the case of K-hadron
scattering we lose the I=2 t-channel amplitudes, while for vector meson-
hadron scattering the current algebra sum rules involve moments of currents
rather than charges, thus complicating the analysis in terms of the chiral
algebra.

We can write superconvergence relations for general inelastic reactions,
baryon-baryon elastic scattering, and other processes, but the current
algebra information is then not applicable. The saturated superconvergence
relations yield dynamical relations among coupling constants and masses,
and these should probably be studied in great detail. We do not know how
to to this in a systematic way, but suggest that a complete analysis of

' t=0 sum rules for, say N-N and N-N elastic scattering would be

the 'pure'
a useful first step towards understanding the algebraic structure of the
general superconvergence sum rules.

The question of choosing the "best" value of t for the saturation

assumption is perhaps the most crucial one from the practical point of view.
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Since saturation is, at best, approximate we must find clever wa&s of
minimizing the effects of those terms that we are forced to neglect
because of our ignorance. These effects are the relatively "smooth"
high energy terms in the dispersion integrals and the contributions of
possible resonances in the 1.5-2.5 BeV region, some of which could have a
congiderable effect on the sum rules. If we believe the Regge picture

we will immediately conclude that at positive (timelike) values of t

the high energy termsvare enhanced compared to t=0, and for sufficiently
large positive t we may even face a divergent sum rule. For negative
(spacelike) t the convergence is improved and the high energy terms
become unimportant. Thus, for example, the high energy contributions to
A =2, T =1 t-channel amplitudes for pion-hadron scattering should be
the smallest for the value of t satisfying Oép(t) =0 (t = -0.6 BeVE).
This would probably be the best place to assume saturation, if we had an
"infinitely good" phase shift analysis of the low energy region. In the
absence of such an analysis (which does not exist even for nN scattering,
let alone w~p or n-N* scattering), values of t such as t ~ -0.6 BeV2 are
extremely dangerous, since they are usually in the unphysical region for
most of the important low energy region. In n-p scattering, for example,
t = 0.6 BeV2 is unphysical for %E‘S 1.28 BeV. This implies that the con-

tributions of states such as @ and Al as well as the non-resonating s, D

and d-waves for V8§ < 1.28 BeV grow like polynomials in cos 6, where

Jcos 6]> 1. TIn fact for the mass region of the Al’ where all kinds of
unknown effects occur in n-p scattering, cos 6 = I at t = -0.6 BeVE.

All the uncertainties in the low-energy contributions are therefore grossly
enhanced for sufficiently large spacelike values of t, and the saturation

by a few discrete states is presumably very dangerous. Two cases in which
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the ambiguities for large (negative) t and low energies may not be so
important are w-m and w-N scattering, in which all the relevant resonances
are above threshold at t=0, and remain physical for relatively large
values of t; but even in these cases we are not confident that going to
large t actually improves the approximation introduced by saturation.
Since the data for n-N scattering hints that most of the error introduced
by the saturation originates from the resonances around 1.5-2.5 BeV and
not from the high energy "tail", we believe that large negative values

of t are probably less appropriate for applying the assumption of satura-

tion by a few low-lying states. As far as the immediate neighborhood of
t=0 is concerned, we have already demonstrated in Section IV that any
small value of t will do, provided that we do not use a doubled number of
sum rules which effectively implies using the derivative with respect to t.
The inclusion of more and more resonances in the saturation scheme
would in general improve the agreement with experiment, and reduce the
uncertainty with respect to various low-energy effects at the expense of
adding many more parameters. We can see two alternative ways of deter-
mining these parameters: We can either write sum rules for various values
of t ( a procedure which becomes more reasonable and less dangerous if a
sufficiently large number of states is included), or propose some 'smooth'
parametrization for the masses and widths of the different resonances
corresponding to a given Regge trajectory in the s-channel. We believe
that the second possibility may be more relevant to our present state of
experimental knowledgé and we consider this as a possible way of analyzing
particularly simple systems such as n-n or n-p which couple only to a few
trajectories. Some qualitative features of such a possibility have already

been presented in our discussion of the sensitivity to the inclusion of
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additional states of the model of Section VII.

