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Studying the dark universe with galaxies
Miguel Angel C de Icaza Lizaola

Abstract

This work presents two different but connected projects that study the dark

components of the universe. We show the first full shape analysis of the

eBOSS Luminous Red Galaxy (LRG) sample, which has an effective redshift

of zeff ∼ 0.72 and used the data from the 14th data release of SDSS (DR14).

Amongst other parameters, we constrain the growth rate of the universe to

have the value f(zeff )σ8(zeff ) = 0.454 ± 0.134, Our results are in full agree-

ment with the current Λ-Cold Dark Matter cosmological model under the

Planck cosmology. This study was followed up with a later data release that

has found comparable results (DR16 Gil-Marín et al., 2020).

The second project uses sparse regression methods (SRM) to model the stellar

masses of galaxies inside the EAGLE hydrodynamical simulation as a function

of the properties of their host dark matter halos, without using prior know-

ledge of the underlying physics. Our model is designed to be an accurate and

simple equation of the host halo properties, which makes it modifiable if one

is interested in fitting to a set of statistics. An advantage of SRMs is that they

are designed to remove unnecessary terms, our method discarded all paramet-

ers related to the angular momentum of the host halo, suggesting that they

are not required to explain the stellar mass halo mass relation to the accur-

acy considered. Using an appropriate formulation of input parameters, our

methodology can model satellite and central galaxies at the same time using a

simpler model than when they are treated separately. Our models accurately

reproduce the stellar mass function and the correlation function of EAGLE

galaxies, which makes them an encouraging approach for the construction of

realistic mock galaxy catalogs to interpret results from galaxy surveys.

Supervisors: Peder Norberg, Richard Bower and Shaun Cole.
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Chapter 1

Introduction: the ΛCDM model

1.1 The universe is expanding

It is humbling to remember that at the beginning of the last century there was

no evidence of any structure outside of the Milky Way, the universe as we knew

it consisted of only nearby stars and a handful of fuzzy gas clouds with a spiral

shape. Thomas Wright (1750) from County Durham had suggested that some

of these clouds might be distant worlds external to our own, so far away that

none of their stars could be distinguished. This idea was later popularised by

Immanuel Kant (1755) who coined the term island universe for these clouds. The

idea remained as a conjecture for many years until the 1920s when telescopes finally

became accurate enough to observe details inside these clouds. One of them, the

Andromeda nebulae, was close enough to the Milky Way to accurately observe the

period of Cepheid stars within it. Edwin Hubble (1924) used these observations

to measure the distance to the stars and compare it to the distance from other

stars outside of this fuzzy cloud. The conclusion was that these nebulae were

much farther away than all other stars in the sky, which proved the island universe

hypothesised of Wright and Kant. This was the birth of extragalactic astronomy.

Just five years later, Hubble took on the task of collecting the distances to as many

of these island universes, now called galaxies, as he could. He also measured the
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1.1. The universe is expanding

velocity at which these galaxies were moving with respect to us (v). To measure

v he used a phenomenon known as redshift: when a light-emitting object moves

towards us, the distance traveled by the object in the interval of time between

emitting two pulses of electromagnetic radiation is added to the wavelength with

which we detect this wave. As a consequence, the object appears bluer than it

is. Equivalently when a light-emitting object is moving away from us, the object

appears to be redder. The magnitude used to quantify this phenomenon is called

redshift (z) and is defined as:

z = λdetected − λemitted
λemitted

, (1.1)

where λemitted is the original wavelength of the object and λdetected is the wavelength

that we measure. The redshift of an object is fully determined by the speed, v,

at which the object is moving with respect to us and it is not hard to show that

(Peacock, 1999):

1 + zpec =
√

1 + vLOS
c

1 − vLOS
c

. (1.2)

And if we ignore relativistic effects the relation reduces to:

v ≃ cz, (1.3)

where c is the speed of light. Note that in an expanding universe the redshift of

an object is proportional to our distance to the object. And therefore all objects

of the same redshift constitute a time snapshot in our lightcone, which means that

the redshift of an object indicates the epoch of the universe that we are observing.

With this in mind, one can use redshift to refer to a specific moment in the past.

A very unexpected conclusion from the Hubble distance and redshift catalog was

that all galaxies that were gravitationally unbound to our galaxy were receding

from us. And that the recession velocity had a linear correlation with the distance,
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1.1. The universe is expanding

r, to the object. This relation is called the Hubble law. If we name the slope of

the linear relationship as the Hubble constant (H), then the Hubble law can be

expressed as:

v(t) = dr

dt
= Hr(t). (1.4)

The expansion of the universe seems to be the same in any direction that we point

our telescopes at. Observations and statistics measured are comparable regardless

of the sky direction being considered. This is usually referred to as the universe

being isotropic with respect to us.

The observed isotropic expansion of the universe raises a philosophical question

as there is no reason to believe that our existence should depend on the structure

of the universe on the largest scales. So it seems like an incredible coincidence

that we just happened to be created on a planet in the galaxy at the center of the

expansion. A seemingly more reasonable assumption is that we do not occupy any

special place and that the universe is isotropic for any observers anywhere. This

is normally referred to as the Copernican principle, under it we conclude that the

recession that we observe should also be seen by any other observers in any other

galaxy. A universe in which all observers see all distant galaxies receding from

them can be referred to as an expanding universe.

A corollary from having a universe that is isotropic everywhere is that the universe

should have a constant density everywhere. This is usually referred to as the

universe being homogeneous. Of course, both of these assumptions only hold at

sufficiently large scales (typically hundreds of Mpc). For example it is evident that

on the scale of our solar system the universe is not isotropic and it does not have a

constant density. To understand how isotropy everywhere implies a homogeneous

universe we can consider two observers in different regions of the universe and

imagine that we draw spheres around them in a way that both spheres intersect

each other. Due to isotropy, spheres around an observer should be regions of equal
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density of galaxies. Therefore the places where both spheres intersect have to have

the same density. Given that we can do the same mental experiment with observers

at any point and for radii larger than the scale at which the cosmological principle

holds, we conclude that the universe should have the same density everywhere.

A universe that is homogeneous and isotropic everywhere is said to follow the

cosmological principle, this idea has observational support in the discovery of the

cosmic microwave background (CMB) radiation introduced below, and by the fact

that galaxy surveys have not found any coherent structure larger than a few hun-

dreds of Mpc (e.g. Zaninetti, 2018; Higuchi et al., 2020) to this date.

In an expanding universe, the distance between two arbitrary objects increases with

time (if they are not gravitationally bound). Therefore, it is convenient to define

a distance measurement that is independent of time. The standard approach is to

define a comoving distance x:

r(t) = a(t)x, (1.5)

where a(t) is called the scale factor and is defined in such a way that a(0) = 1.

The scale factor can also be used as a measurement of time, a given value of the

scale factor ai < 1 would correspond to a time in the past where the distance

between two objects was ai times their value at present. Given that redshift is also

a measurement of time, cosmological models should have a one-to-one function

correlating the two concepts: the relation between the redshift z of an object and

the scale factor at the time when the object’s light was emitted is given by:

a(t) = 1
1 + z

. (1.6)

Georges Lemaitre (1931) used the idea of an expanding universe to hypothesise

that at some point the universe was compacted into a very hot and dense plasma

that he called the primordial atom, given that Lemaitre was a priest it is likely
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1.1. The universe is expanding

that this idea was based on the work of Roberto Grosseteste’s (1168-1253) work,

a medieval bishop and natural philosopher who suggested that all life and matter

was compacted into an infinitesimal atom at the beginning of times. Today, this

hypothesis is better known as the Big Bang theory, and it is accepted that this

primordial atom cools itself off as it expands and all the structures that we see

today should have evolved from tiny fluctuations.

The strongest argument in favor of Lemaitre’s hypothesis came in 1965 with the

discovery by Arno Penzias and Robert Woodrow Wilson of faint microwave radi-

ation with a temperature of 2.7K, reaching us from every direction in the sky. This

radiation is known as the cosmic microwave background (CMB) and it is a relic of

a time when the hot universe was cooling off.

In a very hot and compact universe, it is difficult to distinguish between particles

and photons due to how energetic matter particles are. At first, electrons are

moving too fast to be trapped by the electric potential of the hydrogen nucleus and

therefore atoms could not be formed, in its place there was a plasma of electrons

and baryons (protons and neutrons). Photons inside this plasma could not travel

long distances without being scattered by the charged particles of the plasma via

Thomson scattering. By a redshift of around z = 1100, the universe cooled down

enough for electrons and protons to combine into the first hydrogen atoms. At this

point, photons fall out of thermal equilibrium with matter and are free to travel

long distances. This is known as the period of decoupling. Given that photons

before this time could not travel in a given direction for a long time, the photons

from the end of the period of decoupling are the oldest photons that we can hope

to detect. The temperature predicted for these photons if they were to reach us

today is 2.7K i.e. these photons are the CMB radiation!

The CMB is very homogeneous but there are slight fluctuations in the temperature

of about ∆T/T = 2 × 10−5 of its value (after correcting for variations generated by

the motion of our galaxy with respect to the CMB frame, and for variations due to

absorption and emission of radiation from gas clouds inside the Milky Way). The
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temperature of the CMB at a given spot in the sky should be correlated with the

density: denser regions have a stronger gravitational pull and therefore electrons

fall into them faster, then faster electrons emit hotter photons. These denser

regions are the first tracers of structure: as the universe expanded and cooled these

structures grew by attracting particles into them.

We started this chapter remembering how the beginning of the last century came

with the birth of extragalactic astronomy and with the realisation that our universe

was much much bigger than just our island universe. Astronomers realised that

up to that point most of their knowledge corresponded to one galaxy out of many.

During the last century, there were two more realisations of similar consequences.

The first is that we do not know what most of the matter content of the universe

is made off. The second is that we do not know what most of the energy content

of the universe is.

1.2 The universe expansion is accelerated

In 1988 a team led by Adam Riess and Brian Schmidt, along with a competing team

led by Saul Perlmutter, collected information on the luminosity of many supernova

Ia (SN-Ia) in distant galaxies (Riess et al., 1998). These supernovae can be used to

make measurements of their distance that do not require to assume any theoretical

model of cosmology (Phillips, 1993), they are therefore referred to as standard

candles. Shockingly it was concluded that these supernovae were systematically

fainter than what was expected at the time. There was also a correlation between

how unexpectedly faint a galaxy was and its redshift, i.e. the farther a galaxy was,

the fainter than expected it was. Given that the distance measurements extracted

from redshifts assume the theory of relativity to be correct, it was concluded that,

if we wanted to keep the theory of relativity as it is we had to propose that the

universe is expanding with positive acceleration. At the same time, galaxy surveys

like the APM survey (Dalton et al., 1997) found that their observations were better
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1.2.1. What could dark energy possibly be?

fitted by flat universes with a positive acceleration, although at the time it was still

not clear if the universe had any curvature or not. In 2011, Adam Riess, Brian

Schmidt and Saul Perlmutter were jointly awarded the Nobel Prize in Physics for

providing evidence of the accelerated expansion of the universe.

An accelerated expansion is hard to understand in a universe dominated by matter,

as gravitational interactions should in principle slow the expansion. Therefore, it

was hypothesised that there should be another component of the universe that

opposes gravity, a sort of pressure term that pushes galaxies away from one another,

the nature of this energy (if it exists at all) is still unknown and it has received the

name of Dark Energy. This was not a new concept at the time: before the discovery

of the accelerated expansion of the universe there was no reason to assume that

the universe was not static, this presented an issue as gravity was an unopposed

attracting force. This led Einstein himself to add a pressure term to his equations,

(Harvey, 2012). He stated that this new term could be thought of as empty space

taking the role of homogeneously distributed negative masses.

Since 1988 different independent analyses have arrived at similar conclusions to the

one from Adam Riess. Studies of the CMB (de Bernardis et al., 2000; Spergel et al.,

2003) spectrum and studies of the acoustic scale (Eisenstein et al., 2005) (defined

below), both concluded that theoretical models built with general relativity need

dark energy to agree accurately with observations. Additionally, these studies

predict that the missing energy should correspond to around 70% of the energy

content of the universe.

1.2.1 What could dark energy possibly be?

As we mentioned above one possibility suggested by Einstein is that dark energy is

a property of space itself. Empty space is not the same as nothingness and it has

several properties. Perhaps one such property is that it contains energy by some

process that we still do not understand. Given that this energy is a property of
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space itself, it would not be diluted as the universe expands and it should remain

constant. This hypothesis is commonly referred to as a cosmological constant and is

usually represented by the letter Λ. However, it is not clear why this energy should

exist at all. An idea from quantum mechanics involves the uncertainty principle.

Here the lowest possible state that a vacuum has at a given time called the zero-

point energy (ZPE), is not exactly zero, as the uncertainty principle states that

there is a limit to accuracy at which we can determine the energy (E) of a system

at a given time t δEδt ∼ h. The idea is that this ZPE could provide the required

energy to explain dark energy (Milonni and Eberlein, 1994). This idea is related to

the hypothesis made by Hendrick Casimir who suggested that an attractive force

should be measurable between two plates of conducting material in the vacuum

due to the presence of non-zero electric fields. This phenomenon (now known as

the Casimir effect) has been measured in laboratory experiments (e.g. Lamoreaux,

1997). However, when computing how much energy this effect could generate in the

empty space between galaxies, the results ended up being 120 orders of magnitude

too big (e.g. Carroll, 2001)!

Another hypothesis suggests that dark energy might be a new undiscovered type

of energy scalar field named quintessence (e.g. Carroll, 1998) but to this day no

new exotic energy has been detected.

Finally, another possibility is that Einstein’s theory of relativity is incomplete or

flat-out incorrect. Several alternative models have been proposed (e.g. Sotiriou and

Faraoni, 2010; Fang et al., 2008; Joyce et al., 2015), but to this date, none of them

have been compelling enough to replace general relativity.

For the time being, there is one thing that we need to do to understand this problem

better: acquire more and better data. One of the most promising data that we

can collect comes from measuring the distance to each of the members of a large

catalog of galaxies, this data enables us to map the evolution of dark energy over

time and put further constraints on its properties to rule out models.
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1.2.2. Large Scale Structure surveys

1.2.2 Large Scale Structure surveys

Arguably the most promising type of data used to explore dark energy in recent

years has been large scale structure (LSS) surveys, which provide measurements of

redshifts from hundreds of thousands to millions of galaxies mapping out to high ac-

curacy the structures of the Universe. Given that redshifts can be transformed into

distance measurements within a given cosmological model, these surveys provide

3-dimensional maps of the Universe. Surveys tend to probe structures within a

given redshift range and therefore they are a map of the structure of the universe

as it was at the times associated with their redshifts.

Many large scale surveys have been developed in the last decades, some of the most

noteworthy ones are the Two-degree-Field Galaxy Redshift Survey (Colless et al.,

2001; Cole et al., 2005) better known as the 2dFGRS Survey, that was carried out

on the Australian Astronomical Telescope that measured the redshift of 232,155

galaxies, the Sloan Digital Sky Survey (SDSS) (York et al., 2000; Eisenstein et al.,

2005) that has collected spectra for more than three million astronomical objects at

the Apache point observatory in new Mexico, the Baryon Oscillation Spectroscopic

Survey (BOSS) (Eisenstein et al., 2011; Dawson et al., 2012), wich is a part of

SDSS and observed 1.5 million galaxies and 150000 quasars, and its successor,

the Extended Baryon Oscillation Spectroscopic Survey (eBOSS) (Dawson et al.,

2016) survey that targeted galaxies that complemented BOSS adding around 1

million new objects. eBOSS is of particular importance to this work as in chapter

3 we present the first full shape analysis of its luminous red galaxy sample for its

fourteenth data release (Abolfathi et al., 2018; Icaza-Lizaola et al., 2020).

At present, several surveys are being developed, in the next decade, we will acquire

unprecedented amounts of data. Some of these surveys are the Euclid space tele-

scope (Laureijs et al., 2011) that is scheduled launch for in 2022 and is expected to

measure the redshift of around 50 million objects, The Rubin Observatory Large

Synoptic Survey Telescope (LSST) (Ivezić et al., 2019) which is expected to start
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1.2.2. Large Scale Structure surveys

Figure 1.1: The picture shows the light-cone of the 2dFGRS survey, each dot
correspond to a galaxy observed by the survey as one moves away from the centre
of the cone one explores further redshifts. The image shows how the distribution
of galaxies is not random: there is structure in the ways galaxies are distributed.
Image credit:Colless et al. (2001) and the 2dFGRS Galaxy Redshift Survey

in 2024 and will measure the redshift of billions of galaxies ∗, and the Dark Energy

Spectroscopic Instrument (DESI) (DESI Collaboration et al., 2016) that saw its

first light in 2019 and is currently ongoing, DESI intends to measure the redshift

of 35 million galaxies and quasars.

One of the main advantages of LSS surveys is that they allow us to extract inform-

ation about the clustering patterns of matter. This is shown in figure 1.1, which

shows the light-cone of the 2dFGRS survey. The picture shows how galaxies follow

certain patterns and includes regions that are very densely populated and others

that are more empty, i.e. the distribution of galaxies is not random.
∗To achieve this huge amount of redshifts LSST will use photometric redshifts, which is a less

accurate but faster methodology to compute redshifts. Images measured by the LSST will not
have the resolution to distinguish emission or absorption lines and instead relies upon using the
fluxes measured with different filters to estimate the redshift of an object.
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Measuring the clustering of a survey requires a statistical tool that computes the

probability of finding a pair of galaxies at a given distance, r, from each other. The

statistical tool used in this work is the correlation function (ξ(r)), which provides

the excess probability of finding a pair of galaxies separated from each other by a

distance r. Let dV1 and dV2 be two volumes separated by a distance r. Our universe

follows the cosmological principle i.e. it is homogeneous and isotropic. Note that

in a homogeneous universe the correlation function should be independent of the

position of vectors r⃗1 and r⃗2 that determine the position of the volumes dV1 and

dV1, this is because the probability of finding galaxies inside this volumes should

be independent of where in the universe these volumes are located.

In an isotropic universe the correlation function should be independent of the ori-

entation of the vector r⃗ = r⃗1 − r⃗2 connecting dV1 and dV1. The universe is isotropic

but in a survey, we do not observe galaxies in an isotropic way due to an observa-

tional effect known as redshift space distortions (RSD), this effect will be discussed

in detail in section 1.2.4.1, but for now let us define the correlation function in

an isotropic space, in section 2.1 we will discuss the changes on the correlation

function ξ(r) when the isotropy hypothesis is no longer valid.

Let ρ̄ be the average density of survey objects per unit volume, then by definition

we can use the correlation function ξ(r) to compute the probability dP of finding

a pair of objects at a separation s from each other. A straightforward definition of

the correlation function is then given by the following equation:

dP = ρ̄2[1 + ξ(r)]dV1dV2. (1.7)

Let us define the overdensity field δ as

δ(r⃗) = ρ(r⃗) − ρ̄

ρ̄
, (1.8)

where ρ(r⃗) is the density at point r⃗. If we note that the probablity dP can be
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writen as the average product of particles in both volumes dP =< n1n2 > and

that ρi = ni/dVi, then equation 1.7 can be rewriten as:

ξ =< δ(r1)δ(r2) > . (1.9)

Note that if we had a completely random distribution of tracers then dP = ρ̄2dV1dV2

and therefore ξ(r) = 0, i.e. ξ(r) tells you how much more likely it is to get a pair of

tracers divided by a distance r when compared to a random distribution of tracers.

This helps us come up with a trick to measure the correlation function of an LSS

survey, first, we look at all the galaxies in the survey and count out how many

of them are separated by a distance r, hereafter DD(r). Then we place galaxies

randomly in the same volume and count how many of these random galaxies are

separated between them by r, hereafter RR(r). Then if both DD(r) and RR(r)

are suitably normalised the correlation function of a survey can be estimated as

1 + ξ(r) = DD(r)
RR(r) . (1.10)

In principle, one could estimate the expected number of random pairs analytically

as the integral over the survey volume of N2/dV 1dV 2 where N is the number of

particles in the whole volume of the survey. However when looking at real surveys

there are several observational systematic effects that affect separate areas of the

survey differently, so it is common practice to populate the actual survey with

random tracers in a way that such systematic effects are considered (see section

3.2.3.3).

There are several ways of measuring the correlation function that follows the same

idea behind equation 1.10. In 3.5.2 we present the Landy-Szalay estimator, which

reduces the variance of the methodology.

We have mentioned that the CMB fluctuations inform us about how overdensities

looked at the moment of recombination. These overdensities should have evolved
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into the structure that we see today in LSS surveys. A theoretical cosmological

model should predict how the structure of the universe evolves, therefore by com-

bining observations of the CMB at the time of recombination and observations of

LSS surveys in the recent universe, we can build a complete and powerful data

set to test our cosmological models. In what follows we present the acoustic scale,

which is a quantity related to the size of overdensities at recombination that can

be measured from the correlation function of a LSS survey.

1.2.3 Baryon Acoustic Oscillations

The correlation functions from LSS surveys encodes the required information about

a very important measurement, the acoustic scale of baryon acoustic oscillations

(BAO). As with measurements of SN-Ia, acoustic scales can be used to test the

expansion rate of the universe.

There are small fluctuations of temperature in the CMB that correspond to denser

regions of the universe at the time of recombination. As we will see in section 1.3,

most of the matter content of the universe does not interact with photons, only

baryons do and they represent only a small percentage of all mass. Let us refer to

this non-baryonic component as dark matter (DM).

Figure 1.2 shows four schematics that represent different snapshots on the evolution

of an overdensity, going from before recombination to z = 10. Given that the

perturbation is thought to be adiabatic at first all components are coupled together,

this is shown in the top-left plot, which represents a very small perturbation in a

smooth background.

Very early in the evolution of the universe neutrinos decouple from all other species

and start streaming freely away, this is shown in the top-right plot. This happens

before recombination and hence photons are still coupled with baryons. When

baryons fall in the potential well of an overdensity, their temperature increases

due to compression. This increases the radiation pressure, which in turn generates
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acoustic waves of baryons and photons traveling outwards. These are shown as the

blue and red curves of the top-right plot. These waves are called baryon acoustic

oscillations.

After decoupling photons are finally free to stream away. This is shown in the third

panel of figure 1.2. At this time the BAO waves are frozen in their place, without

radiation pressure to push them away any longer. The result is a clump of dark

matter in the centre of an over-density and a shell of baryons separated from the

clump by the distance traveled by the wave at the time of decoupling, which is

about 150 Mpc in comoving coordinates. This radius is the so-called acoustic scale.

As time passes both the DM at the centre and the baryonic shell begin to mix

due to their gravitational pull, both perturbations continue to grow as they attract

matter from their surroundings. After some time the two curves look more similar

as the spherical shell attracts more dark matter and the centre more baryons. This

is shown in the last two panels of figure 1.2. At later times the acoustic scale gets

imprinted into the DM overdensity.

Places in the universe with a high density of baryons are where galaxies are more

likely to form. This means that there should be an excess probability of finding

galaxy pairs separated from each other by the acoustic scale, as galaxies are likely to

form both in the centre of the overdensity and on the spherical shell. This is shown

in the last panel of figure 1.2 that shows that the mass profile of baryons should

be much larger at 150 Mpc from the centre than at, say 100 Mpc or 200 Mpc. All

of this leads us to conclude that the acoustic scale should be measurable as a peak

on the correlation function (as the correlation function is the excess probability of

finding galaxy pairs separated by a given distance).

The first measurement of a correlation function with enough accuracy to show

the size of the acoustic scale was done by Eisenstein et al. (2005) that used the

Sloan Digital Sky Survey to measure the distance to 50,000 galaxies at a redshift

between 0.16 to 0.4. This is shown in figure 1.3, where one can observe a bump
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Figure 1.2: These five diagrams represent different snapshots of the evolution of
an overdensity at different redshifts. The x-axis of all plots shows the comoving
radius of the overdensity (with the zero value corresponding to its centre) while the
y-axis shows the fractional density perturbation times the radius square (δ(r⃗)r2)
note that the fact that it is a fractional density means that the plots do not reflect
the fact that there is more more DM than baryonic matter. All plots show four
lines, the blue line shows the overdensity in the baryonic matter, the black line
in the non-baryonic matter (the so-called dark matter that we introduce later in
section 1.3), the green line shows neutrinos, and the red line photons. Image credit:
Daniel Eisenstein (https://lweb.cfa.harvard.edu/∼deisenst).

15



1.2.4. Growth rate of structure.

Figure 1.3: The correlation function from the Sloan digital sky survey, that meas-
ures the excess probability of finding a pair of galaxies separated from each other
by a comoving distance s. The excess probability has a peak at a separation of
around 100Mpc/h, this corresponds to the acoustics scale. The black dots are
the measurements from the SDSS LRG sample and the errors are computed using
mock catalogs, we will describe this method of error estimates in more detail in
section 2.5. The different coloured lines represent different cosmological models
with the magenta model being a model with no dark energy at all and therefore
no acoustic peak, the rest of the lines correspond to models with different ratios of
mass to dark matter. Plot taken from Eisenstein et al. (2005)

on the correlation function at a separation of around 100Mpc/h, this value is a

measurement of the size of the acoustic scale. From this point on, BAO analysis

has become a staple of modern LSS surveys.

1.2.4 Growth rate of structure.

Up to this point we have talked about constraining dark energy using measurements

of distances, either via standard rulers (BAO) or via standard candles (SN-Ia).

Both of these measurements provide constraints on the expansion history of the
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universe, i.e. they measure how much the universe has expanded at different cosmic

epochs.

One of the shortcomings of BAO/SN-Ia studies is their inability to test the validity

of a cosmological model. Linder (2005) showed that an appropriate choice of an

equation of state∗, can make different models have the same expansion history.

This brings up the need for a new independent parameter that can break this

degeneracy. It is common practice to use a parameter known as the growth rate

of structure f (Kaiser, 1987; Percival and White, 2009). To understand what the

growth rate is, we need to start by defining how overdensities grow as the universe

expands.

Under the paradigm of linear growth of perturbations (e.g. Knobel, 2013, chapter

2), all growing solutions of the overdensity field δ(x⃗, a) (defined in equation 1.8)

can be expressed as:

δ(x⃗, a) = A(x⃗)D(a) (1.11)

Assuming linear theory, the value of an overdensity at a given scale factor a is

related to its value at present by the function D(a), and this relation is independent

of the position x⃗ of the overdensity

δ(x⃗, a) = D(a)δ(x⃗, a = 1). (1.12)

The function D(a) is appropriately named the linear growth function, and it quan-

tifies the amount of structure that has been formed within a given model at a given

scale factor a (or equivalently redshift z) with respect to the structure today. An

example is shown in figure 1.4. The figure shows the evolution of two models, one

with dark energy and the other without. The model with dark energy has a pres-

sure force opposing the gravitational collapse, which means that structure evolves

slower than in the model without dark energy. As a consequence, a given measured
∗An equation of state provides the relation between density and pressure in a given cosmolo-

gical model.
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Figure 1.4: The left panel shows the linear growth as a function of the scale factor
for two different models, the blue line corresponds to a model with both dark energy
and matter, the black line corresponds to a model with only matter. Given that the
model with dark energy includes a pressure force opposing gravity it takes longer
for the structure to collapse into its present form, this is shown in the panel on the
right were to have approximately the same structure today the model with dark
energy needed to start collapsing much earlier. Figure from (Huterer et al., 2015)

value of δ(x⃗, a = 1) at present would have different formations histories in different

cosmological models. More precisely, the model with dark energy would have to

start generating structure much earlier than the model without.

This indicates that if we know the expansion history of the universe (for example

by using BAO analysis), one can use measurements of the linear growth function

to test if it fits accurately within a given cosmological model.

Measuring the linear growth function requires us to use an observable property

correlated to it, the standard approach is to use the aforementioned growth rate of

structure, defined as
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1.2.4.1. Redshift space distortions

f(a) = d ln D(a)
d ln a

(1.13)

This quantity measures the speed at which structure evolves, and should be cor-

related with observations of the infall velocities of tracers of matter like galaxies

falling into structure.

Let us start by writing the continuity equation as a function of the overdensity

field δ as

∂δ

∂t
+ 1

a
∇⃗ · [(1 + δ)v⃗] = 0, (1.14)

where v⃗ is the peculiar velocity of the object (the velocity of the object in comoving

coordinates). Under the assumption that δ << 1, and using equation 1.12 to note

that δ(x⃗, a1) = δ(x⃗, a2)D(a1)/D(a2) we rewrite equation 1.14 as

∇⃗ · v⃗ = −a
∂δ

∂t
= −aδ

Ḋ

D
= −aHδf (1.15)

which shows that the growth rate is related to the divergence of the peculiar velo-

city of objects. Therefore measurements of these velocities can be translated into

approximations of f . Fortunately, statistical information about these velocities at

a given scale factor can be obtained by a phenomenon known as redshift space

distortions (RSD).

1.2.4.1 Redshift space distortions

When measuring the distance of an object using redshifts we assume that the shift

in the spectra of the object is due to the expansion of the universe. While this is

a good first approximation, it does not consider that galaxies have their peculiar

motions due to gravitational interactions within their local environment. If these

motions have a non-zero velocity component when projected along our line-of-sight
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1.2.4.1. Redshift space distortions

(vLOS) then this peculiar motion should also generate a shift in the spectrum, and

the redshift that we measure should be a superposition of the two effects. Let us

call cosmological redshift (zcosmo) the shift in the spectra that is a consequence of

the expansion of the universe, then the redshift that we observe (zobs) is related to

it through the following expression:

For an arbitrary number of sequential shifts, the total redshift is given by (for the

derivation see Harrison, 1974):

1 + zobs = Πi(1 + zi). (1.16)

Including shifts due to the expansion of the universe and due to the peculiar velo-

city, we get:

1 + zobs = (1 + zcosmo)(1 + zpec), (1.17)

where zpec is the shift due to the peculiar velocity. For v ≪ c, eq. 1.2 can be

approximated to 1 + zpec = (1 − vLOS
c )−1. Plugging this into eq. 1.17, then gives:

1 + zobs = (1 + zcosmo)(1 − vLOS
c

)−1. (1.18)

A conclusion from this is that there is a small difference between the distance to

an object that we compute using the Hubble law (|s⃗|) and the actual distance to

an object (|r⃗|). Both of these vectors are related by the following expression (e.g.

Hamilton, 1998):

s⃗ = r⃗ + vLOS
aH

z⃗, (1.19)

where z⃗ is a unitary vector in the line-of-sight direction. This effect is known as

redshift space distortions (RSD). From now on we will refer to the set vectors
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1.3. The universe is massive

that describe the real distance to an object as the real (r⃗) space, and to the offset

vectors that account for the peculiar velocities as the redshift space (s⃗).

The RSD effect will alter the apparent distances of objects differently depending

on their peculiar motions and on the component of these motions along the line-

of-sight, this is exemplified in Figure 1.5 that shows the spherical collapse of an

overdensity in different scenarios, let us think of the lines shown as places where

one or many galaxies could be. The observer is thought of as being on the bottom

of the figure and therefore the distortion is stronger along the vertical axis while

the horizontal axis stays unchanged. The top panel shows how the distortion

looks when the distortion given by vLOS
aH z⃗ is small when compared to the radius of

the object (R). In this case, the object looks squished in redshift space, and the

circular overdensity looks like an ellipse. As the overdensity continues to collapse

it accelerates, eventually reaching the point where vLOS
aH z⃗ = R. In this case, the

overdensity looks as if it collapsed into a flat circle, eventually the overdensity

collapses very fast and vLOS
aH z⃗ > R: this happens in the nonlinear regime and gives

rise to the so-called fingers of god effect (e.g. Hamilton, 1998).

By studying RSD we can get information about the peculiar velocities of galaxies

by considering the differences in clustering along the line of sight and its perpen-

dicular direction, which can then, in turn, be correlated with the growth rate f by

equation 1.15 and with the correlation function by equation 1.9. Chapter 2 will go

into details on the procedure that we followed to get constraints on the growth rate

by studying RSD in a galaxy survey. For now, let us move into introducing the

second significant realisation that astronomers did at the end of the last century:

the universe is much more massive than what we observe.

1.3 The universe is massive

Astronomers have known for a long time that galaxies should contain objects that

do not emit light. For example, the discovery of the planet Neptune by Urbain Le
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1.3. The universe is massive

Figure 1.5: Schematic drawings of how circular overdensities look in real and red-
shift space. The circles on the left represent real space and the ellipses on the right
their equivalent shape in redshift space, the observer is located at the bottom of
the image, and therefore the overdensity is not distorted in the horizontal direction.
Image credit: Hamilton (1998)

Verrier and John Couch Adams (1846) that proposed its existence to explain the

anomalies in the motions of Uranus, the discovery of faint companion stars in 1844

(Bessel, 1844)∗, the hypothesis that obscured regions of the sky could be blocked

by dark clouds (Secchi, 1877) or the theoretical prediction of black holes in 1784

(Michell, 1784)† have all been around for more than 100 years. However, until the
∗By looking at the proper motions of Sirius, Friederich Bessel realised that the star should

have a companion influencing the motions of the star with its gravitational pull. Today we know
that this companion star is the white dwarf Sirius B, the companion of which outshines it, so that
it could not be distinguished with the telescopes of that time.

†Mitchel believed in Newton’s corpuscular theory of light. He reasoned that light particles
should also be affected by gravity and as such light should slow down due to the gravitational pull
of stars. This led him to conclude that there could exist stars so massive that the escape velocity
required to leave the star exceeded the speed of light. He coined the term dark stars to refer to
these objects.
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1.3. The universe is massive

early 1900s it was assumed that the total mass of these dark objects should be

small compared to that of visible matter.

The first attempt to try to use dynamic estimates of the motions of stars within

a galaxy to predict the ratio between dark and visible matter was done by Lord

Kelvin (Thomson and Kelvin, 1904). His task was continued by Poincaré (Poincare,

1906) who used Kelvin’s estimates to conclude that within the Milky Way the mass

of the non-luminous component of the galaxy should be smaller, or at the most of

the order of magnitude, than the mass of visible matter (he observed the velocity

dispersion of local stars where it is very difficult to detect the effect of dark matter).

He also coined the term DM to refer to the non-luminous component of mass within

the universe (Bertone and Hooper, 2018).

In 1933, Fritz Zwicky (Zwicky, 1933) used redshifts to measure the velocity dis-

persion of galaxies within the Coma cluster and compared it to what one would

expect by looking at the mass of all galaxies within the cluster. Astonishingly, he

concluded that galaxies move so fast that the cluster should not be able to remain

gravitationally bound and most galaxies should just fly away into space. One of the

many hypotheses suggested explaining Zwicky’s findings was that the dark matter

within the cluster should be much more massive than the luminous matter.

Zwicky’s results were the cause of a 40-year long debate about the reason for

the discrepancy between observed and dynamical masses in galaxies. The debate

came to an end in the late seventies with studies of the rotation curves of galaxies

(Metropolis et al., 1953; Rubin et al., 1980, e.g.). These studies showed that the

rotation velocities of stars and gas orbiting galaxies remained constant at a radius

that was very far from the centre of the galaxies, a radius at which the density

of visible matter had declined. This suggested that the mass of the galaxy should

be far larger than what one would expect from visible matter and also that the

distribution of matter within a galaxy should be very different for the luminous

and the dark components.
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Similar conclusions about the amount of this dark matter have been found by sev-

eral other independent experiments. Some noteworthy ones use galaxy clusters

(e.g. Allen et al., 2011), the CMB (e.g. Planck Collaboration et al., 2016b)∗, grav-

itational lensing (e.g. Taylor et al., 1998) and many more. The consensus of all of

these experiments is that dark matter should account for around 85% of all matter

in the universe.

1.3.1 What could dark matter be?

When dark matter was first proposed, one expected it to be non-luminous or faint

baryonic matter such as undiscovered large numbers of objects like neutron stars

(who are non-luminous in the optical range although they can be detected by x-

rays), black holes, white dwarfs stars, very faint red dwarfs or brown dwarfs, or un-

associated planets. The term massive astrophysical compact halo object (MACHO)

(e.g. Alcock et al., 2000) was coined to refer to all massive objects that emit little

or no light and drift through interstellar space. However, it has become increas-

ingly clear that this is not the case. On one hand, studies done on the CMB agree

remarkably well with models that suggest that most matter should be presented in

a form that does not interact with photons (e.g. Planck Collaboration et al., 2016b)

and should correspond to around 4% of the energy content of the universe. While

analyses done using gravitational lensing have discarded MACHOs as a viable can-

didate of dark matter (e.g. Tisserand et al., 2007). And diffuse gas clouds should

still be visible when illuminated by stars. The final nail in the coffin to baryonic

dark matter comes from the chemical abundance of elements in the universe, the

theory of big bang nucleosynthesis predicts that if baryons were more than 4%

or 5% of the energy density of the universe, then heavier elements like helium or

lithium should be much more common (e.g. Coc and Vangioni, 2017).

Another possibility to explain at least some of the observations that require dark
∗The theoretical models of the CMB Power spectrum require a massive non-baryonic compon-

ent in order to agree with observations.
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matter points to the fact that our laws of gravity have only been tested accurately

on scales of the order of magnitude of stars and solar systems, so perhaps the

measured dark matter is an indication that we should modify our gravitational

laws when working on larger scales. Some modified models of gravity have been

proposed (e.g. Milgrom, 1983), but it is difficult to build one single modified model

that explains all observations. To this date, the dominant hypothesis is that there

are one or more undiscovered non-baryonic particles inside galaxies. These particles

should be massive and therefore exert a gravitational pull on objects, but they

should not interact with photons (or interact very weakly), which might explain

why they are so hard to detect.

