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Abstract

In this thesis we address a few problems on critical phenomena in two- and three

dimensional materials. Specifically we consider high temperature superconductors,

dimerized quantum magnets and frustrated magnets.

Motivated by the recent discovery of a magnetic quantum critical point in hole-

doped cuprates (at the doping p ≈ 0.1), we study the influence of the criticality

on the superconducting pairing. We consider fermion-fermion pairing in a two-

dimensional system at quantum critical point. We found a new physical mechanism

of fermion pairing by quantum critical fluctuations, that is similar to a Casimir

effect. The Casimir pairing mechanism has conceptual similarities with chiral bag

models in quantum chromodynamics and is generic for a wide class of quantum

phase transitions.

Doping quantum critical system by impurities can significantly affect the ”crit-

ical” properties of the system. We consider an impurity problem in a 3D magnet

close to a quantum critical point, e.g. TlCuCl3. By analogy with a Kondo effect in

normal metals this problem is called “Bose-Kondo” problem. We show that local

magnetic moment of the impurity becomes screened by the cloud of critical magnons.

Moreover, we show that the screening can be interpreted as a “spin-charge separa-

tion” in a 3D quantum critical system. Interestingly, our results show that adding

a small concentration of impurities can shift position of a QCP, that agrees with

experimental data for doped 3D quantum magnets.

Among various types of emergent orders that exist in cuprates, a charge density

wave (CDW) phase attracted a lot of attention over the last few years. Despite of

a numerous experimental and theoretical work on the subject, some key informa-

tion about CDW state is still missing. One of the main unanswered questions is
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the amplitude and the spatial pattern of CDW. To resolve the questions in phe-

nomenology of CDW, we perform a combined analysis of available experimental

data: nuclear magnetic resonance (NMR), resonant inelastic X-ray scattering and

hard X-ray diffraction. We extract from NMR data the s, s′ and d-wave ampli-

tudes of CDW and rule out the checkerboard pattern of CDW. We show that data

potentially rules out a wide class of theoretical models of CDW.

Finally, we consider topological defects (skyrmions and merons) in frustrated

magnets which are in the vicinity of a Lifshiz point separating collinear and spiral

states. We show that isolated metastable skyrmions can exist in the absence of ex-

ternal magnetic field in frustrated magnets with an easy-axis/easy-plane anisotropy.

We found exotic skyrmion states with large topological charge: skyrmion rings. In

the systems with easy-plane spin anisotropy we demonstrated that at the critical

point a skyrmion with a unit topological charge “fractionalizes” into a pair of merons

- half-skyrmions.
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Chapter 1

Introduction

In this Chapter we outline the background information on studies of quantum critical

phenomena in condensed matter systems. We provide a brief overview of high Tc

superconductivity in cuprates, emergent magnetic and charge orders in quantum

critical systems and topological spin excitations in classical critical systems.

1.1 What is a quantum phase transition?

Phase transitions and critical phenomena play a very important role in various

branches of physics, from statistical physics and condensed matter physics to cos-

mology and particle physics. Numerous examples of critical phenomena include

melting of ice into water, demagnetization of ferromagnetic iron above the Curie

temperature, onset of superfluidity in 4He below the lambda point Tλ = 2.17K,

superconductivity in metals, baryongenesis in the early Universe and generation of

quark-gluon plasma in collisions of heavy nuclei. These are examples of thermal

phase transitions, that occur at a certain critical temperature Tc due to thermal

fluctuations.

Recently a new class of phase transitions, so called quantum phase transitions,

attracted a lot of attention in the context of condensed matter physics [1]. In

contrast to thermodynamical phase transitions, the quantum phase transitions are

driven by quantum fluctuations due to Heisenberg’s uncertainty principle. Let us

imagine a physical system at zero temperature, that is controlled by some external
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parameter g. The parameter g can correspond to a hydrostatic pressure, magnetic

field, chemical doping, etc. (but not temperature !) and it plays a role of a tuning

“handle” for our system. Upon varying the parameter g at some particular value

gc a dramatic transformation of the system’s ground state may occur. The phase

transition across the critical point g = gc is called a “quantum phase transition”

(QPT) and gc is called a “quantum critical point”(QCP).

A QCP separates the two ground states at g < gc and g > gc , that are referred

as ordered and quantum disordered phases. The properties of the two phases are

characterized by an order parameter similarly to the conventional thermodynamical

phase transitions. While an order parameter vanishes in a disordered phase it takes

non-zero values in the ordered phase. Hereafter we will consider only “continuous

QPTs”, where the order parameter is a continuous function of the tuning variable

g.

An order parameter can be a scalar, vector or tensor or a group element of a

symmetry group such as SO(N), SU(N) etc. The transformation properties of an

order parameter are dictated by the symmetry group of the system’s ground state.

The order parameter symmetry group is crucial in determining the quantum critical

behaviour of the system. The symmetry considerations are very powerful for analysis

of critical phenomena, that allow to classify QPTs in generic universality classes.

We will discuss the universality classes in more details later in the present Chapter.

Usually an order parameter is expressed as an expectation value of a local in

space and time operator. Such order parameter φ(Ri, t) (Ri are the coordinates of

a crystal lattice sites) is associated with a local physical observable O(Ri, t), e.g.

magnetization, charge density, superconducting gap etc. If the observable oscillates

in space (as in the case of AFM ordering), the order parameter has to be defined as

corresponding an envelope function

〈O(Ri, t)〉 = Re{φ(Ri, t)e
iQRi}, (1.1)

where Q is the ordering wave vector. We will assume that the order parameter is a

slowly varying function of Ri and φ(Ri) can be replaced by a continuous field φ(r).

A few common examples of order parameters with a different number of compo
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nents are listed below. (i) A density wave order (e.g. a charge density wave in the 1D

Peierls transition), where the density parameter ρ(Ri, t) = ρ0 + Re{eiQRiφρ(Ri, t)}
oscillates around the average value ρ0, is described by the scalar real order param-

eter φρ (O(N), N = 1). (ii) A magnetic QPT (e.g. AFM - paramagnet QPT) is

characterized by a vector order parameter. In the case of an isotropic system with

the full rotational invariance in the spin space, the corresponding symmetry group

of the order parameter is O(3). In the presence of a strong easy-plane or easy-axis

spin anisotropy, the symmetry group reduces to the O(2) group of in-plane rotations

(e.g. XY or XXZ model). The magnetic order parameter φαs is expressed via local

spin vector Sα as

Sα(Ri, t) = Re{φαs (Ri, t)e
iQRi}, α = x, y, z. (1.2)

The ordering vector for a ferromagnetic state Q = 0, therefore the order parameter

φαs coincides with the local spin orientation Sα. The ordering vector for an AFM

state is Q = (π, π, . . .) (assuming hypercubic lattice with a unit spacing) and the

order parameter φαs ∝ (−)iSαi represents a staggered magnetization. The order

parameter φαs in the both cases of FM/AFM states is real valued. Furthermore,

Eq. (1.2) describes non-collinear spin-spiral order, when the ordering vector Q is

incommensurate. (iii) Conventional s-wave superconducting phase in metals and a

superfluid phase in 4He are described by a complex-valued order parameter with

the U(1) gauge symmetry [2].

A typical phase diagram of a continuous QPT is shown in Fig. 1.1 (a,b) (see

Ref. [3]). The panel (a) corresponds to two-dimensional quantum systems and

the panel (b) correspond to three-dimensional systems. At zero temperature the

QPT phase diagram is separated by the QCP in ordered and quantum disordered

phases. According to Mermin-Wagner theorem [4] a long-range order in 2D systems

(D = 2 + 1) with a continuous symmetry group exists only at zero temperature. At

T > 0 the long-range order is destroyed by thermal fluctuations (at the distances

larger then the correlation length ξ) and the “quantum ordered phase” transforms

to a “thermally disordered” phase, see Fig. 1.1a. On the other hand in 3D systems

(D = 3 + 1) the ordered phase persists at non-zero temperatures up to a critical
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temperature Tc(g), where the melting into a thermally disordered state occurs, see

Fig. 1.1b. The critical temperature Tc(g) has a meaning of Curie (Neel) temperature

for a ferromagnetically (antiferromagnetically) ordered state. The transition at Tc(g)

is essentially a classical thermal phase transition, since thermal fluctuations are much

stronger then the quantum fluctuations in the vicinity of the critical line (“classical

critical” region in Fig. 1.1b).

QCP

Figure 1.1: A phase diagram for a QPT separating ordered and quantum disordered
phases in (a) D = 2 (+ time), (b) D = 3 (+ time) systems.

Physical observables, such as the order parameter correlation length ξ, excitation

gap ∆ and magnetic susceptibility susceptibility χ exhibit non-analytical dependence

on the tuning parameter g in the vicinity of the QCP [1]. For instance, the correlation

length diverges at the QCP at T = 0 , ξ(g) ∝ |g − gc|−ν , where ν is the critical

exponent. The characteristic excitation gap in the vicinity of the QCP scales as ∆ ∝
1/ξ ∝ |g − gc|−ν and exactly vanishes at the QCP. All observables have power law

dependences on the external parameters g, T . The set of corresponding exponents

(critical indexes) completely describe the particular QPT.

The region near the QCP, that spreads over nonzero temperatures, is called

“quantum critical” domain, see Fig. 1.1. The “quantum critical” region boundary

on the phase diagram is determined by comparing the typical energy of long-distance

order parameter fluctuations ∆ = ~ωc ∝ 1/ξ and the thermal energy T : T > ~ωc ∝
|g − gc|ν . In this region the system “looks critical” with respect to the tuning

parameter gc, but is driven away from criticality by thermal fluctuations. The main

feature of this region is the absence of conventional quasiparticle-like excitations:

the quasiparticles become over-damped. Universal critical behavior persists in the
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vicinity of the QCP, i.e. when the correlation length is much larger than microscopic

length scales. A quantum critical behavior is cut off at high energies/temperatures,

i.e. when T exceeds characteristic microscopic energy scales in the system (“non-

universal” region). In quantum magnets the “ultraviolet” cutoff is set by the typical

Heisenberg exchange energy.

The critical index ν for a quantum system in D = d + 1 dimensions coincides

with the corresponding critical exponent for a classical second order thermal phase

transition, ξ(T ) ∝ |T − Tc|−ν , in D = d spatial dimensions [1]. Similarly, other

critical indexes characterizing QPTs coincide with their classical counterparts. This

provides a deep relation between QPTs and classical PTs, a “classical-quantum

correspondence”. The quantum-classical mapping can be understood in terms of

analytical continuation of response functions from real to imaginary (Matsubara)

time/frequency.

In order to illustrate the quantum-classical analogy we consider an order pa-

rameter correlation function G ∼ 〈φφ〉 at the critical point. In the classical d-

dimensional system the correlation function typically has a power-law dependence

on the momentum

G(q) ∝ q−2+ηd , (1.3)

where ηd is a corresponding critical exponent. For a QPT at T = 0 in d+1 space-time

dimension the retarded Green’s function can be obtained by analytical continuation

of Eq. (1.3):

GR(q, ω) ∝ (q2 − ω2 + i0)(−2+ηd+1)/2. (1.4)

This examples shows the specific character of the excitation spectrum at a QCP:

GR does not show a conventional quasiparticle pole, but instead a branch cut for

ω > q, corresponding to a continuum of critical excitations.

One of the most remarkable features of continuous phase transitions is their

universality. Since in the vicinity of a QCP the correlation length ξ → diverges,

the critical system does not have an internal length scale. The theory describing a

QPT becomes scale invariant and the essential physics is determined by long range

order parameter fluctuations. Therefore, the microscopic details of the system are

unimportant at QCP and the quantum critical physics is universal. The universality
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classes are determined only by the symmetries of the order parameter and by the

space dimensionality of the system [5]. The values of critical exponents are fixed for

a given class of phase transitions which may occur in very different physical systems.

This implies that the critical properties of a phase transition occurring in nature

can be determined by investigating any simple model system belonging to the same

universality class.

QPTs are successfully described in terms of of quantum field theory models. The

cornerstone of the theory of phase transitions is a so called φ4 model. This model

represents the standard Landau-Ginzburg-Wilson approach to the theory of phase

transitions and it can be applied to a variety of physical systems [2, 6]. For example,

a QPT in D = d + 1 dimensional system belonging to O(N) universality class can

be modelled by an action

S =

∫
dtddx

[
(∂tφµ)2

2
− (∇φµ)2

2
− (g − gc)

2
φµφ

µ − α(φµφ
µ)2

4!

]
, (1.5)

where φµ is a N -component real field. The action (1.5) is invariant with respect to

global O(N) rotations. In the quantum disordered phase, g > gc (symmetric phase),

the expectation value of the order parameter is zero 〈φµ〉 = 0. In the symmetric

phase there are N degenerate massive excitations. In the ordered phase at g < gc

the O(N) symmetry of the ground state is spontaneously broken, 〈φµ〉 6= 0. The

spontaneous symmetry breaking generates N − 1 massless Goldstone modes [7] and

a massive Higgs mode.

The critical indexes for a QPT can be calculated on the basis of the φ4 theory

using renormalization group (RG) technique [8]. RG is a very powerful tool for the

scaling analysis of local field theories, which is designed to determine the asymptotic

low-energy, long-wavelength characteristics of a system. In the momentum-shell

formulation, the RG procedure leads to an elimination of high-energy degrees of

freedom and results in a low energy effective theory with renormalized parameters.

The low-energy theory is obtained via iteratively integrating out the order param-

eter fluctuations with large momentum/frequency. The one-loop RG result for the

correlation length and correlation function critical indices in the O(N) symmetric
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theory reads [9]

ν−1 = 2− N + 2

N + 8
ε+ . . . , ηd =

N + 2

2(N + 8)2
ε2 + . . . . (1.6)

Here ε = 4−D and the expressions (1.6) are obtained within so-called ε-expansion

around the upper critical dimension D+
c = 3 + 1. The upper-critical dimension

defined as a certain dimension D+
c , above which critical fluctuations become irrel-

evant, i.e. the critical indexes coincide with their mean-field values, e.g. ν = 1/2,

ηd = 0. Above the upper critical dimension quantum fluctuations do not affect phys-

ical observables, since the fixed point of the RG flow corresponds to non-interacting

theory, α → 0. Below the upper-critical dimension, D < D+
c , the critical fluctu-

ations strongly renormalize the theory, and the physical observables demonstrate

power-law dependences on the tuning parameters (e.g. g, T ) with nontrivial critical

exponents. The critical behaviour below the upper critical dimension is determined

by a Wilson-Fisher fixed point of the RG flow, where the system effectively become

strongly interacting [10]. If the system’s dimension is equal to upper critical dimen-

sion, D = D+
c , the effect of critical fluctuations is marginal, and the renormalization

of physical observables instead of power-law becomes only logarithmic. With re-

ducing the dimensionality of the system the role of quantum critical fluctuations

becomes more important.

Quantum phase transitions have been found in many condensed matter sys-

tems, including cuprates [11, 12, 13], iron pnictides [14], heavy fermion compounds

[15, 16, 17], two-dimensional electron gases [20, 21], rear earth magnetic insulators

[18], ruthenates [19] and dimerized quantum magnets [22, 23]. Study of quantum

phase transitions is important for a search of new materials with desired quantum

properties is vital for future technology development.

Below we discuss some aspects of quantum critical phenomena in quantum mag-

nets and cuprates.
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1.2 Quantum phase transitions in quantum mag-

nets

Pressure driven QPTs have been observed in spin dimer compounds, such as TlCuCl3

[22, 23], KCuCl3 [24] and CsFeCl3 [25]. These compounds are three dimensional

magnetic insulators, at an ambient pressure the ground state of the system is para-

magnetic. By applying a hydrostatic pressure at some critical pressure p = pc the

system undergoes through a QPT from paramagnetic to a long-range ordered Neel

state.

(a)

(d)(c)

(b)

Figure 1.2: (a) A toy model of a O(3) QPT in a dimerized antiferromagnet. The
QCP separates a Neel magnetic phase (g < gc) and a quantum paramagnetic phase
(g > gc). The ellipses show dimer bonds. (b) Crystal structure of a spin dimer
quantum magnet TlCuCl3. (c) The spin excitation gap versus tuning parameter g
near a QCP. (d) Excitation gaps and Neel temperature in TlCuCl3 as measured in
inelastic neutron scattering [23].

In order to illustrate the physics of QPT in quantum magnets, let us consider a

model shown in Fig. 1.2a. The model is represented by a Heisenberg antiferromagnet

with two types of exchange coupling constants: the strong coupling inside of each
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dimer (gJ) and the weak interdimer (J) coupling. In the limit g → ∞ the spins

inside of each dimer form a spin-dimer “atom” with total spin zero. The ground state

of the system at g � 1 is a “quantum paramagnet” - system of weakly interacting

singlet dimers. Deeply in the disordered phase of a structurally dimerized magnet

the wave function of each dimer reads

|ψ〉 =
∏
{i,j}

1√
2

(| ↑〉i| ↓〉j − | ↓〉i| ↑〉j) , (1.7)

where {i, j} are the lattice sites in a dimer and the expectation value of a local spin

at any lattice site is 〈Si〉 = 0. On the other hand, in the case g → 1 the system

is a Neel antiferromagnet. Therefore, should exists a critical value gc of the tuning

parameter, a quantum critical point, where the QPT from disordered to Neel phase

takes place.

In structurally dimerized compounds, such as TlCuCl3 (see Fig. 1.2c), external

pressure affects the exchange interaction between electrons in each dimer. The

tuning parameter of quantum criticality g has a meaning of inverse pressure. The

elementary spin excitations in the paramagnetic phase are gapped: there are three

degenerate excitation modes (called “triplons”), that correspond to a singlet-triplet

transition at the site of a dimer. The triplon gap vanishes at the QCP, see Fig.

1.2b. On the other side from the QCP, in the Neel phase, the spin excitations

are an amplitude (“Higgs”) mode and the two spin-wave (Goldstone) modes. The

triplon, Higgs and Goldstone modes were unambiguously measured in TlCuCl3 with

inelastic neutron scattering [23]. One of the two Goldstone modes has a small gap

due to a weak spin anisotropy present in TlCuCl3 (see e.g. [26]). Quantum critical

properties of TlCuCl3 can be explained on the basis of O(3) φ4 continuous field

theory in D = 3 + 1 dimensions [27].
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1.3 Critical phenomena in high Tc superconduc-

tors

The discovery of superconductivity by Bednorz and Müller in the perovskite com-

pound La2−xBaxCuO4+δ (Tc = 35K) [28] initiated the era of high temperature

superconductivity. Within a few years after the discovery, high temperature super-

conductivity was found in various copper oxide materials, including YBa2Cu3O6+x

(YBCO) with the critical temperature of the order of 100K.

While dozens of cuprate superconductors are known, they all share main common

features. (i) Cuprates have layered structure consisting of weakly coupled CuO2

planes, see Fig. 1.3a. The physics of cuprates is essentially “two-dimensional” and

constrained in the copper oxide planes. (ii) Parent cuprate compounds are Mott

insulators with the Neel ground state. The electron spins at the planar Cu sites

aligned antiferromagnetically, the electron spin is S = 1/2 per Cu site. (iii) The Cu-

O planes are “doped” by chemical substitution of atoms in “charge-reservoir” layers

so that electrons are removed (hole-doped) or added (electron-doped) to the copper

oxide planes. The value of doping dramatically affects cuprates properties and acts

as a “tuning parameter” driving the system through a number of quantum phases.

(iv) Superconductivity (SC) exist in a finite doping range pmin < p < pmax. The

superconducting region on the T − p phase diagram has a dome-like shape with the

maximum Tc at an optimal doping p = popt, see Fig. 1.3b. (v) Cuprates are “highly

correlated materials” due to strong onsite Coulomb repulsion of holes (electrons) in

the Cu-O layers. (vi) The superconducting order has d-wave pairing symmetry.

The doping range p < popt correspond to underdoped cuprates and cuprates with

the doping p > popt are called overdoped. To be specific we will discuss only hole-

doped systems, such as YBCO. The T − p phase diagram for hole-doped cuprates

is shown in Fig. 1.3.

The phase diagram for cuprates is quite complex and consist of a number of

exotic quantum phases. In the underdoped region the phase diagram is represented

by AFM, SC and “pseudogap” phase. The “pseudogap” phase is characterised by

an unusual hole Fermi-surface with open topology, called Fermi-arcs [29, 30]. Pseu-

dogap region persists in the temperature range Tc < T < T ∗, the phase boundary
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line near T ∗ (dashed yellow line in Fig. 1.3) is not well defined and rather corre-

sponds to a finite temperature crossover. In the optimally doped region above Tc

is referred as “strange metal”. The pseudogap and strange metal phases are still

poorly understood, their distinct feature is the absence of well defined quasiparticle

excitations. The overdoped region is characterized by large hole Fermi surface and

can be described as a normal Fermi liquid [11].

Recently two novel phases were found in the underdoped cuprates: incommensu-

rate spin spiral (green dashed line in Fig. 1.3b) and incommensurate charge density

wave (red dashed line in Fig. 1.3b). Below we will discuss these two phases in more

detail.

(a)

(b)

Figure 1.3: (a) Crystal structure of a high temperature superconductor YBCO
(from [35]). (b) Generic phase diagram (temperature versus doping) for hole-doped
cuprates (from [13]).

1.3.1 Magnetic quantum critical point in cuprates

Undoped and lightly doped cuprates posses collinear AFM order. On the other

hand, optimally doped and overdoped cuprates do not have any static magnetic

order. In the underdoped region a new type of magnetic order - an incommensurate

spin spiral - has been detected recently near the boundary between AFM and SC

phases, see Fig. 1.3.1a. The existence of static incommensurate magnetic order

(“spin density wave”, SDW) in YBCO has been established in neutron scattering
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Figure 1.4: (a) Phase diagram for YBCO (zoomed in) near the magnetic QCP
(MQCP) at p ≈ 0.09 [33]. The MQCP separates incommensurate spin spiral phase
and magnetically disordered phase. (b) Magnetic moment at low temperature as
a function of doping in cuprate compounds YBCO and LSCO [31]. The magnetic
moment in YBCO vanishes at the MQCP.

and muon spin rotation (µSR) experiments at low temperatures [31, 32, 33].

The incommensurate SDW is believed to be a universal phenomenon for hole

doped cuprates, below we will refer specifically to YBCO. The wave vector of the

SDW ordering QSDW = (π ± δSDW , π) is close to the AFM wave vector QAF =

(π, π). The SDW order in YBCO persists in the doping range 0.05 < p < 0.09, the

incommensurability δSDW increases with p. The wave vector of the spin spiral is

aligned along the main crystallographic axis a, see Fig. 1.3a. The spiral order is

two-dimensional and is constrained within CuO planes. The SDW is unidirectional,

it breaks underlying discrete symmetry group C4 invariance of the unit cell of a CuO

plane and reduces it to a two-fold rotational symmetry C2. That is why the SDW

is also called “electron nematic” phase [32].

At doping level p ≈ 0.09 the static local magnetic moment at Cu sites vanishes,

〈Si〉 → 0, see Fig. 1.3.1b. The melting of the local magnetic moment indicates the

presence of a QCP that separates the incommensurate phase from magnetically dis-

ordered phase. At larger doping after crossing the QCP the (quasi-) static magnetic

ordering vanishes and becomes fully dynamic. The transition into the incommensu-

rate SDW phase is of the “spin freezing” type [32], since the incommensurate SDW
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phase has features of a “spin glass” state. The characteristic frequency of electronic

spin fluctuations is reduced with decreasing temperature. Upon further cooling, the

spin system gradually freezes into an ensemble of slowly fluctuating, finite-sized do-

mains. The magnetic QCP is well pronounced in YBCO, however it is smeared by

an intrinsic disorder in LSCO.

The spin excitations are gappless in the SDW phase. In the magnetically disor-

dered phase the spin gap opens. The magnetic QCP separating these two regions

was theoretically predicted at the doping p ≈ 0.1, that agrees well with the experi-

mentally found position of the QCP [34].

1.3.2 Charge density wave in cuprates

Incommensurate charge density wave (CDW) order has been recently discovered

in underdoped cuprates in bulk sensitive measurements, such as resonant inelastic

x-ray scattering (RIXS) [35, 36, 37], resonant X-ray scattering [38], hard X-ray

diffraction (XRD) [39] and nuclear magnetic resonance (NMR) [41, 42, 43]. The

surface scanning tunnelling microscopy (STM) confirms the presence of the CDW

state in cuprates [44, 45]. The CDW order has been found in YBCO and other

cuprate families [45, 46], below we will specifically refer to YBCO. Note, that the

incommensurate CDW phase is distinct [35] from the well known commensurate

charge ordered phase in La based cuprates at p = 1/8 [47, 48].

The first direct observation of incommensurate CDW comes from RIXS [35], the

X-ray photon energy was tuned to Cu 2p→ 3d transition. RIXS technique probes a

spatial charge distribution of the valence electrons. An anomalous peak was detected

at incommensurate wave vector QCDW = 0.31 of reciprocal lattice units (r.l.u.), see

Fig. 1.3.2, the period of the modulation is 1/QCDW = 3.2 lattice spacings. The

CDW peak appears below the critical temperature TCDW ≈ 150 K, the intensity

of the RIXS signal grows with decreasing of temperature. The anomalous peak in

RIXS corresponds to the spatial modulation of electron density, the wave vector

of the CDW lies in the CuO planes. The CDW peaks are located at the wave

vectors QCDW = (Q, 0) and QCDW = (0, Q), the both peaks have equal RIXS

intensity. This data are consistent with two possible spatial patterns of the CDW:
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Figure 1.5: (a) Incommensurate CDW in YBCO (p = 0.11) at the wave vector
Q = 0.31 r.l.u. as measured by RIXS [35]. (b) Schematic illustration of CDW
modulation in the CuO plane of cuprates.

(i) a biaxial (checkerboard) CDW with coexisting (Q, 0) and (0, Q) modulations, (ii)

statistically equivalent domains with a uniaxial (stripe-like) CDW, the wave vector

in each domain is either (Q, 0) or (0, Q).

A supporting evidence for the CDW order comes from XRD measurements. XRD

technique probes inner core electrons, therefore XRD is sensitive to ionic displace-

ments. XRD data also shows the presence of anomalous peak at the same incom-

mensurate wave vector QCDW [39], that corresponds to CDW induced modulation

of ions displacements (see Fig. 1.3.2). XRD experiments identify both inplane and

out of plane components of Cu and oxygen ions displacements [40]. The CDW wave

vector is almost independent on doping [37].

At the temperatures below superconducting temperature Tc, the CDW amplitude

decreases [35, 39]. This phenomenon has interpreted as a result of competition

between SC and CDW orders. Interestingly, the position of the dip in SC dome at
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p ∼ 0.11 coincides with the maximum of TCDW on the T −p phase diagram, see Fig.

1.3, that supports scenario of competing SC and CDW orders.

The observation of CDW modulation by RIXS and XRD preceded by NMR

measurements [41]. The analysis of quadrupole satellites in the NMR spectrum

allows to extract information about about the electron charge spatial distribution

in a CuO plane. Electron density modulation results in additional inhomogeneous

broadening of the Cu and oxygen NMR quadrupole satellites at T < TCDW . This

approach of measuring charge distribution in a crystal is analogous to zero-field

nuclear quadrupole resonance technique (NQR). NQR probes electric field gradi-

ent at the Cu/O nucleus site created by surrounding electrons. Since NMR/NQR

measurements do not provide information about the spatial periodicity of the CDW

modulation, additional evidences (e.g. from RIXS/XRD) were required to identify

charge ordered phase in cuprates.

1.4 Impurities at quantum criticality and emerg-

ing orders

A particularly elegant strategy to study strongly correlated materials is to introduce

a small concentrations of well-characterized impurities in a pure sample. Impurities

can induce charge and spin textures that can be detected experimentally using NMR,

elastic/inelastic neutron scattering, STM and etc. [49]. Such experiments provide a

valuable information about the properties of the ground state / low energy excita-

tions of the system. Experimental studies of the effects of nonmagnetic impurities

have been performed in quasi-1D spin-gapped insulators [50, 51], cuprate high-Tc

superconductors [52, 53, 54, 55] and 3D spin-dimerized magnets [56, 57, 58]. These

experiments have motivated theoretical studies of impurity-induced effects in anti-

ferromagnets [59, 60, 61, 62], superconductors [63], as well as in quantum magnets

near QCP [64, 65, 66].

Impurities can be introduced in a system by a chemical substitution. For exam-

ple, substituting in a cuprate compound YBCO magnetic Cu ion with a nonmagnetic

ion Zn2+ or Mg2+ creates a vacancy with uncompensated spin 1/2 (see Fig. 1.4).
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Another example is a spin-dimerized compound TlCuCl3: a substitution of Cu ion

to Zn ion breaks a singlet dimer bond; the remaining unpaired Cu spin acts as an

effective spin 1/2 impurity. The missing magnetic moment disturbs the local spin

alignment of the neighbouring spins and creates a magnetization cloud around the

impurity site, see Fig. 1.4. The radius of the cloud is determined by the spin correla-

tion length ξ. The spatial distribution of magnetization in the cloud can be probed

e.g. by analysing NMR response of Cu nuclei. In particular, magnetization cloud

induced by an impurity leads to inhomogeneous NMR line broadening and results

in an additional spatially modulated Knight shift [54, 64].