The parametrization of the high energy part for physically unfea-
sible processes is obvious but not very useful. The Regge prescription
is probably a wvalid parametrization in many cases. However, every t-
channel helicity amplitude with a given isospin will include at least one
unknown residue function. Every sum rule will therefore include one
additional parameter which does not appear in any other sum rule and
which cannot be determined experimentally. The best we could hope to do
is to compute these residue functions, assuming that the rest of the dis-
persion integral comes from some low-lying resonances, and then to check
the consistency of various residue functions with the factorization theorem.
Our present confusion with respect to the status of the low energy reson-
ances discourages us from pursuing this line of investigation, although
eventually it may prove useful.

To conclude, let us summarize the main results of our work: We have
explained the connection between sum rules derived from the chiral algebra
of charges and t=0 superconvergence relations. We found that some of these
superconvergence relations (those having even t-channel helicity flip) are
simply linear combinations of charge algebra sum rules and therefore are
subject to the same algebraic analysis. We have also demonstrated that
the other superconvergence relations at t=0 are not related to the algebra
of charges and therefore should not (and do not) obey similar algebraic
relations. This explains the "mysterious" consistency of some saturated
sum rules with higher symmetry results while others seem to contradict
them. We have found a simple mass formula for the infinite momentum eigen-
states of the irreducible representations of chiral SU(2) X SU(2). This

2
formula, which states that the (appropriately averaged) (mass)” values of
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all states in a given IR are the same, becomes very powerful whén the
mixtures of physical states corresponding to the IR's are known. We
suggest that more effort be directed into finding these mixed states
either by the group-theoretical method or by solving sets of saturated

" =0 sum rules. We have presented many applications of our sets

"pure
of sum rules, generally with satisfactory agreement with experiment, and
we believe that the overall picture obtained, strongly supports our
assumptions concerning the absence of I=2 terms in the commutator

[Q5’ %E Q5] and in the amplitudes for t=0 high energy pion-hadron scat-

tering.
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Many of our results also hold for the scattering of massive‘pions
on hadrons, as we will note at the appropriate points in the text
(see Section IV in particular).

t)/(v4-t) is essentially Tl (v,t), but

t
The amplitude f 3
- -55,00

11 00(%s
we have chosen th explicitly indicate the powers of v and the VTE
needed to make the resulting amplitude kinematic singularity free

in v and non-vanishing as t — 0. Throughout the remainder of this
paper we choose for this reason to write fEll,OO(V,t)/VE rather than
?fll’oo(v,t), fgl)oo(v,t)/(vyCE) rather than §21,OO(V’t)’ ete.

G. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu, Phys. Rev. 106,
1337 (1957)-

This statement is essentially a generalization (for pion-hadron (spin J)
scattering with I=2 in the t-channel) of the consistency condition
originally discovered for pion-nucleon scattering by S. L. Adler,
Phys. Rev. 137, B1022 (1965).

Although we do not obtain a sum rule for I=0 exchange amplitudes, we
still have a low energy theorem which relates the scattering amplitude
at threshold in a specific way to the matrix element of the operator
s(t) (see Eq. (12)).

See Egs. (42),(47),(51),(52), and (54).

see Egs. (38),(41),(15), (46),(48),(49),(50), and (53).

The division of superconvergence relations into Classes T and II is
independent of the massless pion limit, as are the general results (1)
through (4) of this section. Moreover, in the expansion given in
Section ITIT of t-channel helicity amplitudes with even values of A

(satisfying Class I superconvergence relations) in terms of the

g-channel forward amplitudes, the coefficients of the
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s-channel helicity amplitudes are independent of the massless pion
limit.

V. de Alfaro, S. Fubini, G. Furlan, and C. Rossetti, Torino preprint.
This type of relation has recently been generally treated by E. Abers
and V. Teplitz, Phys. Rev. 158, 1365 (1967), who call such a relation
a generalized GGMW condition. Their methods have since been used by
Y. Lin, Cornell University preprint, to prove our statement (&)

quite generally.

This method is, of course, independent of taking massless pions and
can also be used, for example, to derive the Class I superconvergence
relation for nucleon-nucleon scattering where the superconverging
amplitude can be constructed by considering that combination of for-
ward amplitudes for which both the singlet and triplet s-wave scat-
tering lengths cancel at threshold. For processes (other than pion-
hadron scattering) where both DY andlu'% 0, Class I and II super-
convergence relations correspond to even and odd values of [k—pl
respectively, rather than even or odd values of A = max{lkl,hﬂ}

A coincides with |A-ul for pion-hadron scattering where the initial
helicity in the t-channel, X, is always zero.

This holds because for elastic scattering we expect that at threshold
G£’m qe{; Im f{’m q2{+l, and Re f& o« q&.