Today the most common hypothesis is that dark matter should consist of non-

baryonic particles that do not interact through the electromagnetic force, these are

usually referred to as weakly interacting massive particles or WIMPS (e.g. Smith

and Lewin, 1990). The name emphasises that while these particles should be blind

to electromagnetic radiation, it is still plausible that they interact through the weak

nuclear force. Several non-baryonic particles have been proposed as dark matter

candidates. A standard way to split these models up is by the speed at which their

particles moved in the early universe (Bond et al., 1984), with the fastest particle

candidate models refereed to as hot dark matter (HDM) models and the slowest

ones as cold dark matter (CDM) models. The speed of particles at this time is

important as it determines the lower limit of overdensity sizes: very fast particles

would spread out from small overdensities into the surrounding under-dense regions,

which would mean that the overdensity would disappear. In the CDM paradigm,

the original overdensities are small at first and merge to create larger structures

as time passes, known as a hierarchical structure formation scenario. In the HDM

paradigm, the opposite happens and the universe should start with very large struc-

tures that later break to form smaller ones. The CDM paradigm ended up agreeing

the best with observations (Blumenthal et al., 1984) with Davis et al. (1985) ruling

out HDM in favor of CDM by comparing galaxy clustering measurements with
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1.3.2. N-body simulations

predictions from simulations built in the CDM paradigm. It has also been observa-

tionally concluded that small galaxies form first followed by clusters later on (e.g.

Gilman et al., 2019).

To summarise, while there is much mystery surrounding dark matter we have good

reasons to suspect that DM should consist of non-baryonic particles that do not

interact with photons and moved slowly in the early universe. Theoretical models

of the universe that define dark matter in this way and include a cosmological

constant Λ to describe dark energy are known as ΛCDM models. To this day

they are the most tested models of cosmology, agreeing remarkably well with most

observations (although recently there has been newly discovered tensions at the

1% level between the ΛCDM model and a set of cosmological observations (e.g.

Perivolaropoulos and Skara, 2021)).

The ΛCDM model is a beautiful and relatively simple model that can explain a

large array of cosmological observations. However, as with any good model in

science, it needs to be put to the test. One of the most efficient methods to do this

is to ask a computer to create virtual universes for us.

The virtual universes or simulations that are usually created can be divided into

simulations that include baryons in their computations and those that do not. DM

makes up most of the mass component of the universe, and it is significantly easier

to model than baryons as it only interacts gravitationally with other particles.

More complicated simulations that include baryonic matter are usually referred to

as hydrodynamical simulations and are much more complicated to produce.

1.3.2 N-body simulations

What we actually mean when we say simulating the universe is finding the solutions

to the equations of motions for a set of particles that represent the matter of the

universe. Let us define a set of N particles of mass mi (0 < i < N). Given that
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these are DM particles, they should interact with each other only through gravity,

and their dynamics are represented by the following differential equation

F⃗i(t) = mi
d2x⃗i(t)

dt2 = −
∑
j ̸=i

Gmimj(x⃗i(t) − x⃗j(t))
(∥x⃗i(t) − x⃗j(t)∥2+ϵ2)3/2 , (1.20)

where F⃗i(t) is the force felt by the ith particle due to its gravitational interaction

with all other particles, G is the gravitational constant, x⃗i(t) the position of the

ith particle at time t and ϵ is a softening length, added to avoid computational

artifacts when the distance between two particles is small. Note that the equation

is only valid in Newtonian dynamics, which is a fair approximation on cosmological

scales, however, other astrophysical problems, like modelling particles close to the

event horizon of a black hole, require to switch to a general relativity paradigm

(e.g. Baker et al., 2006).

Given that for a small time step, v⃗i(t + dt) ∼ v⃗i(t) + (F⃗ (t)/mi)dt and x⃗i(t + dt) ∼

x⃗i(t) + v⃗(t)dt, the solution to these equations can be numerically approximated

for a given set of initial conditions [x⃗i(t = 0),v⃗i(t = 0)]. The solutions are the

values of the position and velocity of all N-particles at different time steps, this

type of simulations are refereed to as N-body simulations (e.g. Springel et al., 2001;

Springel et al., 2005; Baugh et al., 2019).

In practice solving equation 1.20 or a very large amount of particles and with

sufficiently small time-steps is computationally infeasible. And several methods to

approximate the solutions are used instead. Two of the more noteworthy are:

• Tree codes (e.g. Barnes and Hut, 1986), where precise calculations are only

done in very dense regions of the simulation.

• Particle-mesh codes (e.g. Klypin and Holtzman, 1997), where the gravit-

ational potential is computed over a grid in the simulation volume, and

particles are assigned the force applied to their corresponding grid cell.
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1.3.2. N-body simulations

Figure 1.6: This image shows the position of particles in an N-body simulation as
a function of time, with the left edge of the image showing the beginning of the
simulations and representing the early universe. As one moves to the right, the
simulation evolves and structure grows in complexity. The image is colour-coded
by particle density. Image Credit: The EAGLE project/Stuart McAlpine.

Figure 1.6 shows the evolution of dark matter density field within the EAGLE

simulation (Schaye et al., 2015; Crain et al., 2015). At the beginning of the simu-

lation, the universe is more or less homogeneous with matter somewhat uniformly

distributed, however as time passes by, particles clump together by gravitational

interactions as denser regions attract particles in neighboring regions to form larger

and larger structures.

These clumps of matter are called halos and correspond to the denser places in

the universe. It is inside these halos where models predict that galaxies form,

and therefore tracing and defining these halos is of the utmost importance when

studying N-body simulations. One of the most common ways of defining halos is

through the friend of friends (FoF) algorithm (Huchra and Geller, 1982). Under

this paradigm a halo is composed of the collection of all particles that can be

linked together using an inter-particle length that is typically 0.2 times the mean

inter-particle separation (e.g. Davis et al., 1985).
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Under the CDM paradigm, halos merge to form larger and larger halos, also shown

in figure 1.6, one useful tool to track the evolution of matter is to store the merging

history of halos in such a way that one can relate a halo at a given time with its

progenitors, catalogs of halo merging histories are adequately named dark matter

halo merger trees.

One conclusion drawn after analyzing the merger trees of N-body simulations is that

the remnants of small halos accreted into larger ones form self-bound substructures

that orbit around the halo core (e.g. Gunn and Gott, 1972; Giocoli et al., 2008),

these substructures are usually referred to as subhalos and are predicted to be the

hosts of satellite galaxies within a galaxy cluster.

So far we have focused on N-body simulations that only include DM particles.

However, if we want our simulations to be able to reproduce galaxies we need to

include baryons as well. These are usually called hydrodynamical simulations (e.g.

Cen and Ostriker, 1992; Pearce et al., 1999; Springel and Hernquist, 2002; Schaye

et al., 2015), and are far more complex than simulations that only include DM. This

is because baryons interact with each other through the electromagnetic force as

well which leads to physical effects like pressure and radiative cooling not present in

DM only simulations. The standard approach to make these simulations is to treat

baryons as if they were a fluid and study them with hydrodynamical equations

(hence the name).

On top of this many baryonic processes like star formation, feedback from super-

novae explosions, and feedback from supermassive black holes (e.g. Thacker and

Couchman, 2000; Marri and White, 2003; Oppenheimer and Davé, 2008; Booth

and Schaye, 2009), happen on scales smaller than the resolution of even the most

accurate hydrodynamical simulation, therefore they need to be added by hand at

so called subgrid scales. Given to how much more complex hydrodynamical sim-

ulations are they are usually run in volumes much smaller than the ones used to

run dark matter only simulations.
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Simulations are by definition of a finite volume, which means that they have bound-

aries. If one is not careful about these boundaries one can bias the galaxy evolution

around the edges, for example, halos near an edge will grow less than halos near

the centre as there would not be enough particles to fall in the halo potential well

in the direction of the simulation edge. One common approach is to use periodic

boundary conditions in which objects near one side of the simulation edge affect

objects near to the opposite side as if both sides were connected, this is similar to

treating the simulation as if it were a flat projection of the earth on a map, where

Alaska and Japan seem to be in opposite ends while in reality, they are close to

each other.

The finite size of a simulation limits the capability of the simulation to study cer-

tain phenomena, for example, simulations underestimate the correlation function,

even at scales much smaller than the simulation length (Gelb and Bertschinger,

1994; Bagla and Prasad, 2006; Bagla and Ray, 2005). Given that hydrodynamical

simulations are in general much smaller than dark matter only simulations, there is

an incentive for developing methods that can learn the relations between baryonic

mass and dark matter from a hydrodynamical simulation. These methods can learn

how to predict properties of galaxies (e.g. their stellar mass, their metalicity, or

their luminosity), as a function of the characteristics and the history of their host

halos. These relations can then be used to populate the halos of a large N-body

simulation with the appropriate galaxies. This would result in galaxy catalogs that

are not affected by small simulation volumes. In chapters 5 and 6 we introduce a

method that learns to predict the stellar mass of galaxies from the properties of

their host halo using the data of a hydrodynamical simulation as input.

1.4 Thesis road-map

In this work, we study the relationships between models and observations or simu-

lations as a tool to analyze the dark components of the universe: dark matter and
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dark energy. This is done in two different projects.

The first project does a full shape analysis of the so-called luminous red galaxy

luminous red galaxy (LRG) sample of eBOSS fourteenth data release (Abolfathi

et al., 2018). A full shape analysis studies the clustering of the galaxies on an

LSS survey taking into account redshift space distortions, and considering that

discrepancies between the true cosmology of the universe and the one selected for

the analysis will result in a distortion of the clustering signal.

Chapter 2 introduces the necessary constituents that one needs to develop to do a

full shape analysis. This chapter is thought of as an introduction that presents the

background required to follow the discussion of our eBOSS work. Then chapter 3

presents our analysis and results. These results include a constraint on the value

of the growth rate of the universe presented in equation 1.13.

Our second project introduces a novel methodology to predict the stellar mass

of galaxies from the properties of their host halos. Three chapters are dedicated

to this project. First, chapter 4 introduces the different astronomical concepts

that are required to follow the discussion of the rest of the project. This chapter

is also thought of as an introductory chapter, here we do not discuss how the

methodology works, but instead we motivate building our method, we also present

different astronomical concepts that will be crucial in the decisions taken in the

design of our method and revise the different approaches that have been historically

used to populate dark matter halos with galaxies. In chapter 5 we introduce and

test our methodology, here we introduce our method in a sample of relatively

massive halos and avoid including any subhalo. This is due to subhalos having

complicated evolutionary paths after merging, as opposed to central halos that

tend to grow monotonically with time. This chapter can be thought of as a proof

of concept, where we ran our method in a simpler sample than the one we ultimately

envisioned. Then, in chapter 6 we expand the method to include satellite galaxies

and a smaller halo cut.
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Finally, chapter 7 summarises all the work presented here and discusses the next

steps that I intend to explore in my future research.
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Chapter 2

Redshift space distortions

modelling and fitting

The objective of the next two chapters is to present the redshift space distortions

(RSD) analysis of the eBOSS DR14 data for luminous red galaxies. The actual

analysis is left for chapter 3, while this chapter introduces the different steps that

one needs to follow to perform an accurate RSD analysis.

A RSD analysis can be summarised as a methodology for fitting the free parameters

of a cosmological model to a data set. This model should include RSD effects

and depend on parameters like the growth rate f defined in section 1.2.4. The

end goal of the analysis is to explore the parameter space and find the regions of

high likelihood to obtain cosmological parameter constraints within a given model

framework, e.g. the ΛCDM model.

The quantity being modeled is the correlation function ξ(s) defined in section 1.2.3.

The correlation function can also be measured from the galaxies inside an LSS sur-

vey, using e.g. equation 1.10 or the Landy-Szalay estimator that we will present in

3.5.2. A RSD analysis statistically compares the model prediction of the correlation

function with the ones measured from the data.

In chapter 1 (§1.2.2) we mentioned that a survey does not observe galaxies in

an isotropic way due to redshift space distortions. Section 2.1 discusses these
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distortions and presents a new parametrisation of ξ(s) that takes into account

these anisotropic distortions by performing a multipole expansion.

There are four constituents needed to make the RSD analysis possible, which each

will be discussed in turn in this chapter:

1. A data set from which to measure the correlation function. Different LSS

surveys choose different types of galaxies, called tracers of matter for BAO

and RSD analysis. Section 2.2 presents a summary of some of the consid-

erations when selecting a tracer and introduces some of the most common

tracers of matter used in RSD analysis.

2. A theoretical model of the correlation function that is sensitive to RSD para-

meters. Section 2.3 summarises some of the more common and general mod-

els, while in section 3.4 we introduce the CLPT-GSRSD model developed by

Wang et al. (2014); Reid and White (2011); Carlson et al. (2013), which is

the model used in our RSD analysis.

3. A set of free parameters that give a degree of freedom to the model, allowing

for the possibility of the model being affected by a poorly selected cosmolo-

gical model. Section 2.4 introduces the Alcock-Paczynski parameters used in

this work.

4. An estimate of the error in the correlation function from our data set. As

discussed in section 2.5, this is usually done using collections of hundreds of

simulated data sets known as mock catalogs. Some of the most widely used

methodologies for making these catalogs are briefly presented in section 2.5.

These four constituents can be used to estimate a likelihood that quantifies the

accuracy of a model. The likelihood should be a function of the free parameters

of the model which include the cosmological parameters that one is trying to fit.

Therefore one can use these estimates to explore the parameter space and find the
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regions of higher likelihood. The standard methodology to make this exploration

is presented in section 2.6.

2.1 The two-point correlation function

In the previous chapter, we introduced the correlation function as the excess prob-

ability of finding two galaxies separated by a distance r between them, most often

written as:

dP = ρ̄2[1 + ξ(r)]dV1dV2. (2.1)

Let us note that this equation determines ξ(r) as a function of the real-space

distance r. Given that in real space the universe is homogeneous and isotropic the

correlation function can be written as function of the separation r only. However,

in redshift space, the clustering of objects should also depend on their position with

respect to the line of sight. This is shown in figure 2.1, where one can see that the

correlation function in redshift space is not isotropic.

With this in mind we define the parameter

µ = cos(θ), (2.2)

where θ is the angle between the line of sight and the line connecting dV1 and dV2.

The two-point correlation function of our analysis hence depends on two spatial

variables, r and µ.

In practice the method for computing the correlation function works by dividing

the correlation function into 2-dimensional bins in the [r,µ] space and then counting

how many pairs of galaxies are found in each bin: this is the DD(r, µ) of equa-

tion 1.10. This leads to a technical issue as the larger the number of bins, the better

one can trace the [r,µ] space, but the smaller the number of tracer pairs one would

have per bin and the more susceptible one will be to statistical noise. Therefore
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Figure 2.1: Two-point correlation function of the DR11 CMASS galaxies in BOSS.
The colour coding of the plot shows the amplitude of the correlation function when
divided into parallel (r∥) and perpendicular (r⊥) axis with respect to the line of
sight . Image Credit: Samushia et al. (2014)

there is an incentive to use an optimal set of bins for which the statistical noise is

under control while preserving as much angular bin information as possible.

The standard approach for dealing with this issue (Kaiser, 1987; Hamilton, 1992)

is to decompose the correlation function using Legendre polynomials

ξ(r, µ) =
∞∑
l=0

ξl(r)Ll(µ), (2.3)

where Ll is the lth Legendre polynomial, and ξl(r) is the lth multipole of the 2-point

correlation function, and therefore:

ξl(r) = 2l + 1
2

∫ 1

−1
ξ(r, µ)Ll(µ)dµ. (2.4)
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2.2. LSS tracers in cosmological surveys

Note that ξ(r, µ) is an even function with respect to µ as RSD anisotropies under the

small angle approximation are expected to be symmetric with respect to the line-

of-sight. Considering that Legendre polynomials are (anti-)symmetric functions∗,

we conclude that ξl(r) = 0 for all odd values of l.

In chapter 3 we work with the first three non zero multipoles of the 2-point cor-

relation function (see section 3.6 for an in-depth discussion on the multipoles used

in our eBOSS analysis). These multipoles are related with the following Legendre

polynomials: L0(µ) = 1, L2(µ) = 1
2(3µ2 − 1) and L4(µ) = 1

8(35µ4 − 30µ2 + 3).

2.2 LSS tracers in cosmological surveys

It seems reasonable to expect that galaxies trace the underlying distribution of dark

matter, in the sense that massive galaxies should probably inhabit inside large DM

halos. However it has been shown that galaxies are not unbiased tracers of the

underlying distributions of matter, this can be seen for example by correlations

in surveys of different types of galaxies having different amplitudes (Peacock and

Dodds, 1994; Oliver et al., 1996; Peacock, 1997), which indicates that galaxies are

biased tracers of the underlying matter density field. However, it has also been

shown that on large scales, like the ones needed for BAO analysis (∼ 150 Mpc),

the bias is expected to be linear (Coles, 1993; Scherrer and Weinberg, 1998). As a

consequence, on those scales the correlation function of different types of galaxies

should differ in their amplitude but only weakly in their shapes (see e.g. Peacock

and Dodds (1994); Peacock (1997)). This indicates that if our goal is to estimate

the shape of the correlation function one can select the galaxy type that suits its

observational considerations the best. As we will see in section 2.3, the amplitude

of the bias between these tracers and the underlying DM can later be added as a

free parameter to the theoretical model to be fitted. The type of galaxy selected
∗Legendre polynomials have definite parity, i.e. they are either even or odd. Mathematically

this is expressed as Ln(−x) = (−1)nLn(x)
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2.2. LSS tracers in cosmological surveys

as a target for an LSS survey is usually called a tracer, to emphasise the fact that

these galaxies are tracing the underlying DM distribution.

There are several considerations when selecting the tracer to be used in an LSS

survey. For starters an LSS survey should have enough volume and density of

galaxies to measure the BAO signal in the correlation function accurately, which

requires a volume of at least ∼ 1Gpc3 (Blake and Glazebrook, 2003). The number

density of tracers determines the signal to noise of the measurements, the smaller

the scale of the correlation function that one aims to measure the more galaxies it

will need (Feldman et al., 1994). For the scales needed for BAO analysis a number

density of around ∼ 1 × 10−4h3Mpc−3 is optimal (e.g. Drinkwater et al., 2010).

Another consideration to account for is how efficient the photometric data, used

for selecting the targets of the survey, will be at selecting the relevant tracers. A

tracer that can be easily extracted from the photometric data ensures, among other

things, that most of the observational time of the survey will be spent observing

actual tracers instead of false candidates that will have to be discarded from the

sample. An example of a feature of a tracer that makes it easy to be selected

is the 4000 Armströng (Å)∗ break, which allows easy detection of galaxies that

are not forming stars. This is very useful when selecting e.g. LRGs as we will

discuss below. Another thing to consider is how easy it is to compute the redshift

of an object, objects with strong, easily distinguishable features in their spectra

require less exposure time to measure their redshifts accurately, this is the case for

the strong emission lines of star forming galaxies or the clear H and K absorption

features of LRGs.

Another feature to consider is the amplitude of the resulting correlation function,

which as we have mentioned varies from tracer to tracer, this amplitude is determ-

ined by how clustered the galaxies selected by a given survey are. Tracers with a

small amplitude in the power spectrum would make the analysis more susceptible
∗The strength of the 4000 Å break is often defined as the ratio of the flux density before and

after the 4000 Åbreak.
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2.2. LSS tracers in cosmological surveys

to shot noise.

In what follows we will introduce some of the more common tracers of matter that

have been used in LSS surveys designed for BAO or RSD analysis.

• Magnitude limited galaxy surveys were the first type of data set used for

BAO and RSD analysis. These surveys are done at low redshifts where the

Malmquist bias∗ is less of an issue and standard galaxies can be observed with

enough density. Some of the examples of RSD analysis made with magnitude

limited surveys is the one made with the SDSS main galaxy sample (Howlett

et al., 2015) that selected targets at z < 0.2, and the RSD analysis of the

2dFGRS survey (Peacock et al., 2002). Other upcoming surveys will also

have magnitude limited surveys of galaxies at low redshift, that will be used

for RSD analysis, e.g. the bright galaxy survey (BGS) of DESI (Zarrouk,

2021).

• LRGs are among the most massive galaxies and are normally associated with

the centres of galaxy clusters (Kauffmann et al., 2004), where mergers and in-

teractions with other objects are common, which explains their massive size.

The red colour is a consequence of LRGs having long formed all their stars

and depleted their gas content. LRGs can be selected from photometric data

efficiently due to having a strong 4000 Armströng (Å) break which is com-

mon in galaxies with a relative lack of young blue stars (Bruzual A., 1983).

A strong 4000 Å break also allows fast and reliable redshift measurements.

For example, the more distant LRGs of the SDSS sample did not need a lar-

ger average observational time than closer and apparent magnitude brighter

galaxies of the SDSS main sample to obtain accurate redshift measurements

(Eisenstein et al., 2001).

LRGs were the tracer selected by the SDSS survey for the first detection ever

made of the BAO peak (Eisenstein et al., 2005). Other surveys like BOSS
∗The Malmquist bias refers to the fact that intrinsically brighter objects are detected prefer-

entially over intrinsically fainter objects due to their apparent brightness
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(Dawson et al., 2012) (z < 0.7) and eBOSS (0.6 < z < 1.0) (Icaza-Lizaola

et al., 2020; Ross et al., 2020) also used LRGs to make clustering analysis.

Chapter 3 presents the first RSD analysis done with the eBOSS LRG sample

of the fourteenth data release. Future surveys like DESI plan to include

LRGs as one of their samples between redshifts of 0.3 and 1.0 (e.g. Zhou

et al., 2020).

• An emission line galaxy (ELG) is a galaxy with strong emission lines. Such

objects are primarily either active galactic nuclei (AGNs) or star-forming

galaxies. Given the strength of their emission lines, they do not require large

exposure times to measure their redshifts accurately. They are most common

in redshifts around 0.5 < z < 2 which are the epoch of higher star formation

rate in the universe (Madau and Dickinson, 2014). The first survey that used

ELGs for BAO analysis was the WiggleZ (Drinkwater et al., 2010) survey and

it produced the first measurement of the BAO with a considerable sample

of galaxies at a redshift larger than z > 0.31 (WiggleZ targeted redshifts

between 0.2 < z < 1). Other surveys have since used ELGs as matter tracers

e.g. eBOSS targeted ELGs between 0.7 < z < 1.1 (Raichoor et al., 2017).

And several future surveys are expected to have an ELG sample, e.g. DESI

(Raichoor et al., 2020), that will explore ELGs in the redshift range 0.6 < z <

1.6 and EUCLID (e.g. Merson et al., 2018) that will explore the 1 < z < 2

range. Several considerations make ELGs good candidates tracers. First,

they have strong emission lines which make the redshift measurement easy,

secondly, these galaxies have strong emission in the UV spectra at the desired

redshifts which makes them easy to select from photometric data. And finally,

they can be observed over similar redshifts as LRGs, therefore both samples

can help constrain systematic effects arising from the tracer selected.

• Quasars are some of the brightest objects in the universe and can be seen

to very large distances, and are usually selected as tracers for RSD analyses

at large redshifts (z ≳ 2). Quasars are AGNs that are so bright that they
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outshine their host galaxies which become undetectable (Kembhavi and Nar-

likar, 1999). Therefore they look like an unresolved source of light, which

gives them their name of quasi-stellar objects or quasars for short. Their

huge brightness allows them to be seen at very large distances and they are

amongst the farthest objects that we have observed. Quasars were much more

common in the past, peaking in density around z ≈ 2 (Schmidt et al., 1995)

which is unofficially referred to as the era of quasars.

The first quasar survey to be used for LSS analysis was the 2dF QSO survey

(Croom et al., 2001) that targeted quasars at z < 3. Other important quasar

surveys are the BOSS survey (Ross et al., 2012) that included all objects that

were visually inspected and confirmed to be quasars, and the eBOSS survey

that is centred in the redshift range around the era of quasars 0.9 < z < 2.2

(Myers et al., 2015). Future surveys like DESI (Yèche et al., 2020) will also

use quasars to study RSD at high redshifts.

2.3 Theoretical models that account for RSD

Cosmological perturbation theory (Fry, 1984; Bharadwaj, 1994) studies the evolu-

tion of structure in the universe. The theory models how small perturbations evolve

through gravity and makes predictions of the overdensity field δ(x⃗, t). Given that

an accurate model of δ(x⃗, t) can be used to model the correlation function (equa-

tion 1.9), this becomes an appropriate framework to model the correlation function.

Perturbation theory usually focuses on matter as the only relevant component and

assumes that gravity is the only relevant interaction on all scales except the smaller

ones, where baryonic physics becomes important. The standard approach is to treat

matter as a pressureless dust that is characterised at any time by its mass density

ρ(x⃗, t) and its peculiar velocity v⃗(x⃗, t), and then to use hydrodynamical equations

like the Euler, Poisson, and continuity equations (e.g. Hui and Bertschinger, 1996)

to evolve these quantities. In general, a direct evaluation of ρ(x⃗, t) is not feasible
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due to the nonlinear coupling between parameters∗.

These coupling terms however become negligible when δ ≪ 1 and the velocities

are small (Peebles, 1980). The ranges when this happen are known as the linear

regime. This regime is particularly important as it corresponds to most of the

perturbation’s lifetime. Today the linear regime corresponds to scales larger than

20 − 40 h−1 Mpc (depending on the tracer).

One difficulty when comparing a predicted correlation function from perturbation

theory to observations is the fact that we do not see the actual matter distribu-

tion of the universe. Instead, we observe galaxies, which are biased tracers of the

underlying matter distribution. The bias function, B, relates the density of galaxy

tracers, δg(x⃗), to the underlying matter distribution, δ(x⃗), so that δg(x⃗) = B(δ(x⃗)).

The general approach to deal with this issue is to add free parameters that determ-

ine the bias function as part of the methodology that needs to be fitted by the

model. For example, the parameters F ′ and F ′′ that are fitted by our methodology

in chapter 3 are related to a first and second-order approximation of the bias func-

tion in the so-called Lagrangian space that will be introduced below. It is common

to make a linear approximation of the bias function so that δg(x⃗) ≈ b δm(x⃗). The

constant b is usually referred to as the linear bias.

Note that this means that the correlation function of the underlying matter

ξ(r⃗1, r⃗2) = ⟨δ(r⃗1)δ(r⃗2)⟩ and the correlation function of matter tracers

ξM (r⃗1, r⃗2) = ⟨δM (r⃗1)δM (r⃗2)⟩ should be related by the following expression in the

linear regime:

ξ(r⃗1, r⃗2) ∼ b2ξM (r⃗1, r⃗2). (2.5)
∗The mechanics of matter tracers in dense environments are affected by the density in neigh-

boring regions e.g. galaxies inside a galaxy cluster are gravitationally disturbed by other bodies
inside the cluster which makes predicting the dynamics of the tracer an N-body problem without
an analytic solution. However, when a matter tracer has just started its gravitational collapse
into a cluster and is still reasonably far from the centre of the cluster, all the interactions can be
approximated by a single gravitational pull, in the direction of the centre of mass of the cluster.
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In what follows I will present a brief derivation of one of the most famous RSD

models: the Kaiser formula (Kaiser, 1987), a RSD model that is valid in the linear

regime. The Kaiser model is a perfect example of a RSD model that computes

the Fourier transform of the correlation function in redshift space, as a function

of both the growth rate, f , and the linear bias, b. Let us start our derivation by

noting that the number of galaxies in redshift and real space should be conserved,

ns(s⃗)d3s = n(r⃗)d3r, (2.6)

where the superscript s denotes quantities in redshift space. The relation between

the vector in real space r⃗ and in redshift space s⃗ is given by equation 1.19:

s⃗ = r⃗ + Vlosr̂, (2.7)

here we have assumed that the position vector r⃗, points in the line-of-sight direction,

and we have defined the normalised peculiar velocity vector V⃗ = v⃗/aH. The

peculiar velocity vector is V⃗ = (Vlosr̂ + V⊥r̂⊥), where Vlos and V⊥ are the parallel

and perpendicular components of the peculiar velocity with respect to the line-of-

sight and r̂⊥ is a unit vector perpendicular to r⃗ (and therefore to the line-of-sight).

We can use equation 1.8 to write δs(s⃗) = (ns(s⃗) − n̄s(s⃗))/n̄s(s⃗). Plugging this

definition and equation 2.7, into equation 2.6 it can be rewritten as:

δs(s⃗) + 1 = r2n̄(r⃗)
(r + Vlos)2n̄(r⃗ + Vlosr̂)(1 + ∂Vlos

∂r
)−1[1 + δ(r⃗)] (2.8)

This equation is valid in all regimes. In the linear theory, it should be true that

Vlos < V ≪ r which states that the peculiar velocity correction to the distance

is small. Also in the linear regime the density perturbations should be small and
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therefore δ ≪ 1. Equation 1.15 states that ∇⃗·V⃗ = −δf , and therefore ∂Vlos/∂r ≪ 1

given that f is independent of scale. Therefore equation 2.8 is simplified to∗

δs(s⃗) = δ(r⃗) − ∂Vlos
∂r

. (2.9)

Now from equation 1.15 we can write Vlos as

Vlos = −f
∂

∂r
∇−2δ(r⃗), (2.10)

where ∇−2 is the inverse function of the Laplacian operator, and we conclude that

δs(s⃗) = (1 + f
∂2

∂r2 ∇−2)δ(r⃗). (2.11)

This equation could be used to compute the correlation function in redshift space

as a function of their correlation in real space. However, when working with RSD in

the linear regime it is common to work in Fourier space due to the k modes evolving

independently (although consider e.g. Fisher (1995); Reid and White (2011) for a

treatment of the linear scales in configuration space). Let us define P (k) as the

Fourier transform of the correlation function in real space (usually referred to as

the power spectrum).

And let us write equation 2.11 in Fourier space

δ̂s(k⃗) = (1 + fµ2
k⃗
)δ̂(k⃗), (2.12)

where µ2
k⃗

= k2
z/k2 and we have used the fact that in Fourier space the operator

∂2

∂r2 ∇−2 becomes k2
z/k2. Then the power spectrum in redshift space is given by the

following relation
∗Here, and in the rest of this derivation we are also assuming the plane-parallel approximation,

see Hamilton (1998) for a discussion of these equations without that approximation.
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P s(k, µ) = (1 + fµ2)2P (k, µ), (2.13)

Finally, we add the linear bias relation δg = bδ to arrive to the standard expression

of the Kaiser formula

P s
g (k, µ) = b2(1 + fµ2)2P (k). (2.14)

Let us note that so far we have worked in linear scales, unfortunately, some of the

strongest cosmological constraints come from smaller distance scales that are where

the linear scale is less valid. One common approach to go beyond linear theory is

to add a random motion to the predictions of linear theory, which is known as

the streaming model (Reid and White, 2011; Reid et al., 2012). These random

motions are taken from a distribution of velocities that is dependent on the scale.

Following e.g. Peacock (1998) and Scoccimarro (2004), one can consider models

that modify the Kaiser formula to predict P s
g (k, µ) beyond linear theory using a

Gaussian streaming model, where, as the name suggests, the random motions are

taken from a Gaussian distribution.

So far we have discussed perturbation theory in what is usually referred to as

Eulerian coordinates, where one tries to determine the density and velocity fields,

i.e. ρ(x⃗, t) and v⃗(x⃗, t) respectively. However, one of the most successful approaches

to model the density field in redshift space is to make a change of coordinates

and instead model the displacement field Ψ⃗ defined as the vector connecting the

position q⃗ of a particle at t = 0 with its position at the later time t:

x⃗(q⃗, t) = q⃗ + Ψ⃗(q⃗, t). (2.15)

Note that any particle is uniquely identified by q⃗ and that the field Ψ⃗(q⃗, t) is

sufficient to specify its evolution. This approach is called Lagrangian Perturbation
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Theory (LPT) (Zel’Dovich, 1970; Matsubara, 2015). The model that we present in

section 3.4 is an example of a LPT model.

The standard approach to model Ψ⃗(q⃗, t) is to write it as a perturbative solution:

Ψ⃗(q⃗, t) = Ψ⃗(1)(q⃗, t) + Ψ⃗(2)(q⃗, t) + Ψ⃗(3)(q⃗, t) + Ψ⃗(4)(q⃗, t) + ....., (2.16)

where Ψ⃗(n)(q⃗, t) is of the order of (Ψ⃗(1)(q⃗, t))n. The solution to the linear term

is usually referred to as the Zeldovich approximation (Zel’Dovich, 1970), and it is

given by the following equation (Bernardeau et al., 2002):

∇q · Ψ⃗(1)(q⃗, t) = −D(t)δ(q⃗) (2.17)

where D(t) is the growth function from equation 1.12 (here we are using the variable

t to measure time instead of the scale factor a), that quantifies how much structures

have grown in a given cosmological model. Note that if the collapse is irrotational

(as one would expect in the linear regime of gravitational collapse), the divergence

of the displacement field should contain all of the required information about the

gravitational collapse of matter. Matsubara (2015) discusses analytical approaches

to go beyond linear theory. Analytical solutions of LPT are known to the fourth-

order (Rampf and Buchert, 2012). We revisit the LPT approach in chapter 3 when

the LPT model used in Icaza-Lizaola et al. (2020) is discussed.

2.4 The Alcock-Paczynski effect

So far we have considered RSD as the only type of distortions apparent from the

way we measure structures in the universe. However, other phenomenon can affect

our distance measurements, for example, a poor choice of cosmological model that

is used to compute distances of galaxies.

A LSS survey measures two observables: the redshifts and angular positions of

objects. Then one uses these measurements to infer a distance, which requires us
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2.4. The Alcock-Paczynski effect

Figure 2.2: Each light-cone represents an aperture of fixed angle for three different
cosmological models. The model on the left represents a model with no dark energy,
the model in the middle shows a model of a universe that is not flat, and the model
on the right shows the ΛCDM model. The plot shows how different cosmological
models measure radial and angular distances differently. This figure is taken from
Hamilton (1998).

to assume a cosmological model. If this model were not the true cosmology of the

universe, then the distance measured would be wrong and the correlation functions

that we measure would be distorted.

To understand this let us look at figure 2.2 where the light-cone of three universes

with different cosmological models of fixed aperture are shown. We can see that

the cosmological model determines both the comoving distance, which at small z

is given by r = cz/H(z) due to the Hubble law (using equation 1.3), and the so-

called angular diameter distance DA(z), defined as DA = D/∂θ for a light source of

diameter D that subtends an angle ∂θ on the sky. In a flat universe, DA is related

to the comoving distance r through the relation DA = r/(1 + z).

Let us refer to our selected cosmology as the fiducial cosmology, to differentiate

it from the true cosmology of the universe. Then let us predict how a spherical
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shell of galaxies of diameter D would look if someone would try to map it using

the fiducial cosmology that is significantly different from the true cosmology. The

distance between galaxies at different ends of the shell and along the line of sight

will be determined by the Hubble law to have a value Dfid, where the superscript

fid emphasis that the measurement is done in the fiducial cosmology. Then the

angle that the object would need to subtend in the sky in order for the shell to look

like a sphere will be ∂θfid = Dfid
A /Dfid, which, as shown by figure 2.2, is different

from the angle that one would observe (as this angle is determined by the true

cosmology).

This indicates that if the cosmology selected was not the true cosmology of the

universe the sphere would look like an ellipsoid. Given that we know that the dis-

tribution of matter is isotropic on large scales (due to the cosmological principle)

finding different clustering signals along the line-of-sight and transverse directions

(after correcting for RSD) will suggest that the fiducial cosmology selected is dif-

ferent from the true cosmology. Let us note that as a consequence the BAO signal

will have an offset along the line of sight and along its perpendicular direction.

Alcock and Paczynski (1979) proposed to include any possible distortions in the

data as free parameters of the model to be fitted alongside the rest of the free para-

meters (in our case our RSD parameters). In the rest of this section we introduce

a common parametrisation, which is usually referred to as the Alcock-Paczynski

parameters.

Let us first consider the case where one does not analyze the differential clustering

along the line-of-sight and transverse directions separately (for example in a BAO

analysis without RSD). In this case, the anisotropic shift between the line-of-sight

and perpendicular directions would not be measured but there will still be a shift in

the position of the BAO peak due to the fact that the predicted comoving distance

rfid will be different from the true distance. As a consequence, the BAO peak will

be displaced.
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We define the spherically average distance to an object as

DV (z) =
[
(1 + z)2D2

A

cz

H(z)

]1/3
. (2.18)

This is the average of three comoving distance measurements, two of them com-

puted using the formula r = DA(1+z) (this accounts for the fact that there are two

radial directions perpendicular to the line of sight) and the other computed along

the line of sight as r = cz/H(z). One can then add the following Alcock-Paczynski

parameter to the list of free parameters explored by the methodology,

α = DV (z)rfids
Dfid
V (z)rs

, (2.19)

where rs is the BAO scale. Let us note that if our parameter space exploration

suggests that the best fit models are such that α deviates significantly from α = 1

it would suggest that the fiducial cosmology used to build the model and to analyse

the data needs to be revised.

When one analyses the differences in clustering along the line-of-sight and trans-

verse directions, like in a RSD analysis, one can instead use the following Alcock-

Paczynski parameters.

α⊥ = DA(z)rfids
Dfid
A (z)rs

, α∥ = H(z)fidrfids
H(z)rs

, (2.20)

where again, if the best-fit parameters have significant deviations from α∥ = 1, or

α⊥ = 1, it would indicate that the fiducial cosmology needs to be revised.

