
Phys. Scr. 96 (2021) 095301 https://doi.org/10.1088/1402-4896/ac02f1

PAPER

Relativistic quantum dynamics of scalar particles in the rainbow
formalism of gravity

EEKangal1,M Salti2 , OAydogdu2 andKSogut2,∗

1 Computer Technology and Information Systems, Erdemli School of Applied Technology and Management, Mersin University, Mersin
33740, Turkey

2 Department of Physics, Faculty of Arts and Science,MersinUniversity,Mersin, TR 33343, Turkey
∗ Author towhomany correspondence should be addressed.

E-mail: evrimersin@gmail.com,msalti@mersin.edu.tr, oktaydogdu@mersin.edu.tr and kenansogut@mersin.edu.tr

Keywords:Klein–Gordon equation, curved spacetime, rainbow gravity

Abstract
In the present article, we investigate the Klein–Gordon equation (KGE) in a topologically trivial
Gödel-type space-time in the context of rainbow gravity (RG). Exact solutions and energy spectrumof
scalar particles are obtained for the consideredmodel. Also, the same systems are studiedwith the
existence of the Klein–Gordon oscillator (KGO) potential. Results are evaluated by considering two
different rainbow functions and they are analyzed graphically.We observe that the energy spectrumof
scalar particles ismodified by rainbow functions compared to the solutions obtained via the ordinary
general relativity (GR) theory.

1. Introduction

Einstein’sGR theory is theultimate ‘classical’ theory introduced todescribe thenature of space-time andhasmany
well-tested results [1–4]. According to theGR, the existence ofmatter and energywarps the geometry of space-time
and alterations in the geometry influence thedynamics of thematter andfields. The curvature of geometry is
equivalent to a gravitational potential and affects themotion of particles through the space-time.GRpresents the
most compatible resultswith the experimental data obtained for thenovel effects of gravity such as gravitational
waves, gravitational lensing and gravitational time dilation. Therewithal,GRhas become a crucial tool formodern
cosmology and astrophysics in the researchof blackholes.However, in addition to these achievements,GRalone is
inadequate to examine the early universe and there aremodifiedGR theories [5–11] in the literature in order to
overcomedifficulties such as inability to renormalize thequantumfield theory formof gravitation andmodels
predicting the slowdownof theUniverse. Thesemodified theories shouldbe consistentwith successful predictions
ofGRand the observational data [12–14] that reveal the acceleration ofuniverse.

Modified theories aiming to investigate the quantum effects of gravity, in particular that should be active in
the early stages of theUniverse, have become a significant area of themodern physics. These proposed theories
should be utilized to avoid the initial singularity through a potential barrier. Although there isn’t a completely
self-consistent theory forQG, semi-classical approaches have gained a lot of attention in recent years [15]. For
this purpose, an approach presented byAmelino-Camelia known as ‘Doubly Special Relativity’ (DSR) addresses
theminimumaccessible regions inwhich theQG effect are dominant [16]. Consequently, it has been
demonstrated in some observations [17] that at such ultra-high energy scales, the dynamics of particles are
affected just as in curved space-time and depending on that the relativistic dispersion relation has to bemodified
accordingly [17, 18]. Afterwards,Magueijo and Smolin generalizedDSR to ‘DoublyGeneral Relativity’ (DGR) by
considering gravity [19]. DGR implies that at high energy regimes geometry of classical space-time affected by
probing particles with various energies and becomes a ‘running geometry’, namely the standardmetric is
deformed.

The RG [20, 21] has an increasing interest in recent years and offers results compatible with the predictions
of theGR in understanding the quantum effects of gravity. The RGpossesses the invariance of both the speed of
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light and Planck’s energy [22, 23]. In the context of RG, plenty of studies have been performed regarding to
cosmology and astrophysics. Amongmany of them, the thermodynamics ofmodified black holes are studied in
the context of RG and temperature of black holes probed by particles is found to be energy-dependent for some
specific rainbowmetrics [24–27]. Also, RG is combinedwith f (R) theory [28, 29] to study charged black holes.
By using theRG formalism, Ali et al have shown that the time taken by both the in-going observer to cross the
black hole horizon and the asymptotic observer will befinite when themeasurements were performed to the
Planck’s scale. They showed that RG removes information paradox of black holes [30]. In another study, Ali has
studied thermodynamical features of the rainbow black hole and found that the RG can cause a newmass-
temperature relation and prevents black holes for entire evaporation [31]. Awad et al [32] andHendi et al [33]
have studied the general conditions of removing the big bang singularities via FRWcosmology in the context of
RG andGauss-Bonnet gravity. The effects of rainbow functions on the features of neutron stars such as the
variations of theirmaximummass have been studied by considering amodified spherical symmetricmetric
[34, 35]. Additionally, in [36] it has been examined to establish a connection betweenHŏrava-Lifshitz gravity
andRG.