For pion-hadron scattering the s-wave cross-section is independent

of the polarization of the target hadron.

The coefficients of the various s-channel amplitudes in Eq. (71) can
be directly determined by using the Clebsch-Gordan coefficients for

coupling spin J=2 and orbital angular momentum I=1 to total angular
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momentum 1, 2, and 3 in the s-channel for forward p-wave pion-hadron
(J=2) scattering, and choosing the combination of helicity amplitudes
for which these partial wave amplitudes vanish.

R. Dashen and M. Gell-Mann, Proceedings of the Third Coral Gables

Conference on Symmetry Principles at High Energies, University of

Miami, 1966 (W. H. Freeman and Company, San Francisco, California,
1966).

We use the term "SU(6) results" to refer to results which were ori-
ginally derived using static SU(6), but are also derivable by saturat-
ing the chiral algebra of charges at infinite momentum by the 35
mesons or 56 baryons.

See Ref. 42 and M. Gell-Mann, Lectures given at the International

School of Physics "Ettore Majoranna' in Strong and Weak Interactions,

A. Zichichi, Editor (Academic Press, New York, 1966).

Chiral SU(2) X SU(2) is not a subgroup of SU(6) or SU(6)w, but when
acting on states at infinite momentum, the collinear SU(2) x SU(2)
algebra, which is a common subgroup of SU(6) and SU(6)W, becomes the

same as the chiral algebra (see Dashen and Gell-Mann, Ref. L2).

Vo v T
We define the wpono and @poﬂo couplings as g et Tete qcp and
AWPTT o w
MUVOT iV O T U 3% v .
€ e e ., where e e and e are the w, and olari-
gCPpI[ 0 (pq P o’ W’ P P, B, ¢ P

+ =
zation vectors and q(p) is the p(x) four-momentum. The oo
coupling is defined as g " - o et
pT + -
7 7 it n
is the p polarization vector.

where p + and p are the

pion four-momenta and ez

This also corresponds to the SU(6) classification where the ¢ meson
is chosen as the octet-singlet combination that does not couple to pm.

The operator D was first used by S. Fubini, G. Furlan and C. Rossetti,
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Nuovo Cimento 40, 1171 (1965), in deriving SU(3) mass formulae.
See also V. de Alfaro et al., Ref. 36.

We are aware of the ambiguity involved in discussing the limit of

i . i . 2 2
p, < alpT)p > as e with < @}D7}B > = 0, and concluding mg - M = 0
because the left hand side of Eq. (95) is zero. However, we can
formulate the same argument in terms of contributions to covariant

sum rules, and derive Eg. (98) from them. We find that the procedure
presented here is correct if the I=2 sum rules converge, i.e., if

ag(O) < 0. All our results can be derived either from the covariant

sum rules, or from the algebraic approach discussed in this section.
Actually Egs. (95)-(98) lead directly to mi = mi. However, it is

simple to show that the operator D, being in the (%,3) IR, does not
connect the n in (1,0)-(0,1) to the p in (1,0)+(0,1), and the con-
clusion mi = mi then follows directly using the same argument as in

Egs. (95)-(98).

We take I'# I because we will consider particles which share one IR,

say (m,n), in which each isospin m + n > I > |m-n| occurs once and

only once.

See, for example, the decuplet dominance calculations of 5. Fubini,

G. Segre, and D. Walecka, Ann. of Phys. (N.Y.) 39, 381 (1966).

From I'(p —nn) = 125 MeV = (giﬂﬂ/éﬂ)(qB/mi), where q is the three-
momentum of either final massive plon in the p meson rest frame, we
obtain cosgw = 0.48. Calculations based on the algebra of currents, PCAC,
and vector dominance lead to cosgw = %. See M. Suzuki and K. Kawarabayashi,
Phys. Rev. Letters 16, 225, 384(E)(1960); F. J. Gilman and H. J.
Schnitzer, Phys. Rev. 150, 1362 (1966); J. J. Sakurai, Phys. Rev.

Ietters 17, 552 (1966).
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The width given here is for the final pion being massless, mA = 1070
1

MeV, and m, = 765 MeV. As the width P(Al~>pﬁ longitudinal) « gi q5,

where g i1s the pionbthree—momentum in the A, rest frame, the exact

1

width depends fairly sensitively on the masses of the A p, and =,

17
as well as on any assumed dependence of the coupling constant g7, on
the mass of the pion. With the same Al and p masses and value of gL
as above, but with mo= 140 MeV, the width is reduced by a factor of 1.6.
If we use cosgw = % and neglect mi/mi, we can rewrite Eg. (113) as
mA1= iz m . This relation was found by §. Weimberg, Phys. Rev.