Let us also note that the values of Dfid
A (z) and H(z)fid used in an analysis are

known, therefore an estimate of the regions of high likelihood of the parameters

α⊥ and α∥ corresponds to an estimate of DA(z)rfids /rs and H(z)rs/rfids . These

estimates are a sought-after result of a RSD analysis and are considered, along

with an estimate of the growth rate f , the main results of a RSD analysis.
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2.5 Galaxy mocks

We stated that one of the necessary constituents of a RSD analysis is an estimate

of the uncertainty on the multipoles of the correlation function measured from the

observational survey. It has been shown (e.g. Norberg et al., 2009) that methodolo-

gies that measure the error from the data itself like the jackknife and the bootstrap

methods (Efron, 1982) have limitations in their use in a LSS analysis.

Another possible approach to estimate the uncertainty of the multipoles is to gen-

erate artificial data sets to estimate the expected uncertainty in the correlation

function. We will refer to a collection of artificial sets as mock catalogs, where each

artificial data set is called a mock.

The number of mocks required to make an accurate estimate prediction depends

on the size of the observational data set and on the accuracy of the error estimate

required by the analysis. Modern LSS surveys require several hundreds of mocks,

for example, Percival et al. (2014) suggests that at least 600 mocks are needed to

analyze the clustering of the BOSS samples.

These mocks are not only useful to estimate the errors of the data but they can

also be used to test the methodology of a RSD analysis. The idea is to plug in

the mock catalogs, which were built with a known set of cosmological parameters,

into the fitting methodology. If one can not recover the expected value of the

parameters within the predicted error (that is obtained by an exploration of the

parameter space as discussed in section 2.6) this might indicate a problem. These

tests represent an important part of our RSD analysis in eBOSS, and are presented

in section 3.6.

One possible approach is to generate halo catalogs using N-body simulations, and

then populate these halos with galaxies. Unfortunately, it is not easy to produce

hundreds of accurate N-body simulations, given how computationally expensive
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each of them is∗. Therefore, there is a strong incentive to generate approximate

methods to create cheaper mocks.

Over the last decades, there have been several attempts to generate cheap and

reasonably accurate mocks that have been used in LSS analysis.

One of the cheaper and faster methods to create mock catalogs is to generate

so-called log-normal mocks (Coles and Jones, 1991), where one assumes that the

probability density function (PDF) of the galaxy or halo density fields should fol-

low a log-normal distribution. This assumption is based upon the observation that

the PDF of the log of density fields, ln(1 + δ), measured from N-body simulations

roughly matches a Gaussian PDF (e.g. Coles and Jones, 1991). The standard ap-

proach is to feed these mocks with an input correlation function ξ(r) and transform

it into log space ξln(r) = ln(1+ξ(r)), this new correlation function can then be used

to compute a log-normal density field δln. Log-normal mocks have the advantage

that their statistics are completely determined by the input two-point correlation

function.

This is shown in the first panel of figure 2.3 where the correlation function in real

space of several mocks is compared to a reference halo catalog extracted from the

BigMultiDark simulation. We can tell that the log-normal mocks (yellow lines)

make accurate predictions of the two-point correlation function.

Note that no velocity field was assigned to the log-normal mocks. This could in

principle be done (e.g. White et al., 2013) but it was not a part of the analysis

done in Chuang et al. (2015), therefore there is no estimate of log-normal mocks in

redshift space.

The displacement of matter through time is not predicted by log-normal mocks and

as a consequence the observed pattern of the cosmic web is not properly reproduced.

This can be seen in the fourth panel of figure 2.3, which shows that log-normal
∗Although in recent years simulation catalogs have became more efficient and codes like the

Abacus Summit (Garrison et al., 2021) are capable of realising hundreds of N-body simulations of
the required volume for DESI like surveys.
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mocks make a poor model of the three-point correlation function∗.

More complex mocks that address this problem can be made with methods that

try to predict the gravitational motion of particles using perturbation theory. Two

codes have pioneered this method, mainly the PT Halos (Manera et al., 2012;

Manera et al., 2015) and the PINOCCHIO (Monaco et al., 2002) algorithms.

PT Halos uses second-order LPT to create a field of DM particles and identifies

halos in this field using an FoF algorithm with a linking length that is optimally

selected following the procedure of Manera et al. (2012).

PINOCCHIO uses an ellipsoidal collapse model† solved in third-order LPT, to

compute the time at which the elements of an initial linear density field collapse.

The accuracy of both PINOCCHIO and PT Halos is limited by the accuracy of the

perturbation theory that they use, which is not very accurate in the highly non-

linear regime, which results in limited success in modelling halos hosting galaxies.

This is shown in the third panel of figure 2.3, where one can see that both models

struggle to reproduce the power spectrum of the reference halo catalog at large

values of k (that correspond to small perturbation sizes).

To improve the description of smaller scales, a set of methodologies that try to fit

the mocks to statistics of a target simulation have been developed. In what follows

we introduce some of the more well-known methodologies.

• The quick particle mesh (QPM) methodology (White et al., 2013) consists

in running fast N-body simulations with low accuracy, that are later cal-

ibrated to reproduce statistics of a full N-body simulation built with the

Tree-PM code (White, 2002). The simulations are built using the particle

mesh methodology described in chapter 1.3.2, which gives them their name.

The simulation speed is achieved by reducing the number of time steps used.
∗ζ = ⟨δ(r⃗1)δ(r⃗2)δ(r⃗3)⟩.
†Similar principle to a spherical collapse model but assuming that the original overdensity is

not symmetric along the main axis.
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In essence, the QPM simulation makes a trade-off between speed and ac-

curacy, as each time step requires computing the position and velocity of the

particles and requires memory to store the results. QPM methods use around

ten time steps, to be compared to, e.g., the 11,000 time-steps required by the

Millennium simulation (Springel et al., 2005), which give us an idea of how

fast these methods can be.

The resulting models do not have enough resolution to resolve halos inside of

them so some particles are selected as halos with a probability dependent on

their density (particles in denser regions are more likely to be halos). As with

log-normal mocks the sampling function from where these probabilities are

taken is given by a Gaussian in ln(1+δ) space, then the mean of the Gaussian

is fitted to reproduce the large-scale bias of halos in the Tree-PM simulation.

The mass of the halo is also a function of density and they are assigned in

such a way that they reproduce the Tree PM mass function. Finally, galaxies

are assigned to halos using a method known as Halo Occupation Distribution.

We will describe this further in section 4.3, but in short the method estimates

the probability P (N |M) of finding N galaxies of a given type or mass in a

DM halo of mass M. The halo occupation distribution (HOD) used is in QPM

mocks described in (Tinker et al., 2012)

• The effective Zeldovich (EZ) methodology (Chuang et al., 2015) uses the Zel-

dovich approximation of equation 2.17 to make a first-order approximation of

the DM density field at each grid point. Then this density field is populated

with matter tracers (halos or galaxies) by mapping a target density field of

tracers into the grid following the methodology described in Chuang et al.

(2015). The target density field is measured from either a full N-body or a

LSS survey. Once these first tracers are added to the grid several other steps

are done to improve the accuracy of the resulting mock. These steps include

adding scatter to the relation, including density thresholds/saturation para-

meters that modify the amplitude of the resulting power spectrum, adding
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a parameter that enhances the BAO signal, and adding a parameter that

modifies the shape of the initial power spectrum. All of these steps add

several free parameters to the model, which are fitted so that the resulting

mock reproduces the statistics, including the 2-point and 3-point correlation

functions, of the target observations/N-body simulations.

• PATCHY also uses LPT to evolve the position of particles by modelling the

displacement field (Ψ(q⃗, t)). In this case, it uses a LPT model known as Aug-

mented Lagrangian Perturbation Theory (Kitaura and Heß, 2013) (instead

the Zeldovich approximation is used by EZ mocks). The model works by

using a spherical collapse model (ΨSC(q⃗, t)) to model the linear scales and

second-order LPT (Ψ2LPT (q⃗, t)) to add a correction on smaller scales. The

density field is given by

Ψ(q⃗, t) = ΨSC(q⃗, t) + Ψ2LPT (q⃗, t) (2.21)

After evolving the particles one has a catalog of evolved particles at time t,

from where one can compute the DM density. The next necessary step is to

determine the bias relation between galaxy density and DM density. This is

done by fitting a bias model to the two- and three-point statistic of a target

distribution.

The target distribution comes from the Multi Dark N-body simulation Halo

catalog that is filled with galaxies using a Halo Abundance Matching (HAM)

algorithm calibrated to a LSS survey as described in Rodríguez-Torres et al.

(2016).

• The Comoving Lagrangian acceleration (COLA) mocks (Tassev et al., 2013)

uses second-order LPT to compute the displacement of (r⃗(q⃗, t)2LPT ). As

stated earlier, 2LPT solves the largest scales accurately but struggles with

the smaller scales. To tackle this issue, COLA uses a particle mesh with

few time steps (similar to QPM mocks) to compute the residual displace-

ment (r⃗(q⃗, t)residual) of particles with respect to the trajectory computed
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with LPT. The accuracy at small scales is controlled by the number of time

steps used in the particle mesh, with the authors proposing 10 steps start-

ing at a redshift of z = 9. The trajectory of a particle is then computed as

r⃗(q⃗, t) = r⃗(q⃗, t)LPT+r⃗(q⃗, t)residual.

Figure 2.3 shows how the statistics of EZ, PATCHY and COLA mocks compare

with the reference halo catalog extracted from the BigMultiDark simulation (un-

fortunately QPM mocks were not part of this study). The plot shows how these

models agree well with the reference halo in all four comparisons, making them the

most reliable mocks of the ones presented so far.

Once one has built a set of hundreds of mock simulations one can compute the

two-point correlation functions of each of them individually. These estimates can

be used to compute their covariance matrix, which we use as the estimate of the un-

certainty of the measured correlation function. The covariance matrix is estimated

using equations 3.21 and 3.22 of section 3.5.

2.6 Exploring the parameter space

In the previous sections, we have introduced the four key components required for

a RSD model comparison with observational data.

First the values of the multipoles of the correlation function are computed from

an observational data set. A LSS survey provides the distance (in the form of

redshifts) to N galaxies, that we use to measure the correlation function ξ(s, µ) in

R distances si = [s1, .., sR] and M angular parameters µi = [µ1, .., µM ]. Then one

can use equation 2.4 to compute the multipoles of the correlation function. Let

us suppose that one computes l multipoles, where [0, 2, ..., 2L = l] and LϵN (let

us remember that ξli(s) = 0 for odd values of li), then we define the data vector

D⃗ = [ξ0(s1), .., ξ0(sR), .., ξl(s1), .., ξl(sR)].
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Figure 2.3: Performance results of different correlation statistics for several mock
simulations represented by the coloured lines. The dashed lines show the statistics
extracted from the BigMultiDark simulation (Klypin et al., 2016), which is a full
N-body simulation and is used as a reference catalog. The top-left panel shows the
correlation function in real space. The top-right panel shows the quadrupole of
the correlation function in redshift space (noting that the differences between the
mocks are more pronounced in the quadrupole terms compared to the monopole
terms.). The third panel shows the monopole of the power spectrum in redshift
space. Finally, the last panel shows the three-point correlation function in real
space. Image credit: (Chuang et al., 2015)
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The second constituent is a theoretical model of the used multipoles that depends

on a set of free parameters P that should include the Alcock-Paczynski parameters

and the growth rate f amongst other parameters. We define the vector of model

predictions of the correlation function M⃗(P ) = [ξM0 (P, s1), .., ξM0 (P, sR),

.., ξMl (P, s1), .., ξMl (P, sR))] where the superscript M in ξMli emphasises the fact that

we refer to a modeled value of the correlation function, built using the parameters

P .

Finally, the last constituent is an estimate of the errors on the observed multipoles

measured from mock catalogs and used to compute a covariance matrix, Ci,j . If

the vector D⃗ has K elements, then i, j < K.

We define the χ2 (Lupton, 1993) merit function of our model as

χ2(D, P ) = [M(P ) − D]TC−1[M(P ) − D]. (2.22)

χ2 is an estimate of the goodness of the fit and has a small value when the model

with parameters P predicts the data accurately.

In the rest of this chapter, we present a methodology to explore the parameter

space and find the regions P of the space that is more likely to explain an observed

data D, this is usually referred to as the posterior probability L(P | D). The

exploration is done using a sampling methodology known as a Monte-Carlo Markov

chains (MCMCs) (e.g. Knox et al., 2001; Dunkley et al., 2005). However, before

presenting this method I introduce the equations used to compute the posterior

at a given point in parameter space. Let us define the likelihood L(D | P ) as the

probability of observing the data D given our model built with parameters P . The

Bayes theorem indicates that the posterior and the likelihood are related as

L(P | D) = L(D | P )L(P )
L(D) , (2.23)
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where L(P ) is known as the prior and expresses our knowledge on the parameter

space, and L(D) =
∫

Θ L(D | P )dP is known as the marginal probability. As we

will see, the MCMC method that we use to explore the parameter space with only

computes the ratio of the posterior between different points, i.e. (L(Pi | D)/L(Pj |

D)) and therefore there is no need to compute L(D) (as it is canceled out).

If we asume that the likelihood should be a multivariate Gaussian then:

L(D | P ) = 1√
(2π)Det(C)

e− 1
2 [M(P )−D]TC−1[M(P )−D]. (2.24)

This can be rewritten using equation 2.22 as

L(D | P ) ∼ e−χ2(D,P )/2, (2.25)

noting that a large value of L(D | P ) corresponds to a small value of χ2.

It is common practice to introduce the priors L(P ) using an N-dimensional interval

I in parameter space, where L(P ) = 1 if PϵI and L(P ) = −∞ otherwise. This is

usually referred to as using flat priors. In summary, the posterior definition at a

given point P is computed using the following expression

L(P | D) ∼


e−χ2(D,P )/2, if PϵI

−∞, otherwise
(2.26)

Exploring the parameter space of a RSD analysis can be a challenging task, this is

because the number of points in the parameter space that need to be explored can

be large, and the evaluation of the likelihood at each point can be relatively slow.

There are several reasons that contribute to this issue: the complexity of the theor-

etical models can make them relatively slow to execute∗; the relatively large number
∗In the analysis presented in chapter 3 estimating the vector M(f, P ) takes around three

seconds for a set value of the parameters.

58



2.6. Exploring the parameter space

of parameters needed and the correlations between some of these parameters∗; sys-

tematic errors within the data can create degenerate solutions†, which can make

the relevant space very large to explore.

With this in mind, it is useful to use an algorithm where the regions of high

likelihood are explored more carefully than regions of small likelihood. A common

approach is to use MCMCs. This is the method selected for the RSD analysis of

the final data releases of some of the most popular surveys, e.g. the BOSS main

galaxy sample (Alam et al., 2017) and the eBOSS final data release analysis of

Quasars (Neveux et al., 2020), ELGs (de Mattia et al., 2021) and LRGs (Bautista

et al., 2021), and it is the method that we use in the analysis of chapter 3.

MCMC chains are designed to find the regions of high posterior probability in

the parameter spaces. However, they should agree with the results of methods

that acquire less information faster. For example minimisation routines like the

Powell methodology (Press et al., 2002) can find the best-fit parameters (that

correspond to the point of maximum likelihood in the parameter space) significantly

faster than what it would take to run a full MCMC chain. This can be used as

a computationally cheap consistency test of a MCMC chain (that should find the

same best-fit parameters).

Minimisation methods can also be used to explore the parameter space when one

has several cosmological data sets, for example, when one has built a set of N

mock catalogs, one can run a minimisation routine on all N mocks individually

and obtain N estimates of the parameters. Given that one knows the values of

the parameters P used to build the mocks, it would be expected that the mean

estimated value of those P parameters from those N mocks would agree well with

the assumed values of those P input parameters. This can be used to test the full

RSD analysis methodology. Such analysis is presented for our methodology when

discussing figure 3.12 in the next chapter.
∗Our analysis required six free parameters (see section 3.4).
†See e.g. section 3.10.1.
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2.6.1 MCMC chains

In the rest of this section we introduce the MCMC algorithm. The algorithm works

by walking in the parameter space computing the likelihood at every step that it

takes, making a chain of likelihoods in which each point is correlated to the former.

In order to decide in which direction to move the algorithm first takes a random

trial step. Let us denote as L(Pi | D) and L(Pi+1 | D) the likelihoods at the current

location and at the trial position. If L(Pi+1 | D) > L(Pi | D) then the algorithm

chooses the trial position as its new destination. If L(Pi+1 | D) < L(Pi | D) then

the algorithm has a probability L(Pi+1 | D)/L(Pi | D) of accepting the trial step

as its new position, and a probability 1 − L(Pi+1 | D)/L(Pi | D) of rejecting it.

This ensures that every point in the parameter space could eventually be part of

the chain, but that most of the running time will be spent exploring the region of

high likelihood.

One important configuration parameter of a MCMC chain is the step size of the

algorithm. Note that a very small step size would correspond to a very large

acceptance rate which makes the method more similar to a random walk, while

on the other hand a very large step size would correspond to a low acceptance

rate, both of which will make the space exploration very inefficient∗. The standard

approach to compute the step size is to run one first chain with your best guess of

the step size and use this chain to compute the covariant matrix of your parameters

which can then be used to compute the optimal step size. Following Dunkley et al.

(2005), as a rule of thumb an optimal MCMC should have an acceptance rate

between 0.2 and 0.4.
∗Note that in both cases the chain would theoretically eventually converge, as a random walk

would eventually explore the whole space and a small acceptance rate will work as a very slow
MCMC.
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2.7 Conclusions

So far we have introduced the five different constituents that are needed to do a

RSD analysis. These are:

• A data set with redshifts of galaxies that are members of a pre-determined

family of tracers of matter. From these galaxies, one computes the multipoles

of the 2-point correlation function.

• A theoretical model that predicts these multipoles as a function of a set

of free parameters. These parameters usually include the growth rate and

parameters that determine the bias of tracers with respect to the underlying

DM distribution.

• One can also add a set of free parameters that allows for the possibility that

one selects for the analysis a cosmological model that is different from the

true cosmology of the universe. This can be done with the Alcock-Paczynski

parametrisation. A deviation from the expected values when doing a likeli-

hood exploration in the parameter space is a red flag that suggests that the

fiducial cosmology needs to be revised. Let us also note that an estimate of

the Alcock-Paczynski parameters is equivalent to an estimate of H(z) and

DA(z).

• An estimate of the covariance matrix of the multipoles, which is usually

done by building a set of mock catalogs with hundreds or even thousands of

simulated universes.

• A methodology that can combine all of the previous components to estimate

the likelihood of the model for a set of cosmological parameters. This meth-

odology can then be plugged into a MCMC chain to explore the parameter

space and find the regions of high likelihood.
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In the next chapter, we present the first RSD analysis done with the fourteenth

data release of eBOSS. We introduce the different constituents used in the analysis

in detail and explore the parameter space of both the data and of a set of mock

catalogs, the latter is used as a test of the methodology. The final result is an

estimate of the growth rate f(z) and of the distance measurements H(z) and DA(z)

at the mean redshift of the survey (z = 0.72).
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Chapter 3

Structure growth rate

measurement from the anisotropic

eBOSS LRG correlation function

in the redshift range 0.6 < z <

1.0

3.1 Introduction

†,‡ The standard cosmological model (ΛCDM) accurately describes most obser-

vations. However, the acceleration of the expansion of our universe requires the

existence of a dominating source of exotic energy, i.e., the Dark Energy. This
†This chapter presents the RSD analysis of eBOSS DR14 and published as Icaza-Lizaola et al.

(2020). While this work was led by myself and Dr. Mariana Vargas, it was a collaborative effort
with other members of the eBOSS community. I was not involved in the realisation of some parts
of the work presented here that were carried out by other members of the collaboration. This is
the case for the survey footprints and the survey masks presented in section 3.2.2, the building
of the catalogs presented in section 3.2.3, and the comparison of the results of our fits with those
obtained using a BAO analysis without RSD that is presented in section 3.6.3.

‡Throughout this chapter we use the notation r⃗ to refer to distances in redshift space, this is
in contrast with the previous two chapters where the symbol s⃗ was used and r⃗ was reserved for
the real space distances. This is done to respect the notation in the published manuscript.
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energy remains undetected to this day, which has led to many searches for an

alternative explanation. One possibility is to modify the geometric part of Ein-

stein’s equations, which corresponds to changing the General Relativity (hereafter

GR) equations rather than invoking a new component in the stress-energy tensor.

Within the paradigm of GR, it is common to add a cosmological constant, Λ,

coupled to the metric.

Another way to reproduce cosmological observations is to modify the gravity model.

Various alternative gravitational models have been studied during the past 50 years

which can be grouped in different families. Extra-field theories, such as f(R)

(Sotiriou and Faraoni, 2010), Tensor-Scalar theories, extra-dimension theories, such

as DGP (Fang et al., 2008), braneworld, and string gravity models, and higher-order

theories such as the Galileons model (Joyce et al., 2015) are some of them.

All modified gravity models must recover the GR results at the local scale (i.e.,

for high density) where GR has been strongly tested; this is generally solved by

invoking screening mechanisms. Therefore, any modification has to appear in the

context of weak gravity and large scales; this is the reason why cosmology, and

more particularly Large-Scale-Structures (LSS) observations, is the appropriate

framework for this study.

Cosmological constraints on the theory of gravity are primarily produced from LSS

observations, the most important of these being Supernovae (Riess et al., 1998;

Perlmutter et al., 1999), Baryon Acoustic Oscillations (Eisenstein et al., 2005; Alam

et al., 2017) and weak lensing (Sheldon et al., 2004), and from the early universe

through Cosmic Microwave Background observations, when the density contrast

was of the order of ∼ 10−5 (Planck Collaboration et al., 2016a).

Large-scale peculiar velocities, combined with standard clustering, are a unique

framework to distinguish between the various models of gravity. However, obtain-

ing precise relative velocity measurements at large scales (>10 h−1 Mpc) is challen-

ging. The Kinetic Sunyaev-Zel’dovich effect is a possibility (Mueller et al., 2014)
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but requires measurements of massive galaxy clusters with high precision on the SZ

signal estimation. Conversely, we can directly use the imprint of these velocities on

the redshift measurement through the RSD in the anisotropic correlation function

of galaxies (or other tracers of the dark matter) (Kaiser, 1987; Hamilton, 1992;

Cole et al., 1995; Peacock et al., 2001; Cabré and Gaztañaga, 2009; Alam et al.,

2015; Satpathy et al., 2017; Zarrouk et al., 2018). The measured redshift is the sum

of the Hubble flow, the Doppler effect due to the peculiar velocities of the observer

and the observed galaxies, and a small contribution from gravitational redshift. If

the peculiar velocities are randomly distributed (i.e. from satellite galaxies inside

clusters), then they only contribute as a noise. They are, however, correlated with

the density field, revealing cosmological information, in particular allowing us to

distinguish between dark energy models or deviations from GR. The Redshift Dis-

tortion introduces anisotropies in the galaxy-galaxy two-point correlation function,

particularly if we stack the information around over-densities, where these tracers

live. Performing an anisotropic study, i.e., using the angle with respect to the line-

of-sight as a statistical breakdown, we can detect the coherent deformations of the

3D two-point correlation function predicted by the Kaiser (1987) effect.

BAO and supernova measurements are constraints on the expansion history of the

universe. However, it has been shown that an appropriate choice of the equation

of state w(a) can allow different cosmological models to have the same expansion

history (Linder, 2005). In order to break this degeneracy one can complement

expansion history observations with the clustering history of the structures through

the measurement of the linear growth rate:

f(a) = d ln D(a)
d ln a

, (3.1)

where D(a) is the linear growth factor as a function of the scale factor a, and it

quantifies the degree of structure at that time. In this paper we extend the growth

rate f measurement from previous surveys to an effective redshift of z = 0.72 using

the luminous red galaxies (LRG) sample from the extended Baryon Oscillation
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Spectroscopic Survey (eBOSS; Dawson et al. (2016)).

The paper is organised as follows: Section 3.2 presents the data, Section 3.3 de-

scribes the mock catalogs used for the estimation of the covariance matrix and for

our systematics checks. Section 3.4 presents the modelling of the RSD signal as

well as the parametrisation used for the Alcock-Paczynski test. Section 3.5 de-

scribes the methodology followed in our analysis. Section 3.6 presents our analysis,

using mock catalogs, of the systematic effects associated with our methodology.

The results for the eBOSS-CMASS sample are presented in Section 3.7. Finally,

the cosmological implications of this work are reviewed in Section 3.8.

3.2 Data

Our sample of spectroscopic data was collected during the first two years of eBOSS

(Dawson et al., 2016), which is the cosmological component of the fourth generation

of the Sloan Digital Sky Survey (SDSS-IV; Blanton et al. (2017)). All of our spectra

were obtained by the Sloan 2.5m telescope using two multi-object spectrographs

(Smee et al., 2013) at Apache Point Observatory in New Mexico, USA (Gunn et al.,

2006). All of these data belong to the SDSS Data Release 14 (Abolfathi et al.,

2017), of which we analyze the LRG Sample. The LRG targets were selected based

on updated photometric data from SDSS I/II/III imaging (Fukugita et al., 1996;

Gunn et al., 1998) for which the calibration of the photometric data was updated

following the procedure presented in Schlafly and Finkbeiner (2011). The target

selection process also used infrared photometry data from the Wide-Field Infrared

Survey Explorer (WISE; Wright et al. (2010)). The WISE satellite observed the

entire sky using four infrared channels respectively centred at 3.4 µm (W1), 4.6

µm (W2), 12 µm (W3), and 22 µm (W4). The eBOSS LRG sample uses the

W1 and W2 bands. Given that stars have different properties than galaxies in

infrared (particularly due to the galactic dust), the WISE data allow us to reduce

the stellar contamination, it is also useful for extending the redshift range with
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Table 3.1: Characteristics of the LRG data catalogs used. The upper panel corres-
ponds to the BOSS CMASS sample from DR12, the lower to the eBOSS LRG DR14
sample. Nstar and Nqso are the number of objects whose spectra were determined to
be stars or quasars instead of LRGs. Nzfail is the number of objects whose redshift
measurement was not reliable, and Ncp the number of objects without spectra due
to close pair effects. The last line reports the number of galaxies and the effective
volume of our final sample, which is a combination of the CMASS and eBOSS
samples.

CMASS LRG Sample DR12
Catalog Area (deg2) Total redshifts
CMASS-BOSS NGC 1011.15 26149 - - - - -
CMASS-BOSS SGC 788.09 20290 - - - - -

eBOSS LRG DR14 Sample
Catalog Ngal Nstar Nqso Ncp Nzfail Aeff [deg2] Veff [Gpc3]
eBOSS NGC 45826 2897 18 2263 4957 1033.4 0.356
eBOSS SGC 34292 4273 18 1687 4366 811.6 0.262
Total 80118 7170 36 3950 9323 1844.0 0.618
eBOSS-CMASS 126557 0.900

respect to BOSS. The target selection follows the algorithm described in Prakash

et al. (2016).

3.2.1 eBOSS-CMASS Sample

Our eBOSS DR14 LRG Sample includes data of the first two years of the eBOSS

program combined with the BOSS CMASS data (Alam et al., 2017) which overlaps

with the eBOSS footprint in a redshift range of 0.6 < z < 1.0. This approach allows

construction of a more complete sample without decreasing the median redshift.

The eBOSS-CMASS sample is composed of 80118 galaxies from eBOSS and 46439

from CMASS, yielding a total of 126,557 galaxies. The numbers separated by

Galactic hemisphere are listed in table 3.1. The sky coverage in the North Galactic

Cap (hereafter NGC) is 1011.15 deg2 and 788.09 deg2 in the South Galactic Cap

(hereafter SGC), giving a total solid angle of 1844.0 deg2. The effective volume of

eBOSS is 0.618 Gpc3 which increases up to 0.9 Gpc3 when considering the eBOSS-

CMASS sample.

Figure 3.1 shows the number density of the sample as a function of redshift for
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Figure 3.1: Number density of the LRG sample as a function of the redshift for both
hemispheres, the solid blue lines correspond to the North Galactic Cap (NGC) and
the dashed red lines to the South Galactic Cap (SGC); the dashed vertical lines
indicate the redshift cuts applied. The median redshift of the sample is z = 0.72
and is represented by the vertical dotted line.

both hemispheres, the solid blue lines correspond to the NGC and the dashed red

lines to the SGC; the dashed vertical lines indicate the redshift cuts applied for our

analysis. The median redshift of the sample is z = 0.72, which is represented by

the vertical dotted line.

3.2.2 Footprint and Masks

The left and right panels of Figure 3.2 display the sky coverage of the galaxy sample

for the NGC and SGC respectively, where the colour scale indicates the targeting

completeness defined as:

C = Ngal + Nqso + Nstar + Ncp + Nzfail
Ntarget

, (3.2)

where

• Ngal is the number of galaxies with good quality eBOSS spectra.

• Ncp is the number of galaxies without spectra due to the fiber collision effect.

Two fibers cannot be closer than 62′′ on a given plate.
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Figure 3.2: Angular mask of the North Galactic Cap NGC (left) and the South
Galactic Cap SGC (right). The colour indicates the targeting completeness of the
DR14 LRG sample in a given area of the sky, which is computed using equation
3.2. Regions of low targeting completeness (where C < 0.5) were not included in
the final sample.

• Nstar denotes the number of observed objects which are spectroscopically

confirmed to be stars.

• Nzfail denotes the number of objects for whom the measured spectra lacks

sufficient qualities to provide a confident redshift measurement.

The targeting completeness is computed by sector, and the mean completeness is

96.3% (where the NGC has an average completeness of 95.9% and the SGC 96.9%).

We only use data from regions with a completeness higher than 0.5 (this value is

smaller than the completeness used in BOSS).

Certain areas in the sky have to be excluded from the final data sample. The maps

of these excluded regions are known as veto masks and have to be removed from

our random catalogs as well. The veto masks used in eBOSS were:

• The Collision priority veto mask that excludes regions that are closer than

62′′ from an already observed target, as any object inside this radius would

not be observed due to fiber collision.

• The Bright veto mask which excludes regions around stars that are part of

the Tycho catalog (Høg et al., 2000) with Tycho BT magnitudes larger than 6

and lower than 11.5. The excluded radius is magnitude-dependent and it goes
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3.2.3. Catalog for LSS analysis

from 0.8′ to 3.4′. An additional mask excludes regions around bright galaxies

and other objects (Rykoff et al., 2014); it is also magnitude-dependent and

goes from a radius of 0.1′ to 1.5′.

• The Bad fields veto mask excludes regions of the sky with bad photometry.

If the local sky is badly determined (as occasionally happens in regions with

complex backgrounds), the core of an object can be strongly negative.

• The Extinction mask excludes regions where the Galactic extinction is such

that E(B − V ) > 0.15 or where the seeing FWHM is larger than 2.3′′, 2.1′′,

and 2.0′′ in g, r, and i bands, respectively.

• The Centre Focal Plane mask excludes LRG targets that lie within 92′′ of the

centre of the telescope focal plane, where a centre post holds the plate and

prevents fibers from being assigned.

The total masked area is 12.3% for the NGC and 18.2% for the SGC.

3.2.3 Catalog for LSS analysis

Two data catalogs that differ in their treatment of the photometric systematics

and of spectroscopic incompleteness were used to create the sample for our study.

The first is a BOSS-like catalog where traditional weighting schemes are applied,

described in Ross et al. (2017), to the data. The second is denoted as the "offi-

cial catalog", and it was used in Bautista et al. (2018) for performing the BAO

analysis. Here some improvements with respect to previous analysis were imple-

mented: the forward modelling of the randoms for the spectroscopic incompleteness

and the multilinear regression and subsampling of the randoms for the photometric

systematics.

In this section, we briefly review both methodologies, first describing the different

treatments of the photometric systematics, and then the procedures used for dealing

with the redshift incompleteness. Finally, we summarise the weights applied to
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3.2.3.1. Correcting for Photometric Systematics

the data for both cases and also the subsampling techniques used in the random

catalogs in each case.

3.2.3.1 Correcting for Photometric Systematics

Here we will give a brief description of the two methodologies for correcting pho-

tometric systematics:

• Iterative method ("BOSS-like") was developed in Ross et al. (2017). The

basic idea is to include the systematics in an iterative way and estimate at

each step the associated weights. For the eBOSS LRG sample, we studied the

correlation of the mean density as a function of seven potential observational

systematics related with SDSS photometry: stellar density, i-band depth, z-

band sky flux, z-FWHM, and r-band extinction∗. We followed the iterative

method starting with the main systematics reported in previous works. Fig-

ure 3.3 displays the mean density of data, Ngal, normalised by the random

number density, Nran, as a function of six of the seven systematics considered

in the analysis before and after corrections. The most significant weights are

those due to stellar density (wstar), followed by the r-band extinction (wext),

airmass (wair), and z-band sky flux (wsky). The systematics related with the

WISE maps did not have any strong correlation requiring correction, thus we

decided not to include them in the weight estimation. We calculate a weight

for each galaxy that takes in account a linear relationship for each potential

systematic i.

w(sys) = 1
mx + b . (3.3)

∗Additionally we explored two additional maps derived from WISE photometry: one for the
median number of single-exposure frames per pixel in the WISE W1 band (denoted as WISE W1
Cov Med) and the median of accumulated flux per pixel in the WISE W1 band (denoted by WISE
W1 Med).

imx + b represents a linear fit to Ngal/Nran to curves like the ones from figure 3.3, where the

y-axis shows Ngal/Nran and the x-axis a systematic that is being modeled for. We make one fit

for each systematic considered in this work.
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Figure 3.3: We show the mean density of data, Ngal, normalised by the random
number density, Nran as a function of six of the seven systematics considered in
the analysis. The most significant weights were those due to stellar density (wstar),
r-band extinction (wext), airmass (wair), and z-band sky flux (wsky).
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The total systematic weight wsystot, is defined as

wSYSTOT = wstar wext wair wsky (3.4)

• Multi-regression Method: We followed the same methodology presented in

Bautista et al. (2018), where the correlation between systematic maps and

density were computed using a multilinear regression of the seven systematic

maps instead of the iterative method. The advantage of this method is that

it does not assume the systematics are independent, as does the iterative

method. Additionally, in the official catalogs, instead of using weights asso-

ciated with galaxies, the randoms are subsampled following the correlation

found with the multi-regression method; the subsampling of the randoms

or the weighting scheme of the galaxies should yield the same results; the

main differences observed in the catalogs should be derived uniquely from

the Iterative/Multi-regression methodologies.

Figure 3.4 presents the multipoles for the eBOSS sample (NGC and SGC separ-

ated), comparing the iterative and multilinear regression methods. The monopole

from both hemispheres without corrections shows a large spurious correlation at

large scales that is reduced when either of the methods for correcting the observa-

tional systematics is applied. There is an excellent agreement in both methods for

correcting photometric systematics. The SGC does show slightly better perform-

ance using the multi-regression method.

3.2.3.2 Correcting for Spectroscopic Completeness

Previous analyses on the eBOSS LRG sample reported that fluctuations in the

(S/N) significantly affect the probability of obtaining a confident redshift (see Fig-

ure 5 of Bautista et al. (2018)). Additionally, the probability of obtaining a confid-

ent redshift varies across the focal plane, decreasing near the edges (see Figure 6
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Figure 3.4: Multipoles for eBOSS sample (NGC left and SGC right) comparing
the iterative and multilinear regression methods. The monopole from both hemi-
spheres without corrections shows a large spurious correlation at large scales in
monopole that is reduced when either of the methods for correcting the observa-
tional systematics is applied.

of Bautista et al. (2018)). We define the failure rate as:

η = Ngal
Nzfail + Ngal

, (3.5)

where the failure rate in eBOSS LRGs sample is 10%, which is significantly higher

than previous surveys; for example, in BOSS the failure rate was only 1.8% (This

is due to eBOSS targeting fainter galaxies than BOSS).

The variations of the failure rate across the focal plane could bias the clustering

measurements. In order to account for the effect of this redshift incompleteness,

we applied two methods to mitigate the effect on the clustering measurements; in

particular, we studied how the two techniques affect the RSD analysis.

• Nearest-neighbor up-weighting. The procedure followed in BOSS (Reid et al.,

2012) was to upweight the nearest neighbor with a good redshift and spec-
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troscopic classification in its target class, within a sector. It has been shown

that this method introduces structure into the monopole at small scales, and

also modifies the quadrupole amplitude, which could potentially affect the

growth rate measurements.

• Forward-Modeling. This approach uses a probabilistic model that depends

on the the position of its fiber in the focal plane and the overall signal-to-

noise ratio of the plate. The model for failures is then applied to the random

sample by subsampling, mimicking the patterns retrieved in the model. For

more details about this modelling we refer the reader to Bautista et al. (2018).

3.2.3.3 Data Weights

We now specify the weights applied for each catalog and the randoms treatment.

• wSYSTOT. As described previously, these weights account for the fluctuations

of the observational conditions that can impact the clustering signal. For the

BOSS-like method these weights are computed as described in the Iterative

Method.

• wFKP. These weights are used for both set of catalogs. They serve to optimise

clustering signal-to-noise ratio for a survey with density varying with respect

to the redshift. Also known as FKP weights (Feldman et al., 1994), they are

defined as:

wFKP = 1
1 + n̄(z)P0

, (3.6)

where n̄(z) is the average comoving density of galaxies as a function of red-

shift and P0 is the value of the power spectrum at scales relevant for our

study (k = 0.14h Mpc−1). For the eBOSS LRG sample we adopt a value of

P0 = 104h−3 Mpc3, which is the same value used in the final BOSS CMASS

clustering measurements.
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• wCP. This weight accounts for the fiber collisions and is used for both cata-

logs. Targets missed due to fiber collisions do not happen randomly on the

sky; they are more likely to occur in overdense regions. For mitigating this

effect we followed the up-weighting technique described previously.