An interplay between disorder and quantum criticality is a particularly interest-

ing problem. The physics of quantum critical systems in the presence of impuri-

ties/disorder is quite complex and there is a little understanding/progress in this

area. Experimental studies in 2D and 3D systems show that nonmagnetic impurities

can significantly influence properties of quantum magnets near QCP: impurities can

induce order in the macroscopic volume of the crystal (“order from disorder” mech-

anism) and shift the position of a QCP [56, 57, 58]. In the vicinity of a QCP the role

of impurities becomes especially important: the characteristic radius of the magne-

tization cloud around impurities ξ ∼ 1/∆ → ∞ diverges at QCP (∆ is the spin

excitation gap), as well as various response functions (e.g. magnetic susceptibility)

exhibit unusual power-law behaviour characterized by anomalous exponents [64]. In

the regime of a sufficiently large density of impurities (but below the percolation

limit) a transition into a Mott/Bose glass phase can occur [67, 68, 88, 70].

Impurity’s spin/charge can become screened by the surrounding electrons. The

classical example is a Kondo screening of a magnetic moment of an impurity by

a Fermi sea of electrons [71]. In the present thesis we will be interested in the

screening problem of an impurity’s spin by bosonic (magnon) excitations. This

class of problems are called Bose-Kondo problems [3]. The minimal coupling model

of an impurity with a vector bosonic bath reads

Lint ∼ φα(r, t)Sαimp(r, t), α = x, y, z. (1.8)

We assume that the only dynamical degree of freedom of the impurity is a Berry
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Figure 1.6: Staggered moments (arrows) of Cu ions around a single nonmagnetic
Zn impurity in a spin-dimer AFM (e.g. SrCu2O3 [51] or TlCuCl3). The staggered
magnetizaion is induced on a characteristic length ξ ∼ 1/∆ (∆ is a spin excitation
gap). The size of each arrow represents the value of the magnetic moment.

phase, associated with the orientation of the effective spin Simp = 1/2 of the impu-

rity. It is worth emphasizing that Lint is to be viewed as a long-wavelength theory

and requires some interpretation when applied to lattice models. In particular when

a nonmagnetic impurity replaces a spin-1/2 ion, there is clearly no spin degree of

freedom directly at the impurity site. In this case by Simp we assume the orientation

of the spin at the Cu ions very close to the vacancy site. The spin Simp measures

the instantaneous orientation of the collective spin polarization which is centered on

a nonmagnetic Zn site, and the Berry phase is the net uncompensated contribution

obtained by summing over the Berry phases of all the spins on the neighboring Cu

ions.

1.5 Topological defects in magnets: skyrmions and

merons

Topological defects play a profound role in cosmology, particle physics and condensed

matter physics. Examples of such defects include dislocations, disclinations, domain

walls, cosmic strings, vortices, skyrmions and merons. In the present section we

discuss topological defects (skyrmions and merons) in magnetic systems.
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Figure 1.7: A skyrmion as a mapping of 2D plane onto unit sphere R2 → S2 (from
[73]). The topological charge Q = 1 represents a number of wraps of the spin vector
around the sphere.

1.5.1 Skyrmions

A skyrmion is a hedgehog-like vector soliton with a nontrivial topological charge.

Skyrmion was originally proposed by T. Skyrme [72] in the context of nuclear physics

as a model describing baryons and mesons. Skyrmions and skyrmion phases have

been predicted and realized in the context of condensed matter in Quantum Hall

states of a two-dimensional electron gas [75], spinor Bose-Einstein condensates [76],

chiral liquid crystals [77] and chiral magnets [78, 79, 80, 84].

A skyrmion in two spatial dimensions is a noncomplanar configuration of a vector

field (e.g. spin, magnetic moment) n(x, y) that wraps around a sphere an integer

number of times. Skyrmion corresponds to a mapping R2 → S2. Here R2 refers to

{x, y} plane and S2 refers to a unit 2-sphere (n2 = 1), see Fig. 1.7. The mapping

S2 → S2 between a point on the 2-sphere and an orientation of vector n can be

classified by an integer Q referred as a topological number or a topological charge.

Topological charge Q has a meaning of a degree of the mapping S2 → S2 and

represents number of times the unit vector n spans around the unit sphere [81]:

Q =
1

4π

∫
dΩ =

1

4π

∫
d2r n · [∂xn× ∂yn]. (1.9)

The density of topological charge ρQ(x, y) = 1
4π
n · [∂xn× ∂yn] is a Jacobian of the

mapping R2 → S2. Note, that for any continuous transformation of a vector field the

skyrmion topological charge remains invariant. This results in so-called topological

protection of skyrmions.
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The skyrmion field configuration in spherical coordinates can be represented as

n(r) = (sin Θ(r) cos Φ(r), sin Θ(r) cos Φ(r), cos Θ(r)), (1.10)

where Θ(r) and Φ(r) are the spherical angles that parametrize a point on S2 sphere.

Let us define the center of a skyrmion as r = 0 and introduce the polar coordinates

{rφ} on the 2D plane. The boundary conditions corresponding to a skyrmion solu-

tion can be fixed as follows:

Θ(r)
∣∣
r=0

= π, Θ
∣∣
r→∞ = 0, (1.11)

i.e. the spin points down at the center of the skyrmion and point up at the infinity.

Considering for simplicity a skyrmion with azimuthal symmetry we can write Φ(r) =

Φ(φ). Due to the periodicity condition the only possible form of the function Φ

reads Φ(φ) = Nφ+ χ, where N is integer and χ ∈ [0, 2π] is an arbitrary angle. The

parameter N is called “vorticity” and the angle χ is called “helicity”. For example,

for the skyrmion in Fig. 1.7 the vorticity and helicity are N = 1, χ = π/2. As the

result, the topological charge of the skyrmion reads

Q =
1

4π

∫
d cos Θ(r)dΦ(r) =

1

4π
[cos Θ(r)]

∣∣∣∞
0

[Φ(φ)]
∣∣∣2π
0

= N, (1.12)

so the topological charge equals to the vorticity.

Skyrmions are topological solutions of corresponding nonlinear field equations.

The simplest theoretical model supporting skyrmion solutions is a classical O(3)

nonlinear sigma model (NLσ), that describes 2D Heisenberg ferromagnet at zero

temperature [82]. The elastic energy of the spin field in NLσ model reads

E =
ρs
2

∫
d2r (∂inµ)2, i = x, y, µ = 1, 2, 3, (1.13)

where ρs > 0 is a spin stiffness coefficient. The lowest energy (E = 0) field configu-

ration for the model (1.13) is a uniform ferromagnetic (FM) state, e.g. n = e3. The

FM ground state is topologically trivial, since the topological charge Q = 0, see Eq.
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(1.9). The expression (1.13) can be equivalently preseneted in the form [83]

E = 4πρs|Q|+
ρs
4

∫
d2r [∂in± εij(n× ∂jn)]2 ≥ 4πρs|Q|. (1.14)

The energy (1.14) is bounded from below in the sector with a fixed topological charge

Q. The minimum E = 4πρs|Q| of the energy (1.14) is achieved when the expression

in brackets [. . .] is equal to zero. The positive (negative) sign in (1.14) correspond to

a skyrmion, Q > 0 (antiskyrmion, Q < 0) solution. The equation [. . .] = 0 for 3 spin

components nµ can be equivalently represented as the Cauchy-Riemann conditions

for a complex valued function w(z) defined via stereographic projection mapping

w(z) =
n1 + in2

1 + n3

, z = x+ iy. (1.15)

A solution for the Cauchy-Riemann equations is a meromorphic function w(z) of

the complex argument z. The skyrmion solution with a topological charge Q < 0

reads [83]

w(z) = α

|Q|∏
k=1

1

z − βk
. (1.16)

An elementary skyrmion with Q = −1 is parametrized by two complex parameters

(α, β). The position of the skyrmion center is defined as β = β′+iβ′′ on the complex

plane z. Parameter α = |α|e−iχ determines the radius of the skyrmion R = |α| and

the helicity angle χ. The solution (1.16), (1.15) corresponds to a minimum energy

configuration of O(3) NLσ model (1.13) in the sector with topological charge Q and

is called Belavin-Polyakov skyrmion. Note that the energy of a Belavin-Polyakov

skyrmion

Esk = 4πρs|Q| (1.17)

does not depend on the skyrmion radius R due to the conformal invariance of the

model (1.13). The skyrmion energy also does not depend on helicity χ due to

unbroken O(2) ⊂ O(3) symmetry of global inplane spin rotations.

Belavin-Polyakov skyrmion is a simple mathematical model for topological solu-

tions in a 2D ferromagnet. However, experimental realization of a Belavin-Polyakov

skyrmion in real materials is somewhat problematic due to a few reasons: (i) Belavin-
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Polyakov skyrmions exist only as excitations and have a positive energy Esk > 0

compared to the energy of the uniform ferromagnetic state (ii) the conformal in-

variance of NLσ model breaks down by subleading spin-spin interaction terms, e.g.

next-neighbour Heisenberg coupling.

Skyrmions in magnetic materials can exist not only as isolated topological de-

fects, but they can condense in a new ground state: skyrmion lattice/skyrmion

crystal (SkX). SkX phase has been theoretically predicted ∼ 30 years ago by Bog-

danov and Yablonsky in Dzyaloshinskii-Morya (DM) magnets with broken inversion

symmetry [78]. The energy of DM magnet in the continuous limit reads

EDM =

∫
d3r
(ρs

2
(∇S)2 +DS · [∇× S]−B · S

)
, (1.18)

where D is a DM constant, B is the external magnetic field (hereafter we put

gµB = 1). In a zero magnetic field the ground state of DM magnet is a spin spiral

with incommensurate wave vector Q = D/ρs . At sufficiently large magnetic fields B

the ground state is a collinear FM with the magnetization vector oriented along B.

In the intermediate range of magnetic fields Bc1 < B < Bc2 and a finite temperature

range the SkX state forms. The SkX is analogous to the mixed phase in type-II

superconductors - system of Abrikosov vortices - which exist in intermediate range

of magnetic fields between lower and upper critical fields [2]. Skyrmions in SKX

state are arranged in a triangular superlattice structure (analogous to triangluar

lattice of Abrikosov vortexes), the skyrmions repel each other on short distances.

The typical B−T phase diagram of a DM magnet is shown in Fig. 1.8c and contains

FM, spiral and SkX phases.

SkX state was observed for the first time in DM material MnSi in 2009 [80] via

neutron scattering measurements, see Fig. 1.8a,b, (the material was theoretically

proposed in Ref. [79]). Shortly after the discovery SkX was found in a number of DM

magnets (3D crystals and 2D films), including Fe1−xCoxSi [84, 85], FeGe [86, 88],

Cu2OSeO3 [89]. The SkX has been recently detected on the interfaces of transitional-

metal-based magnetic films [93], where skyrmions are stabilized by interfacial DM

interactions. The examples include bilayer interfaces Pd/Fe on Ir(111) substrate

[95] and interfaces in multilayer thin film stacks [90].
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(a) (b)

(c) (d) (e)

Figure 1.8: (a,b) First experimental obseravation of SkX in DM magnets (MnSi
crystal) via elastic neutron scattering [80]. (a) Spin structure factor in momentum
space q = (qx, qy). The six peaks in the structure factor indicate triangular lattice
SkX state. (b) Reconstructed real space spin configuration. (c,d,e) Real space ob-
servation of SkX state via Lorentz electron transmission spectroscopy in Fe0.5Co0.5Si
film [84]. (c) B − T phase diagram, showing ferromagnetic (FM), spiral/helicoidal
(H) phase, skyrmion crystal (SkX) states. (d,e) real space spin configurations: (d)
spiral state, (e) SkX state (color indicates direction/magnitude of the inplane spin
component).

Magnetic skyrmion has a number of unique properties. Skyrmions are stable with

respect to perturbations, since a finite amount of energy is needed to change the

topological charge and destroy the skyrmion. Skyrmion phases in DM thin films and

multilayer materials are robust up to room temperatures [86, 88, 90, 91, 92]. Moving

skyrmions are subjected to an effective Magnus force, that curves the trajectory of

the skyrmion (“skyrmion Hall effect”) [103, 104]. In the presence of a skyrmion a

spin polarized electron current is deflected that results in a “topological Hall effect”

[101, 102]. Besides multi-skyrmion SkX phases, single isolated skyrmions have been

proven to be stable in FM phase of chiral magnets [96, 98, 99, 97]. Individual

skyrmions can be created, manipulated, processed, readout and destroyed [106, 107,

35



109, 110, 108]. These features make skyrmions attractive for developing low power

consumption skyrmion-based magnetic memory and data processing devices.

The search of new skyrmionic materials is an active area in condensed matter

physics. In spite of significant progress in the experimental and theoretical frontiers,

magnetic skyrmions have been found only in a handful of materials. These materials

are DM magnets with noncentrosymmetric B20 cubic crystal structure and the in-

terfaces of transitional-metal-based magnetic films. The key mechanism that drives

formation of skyrmions in these materials is DM interaction. For future practical

applications it is important to extend number of skyrmionic materials and find new

physical mechanisms stabilizing skyrmions. Frustrated magnets can be considered

as a new skyrmionic material candidate. The competing spin-spin interactions in

frustrated magnets can favour noncollinear ground states, e.g. spin spiral state.

The idea to search for skyrmion states in frustrated magnets was first proposed in

Ref. [111]. Using classical Monte Carlo simulations it was shown that a SKX phase

can be stabilized in a frustrated magnet - 2D Heisenberg ferromagnet on triangular

lattice with next nearest neighbour AFM couplings, see Fig. 1.9a. SkX state can

be equivalently considered as a superposition of three spiral states with the wave

vectors (q1, q2, q3) that add up to zero, see Fig. 1.8a. This is why SKX is also

called a “triple q-state”. The triple-q phase persists in finite range of temperatures

and magnetic fields: the minimal critical temperature and magnetic field are non-

zero, see phase diagram in Fig. 1.9b. The formation of the SkX state is driven by

thermal fluctuations, which lead to softening of long-wavelength spin excitations at

finite temperatures and result in energetic stability of a skyrmion phase.

SkX and other exotic spiral phases can exist in frustrated magnets even at zero

temperature, however the presence of a uniaxial spin anysotropy is required [112].

For example, let us consider a model system of a frustrated ferromagnet with AFM

next-neighbouring Heisenberg exchange couplings. The energy of the frustrated

magnet with uniaxial spin anysotropy reads

E = −J1

∑
〈i,j〉

Si ·Sj+J2

∑
〈〈i,j〉〉

Si ·Sj+J3

∑
〈〈〈i,j〉〉〉

Si ·Sj−
K

2

∑
i

(Szi )2−B
∑
i

Szi . (1.19)

Here J1,2,3 are the Heisenberg exchange couplings, where J1 is ferromagnetic and
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(a) (b)

(c)

Figure 1.9: (a) Heisenberg model on a triangular lattice. (b) B−T phase diagram
for a 2D classical frustrated Heizenberg model on a triangular lattice (J2 = K = 0)
[111]. The triple-q region on the diagram corresponds to the SkX phase. (c) Zero
temperature B − K phase diagram of a frustrated magnet on a triangular lattice
(J1−J2−J3−K model) [112]. The skyrmion crystal phase is denoted as SkX. Here
K is a single ion spin anisotropy: K > 0 corresponds to easy axis anisotropy, K < 0
corresponds to an easy plane anisotropy (J1 = 1).

J2,3 are antiferromagnetic couplings (J1,2,3 > 0). The coefficient K characterizes the

single ion spin anisotropy and originates from spin-orbit coupling. Positive (nega-

tive) K corresponds to the case of easy-axis (easy-plane) spin anisotropy. Notation

〈i, j〉, 〈〈i, j〉〉 and 〈〈〈i, j〉〉〉 in Eq. (1.19) denotes summation over the nearest, next

nearest and next-next nearest neighbour sites. The single ion anisotropy K plays

an important role in stabilizing nontrivial spiral and SkX phases, see phase diagram

in Fig. 1.9c.

Skyrmions in frustrated magnets have a number of peculiar properties that make

them different from skyrmions in DM magnets [74, 112, 113]. (i) The typical size of

a skyrmion in frustrated magnets is expected to be a few lattice constants, since the

37



competing Heisenberg couplings Ji are usually comparable to each other. The size of

DM skyrmions on the other hand is larger by at least one order of magnitude because

of the smallness of DM constant D. (ii) The energy of skyrmions in frustrated

magnets is degenerate with respect to the helicity of a skyrmion and therefore χ is

an additional degree of freedom of the skyrmions. On the contrary, the helicity of

skyrmions is fixed in DM magnets, χ = ±π/2, where the sign of χ is determined by

the sign ofD. (iii) Skyrmion-skyrmion interaction for DM skyrmions is repulsive. On

the other hand in frustrated magnets the skyrmion-skyrmion interaction potential

is a sign-changing oscillating function of the distance r and has regions of attraction

and repulsion [112, 113].

1.5.2 Merons

A skyrmion with a unit topological charge can formally be represented as a bound

state of two merons - “half-skyrmions” with a topological charge Q = 1/2 per

meron [122]. A meron is a vortex-like vector field configuration, that wraps around

a half of the unit sphere, see Fig. 1.10. Due to their fractional topological charge

merons can exist only in pairs and they are tightly confined within the radius of

a skyrmion. The concept of merons originates in QCD, where merons have been

found as topological solutions of Yang-Mills equations [120] and were proposed to

describe quark confinement in hadrons [121, 122].

Figure 1.10: A “half-skyrmion” with a topological charge Q = 1/2 - meron.

Merons were predicted to have many manifestations in condensed matter sys-

tems, such as meron phases in quantum Hall systems [123], bilayer graphene [124],

Bose-Einstein condensates [126] and chiral magnets[125, 127]. Single isolated merons
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have been experimentally observed in the system of coupled magnetic nanodisks

[128, 129, 130], where the merons are stabilized by the boundary of the disks.

Let us consider merons as isolated compact topological defects in 2D systems.

The boundary conditions for a single meron can be chosen as follows Sz(r = 0) = 1

and S(r →∞)→ er, see Fig. 1.10. The energy of an isolated meron logarithmically

diverges with the system size. In the O(3) NLσ model (1.13) the energy of a single

meron is E1mer ∼ 2πρs ln(L/a), where L is the characteristic system size and a is

the radius of a meron. Therefore, isolated merons are energetically unfavourable

and merons “prefer” to form pairs.

The density of topological charge for the pair of point-like merons reads

ρQ(r) =
1

2
δ(2)(r − r1) +

1

2
δ(2)(r − r1). (1.20)

The total energy of a meron pair reads [122]

E2mer ∼ 4πρs + 2πρs ln

(
R
√
a1a2

)
, (1.21)

where R = |r1−r2| is the distance between the centers of merons located at r = r1,2

and a1,2 are the radii of the two merons. The formula (1.21) is valid only in the

limit of well separated merons: R � a1,2. In other words, it is valid in the limit

of point-like merons a1,2 → 0, whereas the distance between the merons is kept

fixed. The logarithmic interaction potential between two merons (1.21) at R� a1,2

has the form of Coulomb potential energy between point-like charges in two spatial

dimensions. The constant term 4πρs in r.h.s. of Eq. (1.21) corresponds to energy

of Q = 1 Belavin-Polyakov skyrmion, see (1.17). The interaction potential in Eq.

(1.21) indefinitely grows with the meron-meron separation distance R and has a

meaning of meron confinement potential.

1.6 Organisation of the Thesis

In Chapter 2 we consider a problem of fermion-fermion pairing in the vicinity of a

magnetic QCP, motivated by the recent discovery of a magnetic QCP in hole-doped
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cuprates. We address this problem proposing a toy model of two immobile fermions

interacting by exchanging critical magnons. This model contains all the essential

physics of the problem: a low number of fermions strongly interacting with quantum

critical spin excitations. We consider the limit of low number of fermions (two-

fermion problem!) to emphasise the physics of a small Fermi surface in underdoped

cuprates. In order to make our calculations specific, we consider interaction of two

holes embedded into a bilayer antiferromagnet, which is tuned to a QCP. We report

a new mechanism of fermion pairing by quantum critical fluctuations, due to multi-

magnon exchange processes, the attraction mechanism is similar to a Casimir effect.

In order to calculate the Casimir interaction energy we developed a new method,

that we call “Lamb-shift” technique. The Casimir interaction provides a long-range

power law attraction between fermions. The Casimir pairing mechanism at QCP is

generic.

In Chapter 3 we consider a magnetic screening of an impurity in a quantum criti-

cal 3D antiferromagnet. The screening problem is conceptually similar to the Kondo

effect. The impurity’s magnetic moment in AFM is screened by a cloud of magnon

excitations (Bose-Kondo problem), in contrast to a screening by mobile electrons in

case of the usual Kondo effect. We explicitly calculate the spatial distribution of the

nonlocal magnetization in the magnon cloud. The delocalization of the impurity’s

magnetic moment at a quantum critical point leads to a spatial separation of the

spin and the charge of impurity. This phenomenon can be interpreted as a spin-

charge separation in a 3D system. We show that the induced by impurities Neel

order decays only as a power law. Our results show that a quite small concentration

of impurities can significantly influence quantum critical properties of a 3D AFM.

In Chapter 4 we perform a phenomenological analysis of various experimental

data on CDW phase in cuprates. Analysing nuclear magnetic resonance data we

extract an amplitude of the charge density wave in YBCO cuprate. From the analysis

of NMR lineshapes we rule out checkerboard pattern of the CDW and conclude that

the CDW has stripe-like spatial structure. Relying on the copper and oxygen NMR

data we find the amplitudes of s, s′ and d-wave components of intra unit cell charge

distribution in the CDW. Moreover, analysing the phonon softening data in YBCO,

we rule out a wide class of theoretical microscopic models of the CDW in cuprates.
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In Chapter 5 we analyse isolated topological defects: skyrmions and merons in

a nearly critical two-dimensional frustrated magnet. The critical point separates

collinear and spin spiral phases, we disregard quantum fluctuations and consider

a classical model of a frustrated magnet. We show that in frustrated magnets

metastable topological defects can exist in the absence of external magnetic field.

We found that skyrmions in frustrated magnets can attract each other and form

exotic configurations with a large topological charge - skyrmion/meron rings. We

demonstrate that in the vicinity of the critical point the interaction potential be-

tween merons becomes finite at large distances and merons become separable (“de-

confined”). The supplementary calculations/details are presented in Appendix 5.7.
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Chapter 2

Casimir pairing between fermions

at a quantum critical point

In Chapter 2 we consider a novel mechanism for superconducting pairing of fermions

near a magnetic quantum critical point. We demonstrate that in two dimensional

systems a magnetic quantum criticality results in a strong long range attraction be-

tween the fermions. The mechanism of the enhanced attraction is similar to the

Casimir effect and corresponds to multi-magnon exchange processes between the

fermions. The results presented in the Chapter 2 are quite generic for a wide class

of quantum critical systems. The problem is originally motivated by recent establish-

ment of magnetic QCP in hole doped cuprates under the superconducting dome at

doping of about 10%. We suggest the mechanism of magnetic critical enhancement

of pairing in underdoped cuprates.

2.1 Introduction

In the present Chapter we study interaction between fermions mediated by magnetic

fluctuations in a vicinity of a magnetic quantum critical point. To address this

generic problem we consider a specific model of two holes injected into the bilayer

antiferromagnet. The results presented below demonstrate that critical magnetic

fluctuations lead to the long range Coulomb-like attraction between the holes.

Our interest to this problem is motivated by cuprates. Lying at the center of
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the debate of high-Tc superconductivity is whether it originates from a Fermi liquid

or from a Mott insulator. Recent experimental data including Angle-Resolved Pho-

toemission Spectroscopy (ARPES) support Mott insulator scenario in underdoped

cuprates and show transition from a small to large Fermi surface in the hole dop-

ing range 0.1 < x < 0.15, see Refs. [131, 132, 133] Magnetic quantum oscillations

(MQO) in underdoped YBa2Cu3O6+y also support the small pocket scenario [134],

in contrast to the large Fermi surface observed on the overdoped side [135]. Besides

that an existence of hole pockets is consistent with the picture of dilute gas of holes

dressed by spin fluctuations based on doping a Mott insulator [136].

It is widely believed that superconducting pairing in cuprates is driven by a

magnetic mechanism. The most common approach is based on the spin-fermion

model in the frame of normal Fermi liquid picture (large Fermi surface). Within

this approach electrons interact via exchange of an antiferromagnetic (AF) fluctu-

ation (paramagnon). [137] The lightly doped AF Mott insulator approach, instead,

necessarily implies small Fermi surface. In this case holes interact/pair via exchange

of the Goldstone magnon. [138] Due to the strong on-site Hubbard repulsion both

approaches result in the d-wave pairing of fermions.

Optimally doped and overdoped cuprates do not have any static magnetic or-

der. On the other hand, the underdoped cuprates possess a static incommensurate

magnetic order at zero temperature. A magnetic QCP separating these two regions

is located at the doping x ≈ 0.1 (see Chapter 1, Section 1.3.1).

Magnetic criticality can significantly influence superconducting pairing. This

idea has been recently considered by Wang and Chubukov [139] in a context of

electron doped cuprates. There are also some earlier works referenced in Ref. [140].

However, to the best of our knowledge all the previous works imply a normal liquid

with large Fermi surface. This might be a reconstructed Fermi surface which emu-

lates small hole pockets [141], but still in the essence this is a weak coupling normal

Fermi liquid like approach. A large Fermi surface to a significant extent reduces

importance of the magnetic criticality for the pairing.

In this work we consider two holes injected in the 2D “rigid” Mott insulator,

so in our approach implies the small Fermi surface. Using a somewhat intuitive

language one can say that there are few holes in this regime and many more virtual
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magnons. In this case influence of the magnetic criticality on the coupling between

two fermions is the most dramatic and the Casimir bag physics can fully manifest

itself. As the Mott insulator host we use the bilayer antiferromagnet with magnetic

fluctuations driven by the interlayer coupling. We consider the bilayer model for the

sake of performing a controlled calculation. However, we believe that conceptually

our conclusions are equally applicable to the single-layer and multi-layer cuprates.

The model presented here has only a commensurate magnetic ordering, so we put

aside the magnetic incommensurability in underdoped cuprates.

The model under consideration demonstrates a spin-charge separation at the

QCP [142]. The term spin-charge separation in this context means a delocalization

of the hole spin due to a dressing by a divergent magnon cloud. The effect of spin-

charge separation points out to the nontriviality of the pairing problem. We are not

aware of any other models of fermion pairing that incorporate physics of spin-charge

separation.

In order to probe the interaction between two fermions we consider spin fluctu-

ations in the system, keeping the fermions to be immobile and spatially localized,

just as magnetic impurities. In the very end of the Chapter we argue that mobility

of fermions does not influence our conclusions, at least as soon as fermion hopping

amplitude is sufficiently small. Our calculations show that the single magnon ex-

change becomes irrelevant close to the QCP. Instead, we obtain strong inter-fermion

attraction in the singlet and triplet spin channels due to the Casimir effect [143].

Each of the fermions (holes) builds up a “bag” of quantum magnetic fluctuations.

The fermions attract each other, sharing a common bag and reducing the energy of

the magnetic fluctuations inside of the bag. A “spin-bag” mechanism of attraction in

the antiferromagnetic Neel phase was suggested by Schrieffer, Wen, and Zhang [144]

in the context of high-Tc superconductivity. Another mechanism of Casimir mag-

netic attraction was proposed by Pryadko, Kivelson, Hone [145], but this suggestion

is more a “van der Waals magnetic force” than a bag. Our model/mechanism is

significantly different from previous suggestions, it is a real bag significantly based

on the magnetic criticality. To make the semantics more clear we underline the

following points: (i) in the conventional single magnon exchange mechanism there

is one magnon per two fermions, (ii) in the van der Waals like Casimir mechanism
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there are two magnons per two fermions, (iii) In the bag mechanism there are very

many magnons per two fermions. It is worth noting that the spin bag model has

conceptual similarity to QCD bag models for nucleon binding such as MIT [146] and

chiral bags [147] that have being extensively studied from 1970’s till now.

The structure of the Chapter is following. In the Section 5.2 we introduce bilayer

J − J⊥ antiferromagnet, which is simple but instructive model and contains all the

essential physics of a magnetic criticality. In Section 2.2.1 we characterize magnetic

quantum critical point driven by interlayer coupling J⊥/J and describe magnon

excitations for undoped AFM in the disordered phase in the frame of a spin-bond

mean field theory. Next, in Section 2.2.2 we move to the hole-doped J − J⊥ model

and show how holes interact with magnons. In the Section 2.3, which is the main

content of the Chapter, we consider a hole-hole pairing problem at the QCP. Next,

we map the original problem defined on the bilayer lattice to a generic quantum field

theory model in 2D. In the same Section we show that pairing can not be described

in terms of one-magnon exchange. In Section 2.3.1 we develop an effective theory for

Casimir interaction of the fermions, considering a double-fermion “atom” which can

be either in a singlet or triplet state. In Section 2.3.2 we present results of solution to

Dyson’s equations for the singlet and triplet Green’s functions and finally show how

the binding energy in the both spin channels depends on the inter-fermion distance

r. Finally, we draw our conclusions in Section 2.4.