Letters 18, 507 (1967), who derived it from a totally different set

of assumptions, but using precisely the same numerical approximaticns.
M. Gell-Mann, D. Sharp, and W. G. Wagner, Phys. Rev. Letters 8, 261
(1962). We use I'(w =z + 7) = 1.2 £ 0.3 MeV, fi/lm = 2.5 * 0.4 as
determined by J. J. Sakurai, Phys. Rev. Letters 17, 1021 (1966).

The guoted errors in our value for gwpﬂ do not include the errors
introduced by the model or by errors in the masses.

Definitive experimental evidence on this point is difficult to obtain.
This explains the rederivation of various "SU(6) results" by S. Fubini
and G. Segre, Nuovo Cimento 45(A), 641 (1966); V. de Alfaro et al.,
Ref. 2; H. F. Jores and M. D. Scadron, Nuovo Cimento 48(A), 545 (1967);
H. F. Jones and M, D. Scadron, Nuovo Cimento, to be published;

P. H. Frampton, preprint (1967); R. Oeheme and G. Venturi, preprint
(1967); K. Bardakci and G. Segre, Phys. Rev., to be published.

Taking massless external pions also removes the difficulty found by

P. E. Low, Proceedings of the Thirteenth International Conference on

High Energy Physics, Berkeley, California, 1966 (University of Cali-

fornia Press, Berkeley, 1967), p. 244, Tow remarked that if we
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saturate the three superconvergence relations for np scattering with
the w, w, and @, the only consistent solution is gpﬂﬂ= %wpn= g@pﬂ=
This would contradict the inhomogeneous Eqgs. (84) and (85). In the
limit miXt = 0, however, Low's objection is not valid and a consis-
tent solution is obtained.

See H. F. Jones and M. D. Scadron, Nuovo Cimento, to be published;

and P. H. Frampton, preprint (1967). Our analysis of Class I and
Class II superconvergence relations immediately shows which sum rules
(i.e., those in Class I) one can expect from the outset to be consis-
tent with "SU(6) results". Tt is exactly the Class I superconvergence
relations which the above authors find are consistent, while the Class
IT sum rules for ¥ — nN¥* are found to be inconsistent with "SU(6)
results'.

P. Babu, F. J. Gilman, and M. Suzuki, Ref. 21.

The Aodno and DSOﬂO couplings are defined analogously to the poﬂ+ﬂf

1

coupling, and the DAiﬂo coupling analogously to the apono and wpono

2
couplings in Ref. 46. In terms of widths: T'(p —mx) = (gpﬁﬂ/6n)

(°/m2)s (o =an) = (385, /160) (m5- mi- (n5°%)) e/ () Tlo ~pon) =

(gipﬂ/”ﬂ)qBS F(Al~>pﬂ) = (g§/6ﬂ)(q5/m§l) + (gi/lgﬂ)(qS/mi); (D —>A1“>

1
(/n5); T(6 —Xx) = (g5, /87) (mom mi= (n)%)%q/ (bn2); where q 1s

<g§Alﬂ/uﬂ>q3 ; T(#,—>on) = <gi16ﬂ/ 60) (0 /my )3 TD +0x) = (aps /o)

the three momentum of the final pion in the decaying particles rest
frame, if the decay is kinematically possible.
Xt

In calculating the widths below we have consistently assumed mi = 0.

Corrections for massive pions are discussed in Section VII-B.
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See the discussion of the experimental evidence for the exiétence of

scalar mesons in G. Goldhaber, Proceedings of the XIITth International

Conference on High Energy Physics (University of California Press,

Berkeley 1967), p. 128.
S. L. Adler, Phys. Rev. 140, B736 (1965).
The experiments where the H meson was (and was not) seen are discussed

by G. Goldhaber, Proceedings of the XIIIth International Conference

on High Energy Physics (University of California Press, Berkeley 1967),

p. 128.

Note that a contribution from the £ of 10% of the 8/f§ on the right
hand side of Eq. (125) reduces I'(0 — ) by 20%, to about 460 MeV for
massive pions.