• wNOZ. This weight accounts for the redshift failures. For the BOSS-like

method this weight is computed for each galaxy following the up-weighting

technique described in the previous section.

For the official catalogs these weights are set to 1, as the spectroscopic incomplete-

ness is modeled to subsample the randoms as described in the previous section.

3.3 Mocks

We use three different sets of mock catalogs in our analysis. The first is a collection

of 1000 Quick Particle Mesh (QPM) mocks (White et al., 2013), which will be used

for computing the covariance matrices and for doing several systematic tests. The

second one is a set of 1000 Effective Zeldovich approximation method (EZ) mocks

Chuang et al. (2015), that are used to test variance of our fitting methodology. The

third catalog is a set of 84 high-fidelity mocks called CutSky-Mocks Alam et al.

(2017). These catalogs will be necessary for testing the accuracy of the model used.

3.3.1 QPM Mock Catalogs

We use 1000 realisations of QPM mocks using the following cosmology ΩM = 0.29,

h = 0.7, and Ωbh2 = 0.02247. A Halo Occupation Distribution (HOD) framework

is adopted for populating halos with galaxies following the 5-parameter method

described in Tinker et al. (2012) but taking into account the HOD parameters

tuning to the DR14 eBOSS LRG sample in Zhai et al. (2017).

The same boxes were used for generating NGC and SGC mocks, thus there should

be a small correlation between them (particularly in the large modes). In order to
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Figure 3.5: The Black solid lines are the mean of our 1000 QPM mocks for the
Monopole (left), Quadrupole (centre), and Hexadecapole (right); the shaded regions
are the 1-σ variations. The blue dots represent the data points and the associated
error bars and are equal to the 1-σ variation shown in the shaded contours.

mitigate this effect, we combined mocks produced by different realisations of the

NGC and the SGC. The mask that we applied to the mocks will be described in

Section 3.2.2.

Our QPM mocks are needed for two reasons: to compute an estimate of the co-

variance matrix and to test our methodology. Figure 3.5 shows the mean of the

mocks compared with the data; the solid lines represent the mean of the mocks

correlation function and the blue dots the data correlation function multipoles with

their associated error bars. There is a good agreement between the data and the

mocks for scales larger that 30 h−1Mpc; at smaller radii a mismatch appears, which

might be related to the resolution of the mocks.
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3.3.2 EZ Mock Catalogs

EZ simulations are light-cone mock catalogs created following the Effective Zel-

dovich methodology described in Chuang et al. (2015). In order to construct the

eBOSS+CMASS sample, the CMASS and eBOSS mocks are calibrated and gen-

erated separately and then combined. The CMASS mocks are constructed in four

redshift bins: (0.55, 0.65), (0.65, 0.7), (0.7, 0.8), and (0.8, 1.0025), while the eBOSS

mocks are constructed at five redshift bins: (0.55, 0.65), (0.65, 0.7), (0.7, 0.8), (0.8,

0.9), and (0.9, 1.05). The fiducial cosmology is a flat ΛCDM model with ΩM =

0.307115, h = 0.6777, σ8 = 0.8225, Ωb = 0.048206 and ns = 0.9611. We will use

these mocks to test the variance of the fitting methodology.

3.3.3 N-Series Cut Sky Mocks

Our N-Series Cut Sky Mock library contains 84 mocks generated with N-body

simulations that where done using GADGET2 (Springel, 2005). Our mocks have

the angular and radial mask of BOSS NGC DR12 based on simulations with 20483

particles in a volume of (2.6 h−1Gpc)3 corresponding to resolution particle mass

about 1.5 × 1011M⊙h−1. We used these mock catalogs to test the theoretical

systematics related to our modelling methodology. The N-Series cosmology is ΩM =

0.286 , h = 0.7, Ωb = 0.047, σ8 = 0.820, and ns = 0.96.

3.4 Modeling Redshift Space Distortions

In order to model the different multipoles of the two-point correlation function,

we use the combined Convolutional Lagrangian Perturbation Theory (CLPT) and

Gaussian Streaming RSD (CLPT-GSRSD) formalism, developed by Wang et al.

(2014), Reid and White (2011), and Carlson et al. (2013). In this section we briefly

describe this theoretical framework.
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3.4.1 CLPT

CLPT provides a non-perturbative resummation of Lagrangian perturbation to

the two-point statistic in real space for biased tracers. The starting point for the

Lagrangian framework is the relation between the Lagrangian coordinates q⃗ that

are related to the Eulerian coordinates x⃗ as:

x⃗(q⃗, t) = q⃗ + Ψ⃗(q⃗, t), (3.7)

where Ψ(q⃗, t) is the displacement field at each time t. The two-point correlation

function is expanded in its Lagrangian coordinates considering the tracer X, in our

case the Luminous Red Galaxies, to be locally biased with respect to the initially

Cold Dark Matter overdensity δ(q⃗). The expansion is performed over different

orders of the Lagrangian bias function F [δ(q⃗)], defined as:

1 + δX(q⃗, t) = F [δ(q⃗)]. (3.8)

The Eulerian contrast density field is computed convolving with the displacements:

1 + δX(x⃗) =
∫

d3F [δ(q⃗)]
∫

d3k

(2π)3 eik⃗(x⃗−q⃗−ψ⃗(q⃗)). (3.9)

Assuming that the expectation value of the nth derivative of the Lagrangian bias

function F is given by:

⟨Fn⟩ =
∫

dδ√
2πσ

e−δ2/2σ2 dnF

dδn
, (3.10)

the two-point correlation function is obtained by evaluating the expression ξX(r⃗) =

⟨δX(x⃗)δX(x⃗ + r⃗)⟩ corresponding to Eq 19 of Carlson et al. (2013) and which can

be simplified using the bias expansion as in their Eq. 43:

1 + ξX(r⃗) =
∫

d3qM(r⃗, q⃗), (3.11)

where M(r⃗, q⃗) is the kernel of convolution taking into account the displacements

and bias expansion up to its second derivative term. The bias derivative terms
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are computed using a linear power spectrum (LPS). The LPS that we used was

computed using the code CAMB (Lewis et al., 2000) for a fixed cosmology described

as the fiducial cosmology of our analysis.

As we are interested in studying RSD, we also must model the peculiar velocity’s

effect on the clustering statistic. CLPT can compute the pairwise velocity distribu-

tion v⃗12 and the pairwise velocity dispersion σ12. This calculation is done following

the formalism of Wang et al. (2014) which is similar to the one described above but

modifying the kernel to take into account the velocities rather than the density:

v⃗12(r) = (1 + ξX(r⃗))−1
∫

M1(r⃗, q⃗)d3q, (3.12)

and

σ12(r) = (1 + ξX(r⃗))−1
∫

M2(r⃗, q⃗)d3q. (3.13)

The kernels M1,2(r⃗, q⃗) also depend on the first two derivatives of the Lagrangian

bias ⟨F ′⟩ and ⟨F ′′⟩, which are free parameters, in addition to the growth rate f ,

for our model. Hereafter we eliminate the brackets for the Lagrangian bias terms

to have a less cumbersome notation in the following sections.

3.4.2 CLPT-GSRSD

While CLPT generates more accurate multipoles than the Lagrangian Resumma-

tion Theory (LRT) from Matsubara (2008) and the linear theory, we still require

better performance to study the smaller scales of our quadrupoles. This represents

an issue that is particularly important when doing RSD measurements as the pe-

culiar velocities are generated by interactions that occur on the scales of clusters

of galaxies.

In order to achieve the required precision, we map the real space CLPT models

of the two-point statistics into redshift space following the Gaussian Streaming

Model (GSM). This formalism was proposed by Reid and White (2011). Here, the
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pairwise velocity distribution of tracers is assumed to have a Gaussian distribution

that is dependent on both the separation of tracers r and the angle between their

separation vector and the line-of-sight µ.

The methodology of using CLPT to model the necessary inputs of a GSM was

implemented by Wang et al. (2014). Its predictions are computed via the following

integral:

1 + ξX(r⊥, r∥) =
∫ 1√

2π(σ2
12(r, µ) + σ2

FoG)
[1 + ξ(r)]

× exp −
[r∥ − y − µv12(r, µ)]2

2(σ2
12(r, µ) + σ2

FoG) dy,

(3.14)

where, as stated , ξX(r), v12(r), and σ12(r) are computed from CLPT.

Reid and White (2011) demonstrated that GSM can predict accuracies of ≈ 2%

when DM halos are used as tracers. However, not all LRGs are central halo galaxies;

approximately 20% of them are satellite galaxies with a peculiar velocity respect

to their host halo. Therefore, we need to consider a contribution to the velocity

dispersion due to the Fingers of God (FoG) effects on non-linear scales. We have

addressed this point by adding the σFoG parameter to Eq. 3.14.

To summarise, given a fiducial cosmology, our model has four free parameters

[f, F ′, F ′′, σFoG]. The cosmology determines the LPS used in the model. The

following subsection describes how we include variations of the cosmological para-

meters around the fiducial values using the Alcock-Paczynski Test.

3.4.3 Including the Alcock-Paczynski Effect

We described above the model for the RSD signal given a fixed fiducial cosmology

that determines the LPS to be used. However, we can extract additional informa-

tion by measuring the galaxy clustering along the line-of-sight and perpendicular

to the line-of-sight, and we can extract geometrical information via the Alcock-

Paczynski (AP) test (Alcock and Paczynski, 1979). In this work, for extracting
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AP information, we use the parametrisation described in Xu et al. (2012), Vargas-

Magaña et al. (2014), and Anderson et al. (2014), which derives measurements

of the isotropic dilation of the coordinates parametrised by α and the anisotropic

warping of the coordinates parametrised by ϵ ∗. We remind the connection with

the other parametrisation, that we will further use for comparison with previous

works, is given by :

α = α
2/3
⊥ α

1/3
|| ,

1 + ϵ =
(

α||
α⊥

)1/3
. (3.15)

where α⊥ and α|| are defined in terms of dilation in the transverse and line-of-sight

directions.

3.5 Methodology

3.5.1 Fiducial Cosmology

Our analysis is performed using the following fiducial cosmology:

ΩM = 0.31,

ΩΛ = 0.69,

Ωk = 0,

Ωbh2 = 0.022,

Ωνh
2 = 0.00064,

w = −1,

wa = 0,

h = 0.676,

ns = 0.97,

σ8 = 0.8.

∗Note that α = 1 and ϵ = 0 for the mocks, if we use their natural cosmology as the fiducial
cosmology for the analysis.
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Table 3.2: Expected values of cosmological parameters for the QPM mocks and
Fiducial Cosmology at different redshift ranges/model. The units for H(z) are
km s−1Mpc−1) and (Mpc) for DA(z).

Model z-range zeff f(z) σ8(z) f(z)σ8(z) H(z) DA(z)

QPM [0.6, 1.0] 0.72 0.806 0.557 0.449 - -
Fiducial [0.6, 1.0] 0.72 0.819 0.550 0.450 101.94 1535
Nseries [0.43, 0.7] 0.5 0.740 0.637 0.471 - -

This fiducial cosmology is different from the ones used to compute the mocks; this

additional bias in our methodology has to be considered. This extra bias will be

defined in Section 3.6.

3.5.2 2PCF Estimator

The following section will describe the methodology used to compute the two-point

clustering statistics of the DR14 LRG sample described in Section 3.2.

We are interested in constraining RSD parameters. Therefore, we must study the

clustering of galaxies in two directions: the one parallel to the LOS, where peculiar

velocities of infalling galaxies generate RSD, and its perpendicular direction, where

no distortion occurs. We decompose the vector r⃗, which represents the distance

between two galaxies, into two components: r|| parallel to the LOS and r⊥ that is

perpendicular to it:

r2 = r2
|| + r2

⊥. (3.16)

Let us remember from equation 2.2 that if θ denotes the angle between the galaxy

pair separation and the LOS direction, then µ = cos θ and we have the relation:

µ2 = cos2 θ =
r2

||
r2 , (3.17)

and our two direction parameters will be [r, µ].

The 2D-correlation function ξ(r, µ) is computed using the Landy-Szalay estimator

(Landy and Szalay, 1993):

ξ(r, µ) = DD(r, µ) − 2DR(r, µ) + RR(r, µ)
RR(r, µ) , (3.18)
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where DD(r, µ), RR(r, µ), and DR(r, µ) are the number of pairs of galaxies which

are separated by a radial separation r and angular separation µ. The three symbols

represent the data-data, random-random, and data-random pairs, respectively.

The multipoles are Legendre moments of the 2D-correlation function ξ(r, µ), and

can be computed using the following equation:

ξℓ(r) = 2ℓ + 1
2

∫ +1

−1
dµ ξ(r, µ) Lℓ(µ), (3.19)

where Lℓ(µ) is the ℓ-th order Legendre polynomial.

We will focus primarily on the monopole, the quadrupole, and the hexadecapole

(ℓ = 0, ℓ = 2, and ℓ = 4).

The pair-counts were computed using the public code CUTE (Alonso, 2012). How-

ever, there are three corrections to be considered when using the LS equation

(3.18):

• The number of galaxies in the Data catalogs (ND) is approximately 50 times

smaller than the ones in our random catalogs (NR). Therefore the Random

and Data pairs should be compared as

DD(r, µ)
RR(r, µ) × NR(NR − 1)

2 × 2
ND(ND − 1) .

• The number of galaxies in the SGC (ND,S) is smaller than those in the NGC

(ND,N ). Therefore the total number of pairs should be added as:

DD(r, µ) = 2(DDN (r, µ) + DDS(r, µ))
(ND,N (ND,N − 1) + ND,S(ND,S − 1)) .

• Each galaxy has a particular weight wi as described in Section 3.2. Hence,

the total number of galaxies in any catalog is weighted as

Nw =
∑

wi.
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3.5.3 Fitting

Unless stated otherwise, we will be using 13 bins of 8h−1Mpc in width, in the

interval between [28h−1Mpc, 124h−1Mpc]. Given that we will be working with

either the first two non-zero multipoles or the first three (depending on the test),

the analysis will have a total of either 26 or 39 bins.

We will now compare our measured two-point statistics with those predicted by

our model and try to find the best-fit model parameters.

In order to identify best-fit parameters, we minimise the χ2 function,

χ2 = (m⃗ − d⃗)TC−1(m⃗ − d⃗) (3.20)

where m⃗ is the vector formed by the model predictions, and d⃗ is the equivalent

vector observed from our data. Examining Eq. 3.20 reveals that the smaller the

value of χ2, the more similar m⃗ is to d⃗.

The sample covariance is defined as:

CSij = 1
Nmocks − 1

Nmocks∑
m=1

(ξmi − ξ̄i)(ξmj − ξ̄j), (3.21)

where Nmocks is the number of mocks, and ξ̄i is the average of the ith bin.

We scale the inverse sample covariance matrix, C−1
s , using Eq. 17 of Hartlap et al.

(2007):

C−1 = C−1
s

Nmocks − Nbins − 2
Nmocks − 1 . (3.22)

This procedure corrects for the fact that the matrix in Eq. 3.21 is a biased estimate

of the true inverse covariance matrix C−1.

Figure 3.6 shows the covariance and correlation matrix computed from 1000 QPM

mocks. Most of our error arises from the elements on the diagonal (variance of a

given bin), but there is also a significant contribution coming from elements outside

of the diagonal (covariance between different bins).

In order to identify the best-fit parameters, we minimise the χ2 function.The min-

imisation of the χ2 is done using the Powell algorithm (Press et al., 2002). This
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Figure 3.6: Density map of the Covariance matrix (left) computed from our 1000
QPM Mocks simulations. The matrix has 13 bins in r and 3 multipoles. The
right panel presents the correlation matrix defined as Corrij = Cij√

CiiCjj
. The

normalisation is done such that the diagonal is always unity, and it shows how
much covariance (off-diagonal) there is compared to our variance (diagonal).

algorithm will find a unique solution if the parameter space is gaussian, which

should be a fair assumption when fitting our mocks. This method is adequate for

our work as it does not require us to compute the gradient of the CLPT-GSRD

model with respect to the model parameters, which would be challenging. Due to

the nature of the algorithm it is not necessary to specify any prior, just some start-

ing points, if our assumption about the parameter space being somewhat gaussian

is correct then any starting point should work fine and one that is close to the Best

Fit should reduce the running time.

The estimate of the errors on our fits will be computed using MCMC chains, but

we will only do this analysis for our data sets (Section 3.7) and not for the mocks.
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3.6 Testing for systematic uncertainties

3.6.1 Testing Accuracy of GSRSD Hexadecapole Model with

High-Resolution Simulations

This section is dedicated to testing the performance of the methodology developed

in Section 3.5. Here, we will use the N-Series CutSky mocks described in Section 3.3

to check the reliability of the CLPT model with regards to recovering the cosmo-

logical parameters. These high resolution mocks are built with the BOSS-CMASS

properties that allow us to study the accuracy of the model. We will run our fitting

methodology on these high-fidelity mocks in order to test if their fiducial paramet-

ers can be recovered. The N-Series CutSky mocks have been used previously in the

literature for testing the monopole- and quadrupole-only methodologies.

We fit our N-series CutSky mocks twice, the first using only the monopole and the

quadrupole, and the second including the hexadecapole. The fits are done following

the methodology described in Section 3.5.3, but here we will be using 21 bins of

5h−1 Mpc in width, in the interval between [27.5h−1 Mpc, 127.5h−1 Mpc]. We

decided to choose a smaller bin-size to facilitate comparisons with other previous

results. The sample covariance matrix used to perform these fits is computed using

the QPM-BOSS CMASS sample re-scaled to match the mocks volume, and provides

our error estimate (the covariance matrix obtained from N-Series would be quite

noisy given the limited number of realisations available). The pair-counts of our

mocks were computed using the mocks cosmology to transform angular positions

and redshifts into comoving coordinates. To be consistent, the CLPT-GSRSD input

template was also computed using the cosmology of the mocks.

The expected values of the linear growth rate of f (fexp) are reported in Table

3.2 for the natural cosmology of the mocks. We define the bias of the growth rate

estimation bf as:

bf = ⟨fmeasured⟩ − fexp (3.23)
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We use the measurement of the Eulerian bias b = 2.3 performed by Zhai et al.

(2017) as reference. This estimate was computed using our same sample with the

addition of an HOD model.

The left panel of Figure 3.7 shows the mean of the multipoles; the error bars are

the diagonal terms of the covariance matrix divided by 1/
√

NMock. The different

colours (and line-styles) represent the best fit model for the mean of the mocks

using the fiducial range at different minimum scales of the fits when the cuts are

applied to all multipoles.

The model using the hexadecapole fitted at the full range (blue lines) does not

match the hexadecapole of the mean of the mocks accurately at any scale, this can

be seen in the corresponding residual plot (bottom panel of the figure) where the

value of the residuals is close to 50% of the value of the model, this is very large

when compared to the residuals of the monopole and quadrupole that are around

10% and 2% respectively (second and third panels of the figure). Increasing the

minimum range of the fit mostly affects the quadrupole at large scales and has

little effect on the monopole and hexadecapole at any scale. By comparing the

residuals of the quadrupole(third panel of the figure) of the full-range fit and the

reduced-range fit we can tell that the full range fits adjusts the quadrupole better

(i.e. the blue solid line is a better fit than the green dotted one).

The right panel of Figure 3.7 displays a similar exercise to the one in the left panel,

except this time we only cut the minimum scale of the hexadecapole while leaving

the other two multipoles in the full range. The changes on the quadrupole are now

less severe than when varying all multipoles. By looking at the residual plot of

the quadrupole (third panel of the figure) we see that the model considering the

hexadecapole in the full range (green dash-dotted line) matches the quadrupole

slightly better than the model using only the monopole and quadrupole (purple

solid line), but it does not improve the other multipoles significantly. It is not clear

that including the hexadecapole improves the fits significantly when compared to

the monopole and quadrupole only case.
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Table 3.3 reveals that the bias in f is slightly larger when we include the hexa-

decapole in the full range than when we only use the monopole and the quadrupole

(bf = 0.005 compared to bf = 0.004). However, the bias in ϵ is smaller when the

hexadecapole is left out of the fits (bϵ = 0.002 compared to bϵ = 0.0005). The bias

in alpha is the same for both cases (bα = 0.001). The right panel of Figure 3.7

shows that the best fit model for both cases are very similar, only showing small

differences in the quadrupole at the scales in the range [80,110] h−1Mpc.

Reducing the range for all multipoles (second block of the table) increases the biases

in f and ϵ. If by contrast we constrain the range only for the hexadecapole (third

block), we reduce the bias in f and α to bf = 0.001 and bα < 0.001, respectively,

leaving the bias value for ϵ unchanged.

In summary, there is no clear preference between the case with the 3 multipoles

and just considering monopole and quadrupole. There is a trade-off between the

biases in ϵ and f : the smaller bias in f is obtained when using the hexadecapole

while the smaller bias in ϵ comes from using only the monopole and quadrupole.

As there is not a clear trend we will explore the hexadecapoles impact on the LRG

sample analysis further.

Figure 3.8 displays the model behavior for variations of the parameters, and is

included to explain the different trends observed with mocks when using multi-

poles up to order ℓ = 2 compared to ℓ = 4. We also indicate the variations in

our model predicted by changes of ∼ 20% in the input parameters, that corres-

pond to deviations of ∆f = 0.15, ∆α = 0.2, and ∆ϵ = 0.2 around the fiducial

cosmology expected value. The error bars were obtained from the diagonal of the

mocks covariance matrix. The variations in ϵ have a large impact on the predicted

hexadecapole at all scales (middle curve), while the variations of the hexadecapole

due to variations on α and f are significantly smaller and of a comparable order

of magnitude. This behavior explains why the fits are driven by ϵ when the hexa-

decapole is included. Considering that the error bars between 20 and 60 h−1Mpc

are smaller, their constraining power is significantly larger.
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Table 3.3: Results from fitting the mean of N-series Mocks. The expected values
for the N-series mocks are f(z = 0.5) = 0.740, α = 1.0 and ϵ= 0.0. The fits are
done over bins of 5h−1 Mpc each so that the full range of each multipole (27.5 h−1

Mpc, 127.5 h−1 Mpc) will have 21 bins.

ξ0 + ξ2 with cuts in all multipoles
Model Range F ′ F ′′ f α ϵ σFoG χ2/d.o.f
ξ0 + ξ2 27.5-127.5 0.999 0.637 0.736 1.001 5e-4 1.076 68.5/36=1.90

ξ0 + ξ2 + ξ4 with cuts in all multipoles
ξ0 + ξ2 + ξ4 27.5-127.5 1.003 1.034 0.745 1.001 -0.002 1.770 91.2/57=1.60
ξ0 + ξ2 + ξ4 37.5-127.5 1.014 1.708 0.735 1.001 -0.003 2.239 84.0/51=1.65
ξ0 + ξ2 + ξ4 42.5-127.5 1.022 1.870 0.731 0.999 -0.004 0.530 78.7/48=1.64
ξ0 + ξ2 + ξ4 47.5-127.5 1.027 3.149 0.721 0.997 -0.004 1.018 70.8/45=1.57

ξ0 + ξ2 + ξ4 with a cut in hexadecapole only
ξ0 + ξ2 + ξ4 37.5-127.5 1.010 1.543 0.742 1.000 -0.002 2.793 86.15/55=1.57
ξ0 + ξ2 + ξ4 42.5-127.5 1.011 1.649 0.741 1.000 -0.002 2.938 86.18/54=1.60
ξ0 + ξ2 + ξ4 47.5-127.5 1.012 1.697 0.741 1.000 -0.002 2.984 86.28/53=1.62

As stated before, even if our results using the hexadecapole do not show significant

biases, figure 3.7 shows that the model obtained using the cosmology of the mocks

does not accurately match the mean of the hexadecapole mocks at any scale, in

particular at the lower scales that have more weight in the likelihood. This mis-

match in the hexadecapole is pushing ϵ to higher values and as a consequence the

correlated parameters follow. Therefore, the accuracy of the model at all scales is

critical for not biasing the fitted parameters.

We now analyze the individual mocks for three cases: 1) fitting the complete range

[27.5,127.5] h−1Mpc using monopole and quadrupole, 2) fitting the complete range

[27.5,127.5] h−1Mpc using monopole, quadrupole, and hexadecapole, and 3) fitting

the complete range [27.5,127.5] h−1Mpc for monopole and quadrupole and reducing

the range to [47.5,127.5] h−1Mpc for the hexadecapole. Figure 3.9 show the results

of the individual fits in all three cases and for the four parameters of interest [fσ8,

bσ8, α, ϵ], as well as their respective best fit distributions histograms. The coloured

dashed lines indicate the mean of the best fits, and the dotted line represents the

expected value of the parameters. Table 3.4 presents the results of the individual

fits for the parameters of interest.
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Figure 3.7: The mean of the mocks is shown as the black line in both plots. The
error bars are computed from the re-scaled QPM mocks covariance. The left panel
shows the best fit models from different lower ranges of the multipoles. In the right
panel only the lower range of the hexadecapole is varied. The error plots show
the quotient between the best fit model and the mean of the mocks. For all cases
there are residuals in the hexadecapole, the smaller residuals are obtained by the
monopole + quadrupole.

The monopole- and quadrupole-only fits show a bias in the estimation of the three

parameters of |bfσ8 | = 0.003, |bα| = 0.002, and |bϵ| = 0.0004. The standard devi-

ation of the distributions are Sf = 0.051, Sα = 0.014, and Sϵ = 0.019 respectively;

the expected values are within the dispersion. Thus the significance of the biases

are 0.5σ, 1.1σ and 0.2σ. These numbers are in agreement with the test performed

for the BOSS sample and these numbers are comparable with the results obtained

in Alam et al. (2017) ∗. The full range hexadecapole fits show a lower bias in the

f parameters, with a value of |bfσ8 | = 0.0007, |bα| = 0.00008 and |bϵ| = 0.0002

respectively. The standard deviation of the distributions decreases for f , α and

ϵ, with Sf = 0.037, α = 0.013 and Sϵ = 0.010. The significance of the biases

decreases significantly to < 0.1σ, 0.1σ, and 0.2σ respectively. Constraining the
∗The BOSS analysis only reported the result of ∆fσ8 for the N-Series Mocks Challenge.
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Figure 3.8: Left panel: Model variations for ∆f , ∆α, and ∆ϵ compared to the
error bars coming from covariance: the behavior for the monopole (top), the hexa-
decapole (middle) and the quadrupole (bottom). The variations in ϵ have a large
impact on the hexadecapole, while the variations in α and growth rate are of the
same order of magnitude for the hexadecapole. This behavior explains why fits
are driven by ϵ when the hexadecapole is taken into account. Right panel: Model
variations for ∆F ′, ∆α, and ∆σFoG compared to the errors produced by covari-
ance: the behavior for the monopole (top), the hexadecapole (middle) and the
quadrupole (bottom).

range of hexadecapole fits, produces biases of |bfσ8 | = 5e − 4, |bα| = 0.001, and

|bϵ| = 5e − 4, while also decreasing the standard deviation of the distributions

compared with the monopole and quadrupole fits, Sfσ8 = 0.042, Sα = 0.013 and

Sϵ = 0.014, giving a significance of the biases of 0.1σ, 0.9σ, and 0.4σ, respectively.

Figure 3.10 shows the summary of the analysis for our three cases in the same

format as the results reported in Alam et al. (2017): the points correspond to

the mean of the results obtained from fitting our 84 SkyCut with the BOSS mask

mocks, the three quantities shown are (from left to right) the mean of ∆f = f−fexp,

∆α = α−αexp, and ∆ϵ = ϵ−ϵexp, and the error indicated is the standard deviation

of our fits. The panels contain the results from: 1) the fits with monopole and

quadrupole (left), 2) the fits also including the hexadecapole (middle), and 3) the

fits using multipoles up to ℓ = 4 and using a constrained range on the hexadecapole
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Figure 3.9: Results from the best fits of all of the individual mocks for the four
parameters of interest [f , b, α, ϵ]. Also shown are their respective best fits dis-
tributions histograms and the 1σ confidence region. The dotted black lines rep-
resent the expected value of each parameter. The coloured lines in each histo-
gram indicate the mean value of that parameter found by our fits. We present
three cases: 1) fitting the complete range [27.5,127.5] h−1Mpc using monopole and
quadrupole (blue dots), 2) fitting the complete range [27.5,127.5] h−1Mpc using
monopole, quadrupole, and hexadecapole (red x’s), and 3) fitting the complete
range [27.5,127.5] h−1Mpc for monopole and quadrupole and reducing the range
to [47.5,127.5] h−1Mpc for the hexadecapole (green crosses).
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Table 3.4: Results from fitting the 84 N-Series sky mocks with our fiducial method-
ology. The columns denoted by x̃ are the mean, Sx denotes the standard deviation,
and the bias (defined by equation 3.23) is denoted by bx, with x = f, α, ϵ.

Results for Fiducial Methodology with N-series Sky mocks
Model f̃σ8 Sf bf α̃ Sα bα ϵ̃ Sϵ bϵ Nmocks

ℓmax = 2 [27.5,117.5] 0.459 0.051 -0.003 0.998 0.014 -0.002 4e-4 0.019 4e-4 81
ℓmax = 4 [27.5,117.5] 0.471 0.037 -7e-5 1.0 0.013 -8e-5 1e-4 0.010 2e-4 83
ℓmax = 4 [47.5,117.5] 0.471 0.042 -5e-4 0.999 0.013 -0.001 -5e-4 0.014 -5e-4 84

(right). We also include the result for the growth rate obtained by BOSS and

reported in Alam et al. (2017) (far right value of the left panel).

These results suggest that the most accurate results (smaller parameter biases in

all parameters normalised by the dispersion) are obtained using the multipoles up

to ℓ = 4 in the full range.

However, we would like to highlight that we noticed that the best model of the

hexadecapole does not accurately match the mean of the mocks (the value of the

residuals is close to 50% of the value of the model compared to 10% and 4%

for the monopole and quadrupole respectively). For the individual fits, given the

large error bars on the hexadecapole, this mismatch does not bias our individual

measurements, but produces small bias in the best fit of the mean in ϵ. Bearing all

of this in mind we choose to analyze both cases (with and without hexadecapole),

but we will take a conservative approach and report the monopole and quadrupole

only analysis as our final result of this work. Based on the results from N-Series

we adopt σSY Sfσ8
= 0.004, σSY Sα = 0.001, and σSY Sϵ = 5e-4 as an estimate of the

potential bias of f, α and ϵ.

3.6.2 Testing Systematics with eBOSS-Mocks

We will dedicate this section to test the variance of the methodology developed

in Section 3.4. This analysis will be done using two sets of approximative mocks,
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Figure 3.10: Systematic errors in RSD and AP parameters from using different
multipole combinations in the fit. From left to right: mean of ∆f = f − fexp,
∆α = α − αexp, and ∆ϵ = ϵ − ϵexp. These measurements were obtained from
fitting N-Series sky mocks using two configurations: 1) multipoles up to order
ℓ = 2 and 2) multipoles up to order ℓ = 4. The left panel includes the result from
the previous work (Alam et al., 2017). The less significant biases are obtained by
the monopole + quadrupole fits. Including the hexadecapole reduces the bias and
variance producing more significant bias in f and larger biases in α and ϵ.

the QPM and EZ described in Section 3.3, both built with the same properties of

our eBOSS sample. The mocks were calibrated to match the data, however, these

approximative mocks lack the accuracy to study the biases of our methodology.

As shown in Figure 3.11, the QPM and EZ mock have a small mismatch in the

monopole at small scales. Additionally, both seem to systematically underestimate

the hexadecapole. Bearing this in mind, our estimates of the bias will only come

from the results of the N-Series Cut-sky mocks obtained in the last section∗, we

proceed to quantify the dispersion of the fitting methodology. Our specific goal is

to estimate the dispersion expected around the parameters of interest of our model.

This will be done by applying the fitting methodology from section 3.5.3 to 100 of

our individual QPM an EZ mocks, which will give us 100 estimates of the best fit

values.
∗The N-series mocks provided an estimate of the biases on a sample that is similar to that

of BOSS-LRG; the mean redshift was slightly lower than the one from the eBOSS LRG sample
considered in this work but it had similar clustering properties, i.e. the galaxy bias.
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Figure 3.11: Mean QPM (dashed blue line) and EZ (solid red line) mocks and
DR14 correlation function (black dots), all computed in the fiducial cosmology.
QPM and EZ mock underestimate the hexadecapole. The monopole (left) shows
small mismatches between the mocks and the data at small scales, the quadrupole
data (centre) presents a large correlation in the large scale quadrupole that lies
outside the 1σ variation observed in the mocks, the hexadecapole data (centre) has
a larger amplitude than the one predicted by the mocks.

We test two cases: 1) Considering only the multipoles up to ℓ = 2 (skipping the

hexadecapole), and therefore following the methodology used in previous analysis

performed with the LRG sample, which we will refer to as “ξ0 + ξ2". We also

consider the effect of extending the multipoles up to ℓ = 4 and using the full range

for all multipoles, which we will refer to as “ξ0 + ξ2 + ξ4".

We used the cosmology used for the QPM mocks generation in order to compute

their comoving coordinates, and the fiducial cosmology for computing those of the

EZ mocks. Table 3.5 summarises the results from our fits. The first block corres-

ponds to the monopole + quadrupole fits using the QPM/EZ mocks; the second

block describes the analysis adding the hexadecapole to our fits. The dispersions

obtained from our two sets of mocks when only using the monopole and the quadru-

pole in the fits (first block of Table 3.5) are fairly consistent for all of the parameters
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of interest: SQPM
fσ8

= 0.113 and SEZfσ8
= 0.122, SQPM

α = 0.039 and SEZ
α = 0.043, and

SQPMϵ = 0.053 and SEZ
ϵ = 0.044. The dispersion is also consistent with previous

results found on the anisotropic LRG DR14 BAO analysis from Bautista et al.

(2018) where: SBAO
α = 0.048 and SBAO

ϵ = 0.055.

In order to compare with the previous results from BOSS reported in Alam et al.

(2017), we need to rescale the variance using the differences in volume between the

two samples; the effective volume of our sample is 0.9 Gpc3 while BOSS-CMASS

accounts for 4.1 Gpc3 in the [0.5,0.75] redshift slice. The CMASS sample reported

the following standard deviations for the [0.5,0.75] redshift slice: SBOSS
fσ8

= 0.058,

SBOSS
α = 0.016, and SBOSS

ϵ = 0.022 (Table 6 of Alam et al. (2017)), we can scale

them roughly to the eBOSS volume using SeBOSS2
X = (SBOSS2

X × 4.1 Gpc3)/0.9

Gpc3, yielding the following scaled dispersions: SBOSS
fσ8

= 0.124, SBOSS
α = 0.034,

and SBOSS
ϵ = 0.047. These values are in agreement with the dispersion obtained

with our QPM/EZ mocks.

Now, let us examine the fits that include the hexadecapole. The dispersion ob-

tained from the two sets of mocks is also consistent for the parameters f and ϵ:

SQPM
fσ8

= 0.090 and SEZ
fσ8

= 0.089, and SQPM
ϵ = SEZ

ϵ 0.050 and SQPM
α = SEZ

α = 0.028.

Also we observe the dispersion in all parameters decreases when considering the

hexadecapole as expected.

Figure 3.12 shows the distribution of the differences between the parameters of

interest and their expected values on a mock-by-mock basis, i.e. ∆fσ8 = ⟨fσ8 −

fσ8exp⟩, ∆α = ⟨α − αexp⟩, ∆ϵ = ⟨ϵ − ϵexp⟩, and for b = 1 + F ′, ∆b = ⟨bσ8 − bσ8exp⟩,

for both the analyses using multipoles up to ℓ = 2 and up to ℓ = 4. Reviewing the

monopole + quadrupole fits (in blue dots) reveals that both sets of mocks show

a well-behaved distribution that is centred close to zero and is symmetric. From

the hexadecapole fits (red x’s), we also observe symmetric distributions centred

around zero, however, especially the 1D distributions for the fσ8 and ϵ parameters

are slightly shifted.
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These shifts in the distributions when considering the hexadecapole are related to

the QPM/EZ mocks poor precision and to the fact that the model and the mean

multipoles present mismatches, the following paragraphs will briefly show these

mismatches. As we will see, the biggest mismatch between mock and model occurs

in the hexadecapole for the QPM mocks and in the quadrupole for the EZ mocks.

Figure 3.13 shows a comparison between the mean of the mocks and the model

templates built with the true cosmology of the mocks∗ denoted by “Model GS

f(z = 0.72)". The left panel shows the comparison between the mean of the QPM

mocks and its model template and the equivalent comparison for the EZ mocks is

in the right panel. The growth rate used for building the model in the right panel

is at the effective redshift of the mocks.

The figure reveals that the mean of the QPM mocks does not match the model

with the cosmology used for their generation (gray solid line), which is evident in

the quadrupole residuals. However, a template using a growth rate corresponding

to a lower redshift (z = 0.56) is a better match with the mean of the mocks (red

dotted line); this model is denoted by “Model GS f(z = 0.56)" and is shown with

red dotted lines.

From this analysis we can draw the following conclusions. First, the GSRSD model

cannot match the multipoles of the QPM mocks, as they show a mismatch in the

mean of the mocks and the model for the quadrupole, giving rise to a higher value

than the input value of the simulations. Second, the model of the hexadecapole is

systematically larger than the mean of the mocks, and in particular any conclusion

about the bias of the hexadecapole cannot be extracted from the fits of the QPM

mocks.