2.2 Model

Our model system is J − J⊥ square lattice bilayer Heisenberg antiferromagnet at

zero temperature, where magnetic fluctuations are driven by interlayer coupling J⊥

(see Fig. 2.1). The Hamiltonian of the undoped host AF reads

HJ,J⊥ = J
∑
〈i,j〉

(S
(1)
i · S

(1)
j + S

(2)
i · S

(2)
j ) +

J⊥
∑
i

S
(1)
i · S

(2)
i , (2.1)
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Figure 2.1: Bilayer J−J⊥ antiferromagnet model. Two black dotes on the top layer
represent holes.

The superscripts (1), (2) in Eq. (2.1) indicate the layers, 〈i, j〉 denotes summation

over the nearest neighbour sites. Here S
(1)
i = 1

2
c†iµ,1σµνciν,1 is a spin of an electron

at site i on the top plane and c†iσ,1/ciσ,1 is a creation/annihilation operator of an

electron with a spin σ =↑, ↓ at site i, σµν are Pauli matrices. The Hamiltonian

describes the antiferromagnetic coupling in the each layer as well as between the

two layers. The Hamiltonian HJ,J⊥ preserves global O(3) invariance with respect

to rotations of spins. It is known that without holes (half-filling) the model has an

O(3) magnetic QCP at J⊥/J = 2.525 (see Refs. [148, 149, 150, 151]) separating

the AF ordered and the magnetically disordered phase of spin dimers. Note that

since we consider zero temperature case, the magnetic ordering in the AF phase

is consistent with the Mermin-Wagner theorem. We dope the first layer with two

holes. For simplicity we set hopping integrals equal to zero, therefore the holes are

immobile. The holes interact with each other via magnetic fluctuations of the spins,

i.e. exchanging by magnons.

In subsections 2.2.1 and 2.2.2 of the current section we will briefly present a

formalism, which describes magnon excitations and a hole-magnon interaction on

the basis of the bilayer model. For more detailed explanations see [142]; a reader

which is not interested in these technical details can go directly to the Section 2.3.

2.2.1 Magnons at QCP

Magnetic excitations in the magnetically disordered phase are magnons, which are

also in literature called triplons. In the present Chapter we will use terms magnons

and triplons as synonyms. To describe the magnons we employ the spin-bond op-
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erator mean field technique. This approach has been previously applied to quan-

tum disordered systems such as bilayer antiferromagnets, spin chains, spin ladders,

Kondo insulators etc. [155, 156, 157, 152, 153, 154]. It is known [153, 154] that this

simple technique gives the position of the QCP at (J⊥/J)c ≈ 2.31, which is close

to the exact value (J⊥/J)c = 2.525 known from Quantum Monte Carlo calculations

[148, 149], series expansions [150], and involved analytical calculations with the use

of the Brueckner technique [151]. The spin-bond technique being much simpler than

the Brueckner technique has sufficient accuracy for our purposes.

The bond-operator representation describes the system in a base of pairs of

coupled spins on a rung, which can either be in a singlet or triplet (triplon) state.

So, we define the singlet s†i and triplet (t†ix, t
†
iy, t

†
iz) operators that create a state at

site i with spin zero and spin one, which is polarized along one of the axes (x, y, z).

The four types of bosons obey the bosonic commutation relations. To restrict the

physical states to either singlet or triplet, the above operators are subjected to the

constraint

s†isi +
∑
α

t†iαtiα = 1. (2.2)

In terms of these bosons, the spin operators in each layer S
(1)
i and S

(2)
i can be

expressed as

S
(1,2)
iα =

1

2
(±s†i tiα ± t

†
iαsi − iεαβγt

†
iβtiγ), (2.3)

see Ref. [158]. Substituting the bond-operator representation of spins defined in Eq.

(2.3) into the HJ,J⊥ in Eq. (2.1) we obtain
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HJ,J⊥ = H1 +H2 +H3 +H4,

H1 = J⊥
∑
i

(
−3

4
s†isi +

1

4
t†iαtiα

)
,

H2 =
J

2

∑
〈i,j〉

(s†is
†
jtiαtjα + s†isjtiαt

†
jα + h.c.),

H3 =
J

2

∑
〈i,j〉

iεαβγ(t
†
jαt
†
iβtiγsj + h.c.),

H4 =
J

2

∑
〈i,j〉

(t†iαt
†
jβtiβtjα − t

†
iαt
†
jαtiβtjβ).

(2.4)

The Hamiltonian (2.4) contains quadratic, cubic and quartic terms in magnon op-

erators t. The most important for us are the quadratic terms, because they provide

quantum criticality. The only effect due to the nonlinear terms H3 and H4 is a renor-

malization of parameters near the QCP, such as the position of the QCP, magnon

velocity, magnon gap and etc. This does not affect physics at the QCP, and therefore

we will neglect these terms in further considerations.

The next step for treating the Hamiltonian (2.4) is to account for the hard-core

constraint (2.2). It could be done by introducing an infinite on-site repulsion of

triplons; however, this technique is quite involved. Another, more simple, way is to

employ a mean-field approach, accounting for the constraint (2.2) via a Lagrange

multiplier µ in the Hamiltonian

HJ,J⊥ → HJ,J⊥ − µ
∑
i

(s†isi + t†iαtiα − 1). (2.5)

Further analysis is straightforward. We replace singlet operators by numbers, 〈s†i〉 =

〈si〉 = s̄ (Bose-Einstein condensation of spin singlets); and diagonalize the quadratic

in t Hamiltonian by performing the usual Fourier and Bogoliubov transformations

tiα =

√
1

N

∑
q

eiqri
(
uqbqα + vqb

†
−qα

)
. (2.6)
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Here N is the number of spin dimers in the lattice; the diagonalized Hamiltonian

reads

Hm(µ, s̄) = E0(µ, s̄) +
∑
q

ωqb
†
qαbqα, (2.7)

where ωq =
√
A2
q − 4B2

q and coefficients Aq = J⊥
4
− µ + 2Js̄2γq, Bq = Js̄2γq. Here

we define

γq =
1

2
(cos(qx) + cos(qy)) . (2.8)

The lattice spacing is set to unity. The ground state energy

E0(µ, s̄) = N

(
− 3J⊥s

2

4
− µs̄2 + µ

)
+

3

2

∑
q

(ωq − Aq) (2.9)

just shifts energy scale, and therefore is irrelevant for our purposes. The Bogoliubov

coefficients uq and vq are given by

uq =

√
Aq
2ωq

+
1

2
, vq = −sign(Bq)

√
Aq
2ωq
− 1

2
. (2.10)

The parameters µ and s̄ are determined by the saddle point equations: ∂E0(µ, s̄)/∂µ =

∂E0(µ, s̄)/∂s̄ = 0. Solution to these equations gives position of the QCP at J⊥/J =

2.31 and values of “chemical potential” µ = −2.706 and singlet density s̄ = 0.906.

We see that even at the QCP s̄ is close to unity, which again justifies a smallness of

the nonlinear terms H3 and H4 in the Hamiltonian.

The dispersion of magnons is

ωk =
√
c2(k−Q)2 + ∆2, Q = (π, π), (2.11)

in the vicinity of the AFM wave-vector Q, here ∆ is the magnon gap and c is the

velocity of magnons c = 2Js̄2 = 1.64J , where the more precise value is c = 1.9J ,

see Ref. [150]. In the AFM ordered phase the magnons are Goldstone bosons and

thus necessarily gapless. On the contrary, in the disordered phase the gap opens up

and the spin-bond approach gives ∆ ∝ (J⊥ − J⊥,c) which is reasonably close to the
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prediction for O(3) universality class systems ∆ ∝ (J⊥ − J⊥,c)ν with critical index

ν = 0.71 (see Ref. [5]). So the spin-bond method provides a sufficiently accurate

description of the QCP.

2.2.2 Hole-magnon interaction

We dope our system with two immobile holes by removing two electrons from the up-

per plane of the bilayer antiferromagnet. Hence we define the hole creation operator

a†iσ with spin projection σ =↑, ↓ by its action on the spin singlet bond |s〉

a†i↑|s〉 = c†i↑,2|0〉, a†i↓|s〉 = c†i↓,2|0〉 , (2.12)

where |0〉 is vacuum. The electron creation/annihilation operator in the upper plane

can be expressed in terms of hole creation/annihilation operators a†iσ/aiσ (see Ref.

[155]), and after substitution in (2.1) it gives following part of the Hamiltonian which

describes hole-magnon interaction

Hhm = −Js̄
2

∑
〈i,j〉

{
(tj + t†j)σi + (ti + t†i )σj

}
−

J

2

∑
〈i,j〉

i(σi[t
†
j × tj] + σj[t

†
i × ti]). (2.13)

Here σi = a†iµσµνaiν . The first line in the Hamiltonian (2.13) corresponds to a hole-

magnon interaction vertex. The terms, describing the hole-double-magnon vertex,

which come from the second line of (2.13) will be neglected below, because they

are irrelevant in the infrared limit, see Section 2.3 for the explanation of this point.

Performing again the standard Fourier and Bogoliubov transformations (2.6) the

Hamiltonian (2.13) can be rewritten as

Hhm ≈
∑
i

σαi
∑
q

gq(bqαe
iqri + b†qαe

−iqri). (2.14)
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= + +

+ . . .

Figure 2.2: Dyson’s equation for single hole Green’s function in Self-Consistent
Born Approximation. Solid and waivy lines correspond to hole and magnon Green’s
functions.

The hole-magnon vertex is equal to

gq = − Js̄√
N
γq(uq + vq). (2.15)

Note, that at the QCP the vertex diverges at q → Q = (π, π), because of the

singularity of Bogoliubov coefficients uq, vq ∝ 1/
√
ωq →∞.

The divergence of gq is crucial for the physics of fermion-magnon coupling at the

QCP. In fact, it results in the phenomenon of a separation of fermion’s spin and

charge [142]. The spin of the hole is delocalized in the power-law cloud of magnons

where the majority of the spin is concentrated at large distances from the impurity’s

site. In this sense is separated from the charge of the hole, localized on the hole’s

site. Later in the Chapter we will show that the infrared divergence of the fermion-

magnon coupling at the QCP results in strong power-law attraction between the

fermions.

The importance of a spin-charge separation for a single-fermion problem at the

QCP could be seen from analysis of analytical structure of the hole Green’s func-

tion. Standard approach in order to calculate one-fermion Green’s function is to

use 1/N expansion for the O(N ) group, where N = 3 is the number of magnon

components. Summation of leading terms in the expansion arises in Self-Consistent

Born Approximation (SCBA), see Fig. 2.2.

Calculations of the hole Green’s function in the disordered phase in SCBA have

been performed in Refs. [64, 65]. The results show that away from the QCP, in

the disordered magnetic phase, a quasiparticle pole in the fermion Green’s function

is separated by ∆ from an incoherent part of the Green’s function. Furthermore,

when approaching to the QCP the Green’s function instead of normal pole has only a

branch cut. This is a consequence of the infrared singularity of the fermion-magnon
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Figure 2.3: Spectral function −1/π Im{G(ε)} of a single immobile hole obtained in
SCBA (see [65]). The green dashed curve corresponds to the QCP (∆ = 0), and the
black solid line corresponds to the magnon gap ∆ = 0.1J . Note that at the QCP
the quasiparticle pole disappears.

coupling constant gq.

A spectral density of the fermion Green’s function (see Fig. 2.3) has an inverse

square root behaviour

G(ε) ∝ 1/
√
ε0 − ε (2.16)

in the vicinity of the singularity point ε0 and the quasiparticle residue is approaching

to zero Z ∝
√

∆ at the QCP. Here

ε0 ≈ −0.97J (2.17)

is the position of the branching point of the Green’s function and it has a meaning

of fermion energy shift due to interaction with magnons (we set the bare energy of

the non-interacting hole to zero).

2.3 Hole-hole interaction, mediated by magnons

Now we are ready to move to the actual problem of a magnon mediated pairing of

fermions and demonstrate new results. Adding up magnon Hamiltonian Hm, Eq.

(2.7) and hole-magnon interaction Hamiltonian Hhm, Eq. (2.14), we arrive to an

effective Hamiltonian for two interacting holes, located at the sites with coordinates
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r1 and r2,

Heff =
∑
q

ωqb
†
qαbqα +

∑
i=1,2

σαi
∑
q

gq(bqαe
iqri + b†qαe

−iqri). (2.18)

The Hamiltonian (2.18) is applicable only if distance between holes r = |r1−r2| > 1,

as long as we put aside direct exchange interaction between the two neighbouring

holes.

The effective model (2.18) can be formulated in terms of a quantum field theory.

In fact, it is equivalent to the problem of two spin 1/2 fermions coupled to a vector

field φ(r), described by O(3)-symmetric theory with a Lagrangian

L =
1

2
(∂tφ)2 − c2

2
(∇φ)2 − ∆2

2
φ2 − λ(φ(r1)σ1 + φ(r2)σ2), (2.19)

where λ is the coupling constant of a fermion spin to a magnon field. We focus only

on the disordered magnetic phase, and therefore assume ∆2 ≥ 0.

We would like to make three comments concerning techniques and approxima-

tions we use in the present work. (i) We use SCBA as the main technical tool.

The approximation is justified by the small parameter 1/N , where N = 3, corre-

sponding to the O(3) symmetry group. Application of this method to the single

impurity problem [65] gives results extremely close to that obtained within more

conventional renormalization group approach [64]. (ii) We neglected the self-action

of magnons, the term ∝ φ4 is dropped in Eq. (2.19). There is no doubt that the

self-action influences the position of the QCP, it also influences the critical index in

the gap dependence, ∆ ∝ (J⊥− J⊥,c)ν . However, as soon as we express our answers

in terms of ∆ the self-action is getting insignificant compared to the noncrossing di-

agrams accounted within SCBA. It can be illustrated by the single impurity Green’s

function (2.16), the noncrossing diagrams dramatically reduce the fermion quasi-

particle residue from Z = 1 to Z ∝ ∆1/2, the anomalous dimension is 1/2. On the

other hand, the magnon self-action only slightly influences the magnon quasiparti-

cle residue, Z = 1 → Z ∝ ∆η, the anomalous dimension is η = 0.033 [5]. (iii) We

neglect the second line in the interaction (2.13). The simplest way to justfy this is

to use the field theory language. In this language the second line has the following
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kinematic form, σ · [φ × ∂tφ]. Because of the time derivative the term is infrared

irrelevant.

Parameters of the Lagrangian (2.19) could be directly expressed via parameters

of the initial lattice Hamiltonian (2.1). As an example, the coupling constant λ in

(2.19) is related to the hole-magnon vertex gq in the effective Hamiltonian (2.18) as

gq = λ/
√

2ωq. Hence, for the Heisenberg bilayer model λ ≈ 2J
√
c. This equivalence

shows, that the problem of fermion pairing at the QCP, we are considering here, is

generic. It has implications far beyond the particular bilayer model.

λΓω=0

λΓω=0

q, ω = 0

√
Z

√
Z

√
Z

√
Z

Figure 2.4: One-magnon exchange diagram that provides fermion-fermion interac-
tion potential V

(1)
int (q). Note that a renormalization factor

√
Z should be referred to

each fermion line. Fermion-magnon vertices also come renormalized λ→ λΓω=0.

λΓω

q, ω

= + + . . .

Figure 2.5: The fermion-magnon vertex.

In order to calculate the pairing energy between two fermions we first consider

one magnon exchange contribution, Fig. 2.4. According to Feynman rules we obtain

the interaction potential

V
(1)
int (q) = −λ2Z2Γ2

ω=0

〈σ1σ2〉
c2(q−Q)2 + ∆2

. (2.20)

The factor Z2 comes from Z1/2 for each external fermion line. The vertex λΓω=0

comes from diagrams in Fig. 2.5, λ → λΓω=0. Here ω is the frequency of the

exchange magnon, which is equal to zero. In the coordinate representation the
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potential reads

V
(1)
int (r) = − λ2

2πc2
Z2Γ2

ω=0 cos(Qr)〈σ1σ2〉K0

(
r∆

c

)
, (2.21)

where K0 is the Macdonald function of zero’s order. The potential energy V
(1)
int (r) ∝

ln(r) is logarithmic at small distances r < c/∆ and it exponentially decays at r >

c/∆ as V
(1)
int (r) ∝ e−r∆/c. The spin-dependent prefactor 〈σ1σ2〉 = 2[S(S + 1)− 3/2]

is determined by the total spin of two fermions S and equals to −3 in the singlet

channel and +1 in the triplet channel. The potential is attractive in the state with

the total spin zero (one) when

Pr = cos(Qr) = (−1)rx+ry (2.22)

is negative (positive) and repulsive in the opposite case (r = rxex + ryey). This fact

has a clear physical meaning and reflects AFM character of spin correlations in the

antiferromagnet. The system tends to restore AFM ordering and the state when

the spins of two interacting holes are aligned according to antiferromagnetic pattern

(see Fig. 2.6) is energetically preferable.

Figure 2.6: Dependence of spin channel which provides attraction between holes
on a mutual positioning of the holes in the lattice. Two holes with spins up sym-
bolicaly represent triplet channel which provides negative interaction energy for
Pr = (−1)rx+ry = +1, two holes with opposite spins represent singlet channel which
results in attraction when Pr = −1 .

When we approach the QCP the quasiparticle residue as well as the magnon-

hole vertex tends to zero: Z ∝
√

∆ → 0 and Γω=0 ∝ ∆1/6 → 0 (see discussion in
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Section 2.2.2 and Ref. [65]). Thus the single magnon exchange contribution given

by (2.21) vanishes, because the potential V
(1)
int is proportional to Z2Γ2

ω=0 → 0. Does

this imply that the pairing between fermions becomes very weak close to the QCP?

Our answer is “no”, on the contrary the pairing becomes very strong, but it is due

to the Casimir bag mechanism.

Casimir effect attraction has different limits/regimes. The simplest one is the

“van der Waals” regime which is relevant to the van der Waals force between two

neutral atoms. In this regime the quasiparticle residue remains large, Z ≈ 1, and

the attraction is described by the box diagrams shown in Fig. 2.7; this approach

to the effect was developed by Dzyaloshinsky [159]. The number of intermediate

magnons is just two, it is equal to the number of fermions. A mechanism of Casimir

magnetic attraction between impurities suggested in Ref. [145] for antiferromag-

netically ordered phase belongs exactly to this regime. In this phase the fermion’s

quasipraticle residue is practically unchanged due to the Adler’s relation, and the

attraction is described by simple box diagrams, see Ref. [61].

+

Figure 2.7: The box diagrams for a two-magnon exchange between fermions. Note
that the renormalization factor

√
Z should be referred to each external fermion line.

The diagrams in Figs. 2.4 and 2.7 contain
√
Z per each external leg. While the

presence of
√
Z is a textbook statement [5], it is important to understand where

it comes from. The origin is the quasiparticle description, these diagrams generate

effective potentials/interactions between quasiparticles. As soon as the interaction

is established, it is used in Schrodinger equation, Lippmann-Schwinger equation,

or BCS equation. Obviously, the techniques based on the quasiparticle approach

are not applicable in the case when Z → 0 and the spectral weight becomes fully

incoherent. To the best of our knowledge the only known technique which does not

refer to quasiparticles is Bethe-Salpeter equation (BSE) which operates with two-

fermion Green’s function with amputated legs. Unfortunately all known applications

of BSE, for example binding of positronium [160], in the end assume quasipraticles
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with nonzero residue. While in principle the BSE approach is applicable to our

problem, all our attempts to apply the method were unsuccessful because of a large

number of two-fermion irreducible diagrams with multiple magnon exchanges.

To solve the Casimir bag problem we have developed a new diagramatic method

which we call the “Lamb-shift” technique. Similar to BSE in the “Lamb-shift”

technique we also operate with two-fermion Green’s function. The advantage of

BSE is that it is generic and in principle it is independent of the large parameter

N . On the other hand, the “Lamb-shift” technique is the large N expansion by

construction. The advantage of the “Lamb-shift” technique is that it allows us to

solve the multi-magnon problem.

2.3.1 The “Lamb shift” technique for calculation of Casimir

interaction

In this section we introduce a new technique to treat Casimir pairing energy. To

incorporate “Casimir effect” physics, we consider a composite two-fermion “atom”,

which has the total spin either zero (singlet state) or one (triplet state). Next,

we calculate “Lamb shift” in energy of this composite “atom” due to radiation of

magnons as a function of separation between fermions.

Let’s consider effective theory for the composite object. Creation operator for

singlet state is

Ψ†S =
1√
2

(a†1↑a
†
2↓ − a

†
1↓a
†
2↑) (2.23)

and for triplet state

Ψ†T,x =
−1√

2
(a†1↑a

†
2↑ − a

†
1↓a
†
2↓),

Ψ†T,y =
i√
2

(a†1↑a
†
2↑ + a†1↓a

†
2↓),

Ψ†T,z =
1√
2

(a†1↑a
†
2↓ + a†1↓a

†
2↑).

(2.24)

According to the selection rules for interaction of the “atom” with a magnon, there

are three types of transitions S → Tα, Tα → Tβ and Tα → S, where S means singlet

state and Tα denotes triplet state with polarization α. The only possible invariant
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kinematic structure that provides coupling between S and T, α states with emission

(absorption) of one magnon is
{
gST (q)Ψ†T,αΨS(bqα + b†qα) + h.c.

}
. In similar way,

transition of the type Tα → Tβ is governed by the term igTT (q)εαβγΨ
†
T,αΨT,β(bqγ +

b†qγ). The coefficients gST (q) and gTT (q) are coupling constants for these transitions.

Therefore, the interaction of two-fermion system with a magnon field in the singlet-

triplet representation reads

H =

{
δαβΨ†T,αΨS

∑
q

gST (q)(bqβ + b†qβ) + h.c.

}
+

iεαβγΨ
†
T,αΨT,β

∑
q

gTT (q)(bqγ + b†qγ). (2.25)

The effective vertices can be calculated by evaluating matrix elements of the Hamil-

tonian (2.18) between states (2.23), (2.24) :

gST (q) = g∗TS(q) = 2igq sin
(qr

2

)
,

gTT (q) = 2gq cos
(qr

2

)
.

(2.26)

Let us define a retarded Green’s function for the singlet and triplet state

GT,αβ(t2 − t1) = −i〈0|ΨT,β(t2)Ψ†T,α(t1)|0〉θ(t2 − t1),

GS(t2 − t1) = −i〈0|ΨS(t2)Ψ†S(t1)|0〉θ(t2 − t1), (2.27)

where |0〉 is a ground state of the system and theta-function is

θ(t) =

 1, t > 0;

0, t < 0.
(2.28)

Due to the O(3) rotational invariance the triplet Green’s function should be of the

form GT,αβ(t) = δαβGT (t). Note that our definition of the Green’s functions GS(t2−
t1), GT (t2 − t1) assumes that the fermions, which constitute the composite “atom”,

are both created at the same moment of time t1 and then both annihilated at the

moment t2. Apart from several other technical details the creation/annihilation at

the same time is the major difference of our technique from BSE. Fourier transform
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of Eq. (2.27) gives the Green’s functions in the frequency representation

GS,T (ε) =

∫ ∞
0

dtei(ε+i0)tGS,T (t) . (2.29)

Dyson’s equations for singlet and triplet state Green’s functions read

GS,T (ε) =
1

ε− ΣS,T (ε) + i0
. (2.30)

We use SCBA to evaluate singlet and triplet self-energy

ΣS(ε) =3
∑
q

|gST (q)|2GT (ε− ωq),

ΣT (ε) =
∑
q

|gST (q)|2GS(ε− ωq) + 2
∑
q

|gTT (q)|2GT (ε− ωq).
(2.31)

The diagrams for the singlet and triplet self-energies are presented in Fig. 2.8.

The combinator factors here come from contraction of the corresponding tensor

structures of the coupling vertices in (2.25) and have a meaning of the number of

the polarizations of an intermediate state.

Note, that unlike the scattering amplitude (2.20), expressions (2.31) for the two-

fermion self-energy do not contain single-fermion quasiparticle residues. Similar to

the one-fermion problem, the residue of the composite “atom” Green’s function is

zero at the QCP. However, it is not a problem now, because we are interested only

in the position of singularity of the Green’s function, i.e. in two-fermion pairing

energy.

Note also, that the Dyson’s equations (2.30), (2.31) for the two-fermion system

include processes when the fermions are dressed by magnons, as well as the processes

with (multi-)magnon exchanges between the fermions. Therefore, the “Lamb shift”

approach implicitly accounts for the incoherent part of single-fermion Green’s, that

is crucial in the vicinity of the QCP.
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Figure 2.8: Diagrams for singlet ΣS(ε) and triplet ΣT (ε) self-energies in SCBA.
Double dashed line and dashed line represent double-fermion Green’s function in
singlet and triplet channels correspondingly. Analytical expressions for the diagrams
are given in Eq. (2.31).

2.3.2 The hole-hole interaction potential

In order to find interaction energy of two fermions, we numerically solve the system

of two Dyson’s equations (2.31) in the square Brillouin zone for different inter-

fermion separations r, measured in units of lattice spacings. Energy grid in our

computation is ∆ε = 10−3J . The zero’s order approximation for the Green’s function

is G
(0)
S,T (ε) = 1/(ε+ i0) and for artificial broadening we take +i0→ i10−3J . In order

to perform a numerical integration in equations (2.31) we can directly integrate over

the square Brillouin zone, or introduce an effective momentum cutoff and integrate

analytically over the azimuthal angle in the momentum space and then integrate over

radial component of the momentum |q′| = |q −Q| ≤ Λq ≈ 1 numerically. We have

checked that there is a good agreement between these two methods. However, the

effective momentum cutoff method is much more efficient for numerics and provides

better precision of the computations, therefore we employed the later approach for

our calculations.

The limit r →∞ of infinite separation between the fermions corresponds to the

case, when the vertices in the equations (2.31) are substituted by the averaged ones

over q oscillations |gST (q)|2, |gTT (q)|2 → 2|gq|2 . The position of a singularity of

the triplet and singlet Green’s functions gives us the energy E∞ of the two-fermion

system separated by an infinite distance. It is clear that in such limit the Green’s

functions in both spin channels should coincide GS(ε) = GT (ε) which guarantees

the same value for the asymptotic energy E∞ in the singlet and triplet states. So,

we refer interaction energy as a difference Vint(r) = E(r)− E∞.
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(a) (b)

Figure 2.9: Diagrams contributing to E∞. Top and bottom solid line correspond to
single hole Green’s function. Diagram (a) is accounted in SCBA (2.31), diagram (b)
is not included in (2.31) and corresponds to 1/N correction to SCBA.

We found that the value E∞ ≈ −1.55J (at the QPC) is about 20% smaller

compared to a doubled energy of an isolated single hole 2ε0 ≈ −1.94J , see Eq.

(2.17). This difference is due to the fact that certain diagrams, which are presented

in SCBA for the single hole Green’s function, are not included in SCBA for the two

hole Green’s function GS,T (see Fig. 2.9). This deviation shows precision of our

method, which can be improved by calculating 1/N corrections to SCBA (2.31).

As it is clear from the structure of effective vertices

|gST (q)|2 = 2g2
q (1− Pr cos q′r),

|gTT (q)|2 = 2g2
q (1 + Pr cos q′r),

(2.32)

the system’s behaviour greatly depends on the “parity” Pr = (−1)rx+ry of the inter-

fermion distance. The holes prefer to form a singlet (triplet) spin state for negative

(positive) “parity” Pr at given r.

First, let us consider the case, when the system is away from the QCP, ∆ > 0.

We plot spectral functions

AS,T (ε) = − 1

π
Im{GS,T (ε)} (2.33)

for the singlet and triplet Green’s functions at different r, see Fig.2.10 (a, b). We

see a well defined quasiparticle peak in the triplet (singlet) spin channel at r = 4

(r = 5). However, in the opposite spin channel the peak broadens and submerges

to continuum. This effect can be interpreted as a formation of an excited decaying

state, which coupled via magnons to the ground state.
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Figure 2.10: Spectral functions AS(ε), AT (ε) of double-fermion Green’s functions in
the singlet and triplet channels close to the QCP (∆ = 0.08J). Panel (a) corresponds
to the inter-hole distance r = 4 and (b) corresponds to r = 5. Blue dashed lines
correspond to the triplet state, red solid lines correspond to the singlet state.

In Fig. 2.11 we plot the fermion-fermion interaction energy versus distance. The

inset displays the interaction energy when the system is away from the QCP (the

magnon gap is large, ∆ = 0.67J). Squares and triangles show results of our “Lamb-

shift” technique calculations and solid lines represent the single magnon exchange

formula (2.21). There is an excellent agreement between the two approaches. The

main part of Fig. 2.11 shows the same quantities, but close to the QCP (the magnon

gap is small, ∆ = 0.08J). Here we observe a dramatic disagreement between the re-

sult of the “Lamb-shift” technique and the single magnon exchange potential (2.21).