In recent decades, the dynamics of scalar (spin-0mesons via theKGE), fermionic (spin-1/2 electrons via the
Dirac equation) and vector particles (spin-1 such asW±,Z0 bosons and photons via theDuffin-Kemmer-Peatiau
equation) have been extensively studied in curved space-timemodels [37–45]. Also, relativistic formof the
harmonic oscillator [46] has been included in these equations as a linear interaction [47–52].

Recently, a great attention has been given to the solutions of Klein–Gordon andDirac equations in the
context of RG. In a study presented in [53], Santos et al obtained the energy spectrumof scalar particles in the
cosmic string space-time for theKGOand a vector potential of the Coulomb-type for two different choices of
rainbow functions. Bakke andMota [54] studied the energy spectrumof fermionic particles in the same space-
time via RG formalismdescribed by twodifferent rainbow functions. Also, Bezerra et al [55] investigated the
energy spectrumof relativistic and non-relativistic scalar particles and analyzed the Landau levels in the cosmic
string space-time in the framework of RG. In these studies, they showed thatmodified theory, the RG, leads to
alterations in the usual energy levels obtained in considered space-time.

In the present study, our goal is also to investigate the energy spectrumof KGO in aGödel-typemetric in the
context of RGdescribed by two rainbow functions. This problemhas previously been studied in [56] based on
theGR formalism.We solve exactly theKGE for theKGO in a topologically trivial Gödel-type space-time
deformed by the rainbow functions and obtain the energy levels.We compare the results obtainedwith those
obtained in the absence of rainbow functions and analyze the energy levels graphically.

The structure of the paperwill be as follows: In subsequent section, we summarize fundamentals of the RG
framework and present some preliminary calculations. In section 3, we find exact solutions of the KGE and
obtain a relation for the quantized energy levels of the scalar particles. Then, in section 4, we analyze quantum
dynamics of the KGO in the RG formalism. Finally, we discuss the obtained results in section 5. Throughout the
study, we use natural unitsG= ÿ= c= 1.

2. Preliminaries

TheRG is a semi-classical approach to search for a quantum gravity theory at ultra-high energy regime. In the
context of the theory, Lorentz symmetry breakdown occurs at this energy scale by introducing the rainbow
functions in the energy-momentumdispersion relation [19, 21]. Accordingly, themetric is alsomodified as to be
energy-dependent. In themodifiedmetric, QG corrections are also represented by the rainbow functions.
Therefore, definition of these rainbow functions has very important theoretical and phenomenological
outcomes, such as removing the initial singularity in the cosmic periodwith rescaling the general formof the
FRWmetric in accordance with RG [57]. As the energy of probing particlemoving in the space-time approaches
to the Planck scale, the energy-dependence of themetric becomes stronger. Themodified dispersion relation is
given in the following form,

c c- =f E g p m , 12 2 2 2 2( ) ( ) ( )

where,m ismass of particle, c = E

EPl
is the ratio of energy of the probing particle to the Planck’s energy EPl, f (χ)

and g(χ) are called as ‘rainbow functions’. For the infrared energy regimes, the rainbow functions obey the below
expression,

c c= =
c c 

f glim lim 1, 2
0 0

( ) ( ) ( )

and usual dispersion relation and ordinaryGR are recovered.
According to perspective of the RG, themodified equivalence principle suggests thatmetrics are given in

terms of energy-dependent tetrads [58]
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where the tilde refers to the energy-independent tetrads.
InGR, exact solutions of thefield equations are crucial to our comprehension of real physical universe.

However, Einstein’sfield equations also allow the existence of non-physical solutions, and the behavior of these
solutions violates very important fundamental physical requirements such as the causality. Even so, these
anomalous solutions provide a philosophical insight into the properties of general relativity [59]. Themost
famous of these types of solutions is Gödel’smetric [60]. In that study, Gödel investigates a non-expanding but
rotating solution of the Einstein field equations. TheGödel’smetric contains closed time-like and closed null
curves, so themetric is acausal [61]. It allows for timelike curves but does not include timelike geodesics. The so-
calledGödel universe has no singularity or horizon [62, 63]. Later, Gödel also investigated the features of
expanding and rotating spatially homogeneous solutions offield equations [64]. In theGR, attempts have been
made on the generalization of Gödel’smetric to eliminate closed timelike and closed null curves [65–67].