The right panel of Figure 3.13 shows an equivalent comparison between mean and

model template using the EZ mocks. As for the QPM mocks we also see a mismatch,

but this time between the small scales of the quadrupole: the template with the
∗the cosmology used for building the mocks
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cosmology and redshift of the EZ mocks (red dotted line) does not match with the

mean quadrupole of the mocks (black solid line).

It is interesting to notice that the mean hexadecapole matches the template.

One possible explanation to why EZ mocks seems to be more accurate at fitting

the hexadecapole might be that, as mentioned in section 2.5, EZ mocks fits their

free parameter to the 3-point correlation function (among other observables).

The three point statistics might have a small effect on the 2-point estimation, given

that the skewness has a small effect on the variance and the mean estimations.

Given that the amplitude of the hexadecapole is small, a slight modification might

have a stronger effect on this polynomial than on the monopole and quadrupole.

We also notice that the mismatch in the quadrupole behaves differently for dif-

ferent scales, the scales lower than 50 h−1 Mpc are overestimated and the scales

larger than 50 h−1 Mpc are underestimated. Thus, the EZ mocks seem to not be

reproducible by the model. Apparently, the template with the mocks cosmology

fits the mean better, but the template is not capable of fitting all of the scales of

the quadrupole and the hexadecapole simultaneously.

We can summarise the results of this section as follow: 1) the dispersion obtained

from both sets is consistent with each other and with previous results from BOSS

(Alam et al., 2017) and from the DR14 BAO group (Bautista et al., 2018). 2) both

sets of eBOSS mocks lack the accuracy to study the biases of our methodology: the

QPM mocks seem to slightly overpredict the quadrupole expected by the GSRSD

model and are not a good match to the hexadecapole. The EZ mocks have a better

match to the hexadecapole, but can not match the quadrupole at small scales (lower

than 50 h−1 Mpc).

3.6.3 Comparison of AP parameters results with BAO-only fits

In this section, we compare our results to those obtained in Bautista et al. (2018),

which is a previous analysis using this same sample. The left panel of Figure 3.14
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Figure 3.12: Scatter triangle plots comparing fits for full shape fits using ξ0 + ξ2
(blue dots) and ξ0 + ξ2 + ξ4 (red x’s) for QPM (up) and EZ (down) mocks. We
show the difference of the best fit values with respect to the expected values for
each of the parameters of interest. The means are indicated as solid lines for the
two cases explored. The dotted lines indicate the expected values, which are zero
for all cases.
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Figure 3.13: Mean QPM/EZ mocks vs. Template with Mock Cosmology. The
error bars are smaller than the size of the points. For QPM mocks, the template
with the mocks cosmology does not match the mean of the mocks (black line), this
is evident in the quadrupole and hexadecapole residuals. For the EZ mocks, the
template with the mocks cosmology fits the mean better, but the template does
not match all of the scales of the quadrupole and the hexadecapole simultaneously.

Table 3.5: Results from fitting the 100 QPM/EZ mocks for FS analysis. We include
the analysis for both cases using the hexadecapole in addition to the monopole and
quadrupole. The columns denoted by x̃ are the mean, and the Sx denotes the
standard deviation. The variables are the difference of the parameters of interest
compared to their expected values on a mock-by-mock basis, i.e. ∆fσ8 = ⟨fσ8 −
fσ8exp⟩, ∆α = ⟨α − αexp⟩, ∆ϵ = ⟨ϵ − ϵexp⟩, for both the analysis using multipoles
up to ℓ = 2 and using multipoles up to ℓ = 4.

Monopole-Quadrupole fits
Model ∆̃fσ8 S∆fσ8 ∆̃α S∆α ∆̃ϵ S∆ϵ χ2/d.o.f Nmock

FS-QPM MQ −0.036 0.113 0.003 0.039 0.006 0.053 1.0 97

FZ-EZ MQ −0.007 0.122 0.009 0.043 0.001 0.044 1.0 91

Including Hexadecapole

FS-QPM −0.018 0.090 −0.011 0.050 0.009 0.028 1.1 84

FS-EZ −0.024 0.089 0.005 0.050 0.008 0.028 1.0 97
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Figure 3.14: Left panel: A comparison of the BAO fits and full shape using ξ0 + ξ2
for the mocks. Right panel: comparison of best fits in isotropic dilation parameter
for FS and BAO for the mocks. The dispersion for the anisotropic warping, ϵ, from
BAO fits is slightly larger compared to the FS best fits. FS analysis breaks some
degeneracies in ϵ and reduces its dispersion.

shows the difference between our QPM FS fits to the combined sample and the

expected value compared to those from the anisotropic BAO parameters, the later

taken from Bautista et al. (2018). The dispersion for the anisotropic warping, ϵ,

from BAO fits is slightly larger compared to the FS best fits. In an RSD analysis

other parameters that affect the quadrupole are included (most significantly the

growth rate f), so it is not surprising that FS analysis breaks some degeneracies

in ϵ and reduces its dispersion. There is also a small shift in the isotropic dilation

parameter, α, when comparing the FS analysis best fits to those coming from BAO.

The left panel of Figure 3.14 shows the scatter plot for α, with a Pearson correlation

factor of r = 0.5. There are several differences in the fitting methodology between

these two fits. Obviously the modelling of the signal is different in BAO and in

our RSD+AP model, but in addition the fitting range used in BAO is wider in

its r-range that is extended to 180 Mpc/h while our FS analysis is constrained to

r-values lower than 130 Mpc/h. Also, the binning used in BAO is 5 Mpc/h in

width, while this work is using bins with a width of 8 Mpc/h.
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3.6.4 Testing the Impact of Spectroscopic Incompleteness

To test the effect of redshift incompleteness in our clustering, we consider three

cases: the first is our mock catalogs with no redshift failures. Then, we study the

effect of the two mitigations techniques described in Section 3.2.3.2. The redshift

failures are added to the mocks by associating a position in the plate to each

galaxy, then the catalog of binned probabilities is used to mimic the effect of the

redshift failures observed in our data. The second case explored is the up-weighting

methodology, and finally, for the third case, the forward-modelling technique.

Figure 3.15 displays the impact of different mitigation methods on the average of

all 1000 mock catalog correlation functions. The three lines represent the case

without redshift failure corrections and the up-weighting and forward modelling

corrections. While the monopole is equally well recovered in all three cases, the

quadrupole shows a clear shift (i.e., bias) at all scales when using the up-weighting

method. The forward-modelling corrections recover the expected values for scales

smaller than r = 140 Mpc/h, but show slight discrepancies at larger scales.

Table 3.6 lists the results of the best-fit parameters found by fitting all 100 QPM

mocks using both correction schemes. We compared the results of the mocks where

redshift failures are applied and corrected by one of the two mitigation techniques

with the case where no redshift failures are considered. We report the difference

of the mean of the best fits as an indicator of the systematic bias related to the

spectroscopic completeness denoted by ∆f, ∆α, and ∆ϵ; we also report the the

dispersion Sx, where x = f, α, ϵ. We observe that the up-weighting technique differs

from the case without redshift failures by |∆f | = 0.016 (∆f/(Sf/
√

Nsim) (0.7σ),

|∆α| = 0.001 (0.1σ), |∆ϵ| = 0.003 (0.7σ). When using the forward modelling,

the systematic error reduces to |∆f | = 0.004 (0.1σ), |∆α| =< 0.001 (<0.1σ) and

|∆ϵ| = 0.005 (0.8σ). There is an increase of the dispersion for the case of the

up-weighting technique in the parameters f and ϵ, which decreases for f for the

forward modelling scheme but is still larger when compared to the case without
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Figure 3.15: Impact of the redshift completeness on the multipoles and the effect
of the mitigation techniques for correcting potential biases. The monopole (top),
the quadrupole (bottom) and hexadecapole (middle) are presented in three cases:
without redshift failures, correcting by the up-weighting technique, and correcting
using the Forward modelling technique. While the monopole is well recovered
by the two correction techniques, the quadrupole/hexadecapole shows a clear shift
(i.e., bias) at all scales when corrected with the up-weighting method. The forward-
modelling recovers the expected values for scales smaller than r = 140 Mpc/h.

redshift failures, but increases the shift by 0.002 on ϵ. In any cases the biases are

less than 1σ. Given these results, we conclude that the forward modelling scheme

performs slightly better than the up-weighting scheme. Therefore, in the rest of

our analysis, we will adopt the forward modelling scheme for correcting the redshift

failures.

3.7 Results on the LRG DR14 sample

We performed the analysis on the eBOSS-CMASS sample combining the NGC

and SGC (if not otherwise stated). The covariance matrices used in our fits were

rescaled by a factor of 0.9753 in order to account for the slight mismatch between
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Table 3.6: Testing for Redshift Failures. Fitting results from 100 QPM mocks
using two different techniques for mitigating the redshift failures. We compared
the results of the the mocks where redshift failures are applied and corrected by
one of the two mitigation techniques to the case where no redshift failures are
considered. We report the difference of the mean of the best fits as an indicator of
the bias related to the spectroscopic completeness denoted by ∆f , ∆α, ∆ϵ and we
also report the dispersion by ∆Sx, where x = f, α, ϵ.

Testing Impact of Mitigation Techniques for Redshift Failures.
Mitigation Methodology ∆f Sf ∆α Sα ∆ϵ Sϵ ∆F ′ ∆F ′′ ∆σFOG

No Fiber Collisions - 0.232 - 0.113 - 0.050 - - -

Forward Modeling +0.003 0.252 <-0.001 0.116 +0.005 0.061 0.005 0.394 -0.271

Fiber Weights -0.016 0.250 -0.001 0.112 +0.003 0.054 <0.001 -0.141 -0.234

the footprint area of the data and of the mocks.

Before running a full Monte Carlo Markov Chains (MCMC) analysis, we will

compute the Best fit parameters using the minimisation methodology of the last

chapter, which will help us understand how susceptible our models are to changes

in the distance range of our analysis.

While these results were not expected to provide any information on the confidence

contours of our parameters (as an MCMC would), they give an idea of the maximum

likelihood values. The main reason for performing these tests is that our MCMC

analysis in its current implementation is prohibitively time-consuming; we simply

can not afford to run all the tests on our data using a full MCMC approach(as

we will see in appendix 3.10.1, our models can be degenerated when using broad

biases, how large the biases can be depends on the range of the bins and on the

error sizes. These degeneracies make the convergence significantly slower). Further

development needs to be done in order to reduce the time of convergence of our

final analysis. These maximum likelihood tests can also be used as a check of the

robustness of our MCMC results.

Our first test compares the robustness of the fit against variations in the maximum

fitting range (the maximum distance in h−1Mpc where the correlation function is
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measured). This test is particularly important in our analysis. Figure 3.5 shows

that the quadrupole estimates made with the data show large correlations at scales

larger than 100 h−1Mpc, which are outside the variance observed in the mocks.

This anomalous correlation at large scales affects the capability of our model to

fit the data multipoles. We suspect this behavior could be related to an unknown

systematic or a statistical fluctuation. Given that we could not identify any system-

atic that affects the quadrupole, and that we can not exclude a large fluctuation,

we also analyzed the behavior of the fits when those large scales are eliminated in

all multipoles with ℓ ≥ 2. Our main result, however, is quoted with the complete

range. If this behavior is repeated in the DR16 analysis, that will indicate a sys-

tematic error that needs to be analyzed properly to provide non-biased results. If

the origin of this correlation is a statistical fluctuation, this feature will probably

be diluted with an increase in volume.

Thus, before exploring the likelihood surface, we performed some maximum like-

lihood fits using a variety of ranges. The fiducial case uses the complete range

between [28,124]h−1Mpc for the multipoles up to ℓ = 0, 2, 4. We also tested some

variants of this range to investigate the impact of cutting the large scale of each

multipole on the best fits.

Table 3.7 lists the results of the best fits for the fiducial cases and several variants

and figure 3.16 shows how the best fit models compare to the data. From table 3.7,

we conclude that reducing the range of the fit from 128 to 92 h−1Mpc improves

the goodness of the fit for both the monopole+quadrupole fit and the monopole+

quadrupole+hexadecapole fit. The χ2/d.o.f., a measurement of the goodness of a

fit, reduces from 2.1 to 1.35 for the ℓmax = 2 case (However, there is no reduction

when we reduce the range for both monopole and quadrupole where χ2/d.o.f. stays

at 2.09), and from 1.81 to 1.16 if we eliminate large scales for all ℓ = 0, 2, 4 (It

stays the same if we only limit hexadecapole, 1.14 if we restrict the range of the

large scales for both ℓ = 2, 4 but not for the monopole). By using the complete

range we increase the discrepancy between the fits using different order multipoles

106



3.7. Results on the LRG DR14 sample

Table 3.7: Best Fits from Maximum Likelihood Fits for different scenarios: using
the fiducial ranges for the multipoles up to ℓ = 2 (first line), using multipoles up to
ℓ = 4 (second line), and systematically excluding the large scales for the different
multipoles considered in the fits (lines three to seven).

Best Fits from Maximum Likelihood for LRG sample DR14
Varying maximun range and ℓ

model range (h−1Mpc) F ′ F ′′ f α ϵ σFOG χ2

ξ0 + ξ2 [28,124][28,124] 1.005 0.74 0.905 0.947 -0.026 0.009 42.4/20=2.1
ξ0 + ξ2 + ξ4 [28,124][28,124][28,124] 1.05 -2.7 0.694 0.965 0.038 -1.51 59.81/33=1.81
ξ0 + ξ2 [28,124][28, 92] 0.91 -3.28 0.710 0.935 0.050 2.48 24.3/18=1.35
ξ0 + ξ2 [28,92][28, 92] 0.753 -3.73 0.589 0.874 0.088 4.21 25.13/12=2.09
ξ0 + ξ2 + ξ4 [28,124][28,124][28,92] 1.07 -2.58 0.690 0.969 0.038 0.96 52.0/29=1.79
ξ0 + ξ2 + ξ4 [28,124][28, 92][28,92] 0.937 -2.96 0.571 0.92 0.092 5.07 28.6/23=1.14
ξ0 + ξ2 + ξ4 [28,92][28, 92][28,92] 0.73 -3.79 0.508 0.858 0.120 6.49 24.34/21=1.16

(i.e. ℓmax = 2 versus ℓmax = 4). The difference in the best fit parameters for the

growth rate f is 0.211 for the complete ranges (row one minus two), and it becomes

0.139 when reducing the quadrupole and hexadecapole ranges to [28,92]h−1Mpc

(row three minus six). Similar trends occur with ϵ, where the differences in the

best fit values range from 0.064 to 0.042. These trends indicate that the large

correlation observed in the quadrupole is not properly modeled by our CLPT-

GSRSD template. When we exclude the large scales of the monopole, there is a

significant shift in both f and ϵ, with f shifting from 0.905 to 0.589 and ϵ from

−0.026 to 0.088. These shifts are expected when eliminating the large scales on the

monopole. Finally, excluding the large scales on the hexadecapole affects the f fits,

and mildly affects the ϵ fits, as the quadrupole and hexadecapole capacity to break

the degeneracy between f and ϵ is derived from the BAO scales. The goodness of

the fit, χ2/d.o.f., improves when removing the large scales, due to the incapability

of modelling the anomalous correlation; this approach loses all the information

encoded in the BAO in the quadrupole and hexadecapole. Consequentially, the

results for the AP parameters are degraded and potentially biased. We will perform

the MCMC exploration for the same four cases for completeness, but we will quote

the full range as our final result.

As stated, we used an MCMC methodology for exploring the likelihood surface,
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Figure 3.16: The maximum likelihood model for four cases: 1) using multipoles
up to ℓ = 2 in the fiducial range, 2) using multipoles up to ℓ = 4 for the fiducial
range, 3) using multipoles up to ℓ = 2 but restricting the quadrupole range to
[28,92] h−1Mpc, and 4) using multipoles up to ℓ = 4 but restricting the range of
the quadrupole and hexadecapole to [28,92] h−1Mpc.

which was done using the Monte Python public code (Audren et al., 2013). We

use flat priors for our parameters; the range of these priors is presented in Table

3.8. We run two different chains in the combined data set (NGC+SGC). The first

is with the monopole and quadrupole only (ξ0 + ξ2) and using the fiducial distance

range. The second chain also runs with the monopole and quadrupole (ξ0 +ξ2), but

restricting the range in the quadrupole to [28,92] h−1Mpc (the monopole stays in

the same range of [28,124] h−1Mpc). Table 3.9 displays the results from the MCMC

analysis. Our final measurement was performed on the combined sample, which

includes the NGC and the SGC, and was done using the fiducial methodology (i.e.,

8 h−1Mpc bins on the fiducial range). The first block reports the final result of this
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Table 3.8: Flat priors ranges on the parameters of the model.

Measurements with LRG sample DR14.
f [0.0,2.0]
F ′ [0.0,3.0]
F ′′ [-15,15]
σFOG [0,40]
α [0.8,1.2]
ϵ [-0.2,0.2]

work, the monopole and quadrupole-only fits. The second block is for the ξ0 + ξ2

fits when excluding the large scales of the quadrupole. The third block lists the

results for the Galactic hemispheres separately, this is shown for identification of

any residual systematics in the data; we will discuss these results at the end of this

subsection. The fourth block is quoted as a reference and it shows the fits of the

BAO-only analysis done with this same sample in Bautista et al. (2018). MCMC

chains using the hexadecapole are included in the final block for completeness and

discussed in the Appendix 3.10.2 as a robusteness test, but it is not part of our

main results.

Figure 3.17 shows the likelihood surfaces for the two runs over the ξ0 + ξ2, one

chain is in the fiducial range and the other is eliminating the large scales for the

quadrupole, i.e. [28,92] h−1Mpc. The latter is added for completeness, but as stated

before, our final result will be quoted using the full range. The figure contains the

1−2σ confidence contours for the growth rate fσ8, the linear bias bσ8, the dilatation

parameter α, and the warping parameter ϵ, together with their marginalised 1D

distributions. The 1-σ regions are fully contained inside our priors for both cases.

However, the 2-σ regions are cut by our prior to large values of ϵ and small values

of α, our reasons for not using larger priors on the Alcock-Paczynski parameters

will be discussed in the Appendix 3.10.1.

The results of fσ8 and α are consistent within 1σ, for both ranges. However,

given the anti-correlation between the ϵ and f parameters and the fact that the

quadrupole is dominated by ϵ at the larger scales, when including the larger bins
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of the quadrupole the ϵ is driven from its expected value and as a consequence f

shifts as well. When the last three bins of the quadrupole are avoided we achieve a

significant improvement in the goodness of the fit towards ∼ 1; the price paid for

this approach is to eliminate the BAO information. This increases the degeneration

of the parameters and biases the results, thus we lose information that constrains

ϵ, which in turn causes the contour areas to become larger, providing more freedom

to the fitter to move f to lower values (Figures 3.17).

Finally when comparing the results for the ξ0 + ξ2 with the fit using ξ0 + ξ2 + ξ4

we find agreement within 1 − σ for fσ8 and α, but the ϵ values have a 1.3 − σ

difference. We should notice that tighter priors were used for hexadecapole because

a bi-modality appears using the priors defined in table 3.10.1, more discussion about

the results and the prior selection for the hexadecapole is provided in the Appendix

3.10.2.

Figure 3.18 displays the best-fit anisotropic models compared to the data for our

fiducial choice of analysis. As expected, the monopole and quadrupole are visually

good fits for the data, except for the large scales of the quadrupole where the

correlation becomes strongly positive (scales larger than 90 h−1Mpc).

To finalise this section, we analyze separately the North Galactic Cap (NGC) and

the South Galactic Cap (SGC). Figure 3.19 displays the 1σ and 2σ confidence con-

tours obtained from running an MCMC analysis separately on both hemispheres.

They are computed using our standard priors quoted in Table 3.8. The contours

in both galactic caps are poorly defined and the 1σ interval in ϵ and α are sharply

cut by our imposed priors.

As discussed in appendix 3.10.1 our methodology has difficulty on fixing the Alcock-

Paczynski parameters to a unique value given the size of our errors compared to

the strength of the BAO signal, this leads to unphysical values of ϵ and α (and

therefore f due to their correlation with ϵ) being accepted by the MCMC chain

and affects all of the constraints of our parameters.
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Table 3.9: Results for the DR14 LRG sample. The first block is for our fiducial
methodology, using the fiducial range for the ξ0 + ξ2 fit. The second block is for
the ξ0 + ξ2 fits when excluding the large scales of the quadrupole. The third block
shows the fits separating the hemispheres NGC and SGC and using ξ0 + ξ2 in the
fiducial range. The fiducial value for the σ8(zeff=0.72) = 0.55. The eulerian bias is
defined as b = 1 + F ′., The second section of the table shows the BAO only results
from Bautista et al 2018. The range of the fits is between [32,182] and they use a
bin size of 8 Mpc/h. The third section includes our results using the hexadecapole.

Measurements with LRG sample DR14 Official Version.
Case fσ8 bσ8 < F ′′ > σFOG α ϵ

ξ0 + ξ2 [28,124][28,124] 0.454+0.119
−0.140 1.110+0.116

−0.100 2.245+3.849
−4.35 3.713+2.987

−2.31 0.955+0.055
−0.05 0.000+0.090

−0.050

ξ0 + ξ2[28, 124][28, 92] 0.337+0.121
−0.110 1.088+0.101

−0.100 −1.19+4.002
−2.900 5.027+2.721

−2.870 0.930+0.050
−0.050 0.083+0.059

−0.06

ξ0 + ξ2 NGC 0.598+0.150
−0.190 1.262+0.121

−0.150 4.372+3.657
−5.810 3.008+2.740

−1.940 1.103+0.066
−0.100 −0.05+0.085

−0.040

ξ0 + ξ2 SGC 0.359+0.168
−0.16 1.119+0.169

−0.12 0.328+1.725
−1.96 4.783+3.732

−3.00 0.929+0.087
−0.07 0.077+0.081

−0.07

Measurements BAO-only with LRG sample DR14 from Bautista et al 2018.
Case range α⊥ α|| corr α ϵ

Anisotropic 26-178 1.01+0.08
−0.05 0.82+0.09

−0.08 -0.39 0.942+0.048
−0.024 −0.067+0.033

−0.022
Measurements with LRG sample DR14 including hexadecapole.

Case fσ8 bσ8 <F”> σFOG α ϵ

ξ0 + ξ2 + ξ4 0.31+0.09
−0.09 1.19+0.10

−0.10 −1.1+3.2
−3.3 5.8+3.3

−3.2 0.986+0.047
−0.046 0.091+0.046

−0.048
[28,124][28,124][28,124]

Given that the errors are larger for the North and the South separately that in the

combined sample, the degeneration is stronger. This leads to several regions being

accepted to within 1-σ that would otherwise be rejected due to their inability to

reproduce the BAO peak. More data will tend to reduce this behavior and that is

in fact what we see in the combined sample, where the errors are smaller.

Figure 3.20 presents the data multipoles for the NGC (blue points) and SGC (red

x’s); the error bars correspond to their 1-σ variance from the sample covariance

matrix computed using the QPM mocks. The blue solid line represents the fits

made by our MCMC analysis in the NGC, the red dashed line is the analog for the

South Galactic Cap. These fits are done using the mean values obtained by our

MCMC chains, which we use as our estimates of the best fits. The NGC and SGC

have a significant difference in the clustering amplitude at small scales, and the
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Figure 3.17: The shaded regions show the 1 − 2σ confidence surfaces found by our
MCMC chains for the RSD-AP parameters for the ξ0 + ξ2 space in the fiducial
range (blue solid) and when excluding the large scales in quadrupole (red dashed).
The confidence contours for the growth rate fσ8, the linear bias bσ8, the dilatation
parameter α, and the warping parameter ϵ are indicated, along with their 1D
distributions. The dashed lines of each histogram are the mean values found by
the MCMC chain.

peak is shifted in one hemisphere compared with the other (it is not well defined

in either of the hemispheres). Both models reasonably reproduce the multipoles;

this is especially true in the smaller scales which are the ones with more weight

in the fit (due to their smaller variance). There is a difference in the multipole

amplitude between both galactic caps, as a consequence the contours in Figure 3.19

are displaced among each other, the results for the combined sample surrounds the

regions where both contours intercept (see table 3.9).

3.8 Cosmological Implications

Table 3.10 presents our final constraints on the growth rate fσ8, the angular dia-

meter distance DA(z), and the Hubble parameter H(z) including the statistical
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Figure 3.18: This plot shows how our data (black dots) compares to our model
(red solid line). The model is built using the values from the first line of table
3.9, that were computed using multipoles up to ℓ = 2 and our combined sample
(NGC+SGC) in the fiducial range. The model is visually a good fit for the data,
except for the large scales of the quadrupole.

and the systematic error∗. Our fiducial cosmology was used to convert the best-fit

dilation parameters α|| and α⊥, into distance measurements. The table includes

the same variants of the methodology quoted in table 3.9 for the combined sample,

and the values are in agreement with each other within 1σ.

Our final constraint, the logarithmic growth of structure multiplied by the amp-

litude of dark matter density fluctuations, is f(zeff )σ8(zeff ) = 0.454±0.134. Using

the Alcock-Paczynski dilation scales allowing us to constrain the angular diameter

distance and the Hubble distance we arrive to: DA(zeff ) = 1466.5±133.2 (rs/rfids )

and H(zeff ) = 105.8 ± 15.7 (rfids /rs) km s−1 Mpc−1 where rs is the sound horizon

at the end of the baryon drag epoch and rfids is its value in the fiducial cosmology

at an effective redshift zeff = 0.72. These measurements correspond to relative
∗The systematic error is based on the results from N-Series.
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Figure 3.19: Equivalent to Figure 3.17 but presenting the MCMC chains for the
RSD-AP parameters in the NGC (blue solid) and in the SGC (red dashed); both
of them are in the fiducial range.

errors of 29.4%, 9.1%, and 14.9%, respectively considering the systematic error.

Bautista et al. (2018)’s analysis with the DR14 LRG sample reported a low stat-

istical power of the current sample, and generated anisotropic BAO results yielded

slightly worse results than isotropic fits. Further data releases from eBOSS should

increase the statistical significance of our measurements.

Figure 3.21 presents our measurements compared with previous results from SDSS-

III-BOSS DR12 from both galaxies (Alam et al., 2017) and Lyman-alpha quasars

(du Mas des Bourboux et al., 2017; Bautista et al., 2018), the eBOSS quasar meas-

urements from Gil-Marín et al. (2018); Zarrouk et al. (2018); Hou et al. (2018)∗,

and the Main Galaxy Sample (MGS) from SDSS-II-DR7 (Ross et al., 2015). Our

measurements are consistent with previous analyses and the ΛCDM model.

Our measurements with the CMASS-eBOSS sample are correlated with the CMASS

measurements. The correlation coefficient between the two measurements was
∗Figure 3.21 quotes the (Gil-Marín et al., 2018) result; however, the three measurements from

the different analyses were shown to be fully consistent.
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Figure 3.20: The blue dots and red x’s represent the NGC and the SGC measured
data points for the Monopole (top) and the Quadrupole (bottom). The errors
bars are the standard deviation computed using the QPM mocks. The solid lines
indicates the best model found by the MCMC for the NGC/SGC.

Table 3.10: Cosmological constraints on DR14 LRG sample, using DA(z =
0.72)fid = 1535, H(z = 0.72)fid = 101. Systematic error included.

Measurements with LRG sample DR14.
Model range (h−1Mpc) α|| α⊥ fσ8 DA(z)(rfids /rs) H(z)(rs/rfids )
ξ0 + ξ2 [28,124][28,124] 0.954±0.149 0.955±0.083 0.454±0.134 1466.5±133.2 105.8±15.7

BAO-only
ξ0 + ξ2 [32,182] 0.72 0.82 ± 0.085 1.1 ± 0.065 -

roughly estimated to be 0.16 (Bautista et al., 2018); a proper measurement of

this correlation will be achieved for the DR16 analysis.

115



3.9. Conclusions

Figure 3.21: Measurements from DR14 eBOSS-CMASS sample using multipoles
up to ℓ = 2 (red start) fitting in the range [24,128] h−1Mpc.

3.9 Conclusions

The RSD effect generates an artificial anisotropy on the clustering of galaxies which

can be used to constrain the growth rate, f(z)σ8, and the radial and angular

distances to the sample ( i.e., the H(z) and DA(z) parameters). We used the LRG

sample from the first two years of the eBOSS, denoted as DR14, to measure these

parameters at the mean redshift of the survey (z = 0.72). We presented the first

full-shape analysis of this sample (i.e. modelling Redshift-Space Distortions (RSD)

simultaneously with an Alcock-Paczynski (AP) parametrisation), and that should
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be followed up on and improved on once the full observational time of the eBOSS

survey is completed for the final DR16 sample. The measured correlation function

was decomposed into the first three non-zero multipoles of its Lagrange expansion,

and compared with theoretical predictions made with a Convolution Lagrangian

Perturbation Theory (CLPT) model combined with a Gaussian Streaming model

(GS). We considered six free parameters, four RSD-parameters [f, F ′, F ′′, σFoG]

and two AP parameters [α, ϵ].

We tested our methodology using a set of 84 high-precision N-Series CutSky mocks

built with BOSS-CMASS properties. We fitted all individual mocks using two

different methodologies: using only multipoles up to ℓ = 2, and using all multipoles

up to ℓ = 4. The fits using all the multipoles were computed in two different

distance ranges, first using the complete [28,124] h−1Mpc range for all of them,

then removing the smaller scales of the hexadecapole. This extends on previous

works that performed this exploration using only the monopole and the quadrupole.

From the individual fits the most accurate results (smaller parameter biases in all

parameters normalised by the dispersion) are obtained using the multipoles up to

ℓ = 4 in the full range. Besides the fact we do not find significant biases in the

distributions, when fitting the mean we noticed that the model hexadecapole does

not accurately match the mean of the mocks, this generates small biases in the

fits of the mean ϵ parameter. The reason why this mismatch does not bias our

measurements in the individual realisations is because of the larger errors bars we

have on the hexadecapole. This behavior is related to the fact that the fits are

driven by ϵ when we include the lower bins of the hexadecapole. The error bars

for those lower scales are smaller, and therefore their constraining power is larger.

This makes the accuracy of the model at small scales critical.

In order to characterise the statistical properties of the sample, especially its vari-

ance, we run our fitting methodology on two different sets of low-precision mocks

with eBOSS properties: the QPM and EZ mocks. All of the mocks in both sets

are fitted twice, the first considering only the multipoles up to ℓ = 2, and the
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second with multipoles up to ℓ = 4. The dispersion obtained from the two sets of

low-precision mocks was fairly consistent in all cases and for all of the parameters

of interest. However, the biases and distributions were not consistent with those

obtained using high-precision mocks. The discrepancy arises because the GSRSD

model can not match the multipoles of QPM/EZ mocks, thus no conclusion about

the bias could be extracted from these fits. They were only used as a reference for

the variance of the best fits for eBOSS-like mocks.

The tests performed with mocks (high and low precision), demonstrated that the

constraining power of the lower bins of the hexadecapole is large due to the smal-

ler error bars of those points. We concluded that including the hexadecapole is

desirable; however, it becomes critical to have accurate models, particularly of the

small scales of the quadrupole and the hexadecapole. In this work, we adopted

the conservative approach of reporting the ξ0+ξ2 as our final result and used the

hexadecapole results only as a consistency test.

We considered that even if the results with high-precision mocks validated fitting

the hexadecapole with our model, the biases observed when fitting the mean and the

mismatch in the model hexadecapole for the mean needs further exploration. Ad-

ditionally, we did not have high-precision mocks with the properties of the eBOSS

sample available (higher redshift and lower mean density) and we could not prop-

erly study the statistical properties of the fitting methodology with low-precision

mocks.

Our final measurement was performed on the “combined" sample, using the fiducial

methodology considering only the monopole and quadrupole. We constrained the

logarithmic growth of structure fσ8 = 0.454± 0.134, α|| = 0.954± 0.149 and α⊥ =

0.955± 0.083.

The eBOSS DR14 LRG sample presents a large correlation in the large scale quad-

rupole that lies outside the 1σ variation observed in the mocks. This feature could

be related to an unknown systematic effect or just a large statistical fluctuation.
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Given that we could not find any systematic that affects the quadrupole, and that

a large fluctuation cannot be excluded, we analyzed the behavior of the fits when

we eliminated those large scales in multipoles with ℓ >= 2 as a robustness test

for our main result. Avoiding the latest three bins of the quadrupole achieves a

significant improvement in the goodness of the fit to ∼1; however the price paid is

to eliminate the BAO information, which increases the degeneration of the para-

meters and biases the results, thus we lose information that constrains ϵ, and the

contour regions become larger, giving more freedom to the fitter to move f to lower

values.

We quote as our final cosmological constraint the logarithmic growth of structure

multiplied by the amplitude of dark matter density fluctuations, f(zeff )σ8(zeff ) =

0.454 ± 0.134, and the Alcock-Paczynski dilation scales which allow constraints to

be placed on the angular diameter distance DA(zeff ) = 1466.5 ± 133.2(rs/rfids )

and the Hubble distance H(zeff ) = 105.8 ± 15.7(rfids /rs)kms−1Mpc−1, where rs

is the sound horizon at the end of the baryon drag epoch and rfids is its value in

the fiducial cosmology at an effective redshift zeff = 0.72. These measurements

correspond to relative errors of 29.4%, 9.1%, and 14.9%, respectively considering

the systematic error.

Our results are consistent with previous measurements and with a ΛCDM model

using Planck 2018 cosmology.

3.10 Appendix of chapter 3

3.10.1 Selecting priors

As discussed in chapter 3.7, figure 3.17 shows that the 1-σ regions are fully con-

tained inside our priors. However, the 2-σ regions are clearly cut by our prior to

large values of ϵ. In this section we will discuss our reasons for not using larger ϵ
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priors in our analysis, as we will see prior selection was challenging given the size

of our errors.

Figure 3.18 shows a comparison between our final model and the multipoles of the

data set, it is clear that the detection of the BAO signal is weak: the error-bars of

the monopole have a similar size to the power of the BAO peak. This is problematic

as the BAO peak locks the Alcock Paczynski parameters around a specific value.

Given the limited capability of our methodology to fix the cosmology our model

is vulnerable to being degenerated. As a consequence, we have to be very careful

when choosing our priors as a large prior in the Alcock Paczynski parameters will

result in degenerated regions contributing significantly to our statistics.

This is shown in figure 3.22 where we have run a second MCMC chain of our

fiducial methodology but extending the priors of ϵ to [−0.3, 0.3]. These chains

were done with a fixed value of F2 = 0.0 to save computational time as the goal

of is not to obtain precise statistics but to show the effect of larger ϵ priors (F2

contributions to our model corresponds to second-order corrections on small scales,

primarily broadening the parameter contours). The priors for the other parameters

(i.e. neither ϵ nor F2) stay at the value quoted in table 3.8.

In figure 3.22, the solid-line blue contours show our default results, while the

dashed-line red ones show those with the enlarged priors on ϵ.

A second locus is present for large values of ϵ and small values of fσ8. This second

locus is centred somewhere around f ≈ 0.3 assuming a nominal σ8 value consistent

with Planck (σ8(zeff ) = 0.55), which would result in the Alcock-Paczynski para-

meters switching the cosmology to ΩM (z = 0) ≈ 0.03 (for σ8(z = 0) = 0.8 and a

flat universe, assuming that f(z) ≈ ΩM (z)0.6). This strongly disagrees with previ-

ous constraints made by Planck, that predicts a value of ΩM (z = 0) = 0.315±0.007

(Planck Collaboration et al., 2020). Hence, the DR14 data does not allow us to

broaden the priors too much, as the accuracy is not yet there in the data to rule

out cosmological parameters already strongly rejected by Planck measurements.
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Figure 3.22: This plot is equivalent to Figure 3.17, here we are presenting the
MCMC chains of two fits to the RSD-AP parameters in the ξ0 +ξ2 space done with
diferent priors in ϵ. The blue solid-line contours use the priors quoted in table 3.8
for all parameters but F2 that is set to zero. The red dashed-line contours have
larger priors on ϵ which are expanded to [−3, 3] and also set F2 to zero.

Figure 3.23 shows why this secondary locus is chosen by our MCMC analysis to be

an acceptable fit. The blue line is the median of the models of 100 points chosen

randomly from the subset of MCMC points within the locus centred around α ≈ 1

and ϵ ≈ 0 (locus 1 in figure 3.22). The blue shaded regions indicate the 18th and

84th percentile confidence range. The red line and line-shaded region correspond

to models randomly selected from points of our MCMC chain inside locus 2 (top

panel of 3.22).

From figure 3.23 we observe that the best fit model within locus 2 do not show

a well defined BAO peak. However, statistically, both sets of models are equally

good and indistinguishable in terms of their likelihood. DR16 should have smaller
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errors around the BAO signal which could in principle discard this second solution

(locus 2). As we have stated, this second locus is discarded using Planck CMB con-

straints, therefore we consider reasonable to choose priors on the Alcock Paczynski

parameters that keep it out of our statistics. Considering mild Planck CMB con-

straints, it is reasonable to assume priors on α and epsilon of ±0.2 around their

nominal value, as Planck strongly rejects cosmologies that are beyond that alpha

and epsilon range to several sigmas.

Figure 3.24 is included as a robustness test of our methodology, here our fiducial

result is compared with a new MCMC chain computed reducing the priors of α to

[0.9, 1.1]. As in 3.22 F2 is set to zero for both chains to save computational time.

The plot shows that the α contours are cut by the new priors, nevertheless, the

1-σ contours of both chains are centred around the same values and have a similar

shape, the main difference being marginaly reduced size of the contours, which is

expected when reducing the priors.