The single magnon exchange approximation fails in the vicinity of the QCP.

Let us now consider the most interesting case of pairing between fermions at

the QCP (∆ = 0). As in the case of a single fermion at the QCP, the Green’s

functions GS(ε) and GT (ε) have just power-law cuts, instead of quasiparticle peaks,

with a branching point E = E(r), see Fig. 2.12 (a, b). The position E(r) of the

branching point gives the ground state energy of the system. The spin channel of the

ground state is specified by the spin state in which the Green’s function is singular

at E(r). The state, in which the Green’s function is not singular, corresponds to a

decaying state. The imaginary part of the both singlet and triplet Green’s functions

emerges at the same branching point E(r) for any fixed r (see Fig. 2.12). This

is due to transitions between these states with an emission of a soft magnon with

ωq → 0. In the Fig. 2.12 (b) we see a distinct discontinuity of the both singlet and

triplet spectral functions at the same branching point E(r). In the Fig. 2.12 (a)
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Figure 2.11: Interaction energy of two holes Vint(r) at finite magnon gaps as a
function of inter-hole distance r. Red trangles and blue squares show the results
of the “Lamb shift” technique in the singlet and triplet state. Red and blue solid
lines represent theoretical prediction from one-magnon exchange mechanism (2.21)
for the singlet and triplet channels. The main plot corresponds to a small magnon
gap (∆ = 0.08J), the inset corresponds to a large magnon gap (∆ = 0.67J).

the branching points are also coincide, but the singlet spectral function has a small

spectral weight in the vicinity of the branching point.

Our results for the interaction energy Vint(r) at the QCP as a function of distance

r, obtained within the “Lamb shift” technique, are presented in Fig. 2.13. We see

from the data that the interaction between two fermions is attractive, when the

“parity” Pr is negative (positive), see Fig. 2.6. The binding becomes stronger at

smaller inter-fermion distances r. The interaction energy has a power-law form

Vint(r) = −a/rα, α ≈ 0.75 (2.34)

with a prefactor a ≈ 0.3J , where α and a are found from the least-square fit of

our numerical data. The values for the prefactor a and the exponent α are slightly

different for singlet (a = 0.3J , α = 0.76) and triplet (a = 0.33J , α = 0.74) cases.

The variations of the values of a and α are negligible within the accuracy of our

calculations.

In the inset in Fig. 2.13 we show Vint(r) which includes vertex corrections to

SCBA (2.31). Leading in 1/N corrections for the singlet and triplet self-energy δΣS
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Figure 2.12: Spectral functions AS(ε), AT (ε) of double-fermion Green’s functions in
singlet and triplet channels at the QCP (∆ = 0). On the panel (a) the main plot
corresponds to inter-hole distance r = 4, the inset plot to r = 20. On the panel (b)
the main plot corresponds to r = 5, the inset plot corresponds to r = 21. Red solid
lines show singlet state, blue dashed lines show triplet state.

and δΣT are presented in the supplementary Section 2.3.3 (see diagrams in Fig.

2.14 and formulas (2.35), (2.36)). These corrections increase the binding energy

by about 20%, leaving the critical index α almost unchanged. Thus we conclude

that corrections in 1/N to SCBA do not change qualitative and quantitative picture

given by SCBA.

From our calculations we observe very strong long-range attraction between

fermions in the vicinity of the QCP. We clearly see that one magnon exchange contri-

bution to the interaction energy vanishes at the QCP. On the contrary, accounting

for multi-magnon exchange processes we obtain significant binding in singlet and

triplet channels. We calculate the attraction energy due to multi-magnon exchange

processes as a “Lamb shift” of energy of a two fermion “atom” due to emission

of multiple magnons. The fermions interact, sharing common “bag” of magnetic

fluctuations and reducing energy of fluctuations inside of the “bag”. Therefore, the

physics of inter-fermion attraction in the vicinity of the QCP is due to “Casimir

bag” mechanism.
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Figure 2.13: Interaction energy Vint(r) of two holes at the QCP, ∆ = 0. Red trangles
and blue squares show the results of the “Lamb shift” technique for the singlet and
triplet state. Red and blue solid lines represent power-law fits Vint(r) = −a/rα for
the singlet and triplet channel. The main plot corresponds to SCBA, in the inset
we represent Vint(r), which includes the first 1/N correction to the SCBA. The
exponent for all curves is approximately α ≈ 0.75.

2.3.3 Leading 1/N corrections to SCBA for two-fermion Green’s

function

Let us consider 1/N corrections to the self-energies ΣS(ε) and ΣT (ε), calculated

in Self-Consistent Born Approximation (see Eqs. (2.31)). In order to do this we

account for vertex corrections δΣS(ε) and δΣT (ε) to self-energies obtained in SCBA,

corresponding diagrams are shown in Fig. 2.14. The vertex correction to the singlet

self-energy reads

δΣS(ε) = 3
∑
q,k

|gST (q)|2|gST (k)|2GT,qGT,kGS,qk −

6
∑
q,k

gST (q)g∗ST (k)gTT (k)g∗TT (q)GT,qGT,kGT,qk. (2.35)

The combinator factors come from contractions of the corresponding tensor struc-

tures of the effective vertices in Eq. (2.25). In the similar way the vertex correction
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to the triplet self-energy is given by

δΣT (ε) =
∑

q,k |gST (q)|2|gST (k)|2GS,qGS,kGT,qk −

2
∑

q,k gTT (q)g∗TT (k)g∗ST (q)gST (k)GT,qGT,kGS,qk +

2
∑

q,k |gTT (q)|2|gTT (k)|2GT,qGT,kGT,qk. (2.36)

Figure 2.14: Diagrams for the leading 1/N corrections δΣS(ε) and δΣT (ε) (a) to
singlet and (b) to triplet self-energies. Double dashed line and dashed line represent
two-fermion Green’s function in singlet and triplet channels correspondingly.

Here we are using shorten notations Gn,q = Gn(ε − ωq), Gn,k = Gn(ε − ωk)

and Gn,qk = Gn(ε − ωq − ωk) for singlet and triplet Green’s functions (n = S, T ).

One can check that in the limit r → ∞ the correction δΣS will be suppressed by

the factor 1/N = 1/3 with respect to Σ
(2 loop)
S,T calculated in SCBA within two loop

approximation.

The relative shift of binding energy, calculated with and without vertex correc-

tion, does not exceed 20%. It can be considered as a confirmation of applicability of

1/N expansion for the effective “‘Lamb shift” theory described by the Hamiltonian

(2.25).

2.3.4 Influence of mobility of fermions

How mobility of fermions influences the considered mechanism? We do not have a

full answer to this question yet. However, we do understand that the mobility does

not influence the Casimir bag mechanism as soon as the fermion hopping amplitude
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is sufficiently small. The fermion hopping influences the dynamics in two ways, (i)

It leads to additional terms in the fermion-magnon vertexes (2.15) and (2.26), (ii)

Hopping leads to a fermionic kinetic term in the Hamiltonian (2.18).

(i) The hole-magnon vertex with an account of hoppings has been calculated in

Ref. [142]. An important point is that the hopping induced term in the vertex has

an additional power of the momentum transfer compared to the term considered in

the present work. Therefore, the hopping induced term is infrared irrelevant and

hence, as it has been demonstrated in Ref. [142], hopping does not influence the

spin-charge separation at the QCP. For the same reason the hopping induced term

in the vertex does not influence the magnon bag Casimir attraction.

(ii) Kinetic energy of the fermions, which is quadratic in the momentum of the

fermion, is suppressed at small momenta comparing to linear magnon kinetic term,

and therefore is negligible at the QCP [142, 161]. However, the fermion mobility

imposes limitations on the time formation of the magnon bag. To address this issue

we distinguish the nearest neighbour hopping t and the next nearest neighbour hop-

ping t′. The hopping t leads to mixing between singlet and triplet pairing channels

and therefore the effect of this hopping requires a special analysis. However, the

hopping t′ does not lead to such mixing. Therefore, in a model with the following

hopping parameters, t = 0, t′ 6= 0, and with hopping less then the depth of the

potential Vint(r): t
′ < 0.3J the binding problem is very simple. One has to solve

Lippmann-Schwinger equation with kinetic energy due to t′ and with the attraction

given by Eq. (2.34). Obviously the solution gives a strong binding. Of course the

set of parameters, t = 0, t′ 6= 0, and t′ < 0.3J , is not the most physically interesting

one. However, the example demonstrates that in principle mobility is consistent

with the Casimir bag mechanism.

2.4 Conclusions

In conclusion, we considered an interaction between two spin 1/2 fermions embedded

in a two dimensional antiferromagnetic system at the QCP, which separates ordered

and disordered magnetic phases. As a model system we study bilayer antiferromag-

net at T = 0 with two injected holes, in which magnetic criticality is driven by
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interlayer coupling. We have shown that in the vicinity of the QCP the interaction

between fermions can not be described by simple one-magnon exchange, unlike the

case when the system is away from the QCP. The interaction mechanism is similar

to Casimir effect and is due to multi-magnon exchange processes. To incorporate

features of Casimir physics we developed a new approach, which we call a “Lamb

shift” technique. We considered composite two-fermion “atom” and calculated it’s

energy shift (“Lamb shift”) provided by radiation of magnons. We found strong

attraction between the fermions in spin singlet and triplet states depending on the

“parity” of the inter-fermion distance r, which is positive (negative) for even (odd)

r. Positive (negative) “parity” corresponds to attraction in triplet (singlet) channel.

The attractive potential has power-law form Vint(r) ∝ −1/rα with the exponent

α ≈ 0.75.

We suppose that our work sheds light on the influence of magnetic criticality

on fermion pairing mediated by magnons. We also believe that our results are

conceptually applicable to underdoped cuprates.

68



Chapter 3

Impurity problem in a 3D

antiferromagnet at quantum

critical point

In the present Chapter we consider a Kondo-like problem of an impurity in the

vicinity of a quantum critical point. More specifically we study magnetic screening of

an impurity spin in 3D quantum critical antiferromagnets. We calculate the spatial

distribution of a magnetization induced by the impurity and show that quantum

criticality results in the complete screening of the local impurity’s magnetic moment.

Our results show the existence a spin-charge separation in two and three dimensional

systems at quantum critical point.

3.1 Introduction

Quantum critical phenomena is an extensively developing subject in modern con-

densed matter physics, in both theoretical and experimental frontiers.[162] The most

vivid manifestations of quantum phase transitions (QPT) arise in low-dimensional

systems such as cuprates and iron pnictides. However, quantum critical behaviour

is also found in three-dimensional (3D+time) systems. A well-known example of

a 3D compound with a magnetic quantum critical point (QCP) is TlCuCl3.[163]

Under normal conditions the material is in the magnetically disordered phase, while
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pressure drives QPT to the antiferromagnetically ordered Neel phase.

Quantum critical properties of a system can be significantly influenced by the

presence of impurities. For instance, substitution of Cu atoms in the parent com-

pound TlCuCl3 with low concentration of nonmagnetic Mg impurities creates an

uncompensated spin 1/2 at the sites of the impurities, which induces magnetization

around the impurities and can even lead to the formation of a long-range magnetic

order in the macroscopic volume of the crystal. [164] In the magnetically disordered

phase the magnetization cloud around each impurity exponentially decays over a few

lattice spacings away from the impurity. But in the vicinity of the QCP the effect

of impurity-induced magnetization can be notably enhanced. Experimental obser-

vations reveal an interplay between the impurity-induced staggered magnetization

and a quantum criticality near the QCP. [56, 57, 58]

Despite of the vast amount of theoretical work on the impurity-induced magne-

tization in quasi-1D and 2D systems (see Refs. [165, 51, 68, 64, 66] and references

therein), we are not aware of similar studies in the relation to 3D materials. In

the present Chapter we consider a single impurity with spin S embedded in a 3D

antiferromagnet (AFM), which is close to the QCP, separating the magnetically dis-

ordered and magnetically ordered phases. Conceptually the problem is similar to

the Kondo effect (see e.g. [166, 167, 168]) since, as we show below, the spin cloud

screens the impurity’s spin at the QCP. While sometimes this phenomenon is called

Bose-Kondo effect [169], it is significantly different from usual Kondo problem, for

instance there are no mobile fermions in our case. In the present work we study

spatial distribution of the nonlocal spin density and the staggered magnetization

induced by the impurity using effective field theory formalism. We show that, when

approaching the QCP from the disordered phase, the spin density around the impu-

rity decays as ∝ 1/r3 with logarithmic corrections and the total spin accumulated in

the delocalized cloud is equal to S. We also demonstrate that the induced staggered

magnetization decays as ∝ 1/r.

Closely related to the problem of impurity-induced spin density and impurity-

induced Neel order is a phenomenon of spin-charge separation (SCS). The conven-

tional definition of SCS relies on the existence of two quasiparticles carrying spin

and charge (“spinon” and “holon”), which is the case in 1D Tomonaga-Luttinger
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liquid of strongly interacting electrons. [170, 171]. In contrast, there are no known

systems with SCS in higher spatial dimensions in the conventional definition. How-

ever, a partial SCS exists in 2D models such as hole-doped AFM [173, 174, 175, 176].

Furthermore, the recent research [177] reports pronounced SCS in the vicinity of the

magnetic QCP. In the latter case, the precise meaning of SCS is different from SCS

in Tomonaga-Luttinger liquid. A hole creates a spin cloud around the itself with

a radius which diverges at the QCP. As a result the delocalized impuritiy’s spin

becomes spatially separated from the impurity’s charge pinned to the impurity’s

site; this basically means SCS. In the present Chapter we show that such SCS also

occurs in 3D systems near the QCP.

The Chapter is organized in the following way. In Section 3.2 we introduce an ef-

fective field theory describing a 3D AFM doped with a single impurity in the vicinity

of the QCP. Considering the interaction of the doped AFM with a probe magnetic

field, we introduce an operator of the spin density and explain how we calculate

induced spin density. Here we also provide a method of calculation of the staggered

magnetization around the impurity. The rest of the Chapter is divided into two

parts, which correspond to the two techniques of the calculations: Self-Consistent

Born Approximation (SCBA) and Renormalization Group (RG) approach in 3 + 1

dimensions. Section 3.3 refers to the calculation of the spin density in SCBA for

the most physically interesting case of the impurity with spin S = 1/2. In Section

3.4 we calculate the impurity-induced nonlocal spin density, the local spin of the

impurity and the staggered magnetization using RG technique. We also consider

a semiclassical limit of an impurity with a large spin. We draw our conclusions in

Section 3.4.4.

3.2 Effective Theory

An example of a 3D lattice model which incorporates main features of magnetic

quantum criticality is presented in Fig. 3.1. The model corresponds to a cubic

lattice AFM consisting of spins S = 1/2 at each site with weak J bonds and strong

J ′ bonds. The system has a QCP driven by parameter g = J ′/J and located at

gc = 4.013, which separates the disordered magnetic phase of spin dimers at g > gc
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from the Neel phase at g < gc. [178, 179] This lattice model describes various

properties of TlCuCl3 near the pressure-driven QCP in zero and non-zero magnetic

fields. [178]

Substitution of a S = 1/2 Cu2+ ion with a spinless Zn2+ in TlCuCl3 creates an

impurity (vacancy), see Fig. 3.1. The effective spin of the impurity is S = 1/2. The

vacancy in the lattice induces a nonlocal magnetization cloud around the impurity’s

site. In the present Chapter we will calculate spatial distribution of the spin density

and the staggered magnetization in the spin cloud around the impurity.

Magnetic properties of the critical system are determined by low-energy magnetic

excitations. The magnetic excitations are magnons in the Neel phase and triplons

in the paramagnetic phase. Hereafter we refer to the both types of quasiparticles as

“magnons”. Effective theory, which describes magnons in the vicinity of the QCP

is based on the following Lagrangian, see e.g. [5]:

LM =
(∂tφ)2

2
− (∇iφµ)2

2
− ∆2

0φ
2

2
− α0(φ2)2

4!
, (3.1)

where φµ = (φx, φy, φz) is the magnon field, ∆2
0 ∝ g−gc is the magnon gap (squared),

α0 is a four-magnon coupling constant, ∂t is the time derivative, ∇i = ∂/∂ri is the

three-dimensional gradient. Hereafter we set the Plank constant and magnon speed

equal to unity ~ = c = 1. In the disordered magnetic phase ∆2
0 > 0. Near the QCP

the magnon gap ∆0 → 0.

The Lagrangian (3.1) contains quadratic terms as well as quartic term ∝ φ4, de-

scribing the magnon self-action. The magnon self-action results in the renormaliza-

tion of the magnon gap ∆0 in the Lagrangian (3.1). From one-loop RG calculations

[5] it follows that in the disordered phase the evolution of the renormalized gap is

given by

∆2 ∝ ∆2
0

[
ln
C(Λ)

g − gc

]−N+2
N+8

, (3.2)

where N = 3 in the present case of the O(3) universality class system, and C(Λ) is

a positive constant determined by an ultraviolet scale Λ. Besides that, the φ4 term

leads to renormalization of magnon quasiparticle residue. [5] However, the change

of the residue appears only in the two-loop renormalization group and therefore is
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small. Hence, for our purposes we drop out the self-action term from the Lagrangian

(3.1) and substitute the bare magnon gap to the renormalized value ∆0 → ∆.

The Lagrangian describing the “Berry phase” dynamics of a non-interacting

spin-S impurity reads

Limp = i
(
ψ†(r, t)∂tψ(r, t)−

(
∂tψ

†(r, t)
)
ψ(r, t)

)
, (3.3)

where ψ is the 2S + 1 component spinor. Hereafter we set the energy of the non-

interacting impurity to zero. The impurity-magnon interaction term in the magnetic

disordered phase reads [64]

Lint = −λ
S
ψ†(S · φ)ψ , (3.4)

where λ is the coupling constant, S = (Sx, Sy, Sz) are the operators of the impurity’s

spin acting in the (2S + 1)-dimensional Hilbert space.

Figure 3.1: An example of a lattice model for 3D AFM with O(3) QCP. Spins
S = 1/2 located at each site. Thin lines denote weak J bonds and thick lines denote
strong J ′ bonds. A quantum phase transition between the Neel and the dimerized
paramagnetic phases occurs at (J ′/J)c = 4.013. [178, 179] The big blue sphere
represents an impurity (hole) introduced into the lattice.

The impurity-magnon coupling creates a nonlocal spin density s(r) around the

impurity. In order to find s(r) we use the Lagrangian of interaction of the system
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with an external magnetic field (see, e.g. [205])

LB = − (∂tφ · [B × φ]) +
[B × φ]2

2
+ ψ† (S ·B)ψ , (3.5)

where we have set µBg = 1. Note that Eq. (3.5) is still valid if the magnetic field

B is non-uniform. In the contrast to the majority of previous works, where B is

considered uniform, the non-uniformity of the probe magnetic field is crucial for

the derivations presented in the present Chapter. Terms linear in B terms in the

Lagrangian (3.5) provide following expression for spin density:

s(r) = 〈1
2

([φ× ∂tφ] + h.c.) + ψ†Sψ〉 = snl(r) + Simpδ(r). (3.6)

The brackets 〈· · · 〉 denote an averaging over the ground state of the system. The

term 1/2〈[φ×∂tφ]+h.c.〉 in Eq. (3.6) is the nonlocal part of the spin density snl(r),

induced by the impurity. The subscript “nl” stands hereafter for “nonlocal”. The

term 〈ψ†Sψ〉 in Eq. (3.6) corresponds to the local spin Simp at the impurity’s site.

In addition to the spin density we will consider the staggered magnetization

induced by the impurity. Writing down the Euler-Lagrange equation for the magnon

field operator φ from the action
∫
dtd3r {LM + Lint} and taking expectation value

of the result we obtain Yukawa-like form of the staggered magnetization

〈φ(r)〉 = −λe
−∆r

4πr

Simp
S

. (3.7)

At the QCP the exponent in Eq. (3.7) is close to unity and 〈φ(r)〉 ∝ 1/r. The

prefactor is determined by the expectation value of local spin at the impurity’s site

Simp.

In the rest of the Section we explain the technique of our calculations of the

induced spin density and the staggered magnetization. In order to find the impurity-

induced spin density we proceed as follows. The impurity-induced spin density can

be defined as

s(r) =
δεB
δB(r)

∣∣∣∣
B=0

, (3.8)

where εB is the shift of the ground state energy due to the probe magnetic field
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(a)

Bµ

Γ̂µimp =

(b)

Bµ

Γ̂µnl =

Figure 3.2: Example of diagrams for a coupling between a probe magnetic field B
and (a) an impurity spin and (b) nonlocal spin density. The solid lines correspond to
a bare (λ = 0) impurity Green’s function, the wavy line represents magnon, dashed
line represents probe magnetic field B. The cross on the magnon line corresponds
to the magnon-B vertex, provided by the term B[φ× φ̇] in the Lagrangian is (3.5).

B(r′) = Bδ(r′ − r).

The ground state energy εg of the system is the position of a singularity of the

retarded impurity’s Green’s function ĜB(ε) and can be found from the Dyson’s

equation

Ĝ−1
B (ε) = ε− Σ̂(ε)−BµΓ̂µ(ε, r) = 0 , (3.9)

where Σ̂(ε) is the self-energy of the impurity at zero magnetic field, Γ̂µ(ε, r) is

the vertex function, corresponding to the interaction of the system with the probe

magnetic field. Note that in Eq. (3.9) we need to keep only linear in Bµ terms.

From rotational symmetry properties the only possible “kinematic” structure of the

vertex

Γ̂µ(ε, r) = Γ(ε, r)Ŝµ/S. (3.10)

The vertex function can be split into local and nonlocal parts

Γ̂µ(ε, r) =

 Γ̂µimp(ε), r = 0,

Γ̂µnl(ε, r), r 6= 0.
(3.11)

Calculating the shift εB of the position of the singularity in the Green’s function

ĜB(ε) due to the probe magnetic field and using the formula (3.8) we find the local

and nonlocal components of spin density s(r) as well as the staggered magnetizaton

3.7. The spin density s(r) = es(r) and the staggered magnetization 〈φ(r)〉 =

e〈φ(r)〉 are directed along the impurity’s spin Simp = eSimp (e is a unit vector), and

due to spatial isotropy of the system depend only on r = |r|.
Below in we consider the spin density/staggered magnetization distribution using
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two approaches: Self-Consistent Born Approximation (Section 3.3) and Renormal-

ization Group (Section 3.4).

3.3 Self-Consistent Born Approximation

The standard approach for calculation of a single-fermion Green’s function is 1/N

expansion for O(N) group, where N = 3 is the number of magnon components.

Summation of leading terms in the 1/N expansion (“rainbow” type diagrams, see

Fig. 2.2) results in the Self-Consistent Born Approximation (SCBA). We will apply

the SCBA to the case of S = 1/2 impurity only. As it will be demonstrated in Section

3.4.4, for larger impurity spins (S > 1/2) the corrections to impurity-magnon vertex

disregarded in SCBA become relevant. Therefore, in the latter case SCBA fails and

application of RG technique is necessary.

3.3.1 “Dressed” Green’s function of the impurity

In order to proceed with the calculations of the impurity-induced spin density, we

first find Green’s function of the impurity “dressed” by critical magnons at zero

magnetic field. The system at B = 0 possesses O(3) rotational invariance and

therefore is proportional to the identity matrix in the spin space Ĝ(ε) = G(ε). The

Dyson’s equation for the impurity’s Green’s function is graphically represented in

Fig. 2.2. The analytical form of the equation reads:

G(ε) =
1

ε− Σ(ε) + i0
, (3.12)

where the impurity’s self-energy is given by following expression:

Σ̂(ε) = λ2

∫
idω

2π

∑
q

σµĜ(ε− ω)Dµν(ω, q)σν =

3
∑
q

M2
q Ĝ(ε− ωq) . (3.13)

Here ωq =
√

∆2 + q2 is the magnon dispersion, Mq = λ/
√

2ωq is the matrix element

corresponding to emission of a magnon with momentum q by the impurity and
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Dµν(ω, q) = δµν/(ω
2 − ω2

q + i0) is the magnon propagator. We expressed spin 1/2

operators via Pauli matrices Sµ = σµ/2. The combinatorial factor 3 in Eq. (3.13)

comes from the summation over the intermediate polarization states of a magnon.

The sum over momentum q in Eq. (3.13) logarithmically diverges at large |q|,
therefore we have to introduce an ultraviolet cutoff Λ. The parameter Λ depends on

a particular realisation of the system and can be estimated as inverse lattice spacing

in the host AFM.

The solution to Dyson’s equation (3.12) near the QCP (∆→ 0) has the following

form

G−1(ε) = (ε− ε0 + i0)

√
1 +

3λ2

2π2
ln

(
Λ

ε0 + ∆− ε− i0

)
. (3.14)

Formula (3.14) is valid in the vicinity of the singularity point ε0 ≈ −3Λλ2/4π2 and

obtained within a logarithmic accuracy, i.e. assuming that ln
(

Λ
ε0+∆−ε

)
� 1.

The Green’s function (3.14) has a nontrivial analytic structure. The quasiparticle

pole at ε = ε0 is separated by the gap ∆ from the incoherent part of the Green’s

function. At the QCP the magnon gap closes (∆ → 0), hence the quasiparticle

pole and the branching point singularity are merging. A similar analytical structure

of a fermion’s (impurity’s) Greens function has been discussed in Chapter 2 in the

context of fermion-fermion pairing in 2D critical systems. The quasiparticle residue

of the impurity Green’s function G(ε) vanishes in the vicinity of the QCP

Z =

(
1− ∂Σ(ε0)

∂ε

)−1

=
1√

1 + 3λ2

2π2 ln
(

Λ
∆

)∣∣∣
∆→0
→ 0. (3.15)

The vanishing quasiparticle residue is an indication of the impurity-induced spin

cloud delocalization and implies SCS. [177]

A typical value of the impurity-magnon coupling constant λ can be estimated

from the lattice model shown in Fig. 3.1. Bond-operator mean-field theory calcula-

tions [181] result in the value of the effective coupling constant κ = 3λ2/2π2 ∼ 0.5,

appearing in front of the logarithm in formula (3.14). Therefore, the logarithmic

corrections are significant in the vicinity of the QCP.

The analytical result (3.14) for the impurity Green’s function can be directly

compared with a numerical solution of the Dyson’s equation (3.12); corresponding

77



plots for the analytical and numerical spectral functions −1/π Im{G(ε)} are pre-

sented in Fig. 3.3. An artificial broadening i0 → i2.5× 10−3Λ is introduced in the

numerical procedure and in analytical formula (3.14). We see an excellent agreement

between the numerical and the analytical results.

Let us make a comment on the validity conditions of the SCBA for the results

of the present Section, and all following results, which will be derived in Sections

3.3.2 and 3.3.3. Formally, SCBA relies only on a 1/N expansion of the O(N) group,

independently on the value of the coupling constant λ. SCBA is applicable for

arbitrary λ, in contrast to RG method, which works only for small λ. We will

return to this discussion later, in the Section 3.4.1.
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Figure 3.3: The spectral function of S = 1/2 impurity obtained in SCBA. Panel (a)
corresponds to the QCP (∆ = 0); panel (b) corresponds to magnon gap ∆ = 0.05Λ.
The effective coupling constant is set to κ = 0.6. The solid black line corresponds
to the impurity’s Green’s function, calculated numerically and the red dashed line
corresponds to the analytical formula (3.14). Note that on the panel (a) the position
of pole and branching point are merging.

3.3.2 Induced spin density

The nonlocal spin density induced by the impurity at distances r > 0 can be calcu-

lated based on the “probe magnetic field” approach, described in Section 3.2. In the

present Section we follow this approach and develop a self-consistent diagrammatic

technique that allows us to compute snl(r) in the regime of strong impurity-magnon

coupling.
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First, let us substitute the Green’s function pole position εg = ε0 + εB into Eq.

(3.9), expand it in εB up to the first order and use Eq. (3.8). The result reads

snl(r) = ZΓnl(ε0, r) . (3.16)

The leading perturbative contribution to the vertex function Γ̂µnl ∼ O(λ2) is rep-

resented by the Feynman diagram shown in Fig. 3.2 (b). The analytical expression

for the diagram is following

Γ̂µnl(ε, r) = Γnl(ε, r)σ
µ =

∫
idω

2π

∑
q,k

(λσκ) Ĝ0(ε− ω)(
λσβ

)
Dκν(ω,k)

[
−2iω εµνα e

i(q−k)r
]
Dβα(ω, q) ,

(3.17)

where Ĝ0(ε) = 1/(ε+ i0) is the bare retarded Green’s function of a non-interacting

impurity. The expression in square brackets corresponds to the magnon - probe

magnetic field vertex, which we show in Fig. 3.2, (b) as a circle with a cross inside.

The leading order approximation 3.17 completely ignores effects of impurity “dress-

ing” by a magnon cloud and multi-magnon processes, which are important in the

vicinity of the QCP.