In a study performed byAhmed [68], a topologically trivial Gödel-type space-time is introduced as

a a= - + + - - +ds dt dx x dy xdtdy dz1 2 , 52 2 2 2 2 2 2( ) ( )

whereα> 0 and−∞< t, x, y, z<∞ . Aswementioned in the previous section, energy spectrumof the scalar
particles for this background is obtained via the ordinary GR formalism in [56]. In theRG gravity, with the help
of relations (3) and (4), the line-element describingGödel-type space-time should bemodified as follows

c c
a

a
c c

= - + + - + -ds
dt

f g
dx x dy dz

x

f g
dtdy

1
1

2
. 62
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So, the covariant and contravariant forms of themetric tensor are written as
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3.Quantized energy for scalar particles

The covariant formof the equation of relativistic scalar particles in the presence of external vector fields in a
curved space-time is written as [56]

y-
-

 -  + =m
mn

n
+ -

g
g g m

1
0, 92⎡

⎣
⎢

⎤

⎦
⎥ ( )( ) ( )

where,m ismass of particle and

- = - mng detg , 10( )

 = ¶  G +m m m m
 iA . 11( )( )

Also,Γμ andAμ denote vector potentials coupled non-minimally andminimally to theKGE, respectively. For
the consideredmetric, we have
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c c
- =g

f g
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Now,we are in a position to discuss exact solutions of theKGE and energy levels of scalar particles in aGödel-
type via the RG framework.

In the absence of vector potentials, equation (9) takes the following form in view of themetric (6)

f- + + =
d

dx
Ax Bx C x 0, 13
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Thus, we canwrite

y f= + -e x , 17i zP yP Etz y ( ) ( )( )

since theHamiltonian of the system is independent of y, z and t coordinates. Introducing a new variable
x = +x B

A2
reduces equation (13) to the formofWeber equation [69]:

f x
x

x f x- - + =
d

d
A

B

A
C

4
0, 18

2

2
2

2
⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )

which is providing the conditions

= >A k 0, 192 ( )

- + = - +
B

A
C n k

4
2 1 . 20

2

( ) ( )

As a result, the corresponding solutions are obtained as

f x x= x-e H k , 21k
n

1
2

2( ) ( ) ( )

where = a c
c

k
E f

g

( )
( )

andHn representHermite polynomials with n= (1, 2, 3,K).Making use of the conditions

given in equations (19) and (20) one can obtain the energy spectrumof the probing particle as

c
c c

=  + +E
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2
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Under the infrared energy limit defined by equation (2), this energy expression reduces to the exact form
obtained in [56]. Hence, energy levels can be evaluated exactly by focusing on two rainbow functions. On this
purpose, we can consider two different scenarios for the rainbow functions:

c c
lc

= =
-

f g1 Scenario:
1

1
, 24st ( ) ( ) ( )

c c lc= = -f g2 Scenario: 1, 1 . 25nd 2( ) ( ) ( )

whereλ is a dimensionless parameter. These forms of the rainbow functions have been taken into account
previously in [15, 16, 18] and [70, 71] in studying of black hole physics, black hole thermodynamics, initial
singularity problem and in solving theDirac equation. The quantumeffects are inserted in the rainbow functions
and these functions represent the deformation of the early spacetime geometry as a result of themotion of
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probing particles. Therefore, defining suitable rainbow functions is significant in view of both theoretical and
phenomenological studies.

Considering thefirst scenario of the rainbow functions leads to the following energy spectrum for the scalar
particles

=
 + + -

-

~ ~ l

l
E

N N P m 1

1
, 26

z
m

E

m

E

2 2 2

Pl

Pl

2 2

2

2 2

2

( )
( )

( )
( )

where

l
= -~

N N
m

E
. 27

Pl

2

( )

We see that the energy spectrumdepends on the rotation parameterα defined in theGödel-type spacetime and
Planck’s energy. Infigure 1, we depict the energy spectrum for thefirst three levels depending on the particle
mass. One can see that there exist a symmetry breaking in the energy levels due to the rainbow functions. The
spectrum is also illustrated infigure 2 as a function ofm and n, inwhich also the symmetry breaking is seen
clearly.

For the second scenario of the rainbow functions presented in equation (25), energy levels are calculated as
follows

Figure 1.Evolution of +E

EPl
(positive energy, upper side) and -E

EPl
(negative energy, lower side) for n = 1 (blue), n = 2 (red) and n = 3

(green) energy levels with EPl = 1 (∼1.2∗1017 GeV),Pz = 0.1 (in units of the Planck’s energy),λ = 1 andα = 0.5 according to thefirst
scenario of the rainbow functions.