3.10.2 Likelihoods for eBOSS sample using hexadecapole.

In section 3.6.1 we applied our methodology to find the maximum likelihood fits

of 84 Nseries high-resolution simulations. We have shown that our methodology

provides consistent results with and without hexadecapole information.

As stated in section 3.7, we adopted the conservative approach of reporting the

ξ0+ξ2 as our final result and using the hexadecapole results just as a consistency

test. In this appendix, we show results including the hexadecapole.

We run two different chains that include ξ4 using the combined data set (NGC+SGC).

One using the priors shown in table 3.8, and a second chain with more constraining

priors. The main reason for this choice is that when considering the priors quoted

in table 3.8 we find a double peak when fitting the full range, which is shown in

Figure 3.25. The Figure shows the 1 − 2σ confidence contours for the growth rate

fσ8, the linear bias bσ8, the dilatation parameter α, and the warping parameter ϵ,
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Figure 3.23: This figure shows the median and 1-sigma percentiles for 2 sets of 100
models built with 100 points chosen randomly from the subset of those explored by
our MCMC. The blue shaded regions correspond to points inside the peak centred
around the expected cosmology (α ≈ 1 and ϵ ≈ 0). The red line and line-shaded
region contours are computed with points inside the second peak that appears for
large values of ϵ.

together with their 1D distributions. The only difference between both plots are

the priors; The red dashed-line represent a chain with the priors of table 3.8, in

the blue solid-line contours the priors in α have been reduced to the interval [0.88,

1.12].

As discussed in appendix 3.10.1, this double peaked distribution is a consequence of

degenerated solutions not being rejected due to the size of our errors. Following the

same procedure done in appendix 3.10.1 we will only analyse the solution that is not

in disagreement with mild Planck CMB constraints. In order to try to avoid this

second degenerate solution we will reduce the size of our priors in the α parameter

to the interval [0.88, 1.12], while the rest of the parameters are fixed to the values

of table 3.8, these priors were chosen arbitrarily so that they contain the 1-σ region

of the main peak and completely exclude the second. We acknowledge that it is
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Figure 3.24: This plot is equivalent to Figure 3.17, here we presenting the MCMC
chains of two fits to the RSD-AP parameters in the ξ0 + ξ2 space done with difer-
ent priors in α. The solid-line contours use the priors quoted in table 3.8 for all
parameters but F2 that is set to zero. The red dashed-line contours have smaller
priors on α which are reduced to [0.9, 1.1] and also set F2 to zero.

possible for the statistics obtained from this chain to still be slightly distorted by

the presence of this second peak or by the position of the more constrained prior,

the reduced error bars of DR16 should make the second peak less significant which

could allow us to use larger priors.

The statistical results of our parameters are quoted in table 3.11: the first line

repeats for comparison purposes the results for monopole and quadrupole only

(ξ0 + ξ2). The rest of the table includes the results using monopole, quadrupole,

and hexadecapole (ξ0+ξ2+ξ4). The second line uses the full [28,124] h−1Mpc range

in all multipoles. In the last line, the monopole is in the [28,124] h−1Mpc range,

and the quadrupole and hexadecapole are in the [28,92] h−1Mpc range, we cut out
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Figure 3.25: The shaded regions show the 1 − 2σ confidence surfaces found by our
MCMC chains for the RSD-AP parameters using ξ0+ξ2+ξ4 in the [28,124] h−1Mpc
range. The red dashed-line contours represent a chain with the priors of table 3.8,
in the blue solid-line contours the priors in α have been reduced to the interval
[0.88, 1.12]. The confidence contours for the growth rate fσ8, the linear bias bσ8,
the dilatation parameter α, and the warping parameter ϵ are indicated, along with
their 1D distributions. The dashed lines of each histogram are the mean values
found by the MCMC chain .

the large scales for the quadrupole and hexadecapole where potential systematic

errors could be present. The results of fσ8 and α are consistent in the fiducial

ranges within 1−σ, for the two cases, ξ0 +ξ2 and ξ0 +ξ2 +ξ4, but the ϵ values have

a 1.3 − σ difference. Figure 3.26 shows the likelihood surfaces of the ξ0 + ξ2 + ξ4

compared with our fiducial methodology (ξ0 + ξ2), they are both in the fiducial

[28,124]h−1Mpc range for all multipoles and both chains and they use the priors

from table 3.8.

Figure 3.11, show that our hexadecapole data have a stronger amplitude on small
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scales that both sets of mocks. This mismatch in amplitude could be a problem of

the mocks or could be due to a real signal in the data, or could be due to either

an undetected systematic error in our data or a statistical fluctuation. If it is the

latter then the increase in data with DR16 should reduce this shift. If it is a real

cosmological signature it should become more significant in DR16. Regardless of

the origin of this larger amplitud, the MCMC fitter prefers a large value of ϵ and a

small value of fσ8 to fit the amplitud of the data hexadecapole (see Figure 3.26.).

Figure 3.26 shows the results of cutting the large scales for the quadrupole and

hexadecapole (ℓ = 2, 4), the red dashed-line contours come from a chain where the

monopole is in the [28,124] h−1Mpc range, and the quadrupole and hexadecapole

in the constrained range of [28,92] h−1Mpc. When the last three bins of the quad-

rupole and hexadecapole are avoided we achieve a significant improvement in the

goodness of the fit (we saw this same behavior in section 3.7 when removing the

large scales of the quadrupole), we also lose the secondary locus that was present

in the full approach whithout having to reduce our priors; however, the price paid

is to eliminate the BAO information. This increases the degeneration of the para-

meters and biases the results, we lose information that constrains ϵ and α, which

in turn causes the contour areas to become larger, providing more freedom to the

fitter to move f and α to lower values (Figure 3.27).

The main impact of removing the large scales in the hexadecapole fits is in para-

meters that require the BAO peak to be constrained, as expected. When excluding

the large scales, the BAO information is lost, and α is shifted in consequence.
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Table 3.11: Results for the DR14 LRG sample. The first block is for our fiducial
methodology, using the fiducial range for the ξ0 + ξ2 fit. The second block is
for the ξ0 + ξ2 + ξ4 fits in the ranges [28,124], [28,124], and [44,124] h−1Mpc for
their multipoles ℓ = 0, 2, 4. The third block is for the ξ0 + ξ2 and ξ0 + ξ2 + ξ4
fits when excluding the large scales for quadrupole and quadrupole/hexadecapole,
respectively. The fiducial value for the σ8(zeff=0.72) = 0.55 (0.5495932). The
eulerian bias is defined by b = 1 + F ′.

Measurements with LRG sample DR14 Oficial Version.
Case fσ8 bσ8 <F”> σFOG α ϵ

ξ0 + ξ2 [28,124][28,124] 0.454+0.119
−0.140 1.110+0.116

−0.100 2.2+3.8
−4.4 3.7+3.0

−2.3 0.955+0.055
−0.05 0.000+0.090

−0.050

ξ0 + ξ2 + ξ4 [28,124] [28,124] [28,124] 0.31+0.09
−0.09 1.19+0.10

−0.10 −1.1+3.2
−3.3 5.8+3.3

−3.2 0.986+0.047
−0.046 0.091+0.046

−0.048

ξ0 + ξ2 + ξ4[28, 124][28, 92][28, 92] 0.285+0.093
−0.094 1.079+0.108

−0.110 −1.5+3.3
−3.0 5.5+2.6

−2.8 0.917+0.054
−0.056 0.107+0.041

−0.039
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Figure 3.26: The shaded regions show the 1 − 2σ confidence surfaces found by our
MCMC chains for the RSD-AP parameters for two cases: ξ0 + ξ2 (red dashed-line
contours) and ξ0 + ξ2 + ξ4 (blue solid-line contours), all multipoles in both models
are in the [24,128] h−1Mpc range.
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Figure 3.27: Similar to figure 3.26, here the red dashed-line contours represent a fit
where the quadrupole and hexadecapole are reduced to the [28,92] h−1Mpc range
while the monopole stays in the full range ([24,128] h−1Mpc), the blue solid-line
contours show the fit where monopole quadrupole and hexadecapole are in the full
range.
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Chapter 4

From hydrodynamical simulations

to galaxy mock catalogs

As mentioned in the introduction (Chapter 1) this thesis presents two independent

research projects both of which study the dark sector of the universe. In the

previous two chapters, we discussed the RSD analysis from the eBOSS DR14 survey.

There, we found the regions of high likelihood for a set of parameters related with

RSD under the paradigm of the ΛCDM model.

In the second part of this thesis, we discuss a novel methodology developed during

my Ph.D. that studies the relation between the mass of galaxies and the properties

of their host DM halos. The end goal is to populate halo catalogs from, e.g. an

N-body simulation, with galaxies of the correct stellar mass.

The development of the method is left for chapters 5 and 6. First, chapter 5 focuses

on introducing and testing the methodology on a sample of relatively large central

halos as a proof of concept. Chapter 6 expands the method to include satellite

galaxies and uses a smaller halo mass cut.

This chapter introduces the different astronomical concepts that are required to

follow the discussion of the next two chapters. Section 4.1 motivates the need for

methods that populate DM catalogs. Then, section 4.2 summarises the different

physical processes that affect the evolution of central and satellite galaxies within
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4.1. The need for methods that populate dark matter only simulations

a DM halo. In section 4.3 we introduce the most common methods that have been

historically used to populate DM catalogs with galaxies. Finally, in section 4.4 we

review the next steps for this project.

4.1 The need for methods that populate dark matter

only simulations

Modern LSS surveys are designed to measure the redshifts of millions of galaxies,

they are arguably the best data sets for testing the standard models of cosmology.

However, given the completeness of some of these surveys at relatively low redshifts

they can also be used to test galaxy evolution models.

Most of the surveys designed to study galaxy evolution focus on redshifts ∼1,

as this is the epoch of higher star formation rate in the universe (Madau and

Dickinson, 2014). Some of the most noteworthy surveys are the zCOSMOS survey

(Lilly et al., 2007) that computed the redshift and observed the morphology of

8500 galaxies at z ∼ 0.8, the DEEP2 survey (Newman et al., 2013) that measured

the redshift of around 50,000 at z ∼ 1, and the VIPERS survey (Scodeggio et al.,

2018), that observed 90,000 galaxies with redshifts around 0.5 < z < 1.2. These

can be supplemented with observations from low redshift surveys to get a more

complete picture of galaxy evolution from the star formation epoch at z ∼ 1 and

up to the present. Perhaps the most well-known low redshift survey is the SDSS

main galaxy survey (York et al., 2000), which has a median redshift of z = 0.1 and

has collected the redshifts of around 1 million galaxies.

Other galaxy evolution surveys are being developed at present, for example the

4MOST WAVES (Driver et al., 2019) survey that will study 1.65 million galaxies,

0.9 million galaxies with the WAVES-Wide survey that has a redshift cut at z = 0.2,

and the rest by the WAVES-Deep magnitude limited survey that is expected to

observe galaxies in the z < 0.8 range.
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4.1. The need for methods that populate dark matter only simulations

Mock catalogs that mimic the survey will be needed for the analysis of these data

sets (as with the eBOSS RSD analysis presented in chapter 3). These mocks

will be used for several proposes, for example: estimating the errors of certain

statistics (like the covariance matrix of the 2-point correlation function described

in section 3.5.3) or testing the data analysis methodologies (for example our analysis

in section 3.6).

Arguably the best tool to study theoretically the evolution and interactions of

galaxies and halos are hydrodynamical simulations. These simulations show that

central and satellite galaxies follow different evolutionary paths inside halos. This is

a consequence of the differences in their interactions within the cluster. Section 4.2

presents a summary of the different physical processes that make galaxies and halos

evolve once merged into a cluster.

The volumes required by mock catalogs used in the analysis of LSS surveys to study

galaxy evolution can be very large and are generally of the order of magnitude

of ≈ (1[Gpc/h])3 (e.g. Safonova et al., 2021). Hydrodynamical simulations that

have enough resolution to include galaxies considered by those surveys and with

enough volume are well beyond the capabilities of current hydrodynamical simu-

lation codes. For example the largest EAGLE simulation (McAlpine et al., 2016)

the Illustrious simulation (Nelson et al., 2015) and the MassiveBlack-II (Khandai

et al., 2015) were all built in boxes with a volume of around ≈ (100[Mpc])3. Newer

generation of hydrodynamical simulations like Illustris TNG (Springel et al., 2017)

and EAGLE XL (in preparation) have volumes of ≈ (300[Mpc])3 but this will still

not be enough to make mock catalogs of the required volume.

With this in mind, there is a strong incentive to build methods that can use hydro-

dynamical simulations to learn the relationships between galaxies and dark matter,

then use these relations to populate N-body dark matter only simulations of the

required volume. This is a very complicated process that has been tackled with

different methodologies. Section 4.3 summarises some of the most widely used

ones making some emphasis on a new type of algorithms that have been developed
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intensively in the last few years, the so-called machine learning techniques. In

chapters 5 and 6 we present a novel machine learning methodology that provides

a new way of populating halos with galaxies of a given stellar mass.

4.2 The evolution of galaxies and dark matter in

halos and subhalos

It is a well known observational result that the properties of galaxies are correlated

with their environment (e.g. Blanton and Moustakas, 2009; Boselli and Gavazzi,

2006). Galaxies that are not inside clusters, and therefore relatively isolated, are

more likely to have characteristics of younger galaxies, like spiral shapes and bluer

colours (a blue galaxy is a star-forming galaxy). These are of course general trends,

as it is possible to find blue galaxies inside a cluster. On the other hand galaxies

inside clusters are likely to present characteristics of older galaxies like a red colour

(related with little star formation) and an elliptical shape .

The accepted explanation of this phenomenon states that galaxies in halos should

suffer transformations when accreted from their more isolated environments into

the cluster. The idea is that if a galaxy was to lose a significant amount of baryons

during infall, it would not be able to generate more stars and will therefore become

a red elliptical.

Several mechanisms have been proposed to deprive a galaxy of baryonic-mass dur-

ing infall:

• Ram pressure stripping (Gunn and Gott, 1972; Abadi et al., 1999; Vollmer

et al., 2001) is the name given to the clash that galaxies experience against

the baryonic intercluster medium when infalling into a cluster. From the

reference frame of the galaxy this is experienced as a wind. This wind opposes

the gravitational potential of the galaxy, if the wind is strong enough to

overcome the potential it will blow gas away.
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Figure 4.1: Image of the spiral galaxy ESO 137-001 taken by the HST. The galaxy
moves through the Abell 3627 cluster and is subjected to ram pressure stripping
leaving a trail of baryonic gas at its pass. This is an example of a jellyfish galaxy.
Image credit: NASA, ESA

The gravitational potential of a galaxy is dependent on the distance to its

centre. Hence the outer parts of a galaxy will be the most affected and

the galaxy loses its gaseous halo, which is its main source of fuel for stellar

formation (Erb, 2008; Hopkins et al., 2008). This process is usually referred

to as starvation (Larson et al., 1980).

Ram pressure stripping can be observed in action on the so-called jellyfish

galaxies (see figure 4.1), which are galaxies moving within the intercluster

medium and leaving a trail of visible gas behind them (giving them a shape

that resembles that of a jellyfish).

• strangulation (Kampakoglou and Benson, 2007; Peng et al., 2015) is the name

given to the process where the gravitational potential of the halo strips a

galaxy from its baryonic gas due to tidal effects. This removes all gas beyond
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a certain tidal radius defined by the distance at which the gravitational force

of the galaxy matches the tidal forces.

Note that the elliptical orbits of particles mean that some might come in

and out of the tidal radius. This makes the tidal radius evolve with time as

these particles get stripped, making strangulation a complicated phenomena

to model.

• harassment (e.g. Moore et al., 1996; Mastropietro et al., 2005) is a disruption

experienced by both central and satellite galaxies. It happens when there

is a close encounter with other galaxies that do not result in a merger but

that make the gravitational potential of a galaxy change rapidly. They are

usually called fly-bys encounters. While these encounters do not necessarily

end up having enough force to strip material from a galaxy they can heat the

galaxy by transferring energy to the orbiting particles. This has the effect of

expanding the galaxy and destroying ordered and cold structures like disks,

making galaxies in clusters more likely to be elliptical than any other shape.

Let us recall from our discussion about N-body simulations in section 1.3.2, that

within the ΛCDM paradigm, DM clumps into clusters of matter called halos, inside

which galaxies form. We discussed also how under the CDM paradigm halos can

merge and that the remnants of small halos accreted into larger ones, which we call

central halos, form self-bound substructures that we call subhalo or satellite halo.

Through the rest of this work, we will refer to the galaxies living inside central and

satellite halos as central galaxies and satellite galaxies respectively.

So far we have focused on what happens to the baryons inside subhalos when

falling into halos; however, their dark matter also undergoes significant changes.

DM simulations show that subhalos lose mass during their infall processes, this is

mostly due to processes related to tidal effects between interacting subhalos (e,g,

Mo et al., 2010; van den Bosch et al., 2018).
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Tidal heating (e.g. Lynden-Bell, 1967; Green and van den Bosch, 2019) refers to the

perturbation of particles in the subhalo at large radii, when having close encounters

with other subhalos. This perturbation is equivalent to the harassment phenomena

on galaxies. When the tidal force is strong enough, the larger halo will pull dark

matter out of a smaller one, commonly known as tidal stripping (e.g. Merritt, 1983;

Hayashi et al., 2003; Green and van den Bosch, 2019). This effect is common at

close collisions and can be quite effective when the average separations of halos

are not much larger than the average subhalo radius. This happens often near

the centre of the halo, where the relative velocities are smaller and can lead to

the central galaxy absorbing a significant amount of matter from smaller subhalos.

Given that dynamical friction∗ makes subhalos fall deeper into the potential well

of the central halo, tidal stripping should increase with time making subhalos lose

more and more mass as they merge.

The picture presented here results in very different evolutionary tracks for central

and satellite halos. Central halos and their galaxies should grow monotonically

with time becoming bigger as time passes by accreting matter from their close

environment and from satellite galaxies. On the other hand, satellite halos should

have grown monotonically while they were isolated, but once they merged their

total dark matter content should decrease due to tidal effects. At the same time

their galaxies should have stopped growing due to processes like ram pressure

stripping, harassment, and strangulation.

The evolution of structure described here can be very complicated to model ac-

curately, but is naturally included in hydrodynamical simulations. This gives us

an incentive to try to learn the relations between galaxies and host halos from the

hydrodynamical simulations themselves. In the next two chapters we develop a

methodology that feeds a machine learning algorithm with data from the EAGLE
∗Dynamical friction (Chandrasekhar, 1943) refers to the effect of a subhalo losing angular

momentum when interacting with a smaller and lighter body: gravity causes the small object
to accelerate and gain angular momentum, then conservation of angular momentum and energy
dictates that the subhalo should slow down and fall into a lower orbit.
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simulation to build a function that predicts the stellar mass of an object based on

the properties of its host halo. Before this, we will use the rest of this chapter to

review other popular methods that have been used to populate halo catalogs with

galaxies.

4.3 History of populating DM catalogs with galaxies

Several methods have been developed that can model the properties of galaxies

without having the computational costs and resolution problems that hydrodynam-

ical simulations have. In this section, we present a summary of the most relevant

methods that have been used to achieve this goal. In general, these methods model

functions that provides a prediction for the bias and stellar properties of galaxies

as a function of their host halo properties. Then these models are used to populate

halo catalogs built with N-body simulations in a way that reproduces the statistical

properties of galaxies observed by galaxy surveys.

Probably the most used methodology is the so-called semi-analytical galaxy form-

ation modelling (e.g. White and Frenk, 1991; Kauffmann et al., 1993; Cole et al.,

1994; Cole et al., 2000; Bower et al., 2008; Lacey et al., 2016; Baugh et al., 2019).

This method consists of building physically motivated equations that model some

of the processes that define galaxy properties inside a halo, like gas cooling, star

formation, feedback from supernovae, stellar evolution and so on. These equations

should be completely determined by the initial conditions of the universe, the as-

sumed dark matter properties of the halo and its local environment, and by a set

of free parameters that need to be fitted to observations. While semi-analytical

models are not as computationally expensive as hydrodynamical simulations, some

of the baryonic physics that they try to model is very complicated and they rely

on several simplifying assumptions.

For a set value of the free parameters of a semi-analytical model, one can use the

equations of the model to populate a halo catalog with galaxies. Once the galaxy
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catalog is built one can measure its statistics e.g. the correlation functions or the

luminosity functions. These statistics can be compared with those from observa-

tional catalogs to compute a likelihood estimate, where values of the free parameter

that generate catalogs with realistic correlation and luminosity functions will have

a large likelihood. An MCMC algorithm (see 2.6.1) can then use these likelihood

estimates to explore the parameter space of the semi-analytical model. This meth-

odology can be used to fit the free parameters of the model to an observational

survey. Semi-analytical models fitted in this way have shown good agreement with

predictions made using hydro-simulations (e.g. Benson et al., 2001; Helly et al.,

2003).

Given the complexity of hydrodynamical simulations and semi-analytical models,

there is an incentive to use the catalogs built by these methods and learn em-

pirically the relation between dark matter halos and galaxies. This relation can

be characterised using the halo occupation distribution (HOD) function P (N |M)

which is defined as the probability of finding N galaxies of a given type or mass

in a dark matter halo of mass M . Knowing an accurate measurement of a HOD

allows us to populate any N-body simulation with galaxies in a statistically sig-

nificant way, assuming the halos are statistically independent of their larger scale

environment. Note that P (N |M) can be computed from any catalog of galaxies

and host halo masses. Efforts have been made to extract the HOD from both

hydrodynamical simulations (e.g. White et al., 2001; Yoshikawa et al., 2001) and

semi-analytical models (e.g. Kauffmann et al., 1999; Benson, 2001), with the result-

ing HODs appearing to be in good agreement with each other (e.g. Berlind et al.,

2003).

In the last five years or so new methods based on machine learning algorithms

have been implemented to study the relation between halos and baryonic matter.

Kamdar et al. (2016) and Agarwal et al. (2018) use extremely randomised tree and

random forest algorithms respectively to predict galaxy properties based on dark

matter halo properties like halo mass, growth rate and the maximum mass a halo
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achieved during its evolution. The models are trained on data from hydrodynamical

simulations and the resulting models are impressively accurate at reproducing the

simulation properties. However, the actual universe might have different properties

to the hydrodynamical simulations, and it would be hard to modify the models to

reproduce actual observations, given that the models built by such machine learning

algorithms are black box models.

In order to avoid this issue Moster et al. (2021) uses a neural network approach

that asks the algorithm to reproduce observed properties like clustering and stellar

mass functions instead of the actual galaxy masses of a dark matter halo in an

hydrodynamical simulation. The results are accurate, but it may be challenging

to extract an interpretation out of this model, as they are only asked to reproduce

observed statistics accurately but not individual properties. In this sense this

method is similar to halo abundance matching (e.g. Klypin et al., 2013), and inherits

some of its problems, the main one being that fitting a simulation to a set of

observed statistical properties does not guarantee that it would also reproduce a

new statistic that it was not fitted to match.

4.4 Conclusions

In chapters 5 and 6 we present a novel methodology to model the stellar mass of

galaxies from the evolutionary path and present-day mass of their host halo. This

methodology uses machine learning algorithms to model an equation of state that

predicts the stellar masses of galaxies. Our models are determined by a set of free

parameters defined by the methodology that determines the size of the contribution

of different functional relations between a set of DM properties. In this sense, our

methodology is similar to semi-analytical models as it tries to model the physics

behind the matching to generate an equation of state. Given that the final model

depends on a small set of free parameters this could be fitted to a set of statistics

from an observational data set, this possibility will be explored in chapter 7
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Chapter 5

A sparse regression approach to

modelling the relation between

galaxy stellar masses and their

host halos

5.1 Introduction

Gravitational collapse in the expanding universe leads to the formation of com-

plex, highly non-linear structures. The force of gravity can be accurately modelled

through N-body cosmological simulations. However, observational probes of the

universe’s structure usually rely on galaxies, bringing into play a much broader

range of baryon physics. Unlike dark matter only (DMO) simulations, which only

allow interactions through gravity, baryon simulations need to deal with complic-

ated feedback processes and are strongly influenced by events happening at scales

much smaller than the size of the simulation grid (Schaye et al., 2010). While this

can be mitigated by including sub-grid models of these processes, in the form of

sources or sinks of energy and matter, the resulting computational cost of accurate

baryonic simulations remains far greater than that of DMO simulations. As a con-
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sequence the volume of the universe that can be modelled in this way is limited.

A hybrid approach is therefore necessary, in which a large volume DMO simu-

lation is populated with galaxies based on the halo-galaxy relationship found in

smaller baryonic simulations. This requires a methodology that can extract robust

halo-galaxy relationships making optimal use of the available volume of baryonic

simulations. In this paper, we explore whether sparse-regression models, which are

a type of machine learning algorithm, provide an attractive approach.

A full reconstruction of the baryonic universe would require us to also model satel-

lite galaxies. These are subject to additional physics such as tidal striping, heating

(Merritt, 1983) and other environmental processes. In this work, we focus on de-

veloping and presenting our methodology, applying it to model central galaxies.

We leave the extension of our methodology to include satellite galaxies for a future

work.

It is already well established that there is a strong correlation between the stellar

mass (M∗) of a central galaxy and the mass of its host halo (White and Rees, 1978).

This relation is known as the Stellar Mass – Halo Mass (SMHM) relation. However,

there is a significant scatter in the SMHM relation (e.g. More et al., 2010; Zu and

Mandelbaum, 2015) which indicates that the stellar mass of a galaxy may also

depend on other factors. Here, we investigate whether the formation history and

the angular momentum of the host dark matter halo also play a role. Dependence

on formation history is often referred to as assembly bias (Sheth and Tormen, 2004;

Gao et al., 2005; Gao and White, 2007; Ramakrishnan et al., 2019). The effect of

assembly bias in the EAGLE simulation has been studied in Chaves-Montero et al.

(2016), where it was concluded that it might alter the clustering signal amplitude of

the sample by up to 20%. It is worth noting, however, that while assembly bias has

been detected in several simulations, the efforts made to detect it on observations

have been inconclusive to date (e.g. Lin et al., 2016; Tojeiro et al., 2017; Salcedo

et al., 2020).

To explore the effect of assembly bias, Matthee et al. (2016) studied the correla-
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tion between the residuals in the SMHM relation and different DM properties on

EAGLE. They found that the parameters that are most correlated with this resid-

ual are those that are determined by the evolution of the halo mass, in particular

concentration and halo formation time. They found no other parameter strongly

correlated with the residual of the SMHM relation once it was corrected for the

halo concentration correlation. Our aim in this thesis is to investigate the optimal

measure of halo formation trajectory and to determine whether the prediction of

stellar mass can be improved by including the additional halo specific angular mo-

mentum. In observations, the angular momentum of a galaxy appears correlated

with its stellar mass (Fall and Romanowsky, 2013). However, while there is a cor-

relation between the history of the specific angular momentum of a galaxy and

its host halo (Zavala et al., 2016), Danovich et al. (2015) uses cosmological sim-

ulations to suggest that the specific angular momentum of gas and dark matter

undergo decoupled formation histories and that it is only the final distribution of

spin parameters that is similar between baryons and dark matter. Nevertheless,

it remains physically plausible that halo specific angular momentum and galaxy

formation efficiency may be interconnected in some more complex way.

The aim of this work is to develop a sparse regression approach to find a poly-

nomial equation that relates the stellar mass of a galaxy with the properties of

its DM halo. This is a form of Machine Learning (ML). More conventional ML

algorithms such as neural networks (e.g. Lecun et al., 2015) and random forests

(e.g. Breiman, 2001) are some of the most powerful tools for parameterising a data

set. However, algorithms like neural networks or ensemble models (Roberts and

Everson, 2001) generate models with virtually no explainability, so that extracting

the physics behind the model would be difficult. While the network could predict

galaxy properties, it would be hard to gain confidence that the output is physically

reasonable. Random forest algorithms work by building a collection of decision

trees that are designed to be as uncorrelated as possible. These models are easier

to interpret, as one can measure how often a variable was used and how drastically
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the entropy decreases in each step. A potential issue with some machine learning

algorithms is the slow evaluation speed of a final model.

Sparse regression methods (SRM; Hastie et al., 2015) are a set of minimisation

algorithms that are efficient at discarding unnecessary free parameters. This makes

them very useful at minimizing functions for which one suspects that most free

parameters are irrelevant except for a small subset that one is trying to identify.

SRM provide a trade-off between including very many free parameters (which would

result in over-fitting to random artefacts in the data) and eliminating too many

parameters (which would result in a poor description of the data). SRM have

been proposed as the appropriate framework to extract the governing equations

of a physical system from the data alone with relatively little prior knowledge

required of the system’s physics (Brunton et al., 2016). A key advantage of the

SRM approach is that the small number of retained coefficients are likely to have a

clearer physical interpretation. Further more, given that the models produced with

SRM can be simple polynomial equations, their evaluation comes with virtually no

computational cost.

We apply the sparse regression methodology to model the stellar mass of galaxies in

the EAGLE 100 Mpc hydrodynamical simulation (Schaye et al., 2015; Crain et al.,

2015). The EAGLE simulation provides a reasonable description of the observed

universe (Crain et al., 2015; Artale et al., 2017; Furlong et al., 2015; Trayford

et al., 2016), and is ideal for our proposes as parameter values of the DM halos

are stored at several redshift slices (McAlpine et al., 2016), which permit us to

model assembly bias. While all models presented here were calibrated on EAGLE

data, we expect that the methodology can be applied to other hydrodynamical

simulations with similar success. One common issue with this type of analysis is

the danger of including a selection bias in the independent variables due to dark

matter halos in hydrodynamical simulations being affected by baryonic processes

that might alter properties like their density profile (e.g. Schaller et al., 2015;

Martizzi et al., 2012; Navarro et al., 1996). With this in mind, we use a one-to-one
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matching (Schaller et al., 2015) between our hydrodynamical simulation and a dark

matter-only simulation built using the same properties and initial conditions.

Our work builds on other ML methods that have shown promising developments

in the creation of mock catalogs using DM halos. Moster et al. (2021) uses neural

networks to populate DM halos from N-body simulations with galaxies. While their

goal is similar to ours, the philosophy behind both models is different. Their ap-

proach avoids using hydrodynamical simulations and focuses on placing the galaxies

inside halos in such a way that it reproduces observed properties of the galaxy pop-

ulations. While that approach leads to accurate models, it would by construction

be hard to extract any physical interpretation out of it. Lucie-Smith et al. (2018)

used a random forest algorithm to predict which DM particle in a simulation would

end up inside a DM halo of a given mass, while Berger and Stein (2019) used a

neural network to build DM halo mocks.

In this work, we focus on the properties of central galaxies. For mock simulations

to be compared to observations of large-scale structure surveys they need to be

populated with galaxies in such a way that they reproduce the stellar mass function

(SMF) and the clustering patterns of galaxies. This would require us to assign both

a central and a population of satellite galaxies to each dark matter halo. We discuss

the additional challenges of modelling the stellar mass of satellite galaxies at the

end of the paper.

This chapter is organised as follows. Section 5.2 introduces the sparse regression

methodology used to build our model and includes an example model that illus-

trates the behavior of the algorithm. Section 5.3 introduces the hydrodynamical

simulation from which the input data were extracted and discusses how the data

was processed to be used by our algorithm. The details on running the algorithm

using the data set are presented in Section 5.4. As sections 5.2 and 5.4 introduce

and test our methodology, readers primarily interested in the astrophysical results

can go directly to section 5.5. Section 5.5 shows the results of the different con-

figurations in which we run our code, and we discuss the physical interpretation
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of different terms of our governing equations and compare the stellar mass distri-

bution and clustering statistics to those from EAGLE. Our conclusions and final

thoughts, along with a brief discussion on the next steps that we aim to take, are

presented in Section 5.6.

5.2 The Sparse Regression Methodology

This section starts by setting the general problem in §5.2.1. This is followed, in

§5.2.2, by an introduction to the sparse regression method considered, i.e. the Least

Absolute Shrinkage and Selection Operator (LASSO). We explain our minimisation

implementation in §5.2.3 and the penalty hyperparameter definition in §5.10. We

end in §5.2.5 with a simple example to more clearly illustrate our methodology.

5.2.1 Problem statement

We are interested in finding a function that models a physical property, y′, that

might be determined by a set of M variables x⃗′ = [x′
1, ...., x′

M ] (we reserve the

symbol x for normalised variables - see below). In this work y′ is the stellar mass

of a galaxy and x⃗′ a set of present and past properties of its DM halo. We can

build a data set of values of y′ and their associated x⃗′ by looking at large catalogs

where the value of both has been measured. In this paper we use the output of the

EAGLE hydrodynamical simulations (see Section 5.3).

We collect a sample of N galaxies to build a vector y⃗′, where

y⃗′ = [y′
1, ..., y′

N ], (5.1)

and an associated matrix X′, with each row x⃗′
α (1 ≤ α ≤ N) representing the list

of dependent variables associated with the DM halo of the corresponding galaxy
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y′
α:

X′ =


x⃗′

1

.

x⃗′
N

 =


x′

11 ... x′
1M

. . .

x′
N1 ... x′

NM

 (5.2)

The different columns of matrix X′ correspond to different properties of the DM

halo, where each property can have different units and distributions. It is, therefore,

necessary to standardise our data. We choose to do this using the mean and

standard deviation of the distribution, and define the normalised variable as:

z⃗i = z⃗′
i − µ(z⃗′

i)
σ(z⃗′

i)
, (5.3)

where z⃗′
i is now a column of X′ and 1 ≤ i ≤ M and µ and σ are the mean and

standard deviation operators. The same normalisation scheme is also applied to

our dependent variable: y = (y′−µ(y′))/σ(y′). Note that the primed variables refer

to natural quantities and non-primed variables to standardised ones that have zero

mean and unit variance.

The observed values of the M variables of x⃗α will be used as inputs for a series

of functions whose output one hopes to use to predict yα. These functions can in

principle have any desired form, and so we will use a gradient descent algorithm to

fit a linear combination of them to y⃗ (Section 5.2.3). Although other approaches

like singular value decomposition Golub (1970) could be used in the hyperbolic

case, we wish to ensure that the method is generic.

We consider a library of D functions, and their evaluated values for the observed

parameters of the αth galaxy f⃗(x⃗α) = [f1(x⃗α), ....., fD(x⃗α)]. The library of functions

that we use in this work consists of:

• A constant term f0(x⃗α) = 1.

• M linear terms of the form [f1
1 (x⃗α), ..., f1

M (x⃗α)] = [xα1, ..., xαi, ..., xαM ]

where 1 ≤ i ≤ M .
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• M(M +1)/2 quadratic terms of the form [f2
1 (x⃗α), ..., f2

M(M+1)/2(x⃗α)] = [x2
α1,

...., xαi xαj , ..., x2
αM ] with 1 ≤ i ≤ j ≤ M .

• M(M +1)(M +2)/6 cubic terms of the form [f3
1 (x⃗α), ..., f3

M(M+1)(M+2)/6(x⃗α)]

= [x3
α1, ... , xαi xαj xαk, ...., x3

αM ] with 1 ≤ i ≤ j ≤ k ≤ M .

The total number of functions considered is:

D = 1 + M + M(M + 1)
2 + M(M + 1)(M + 2)

6 . (5.4)

The number M of DM halo properties that we use depends on the specific paramet-

risation of the present and past properties of the halo that we select. We consider

four different models each with different values of M (Section 5.3.5).

This methodology is able to deal with far more complicated functional forms than

the polynomial forms used here. For example, we experimented with exponential

decays and step functions. However including these more complicated functions

in our initial testing did not improve our models, but increased the computational

time so we excluded them from our final fits in this work.

Our goal is to find optimised values of the coefficients C⃗ = [C1, ......., CD] that will

make the linear combinations of our D functions a sufficiently accurate model of

y⃗. Specifically, we aim to find the optimised values of C⃗ such that F⃗ (C⃗, X) ≈ y⃗,

where F⃗ (C⃗, X) is defined as:

F⃗ (C⃗, X) = F(X)C⃗T =


f1(x⃗1) ... fD(x⃗1)

...
...

...

f1(x⃗N ) ... fD(x⃗N )




C1
...

CD

 . (5.5)

We discuss the precise meaning of the approximate equality in the following section.

Our aim is to achieve a balance between the accuracy of fitting the data while

keeping the model as simple as possible. Clearly there is an underlying assumption

that the functions included can be linearly combined into a sufficiently accurate

model. In the absence of a detailed understanding of the physical system our
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approach is to include a large number of functions in our library, spanning the

possible range of physical interactions.

5.2.2 Sparse regression

Sparse regression methods aim to minimise the error term |F⃗ (C⃗, X) − y⃗| while

discarding any unnecessary functions by setting their associated coefficients Cj

to a negligibly small value. This makes them the appropriate framework for our

problem as it allows us to include a large number of functions while knowing that all

of the unnecessary ones will be discarded by the methodology. The fewer surviving

coefficients the easier it is to interpret the solution (i.e. the more explainable it is).

The solution will also be less susceptible to over-fitting to random fluctuations in

the training data.

One of the most common sparse regression algorithms is LASSO (Least Abso-

lute Shrinkage and Selection Operator; Tibshirani, 1996; Tibshirani and Friedman,

2017), where one minimises

L = χ2 + λP (C⃗). (5.6)

P (C⃗) is known as the penalty function and its value should increase with the

absolute value and number of coefficients that are not set to zero. The coefficient

λ is a hyperparameter of the model and determines the relative magnitude of the

penalty term. The value of λ is determined using a k-fold methodology (Hastie

et al., 2015), as described in Section 5.2.4.