The SCBA equation for vertex Γ̂µnl(ε, r), which accounts for multi-magnon pro-

cesses, is graphically represented in Fig. 3.4. The analytical form of the equation

reads

Γnl(ε, r) = Γ
(0)
nl (ε, r)−∑

q

M2
qG

2(ε− ωq)Γnl(ε− ωq, r), (3.18)

where Γ
(0)
nl (ε, r) corresponds to the first term in the r.h.s. of the diagrammatic

equation in Fig. 3.4:

Γ
(0)
nl (ε, r) = 2λ2

∑
q,k

ei(q−k)rG(ε− ωq)−G(ε− ωk)
ω2
q − ω2

k

. (3.19)
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Expressions (3.18) and (3.19) were obtained by performing integration over ω in the

rhs of the original SCBA equation, shown in Fig. 3.4. The factor (−1) in Eq. (3.18)

comes from the algebraic identity for Pauli matrices σµσνσµ = −σν . Formula (3.19)

follows from (3.17), where the bare impurity Green’s function is substituted by the

“dressed” Green’s function G(ε), shown in Fig. 2.2.

Γ̂µnl = + Γ̂µnl

Figure 3.4: Diagrammatic equation for “nonlocal” vertex function Γ̂µnl.

The solution of the self-consistent integral Eq. (3.18) together with the quasipar-

ticle residue Z obtained from numerical solution of Dyson’s equation (3.12), provide

all necessary ingredients for the spin-density, see Eq. (3.16). We solve numerically

Eq. (3.18) for the vertex Γnl(ε, r) and compute Z using the numerical solution of Eq.

(3.12). Solution to Eq. (3.18) has been found iteratively, we start the iterations from

the Γnl(ε, r) = Γ
(0)
nl (ε, r). The results of the calculation of the spin density snl(r) for

different values of the magnon gap ∆ and coupling constant λ are presented in Fig.

3.5.

For the purpose of computational efficiency we use the spherical cutoff |q|, |k| ≤
Λ in integrals in Eq. (3.18) and (3.19), instead of integrating over a cubic Brillouin

zone. This cutoff scheme resultes in significant r-oscillations in the induced spin-

density snl(r), where the period of oscillations is r ∼ 1/Λ and the amplitude of

the oscillations decays with increasing r. It is clear that these oscillations are by-

products of the rigid spherical cutoff and will be notably suppressed if one performs

proper 3D-integration over the cubic Brillouin zone. Hence, in Fig. (3.5) we plot

numerical data for the spin-density averaged over the period of the oscillations.

Our numerical calculations show that the starting approximation Γ
(0)
nl (ε, r) for

the vertex function and the solution Γnl(ε, r) of the SCBA equation (3.18) are very

close to each other. Therefore, we use Γ
(0)
nl instead of Γnl in order to obtain an

analytical approximation for the nonlocal spin density. Substituting (3.19) in Eq.
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Figure 3.5: Spin density snl(r) (multiplied by r3) induced by S = 1/2 impurity as
a function of the dimensionless distance y = ∆r. Calculations are performed in
the SCBA. The points represent numerical results for different values of magnon
gap and effective coupling constant κ = 3λ2/2π2. The squares correspond to ∆ =
6.25 × 10−3Λ, triangles correspond to ∆ = 1.25 × 10−2Λ; filled markers represent
κ = 0.3, open markers correspond to κ = 0.6. The solid line is the analytical
approximation (3.20).

(3.16) and using formula (3.14) for the impurity’s Green’s function, we find

snl(r) =
λ2∆

4π3

√
1 + 3λ2

2π2 ln Λ
∆

√
1 + 3λ2

2π2 ln Λr

K1(2∆r)

r2
. (3.20)

Here K1(x) is the Macdonald function of the first kind. At the distances 1/Λ < r <

1/∆ using the expansion of the Macdonald function K1(x) → 1/x at x → 0, we

obtain power-law asymptotics for the spin density with logarithmic corrections:

snl(r)→
λ2

8π3r3

1√(
1 + 3λ2

2π2 ln Λ
∆

) (
1 + 3λ2

2π2 ln Λr
) . (3.21)

At large distances r > 1/∆ the spin density (3.20) is exponentially suppressed:

snl(r) ∝ e−2∆r/r5/2. In Fig. (3.5) solid lines correspond to the analytical result

given by Eq. (3.20). One can see an excellent agreement between the analytical and

the numerical results.

The net spin of the system, which is given by the sum of the local impurity’s
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Figure 3.6: Integral nonlocal spin Snl and local spin of the imputity Simp as a
function of the magnon gap ∆ in SCBA. Full and open markers correspond to
values of effective coupling constant κ = 0.6 and κ = 0.3. Circles correspond to
Snl, squares represent Simp and triangles show the net spin Snl + Simp. Solid lines
are theoretical predictions for the local impurity’s spin Simp, given by Eq. (3.25).
Dotted lines are visual guides for Snl. Red dashed line corresponds to the net spin
equal to 1/2.

spin and spin of the nonlocal cloud, is conserved and must equal to S = 1/2. The

integral spin corresponding to the nonlocal spin density

Snl =

∫
d3rsnl(r) (3.22)

as a function of ∆/Λ is depicted in Fig. 3.6. We use the numerical results for snl(r),

shown in Fig. 3.5, in order to obtain Snl. According to Fig. 3.6 and Eq. (3.20)

the integral nonlocal spin Snl increases with decreasing ∆. Moreover, the impurity’s

spin Simp = 1/2− Snl → 0 vanishes at the QCP, as we will demonstrate in Section

3.3.3. Therefore, the integral nonlocal spin Snl → 1/2 at the critical point. We will

return to this discussion in Section 3.4.2.
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3.3.3 Local spin of the impurity and staggered magnetiza-

tion

In order to calculate the impurity’s spin, localized at r = 0, we use a similar approach

to what we have used in the previous section. We introduce the local magnetic field

B(r) = Bδ(r) and calculate energy shift of the impurity due to the magnetic field.

The result for the impurity’s spin reads

Simp =
Z

2
Γimp(ε)

∣∣∣
ε=ε0

. (3.23)

The diagrammatic equation for the vertex function Γ̂µimp(ε) = Γimp(ε)σ
µ in the SCBA

has the graphical representation shown in Fig. 3.7. The corresponding analytical

Γ̂µimp = + Γ̂µimp

Figure 3.7: Diagrammatic equation for the “local” vertex function Γ̂µimp. The cross

represents the bare vertex Γ
(0)
imp = 1.

form of the equation, represented in Fig. 3.7, is

Γimp(ε) = 1−
∑
q

M2
qG

2(ε− ωq)Γimp(ε− ωq) . (3.24)

Solving equation (3.24) and substituting the solution in to Eq. (3.23) we obtain spin

of the impurity with logarithmic accuracy

Simp =
1

2
(
1 + 3λ2

2π2 ln Λ
∆

)2/3
. (3.25)

We also calculate the residual spin of the impurity, numerically solving Eq. (3.24).

Both analytical and numerical results for Simp at different values of the parameters

∆ and λ are shown in Fig. 3.6. We see good agreement between the analytical

and the numerical results. From Fig. 3.6 we can notice that the impurity’s spin

logarithmically tends to zero when we approach to the QCP, ∆→ 0. In Fig. 3.6 we
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also show the net spin Simp + Snl for different values of ∆ and λ.

Results of our calculations presented in Eq. (3.21), Eq. (3.25) and also in Figs.

3.5, 3.6 show that at the QCP the local spin is approaching zero and the spin of

the system is accumulated in the nonlocal spin cloud. This delocalized spin cloud

around the impurity has a size proportional to the inverse magnon gap r ' 1/∆,

and therefore significant part of impurity’s spin is separated from charge localized

at r = 0. The discussion on spin-charge separation is also presented in the Section

3.4.2.

The net spin of the system equals to 1/2. This is an exact statement and can

be demonstrated at the diagrammatic level. One can trace mutual cancellations of

the quantum corrections to the impurity’s spin and integral spin of nonlocal cloud

in every order in λ. Corrections to the impurity’s spin Simp are cancelled by the

corrections to integral spin Snl. The numerical results for the net spin of the system

presented in Fig. 3.6 are consistent with the conservation of spin.

Using Eq. (3.7) and Eq. (3.25) we obtain following expression for the staggered

magnetization induced by the spin 1/2 impurity

〈φ(r)〉 = −λe
−∆r

4πr

1(
1 + 3λ2

2π2 ln Λ
∆

)2/3
. (3.26)

Away from the QCP the staggered magnetization induced by the impurity is expo-

nentially small. In the vicinity of the QCP the prefactor in Eq. (3.26) becomes

logarithmically suppressed, however the staggered magnetization decays only as

〈φ(r)〉 ∝ 1/r.

3.4 The Renormalization Group approach in D=3+1

In this Section we calculate nonlocal and local components of the spin density using

one-loop RG technique in 3 + 1 dimensions. In the RG approach the coupling con-

stant λ becomes dependent on the energy scale. Since D = 3+1 is the upper critical

dimension, the evolution of the running coupling constant is logarithmic. It leads

to logarithmic corrections to snl and 〈φ(r)〉, similar to the logarithmic corrections

in (3.21) and (3.26) obtained in the SCBA. We derive our results for the case of an
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arbitrary spin S of the impurity in Sections 3.4.1 and 3.4.2, and then we analyze

the limit of a large spin S in Section 3.4.4.

In the RG technique we consider the evolution of the coupling constant λ, quasi-

particle residue Z, spin density and staggered magnetization with the energy scale

µ. In the momentum-shell approach (Wilsonian RG) the RG provides an evolution

of the renormalized parameters by integrating out high-energy degrees of freedom;

the evolution starts at the ultraviolet scale Λ and continues all the way up to the

infra-red scale ∆. The scale µ here has the meaning of the characteristic energy

transfer from magnons to the impurity. At the ultraviolet scale Λ we set parameters

of the theory to the bare values, in our calculations Λ plays a role of a renormal-

ization point. Observables in the vicinity of the QCP are calculated as the result of

RG evolution from the ultraviolet scale Λ to the infrared scale µ = ∆.

3.4.1 Evolution of coupling constant and quasiparticle residue

First, we calculate the evolution of the coupling constant λ(µ). The one-loop cor-

rection to the coupling constant is represented by the sum of diagrams, shown in

Fig. 3.8.

= + +
(a) (b) (c)

Figure 3.8: One-loop corrections to the impurity-magnon coupling constant λ.

Note, that in RG approach the correction to the coupling constant includes the

vertex correction [Fig. 3.8, (b)], and also the self-energy correction [Fig. 3.8, (c)].

This is different from the SCBA, in which we disregard the diagram (b).

Contribution δλ(b) to the coupling constant correction is given by the diagram
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(b) in Fig. 3.8 and reads

Sµδλ(b) = λ3S
νSµSν

S2
×∫

idω′

2π

∑
k

G0(µ− ω′)G0(µ− ω − ω′)D(ω′,k) ≈

Sµ
(S(S + 1)− 1)

S2

λ3

4π2
ln

Λ

µ
. (3.27)

After cancelling out the factor Sµ from the both sides of Eq. (3.27) we obtain δλ(b).

The second contribution δλ(c), which comes from the diagram (c) in Fig. 3.8 reads

δλ(c) = λ3

(
1 +

1

S

)
G0(µ− ω)×∫

idω′

2π

∑
k

G0(µ− ω − ω′)D(ω′,k) (3.28)

and contains terms linear in Λ and logarithmic in Λ. The linear term corresponds to

the shift of the position of quasiparticle pole ε0 in the impurity’s Green’s function

and therefore is irrelevant for our purposes. The logarithmic term in δλ(2) reads

δλ(c) → − λ3

4π2

(
1 +

1

S

)
ln

Λ

µ
. (3.29)

The total correction to the coupling constant λ is

δλ = δλ(b) + δλ(c) = − λ3

4S2π2
ln

Λ

µ
. (3.30)

The vertex correction (3.27) for S = 1/2 is suppressed by the factor 1/N = 1/3,

comparing to δλ(c). This suppression corresponds to the standard 1/N expansion of

the O(N) group. However, at large S the 1/N suppression of δλ(b) is compensated

by S, and hence δλ(b) and δλ(c) to a large extent compensate each other, δλ(b) ≈
−δλ(c). Thus, at large S the vertex correction becomes significant and can not be

disregarded. This is the reason why the SCBA fails in the case of large impurity’s

spin.

In the paradigm of RG, evolution of physical parameters on some energy scale µ

is determined by the value of λ(µ) on the same scale. Hence, Eq. (3.30) results in
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the following Gellman - Low equation

dλ(µ)

d lnµ
=
λ3(µ)

4S2π2
. (3.31)

The solution to Eq. (3.31) with the initial condition λ(Λ) = λ is

λ(µ) =
λ√

1 + λ2

2S2π2 ln Λ
µ

. (3.32)

The running coupling constant in Eq. (3.32) vanishes in the infrared limit: λ(µ)→ 0

at µ ' ∆→ 0. The RG scale µ is bounded from below by the value of magnon gap

µ ≥ ∆.

In order to find the quasiparticle residue of the impurity’s Green’s function we

consider the one-loop correction to the impurity’s self-energy. Logarithmic part of

this correction was already calculated as a part of the diagram (c) in Fig. 3.8. The

corresponding equation for evolution of Z(µ) reads

d lnZ(µ)

d lnµ
=

(
1 +

1

S

)
λ2(µ)

4π2
. (3.33)

The solution to Eq. (3.33) with the initial condition Z(Λ) = 1 is following

Z(µ) =
1(

1 + λ2

2S2π2 ln Λ
µ

)S(S+1)/2
=

(
λ(µ)

λ

)S(S+1)

. (3.34)

The quasiparticle residue Z(µ) vanishes, while approaching to the QCP: µ ' ∆→ 0.

The RG approach being used in the current Section is valid if the effective cou-

pling constant κ̃ = λ2/2S2π2 < 1, since we perform perturbative expansion, such as

in Eq. (3.30). However, the proper expansion parameter in the vicinity of the QCP

is not κ̃, but κ̃ ln Λ/∆. The RG method (in the single-loop approximation) allows to

sum up (leading) logarithmic corrections of the following kind κ̃m
∑

n κ̃
n lnn(Λ/∆).

Therefore, the results obtained within one-loop RG in the Section 3.4 are valid when

κ̃ < 1, but the product κ̃ ln(Λ/∆) can have an arbitrary value.
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3.4.2 Impurity’s spin and nonlocal spin density

Now we consider RG evolution of the impurity’s spin Simp and spin density distribu-

tion s(r) with the renormalization scale µ. We compute Simp and s(r), considering

an interaction of the system with a probe magnetic field B(r), see Section 3.3.

We start from calculation of corrections to Simp due to interaction of the impurity

with magnons. One-loop corrections to Simp are shown in Fig. 3.9. The diagrams

= + +
(a) (b) (c)

Figure 3.9: One-loop corrections to “local” spin Simp.

in Fig. 3.9 are analogous to the diagrams in Fig. 3.8 for corrections to the coupling

constant λ. The only difference is that the impurity-magnetic field coupling Simp ·B
is proportional to the impurity’s spin Simp. Hence, RG evolution of the impurity’s

spin is governed by the following equation

dSimp(µ)

d lnµ
=
λ2(µ)

4S2π2
Simp(µ). (3.35)

The solution to Eq. (3.35) with initial condition Simp(Λ) = S reads

Simp(µ) =
S√

1 + λ2

2S2π2 ln Λ
µ

, (3.36)

and proportional to solution (3.32) for the running coupling λ(µ). The local spin

at the impurity’s site is equal to Simp(µ ' ∆) and approaches to zero at the QCP.

Using the result (3.36) and relation (3.7) we obtain the distribution of staggered

magnetization around impurity

〈φ(r)〉 = − λ

4πr

e−∆r√
1 + λ2

2S2π2 ln Λ
∆

. (3.37)

In the rest of the present Section we calculate the nonlocal spin density snl(r). In

the RG framework it is natural to use momentum representation for the spin density
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instead of the coordinate representation, therefore we write evolution equation for

the Fourier component snl(q). The leading contribution to snl(q) is provided by one-

loop diagram, shown in Fig. 3.2, (b). Evaluation of this diagram with logarithmic

precision leads to

s
(0)
nl (q) ≈

 λ2

4Sπ2 ln Λ
µ
, µ� q,

λ2

4Sπ2 ln Λ
q
, µ� q.

(3.38)

The Fourier transform of the second line of Eq. (3.38) gives the spin density

s
(0)
nl (r) = λ2/16Sπ3r3 at the distances 1/Λ < r < 1/∆. In analogy with the result

(3.21) obtained in SCBA, in RG calculations we should expect logarithmic correc-

tions to ∝ 1/r3 distribution. Note, that the logarithmic corrections are important,

because they provide the proper normalization condition of the integral nonlocal

spin
∫
d3rsnl(r)→ S at the QCP. The volume integral of the spin density ∝ 1/r3 is

logarithmically divergent ∝ ln Λ/∆ if we disregard the log corrections.

In order to account for the RG evolution of the spin-density, we evaluate single-

loop corrections to the leading diagram presented in Fig. 3.2, (b). Diagrams (b)

and (c) in Fig. 3.10 represent these corrections, which are similar to corresponding

diagrams in Figs. 3.8 and 3.9. RG evolution of nonlocal spin density distribution

= + +

=

(a) (b) (c)

Figure 3.10: One-loop corrections to nonlocal spin density snl(q).

reads

dsnl(q, µ)

d lnµ
=


λ2(µ)
4S2π2 snl(q, µ)− λ2(µ)

4Sπ2 , µ� q,
λ2(µ)
4S2π2 snl(q, µ), µ� q.

(3.39)

The evolution equation for the spin density is different in two domains µ � q

and µ � q. The reason is that the one-loop expression (3.38) for spin density is

different in the both domains. We solve Eq. (3.39) separately in the two domains
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and match the solutions at µ ' q. An initial condition for the evolution equation

(3.39) is set to snl(Λ) = 0. We get the following result for the spin density at the

infrared scale µ ' ∆:

snl(q) =
S√

1 + λ2

2S2π2 ln Λ
∆

(√
1 +

λ2

2S2π2
ln

Λ

q
− 1

)
. (3.40)

In the momentum representation the net spin conservation condition has the form

snl(q)
∣∣
q→0

+ Simp = S. Using expressions (3.36) and (3.40) it is easy to check the

net spin conservation, keeping in mind that the low bound for the momentum q in

our formulas is q ' ∆.

Calculating Fourier transform of Eq. (3.40) we obtain the spatial distribution of

the induced spin density

snl(r) =
λ2

16Sπ3r3

√
1 + λ2

2S2π2 ln Λ
∆

√
1 + λ2

2S2π2 ln Λr
(3.41)

at the distances 1/Λ < r < 1/∆. Employing (3.41) and (3.36) one can verify

conservation of the net spin in r-representation:
∫
d3r snl(r)+Simp = S. Integration

of nonlocal spin density should be performed in the range of the distances 1/Λ <

r < 1/∆ which is defined by the infrared and the ultraviolet cutoffs of our theory.

In the vicinity of the QCP the main contribution to the nonlocal spin
∫
d3r snl(r)

comes from large distances r < 1/∆→∞. Indeed, the integral

∫
1/Λ≤r≤R

d3r snl(r) = S

√
1 + λ2

2S2π2 ln ΛR− 1√
1 + λ2

2S2π2 ln Λ
∆

(3.42)

logarithmically grows as a function of the upper integration limit R, which means

that the major part of spin in the nonlocal cloud is accumulated at the distances

of the order of R ' 1/∆. At the same time, the local spin of the impurity Simp

vanishes at the QCP, see Eq. (3.36). Therefore, we conclude that at the QCP the

impurity’s spin is spatially separated from the impurity charge.

The results (3.34), (3.37) and (3.41) obtained in the RG technique are similar
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Figure 3.11: Bose-Kondo screening of S = 1/2 impurity in a 3D antiferromagnet at
a QCP.

to corresponding answers (3.15), (3.26) and (3.21), obtained in the SCBA. For the

spin S = 1/2 the difference is in the numerical factors in front of the logarithms:

3λ2/2π2 in SCBA, comparing to 2λ2/π2 in RG. For Z and 〈φ(r)〉 the powers of the

logarithms are also insignificantly changed: 1/2→ 3/8 and 2/3→ 1/2, respectively.

The reason for these minor changes is due to the 1/N vertex correction, which is

accounted for in the RG approach (see diagram (b) in Fig. 3.8), and is disregarded

in the SCBA. The RG results are more accurate then the SCBA results. However,

the expansion of the RG results and the SCBA results coincide up to the single-loop

order (first order in λ2).

3.4.3 Discussion of results

Our results show that in a three dimensional antiferromagnet impurity-induced spin

density at the QCP decays as snl(r) ∝ 1/r3 (with the corresponding log(r) correc-

tions) and the staggered magnetization decays as 〈φ(r)〉 ∝ 1/r. RG flow in 3 + 1 D

leads only to log(r) corrections to snl(r), leaving the power laws unchanged.

On the other hand, in D = 2 + 1 RG flow has Wilson-Fisher fixed points that
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instead of log corrections provide non-trivial critical exponents for correlation func-

tions. For instance, the impurity’s quasiparticle residue Z ∝ ∆η′/2 [see e.g. Ref.

[64, 65]] acquires an anomalous dimension near the QCP, η′ = 1 (in one-loop ap-

proximation). It results in the following scaling law [64] in the spin density distribu-

tion snl(r) ∝ 1/r2−η′/2 ≈ 1/r3/2. A more accurate value of the anomalous dimension

η′ ≈ 0.4 is known from Quantum Monte Carlo study [66] of hole-induced magnetiza-

tion in Heisenberg bilayer model. Following similar arguments being used to obtain

Eq. (3.7), the staggered magnetization in D = 2+1 reads [64] 〈φ(r)〉 ∝ ∆η′/2 ln(∆r)

at ∆r � 1. Although the scaling laws are well known, the problem of calculation of

corresponding prefactors still remains unsolved.

Interestingly, the RG scaling law snl ∝ 1/r3/2 for the spin density in D = 2+1 can

be also reproduced within our diagrammatic SCBA approach. The “dressed” impu-

rity’s Green’s function at QCP in 2D systems has an inverse square root behaviour

near the singularity point G(ε) ∝ 1/
√
ε0 − ε (see Chapter 2, Section 2.2.2 and Refs.

[64, 65]). Substituting the Green’s function in the Eqs. 3.18 and 3.19 and proceeding

with the calculation technique described in Section 3.3.2, we recover the asymptotic

behaviour snl ∝ 1/r3/2 (at 1� r � 1/∆). This result can be obtained from formula

(3.19) from simple power counting. Moreover, the corresponding prefactor can be

evaluated in a straightforward way using the SCBA diagrammatic technique. The

SCBA diagrammatic method is more efficient computationally if compared with the

standard Quantum Monte Carlo technique. This makes the SCBA very useful for

calculations of impurity effects in quantum materials.

As one can see the integral spin
∫ R

d2rsnl(r) accumulated in the nonlocal cloud

in 2 + 1 D grows as a power law of upper integration limit ∝ Rη′/2, in contrast

with slow logarithmic growth in 3 + 1 D [see (3.42)]. Therefore, the effect of spatial

spin-charge separation at the QCP is more pronounced in two-dimensional systems,

rather then in three-dimensional systems.

So far we have considered physics of spin-charge separation when approaching

the QCP from the disordered phase. What happens when approaching the QCP

from the AFM ordered Neel phase? In the ordered phase interaction of an impurity

(hole) with a probe magnetic field cannot be written as ψ† (S ·B)ψ since both the

impurity and the antiferromagnetic background interact with the magnetic field.
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The interaction Lagrangian, instead, has quite an unusual form [182, 183]

δLB = (B · n)ψ†(S · n)ψ, (3.43)

where n(r) is Neel ordering vector, n2 = 1. The interaction energy (3.43) of the

impurity with a probe magnetic field depends on the direction of the spontaneous

staggered magnetization n. This implies that notion of impurity’s spin in the phase

with broken rotational invariance is not well defined. This is why usually people use

the notion of a pseudospin originating from two AFM sublattices. For example a

holon carries charge and a psedospin, but it does not carry spin in the usual sense.

Therefore it is possible to say that deeply in the Neel phase the impurity’s spin

and charge are always separated, or more precisely are partially separated, see also

discussion in [34].

Even though the notion of the impurity’s spin in AFM phase is poorly defined,

it is not meaningless to ask a question about the distribution of induced magneti-

zation around the impurity. We do not have complete solution to this problem, but

rather propose an intuitive physical picture. Interestingly, this problem has a direct

relevance to the transition to Adler’s theorem regime in the ordered phase. The

Adler’s theorem guarantees that in the spontaneously broken phase the impurity-

magnon coupling constant has additional smallness in the momentum transfer. By

analogy with the case of 2D AFM [184, 61], we expect spin-density in the cloud

decaying as a power law snl(r) ∝ 1/rν in the Neel phase. The value of the exponent

ν should differ in different spatial domains, provided by two characteristic scales

in the problem. The first scale is determined by the impurity spin-flip energy [61],

rA ∼ 1/λ|φ0| ∝ 1/λ|∆|, here φ0 is the vacuum expectation value of φ-field in the

Neel phase. The second scale rH ∼ 1/mH ∼ 1/|∆| is given by the energy gap of the

longitudinal mode. Subscripts A and H stand for Adler and Higgs. In the region

r < rH we expect the same exponent for the magnetization decay, snl(r) ∝ 1/r3,

as on the disordered side of the QCP. To put it in another way, at small distances

r < rH only magnons with large momenta are relevant, which do not “know” the

difference between the spontaneously broken and the paramagnetic phases. On the

other hand, at the distances r > rA Adler’s theorem for the impurity-magnon ver-
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tex is valid and hence the magnetization cloud decays faster than 1/r3; we expect

that it decay as 1/r5. A crossover between the two decays laws is within the range

rH < r < rA. At the QCP the both scales diverge, which means the region with

snl(r) ∝ 1/r3 is unlimitedly extending at |∆| → 0. This is the same behaviour as in

the disordered phase.

3.4.4 Semiclassical limit: impurity with a large spin S

From a theoretical point of view it is interesting to consider the semiclassical case

of a large spin of the impurity. Taking a formal limit S →∞ in Eqs. (3.36), (3.37)

and (3.41) we obtain

Simp = S, snl(r) = 0, 〈φ(r)〉 = −λe
−∆r

4πr
. (3.44)

We see from Eq. (3.44), that in the semiclassical limit there is no nonlocal spin

density around the impurity and a local spin S is unscreened in this case. Therefore,

there is no spin-charge separation in the semiclassical limit.

A local impurity’s spin, nonlocal spin density and staggered magnetization in the

semiclassical limit are provided just by tree-level Feynman diagrams. The reason

is that quantum fluctuations of the impurity’s spin are suppressed at large S. Let

us consider the case of the impurity in the state with the maximal projection of

spin on the quantization axis z: |S, Sz = S〉. The interaction of the impurity with

magnon either leaves the projection Sz to be unchanged or changes it by unity,

∆Sz = −1. The action of an operator Ŝz on the state |S, S〉 provides an eigenvalue

S. On the other hand, the matrix element of the lowering operator Ŝ− between the

states |S, S − 1〉 and |S, S〉 is equal to
√

2S. Therefore, the processes with a change

of the projection of the impurity’s spin are suppressed in the limit of a large S.

In the semiclassical limit only the z-component of the operator of impurity’s spin

is relevant, therefore the Lagrangian in Eq. (3.4) corresponding to the interaction

of the impurity with magnons takes the form

Lint = −λψ†ψφz. (3.45)
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Thus, the problem of a classical impurity “dressed” by z-polarized magnons is equiv-

alent to the problem of impurity interacting with a scalar bosonic field φz. The

problem of an impurity immersed in a scalar boson bath is known as the indepen-

dent boson model, this model is exactly solvable. [185] The exact solution agrees

with Eq. (3.44).

A retarded Green’s function of the impurity in time representation at t > 0 reads

[185]

G(t) = −i exp

[
itε0 − λ2

∑
q

(1− e−iωqt)

2ω3
q

]
, (3.46)

where ε0 = −λ2
∑

q 1/2ω2
q . Performing Fourier transformation of the impurity

Green’s function (3.46), and calculating a quasiparticle residue at the Green’s func-

tion pole ε = ε0, we obtain

Z = exp

(
−λ2

∑
q

1

2ω3
q

)
=

(
∆

Λ

)λ2/4π2

. (3.47)

In the limit S →∞ the RG result (3.34) is consistent with Eq. (3.47).

3.5 Conclusion

The present Chapter has considered a single impurity with a spin S embedded

into a 3D AFM system, which is close to the O(3) QCP separating paramagnetic

and the Neel phase. The impurity’s spin induces the usual magnetization and the

staggered magnetization clouds around the site of the impurity. Approaching the

QCP from the disordered phase, we have calculated spatial distributions of the spin

density s(r) (magnetization) and the staggered magnetization 〈φ(r)〉 in the cloud.

For calculations we use two different methods, Self Consistent Born Approximation

(SCBA) and Renormalization Group (RG). The SCBA is justified by the small

parameter 1/N where N = 3 for the O(3) group, while RG is justified by the small

coupling constant. We show that for S = 1/2, the results of the both methods

are consistent within the expected accuracy 1/N . However, at larger values of the

impurity’s spin SCBA method is not valid because the small parameter 1/N is

compensated by the large spin. Therefore, for S ≥ 1 only the RG results are valid.
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The impurity’s quasiparticle residue vanishes at the QCP, see Eq. (3.34). This is

the first indication that the impurity’s spin is fully transferred to the magnon cloud.