When we consider the (lass IT superconvergence relation for nAl scat-
tering, we find that saturation by just the o, p, and D with the
couplings and masses as above are inconsistent. However, introduction

+ _CG

of the B meson (JP 1, I = l—+) yvields a unique solution to all

. 2
gGAln and m_ as before, but with gDAlﬂ reduced to
p = g (and not related to m, ). If

A
the D and B are to be identified with the mesons at 1280 MeV and

the sum rules with

1 its value in Eq. (146) and m

1
1220 MeV, respectively, then this also agrees better with experiment
than the prediction in Eq. (158).
R. Gatto, L. Maiani, and G. Preparata, Phys. Rev. Letters 16, 377 (1966).
T. S. Gerstein and B. W. Lee, Phys. Rev. Letters 16, 1060 (1966).
H. Harari, Phys. Rev. Ietters 16, 964 (1966), and 17, 56 (1966).

Ot - ot - .
The A'S 5 and 22 5 couplings used here are the pseudovector

- Moo . *o‘*“' . . s
couplings, rp L, u(pA)7u75u(pB>’ while the v¥ %' coupling is defined

o= . . _
as ngann uu(le)u(pZ), with g the pion four momentum and
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Ep(pY ) the Rarita-Schwinger spinor for the Y{ with spin 3/?.
1

In terms of the D/F ratio and the axial-vector coupling constant

2

‘ 2 2
= 1.18 of the nucleon, (gﬁ) =3 (D/F+D)2gA and (gi)2= 2(F/F+D)2gi.

4
The narrow resonance approximation tends to overestimate the contri-
bution of a given resonance, particularly those near threshold. For
the Yi(lﬂSB), integrating directly over a Breit-Wigner resonance

shape yields a contribution to the sum rules of T70-80% that given

in the Tables. For higher mass resonances the effect is much less.
The widths used for the resonances are taken from Rosenfeld et al.,
Ref. 12, except for the Y6(1M05), which is from J. Kim, private
communication.

For another attempt at saturating the ¥ Adler-Wesiberger sum rule

see G. Shaw, Phys. Rev. Letters 18, 1025 (1967). Our values for the
resonance contributions differ somewhat from his due to different
widths for the resonances in some cases, the use of fﬂ = 135 MeV

(from the pion lifetime) instead of VE%gAmN/gﬂN (the Goldberger-
Treiman prediction for fﬂ), the correction we use for zero mass pions,
and the narrow resonance approximation. All these tend to increase
the value of the left hand side of the sum rule to the maximum pos-
sible, and the sum of our contributions is greater than Shaw's, but
the sum rule is still only about T70% saturated.

See Section VII-B for a discussion of the same situation for the pion-
meson (isospin 1) scattering sum rules.

This follows from our initial assumption above that the SU(3) breaking
terms belong to representations no larger than octet.

2 2
Eq. (57) for isospin 1/2 targets has l#/fJT rather than 8/fjT on the

right hand side.
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Again we are calculating using massless pions. For massive“pions we
find WK =~ 45° and mKA: 1160 MeV. The coupling constants are similar
to the np case with'K*+(890)Kon analogous to pmx and KAK*n analogous
to Alpn.

We can also use the transverse sum rules, if we wish, to obtain the

K*(890)K*(890)n coupling, but the size of the errors and the lack of
any experimental number to compare the result with make this mostly

a formal exercise.
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TABLE T

crossing properties and type of non-trivial

dispersion or superconvergence (S.C.) relation holding for the kinematic-

singularity-free amplitudes for pion-hadron scattering at t=0, where the

hadron spin is J < 2. I is the t-channel isospin and Qi(o) =

aé(o> < 0.

are relevant (& < 27).

For a given spin J only the first 23 + 1 lines of the table

Amplitude I =0 T =1 I=2
a o o4
N 0 v 1 v 2
t
fxx’oo(v,o) even oda even
g <A< J 1 subtraction No subtraction | No subtraction
| o -1 a -1 o -1
v 0 N 1 v 2
t
[fk(K+l),OO(v’t>/(v{t?)Jt=o odd even odd
I+ 1< A+1<J No subtraction | No subtraction S.C. (N=0)
a -2 o -2 Q-2
y 0 v 1 v 2
[ft (v O)/v2] even odd even
A(A+2),00
S+ 3<A+2<d No subtraction |  S.C.(N=0) S.C. (W=1)
o -3 a -3 o,-3
y v 0 A% 1 Vv 2
t 3
[f}\(}ﬁ_?)),oo(v)t)/(v mﬂt:o odd even odd
-+ 3<M+3<d S.C. (N=0) S.C. (N=1) 8.C. (N=2,0)
o -4 o =l o -k
v 0 v 1 v 2
[ft (v O)/Vu] even odd even
Ma+h), 0002
-3+ b <ol <0 S.C. (N=1) S.C. (N=2,0) S.C. (N=3,1)
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TABLE IT