χ2 is the normal chi-squared function defined as

χ2 =
N∑
α=1

(Fα(C⃗, X) − yα)2

σ2
yα

, (5.7)

where σyα is an estimate of the uncertainty in measurement yα and Fα(C⃗, X) is

the αth element of F⃗ (C⃗, X). In the absence of the penalty term, L would be the

negative of the logarithmic likelihood function (ie., L = −2 ln L).
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In the standard LASSO approach P (C⃗) is defined as

P (C⃗) =
D∑
i=1

| Ci | . (5.8)

We introduce a regularisation term to smooth out the gradient discontinuities that

occur when parameters are close to zero,

P (C⃗) =
D∑
i=1

| Ci | e−(ϵ/Ci)2
, (5.9)

where ϵ is a small constant. Note that exp(− (ϵ/Ci)2) is very close to zero when

|Ci| ≪ ϵ and close to one when |Ci| ≫ ϵ. Therefore ϵ determines how close to

zero a coefficient Ci needs to go before its contribution to the penalty is negligible.

We adopt a value of ϵ = 10−3, which we show in Section 5.4 makes unnecessary

coefficients go close enough to zero to be clearly distinguished from the ones that

are useful, while keeping a reasonable computational cost (the closer to zero unne-

cessary coefficients are required to get the longer the minimiser needs to run). We

define a cutoff value ν as the threshold between used and discarded parameters:

every coefficient larger than ν will be used in our model and all smaller coefficients

are discarded. The exact value of ν is presented in Section 5.4.

In equation 5.9 the contribution of each coefficient Ci is independent of the con-

tribution of all other coefficients. This means that there is not a strong penalty

for having many small, but larger than ϵ, values of Ci. We found that a more

efficient approach at eliminating non-essential coefficients is to consider the contri-

bution of a coefficient, in comparison to all of the other surviving coefficients. This

is achieved by the following penalty function P (C⃗) = ∑D
i=1

[∑
j ̸=i | Cj |

]
| Ci |.

Combining both modifications our penalty function has the following form

P (C⃗) =
D∑
i=1

∑
j ̸=i

| Cj | e−(ϵ/Cj)2

 | Ci | e−(ϵ/Ci)2
. (5.10)

This is the form of the penalty function adopted in our algorithm.

The χ2 is a measure of the goodness of fit, which decreases as the model becomes

more accurate. Balancing of the goodness of fit statistic and penalty term makes
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sparse models robust against over-fitting: an over-fitted model would use many

parameters to make a unrealistically good fit, which would make the χ2 very small

but it would also make the penalty term large (as it grows with the number of

parameters). The minimum should belong to a model that is as simple as possible,

while still being a sufficiently good fit. This is why when using a large library of

functions all but a small subset of the coefficients end up being set to zero.

By making some general assumptions, we can estimate that in the optimised solu-

tion P (C⃗) = O(1). First we note that P (C⃗) ≈
∑D
i=1

[∑
j ̸=i | Ci || Cj |

]
≈ (∑D

i=1 |

Ci |)2, and that the optimised solution should satisfy F⃗ (C⃗, X) = F(X)C⃗T ≈ y⃗

Secondly let us note that, in our case, Fi(X) correspond to third order combin-

ations of elements of x⃗i, with each element standardised to be of the order of

magnitude of the elements of y⃗ and therefore Fiα(X) ≈ O(yα). From here it should

be that ∑D
i=1 | Ci |≈ O(1), and consequently that P (C⃗) ≈ O(1).

The properties of the simulated galaxies do not have formal measurement errors,

but we still expect a random scatter due to the stochastic nature of the formation

process. We therefore estimate a constant σ2
y = σ2

yα
(for 1 ≤ α ≤ N) using

σ2
y =

N∑
α=1

(Fα(C⃗, X) − yα)2

N
(5.11)

evaluated at C⃗ that minimises equation 5.7 when σ2
yα

= N . A consequence of using

this definition of σ2
yα

is that if we then minimise Eq. 5.6 with no penalty (λ = 0)

we find

L(λ = 0) = N. (5.12)

The optimised value of λ should be such that χ2 and λP (C⃗) are of comparable size.

Given that by P (C⃗) ≈ O(1), and that we constructed σ2
yα

such that χ2 ≈ O(N)

then λ ≈ O(N). This allows us to estimate the sizes of penalty that we should

explore.
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5.2.3 Minimisation

We use a gradient descent algorithm to minimise Eq. 5.6. The process starts at

an initial point in parameter space and iteratively walks in the direction opposite

to the gradient of L with respect to Ci. We use a variation of Arfken (1985), the

standard practice for most machine learning methodologies. The size of each step

is determined by a parameter η. At every step one computes L, if it is larger

at the new position then η is reduced (as it would likely mean that it overshot

the minimum). In the opposite case η size is increased if L is smaller at the new

position as it is likely that we are still far from the minimum.

The gradient of L from Eq. 5.6 is computed with respect to the vector of coefficients

Ci. In the standard methodology one makes a step in the direction of the gradient

at the current position. However, we found that this did not perform well in the

steep-sided valleys that characterise L. In such valleys, a step will overshoot the

minimum, and as a consequence the next step would be in the opposite direction

than the previous one but with a slightly smaller step size. Progress along the

valley toward the global minimum is then slow. This makes convergence inefficient

in high dimensional spaces, as the minimiser tends to jump from one wall of a

potential well to the opposite wall at each step instead of following a more direct

downwards path.

We achieved performance gains by using the following adaptation of the algorithm

for determining the next step of the minimisation. Defining the position of the ith

step as pi = Ci
1, ..., Ci

D, the gradient vector

−∇(L)(pi) = ∂L

∂C1
(pi), ..,

∂L

∂CD
(pi) (5.13)

points downhill towards the nearest local minimum. Since we are only interested

in the direction of the gradient and not its magnitude we can normalise the vector
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as

∇(L)(pi) = ∇(L)(pi)
/

|∇(L)(pi)| . (5.14)

We make a first trial step on the downhill direction that takes us to the following

position in parameter space

pi+1/2 = pi − η∇(L)(pi). (5.15)

The direction of the next step pi+1 is given by the mean of the gradients at pi and

pi+1/2,

pi+1 = pi − η[∇(L)(pi) + ∇(L)(pi+1/2)]/2 . (5.16)

This swings the direction of travel to align with the valley.

In order to determine if our code has converged we look at the size of steps η

taken by the minimiser. A very small step size indicates that we have not moved

far for several steps. Our code will run until the step size becomes smaller than

some tolerance value. A smaller value of the tolerance means we get closer to

the minimum, however, the computational cost of our minimisation is strongly

dependent on this tolerance value. We found that a tolerance of the step size of

η < 10−6 produces stable results and manageable low computational cost.

5.2.4 Penalty Hyperparameter

We will use a k-fold methodology to fit the hyperparameter λ. K-fold is a well-

known method that is standard practice for fitting hyperparameters in sparse re-

gression (e.g. Hastie et al., 2015). The method works by randomly dividing data

into k independent subsets of roughly the same size. Then the hyperparameter λ is

sampled in k independent runs, each time one subset is left out of the minimisation

and is used to test the model on data it has not seen before. The set left out is

called the test set. The rest of the data points are used for running the minimisa-

tion algorithm and are referred as the training set. In this work we will use a value

of k = 10, which is standard practice. Each run explores λ with thirty uniformly
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spread points in log10 λ between λ = 1 and λ = N , to which the case of λ = 0 is

added.

The higher the granularity of λ that we explore the more computationally expensive

our code becomes. We found by testing that 30 uniformly spread out points in

log10 λ was enough to find sufficiently smooth curves without a high computational

cost. In principle, one could explore larger values of λ. However in our case models

with λ = N provided already significantly worse fits than models with smaller λ

values, which indicates that the penalty was already too large at λ = N . This is

true for all models presented in this paper except for the example of Section 5.2.5

where we needed to run between λ = 0 and λ = 800.

In order to quantify the quality of fit for a given C⃗, we will use the root mean

square error (RMSE) defined as:

RMSE =

√∑N
α=1(Fα(C⃗, X) − yα)2

N
. (5.17)

When λ is close to zero, the error in the model of the training set would be small

as there is no significant penalty and the model is overfitted. Such a model is

poor at predicting results in data that it has never seen before and this translates

into a large error on the test set (see Figs. 5.2 and 5.5). For very large values of

the penalty, the model becomes too simple as coefficients are heavily penalised: a

model that is too simple will show large error on both the test and the training

sets. When λ is large enough to avoid overfitting but not too large that models

become too simple, the RMSE of the test set will reach its minimum (as illustrated

in Fig. 5.2). If λk is the value of λ where the minimum is for a given k-fold,

then λµ = µ(λk) is an estimate of the optimised value of λ, where µ is the mean

operator.

It is common practice in sparse regression to choose a value that is larger than λµ

by one standard deviation, this is the one-standard-error rule from Hastie et al.

(2015). This is done to avoid over fitting due to inaccuracies in the methodology.

In this work we implement a modified version of the one-standard-error rule. Let us
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define RMSEk(λ) as the RMSE of the kth k-fold as function of λ. By construction,

RMSEk(λ) is minimised for λ = λk. If σ(RMSEk(λk)) is the standard deviation of

the collection of RMSEk(λk), then for each k-fold we define the optimised value of

λ, λmin, as:

λmin = µ (RMSEk(λk) + σ(RMSEk(λk))) . (5.18)

In order to find our surviving coefficients, we run the minimisation algorithm again

on the complete data set, setting λ to λmin. With P , the number of coefficients

Ci larger than the cutoff value ν, we define our library of surviving functions

FS(X) = [FS1(X), .., FSP
(X)], for which CSj > ν with 1 ≤ j ≤ P .

The penalty is useful for selecting which coefficients to discard and keep, but once

this is done the presence of a penalty term biases all coefficients to smaller values.

A penalty rewards smaller coefficients over larger ones, as the size of the penalty

increases with the size of the coefficients. Having this in mind, our final model is

found by re-running our minimisation algorithm using only the functions in FS(X)

and setting λ to zero, i.e. without penalty.

5.2.5 Example

In this section we introduce a simple example to more clearly illustrate our meth-

odology. We build a matrix X′ as in Eq. 5.2, where each column z⃗′
i has thirty

points (N = 30) and each point is a random number between zero and one. We

will use three independent variables, z⃗′
1, z⃗′

2 and z⃗′
3, i.e. M = 3. We will also build

a dependent variable y⃗′ as:

y⃗′ = 1.3 + 2z⃗′
1 + Noise (5.19)

where the noise comes from a Gaussian distribution centred on zero and with

a width of 10% of the standard deviation of 1.3 + 2z⃗′
1. All of our variables in
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this example have the same order of magnitude, so there is no explicit need to

standardise their units. Hence we use y′ and z⃗′ notation within this section.

Before running the model, we do not know the shape of Eq. 5.19. However, let us

suppose that we suspect that y⃗′ should depend on the parameters z⃗′
1, z⃗′

2 and z⃗′
3.

As we are uncertain on how to model the dependence between the parameters, we

include a large set of functions. In this example, our library of functions includes a

constant, linear and quadratic terms only (leaving out cubic terms for simplicity).

In total we end up with ten functions (D = 10).

For the purpose of illustration, we focus on C1 and C3, the parameters associated

with the linear functions of z⃗′
1 and z⃗′

3. Fig. 5.1 follows the trajectory of the minim-

iser for our example model and for these two coefficients. From Eq. 5.19 we know

that C3 = 0 and C1 = 2. The minimiser starts in an arbitrary position (in the case

of this example in C1 = C3 = 1) and follows the trajectory shown by the blue line.

The dashed lines represent the contours of both the χ2 (elliptic dotted contours)

and P (C⃗) (dashed contours) of Eq. 5.10. A gradient descent algorithm will try

to move perpendicularly to these contours, but the modifications in our algorithm

allow the path to quickly align to the valley around C3 = 0. Apparent deviations

from this motion come from the fact that we are looking at the 2 dimensional

projection of a ten dimensional trajectory.

Fig. 5.2 shows the evolution of the RMSE with respect to λ for our example model

using the k-fold methodology of Section 5.2.4. For this example, we divide the

data in to k = 5 folds. The blue dashed line correspond to the training set and

the green lines to the test set. The solid lines are the median of each set. We

explore the hyperparameter λ between λ = 0 and λ = 800. This is different to

our nominal λ range which would be between 0 and N otherwise. This is because

the ratio D/N = 10/30 is much larger in this example than in our nominal set up

using the full simulated data set, for which we have hundreds of functions to fit

almost 10,000 galaxies (i.e. D/N ∼ 0.01). This significant change in this ratio of

D/N requires a larger penalty to be considered to avoid any overfitting.
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Figure 5.1: Isocontours of the penalty function defined by Eq. 5.10 for the two
different coefficients C1 and C3 associated with the functions C1f1

1 (z⃗′
α) = C1z′

α1
and C3f1

3 (z⃗′
α) = C3z′

α3. The dashed hyperbolic and dotted elliptical lines are the
isocontours of our penalty function and of the χ2 statistic respectively. Given that
the gradient is perpendicular to the contour lines, the minimisation routine can
efficiently move toward the origin of the plot, and also to one of the axes. Hence
the code will quickly reach the minimum if either or both coefficients are zero.

When λ is close to zero in Fig. 5.2, the RMSE in the training set (blue line) is

small, the model is overfitted and therefore bad at predicting the result in data

that it has never seen before. This results in the comparably larger error on the

test set (green line). For the largest values of the penalty, the model becomes too

simple and the error on both the test and the training set begins to increase.

Around λ ∼ 10 in Fig. 5.2, the fit of the test set improves and the RMSE reaches

its minimum. This is where the model is the least susceptible to overfitting while

still capturing the important features of the data set. The black dots indicate the
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Figure 5.2: Evolution of the RMSE from the best fits of our example model as
function of the hyperparameter λ. The blue and green dashed lines represent
the RMSE of the training and test sets respectively. The solid lines represent
the median of these curves. When λ is close to zero, the training set has a very
small error and the test set a comparably larger one: this is due to overfitting of the
minimiser and it improves as λ grows. The black dots indicate the minimum RMSE
for the test set of each individual k-fold: this is where overfitting was smallest. The
black dashed line shows the mean value of the λs of the black dots. The red dots
are plotted at the values of λ given by our modified one-standard-error rule. The
red line indicates the mean of λs of these red dots and is our estimate of λmin from
Eq. 5.18

.

minimum RMSE for the test set of each individual k-fold and the black dashed line

shows the mean value of these points, µ(RMSEk). Our optimal value of λ is given

by λmin, defined by Eq. 5.18 and shown as a vertical red line.

Fig. 5.3 shows how the best-fit coefficients of our example model evolve for different

values of λ. Each curve is the mean curve from our 5 different folds. As stated in
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Section 5.2.2, the code will not set parameters exactly to zero but to a very small

value which is determined by the parameter ϵ of Eq. 5.10. Fig. 5.3 shows that in

this example the value is ∼ 6 × 10−4 (this is true for both the example model and

the galaxy data set as it only depends on ϵ). Therefore we select a cutoff value of

ν = 1 × 10−3. This is is shown as the grey shaded region in Fig. 5.3.

The coloured lines correspond to the coefficients that were above the cutoff value

ν at λmin, and therefore included in the final model. At λ = 0, all coefficients

are above the cutoff threshold due to over-fitting. As λ grows, coefficients drops

below the threshold value and at λmin all coefficients other than C0 and C1 have

been discarded. This is expected as C0 and C1 are the non-zero coefficients used

in building y⃗′ according to Eq. 5.19. The grey dashed lines are the coefficients that

were below ν at λmin and therefore discarded. The vertical dashed line corresponds

to the optimised value λmin.

The final model selected by the algorithm is:

F⃗ (C⃗, X′) = 1.27 + 1.98 z⃗′
1 (5.20)

Considering that this a fit to data generated using Eq. 5.19 with 10% Gaussian dis-

tributed noise, we can conclude that our algorithm generated a sparse and accurate

representation of the data.

5.3 Data Set

This section introduces the data set that is used in our analysis. In Section 5.3.1,

we introduce the hydrodynamical simulation, which data is used to train our model

on. In Section 5.3.2, we describe the selection of the galaxies considered, as well as

the method used to address inconsistencies in the classification of galaxies between

different snapshots of the simulation. Section 5.3.3 and Section 5.3.4 introduce

the set of variables that form x⃗′
α of Eq. 5.2: the former introduces all variables

associated with the mass of the host halo and the latter with its angular momentum.
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Figure 5.3: Evolution of the absolute value of the best fit coefficient values as func-
tion of the hyperparameter λ. The coloured lines show the value of the mean fit of
our independent k-fold runs for our surviving coefficients, i.e. those coefficients that
are larger than the cutoff value ν at the optimised value λmin of the hyperpara-
meter λ. The dashed lines show the true coefficients used to create the data from
Eq. 5.19. The grey dashed lines show the evolution of the values of the coefficients
that were discarded in the final model. The grey shaded area represents our cutoff
value ν, below which parameters will be taken out of the fit. The dotted black line
represents λmin. We note that at λmin all coefficients are set to zero except C0 and
C1.
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Finally §5.3.5 lists the four models considered, which differs from one another by

the set of variables used to define x⃗′
α.

5.3.1 The EAGLE simulation

Hydrodynamical simulations provide powerful insight into the galaxy formation

process. The resulting database catalogs DM halos and their connection to baryonic

properties such as stellar mass. In this work, we use the Evolution and Assembly

of Galaxies and their Environments ( EAGLE, Schaye et al., 2015; Crain et al.,

2015) simulations, a suite of hydrodynamical simulations built inside cubic periodic

volumes. We use the largest of these volumes, corresponding to a box of 100

comoving Mpc of length.

The simulation runs using a modification of the GADGET 3 code described in

Springel (2005). The code uses Smooth Particle Hydrodynamics methods to model

the mechanics of the baryon fluid. In order to compute the gravitational potential,

the code uses a combination of a Particle Mesh (at large scales) and a hierarchical

Tree algorithm (at grid and subgrid scales). The details on the modifications can

be found in Schaller et al. (2015). The simulations are built using the Planck

cosmology (Planck Collaboration et al., 2014).

Baryonic physical processes that cannot be solved directly are implemented into the

simulation as sources and sink terms, where energy and matter are either absorbed

or injected locally into the simulation. These subgrid models should depend only

on the local property of the gas. The subgrid models implemented account for

radiative cooling (Wiersma et al., 2009a), star formation (Schaye and Dalla Vecchia,

2008), star formation feedback (Dalla Vecchia and Schaye, 2012), black hole growth

(Rosas-Guevara et al., 2015; Springel et al., 2005), Active Galactic Nuclei feedback

(Booth and Schaye, 2009) and chemical enrichment (Wiersma et al., 2009b). The

uncertain parameters of the subgrid models need to be calibrated, which is done by

choosing the values that would reproduce the galaxy mass function at z=0.1, the
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galaxy size-stellar mass relation and the black hole mass-stellar mass regression.

Discussion of the calibration process can be found in Crain et al. (2015).

Haloes are defined using a Friends-of-Friends algorithm (FoF; e.g. Einasto et al.,

1984) with a linking length of b=0.2, i.e. all particles that can be linked together

with an inter-particle distance smaller than 0.2 times the mean inter-particle dis-

tance form a halo. Once the halos have been identified, the SUBFIND algorithm

(Springel et al., 2001) identifies the self-bound local overdensities of each FoF group

as subhalos. The subhalo that contains the particle with the lowest value of the

potential energy will be defined as the central sub-halo.

The simulation information is saved at 29 redshifts from z=20 to z=0 (i.e. 29

snapshots), and is used to build merger trees, which connect a halo to its progenitors

at earlier redshifts (Qu et al., 2017). The main progenitor of a halo is defined as

the progenitor with the largest mass at all earlier outputs. We use these main

progenitors to track the mass evolution of a DM halo (Section 5.3.3). Note that

when two halos pass close to each other without merging they could momentarily

belong to the same FoF group. As a consequence, the mass and the subhalo chosen

as the central may be inconsistent at this snapshot when compared to the one

immediately before or after the interaction (Behroozi et al., 2015). We introduce

a scheme to clean such issues from the input data in section 5.3.2.

5.3.2 Data selection

Our data set consists of central galaxies inside halos with a mass larger than M c
200 >

1011.1M⊙. M c
200 corresponds to the mass inside the radius Rc

200 of a halo, which is

the radius within which the density is 200 times the critical density of the universe.

The stellar mass of a galaxy is measured as the baryonic mass contained inside a

sphere of 30 proper kpc around the centre of potential of the halo.

Baryonic processes inside halos can affect their measured DM properties (Bryan

et al., 2013; Schaller et al., 2015). If we run our code using the properties of the
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DM found in a hydrodynamical simulation, we risk including biases by fitting the

stellar mass using a property that has been modified by the presence of baryons

(this modification would be correlated with the stellar mass as the halos with

more baryons would be more modified). To avoid this bias, it is common practice

to extract all DM input properties from a DM only simulation generated with the

same initial conditions, box size and resolution as the full hydrodynamic simulation.

The matching between the hydrodynamic and DM-only simulations is described in

Schaller et al. (2015). The 50 most bounded DM particles of each halo in the hy-

drodynamic simulation are found. If a halo in the DM-only simulation has at least

half of those most bound particles it is considered its analog. Using this method,

99% of the halos with M c
200 > 1 × 1011.1M⊙ are matched. We collect information

about the host DM halo at different redshifts (Section 5.3.3) and require that our

halos are present in all snapshots. With this in mind, we only use galaxies with a

progenitor defined at z = 4. Our full sample consists of 9521 galaxies.

Inconsistencies between snapshots are a well-known characteristic of the merger

trees (Behroozi et al., 2015) created by running the halo finder separately on each

snapshot. When two halos interact some of the particles of one can be assigned to

the other regardless of where they belonged in past snapshots. One consequence is

that small central halos can be considered satellites of a larger halo if they are close

to each other at a given snapshot. In EAGLE, M c
200 is only computed for central

halos, which means that they will not have a value of M c
200 at these snapshots.

When this happens we interpolate the value of M c
200 in the missing slices using

the following methodology: we look for the M c
200 value of both the nearest earlier

and later redshifts where the halo was still central. We use these values to do a

linear interpolation of M c
200 in the missing slice. The nearest earlier redshift is

always well defined (as at z = 0 all of our selected subhalos are central); however, a

small subset of galaxies have a non-central progenitor at their largest redshifts, and

therefore their nearest latter subhalo is not necessarily well defined. In these cases

we select the third to last and second to last halos and perform our interpolation
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with those. We follow a similar procedure to correct the angular momentum of

halos that are not considered central in a given slice. We found that the value of

the angular momentum can have drastic variations when compared to its value at

the surrounding redshift slices, which is due to the number of particles assigned to

the halo changing significantly when it is misclassified as a subhalo.

The black lines of Fig. 5.4 shows the halo mass history relative to the halo mass at

redshift zero of four halos from z = 4 and to z = 0. The figure shows that different

halos have very different formation histories. We will explore whether galaxies that

have followed different halo formation paths will end up having different residuals

in the SMHM relation.

5.3.3 DM Mass

Once we have selected the galaxies in our data set, we define the M parameters of

the DM halo that are used to build the matrix X ′ of Eq. 5.2. The first variable

accounted for is the halo mass at redshift zero (or any variable highly correlated

with it), as the SMHM relation explains most of the scatter in the stellar mass.

We will denote the Halo Mass input variable of a galaxy as M ′
0 and define it as

M ′
0 = log10(M c

200(z = 0)/M⊙). (5.21)

We use Eq. 5.3 to standardise the units and denote the halo mass in standardised

units as M0.

There is significant scatter around the SMHM relation due to their varied formation

history, therefore we should also add parameters that are good estimators of the

mass evolution of the DM host halo. This can be done by adding the halo mass of

the main progenitor of a host halo at different redshift slices into our X ′ matrix.

The EAGLE simulation has 19 snapshots between z = 0 and z = 4 (McAlpine

et al., 2016). However, information between redshift slices that are close to each

other is strongly correlated as halos have not evolved significantly. Keeping this
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in mind and given that the computational cost of running the minimiser increases

exponentially with the number of parameters, we only use a subset of the available

redshifts. The ten redshifts slices that we use as inputs are zin=[0.0, 0.18, 0.37, 0.62,

1.0, 1.26, 1.74, 2.48, 3.02, 3.98].

Sparse regression methods work best if variables are independent, therefore we will

use the ratio between the mass at a given redshift and the mass at redshift zero (so

that the significant correlation of the mass at a given redshift and its mass at z = 0

is removed). We will denote these variables as (Mz/M0)′ and they are defined as:

(Mz/M0)′ = log10

(
M c

200(z)
M c

200(z = 0)

)
(5.22)

We then use Eq. 5.3 to standardise the units and form Mz/M0.

An alternative approach to characterise halo evolution is the formation time (Lacey

and Cole, 1994), defined as the time at which a halo has assembled half of its present

day mass. We generalise this idea to define five formation criteria (FC′) by finding

the redshifts (instead of times) at which the DM halo has assembled 20%, 30%,

50%, 70% and 90% of its mass respectively. The set of all five formation criteria for

our sample will be referred to as FC′
p, where p denotes the percentage used. Fig. 5.4

shows a set of horizontal blue lines corresponding to halo mass ratios (Eq. 5.22)

of 90%, 70%, 50%, 30% and 20%. The redshifts at which each formation history

curve (black solid line) intersects this blue horizontal lines is a visual representation

of FC′
p. The redshifts that correspond to a given formation criteria are found by

performing a linear interpolation of the halo mass ratios. As with all parameters,

a final step is to standardise the units using Eq. 5.3 and to form FCp.

5.3.4 Specific angular momentum

There is a well known observational scaling relation between the angular mo-

mentum of a galaxy and its stellar mass (Fall and Romanowsky, 2013). It is a

matter of discussion, however, how much of a role the angular momentum history

of a dark matter halo plays in determining the specific angular momentum of its

163



5.3.4. Specific angular momentum

1 1.5 2 3 4
1+z

-2

-1.5

-1

-0.5

0

lo
g 1

0
M

C 20
0(

z)
M

C 20
0(

z
=

0)

Halo mass history
Formation Criteria
Redshift

Figure 5.4: Halo mass history of four halos between z = 4 and z = 0 (black lines), as
given by the ratio of the mass at z to its present day value. The vertical red dashed
lines indicate the redshifts used in the analysis (i.e. zin). The (Mz/M0)′ parameters
are given by the intersection of the red and black lines. The blue horizontal lines
correspond to a constant mass ratio of 90%, 70%, 50%, 30% and 20% (from top
to bottom). The formation criterion parameters FC′

p can be visualised as the
intersection between the blue and the black lines.

host galaxy. Zavala et al. (2016) finds strong correlations between both parameters

using the EAGLE simulation. However, Danovich et al. (2015) suggest that the

specific angular momentum of gas and dark matter undergo different formation his-

tories, which would suggest that any correlation between them is a by-product of

a third correlation with other parameters like the mass formation history. Having

this in mind, we will generate candidate models that also include specific angular

momentum input parameters on top of the mass evolution parameters.

Angular momentum evolution is included in our methodology by computing the
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halo specific angular momentum vector, j⃗, defined within a radius R and for each

redshift slice z as:

j⃗(R, z) =
∑
i mi(r⃗i − r⃗c) × (v⃗i − v⃗c)∑

i mi
, (5.23)

where r⃗i and v⃗i are the position and velocity vectors of each particle within a radius

R of the centre of mass, mi is the mass of the particle, and r⃗c, v⃗c are the position

and velocity of the centre of mass of the halo. We will use different values of R in

order to capture the angular momentum evolution of the full halo and of its centre

separately. The values of R that are included in our model are Rc
200, R

c
200
2 and Rc

200
5 ,

which are all functions of redshift.

The specific angular momentum defined in Eq. 5.23 correlates strongly with the

mass of the halo: this is driven by the scaling relations |r⃗| ∝ M1/3 and |v⃗| ∼√
GM
R ∝ M1/3. To avoid strongly correlated variables in our parameter set, we

define the following specific angular momentum parameter:

(S(R, z))′ = log10(|⃗j(R, z)|) − 2
3 log10(M c

200(z)/M⊙), (5.24)

where |⃗j(R, z)| is the norm of j⃗(R, z).

Given that the angular momentum is a vector, we need two types of variables to

describe it: one capturing its magnitude and the other one its direction. Therefore,

we will also include the change in the parameter, Θ’, defined as the cosine of the

angle between the halo specific angular momentum at redshift z w.r.t. the one at

the present time, i.e.:

(Θ(z))′ = j⃗(Rc
200, z) · j⃗(Rc

200, 0)
|⃗j(Rc

200, z)||⃗j(Rc
200, 0)|

. (5.25)

Note that by definition (Θ(z = 0))′ = 1 for all galaxies and hence we only include

(Θ(z > 0)) in our list of variables. As with all other variables we use Eq. 5.3 to

standardise the units and form the scalars S(R, z) and Θ(z). We form the following

library of j⃗ parameters for each halo i at each redshift: Si(Rc
200, z), Si(R

c
200
2 , z),

Si(R
c
200
5 , z) and Θi(z). The evolution of our specific angular momentum parameters
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has significant statistical noise and so it is smoothed across different redshifts using

a Gaussian Kernel.

5.3.5 Models

The four models considered in this work are:

1. Mass ratio: This model includes values of the halo mass at redshift zero,

M0 (Eq. 5.21), and the halo mass ratios, Mz/M0 (Eq. 5.22), that parameterise

the DM halo mass evolution. With 10 different redshift slices, this gives a

total of M = 10 input parameters, resulting in a total of D = 286 functions

to minimise over (Eq. 5.4).

2. Formation criterion: In this model, the DM ratios are replaced by the

formation criterion FCp, defined in Section 5.3.3. This model uses, as para-

meters, 5 values of FCp (with p = [90, 70, 50, 30, 20]) and the halo mass at

redshift zero, M0, resulting in M = 6 and D = 84 functions to minimise over.

3. Mass ratio and j⃗: In this model we add the specific angular momentum

parameters j⃗ (and more specifically S(Rc
200, z), S(Rc

200/2, z), S(Rc
200/5, z)

and Θ(z) at each of the ten snapshot considered), to the library of free

parameters of the mass ratio model. The library of functions contains the

linear, quadratic and cubic terms of the Halo mass evolution parameters

Mz/M0. Only the linear terms of the specific angular momentum parameters

are included. To include all the quadratic and cubic terms would result in

D = 23426 functions to minimise over, which at the moment is too com-

putationally expensive for our algorithm. Hence we will only include linear

terms for the specific angular momentum parameters, ending up with a total

of D = 326 functions to minimise over.

4. Formation criterion and j⃗: This model is similar in spirit to model (iii),

but we add the terms of the specific angular momentum parameters, j⃗, to
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the library of free parameters of the formation criterion model instead. As

with model (iii), we consider only the linear terms of the specific angular

momentum parameters, ending up with D = 123 functions to minimise over.

5.4 Running the Algorithm

In this section we present some specific aspects of applying the methodology presen-

ted in Section 5.2 to the data described in Section 5.3. In particular tests of the

consistency of the algorithm are considered: we evaluate the impact of the chosen

ϵ parameter in Section 5.4.2 and discuss the uncertainty of the parameter models

in Section 5.4.3. The model results are presented and discussed in Section 5.5.

5.4.1 Training, holdout and test sets

The data is randomly divided into two, the training set and the holdout set. The

training set contains 85% of the data and is used by the algorithm to build the

model. The remaining 15% constitute the holdout set and is not used until the

model is completed. The final model is applied to the holdout set to test its

accuracy by considering data not used in the building of the model and therefore

is unbiased to over-fitting.

Note that the holdout data set is different from the test sets used for estimating the

optimal value of the hyperparameter λ in the k-fold methodology of Section 5.2.4.

The latter constitutes sets drawn from the training set that are systematically kept

out of the minimisations done while exploring the λ parameter space and are used

to determine λmin. They are part of the methodology for building our model. The

holdout set, on the other hand, is kept out of this methodology completely and is

used to evaluate the final model once it is built.
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5.4.2. Penalty Hyperparameter

5.4.2 Penalty Hyperparameter

This section applies the methodology used for optimizing the hyperparameter λ,

as introduced in Section 5.2.4. It discusses the impact of the assumed value for

the parameter ϵ, used in the penalty function (Eq. 5.10). From Section 5.2.4, the

optimal value of λ, λmin, is determined using a k-fold method with k = 10 folds.

Each fold runs independently and in parallel on different computer nodes. Fig. 5.5

shows the evolution of the RMSE of the mass ratio model (§5.3.5) as function of

the hyperparameter λ. The green and blue dashed lines correspond to the test

and training sets respectively. Each test set (green dashed lines) has around 800

points, which is around 10% of our training data set, and the minimisation runs

with D = 286 free parameters. The green dashed lines show some spread in their

amplitudes, which are correlated with their value at λ = 0. This spread is a

consequence of dividing the subsets randomly. Some subsets will contain a larger

amount of points that are well predicted by the model and will, therefore, have

smaller errors.

As we saw with Fig. 5.2, the RMSE of the training set is smaller when λ ∼ 0 as

overfitting makes the model agree unreasonably well with the data it uses for the

fitting. In contrast when the model is tested on data it has not seen before, the

RMSE is larger, as shown by the comparatively larger error on the test set. As λ

increases, the error on each test set decreases and eventually, reaches a minimum

(RMSEk) around λ ∼ 100, as shown by the black dots in Fig. 5.5. This is where

the model is least susceptible to overfitting, while still capturing the important

features of the data set.

The red dots in Fig. 5.5 show the correction obtained with the one-standard-error

rule from Eq. 5.18. The plot shows that these points are to the right of the minimum

value of the green dashed lines, however the differences in RMSE between the

actual minima and the red dots are small. This means that the resulting models

are simpler (and therefore more explainable) and with comparable accuracy. The

168



5.4.2. Penalty Hyperparameter
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Figure 5.5: Evolution of the RMSE (Eq. 5.17) of the mass ratio model (§5.3.5)
as a function of hyperparameter λ for our nominal EAGLE data set (Section 5.3).
The blue and green dashed lines represent the training and test sets respectively.
The solid lines represent the median of these curves. The black dots show the
minimum of the dashed lines (RMSEk) and the red dots the one-standard-error
rule correction from Eq. 5.18. The red solid line corresponds to the mean λ of the
red dots and is our estimate of λmin.

red solid line is the optimised value of the hyperparameter, λmin, as estimated using

Eq. 5.18.

Fig. 5.6 shows the evolution of the coefficients Ci of Eq. 5.5 of the mass ratio

model (§5.3.5) as a function of the hyperparameter λ. The vertical black dotted

line shows the value of λmin found by our algorithm. Each coloured line corresponds

to a coefficient that is above the cutoff value ν at λmin, with ν represented as the

boundary between the white and grey regions of the plot. The grey dashed lines

correspond to the coefficients that are below ν at λmin and therefore discarded.
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Figure 5.6: Evolution of the best fit value of each coefficient of the mass ratio model
as a function of the hyperparameter λ. The coloured lines show the values of the
accepted coefficients and the black dashed lines represent the rejected coefficients.
The vertical dotted black line shows the value of λmin and the grey shaded area
represents the region bellow the cutoff value ν: all coefficients above the shaded
region at λmin are retained by the model and represented by coloured lines.

The figure shows that coefficients that have been discarded have a value of around

0.0005 or lower (shown by the average value of the black dashed lines at large values

of λ), given that our cutoff value is 0.001 there is a distinct separation between the

chosen coefficients and those discarded.

Different Ci coefficients are fitted by the minimiser with different orders of mag-

nitude∗. Therefore we need to make sure that the value of the parameter ϵ of the

penalty term (Eq. 5.10), which determines how close to zero unnecessary paramet-
∗As our input variables are not Gaussian, several parameter values are above one standard de-

viation. In a standardised space this will mean that they will be larger than one. As a consequence
linear, quadratic and cubic coefficients will require different scales to make similar contributions.
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5.4.2. Penalty Hyperparameter

ers get in the minimisation, is such that discarded coefficients are well below the

cutoff value ν, and are close enough to zero that they can be separated from useful

coefficients.

Nominally we use a value of ϵ = 10−3, which, as shown in Fig. 5.6, corresponds to

the minimiser setting unused parameters to a value as small as ≈ 6 × 10−4. This is

comparable to the findings of the example presented in Section 5.2.5. A very small

value of ϵ increases the computational time significantly given that parameters need

to be driven further toward zero. Our choice represents a value of ϵ that is small

enough to get parameters close enough to zero while not being so small that the

code becomes too expensive to run.

To test what impact the value chosen for ϵ has, we consider the formation criterion

model (§5.3.5). This model has less free parameters than the mass ratio model

(D = 84 versus D = 286) and hence requires significantly less computational time,

enabling an adequate ϵ parameter space to be explored. Fig. 5.7 shows the resulting

coefficients after running our full algorithm using five different values of ϵ using the

formation criterion model. The coloured lines show the parameters that are above

the cutoff value ν in the model built with ϵ = 10−3 (our standard value) and

represent the variables that where chosen by the algorithm. The grey dashed lines

correspond to the values rejected at ϵ = 10−3. The cutoff value ν depends on how

close parameters get to zero and therefore it is a function of ϵ. For the propose of

illustration, we set ν = ϵ.

For larger values of ϵ, there is no clear cut between discarded coefficients and most

of the cubic and quadratic terms end up in our model. On the opposite end at

ϵ = 5×10−4, all accepted coefficients are significantly greater than the cutoff value.