The effect of screening of the impurity’s spin by spin-one magnetic fluctuations is

a Kondo-like effect in a bosonic sector. [169] The spin density has a local compo-

nent Simpδ(r), which is localized at the site of the impurity, as well as a spatially

distributed nonlocal part snl(r). As a result of the vanishing residue the impurity’s

average spin Simp logarithmically vanishes at the QCP, see Eq. (3.34). The total

spin S is conserved and it is transferred into the nonlocal spin cloud. The nonlocal

spin density at r < 1/∆, where ∆ is the magnon gap, decays as snl(r) ∝ 1/r3 with

proper logarithmic corrections, see Eq. (3.41). At r > 1/∆ the spin density decays

exponentially.

Spin in the nonlocal cloud is mainly accumulated at large distances r ' 1/∆,

see Eq. (3.42). Therefore the spin is spatially separated from the impurity and at

∆ → 0 the separation scale becomes infinite. In this sense our results demonstrate

the spin-charge separation in 3D magnetic systems at the QCP.

Interestingly, the cloud of the staggered magnetization at r < 1/∆ decays only

as the first power of distance, see Eq. (3.37). This is why a tiny concentration of

impurities can significantly influence the critical behaviour of the system.

Finally, we have analyzed the semiclassical limit of a very large impurity spin,

S � 1. In this limit the quantum spin-flip transitions become negligible and the

spin impurity problem is reduced to an exactly solvable textbook example. [185]
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Chapter 4

The amplitudes and the structure

of charge density wave in YBCO

In this chapter we perform phenomenological analysis of experimental data on the

recently discovered charge density wave (CDW) in underdoped cuprates and report

unknown s- and d-wave amplitudes of the CDW. The analysis includes data on

nuclear magnetic resonance, resonant inelastic X-ray scattering, and hard X-ray

diffraction for ortho-II YBa2Cu3Oy (YBCO). The amplitude of doping modulation

found in my analysis is of the order of δp ∼ 5 · 10−3 of elementary charge per unit

cell of a CuO2 plane. We show that the data rule out a checkerboard pattern, and

we also show that the data potentially exclude mechanisms of the CDW which do

not include phonons.

4.1 Introduction

The recent discovery of the charge density wave (CDW) in YBCO and other cuprates

gave a new twist to physics of high-Tc superconductivity. Existence of a new charge

ordered phase has been reported in bulk sensitive nuclear magnetic resonance (NMR)

measurements [41, 42, 43], resonant inelastic X-ray scattering (RIXS) [35, 36, 37],

resonant X-ray scattering [38] and hard X-ray diffraction (XRD) [39]. Additional

non-direct evidence comes from measurements of ultrasound speed [186] and Kerr

rotation angle [187].
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While the microscopic mechanism of the CDW and its relation to superconduc-

tivity remains an enigma, there are several firmly established facts listed below, here

we specifically refer to YBCO. (i) The CDW state arises in the underdoped regime

within the doping range 0.08 ≤ p ≤ 0.13. (ii) The onset temperature of CDW at

doping p ∼ 0.1 is TCDW ≈ 150 K, which is between the pseudogap temperature

T ∗ and the superconducting temperature Tc, Tc < TCDW < T ∗. (iii) The CDW

“competes” with superconductivity, the CDW amplitude is suppressed at T < Tc.

Probably due to this reason the CDW amplitude at T < Tc is enhanced by a mag-

netic field that suppresses superconductivity. (iv) The CDW wave-vector is directed

along the CuO link in the CuO2 plane. (v) The wave-vector Q ≈ 0.31 r.l.u. only

very weakly depends on doping. (vi) The CDW is essentially two-dimensional in

low magnetic fields, the correlation length in the c-direction is about one lattice

spacing, while the in-plane correlation length is ξa,b ∼ 20 lattice spacings. (vii) In

high magnetic fields (B > 15 T) and low temperatures (T < 50 K) the CDW ex-

hibits three-dimensional correlations with the correlation length in the c-direction

ξc ∼ 5 lattice spacings [188, 40]. (viii) Ionic displacements in the CDW are about

10−3Å [189].

In spite of numerous experimental and theoretical works, there are two major

unsolved problems in the phenomenology of the CDW. (i) The amplitude of the

electron density modulation remains undetermined. (ii) The intracell spatial charge

pattern is unclear, while there are indications from RIXS [190] and from scanning

tunneling microscopy [191] that the pattern is a combination of s- and d-waves.

The major goal of the present work is to resolve the open problems. We stress

that in the present Chapter we perform combined analysis of experimental data

to resolve the problems of the phenomenology, but we do not build a microscopic

model of the CDW. While we rely on various data, the most important information

in this respect comes from NMR. In particular we use the ortho-II YBCO data.

Ortho-II YBCO (doping p ≈ 0.11) is the least disordered underdoped cuprate and

hence it has the narrowest NMR lines. Development of the CDW with decreasing

of temperature leads to the broadening of the quadrupole satellites in the NMR

spectrum [41, 42, 43]. Below we refer the quadrupole satellites as NQR lines. Quite

often the term ”NQR” implies zero magnetic field measurements. We stress that
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it is not true in our case, NQR here means quadrupole satellites of NMR lines.

The broadening is directly proportional to the CDW amplitude with the coefficients

determined in Ref. [192]. So, one can find the CDW amplitude and this is the idea

of the present analysis. Moreover, combining the data on copper and oxygen NMR

we deduce the CDW intracell pattern within the CuO2 plane.

The second goal of the present work is “partially theoretical”. Based on the

phonon softening data [193] we are able to separate between two broad classes of

possible mechanisms responsible for the formation of the CDW. (i) In the first class

the CDW is driven purely by strongly correlated electrons which generate the charge

wave. In this case phonons and the lattice are only spectators which follow electrons.

(ii) In the second class, which we call “the Peierls/Kohn” scenario, both electrons

and phonons are involved in the CDW development on equal footing. We argue that

the phonon softening data [193] potentially supports the second scenario.

4.2 The amplitudes of the CDW: analysis of NMR

data

The CDW implies modulation of electron charge density on copper and oxygen sites

in the CuO2-planes. Our notations correspond to the orthorhombic YBCO, the axis c

is orthogonal to the CuO2-plane, the in-plane axes a and b are directed perpendicular

and parallel to the oxygen chains, respectively. Usually the CDW is described in

terms of s-, s′-, and d-wave components with amplitudes As, As′ , and Ad, see e.g.

Refs. [190, 44, 191]. The s-wave component corresponds to the modulation of the

population of Cu 3dx2−y2 orbitals, and s′- and d-wave components correspond to the

modulation of the populations of oxygen 2pσ orbitals:

δnd = As cos[Q · r + φs], (4.1)

δnpx = As′ cos[Q · r + φs′ ] + Ad cos[Q · r + φd],

δnpy = As′ cos[Q · r + φs′ ]− Ad cos[Q · r + φd].
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Here Q is the wave vector of the CDW, directed along a or b crystal axis [Q = (Q, 0)

or Q = (0, Q)] and φs, φs′ , φd are the phases of s-, s′- and d-waves. The subscripts

“x” and “y” in Eq. (4.1) indicate different oxygen sites within the CuO2-plane unit

cell. The standard nomenclature of the oxygen sites in YBCO is O(2) and O(3).

The O(2) 2pσ-orbital is parallel to the axis “a”, and the O(3) 2pσ-orbital is parallel

to the axis “b”, see Fig. 4.1. For the CDW wave-vector Q directed along the a-axis,

the “x”-site is O(2) and the “y”-site is O(3) as shown in Fig. 4.1. In the same figure

we indicate excess charge corresponding to s, s′-, and d-waves. For Q orientated

along the axis “b” the “x”-site is O(3), and the “y”-site is O(2).

Figure 4.1: Intra-unit cell patterns of the CDW directed along the a-axis,Q = (Q, 0):
s-wave, s′-wave, and d-wave. Positive and negative excess charge variations are
shown in red and blue respectively.

According to the analysis [192] the NQR frequency of a particular 17O nucleus

is proportional to the local hole density np at this site, and of course it depends on

the orientation of the magnetic field with respect to the oxygen p-orbital,

B ⊥ 2pσ : fO⊥ ≈ 1.23MHz × np + C1,

B || 2pσ : fO|| ≈ 2.45MHz × np + C2, (4.2)

where B is the external magnetic field of NMR. Constants C1 and C2 are due to

other ions in the lattice; generally they depend on the position of the oxygen ion in

the lattice. Typical values of these constants are: C1 ∼ 0.2 MHz, C2 ∼ 0.5 MHz.

According to the same analysis [192] the 63Cu NQR frequency is proportional to
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the local hole density nd at the Cu site and also np at the adjacent oxygen sites,

Cu63(B || c) : f ≈ 94.3MHz × nd (4.3)

− 11MHz × [4− (npa + npb)] + C3.

Here the “ion-related” constant C3 ∼ −6 MHz.

There are two mechanisms for the position dependent variation of the NQR

frequency which are related to the CDW, (i) a variation of the local densities nd, np,

(ii) a variation of the ions’ positions. The position dependent frequency variation

leads to the observed inhomogeneous broadening of the NQR line. Let us show

that the mechanism (ii) is negligible. Only in-plane displacements of ions contribute

to (ii) in the first order in the ion displacement. The magnitudes of the relative

in-plane displacements of Cu and O ions are δr/r . 10−3 [189], where r ≈ 2Å is

the Cu-O distance. Hence we can expect a lattice-related variation of e.g. oxygen

f⊥ at the level δf⊥ ∼ C1δr/r ∼ 0.2 kHz. This is two orders of magnitude smaller

than the CDW related broadening ∼ 10 kHz observed experimentally. For copper

nuclei the expected ion-related broadening comes mainly from the 11× 4MHz term

in (4.3), δf ∼ δr/r × 44 MHz ∼ 0.04 MHz. Again, this is much smaller than the

observed broadening ∼ 1 MHz. These estimates demonstrate that one can neglect

the contribution of the lattice distortion in the NQR broadening. Therefore, below

we consider only the broadening mechanism (i) related to variation of hole densities.

Any compound has an intrinsic quenched disorder. The disorder is responsible

for the NQR line widths at T > TCDW . The experimental NQR lines in a “weak

magnetic field”, B = 12− 15T, are practically symmetric, the analysis of the NQR

lines and the corresponding values of full widths at half maximum (FWHM) are

presented in Refs. [42, 43]. However, the experimental NQR lines in a “strong

magnetic field” [41], B ≈ 30T, are somewhat asymmetric due to various reasons.

The asymmetry brings a small additional uncertainty in the analysis. The “strong

field” data is less detailed than the “weak field” data and therefore the additional

uncertainty is completely negligible, the “strong field” NQR widths are given in Ref.

[41].

Hereafter we assume simple Gaussian lines, I(f) ∝ exp[−(f − f0)2/2σ2
0], where
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Figure 4.2: Experimental NQR lines in ortho-II YBCO. Left panel: 63Cu in magnetic
field B = 28.5T at two different temperatures, 75K and 1.3K [41]. Right panel: 17O
at T = 2.9K at different values of magnetic field [42].

f0 is the center of the NQR line, σ0 corresponds to the intrinsic disorder-related

width. At T < TCDW the line shape is changed to

I(f) ∝
〈

exp

{
− [f − f0 − δf(r)]2

2σ2
0

}〉
, (4.4)

where δf(r),

δf(r) = A cos[(Q · r) + φ] (4.5)

follows from Eqs. (4.2), (4.3), (4.1). In particular, in MHz

δfO⊥ = 1.23 {As′ cos[Q · r + φs′ ]± Ad cos[Q · r + φd]} ,

δfO|| = 2.45 {As′ cos[Q · r + φs′ ]± Ad cos[Q · r + φd]} ,

δfCu = 94.3As cos[Q · r + φs] + 22As′ cos[Q · r + φs′ ]. (4.6)

The averaging in Eq. (4.4), 〈....〉, is performed over the position r of a given ion

(Cu or O) in the CuO plane. A simulation of I(f) in Eq. (4.4) with δf from (4.5)

is straightforward, the results for several values of the ratio A/σ0 are presented in
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Fig. 4.3a. The CDW leads to the NQR line broadening and at larger amplitudes

Figure 4.3: (a) The NQR lineshapes for the stripe-like CDW (4.5). (b) The NQR
lineshapes for the checkerboard CDW (4.7). Both (a) and (b) show the lines for four
different values of the CDW amplitude A with respect to the intrinsic broadening,
A/σ0 = 0, 1, 2, 3.

results in a distinctive double peak structure. For a comparison in the Panel b

of Fig. 4.3 we present the lineshapes obtained with Eq. (4.4) for the checkerboard

density modulation,

δf(r) =
A√
2

[cos(Qra) + cos(Qrb)] . (4.7)

Obviously, the lineshapes in panels a and b of Fig. 4.3 are very different. The

checkerboard pattern does not result in the double peak structure even at very large

amplitudes. NQR data [41, 42] clearly indicate the double peak structure. This is a

fingerprint of the stripe-like CDW. Comparison of the experimental NQR lineshapes

with Panels b of Fig. 4.3 rules out the checkerboard scenario at large magnetic field,

see also [195, 196, 197].

The qualitative difference between the lineshapes corresponding to the stripe and

the checkerboard patterns is a “density of states” effect. Indeed, the NQR intensity

(4.4) can be written in terms of the “density of states”

I(f) ∝ 〈. . .〉 =

∫
dS (. . .) =

∫
df ν(f)(. . .), (4.8)

where (. . .) denotes the Gaussian exponent in (4.4), dS is the element of area in the

CuO2 plane. The “density of states” ν(f) =
∫
dS δ(f − f0 − δf(r)) in the case of

the stripe-like CDW (4.5) has two singularities, see Fig. 4.4, at points f − f0 = ±A.
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Figure 4.4: “Density of states” ν(f) for the stripe CDW (blue line) and for the
checkerboard CDW (red line). The two singularities at f − f0 = ±A in the case of
the stripe-like CDW result in the double peak structure of the NQR lines.

The singularities result in two peaks in the NQR spectrum. On the other hand, in

the case of the checkerboard CDW (4.7) the “density of states” ν(f) has a single

maximum at f = f0, see Fig. 4.4, leading to a single-peak NQR lineshape. After

averaging over the (Q, 0) and (0, Q) stripe domains the double-peak NQR lineshape

is intact. Of course this is true only because the size of the domains (ξa,b ∼ 20− 60

lattice spacings) is much larger then the period of the CDW (2π/Q ≈ 3.2 lattice

spacings).

Numerical integration (averaging) in (4.4) shows that the full NQR line width

at half maximum can be approximated as

Γ0 =
√

8 ln 2σ0,

Γ ≈
√

Γ2
0 + 4 ln 2A2 , if Γ < Γ0,

Γ ≈ 1.2
√

Γ2
0 + 4 ln 2A2 , if Γ > 2Γ0. (4.9)

Note that this is the FWHM even for the non-Gaussian line shape like that in

Fig. 4.3a. All the data we use below are in the regime Γ ≥ 2Γ0.

The typical dependence of the experimental NQR line width [43] on temperature

is sketched in Fig. 4.5.

Hereafter we denote by Γ0 the value of the width at the temperature, where the

width starts to increase with lowering of temperature, and by Γ1 the value of the

width at the lowest available temperature, as indicated in Fig. 4.5. The increase

of the width at low temperatures is due to the CDW development. Comparing
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Figure 4.5: Ortho-II YBCO NQR line broadening versus temperature [43]. 63Cu
data (panel a) are taken in magnetic field 11T and 15T, and 17O data (panels b,c)
are taken in magnetic field 12T. The width is presented in units of the corresponding
central line frequency f0 [43]. The panel a shows Cu(2) data for B||c. The panels
b and c present O(2) and O(3) data respectively for three field orientations, B||a,
B||b, and B||c+ 20o.

the data with Eqs. (4.9) we can find the CDW amplitudes. There are two distinct

Cu positions in ortho-II YBCO, Cu(2E) and Cu(2F), that reside under the empty

(E) and full( F) oxygen chains, respectively. There are also three distinct in-plane

oxygen positions, O(2), O(3F), and O(3E). The O(2) 2pσ orbital is oriented along

the a-axis, and the O(3F), O(3E) 2pσ orbitals are oriented along the b-axis (see

Fig. 4.1). O(3F) resides under the full chain and O(3E) resides under the empty

chain. The NQR broadening data for Cu(2E) and Cu(2F) are almost identical, the

same is true for O(3F) and O(3E). Therefore, in our analysis we do not distinguish

“E” and “F” and refer to them as Cu(2) and O(3) respectively.

It is worth noting that the NQR lines have been measured in NMR experiments.

Therefore, the actual line broadening is a combined effect of the NQR broadening

and the NMR broadening. The NMR broadening comes from the magnetic Knight

shift which is proportional to the charge density modulation. The Knight shift

broadening is itself an interesting effect which can bring additional information

about CDW. However, our present analysis is aimed at NQR. The structure of

NMR satellites enables the subtraction of the Knight shift effect from the data. The

subtraction results in the “rectified” NQR line widths, which we use in our analysis.
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The rectified NQR line widths obtained in Refs. [43, 194] for different ions and for

different orientations of magnetic field are listed in the second and third columns of

Table 4.1. In this case the magnetic field is B = 12− 15T, Γ0 corresponds to 150K

and Γ1 corresponds to 60K. Figures in brackets represent crude estimates of error

Γ0(kHz) Γ1(kHz) |As + 0.23As′ |
Cu(2), B||c 230(30) 460(80) 2.0(0.5)√

A2
s′ + A2

d

O(2), 2pσ||a, B||a 6.0(0.5) 16.0(1.3) 2.9(0.3)
O(2), 2pσ||a, B||b 6.0(0.6) 15.0(0.8) 5.4(0.4)
O(2), 2pσ||a, B||c +20o 5.0(2.0) 16.0(2.5) 6.0(1.1)
O(3), 2pσ||b, B||a 6.0(1.0) 11.0(1.8) 3.6(0.9)
O(3), 2pσ||b, B||b 5.0(2.0) 12.0(2.0) 2.1(0.5)
O(3), 2pσ||b, B||c +20o 9.0(2.3) 18.0(2.3) 6.1(1.4)

Table 4.1: NQR data for ortho-II YBCO in magnetic field B = 12 − 15T. The
line widths, Γ0 = ΓT=150K and Γ1 = ΓT=60K , are measured for different ions and for
different orientations of the magnetic field [43, 194]. The last column displays the
CDW amplitudes deduced from the particular line. Figures in brackets represent
crude estimates of error bars.

bars.

The CDW-induced broadening at oxygen sites comes from contributions of the

s′- and d-waves, see Eq. (4.6). RIXS and XRD data [35, 36, 39, 37] suggest that the

CDW state consists of equally probable domains with the one-dimensional CDW

along (Q, 0) and (0, Q) directions. This means, that even if the phases of s′ and d-

wave are locked in a domain, say φs′ = φd, the s′-d interference disappears from the

oxygen broadening after averaging over orientations of the domains. Hence, com-

paring Eqs. (4.5) and (4.6) we conclude that for the oxygen sites A = K
√
A2
s′ + A2

d

with the coefficient K = 1.23MHz or K = 2.45MHz dependent on the orientation of

the magnetic field. Using the experimental widths presented in Table 4.1 together

with Eq. (4.9) one finds values of
√
A2
s′ + A2

d for each particular oxygen ion and

orientation of the magnetic field. The values with indicative error bars are listed in

the last column of Table 4.1. The average over the six different cases presented in

the Table is √
A2
s′ + A2

d = 3.8 · 10−3 . (4.10)
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Note, that the indicative error bars in Table 4.1 are not statistical, therefore in

Eq. (4.10) we present the simple average value.

The CDW-induced broadening at Cu sites comes from contributions of s- and

s′-waves, see Eq. (4.6). Below we assume that the phases are locked, φs = φs′ .

Hence comparing Eqs. (4.5) and (4.6) we conclude that for Cu sites A = 94.3|As +

0.23As′ |MHz.

Using the experimental widths presented in the top line of Table 4.1 together

with Eq. (4.9) we find

|As + 0.23As′ | = 2.0 · 10−3 . (4.11)

It is very natural to assume that the amplitudesAs andAs′ are related as components

of Zhang-Rice singlet, As ≈ 2As′ , see Ref. [192]. Hence, using (4.10), (4.11) we come

to the following CDW amplitudes at T = 60K and B ≈ 12− 15T,

As = 1.8 · 10−3, As′ = 0.87 · 10−3,

Ad = 3.8 · 10−3, δp = As + 2As′ = 3.5 · 10−3 . (4.12)

The values of As,s′,d are in units of the number of holes per atomic site, and δp is the

doping modulation amplitude in units of the number of holes per unit cell of a CuO2

plane. Values of the amplitudes have not been reported previously, but the ratios

have been deduced from the polarization-resolved resonant X-ray scattering [190].

Our ratio As′/Ad ≈ 0.23 is reasonably close to the value As′/Ad ≈ 0.27 obtained

in Ref. [190], however the ratio As/Ad ≈ 0.47 is significantly larger than the value

reported in Ref. [190]. Superficially our ratio As′/Ad ≈ 0.23 is reasonably close

to the value As′/Ad ≈ 0.27 obtained in Ref. [190], on the other hand the ratio

As/Ad ≈ 0.47 is significantly larger than the value reported in Ref. [190]. However,

one has to be careful making a direct comparison of our results with Ref. [190].

The analysis [190] assumes either s + d or s′ + d models, while we keep the three

components (s + s′ + d model). For example, it is easy to check that the s′ + d

model (s = 0) is inconsistent with the NQR data, so the agreement in the value

As′/Ad ≈ 0.27 is purely accidental. On the other hand, in principle we can fit

the NQR data by the s + d model (s′ = 0), this results in As/Ad ≈ 0.53 that is
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inconsistent with [190].

The ratios of the CDW amplitudes As/Ad ∼ 0.2, As′/Ad ∼ 0.1 have been re-

ported in STM measurements with BSCCO and NaCCOC [44]. Comparing these

ratios (although measured in different cuprates) with our results we see that [44]

indicates dominance of the d-wave component, whereas in our analysis the s-wave

amplitude is about a half of the d-wave amplitude. We do not have an explanation

for the discrepancy between our results and REXS/STM measurements [190, 44],

moreover REXS and STM are inconsistent with each other. The advantage of our

analysis is that it is very simple and straightforward and, of course, NQR is a bulk

probe.

Unfortunately, NQR data for magnetic field B ≈ 30T are not that detailed as

that for B ≈ 12 − 15T. Nevertheless, based on the Cu NQR/NMR line broad-

ening measured in Ref. [41] and rectifying the Cu NQR line width (subtracting

the Knight shift), we conclude that Γ0 = ΓT=75K = 0.6MHz and Γ1 = ΓT=1.3K =

1.0MHz. Hence, using the same procedure as that for the low magnetic field, we find

|As + 0.23As′ | = 3.7·10−3. Again, assuming the Zhang-Rice singlet ratio, As ≈ 2As′ ,

we find the s-wave CDW amplitudes for B ≈ 30T and T = 1.3K:

As = 3.3 · 10−3, As′ = 1.6 · 10−3,

δp = As + 2As′ = 6.5 · 10−3 . (4.13)

The doping modulation amplitude δp is about two times smaller than the estimate

presented in Ref. [41]. Unfortunately, data [42] are not sufficient for unambiguous

subtraction of the Knight shift broadening from oxygen lines, so the determination

of Ad is less accurate. However, roughly at B ≈ 30T and T = 1.3K the value is

Ad ∼ 6 · 10−3.
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4.3 Discussion on microscopic mechanism of the

CDW

To complete our phenomenological analysis we comment on two broad classes of

possible mechanisms of the CDW instability. (i) In the first class the CDW instabil-

ity is driven purely by strongly correlated electrons which generate the charge wave.

It can be due to electron-electron interaction mediated by spin fluctuations and/or

due to the Coulomb interaction, see e.g. Refs [199, 198]. We call this class of CDW

formation mechanisms the “electronic scenario”. In this scenario phonons/lattice

are not crucial for the CDW instability, they are only spectators that follow elec-

trons. (ii) In the second class which we call the “Peierls/Kohn scenario” and which

is known in some other compounds [200, 201, 202], both electrons and phonons are

involved in the CDW development on equal footing. We argue that the phonon

softening data might support the second class.

A very significant softening of transverse acoustic and transverse optical modes

in YBCO has been observed in Ref. [193]. The softening data are reproduced in

Fig. 4.6a. The anomaly is very narrow in momentum space, δq ≈ 0.04 r.l.u., and it

is only two times broader than the width of the elastic CDW peak, δq = 1/ξa,b ≈ 0.02

r.l.u. measured in RIXS and XRD [35, 39, 37]. Our observation is very simple, in

the case of the “electronic” scenario, the electronic CDW creates a weak periodic po-

tential V = V0 cos(Q · r +φ) for phonons. Diffraction of phonons from the potential

must lead to the usual band-structure discontinuity of the phonon dispersion ωq at

q = Q as it is shown by blue lines in Panel b of Fig. 4.6. In the presence of the finite

correlation length of the CDW the discontinuity is healed as it is shown by the red

solid line at the same panel, and combined blue-red solid line shows the expected

phonon dispersion. In Section 4.3.1 we present a calculation which supports this

picture, but generally the picture is very intuitive. Obviously, this physical picture

for the phonon dispersion is qualitatively different from the experimental data in

Panel a of Fig. 4.6. On the other hand the “Peierls/Kohn scenario”, where both elec-

trons and phonons are equally involved in the CDW development, leads to phonon

dispersions like that in Fig. 4.6a. This has been observed in several compounds,

see e.g. Refs. [200, 202]. Even though the phenomenological observation does not
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Figure 4.6: (a): Phonon anomaly (dip) in the dispersion of transverse acoustic (TA)
and transverse optical (TO) modes at q = (0, Q, 6.5) in YBa2Cu3O6.6 [193]. (b) The
expected phonon dispersion in the “electronic scenario”. Blue solid lines show the
dispersion in a perfect long-range CDW, grey lines represent the shadow bands. For
a finite CDW correlation length the shadow bands practically disappear and solid
blue lines become connected by the red solid line.

explain the mechanism of the CDW in underdoped cuprates, the observation poses a

significant challenge to theoretical models based on “the electronic scenario” of the

CDW formation. Furthermore, the phonon softening is generally expected in the

“Kohn/Peierls scenario”, which is likely to be the case in YBCO. At the same time

our arguments in favour of the “Kohn/Peierls scenario” are not quite conclusive.

Indeed, it seems that the “Kohn/Peierls scenario” does not provide an explanation

of the strong broadening of TA and TO phonon modes at T < TCDW [19], as well as

it does not explain why the phonon softening appears only in superconducting state

T < Tc. So the last point of our work is less solid than the main results concerning

the amplitudes of the CDW. Nevertheless, we believe that the presented discussion

of the “Kohn/Peierls scenario” versus “electronic scenario” is useful for future work

on the microscopic mechanism of the CDW.

4.3.1 Ginzburg-Landau model of the CDW and phonon dis-

persion

Here we consider a simple phenomenological Ginzburg-Landau model of the CDW

developed in purely electron sector. Phonons weakly interact with electrons and
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follow the developed CDW as “spectators”. This is the first scenario discussed in

the main text. Our analysis below shows that the phonon softening data does not

support this scenario.

Let us consider a quasi-one dimensional (stripe-like) CDW, we direct the x axis

along the CDW wave-vector. The CDW can be represented as a collective bosonic

mode (ψ) in the electronic system. The effective Ginzburg-Landau-like Lagrangian

for the CDW mode ψ reads

Lψ =
ψ̇2

2
− ψ Ω̂2

2
ψ − α

4
ψ4 , (4.14)

where ψ(r) is a variation of electron density, Ω̂2/2 is operator of “stiffness” of the

CDW mode, and α > 0 is a self-action constant. In momentum representation Ω2
q

is a simple function sketched in Fig. 4.7. Kinetic energy has minima at qx = ±Q,

Figure 4.7: A sketch of the effective kinetic energy Ω2
q of the electronic CDW mode

ψ.

and we can represent it as

Ω2
q = Ω2

Q + κ(q2
x −Q2)2/4, (4.15)

where κ is a some constant. Importantly the minimal value of Ω2
±Q is negative,

Ω2
±Q < 0, providing formation of the incommensurate CDW with the wave vector

Q. The density variation is real, hence

ψ(x) = 2|ψQ| cos(Qx+ φ), (4.16)
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here ψQ is a Fourier component of ψ(r). In a perfect system the phase φ is arbitrary

and this must result in a Goldstone sliding mode. Of course a disorder pins the

phase. A similar phenomenological approach was successfully applied to describe a

CDW state in transition-metal dichalcogenides [203].