The number of possible charge-algebra and Class I and II super-
convergence relations for pion-hadron (spin J) forward elastic
scattering. I is the t-channel isospin, and asterisks denote the sum

rules which are linear combinations of other t=0 sum rules:

J Charge Algebra Class I Class IT Total number
of independent
I=1 I=2 I=0 I=1 =2 T=0 I=1 I=2 {sum rules

0 1 1 2

1

5 1 1 1 3

1 2 2l 1% 1* ' 1 5

% 2 2 1* 1% 1 1 31* 9

2 3 3 1 1+3% 1+43% 1 1 3+1¥ 1h
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TABLE IIT

Contributions of the n, w, and Al intermediate states and the high

2
energy region to the sum rule (73) for n-p scattering, assuming gpﬂﬂ =

2,2 -1 10t
mp/fﬂ, 8o = 21 GeV 7, gg = 0, P(Al—>pn) = 110 MeV, f(v,t) «< ae for

large V and normalizing a so that the high energy contribution at t=0

is 10% of that of the w.

B1d W Al aelot
£=0 1.0 -2.0 1.0 0.20
2
t = -m 1.0 ~2.03 0.87 0.16
a
m_ =T 0 -1.0 -4,0 -1.16
P £=0
2
mLL 9—5 0 0 0 -6.8
Pat” t=0
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TABLE IV

Quantum numbers of mesons in the model of Section VII.

Particle JP T G
1 o 1 -
x° 0~ 0 +
5 o" 1 -

+
o 0 0 +
o 1" 1 +
w 1 0 -
+
Ay 1 1 -
+
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TABLE V

Contributions to the Adler-Weisberger sum rule for =X scattering,

2 0

2 2 f -t ot
(g) + (&) + = J 2 ) s T ) - g,

from the bound states and resonances with known nX couplings.

P r 7%
Resonance or tot T © Contribution to left
Bound State hand side of sum rule.
(MeV) (%)
D/F = 2/1 3/2
A(1115) (1/2)" 1 .33
£(1193) (1/2)" 31 45
Y3 (1385) (3/2)" ko 9 .22
Yg(luos) (1/2) 50 100 .33
Yg(1520) (3/2) 16 51 .ok
Yi(l660) (3/2)" 50 30 .03
Y§(177o) (5/2)" 89 <1 .002
¥X(1820) (5/2)" 83 11 .01
¥%(1910) (5/2)" 60 3 . 002
Sum = 1.35 1.41
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TABLE VI
Contributions to the left hand side of the sum rule,
oo
2 2 2 J[ av (2)
—E(mA+ mz) & a5 + Mngzzﬂ + = . v Im A (v,0) =0
0

from the bound states and resonances with known s couplings.

Resonance or J Tiotal T Contribution (1/BeV)

Bound State total

(Mev) (%)

D/F = 2/1 3/2
A(1115) (1/2)" 143 -116
£(1193) (1/2)" 110 160
Y3 (1385) (3/2)" 4o 9 -36
Y3(1u05) (1/2)" 50 100 +8
Y3(15eo) (3/2)" 16 51 -16
Y§(1660) (3/2)" 50 30 +15
V% (L770) (5/2)" 89 <1 -1
¥%(1820) (5/2)" 83 11 -6

¥$(1910) (5/2)" 60 3 +1
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TABLE VIT

Contributions to the left hand side of the superconvergence relation

o]

2 [ v 5@ y0) =0
7 gT y !

from the bound states and resonances with known =nZ couplings.

giizgaEEthr gt T\ eal PtZial Contribution (1/BeV)
(Mev) (%)

D/F = 2/1 3/2
A(1115) (1/2)" 150 +113
£(1193) (1/2)" -110 160
¥ (1385) (3/2)" 40 9 +h1
Y3(1u05) (1/2)" 50 100 + 1
Yg(1520) (3/2)" 16 51 . +19
¥ (1660) (3/2)" 50 30 -18
Y¥(1770) (5/2)" 89 <1 o<+l
(1820)  (5/2)" 83 11 + 3

¥ (1910) (5/2)"" 60 3 -2