Figure 2.Behavior of +E

EPl
(positive energy, upper side) and -E

EPl
(negative energy, lower side) for thefirst scenario of the rainbow

functions with assumptionsEPl = 80 (∼9.8∗1018 GeV), Pz = 0.4 (in units of the Planck’s energy),λ = 1 andα = 0.2.
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We immediately realize that energy spectrum for the second scenario also contains the terms related to the
geometry of the space-time and Planck’s energy. Figure 3 shows the dependence of the energy on themass of the
particle forfirst three levels. Subsequently, infigure 4, the energy spectrum can be seen as a function ofm and n.

4. Energy relation for theKGO

TheKGO is a linear interaction defined for spin-0 particles and resembles to theDirac oscillator for spin-1/2
particles. It is a relativistic type of the harmonic oscillator and has been studiedwidely in literature. Some
examples containing theKGOcan be sorted such as its investigation in cosmic strings space-times for existance

Figure 3.Evolution of +E

EPl
(positive energy, upper side) and -E

EPl
(negative energy, lower side) for n = 1 (blue), n = 2 (red) and n = 3

(green) energy levels with EPl = 5 (∼6∗1017 GeV),Pz = 0.5 (in units of the Planck’s energy),λ = 1 andα = 0.25 according to the
second scenario of the rainbow functions.

Figure 4.Behavior of +E

EPl
(positive energy, upper side) and -E

EPl
(negative energy, lower side) for the second scenario of the rainbow

functions with assumptionsEPl = 90 (∼1.1∗1019 GeV), Pz = 0.4 (in units of the Planck’s energy),λ = 1 andα = 0.8.
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of a uniformmagnetic field [47], the KGOcoupled to the curved backgroundwithin theKaluza-Klein theory
[72] and in aGödel-type space-time [56]. Also, recently, it has been studied in the cosmic string space-time via
the RG formalism [53].

In the present case, we aim to study exact solutions of KGE from another point of view and to obtain the
energy spectrum forKGO in aGödel-type RG formalismdefined by the line-element (6). For this purpose, we
takeAμ= 0 and assume

wG =m m x0, , 0, 0 . 320( ) ( )

Substituting these forms of vector potentials into theKGE (9) yields the subsequent differential equation:

f- + + =~d

dx
A x B x C x 0, 33

2

2
2⎡

⎣⎢
⎤
⎦⎥

( ) ( ) ( ) 

where

y f= + -e x , 34i zP yP Etz y ( ) ( )( )

and belowdefinitions aremade
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2 , 36y
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w
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Now, changing the variable by assuming x = + ~x B

A2
 

transforms equation (32) again to the formofWeber

equation [69]:

f x

x
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2

( ) ( ) 

the solutions are obtained in terms ofHermite polynomials as

f x x= x-e H k , 41k
n

1
2

2
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a c
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w= +k
E f
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with n= (1, 2, 3,K). By using the condition given in equation (39), we achieve the following equation for the
energy levels
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One can easily conclude that the energy levels depend on the oscillator frequency, rotation parameterα and
Planck’s energy. For the infrared limit, it can be seen that the energy spectrum reduces to the result obtained via
theGR theory in [56].

7

Phys. Scr. 96 (2021) 095301 EEKangal et al



5. Conclusion

In this study, exact solutions of theKGE are obtained in the context of RG for aGödel-type space-time. Passage
from the ordinary GR toRG via redefinition of themetric provides to understand the dynamics of the particle on
an ultra-energetic scale. In the redefinition of themetric, the rainbow functions are involved in themetric. The
mathematical formof the obtained analytical solutions are same forGR andRG formalism and they both
Hermite polynomials with different arguments. In the limit cases of rainbow functions, the solutions obtained in
RG are reduced to results obtained in ordinaryGR.

Energy levels of the probing particle are investigated for the absence of a vector potential and for the presence
of theKGOby considering two rainbow functions. In both cases, it is seen that the results obtained here can be
reduced to ones obtained in theGRunder the limitEPl→ 0 [56].

In the infrared energy limit and for the case Pz=m= 0, equation (22) is reduced to the energy spectrumof
the harmonic oscillator, whose frequency is 4ω in (d− 1)dimension [56]. Also, energy spectra of bothKGE and
KGOare discrete and obtained depending on the vorticity parameter that is related to the angular velocity of
rotation of space-time asω= a

2
, where the rotation vector is c d= -m

a m
2 3 and vorticity scalar is w c c= m

m 1
2( ) .

As a result of vorticity of theGödel-type universe, these spectra show that the angular velocity coupling takes
place inPz direction.

In order to construct a relation between energy andmass of theKlein–Gordon particle, we take certain
values for some parameters contained in the spectra such as EPl andα. As a result, symmetry breaking occurs in
the usual KGE energy spectra due to rainbow functions. In the case of KGO, since the energy spectrum is
obtained in amore complex form, a graphical analysis can not be performed easily due to the non-diagonal
metric structure and the evolution of energy spectrum should be evaluated numerically.
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