To find the CDW amplitude one has to minimize the energy

Eψ =

∫
d2r

(
ψ

Ω̂2

2
ψ +

α

4
ψ4

)
. (4.17)

The saddle-point equation for static ψ(r) reads

Ω̂2ψ + αψ3 = 0. (4.18)

Performing Fourier transform in Eqs. (4.18) and leaving only the dominating Fourier

components with q = ±Q we find

|ψQ|2 = −Ω2
Q/3α. (4.19)

To find the CDW excitation spectrum we expand energy (4.17) up to second

order in fluctuations on the top of the ground state (4.16),(4.19),

δ2Eψ =

∫
d2r

(
δψ

Ω̂2

2
δψ +

3α

2
ψ2(δψ)2

)
. (4.20)

The term ∝ ψ2 = |ψQ|2(2+e2i(Qx+φ) +e−2i(Qx+φ)) in (4.20) plays role of the effective

potential with wave vector 2Q for the ψ-excitations. This results in a mixing between

δψq and δψq−2Q (hereafter we assume that q > 0). Therefore, it is convenient to

write the excitation energy as

δ2Eψ =
∑
q

Ψ†q

Ω2
q + 2|Ω2

Q| |Ω2
Q|e2iφ

|Ω2
Q|e−2iφ Ω2

q−2Q + 2|Ω2
Q|

Ψq, (4.21)

where

Ψq =

 δψq

δψq−2Q

 .
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Euler-Lagrange equation corresponding to (4.14), (4.21) results in the two normal

modes: the sliding Goldstone mode and the gapped Higgs mode with the energies

εGq =
√
κQ2|px|,

εHq =
√

2|Ω2
Q|+ κQ2p2

x

p = q −Q . (4.22)

The corresponding eigenmodes are

Gq = 1/
√

2(eiφδψq − e−iφδψq−2Q),

Hq = 1/
√

2(eiφδψq + e−iφδψq−2Q).
(4.23)

Interestingly, due to the parabolic behaviour of Ω2
q near qx = ±Q, see Fig. 4.7, the

weights of the states with wave vectors q and q − 2Q in (4.23) are equal in a broad

range of momenta around q = ±Q.

The phonon is described by field ϕ, the phonon Lagrangian reads

Lϕ =
ϕ̇2

2
− ϕω̂

2

2
ϕ, (4.24)

where ω̂2/2 is the elastic energy of lattice deformation. In momentum representation

it is equivalent to the bare phonon dispersion ωq. The CDW and phonons weakly

interact, we describe the interaction by the Lagrangian

Lint = −λψϕ , (4.25)

where λ is coupling constant. Due to the coupling the CDW creates phonon conden-

sate at qx = ±Q (static lattice deformation) with amplitude ϕQ = −λ/ω2
Q ψ−Q. Let

us now consider phonon dispersion in the presence of the collective CDW mode. The

interaction (4.25) in combination with Eqs (4.23) results in the following vertexes
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describing transition of phonon to the Higgs and Goldstone modes of the CDW.

〈δϕq|Hq〉 = 〈δϕq|Gq〉 =
λ√
2
eiφ

〈δϕq−2Q|Hq〉 = −〈δϕq−2Q|Gq〉 =
λ√
2
e−iφ .

This leads to normal and anomalous phonon self-energy operators shown in Fig. 4.8.

The corresponding analytical expressions are

Figure 4.8: Normal and anomalous phonon self-energy

Σ(n)
q =

λ2

2

(
1

ω2
q − ε2Hq

+
1

ω2
q − ε2Gq

)
,

Σ(a)
q = e2iφ∆2

q,

∆2
q =

λ2

2

(
1

ω2
q − ε2Hq

− 1

ω2
q − ε2Gq

)
. (4.26)

A selfenergy generally depends on q and ω. In Eqs.(4.26) we set ω = ωq. So

”renormalized” dispersion ω̃q of phonons is described by the eigenvalue problem

ω̃2
qΦq =

ω2
q + Σ

(n)
q e2iφ∆2

q

e−2iφ∆2
q ω2

q−2Q + Σ
(n)
q−2Q

Φq , (4.27)

where

Φq =

 δϕq

δϕq−2Q

 . (4.28)

As it is intuitively clear even without a calculation Eq. (4.27) is equivalent to

scattering of phonon from some effective periodic potential with wave vector 2Q.
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One can represent matrix elements in (4.27) as√
ω2
q + Σ

(n)
q ≈ w + cpx,√

ω2
q−2Q + Σ

(n)
q−2Q ≈ w − cpx,

∆q ≈ ∆ , (4.29)

when the detuning p = q−Q is small. The speed c follows from the overall slope of

the phonon dispersion. For the TO mode w ≈ 15 meV, c ≈ 30 meV/r.l.u., see Fig.

5a in the main text. The phonon dispersion which follows from (4.27) and (4.29),

ω̃2
q ≈ w2 ±

√
4w2c2p2

x + ∆4 , (4.30)

is shown in Fig.5b in the main text by the blue solid line. Shadow bands are indicated

by fading grey lines. Expected intensity of the shadow bands is extremely small.

Intensities of the bright (br) and shadow (sh) modes are

Ibr ∝ |δϕq|2 =
1

2

(
1 +

2wcpx√
4w2c2p2

x + ∆2

)
,

Ish ∝ |δϕq−2Q|2 =
1

2

(
1− 2wcpx√

4w2c2p2
x + ∆2

)
.

If the gap in the phonon spectrum (gap ≈ ∆2/w) is 3 meV (TO mode), the intensity

of the shadow mode practically diminishes at detuning px = qx −Q ≥ 0.04 r.l.u.

So far we disregarded temperature and intrinsic disorder. We remind the follow-

ing experimental observations: (i) the CDW onset temperature is TCDW ∼ 150K, (ii)

the CDW in low/zero magnetic fields is essentially two-dimensional, the correlation

length in the c-direction is about one lattice spacing while the in-plane correlation

length is ξa,b ∼ 20 lattice spacings. In agreement with Mermin-Wagner theorem the

observation (ii) implies that onset of the CDW at T = TCDW is not a true phase

transition, it is a two-dimensional freezing crossover. Hence at T > TCDW the phase

φ fluctuates with time and as a result the off-diagonal matrix element in Eq. (4.27)

is averaged to zero, e2iφ∆2
q → 0. Hence the phonon dispersion at T > TCDW near
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qx = +Q is

ω̃q =

√
ω2
q + Σ

(n)
q ≈ w + cpx . (4.31)

At T < TCDW the temporal fluctuations freeze, however due to the quenched disorder

the phase φ(r) is a fluctuating function of coordinate r with the correlation length

ξa,b. If |px| > 1/ξa,b = 0.02 r.l.u. the spatial fluctuations are not relevant and

the phonon dispersion is given by Eq.(4.30). However, if the detuning is small,

|px| � 1/ξa,b, one must average over spatial fluctuations of the phase φ effectively

vanishing the off-diagonal matrix element, e2iφ∆2
q → 0. This results in the red solid

line connecting the blue solid lines in Fig. 5b in the main text.

All in all the phonon dispersion expected if the “electronic” scenario is realized

is shown in Fig. 5b (main text). Obviously, the dispersion is inconsistent with the

data. Therefore, we rule out the “electronic” scenario.

4.4 Conclusion

In conclusion, our analysis of available experimental data has resolved open problems

in the phenomenology of the charge density wave (CDW) in underdoped cuprates.

We have determined the amplitudes of s-, s′-, and d-wave components of the density

wave. The amplitudes at low magnetic field and temperature T = 60K are given

in Eq. (4.12), and the amplitudes for magnetic field B = 30T and temperature

T = 1.3K are given in Eq. (4.13). We show that the data rule out a checkerboard

pattern, and we also argue that the data might rule out mechanisms of the CDW

which do not include phonons.
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Chapter 5

Meron deconfinement and

skyrmion/meron rings in

frustrated magnets

In the present Chapter we study isolated topological defects (skyrmions and merons)

in frustrated magnets with an easy axis/easy plane anisotropy. We demonstrate that

skyrmions and meron pairs can exist in frustrated magnets in the absence of an exter-

nal magnetic field and we find the conditions for stability of the skyrmions/merons.

We show that isolated skyrmions in frustrated magnets possess unusual properties;

the skyrmions attract each other and form skyrmion rings with a large topological

charge. We found that in the presence of an easy plane anisotropy an elemen-

tary skyrmion with a unit topological charge becomes “fractionalized” into a pair

of merons with a topological charge 1/2 per meron. The meron-meron confinement

potential softens in the vicinity of the collinear-spiral phase transition that leads to

deconfinement of merons at the critical point.

5.1 Introduction

Some fifty years ago Tony Skyrme identified topologically stable “hedgehog”-like

configurations of the meson field with baryons, such as proton and neutron.[72] The

ensuing theoretical work showed that skyrmions indeed provide a semiquantitative
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description of physical properties of baryons and their interactions [114].

Magnetic skyrmion are nanoscale topological defects in solids/magnetic films,

that are characterized by a nonzero topological charge (“winding number”). A

magnetic skyrmion has a number of unique properties including the following: (i)

due to topological protection a skyrmion is a stable object, it can not be destroyed

by any soft perturbations of the spin texture. (ii) A skyrmion can be manipulated

and moved in a controlled way by ultra-low electric currents [105, 88], by an electric

field [89] and a thermal gradient [100]. These properties make skyrmions attractive

for developing skyrmion-based magnetic memory and data processing devices [106,

107, 109, 110].

In spite of a significant progress in the field, there are a few problems on the way

to practical realization of skyrmion-based electronics. First, magnetic skyrmions

have been experimentally observed only in handful of materials, where the main

mechanism responsible for the formation of skyrmions is Dzyaloshinskii-Morya in-

teraction. For future practical applications it is important to extend number of

skyrmionic materials and find new physical mechanisms which support skyrmions.

Second, in all known skyrmionic compounds an external magnetic field is necessary

for stabilization of skyrmions and SkX phases. Finding a new material that hosts

skyrmions in the absence of an external magnetic field would be highly desirable.

A promising candidate for a novel skyrmionic material is a frustrated magnet. Re-

cent studies predicted an existence of skyrmion crystals and isolated skyrmions in

frustrated magnets in an external magnetic field [111, 112, 113].

In the present Chapter we show that in frustrated magnets with a weak easy

axis/easy plane anisotropy an isolated skyrmion is stable even at zero magnetic field.

We found that unlike the case of chiral magnets where skyrmions are repulsive [96],

skyrmions in frustrated magnets can attract each other. The skyrmion-skyrmion

attraction leads to energetic stability of new exotic topological objects, which we

refer to as “skyrmion rings”. Skyrmion rings are the skyrmions with large topological

charges.

Interestingly, similar multi-skyrmion solutions of toroidal, tetrahedral and other

peculiar shapes were used to model light atomic nuclei[115] and nuclear matter was

described as a skyrmion crystal.[116] At high densities skyrmions forming the crystal
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fractionalize into half skyrmions carrying half-integer baryon numbers.[117, 118]

A skyrmion with a unit topological charge can generally be represented as a

bound state of two merons (“half-skyrmions”) with a topological charge |Q| = 1/2

per meron. The concept of a meron originates from nuclear physics, where merons

were invented for description of quark confinement in hadrons [121]. Merons can

exist only in pairs due to their fractional topological charge, hence the merons are

tightly confined within the radius of a skyrmion. The confinement potential increases

with increasing distance between the merons, analogous to the quark confinement

in QCD [122]. Merons have been elusive from a direct detection, however they

were predicted to have many manifestations in condensed matter systems, such

as meron phases in quantum Hall systems [123], bilayer graphene [124] and chiral

magnets[125, 127].

In the present Chapter we demonstrate that meron pairs can be observed in

frustrated magnets with an easy plane anisotropy. Moreover, we show that merons

become spatially separated in the vicinity of a phase transition from FM to a spiral

state. We show that the meron-meron potential at large meron-meron distances

becomes finite at the critical point. At the critical point merons can be separated

from each other by an arbitrary large distance with a small energy cost and therefore

become “deconfined”.

In order to clarify the semantics, we want to emphasise that the terms “skyrmion”

and “meron pair” are used as synonyms in the present Chapter. The both terms refer

to a compact topological objects with a unit topological charge - skyrmion. However,

we will mostly use the term “skyrmion” in the case of magnets with easy axis

anisotropy and “meron pair” in the case of magnets with easy plane anisotropy. The

reasons for this naming convention are as follows: (i) the skyrmion spin configuration

and topological charge density are quite anisotropic in the systems with easy plane

anisotropy. Description of a skyrmion as a bound state of two merons is very natural

in this case. (ii) The deconfinement of merons is possible only in the magnets with

an easy plane anisotropy, whereas in the magnets with an easy axis anisotropy the

merons are always confined inside of a skyrmion.

The Chapter is organized as follows. In Section 5.2 we introduce a model of a

Heisenberg frustrated magnet on the square lattice. In Sec. 5.3 we find skyrmion
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Figure 5.1: (Left panel) An isolated skyrmion in a frustrated magnet in the presence
of an easy axis anisotropy. (Right panel) A pair of merons in a frustrated magnet
in the case of easy plane anisotropy. The arrows represent a direction of spin in a
2D lattice, the color shows the z-component of spin.

solutions at zero magnetic field in the presence of an easy axis anisotropy and we de-

velop a variational description of the skyrmion. In Section 5.4 we analyse skyrmions

in the case of easy plane anisotropy and show how skyrmion becomes fractionalized

in the vicinity of a phase transition to a spiral state. In Section 5.5 we calculate

the skyrmion-skyrmion interaction potential, and show that the skyrmions can form

giant skyrmion rings with a large topological charge. Finally, we summarize our

results in Section 5.6.

5.2 Model

We consider a classical Heisenberg model for a frustrated magnet (at zero temper-

ature) on the square lattice with competing interactions and a single ion onsite

anisotropy. The Hamiltonian of the model reads

H = −J1

∑
〈i,j〉

Si · Sj + J2

∑
〈〈i,j〉〉

Si · Sj + J3

∑
〈〈〈i,j〉〉〉

Si · Sj −
K

2

∑
i

(Szi )2 , (5.1)

where Si is the spin of a unit length (S2
i = 1) at the lattice site i, J1,2,3 are the

Heisenberg exchange couplings, where J1 is ferromagnetic and J2,3 are antiferro-

magnetic couplings (J1,2,3 > 0). The coefficient K characterizes the spin anisotropy,

positive (negative) K corresponds to the case of easy-axis (easy-plane) anisotropy.
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Notation 〈i, j〉, 〈〈i, j〉〉 and 〈〈〈i, j〉〉〉 in Eq. (5.1) denotes summation over the near-

est, next nearest and next-next nearest neighbour sites. Hereafter we set the energy

scale putting J1 = 1.
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Figure 5.2: (a) J2− J3 phase diagram of the square lattice frustrated magnet with
easy axis/easy plane anisotropy for |K| � 1 (see Ref. [204]). With increase of |K|
the phase boundaries become slightly shifted. (b,c) Stability diagrams for isolated
skyrmions and meron pairs with the topological charge Q = 1. Here K = 10−3

for panel (b) and K = −10−3 for panel (c). The Heisenberg couplings J2, J3 and
magnetic anisotropy K are measured in units of nearest FM exchange coupling
J1 = 1.

The model of a frustrated magnet described by Hamiltonian (5.1) has four pos-

sible ground states, see Fig. 5.2a: (i) a collinear ferromagnetic (FM) state, (ii) a

horizontal or vertical spiral phase with the ordering wave vector q = (q, 0) or (0, q)

and (iii) a diagonal spiral phase with q = (q,±q), (iv) a columnar antiferromagnetic

phase (CAF) with the ordering vector q = (0, π) or (π, 0). The J2 − J3 phase dia-

gram in the case of a zero spin anisotropy K = 0 is discussed in Ref. [204] and in

the case of finite K the phase diagram is similar and is analysed in Appendix 5.7.1.

The phase diagram presented in Fig. 5.2a corresponds specifically to the case of

a very small spin anisotropy. Hereafter we will be interested only in the regime of
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small |K| � 1 because, as we will show below, the topological defects (skyrmions

and merons) can exist in the frustrated magnet only in this regime.

In order to study skyrmions and merons it is convenient to consider Hamiltonian

(5.1) in the continuous limit (see e.g. Ref.[205])

E =
1

2

∫
d2r
[
ρ(∂iSµ)2 + b1{(∂2

xSµ)2 + (∂2
ySµ)2}+ b2∂

2
xSµ∂

2
ySµ +K(1− S2

z )
]
,

(5.2)

where ρ = J1−2J2−4J3, b1 = 1/12(−J1 +2J2 +16J3) and b2 = J2. In Eq. (5.2) the

index i = x, y and we assume that the z-axis is perpendicular to the {xy} plane of

the lattice, x and y are directed along the main crystallographic axes of the square

lattice. Of course, the continuous approximation (5.2) is valid only when the spatial

derivatives in (5.2) are small: ∂iSµ � 1 and ∂2
i Sµ � 1.

The first term in the field model (5.2) corresponds to a standard O(3) nonlinear

sigma model (NLσ) with the spin stiffness ρ > 0. Note, that if the frustration

is strong enough (the couplings J2 and J3 are sufficiently large), the spin stiffness

ρ can change sign and become negative. The change of the sign of spin stiffness

indicates a Lifshiz point corresponding to a transition from a collinear FM state to

a spiral state. The high-order derivative terms in (5.2) proportional to b1,2, enforce

stabilization of the system’s energy for ρ < 0 and determine the incommensurate

wave vector q of the spiral ground state. Throughout the Chapter we will be mostly

interested in the regions of the phase diagram in Fig. 5.2 in the vicinity of the

FM-spiral phase boundary (ρ� 1).

5.3 Isolated skyrmions

In the present Section we analyse static properties of isolated skyrmions in the

FM phase of the J1 − J2 − J3 model with an easy axis anisotropy, K > 0. For

this analysis we use the continuum approximation (5.2) and also perform full 2D

numerical simulations of the original lattice model (5.1) solving Landau-Lifshitz-

Gilbert equation with a damping term (for details see Appendix 5.7.2).

The continuum model (5.2) is a generalization of the NLσ model. The standard

O(3) NLσ model E = ρ/2
∫
d2r(∂iSµ)2, which is a long wavelength field model of
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a collinear ferromagnet, has well known topological solutions known as Belavin-

Polyakov (BP) skyrmions [83]. Such skyrmions exist as excitations above a FM

background, where the energy of a skyrmion with a topological charge Q reads

EQ = 4πρ|Q|. Since NLσ model in two spatial dimensions is conformally invariant,

the BP skyrmion has no internal scale, and therefore the energy of the skyrmion

does not depend on size of the skyrmion.

On the other hand, the field theory (5.2) for the frustrated magnet has additional

high order derivative terms originating from frustration (∝ b1 and ∝ b2) and the

spin anisotropy term (∝ K). Following Derrick’s scaling arguments [210] it is easy

to see that Eq. 5.2 supports 2D static skyrmions. The balance between frustration

and magnetic anisotropy provides a characteristic spatial scale for the skyrmions

and leads to stabilization of skyrmions.

Figure 5.3: (a-c) Skyrmions in the frustrated magnet with easy axis anisotropy
(K > 0), corresponding to the points 1, 2, 3 on the phase diagram in Fig. 5.2b.
Arrows show Sx and Sy components of the spin, color indicates Sz. (d-f) Profiles of
topological density ρQ(x, y), Eq. (5.6), of the skyrmions.

Static properties of an isolated skyrmion can be quantitatively understood within

a variational approach. It is worth mentioning that the model (5.2) is not invariant
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under the group of spatial rotations in the {xy} plane. The rotational invariance

is broken due to the terms with the second spatial derivatives (the invariance is

restored in a very special case b2 = 2b1). Instead, the model (5.2) in a general case

respects only a discrete C4 symmetry of the underlying square lattice model (5.1).

For the sake of simplicity we will ignore the spatial anisotropy of the skyrmions and

treat them as radially symmetric. The variational ansatz for skyrmionic solution

with a topological charge Q = 1 reads

Sµ = (sin θ(r) cos(φ+ χ), sin θ(r) sin(φ+ χ), cos θ(r)) , (5.3)

where {r, φ} are the polar coordinates in the {xy} plane with the origin at the center

of skyrmion, and χ is a helicity angle of the skyrmion. The radially symmetric ansatz

is described by a single function θ(r) with the boundary conditions θ(0) = π and

θ(∞) = 0. The ansatz for an antiskyrmion (Q = −1) can be written in the form

(5.3) with the substitution φ→ −φ.

In order to find a skyrmionic solution minimizing the energy (5.2) we use a probe

function θ(r) = π exp(−r/R) which satisfies the boundary conditions, where R is the

variational parameter and corresponds to the radius of the skyrmion. Substituting

this ansatz in (5.2), we obtain

Esk[R] = ρIρ +
b1Ib1 + (b2 − 2b1)Ian

R2
+KIKR

2. (5.4)

The integrals Iρ, Ib1, Ian and IK are dimensionless constants and can be calculated

numerically (see Appendix 5.7.3). The variational energy (5.4) has a minimum as

a function of R at optimal radius of the skyrmion R0 =
(
b1Ib1+(b2−2b1)Ian

KIK

)1/4

. The

radius of skyrmions R� 1 is large at small values of the spin anisotropy K (although

the dependence R on K is very weak, R ∝ 1/K1/4). The variational energy of a

skyrmion with |Q| = 1 is equal to

Esk[R0] = ρIρ + 2
√
b1Ib1 + (b2 − 2b1)Ian

√
KIK . (5.5)

The energy of a skyrmion is positive provided that the skyrmion is an excitation

above the FM ground state. The skyrmion energy (5.5) does not depend on the
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helicity angle χ due to a global O(2) rotational symmetry of the Hamiltonian (5.1)

in the spin space (Sx, Sy). Taking the formal limit b1 = b2 = K = 0 in Eq. (5.5),

that corresponds to the O(3) nonlinear sigma model, we obtain the estimate for the

energy of a BP skyrmion. Our variational ansatz for the skyrmion with |Q| = 1

gives Esk = ρIρ ≈ 13.17ρ that overestimates the exact result Esk = 4πρ by 5%.

In Fig. 5.3 we plot some typical skyrmion solutions, obtained numerically by

solving Landau-Lifshitz-Gilbert equation for the the original 2D square lattice model

(5.1). The details of the numerical procedure are explained in Appendix 5.7.2. We

plot the corresponding spin configurations of the skyrmions (see Fig. 5.3(a,b,c)) and

the topological charge density

ρQ(x, y) =
1

4π
S[∂xS × ∂yS] (5.6)

(see Fig. 5.3(d,e,f) ). One can see that in the limit K � 1 and sufficiently close to

the FM-spiral boundary line in Fig. 5.2(b), the skyrmion size can be much greater

than the lattice spacing in agreement with our variational analysis. The shape of

a skyrmion is controlled by parameters ρ, b1 and b2. When ρ(∂iSµ)2 is a dominant

term in (5.2) the skyrmion is axially symmetric, i.e. round-shaped, see Fig. 5.3(b,e).

If the term b1{(∂2
xSµ)2 + (∂2

xSµ)2} is dominant, the skyrmion is square-shaped, the

diagonals of the square are oriented along (1,±1) crystal axes, see Fig. 5.3(a,d).

Finally, if b2∂
2
xSµ∂

2
ySµ is the dominant term, the skyrmion is also square-shaped,

the diagonals of the square are oriented along (1, 0) and (0, 1) crystal axes which is

apparent in Fig. 5.3c,f.

It is important that skyrmions are stabilized only if the values of antiferromag-

netic exchange couplings are large enough, and can not be stabilized in a normal

unfrustrated ferromagnet. At small values of J2,3 skyrmions are shrinking to a radius

comparable to the lattice constant. We calculated numerically the skyrmion stabil-

ity region (for skyrmions on the FM background); the result is presented in Fig.

5.2b,c (for the details of the numerical calculations see Appendix). At the border

of the stability region skyrmions have a radius of approximately one lattice spacing,

outside of the stability region a skyrmion collapses into a point. The skyrmions can

exist only for sufficiently small values of magnetic anisotropy (see Fig. 5.4) that
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Figure 5.4: J2 −K stability diagram for skyrmions and meron pairs (J3 = 0).

provides a limitation for potential candidates for the skyrmionic materials based on

frustrated magnets. Interestingly skyrmions (and meron pairs) can exist in the spi-

ral phase of a frustrated magnet, however in the present Chapter we do not discuss

topological excitations on a spiral background.

According to Eq. (5.5) skyrmions are stabilized only if the condition b1Ib1 +

(b2 − 2b1)Ian > 0 is fulfilled, otherwise the energy (5.5) becomes unbounded from

below at R → 0 and the skyrmion shrinks to the radius comparable to the lattice

constant. This condition provides a stability domain on the J2 − J3 diagram for

isolated skyrmions in qualitative agreement with the “Skyrmion” region in Fig.

5.2b.

In Fig. 5.5 we present a comparison of numerical results for skyrmion energy

obtained by full 2D simulations (blue line) with the results of the variational ansatz

(5.5) (red line). We see a good agreement between the numerical and variational

results. However, the accuracy of the variational ansatz (5.5) goes down with increas-

ing K (Fig. 5.5, right panel), since the skyrmion size is decreasing as R ∝ 1/K1/4

and the continuous approximation (5.2) becomes less accurate.

We would like to stress, that the isolated skyrmions in a frustrated magnet

can exist at zero magnetic field. Applying magnetic field along the z axis, on the

contrary, will raise the energy of a skyrmion by ∆E ∝ R2Bz and will decrease the

size of the skyrmion. For sufficiently large values of the magnetic field the size of
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Figure 5.5: Energy of a skyrmion versus (left panel) spin stiffness ρ = J1−2J2−4J3,
(right panel) the strength of easy-axis anisotropy K. The energy is measured in units
of J1, we set J1 = 1. The blue line in left and right panels corresponds to numerical
solution of 2D Landau-Lifshitz-Gilbert equation. The red line corresponds to results
of variational ansatz (5.5). The parameters of the model are (left panel) J3 = 0.05,
K = 5 · 10−3, (right panel) J2 = 0.45, J3 = 0.

a skyrmion becomes comparable to one lattice spacing and eventually shrinks to a

zero radius.

5.4 Meron pairs and deconfinement of merons

In the present Section we consider topological excitations in the J1−J2−J3 frustrated

magnet in the presence of an easy plane anisotropy. In this case the vector of

magnetization of the FM ground state lies in the {xy} plane and the FM ground

state spontaneously breaks the O(2) inplane spin rotational symmetry of the system.

Let us choose the direction of the uniform magnetization in the FM state to be along

x-axis, Sx = 1. A topological defect in this case should obey the boundary condition

Sx(r →∞)→ 1. A skyrmionic excitation on the top of the inplane FM background

can be constructed by global rotaion of a skyrmion shown in Fig. 5.3 in the {xz}
plane on the angle π/2: (Sx, Sy, Sz)→ (Sz, Sy,−Sx).

Typical spin configurations for such skyrmions, obtained numerically by solving

Landau-Lifshitz-Gilbert equations for the lattice model (5.1), are presented in Fig.

5.6 (a,b,c). A skyrmion with topological charge Q = 1 in the case of an easy

plane anisotropy is convenient to represent as a bound pair of two merons with the
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topological charge Q = 1/2 per meron, see Fig. 5.6(a,b,c). The spin in the center of

a meron is directed along z axis and the spin outside of the meron core is inplane.

Figure 5.6: (a-c) Meron pairs in the frustrated magnet in the presence of easy plane
anisotropy K < 0. The plots correspond to the (1, 2, 3) points on the phase diagram
in Fig. 5.2c. (d-f) Topological density ρQ for the spin configurations in (a-c). The
frustrated magnet in panels (a,d) and (c,f) is close to the FM-spiral phase boundary,
that results in the topological fractionalization and a spatial separation of merons.

A variational description for a round-shaped meron pair configuration with isotropic

topological density profile (as the meron pair in Fig. 5.6(b,e)) can be developed by

analogy with Sec. 5.3. The variational energy and the size of the meron pair coin-

cide with the results for a skyrmion in Sec. 5.3 after the substitution K → |K| as

discussed in Appendix 5.7.4. This explains why the J2 − J3 and J2 − K stability

diagrams for skyrmions (K > 0) and meron pairs (K < 0) are quite similar, see Fig.

5.2b,c and Fig. 5.4.

In the vicinity of the phase transition between FM and spiral phases we observe

a spatial splitting of merons, shown in Fig. 5.6 (a,d,c,f). The spatial splitting of

merons results in the emergence of two peaks in the topological density profile, see

Fig. 5.6 (d,f). Each meron has a topological charge 1/2, so this splitting can be
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Figure 5.7: (a) Distance between the centers of merons R2mer versus spin stiffness.
The distance R2mer increases while approaching the critical point ρ = 0, resulting
in a “fractionalization” of a topological charge near the critical point. (b) The
meron-meron interaction potential U2mer versus the distance between merons. (c)
The potential Ub + UK versus meron-meron distance. The model parameters are
K = −5 · 10−3, J3 = 0.1. The minimum of the potential energy curves is shifted to
zero.

considered as a fractionalization of a skyrmion into a pair of half-skyrmions - merons.

The fractionalization of a meron pair near the critical line can be understood by

analysing a meron-meron interaction potential. The confinement potential between

merons at large meron-meron separations r � r0 grows logarithmically

U2mer(r) = 2πρ ln(r/r0) +O(1), (5.7)

where r0 is the radius of a meron core. The asymptotic formula (5.7) can be obtained

using a method described in Ref. [113] and it coincides with the meron-meron

potential in the O(3) NLσ model [122].

The potential energy of meron-meron interaction U2mer(r) versus the distance

between the centers of the merons is presented in Fig. 5.7(b). The potential energy

has a hard core repulsion at short distances and logarithmically grows at large

distances in agreement with Eq. 5.7. At small values of the spin stiffness ρ � 1

(near the phase boundary separating FM state and spiral states) the confinement

potential becomes softened. The softening of the potential at ρ→ 0 leads to spatial
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splitting of merons, shown in Fig. 5.6 (a,d,c,f).

The interaction potential U2mer can be formally split in three components corre-

sponding to the four terms in Eq. (5.2):

U2mer(r) = Uρ(r) + Ub(r) + UK(r)− E2mer, (5.8)

where the contributing terms are

Uρ =
ρ

2

∫
d2r(∂iSµ)2, Ub =

∫
d2r
(
b1{(∂2

xSµ)2 + (∂2
ySµ)2}+ b2∂

2
xSµ∂

2
ySµ
)
,

UK = −K
∫
d2r(Sz)

2. (5.9)

Here Sµ is the exact solution for the two-meron configuration separated by a distance

r. In order to calculate the interaction potential we fix the spins in the centers of

merons as Sz = ±1. In the definition of the potential U2mer we subtract the energy

E2mer of the equilibrium two-meron configuration.

Since the confinement potential Uρ ∝ 2πρ ln r, vanishes as ρ → 0, the only

contribution to the meron-meron interaction potential in the vicinity of the critical

line reads U2mer(r)→ Ub(r) +UK(r). The potential at large distances r � r0 scales

as Ub(r) ∝ 1/r2. On the other hand the spin anisotropy component of the potential

UK(r) → const at r � r0, since outside of the meron cores the spins lie within

the {xy} plane, the value of the const is determined by the contributions of meron

cores. Moreover, the sum of the two contributions Ub(r) +UK(r) has a minimum in

the vicinity of the critical line ρ → 0, see Fig. 5.7c. The potential Ub(r) + UK(r)

determines the size of a meron pair near the critical line.

In Fig. 5.7(a) we show how the distance between the centers of the merons grows

while approaching a critical line ρ → 0. The centers of each meron are defined as

the positions (x±0 , y
±
0 ) of maxima (minima) in Sz(x, y). In order to increase accuracy

of calculation of R2mer we perform a local polynomial interpolation of Sz(x, y) near

the points (x±0 , y
±
0 ) and find the extrema points of the interpolated function. The

distance R2mer(ρ) does not diverge as ρ→ 0 and approaches to a finite value at the

critical point.

Since the potential U2mer

∣∣
ρ→0
→Ub + UK remains finite at large distances at the
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critical line, the energy required to dissociate a meron pair is also finite (see Fig.

5.7(c)). Therefore exactly at the critical line the merons become “deconfined”,

meaning the absence of confinement at large distances. Note, that meron pairs do

not break into individual merons even at the critical point. However pumping a

relatively small amount of energy into the system, it is possible to separate merons

on an arbitrary distance.

Note that the fractionalization/deconfinement of a skyrmion occurs only in the

case of an easy-plane anisotropy. A skyrmion solution in the case of K > 0 has only

a single peak in the topological charge density even when ρ→ 0 and does not split

into a pair of merons. The difference between the cases of K > 0 and K < 0 is

in the UK contribution to a meron-meron interaction potential. In the case of an

easy-plane anisotropy the “fractionalization” is possible because with increasing the

distance r → ∞ between merons (Sz = ±1 in the centers of merons) the potential

UK(r)→ const. It is possible separate the merons (at ρ = 0) on the large distances,

because one can encompass a path around a meron, such that S is inplane along the

path. On the other hand a spatial separation of merons in the case of an easy axis

anisotropy (e.g. Sx = ±1 in the centers of merons) is energetically unfavourable due

to the UK term. The spin anisotropy energy UK linearly grows with the distance r

between the compact merons due to a “string” of nearly inplane spins. Along any

path encompassing a meron the z projection of spin will change from Sz = −1 to

Sz = 1 which will give rise to an increasing with r contribution to the energy UK .

5.5 Skyrmion-skyrmion attraction and skyrmion

(meron) rings

Interaction potential of two isolated skyrmions in a 2D frustrated magnet has been

considered in Refs. [112, 113], where it was shown that the asymptotics for the

interaction potential U12(r) between two skyrmions as a function of interskyrmion

distance r reads

U12(r) ∝ cos(χ1 − χ2)Re[exp (−
√
κ2 + µ2r) + i(

√
κ2 − µ2r + φ)]. (5.10)

131



Here κ2 = 1/2
√
K/b1 and µ2 = ρ/4b1, and χ1,2 are helicities of the first and the

second skyrmion. The spatial anisotropy term ∝ (b1 − 2b2) presented in (5.2) is

neglected in the interaction potential (5.10). If the spin stiffness ρ is negative the

interaction potential U12(r) in Eq. (5.10) exhibits oscillations with r, which was

numerically demonstrated in Refs. [112, 113]. The FM ground state for ρ < 0 was

stabilized by an external magnetic field along z axis. The oscillating behaviour of

U12(r) in this case leads to an overall repulsion between skyrmions.

In the present Section we show that skyrmions in frustrated magnets can also

exhibit attraction. The r-oscillations of U12(r) are suppressed by the exponent in

(5.10) in the case when ρ > 0. Moreover, in the regime ρ > 2
√
Kb1 (or µ2 > κ2) the

exponent in (5.10) becomes real and the potential has a definite sign

U12(r) ∝ cos(χ1 − χ2) exp (−[
√
κ2 + µ2 −

√
µ2 − κ2]r). (5.11)

In the case of skyrmions with equal helicitles χ1 = χ2 the potential U12(r) is repul-

sive. For the case of skyrmions with “opposite” helicities χ1−χ2 = π the potential is

attractive. We numerically calculate the interaction potential of two skyrmions (in

the regime ρ > 2
√
Kb1 ) with equal/“opposite” helicities, see Fig. 5.8. To calculate

the interaction energy we fix the spins in the centers of the skyrmions, Sz = −1. The

long distance behaviour of U12(r) in Fig. 5.8 qualitatively agrees with the prediction

(5.11). The most interesting case is the case of “opposite” helicities, when U12 < 0 is

attractive. The possibility of attractive interaction between skyrmions in frustrated

magnets was also pointed out in Ref. [209].

At very short distances r < R (R is the radius of a skyrmion) the cores of

skyrmions start to overlap and the attraction changes to a repulsion. The skyrmions

merge at r < R and form a skyrmion-skyrmion bound state with topological number

Q = 2.

The attractive nature of the interskyrmion potential U12(r) make possible a for-

mation of stable giant skyrmions with large topological numbers. In Fig. 5.9(a)

we plot spin configurations of skyrmions with topological charges Q = 1, 2, 3. The

multi-Q skyrmions have been obtained by merging several elementary skyrmions

with Q = 1. The energy of a multi-Q skyrmion is smaller then the total energy of
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Figure 5.8: Potential energy U12(r) of interaction between two skyrmions as a
function of distance between the centers of the skyrmions. The red line corresponds
to the case of equal helicities χ1 = χ2, the blue line corresponds to χ1−χ2 = π. We
use following set of parameters J2 = 0.2, J3 = 0.149, K = 0.01.

Q isolated skyrmions and can be considered as their bound state. The energy of

the multy-Q bound state per skyrmion EQ/|Q| decreases with |Q| (see Fig. 5.9(b))

that indicates about a tendency of the skyrmions to aggregate in giant skyrmions

with a large topological charge. The fact that U12(r) has minimum at r = r0 (see

Fig. 5.8) suggests that the skyrmion with a large Q occupies the area ∼ Qπr2
0, so

that the skyrmion radius R ∼ r0Q
1/2. Surprisingly, this is not the case: the topo-

logical charge and energy densities of the multi-Q skyrmion are concentrated in a

ring of radius R ∼ r0Q (see Figs. 5.10(a,c)).

Figure 5.9b shows that the energy per skyrmion, EQ/Q, decreases with increasing

Q and approaches a constant, because the width of the ring and the length of the

ring segment occupied by one skyrmion become Q-independent. The energy of

skyrmion in the ring is significantly lower than that of the elementary skyrmion.
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(b)

Figure 5.9: (a) Skyrmions with topological numbers Q = 1, 2, 3 in a frustrated
magnet on the square lattice. (b) Energy of a skyrmion per topological charge
EQ/Q. Formation of multi-Q skyrmions is energetically favourable, because EQ/Q
decays with Q. Parameters J2, J3 and K are the same as in Fig. (5.8).

This “mass defect” drives the fusion of skyrmions, which increases the magnitude of

the skyrmion magnetic moment, Mz =
∑

i(S
z
i − 1) < 0, counted from the positive

magnetic moment of the FM state: for Q elementary skyrmions Mz ∝ −Q, whereas

for the ring with topological charge Q, Mz ∝ −Q2. A magnetic field applied in the

positive z direction would lead to fission of multi-Q skyrmions into skyrmions with
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smaller topological charges.

An example of a stable giant skyrmion with Q = 6 is presented in Fig. 5.10(a,c).

The topological density of such a skyrmion is mainly concentrated at the perimeter

of the skyrmion (see Fig. 5.10(c)), since the spins in the core of the skyrmions are

uniformly polarized along the z-direction. Similarly the energy of the skyrmion is

also localized at the perimeter of the skyrmion, hence the name “skyrmion rings”

Figure 5.10: (a,c) A skyrmion ring with Q = 6 in the frustrated magnet with an
easy axis anisotropy (K = 0.01). (b,d) A meron ring with the net topological charge
Q = 6 (easy plane anisotropy, K = −0.01). Panels (a,b) show spin configuration,
panels (c, d) represent the topological charge density ρQ(x, y). Parameters of the
simulations are J2 = 0.2, ρ = 3 · 10−3.

The energy of a skyrmion ring can be evaluated using a variational approach,

approximating the large skyrmion as a “domain wall” bent into a closed loop, which

separates a FM state with Sz = −1 (inside of the skyrmion core, r < R) from the

FM state with spin projection Sz = 1 (outside of the skyrmion core, r > R). Let

us introduce a local coordinate system with the x-axis perpendicular to the domain

135



wall and the y-axis parallel to the domain wall. Substituting a variational ansatz

cos θ(x) = − tanh(κx) (κ is the width of the domain wall) and φ(y) = qy (q is

the wave vector describing rotation of Sx,y spin projections along the domain wall

boundary) into Eq.(5.2), we obtain

EQ =
Ls
κ

[
ρ
(
q2 + κ2

)
+ b1

(
q4 + κ4

)
+
b2

3
q2κ2 +K

]
, (5.12)

where Ls is the perimeter of the skyrmion ring. Due to the periodicity condition the

angle φ undergoes an integer number of rotations after following a closed loop on

the skyrmion boundary qLs = 2πQ. Minimization of the domain wall energy with

respect to q and κ gives the energy per skyrmion for |Q| � 1:

EQ/|Q| = 4π

(
ρ+

√
K

(
2b1 +

1

3
b2

))
. (5.13)

Let us compare EQ/|Q| in Eq. (5.13) with the energy Esk of a |Q| = 1 skyrmion, in

Eq. (5.5). After substitution of the numerical values of the dimensionless integrals

Iρ, Ib1, Ian, IK (Appendix 5.7.3) one can see that EQ/|Q| < Esk; this agrees with

Fig. 5.9b and which explains why isolated skyrmions aggregate into the ring.

Let us remind that multi-skyrmion solutions for arbitrary Q exist in the usual

O(3) NLσ model. However, the binding energy of the multi-Q BP skyrmions is zero,

since in this case EQ = 4πρs|Q|. Such skyrmions are not stable with respect to a

decay on skyrmions with smaller Q, in the contrast with the multi-Q skyrmions in

frustrated magnets.

Similar to multi-skyrmion rings there are also possible multi-meron configura-

tions with a large topological charge. Meron pairs can form multi-meron bound

states, in Fig. 5.10 (c,d) we show bound states of twelve merons with the total

topological charge Q = 6.

As we have shown in the present Section, the attraction between skyrmions in

frustrated magnets makes possible an existence of new exotic topological objects -

skyrmion/meron rings. This unique feature of frustrated magnets tunes them into a

potential platform for studying physics of skyrmions with large topological charges.

136



5.6 Discussion and conclusions

In the present Chapter we have studied skyrmions, meron pairs and skyrmion rings in

frustrated magnets with an easy axis/easy plane anisotropy. Skyrmions and meron

pairs can exist in these materials as excitations above a FM ground state. The

balance between frustration and spin anisotropy stabilises the isolated topological

defects even in the absence of an external magnetic field.

As a specific model we considered a J1−J2−J3 Heisenberg model on the square

lattice. However, in our analytical/variational analysis we used a continuum model

(5.2); this allows most of our qualitative results to be generic and not specific for a

particular choice of a lattice model of a frustrated magnet.

We found conditions for stability of the skyrmions/meron pairs and presented

a stability phase diagram. We show that isolated skyrmions in frustrated magnets

possess unusual properties: (i) the skyrmions attract each other and form skyrmions

with a large topological charge (skyrmion rings). The energy and topological charge

of a skyrmion ring is concentrated on its boundary. (ii) We showed that an elemen-

tary skyrmion with a unit topological charge becomes fractionalized in the presence

of an easy plane anisotropy and exist as a bound state of two spatially separated

merons with a topological charge 1/2 per meron. We demonstrated that the dis-

tance between the merons increases while approaching a phase transition to a spiral

state and we showed that at critical line only finite amount of energy is needed to

dissociate a meron pair allowing merons to become deconfined.

A very important task for future experimental work is to find a frustrated com-

pound hosting skyrmions. One of the possible candidates is a wide class of vanadates

(e.g. VOMoO4 and PbVO3) that correspond to J1 − J2 model with antiferromag-

netic both J1 and J2. Another promising candidate is (Pt1−xIrx)Fe bilayer system

on Pd (111) substrate [207], that has both Dzyaloshinsky-Morya and frustration

Heizenberg exchange interactions on the interface of the bilayer. Meron pairs and

meron rings can exist in the collinear phase of the easy-plane triangular antiferro-

magnet NiBr2.[211] Search for novel frustrated compounds can open a new avenue

for skyrmion studies.
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5.7 Appendix

5.7.1 Phase diagram for the J1 − J2 − J3 − K model of a

frustrated magnet on the square lattice

In the present section we analyse the phase diagram for a classical Heisenberg J1 −
J2 − J3 −K ferromagnet. The phase diagram in the case of easy-plane anisotropy

(K < 0) is identical to the phase diagram for J1 − J2 − J3 Heisenberg model at

K = 0. On the other hand, an easy axis anisotropy (K > 0) changes the phase

diagram and impacts the boundary line separating FM state from spiral and CAF

states. There are three phase boundaries we need to consider: (i) FM - 1D spiral,

(ii) FM - 2D spiral, (iii) FM - CAF.

(i) FM-1D spiral

In this section we consider the phase boundary between FM and (q, 0)/(0, q) spiral.

To be specific we choose the wave vector of 1D spiral parallel to x-axis. One-

dimensional spiral state can be parametrized in form

nz(x) = cos θ(x), nx(x) = sin θ(x). (5.14)

Substituting (5.14) in (5.2) we obtain energy of the spiral state

E[θ] =
Ly
2

∫ ∞
−∞

dx
[
ρ(θ′)2 + b1

{
(θ′′)2 + (θ′)4

}
+K sin2 θ

]
. (5.15)

Here Ly is the length of the domain wall in y-direction. The phase transition from

FM to the spiral state is energetically favourable when the energy of the domain

walls becomes negative. Proliferation of domain walls indicates a transition to a 1D

spiral state, the normal to the domain wall is parallel to the x-axis. We are using

the following ansatz for the domain wall solution

cos θ = tanh(x/l), (5.16)
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where l is a variational parameter. Substituting the ansatz in (5.15) and calculating

corresponding integrals over x, we obtain

E[l] = Ly

[
ρ

l
+
b1

l3
+Kl

]
. (5.17)

Minimizing energy (5.17) as a function of the parameter l, we obtain optimal width

l20 = (ρ +
√
ρ2 + 12Kb1)/2K and the energy of domain wall E[l0] = 2Ly

l30
(ρl20 + 2b1).

Condition for the phase transition is E[l0] = 0, that gives

ρ2 = 2b1K ⇒ J2 = 1/2− 2J3 +K/24 +
√

(K/24)2 + J3K/2. (5.18)

(ii) FM-2D spiral

In the present section we analyse the phase boundary between FM and (q,±q) spiral

phase. The domain walls separating Sz = ±1 regions will orient along one of the

diagonals of the square lattice. Let us choose the wave vector of 2D spiral along

(1, 1) direction. Such two-dimensional spiral can be parametrized in the form

nz(x, y) = cos θ(ξ), nx(x, y) = sin θ(ξ), (5.19)

where ξ = x+ y. Substituting parametrization (5.19) in (5.2), we obtain

E[θ] = L⊥

∫ ∞
−∞

dξ
[
ρ(θξ)

2 + (b1 + b2/2)
{

(θξξ)
2 + (θξ)

4
}

+K sin2 θ/2
]
. (5.20)

Here L⊥ is the length of the domain wall. Let us note that Eq. (5.20) takes the

same form as Eq. (5.15) after the following substitution

b1 → b1 + b2/2, K → K/2. (5.21)

That gives equation for the phase boundary

ρ2 = (b1 + b2/2)K ⇒ 2J2 + 4J3 = 1 +K/6 +
√

(K/6)2 +K/4. (5.22)
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Therefore, according to Eqs. (5.18), (5.22) the FM domain on the J2 − J3 phase

diagram becomes extended in the presence of easy axis anisotropy (for K � 1 the

value of spin stiffness at the FM-spiral boundary line ρ = O(
√
K) < 0).

(iii) FM-CAF

The K-term does not affect the difference in energy between FM and CAF phases.

Therefore, the point (J2, J3) = (1/2, 0) separating FM and CAF phases remains

unchanged for any K.

5.7.2 Details of the numerical procedure

We have performed a minimization of classical energy (5.1) using the Landau-

Lifshitz-Gilbert (LLG) equation with a damping term. The LLG is solved using

forth-order Runge-Kutta method on the 50 × 50 square grid with the periodic

boundary conditions. The spin configuration is evolved until it converges to a time-

independent solution. We use the value of damping coefficient η = 1, however the

final result does not depend on the choice of η.

In order to obtain skyrmion solutions (Fig. 5.3) we use a uniform FM state

(Sz = 1) with a single spin flipped (Sz = −1) in the center of the lattice. The

constraint Sz = −1 is imposed in the process of solving the LLG equation.

To find the interaction potential of meron-meron (Fig. 5.7b) we impose con-

straints Sz = −1 and Sz = 1 in the centers of the merons. For the calculation of

the skyrmion-skyrmion potential (Fig. 5.8) we impose constraint Sz = −1 in the

centers of the skyrmions.

5.7.3 Variational description of fundamental skyrmions

In the present section we discuss a variational analysis of Q = 1 skyrmions in the

case of easy axis anisotropy. Rewriting Eq. (5.2) in the form

E[Sµ] =
1

2

∫
d2r
[
ρ(∂iSµ)2 + b1(∂2Sµ)2 + (b2 − 2b1)∂2

xSµ∂
2
ySµ +K(1− S2

z )
]
,(5.23)
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we explicitly separate isotropic contribution to the elastic energy ∝ b1(∂2Sµ)2 and

anisotropic contribution (b2 − 2b1)∂2
xSµ∂

2
ySµ. Substituting (5.3) the exponential

ansatz θ(r) = πe−r/R into Eq. (5.23) we obtain

E[Sµ] = Eρ + Eb1 + Ean + EK = ρIρ +
b1

R2
Ib1 +

b2 − 2b1

R2
Ian +KR2IK , (5.24)

where the energy terms in (5.24) originate from the corresponding terms in (5.23).

Dimensionless variational integrals Iρ, Ib1, Ian, IK can be calculated numerically

IK =
π

2

∫ ∞
0

dxx sin2 θ(x) ≈ 3.96,

Iρ = π

∫ ∞
0

dxx

[
1

x2
sin2(θ(x)) + (θ′(x))2

]
≈ 13.17,

Ib1 = π

∫ ∞
0

dxx

[(
∆x sin θ(x)− sin θ(x)

x2

)2

+ (∆x cos θ(x))2

]
≈ 73.87,

Ian =
π

8

∫ ∞
0

dx

x3

[
−3 sin2 θ(x) + +x2(θ′(x))2(2− 5 cos 2θ(x)) + x4(θ′(x))4+

3x2(sin 2θ(x)− 2xθ′(x))θ′′(x) + 3xθ′(x) sin 2θ(x) + x4(θ′′(x))2
]
≈ 9.23. (5.25)

Here θ(x) = πe−x and ∆x = ∂xx + 1
x
∂x is the 2D radial Laplacian.

The analytically tractable ansatz θ0(r) = π(1− r/R) at r < R and θ0(r) = 0 at

r > R is sometimes used in literature for a variational description of skyrmions, see

e.g. [78]. However this variational ansatz can not be applied to Eq. (5.2), because

the first derivative of θ0(r) has a discontinuity at r = R. This would result in a

delta-function term in the second order derivatives in Eq. (5.2), therefore (θ′′)2 will

cause a divergence of integrals Ib1 and Ian.

5.7.4 Variational description of meron pairs

A variational description for meron pairs with isotropic topological density profile

(“round” meron pars, as in Fig. 5.6b,e) can be developed by analogy with Sec. 5.3.

A variational skyrmion solution with a unit topological number can be constructed

by performing a global rotation of Sµ parametrized as (5.3) in yz plane on the

angle π/2: (Sx, Sy, Sz)→ (Sx,−Sz, Sy). The simplest isotropic parametrisation for

such meron pair reads Sµ = (sin θ(r) cosφ,− cos θ(r) sin(φ + χ), sin θ(r) sin(φ + χ))
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with the exponential variational function θ(r). Note, that the energy density terms

in (5.2) excluding the spin anisotropy term ∝ K are invariant with respect to a

global rotation in the spin space. This results in the same values of the variational

integrals Ia, Ib1 and Ian as in the case K > 0. The spin anisotropy term in (5.4)

reads −K/2
∫
d2rS2

z (r) = −πK/2
∫
drr sin2 θ(r) = |K|IKR2 (see Eqs. (5.24) and

(5.25) in Suppl. Mater.). Therefore, the variational energy of the meron pair reads

Esk = ρIρ + 2
√
b1Ib1 + (b2 − 2b1)Ian

√
|K|IK . (5.26)

The characteristic size of a meron pair is R0 =
(
b1Ib1+(b2−2b1)Ian

|K|IK

)1/4

. The variational

results for the meron pair energy and the radius coincide with the corresponding

skyrmion energy and radius in Section 5.3 after the substitution K → |K|.

5.7.5 Multi-Q skyrmions

As it shown in the main text, Section 5.5, skyrmion rings can be treated as domain

walls enclosed in a loop. The energy of the domain wall is given by

EQ =
πQ

q

∫
dx
[
ρ
(
θ′

2
+ q2 sin2 θ

)
+ b1

(
θ′′

2
+ θ′

4
+ q4 sin2 θ

)
+ b2q

2 cos2 θθ′
2

+K sin2 θ
]
,

(5.27)

Substituting the variational Ansatz,

cos θ = − tanh(κx), (5.28)

where κ is the inverse width of the domain wall, into Eq.(5.27), we obtain

EQ =
2πQ

qκ

[
ρ
(
q2 + κ2

)
+ b1

(
q4 + κ4

)
+
b2

3
q2κ2 +K

]
. (5.29)

Minimization of the domain wall energy (5.29) with respect to q and κ at fixed

Q gives

κ = |q| =
[

K

2b1 + 1
3
b2

] 1
4

. (5.30)

According to Eq.(5.30) the length per skyrmion is ls = 2π
q

is comparable to the

142



domain wall width 1/κ. The energy per skyrmion reads

EQ/|Q| = 4π

(
ρ+

√
K

(
2b1 +

1

3
b2

))
(5.31)

Importantly, EQ/|Q| is lower than the energy of an isolated skyrmion Esk with

|Q| = 1, Eq. (5.24). This explains why isolated skyrmions aggregate into the ring.

The radius of the ring, R, is given by

2πR = |Q|ls (5.32)

and the total spin projected carried by the ring skyrmion is

SzQ = −2πR2 = − l
2
sQ

2

2π
. (5.33)

In Eq.(5.31) the first term is the Belavin-Polyakov lower bound on the skyrmion

energy obtained in the conformal continuum model. The second term results from

the interplay between the q4 term in expansion of the exchange energy and the

magnetic anisotropy, which also determines the width of the domain wall.

We would like to stress, that without longer range exchange interactions, skyrmions

in the ferromagnetic Heisenberg lattice model are unstable. Thus the skyrmion do-

main wall is stable for 2b1 + 1
3
b2 > 0 and the ferromagnetic state is stable for ρ > 0,

which gives

2J2 + 4J3 < J1 < 4J2 + 16J3. (5.34)

In addition, validity of the continuum model requires q � 1 or

[
6K

−J1 + 4J2 + 16J3

] 1
4

� 1. (5.35)
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[32] V. Hinkov, D. Haug, B. Fauqué, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard,

C. T. Lin, and B. Keimer, Science 319, 597 (2008).

[33] D. Haug, V. Hinkov, Y. Sidis, P. Bourges, N. B. Christensen, A. Ivanov, T.

Keller, C. T. Lin and B. Keimer, New J. Phys., 12, 105006 (2010).

[34] A. I. Milstein and O. P. Sushkov, Phys. Rev. B 78, 014501 (2008).

[35] G. Ghiringhelli et al., Science 337, 821–825 (2012).

[36] A. J. Achkar et al. Phys. Rev. Lett. 109, 167001 (2012).

[37] E. Blackburn et al., Phys. Rev. Lett. 110, 137004 (2013).

[38] R. Comin et al., Science 343, 390 (2014).

[39] J. Chang et al., Nat. Phys. 8, 871–876 (2012).

[40] J. Chang et al., Nat. Comm. 7, 11494 (2016).

[41] T. Wu et al., Nature 477, 191–194 (2011).

[42] T. Wu et al., Nat. Commun. 4, 2113 (2013).

[43] T. Wu et al., Nat. Commun. 6, 6438 (2015).

[44] K. Fujita et al., Science 344, 612 (2014).

[45] M. H. Hamidan et al., Nature Physics 8, 871 (2012).

[46] W. Tabis et al., Nat. Commun. 5, 5875 (2014).

155



[47] J. M. Tranquada, B. J. Sternlieb, J. D. Axe, Y. Nakamura, S. Uchida, Nature

375, 561 (1995).

[48] P. Abbamonte et al., Nat. Phys. 1, 155 (2005).

[49] H. Alloul, J. Bobroff, M. Gabay, and P. J. Hirschfeld, Rev. Mod. Phys. 81, 45

(2009).

[50] M. Takigawa, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. B 55, 14129

(1997).

[51] J. Bobroff, N. Laflorencie, L. K. Alexander, A. V. Mahajan, B. Koteswararao,

and P. Mendels, Phys. Rev. Lett. 103, 047201 (2009).

[52] A. V. Mahajan, H. Alloul, G. Collin, and J. F. Marucco Phys. Rev. Lett. 72,

3100 (1994).

[53] J. Bobroff, W. A. MacFarlane, H. Alloul, P. Mendels, N. Blanchard, G. Collin,

and J. F. Marucco, Phys. Rev. Lett. 83, 4381 (1999).

[54] M.-H. Julien, T. Feher, M. Horvatic, C. Berthier, O. N. Bakharev, P. Segransan,

G. Collin, and J.-F. Marucco, Phys. Rev. Lett.84, 3422 (2000).

[55] S. Ouazi, J. Bobroff, H. Alloul, M. Le Tacon, N. Blanchard, G. Collin, M. H.

Julien, M. Horvatic, and C. Berthier, Phys. Rev. Lett. 96, 127005 (2006).

[56] H. Imamura, T. Ono, K. Goto, and H. Tanaka, Phys. Rev. B 74, 064423 (2006).

[57] T. Suzuki, I. Watanabe, F. Yamada, Y. Ishii, K. Ohishi, Risdiana, T. Goto,

and H. Tanaka, Phys. Rev. B 80, 064407 (2009).

[58] T. Suzuki, M. Yamada, Y. Ishii, I. Watanabe, T. Goto, and H. Tanaka, K.

Kubo, Phys. Rev. B 83, 174436 (2011).

[59] G. B. Martins, M. Laukamp, J. Riera, and E. Dagotto, Phys. Rev. Lett. 78,

3563 (1997).

[60] S. Eggert, O. F. Syljuasen, F. Anfuso, and M. Andres, ibid. 99, 097204 (2007).

156
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