While the difference between useful and useless coefficients is clearer at ϵ = 5×10−4,

our standard configuration with ϵ = 10−3 seems to work just as well while being

significantly faster to run.
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Figure 5.7: Best fit coefficients for the formation criterion model for five different
values of the ϵ parameter (Eq. 5.2.3). This parameter determines how close to zero
coefficients get before their contribution to the penalty is negligible. The cutoff
value ν is set as ν = ϵ for each run. The black dotted line shows the value of ϵ used
in our standard configuration. When ϵ is large, all coefficients are above the cutoff
value ν. For ϵ = 5 × 10−4, all kept coefficients are significantly larger than 10−3,
indicating the adequacy of our nominal choice for ϵ.

5.4.3 Uncertainty on the models

Several of our coefficients Ci are associated with functions of the same form but

with inputs from different redshifts (see Section 5.3.3). If the halo mass does not

vary significantly between adjacent redshift slices, then the corresponding polyno-

mial functions fi(x) are likely to show some correlation between them. In general

different order combinations of correlated terms will also be correlated. Consider-

ing the above statements, it is possible that the parameter space of Ci coefficients
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5.4.3. Uncertainty on the models

has several local minima. This could be an issue for gradient descent algorithms,

as by construction they will converge only toward the closest minimum. In prac-

tice we are satisfied with any reasonable minimum: for example, we do not have a

preference between a feature being explained by the halo mass ratio at one specific

redshift versus that of an adjacent redshift slice.

This, however, means that there might be slight variations in the surviving para-

meters of different models depending on the starting point of the minimisation and

depending on the specific selection of the training set. We test for both aspects in

turn.

To test how strong an effect the initial starting point is, we perform five different

minimisations of the formation criterion model using 5 distinct starting points in

the minimisation algorithm. We set λmin = 932, which is the optimised value

found by running our methodology with our standard configuration. The initial

point in the parameter space Ci is varied to random values between the five runs

and is the only feature that is different between runs. Fig. 5.8 shows the best fit

Ci coefficients obtained using 5 different sets of initial positions. All models have

an equivalent accuracy with a RMSE within the range 0.249 ± 0.001. Three out

of the five models use 19 parameters and the remaining two use 18. All resulting

models have equivalent accuracy and simplicity and we can not select one as being

significantly better than the rest.

We can tell that the most significant coefficients (i.e. those with a larger Ci) are

kept constant amongst all runs, similarly there is a large subset of coefficients that

are not necessary in any of the models. However, there is a subset of parameters

that are interchangeable between different models. An example of this is shown

by the green and blue circles, which correspond to the coefficients associated with

M0 × FC30 and M0 × FC20 functions in runs 3 and 4 respectively. Both runs are

very similar in almost every parameter, except that run 3 gives a very important

role to the M0 × FC30 function and almost discards the M0 × FC20 function, while

run 4 does the opposite. This indicates that both parameters are correlated with
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Figure 5.8: Best fit absolute values of coefficients Ci for the formation criterion
model using 5 different initial positions. The lines connect coefficients that survived
in at least one model, with the right hand key indicating which function they refer
to. The colour coding of the lines is only there to help to differentiate between them.
Blue and green circles correspond to the coefficients associated with M0 × FC30
and M0 × FC20 functions in runs 3 and 4 respectively. They are highlighted as an
example of correlated variables associated with different local minima. The grey
area represents the cutoff value ν.

each other and that our methodology can choose one or the other and still come

up with equivalent solutions.

To test the variance of our methodology, we make six independent runs of the

formation criterion model, varying only the holdout set, the data that is kept

outside of the model fitting process. One of the holdout sets is our standard holdout,

used throughout the paper. The other five correspond to five independent subsets

of the training set with the same amount of points that the standard holdout set:

the six independent holdouts considered have each 15% of the whole data set. The

RMSE of the 6 resulting models are [0.167, 0.170, 0.169, 0.162, 0.162, 0.167] and

they have [16, 14, 15, 15, 18, 17] surviving coefficients each respectively. Therefore
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all six models have similar accuracy and comparable simplicity. Fig. 5.9 shows the

variations in the resulting Ci coefficients that survived in at least one of the six

models. Solid line are used for the eleven coefficients that survived in all of six runs.

This means that on average two thirds of all coefficients are the same irrespective

of the specific holdout data set used. We note that the numerical values of those

eleven coefficients are often of similar amplitude in all runs. Of the remaining

coefficients, two are present in five of six models and a further two in four of six.

Hence there are 15 coefficients present in nearly all six models, indicating how

robust our algorithm is to changes in the holdout set used. We note that some of

the other coefficients found in some runs are likely correlated with those ones and

are sometimes present but discarded in at least half of the runs.

5.5 Results

We now present the results of our four models defined in Section 5.3.5, i.e.: (i) Mass

ratio, (ii) Formation criterion, (iii) Mass ratio and j⃗ and (iv) Formation criterion

and j⃗. The specific surviving coefficients Ci selected by each of the models are

presented in Table 5.1, where coefficients are reported in standardised space. They

can not be used directly to model the actual data, which needs to be transformed

using Eq. 5.3. The standardised space is defined by the mean and the standard

deviation of the logarithm of the stellar mass of galaxies and of the dependent

variables z⃗′
i, which are shown in 5.2.

A striking feature of models (iii) and (iv), the two models with j⃗, is that the al-

gorithm does not select any specific angular momentum parameters in either of

them. In fact the selected parameters of model (ii) and (iv) are almost identical.

While there are some small differences between the coefficients chosen in models (i)

and (iii), namely model (iii) selects two extra parameters, and the values of some of

the common parameters are slightly different, these difference are consistent with

the variance of the methodology reported in Section 5.4.3. This indicates that the
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Figure 5.9: Best fit absolute values of the coefficients Ci for the formation criterion
model using six different holdouts, with the right most one corresponding to the
standard holdout set used throughout this paper. The lines connect coefficients
that survived in at least one model, with the right hand key indicating which
function they refer to. The line style indicates how often a given coefficient was
kept by the best fit model (as indicated by the key). The colour coding of the lines
is only there to help to differentiate between them. Each run uses %15 of the data
as holdout set, each of which are disjoint from each other. The resulting models,
which have similar accuracy (RMSE=0.166 ± 0.004), select a somewhat different
subsets of surviving coefficients Ci, with the most important ones remaining the
same and the less important ones often exchanged for comparable ones. See text
for further discussion.
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contribution to the accuracy of the model after including the angular momentum

parameters is negligible: the sparse regression method found that no angular mo-

mentum parameters contributed additional information necessary to describe the

SMHM relation that was not already provided using the rest of the parameters.

This suggests that any correlation between the specific angular momentum history

of a galaxy and that of its host halo should be the consequence of a correlation

between the mass and specific angular momentum formation histories of host halos.

Fig. 5.10 shows the predicted values of the stellar mass for all galaxies in the

holdout set for three models (omitting model (iv) as it is so similar to model (ii))

compared to their real values in the EAGLE simulation. The closer a point is to

the one-to-one line (black dashed line), the better the model predicted its value.

We also include the RMSE of each model, as given by Eq. 5.17.

A different estimate of the goodness of a fit is the R2 statistic, which determines

the amount of the variation in y⃗ that can be explained by a model∗:

R2 = 1 − RMSE2

σ2
y

, (5.26)

where σy is the standard deviation of y⃗. The usefulness of the R2 comes from being

intuitive to interpret: the closer to one the R2 of a model is, the more accurate it

is.

Both the RMSE and R2 statistics show that the three models have very similar

accuracy. The formation criterion model is slightly simpler than both mass ratio

models, as the former has 17 free parameters, compared with 20 and 22 from the

two mass ratio models. This suggests that the formation criteria parameters, FCi,

are slightly more efficient at summarising the halo mass information than the mass

ratio parameters, (Mz/M0).
∗R2 estimators should be considered with caution as they are easily biased by inaccurate

estimations of σyα and can have deceivingly small (or large) values. They should be used as
reference only. We also include RMSE errors as goodness of fit estimators, which are far more
robust.
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Figure 5.10: Comparison between the stellar mass predicted by the models and
its actual value in the EAGLE simulation for all galaxies in the holdout set. The
top left, top right and bottom panels correspond to the mass ratio, the formation
criterion, and the mass ratio and j⃗ models respectively (as indicated in the header
of each panel). The closer each point is to the one-to-one relation (black dashed
lines), the more accurate the model prediction is. The value of the RMSE and
the R2 statistic are included for each model. In general the three models have
equivalent accuracy. As the formation criterion and j⃗ model is virtually identical
to the formation criterion model (see Table 5.1 for parameter values), we included
only the latter one.
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5.5.1. Comparison with simpler models

log10 M∗/M⊙ M ′
0 FC′

20 FC′
30 FC′

50 FC′
70 FC′

90
µ 9.460 11.59 2.748 2.181 1.419 0.8794 0.3949
σ 0.6764 0.4723 0.7834 0.7389 0.5731 0.4125 0.2581

(M0.18/M0)′ (M0.37/M0)′ (M0.62/M0)′ (M1.0/M0)′ (M1.26/M0)′

µ -0.03263 -0.06793 -0.1233 -0.2254 -0.2973
σ 0.06933 0.09271 0.1147 0.1461 0.1660

(M1.74/M0)′ (M2.48/M0)′ (M3.02/M0)′ (M3.98/M0)′

µ -0.4352 -0.6548 -0.8086 -1.070
σ 0.2008 0.2468 0.2760 0.3254

Table 5.2: Normalisation parameters used for the stellar mass and the DM halo
variables defined in section 5.3.3 and considered by our models. The µ and σ rows
correspond to the mean and standard deviation of the variables respectively and
are used in Eq. 5.3 to standardise the units of the variables considered.

5.5.1 Comparison with simpler models

While the LASSO approach uses only a fraction of the full set of available regres-

sion terms, the models it selects are still relatively complex and include non-linear

combinations of terms characterizing the formation history. In this section, we

compare our results to simpler models. Specifically, we compare the formation

criterion model from the last section with the following two models:

• The first model is a third-order polynomial fit of the SMHM relation. This

model includes the terms 1, M0, M2
0 , and M3

0 . We label this model as M3
0 ,

with all four coefficients selected by our LASSO method∗.

• Our second model is similar to the one presented in Equation (9) of Matthee

et al. (2016). We include all terms of M0 up to the third order and all linear

terms of FC50. More specifically, the eight possible terms are 1, M0, M2
0 ,

M3
0 , FC50, M0 × FC50, M2

0 × FC50, and M3
0 × FC50. We did not use the

model presented in Matthee et al. (2016) directly because of small differences

in the calibration redshift and in the methodology used for selecting and

processing the EAGLE data sets. We label this model as (M3
0 & FC50),

∗The coefficients are C(1) = 0.179, C(M0) = 1.16, C(M2
0 ) = −0.205, C(M3

0 ) = 0.0152, when
quoted in the standardised space.
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Figure 5.11: Comparison of the accuracy of the models discussed in Section 5.5.1,
as traced by the δ error (also defined in §5.5.1) as a function of the present day
halo mass. Dashed and solid lines correspond to the 68th and 95th percentiles of
the absolute value of error distribution.

with six coefficients selected by our LASSO method∗. We have tested the

prediction of this model against the predictions of Matthee et al. (2016) †

and find that the models are comparable.

As the models grow in complexity, their prediction of the stellar mass becomes more

accurate, a way of quantifying this is by looking at the RMSE of our data set. The

M3
0 model has a RMSE of 0.225 when estimated with stellar mass units‡. We

obtain very similar results looking both at the holdout set and the whole dataset.
∗The coefficient are C(1) = 0.156, C(M0) = 1.22, C( FC50) = 0.199, C(M2

0 ) = −0.169,
C(M0 × FC50) = −0.274, C(M3

0 × FC50) = −0.00402, in standardised space. The remaining
terms were discarded by our LASSO methodology.

†Following a discussion with the authors, we identified an issue with the model in the way
it was reported in the paper. The corrected model description is log10(M∗) = α − eβ MD

0 +γ −
(a F C50 + b) where MD

0 = M0 − 12, a = 0.15048 + 0.21517 MD
0 + 0.06412 (MD

0 )2 − 0.07217 (MD
0 )3,

b = 0.20632 − 0.43077 MD
0 + 0.25277 (MD

0 )2 + 0.34500 (MD
0 )3 and α, β and γ are constants which

values are given in Table 2 of Matthee et al. (2016)
‡In this sub-section, the RMSE is expressed in natural units, i.e. the logarithm of the stellar

mass. This results in RMSE values which are more natural to understand, as here an RMSE of
0.2 implies that the mean error is 0.2 log10(M∗/M⊙). We note that the RMSE depend on the
parametrisation, which throughout the rest of this work is the one defined using standardised units
(see Eq. 5.17).
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5.5.1. Comparison with simpler models

For the M3
0 & FC50 model, the stellar mass RMSE drops to 0.181, while it is 0.166

for the formation criterion model. Assuming that contributions from the different

terms can be added in quadrature, this shows that 32% of the variance of the M3
0

model is explained by including linear terms in FC50, while the more complex

model selected by the LASSO process explains a further 10% of the variance, a

modest but significant improvement. This suggests that the biggest improvement

on the SMHM residuals (modelled by M3
0 ) comes from the linear terms of FC50,

the higher-order terms of FC50 and the terms corresponding to other formation

criteria make a smaller but significant correction to the predicted stellar mass.

To explore the improvement of the model further, we define for each galaxy the

error of a model as the difference between the actual stellar mass and the predicted

one, or more precisely:

δ = log10

(
M∗

M∗
p (C⃗, X’)

)
(5.27)

where M∗
p corresponds to the model predicted stellar mass of a galaxy of stellar

mass M∗. Fig. 5.11 shows the 68th and 95th percentile ranges of | δ | as a function

of halo mass for the reference formation criterion model (blue lines), and the M3
0

& FC50 and M3
0 models (purple and red lines respectively). The plot shows that

the differences between the three models are most significant at small halo masses,

while at halo masses larger than ∼ 1012.5M⊙, all models are comparable. This

suggests that galaxies in smaller halos are more readily explained by evolutionary

effects (correlated with FCp parameters), while the scatter in larger galaxies is

perhaps more strongly influenced by stochastic baryonic processes, such as black

hole accretion, that cannot be modelled using the halo mass history alone. This is in

agreement with Matthee et al. (2016) that found no correlation between the scatter

of the SMHM relation and formation time for halo masses larger than ∼ 1012.5M⊙.

Rather than restricting, by hand, the choice of functions to terms that are linear

in FC50, we can of course ask the LASSO methodology to simplify the formation

criterion model, trading off an increase in variance for a reduction in complexity.

It should be remembered, however, that this model will not provide optimal pre-
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dictions for the stellar mass in a RMSE sense. We shift the balance to reduce

complexity by increasing the penalty parameter λ of Eq. 5.6. As can be seen in

Fig. 5.5, using a penalty λ three times larger than the one selected by the LASSO

algorithm generates a model that is comparable to model M3
0 & FC50 in terms

of the RMSE and number of surviving terms. The terms retained by the model

are: 1, M0, FC50, FC70, FC90, FC3
20, FC3

30, FC3
50, with coefficients 0.0538,

1.13, 0.0315, 0.0534, 0.0242, 0.00590, 0.0104, 0.0108 respectively. Interestingly this

model prefers to characterise the formation histories of the halos more precisely

rather than to mix terms depending on halo mass and formation time.

5.5.2 Interpretation

The goal of this work is to make a model that is accurate and also explainable.

With this in mind, we now try to give a physical interpretation to some of the

terms kept in our model.

By looking at Table 5.1, we conclude that in general surviving parameters in all

models can be divided into four different groups:

1. Terms forming a third order polynomial of M0. Namely the terms 1, M0,

M2
0 , M3

0 .

2. Terms forming third order polynomials of the other dependent variables that

are correlated with the mass at z > 0. Namely, terms of the form Mz/M0,

(Mz/M0)2 and (Mz/M0)3 for the mass ratio models with and without j⃗, and

terms of the form FCp, FC2
p and FC3

p for the formation criterion models with

and without j⃗.

3. Terms corresponding to the product of M0 and either Mz/M0 for the mass

ratio models (i) and (iii) or FCp for the formation criterion models (ii) and

(iv).
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5.5.2. Interpretation

4. Other terms corresponding to higher order combinations of crossed terms,

which are more challenging to provide a physical interpretation of.

The terms in group (1) correspond to a direct modelling of the SMHM relation.

Let us call P 3(z = 0) the polynomial built with the terms in group (1) and their

associated coefficients, Ci
1:

P 3(z = 0) = C0
1 + C1

1M0 + C2
1M2

0 + C3
1M3

0 (5.28)

In order to compare our model stellar mass predictions with the EAGLE stellar

masses, we transform our model from the standardised units to stellar mass units:

P ′3(z = 0) = P 3(z = 0) σ(log10(M∗)) + µ(log10(M∗)) (5.29)

where the stellar mass, M∗, is expressed in M⊙, µ and σ are the mean and standard

deviation operators considered in Eq. 5.3 already.

P ′3(z = 0) computed for the formation criterion model is shown as the black

dashed curve of the left panel of Fig. 5.12. The figure shows that P ′3(z = 0)

provides already a good model of the SMHM relation; however, there is some

scatter around it that the model does not account for. We define the residual

between each galaxy and the model prediction given by P ′3(z = 0) as δ′:

δ′ = log10(M∗/M⊙) − P ′3(z = 0). (5.30)

Galaxies in Fig. 5.12 are divided into four δ′ bins. The yellow bin, which is the

bin with the largest δ′ values, correspond to galaxies for which their stellar masses

are the most under-predicted by P ′3(z = 0), while the blue bin contains those with

the most over predicted stellar masses. The right panel of in Fig. 5.12 shows the

average mass of halos in each of the four bins as a function of redshift. On average

galaxies in the yellow bin live inside host halos that attained their final mass early

in their evolution when the characteristic density was higher. The deeper potential

well of these halos allows the creation of massive galaxies. In contrast, the galaxies

in the most over-predicted δ′ bin (blue) live inside host halos that only achieved
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their final mass very recently and therefore had a lower characteristic density for a

considerable period of time, compared to halos of the same mass in larger δ′ bins.

This implies that there is a correlation between δ′ and the mass formation history

and explains why coefficients in group (2) were selected by our model.

This conclusion is in agreement with Zentner et al. (2014), where formation time

is used to model assembly bias, and with Matthee et al. (2016) where formation

time is found to be the most correlated parameter with δ′. We emphasise that we

arrive at this conclusion by using a completely different approach, that does not

require any prior knowledge of the underlying physics correlating stellar mass with

halo mass and formation time.

A novel result from our model is that all terms of FCp with p = [20, 30, 50, 70, 90]

are needed in the final fit. This suggests that formation time alone is not enough

for our model to remove the correlation with δ′, but actually tracking the different

formation times at which different percentages of the final halo mass were assembled

leads to more accurate models.

Our model suggests that the assembly history dependence is itself a function of the

final halo mass. In order to explore this, we write the polynomial fits to each of

the FCp terms from (2), and their associated coefficients, Ci
p:

P 3(p) = C0
p + C1

pFCp + C2
pFC2

p + C3
pFC3

p (5.31)

where p = [20, 30, 50, 70, 90]. We define the residual δp as the leftover residual once

we have removed contributions from all terms from groups (1) and (2), i.e.:

δp = y − P 3(z = 0) −
∑
p

P 3(p) (5.32)

where p = [20, 30, 50, 70, 90]. We note that δp is defined in standardised space,

with positive δp corresponding to a model underprediction and negative δp a model

overprediction.

Fig. 5.13 shows where galaxies are in the FC50 vs δp plane, where FC50 (in stand-

ardised units) corresponds to the redshift when 50% of the mass of a halo has
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Figure 5.12: Left panel: The stellar mass – halo mass relation for galaxies in our
holdout set. The black dashed line shows the polynomial P ′3(z = 0) from Eq. 5.29
for the formation criterion model. This line describes the trend well but there is
some scatter around it. The colour coding split the galaxy sample by their residual
δ′ from Eq. 5.30 into four bins, with the δ′ range indicated by the key. Right
panel: Evolution of the halo mass for each residual δ′ bin, as defined in the left
panel, as function of redshift. The solid lines represent the mean of the logarithm
of the halo mass ratios of Eq. 5.22 for all galaxies in each δ′ bin, with the same
colour scheme as in the left panel. The shaded contours indicate the corresponding
standard deviation on the mean. Galaxies with the more negative δ′ residuals reside
in halos that recently assembled their final halo mass, while galaxies with the more
positive δ′ residuals reside in halos that primarily assembled their halo mass at an
earlier stage of their evolution.

been formed. The blue and red solid lines show the average δp for very massive

and very small halos respectively. When FC50 is negative (i.e. smaller redshifts

than the average, i.e. at later times), galaxies living in massive host halos tend to

be overpredicted by the model (as shown by the blue line being above zero) and

galaxies living in small halos tend to be underpredicted (as shown by the red line

being below zero). This shows why terms of the form FCp × M0, corresponding

to coefficients in group (3) improve our model. The fact that the model selec-

ted terms of the form FCp × M0 suggests that it is not enough to model a linear

relationship between stellar mass and formation time (or in our case formation

criteria), but that this relation needs to be corrected by a factor that is dependent

on the final halo mass. Assembly bias suggests that the stellar mass of galaxies
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Figure 5.13: Relation between FC50 and the residual δp of Eq. 5.32 for all galaxies in
our holdout set. FC50, which is in standardised units, maps to the redshift at which
a halo acquired half of its mass. The galaxies are colour coded by M0 (Eq. 5.21).
The blue solid line shows the mean residual, µ(δp), for galaxies in very massive
halos, i.e. halos where M0 > 2. Those halos are more that 2 standard deviations
more massive than the mean. The red solid lines shows the mean residual, µ(δp),
for galaxies living in halos with very low mass (M0 < 0.8). The blue and red lines
have slopes of opposite sign, which is reflected in the presence of terms from group
(3) in the solution (see Section 5.5.2). The plot shows that the strength of assembly
bias is correlated with the final halo mass.

depends on formation history, our model also suggests that this dependency is in

turn dependent on the final halo mass.

5.5.3 Stellar mass distribution and galaxy clustering of centrals

We have shown the models capability to reproduce the stellar mass of individual

galaxies from the EAGLE simulation. We now discuss our models accuracy at

reproducing other statistics from EAGLE such as the distribution of galaxy masses

through the stellar mass function (SMF), and the clustering of the galaxies via

2-point correlation functions.

We consider the six realisations of the formation criterion model presented in
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5.5.3. Stellar mass distribution and galaxy clustering of centrals

Fig. 5.9 as a way of providing some uncertainty on the best fit model predictions.

Throughout this section any model comparison with EAGLE relates to comparis-

ons with central galaxies in EAGLE, as our model only make predictions for such

galaxies.

Furlong et al. (2015) shows that the SMF of the EAGLE hydrodynamical simulation

at redshift zero agrees reasonably well with the one observed from SDSS (Li and

White, 2009) and GAMA (Baldry et al., 2012). The red dashed line of Fig. 5.14

shows the central galaxy stellar mass function obtained from the stellar masses

in our EAGLE data set. The red shaded region is an estimate of the error due

to Poisson noise within the EAGLE sample and is computed with the bootstrap

method (Efron, 1979).

The blue lines in Fig. 5.14 are the SMFs computed using the stellar masses pre-

dicted by each of our models. The predictions are so similar that it is difficult

to differentiate between them, especially in the top panel. The bottom panel of

Fig. 5.14 shows that the model SMFs are within 12% of the input EAGLE SMF

over most of the mass range. At stellar masses above log10(M∗/M⊙) = 11.0 the

agreement of the models SMF worsens. This is likely due to the relatively small

number of galaxies at this mass range in our sample (90 out of 9521). One of

the many issues of including a comparatively small sample of galaxies is that the

methodology has little incentive to fit them accurately as their contribution to the

goodness of fit estimations is small. One possible way to improve this is to weigh

their contribution more heavily than the one from galaxies in a lower mass ranges,

this possibility will be explored in future iterations of this work. The scatter in the

mass function between different models is smaller than the bootstrap error (shown

as the shaded area), which suggests that the difference between the SMF of EAGLE

and that of our model is not due to random sampling effects. There are notable

deviations at log10(M∗/M⊙) = 9.0 and log10(M∗/M⊙) = 10.5. The disagreement

at log10(M∗/M⊙) = 9.0 is likely to be caused by selection effects, as we include a

cut in halo mass which can have an effect in our model predictions at those lower
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5.5.3. Stellar mass distribution and galaxy clustering of centrals

stellar masses. At log10(M∗/M⊙) = 10.5 the remaining residuals of the model are

systematically larger and asymmetric, with the offset possibly correlated with other

terms not included in our methodology. These parameters could be either other

halo mass properties that we have not characterised, higher-order correlations of

our input parameters, or the stochastic nature of baryonic processes. For example,

feedback from super massive black holes has a highly non-linear effect on the stellar

mass, either by affecting it directly, or through its influence on the baryon density

inside halos (Bower et al., 2017; Martizzi et al., 2012). Whatever the cause, charac-

terizing these asymmetric residuals remains a challenging but important problem.

As a result of the asymmetric scatter, we find that the SMFs predicted by the

simpler models, M3
0 and M3

0 & FC50 from section 5.5.1, have only minor deviations

from those predicted by the full model (the formation criterion model shown in

Fig. 5.14). Although the more complex models predict more accurately the median

stellar mass, all the models assume that the residuals are symmetric around this

value: i.e., while the errors of a more complex model are smaller, they are not

more symmetrical around their mean value. An improved treatment will have to

characterise the spread of points as well as predicting a median of the relation.

The EAGLE hydrodynamical simulation has been shown to accurately reproduce

the observed two point correlation function of galaxies from 1h−1Mpc and up to

6h−1Mpc (Artale et al., 2017). In order to test how well our model reproduces

the correlation function of EAGLE galaxies, we divide the galaxies in each of our

models into four stellar mass bins. We then compute the two point correlation

function of galaxies in each mass bin. This is done by assigning to each model

galaxy the same co-moving coordinates as that of the centre of its host halo.

Fig. 5.15 shows how the correlation functions of our models split by predicted model

stellar mass compares with those obtained from the EAGLE simulation, split by

the actual galaxy stellar mass. Each colour corresponds to a different mass bin,

with each of our six models and for each stellar mass bin shown as solid faint lines.

As with Fig. 5.14, the shaded areas show the bootstrap error estimate on the actual
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Figure 5.14: Top panel: the SMF of EAGLE galaxies used in this analysis (i.e.
centrals) is shown in red. The SMF predicted by the six models built with our
methodology is shown in blue. The red shaded area show the bootstrap errors on
the SMF. For comparison, the SMF of all EAGLE galaxies is shown in black: this
sample includes both centrals and satellites and does not include any halo mass
cut. Bottom panel: the ratio of predicted to actual SMFs, indicating that our
models result in SMF estimates which are within 12% of the input data on the
stellar mass scales where the input data have good statistics.
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EAGLE clustering. The bootstrap method is done on a galaxy basis, which is still

adequate in this case as we are not trying to quantify the impact of sample (or

cosmic) variance: the models use the same set of DM halos as the EAGLE data,

with only the stellar mass of their host galaxies possibly differing. The correlations

functions from each of our six models and for each stellar mass bin are shown as

solid faint lines. Fig. 5.15 shows that our correlation functions agree within errors

with the ones from EAGLE, which suggests that our models assign galaxy masses

in a way that is sufficiently accurate to reproduce the stellar mass clustering of

central galaxies up to 10h−1Mpc. It is also noticeable that the scatter on the

correlation functions from our methodology is smaller that the one from bootstrap

errors. Hence to be able to differentiate between the models a significantly larger

simulation volume would be needed.

Hydrodynamical N-body simulations that model both the dark matter and the

baryonic component of the universe are computationally expensive. This limits

the volumes in which they can be computed to a few (100Mpc)3. Our models are

informed by the physical processes relating the stellar mass of a galaxy and its

host DM halo. Therefore, by populating DM-only simulations in larger volumes,

our models could provide new tests of the hydrodynamical physics on larger scales

than the ones permitted by direct comparisons with hydrodynamical simulations.

The fact that we can reproduce accurately with our models both the stellar mass

and the correlation functions of EAGLE, suggests that this approach is promising

for populating DM only simulations.

5.6 Discussion and Conclusions

There is a well-known correlation between the stellar mass of a galaxy and the dark

matter of its host halo (SMHM relation). However, this relation has significant

scatter, which suggests that other properties are significant at determining the

stellar mass of a halo. The halo mass evolution history and the specific angular
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Figure 5.15: Top panel: correlation functions of EAGLE galaxies split into four
stellar mass bins (coloured dashed lines as per key) compared to the clustering
computed with our 6 models (i.e. 6 thin solid lines for each stellar mass bin).
Bootstrap errors are shown on the EAGLE correlation functions. Bottom panel:
the ratio of the predicted to the actual galaxy clustering for each stellar mass
bin (same colour coding as in the upper panel). This indicates that our models
result in galaxy clustering estimates split by stellar mass that agree well within the
bootstrap errors with the actual clustering of EAGLE galaxies.

momentum have both been proposed to be correlated with this residuals.

We use a sparse regression methodology to model the governing equations relating

the stellar mass of central galaxies to the properties of their host dark matter halos.

This method builds accurate and explainable models without needing much phys-

ical knowledge of the processes that determine the stellar mass of a galaxy from

the halo properties of its host. In sparse regression methods, the lack of physical

knowledge is substituted by large numbers of free parameters, where each para-

meter models different behaviours of the dark matter halo properties. A LASSO

algorithm is used to optimise solutions. This method heavily penalises the num-

ber of surviving parameters so that as few as possible are selected without losing

accuracy. Here we have modified the form of the LASSO algorithm to be more

efficient when combined with a gradient descent minimiser. This is achieved by in-
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cluding a regularisation term that smooths out discontinuities in the gradient that

are present in standard LASSO when parameters are close to zero. This smoothing

is characterised by a parameter ϵ that limits how close to zero coefficients need to

get before being discarded by the algorithm. We also modify the method by which

the minimiser decides which path to follow in such a way that we find performance

gains in large dimensional spaces.

The size of the penalty is determined by the parameter λ, which is optimised using

a k-fold methodology with k = 10. We use the one-standard-error rule to select a

value of λ that is larger than the best-fit and therefore builds a slightly less accurate

model with fewer free parameters and therefore with more explainability.

The data that we use to build our models with comes from the EAGLE simulation.

However, we emphasise that this method should be able to be calibrated against

any simulation with similar results. We use a sample of 9521 central galaxies from

the 100 cMpc box EAGLE suite of hydrodynamical simulations. The dark matter

properties are read from a DM only simulation with the same initial conditions as

our hydrodynamical simulation. The simulations are matched with each other in

such a way that a pair is found for 99% of the DM halos.

We build four different models that differ by the independent parameters chosen

to model the galaxy stellar mass. In the first instance, we consider two distinct

model setups: (i) the mass ratio model uses the ratio between the mass of a halo at

a redshift z and that at z = 0 to parametrise the mass history of the host halo; (ii)

the formation criterion model uses the redshift at which a halo formed a specific

percentage of its mass. For both models we include all linear, quadratic and cubic

correlations of our independent variables as free parameters of the fits. Then we

consider two additional models by extending the two previous models to include

parameters related to the specific angular momentum (⃗j) history of the halos. More

specifically, we consider parameters that characterise both the magnitude and the

direction of the specific angular momentum vector, and vary the radius of the DM

halo over which to measure the magnitude of j⃗. Due to computational restrictions,
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we include only linear terms of the free parameters related to j⃗.

The computational time of our minimisation is correlated with the value of ϵ: a

very large value would result in a very fast computational time, but it would be

hard also to distinguish useful parameters from those that should be discarded. In

Fig. 5.7 we show that a value of ϵ = 1 × 10−3 selects the same coefficients as slower

and more accurate runs without being too computationally expensive. Some input

parameters are correlated with each other, for example, the mass ratio (Mz/M0) at

a given redshift and that at a neighbouring redshift slice. In principle, our answers

could be susceptible to the starting point of the minimiser; however, we show in

Figs. 5.8 that neither the explainability nor the accuracy of the model changes

significantly between runs with different starting points. We show in Fig. 5.9 that

models trained on different subsets of the same data arrive at equivalent models.

Our algorithm did not select any angular momentum parameters for either model

that included specific angular momentum parameters. In fact, all the differences

between these two models and their equivalent ones without angular momentum

parameters are consistent with variations in our methodology. This suggests that

any correlation between the linear terms of the angular momentum of a host halo

and the residual of the SMHM relation is the consequence of correlations between

the mass history of the halo and the history of its angular momentum. Given

that model the formation criterion model is slightly simpler than the mass ratio

model, we conclude that the formation criteria parameters, FCp, are slightly more

efficient at summarizing the halo mass evolution information than the mass ratios

(Mz/M0).

The formation criterion model is more accurate, although more complex, than

models that include only halo mass terms, or models that also include a linear

dependence on a single formation time. The improvement is, however, modest.

Including a single linear formation time explains 32% of the residual variance,

while the full models improves this by a further 10%. If greater simplicity is

required, this can be achieved (at the expense of accuracy) by increasing the penalty

194



5.6. Discussion and Conclusions

hyperparameter, λ. The resulting model prefers to select terms that more closely

characterise the formation history of the halo rather than terms the mix formation

time and halo mass, however.

A subset of our surviving terms can be combined into a polynomial of M0 and is

therefore a model of the SMHM relation. Other subsets of surviving terms can be

combined into polynomials of either FCp or Mz/M0 (depending on the paramet-

risation of the halo mass evolution history) and therefore model the assembly bias.

Terms of the shape M0 × FCp (or M0 × Mz/M0) add a significant correction to

very small or very large halos. Our models suggest that a single formation time

is not enough to model the variation in the SMHM relation, and that a better

approach is to include the times at which different percentages of the mass have

been formed. This is reflected in our model by the similar contribution of terms of

the form FCp for all p in p = [20, 30, 50, 70, 90]. Our model also suggests that the

relation between the stellar mass and the formation times is not the same for all

galaxies, but it depends on the halo mass at z = 0.

We have shown how the stellar mass function (SMF) of our model compares to that

of EAGLE central galaxies. They agree well within the bootstrap errors at most

stellar mass values, except around log10(M∗/M⊙) = 9.0 and log10(M∗/M⊙) = 10.5.

The difference at lower stellar mass could be explained by selection effects given that

our model includes a cut on halo mass that could affect the prediction of the lower

stellar masses. At log10(M∗/M⊙) = 10.5 on the other hand, the differences between

the values predicted by our model and EAGLE are not symmetric around the

mean. This suggests that the remaining residual of our model might be correlated

with variables that have not been explored by our model. This could be either

higher-order correlations of our current variables, DM variables that we have not

considered yet, or the stochastic effects of the baryon physics affecting the stellar

mass of the galaxy. These will be studied in further extensions of the model. We

have also shown that the correlation function of EAGLE galaxies split by stellar

mass is preserved in our models within the quoted bootstrap errors at all scales
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considered.

The fact that we can reproduce both the stellar mass and the correlation function

of EAGLE accurately suggests that this method could be used to populate DM

only simulations in larger volumes in a way that preserves these statistics. Our

models are informed by the physical process that relates the stellar mass of a

galaxy with the evolutionary and present properties of its host DM halo. Therefore

DM only simulations that are populated using our methodology can provide tests

of this physics on volumes where hydrodynamical simulations are prohibitively

expensive to run. So far, however, our method has only been applied to central

galaxies. Satellite galaxies in general have a weaker SMHM relation than halos.

This is a consequence of satellites being subjected to processes like tidal stripping

and heating. These processes modify the mass of subhalos and the galaxies they

contain, meaning that the stellar mass of a satellite halo is different from what one

would expect when comparing it with halos that were not stripped. By adapting

our methodology to account for the more complex evolution of the satellite halo

mass, for example by adding maximum progenitor masses to our list of variables, it

should be possible to model the stellar mass of satellite galaxies as well. However,

running our methodology with satellite galaxies would require to use a larger set of

free parameters and a larger data set, as there are many more satellite galaxies than

central galaxies. Therefore we should explore methods to optimise our minimisation

without losing reliability. One approach could be to use methods like principal

component analysis to transform free parameters into a parameter space where

they are uncorrelated. However, this might transform free parameters into inputs

that are harder to interpret and might reduce the explainability of our results.

These ideas will be explored in the following chapter.
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Chapter 6

A sparse regression approach for

populating dark matter halos and

subhalos with galaxies

6.1 Introduction

Within the Λ-CDM paradigm (e.g. Planck Collaboration et al., 2014), an expanding

universe filled with particles that interact only through gravity can be accurately

modeled using N-body simulations (e.g. Springel et al., 2005). Because of advances

in computational methods, such simulations can track the formation of galaxy-

scale dark matter halos within volumes approaching the size of the observable

universe. However, these simulations do not include the baryonic component that

leads to the formation of stars and galaxies. Hydrodynamical simulations that

include baryons need to deal with complicated cooling and feedback processes and

are strongly influenced by events happening at scales much smaller than the size

of the simulation grid, this makes them significantly more expensive to run and

limits their volume to about 1 Gpc3 (e.g. Springel et al., 2017). There is, therefore,

an incentive for a hybrid approach, in which one uses hydrodynamic simulations to

learn the relation between dark matter and baryonic tracers, and then uses these
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relations to populate N-body mock catalogs on larger volumes.

In chapter 5 we present a novel methodology that uses Sparse Regression Meth-

ods (SRM; Tibshirani, 1996; Hastie et al., 2015) to model the relations between

the stellar mass of a galaxy and its host halo in the Evolution and Assembly of

Galaxies and their Environments (EAGLE, Schaye et al., 2015; Crain et al., 2015;

McAlpine et al., 2016) 100 Mpc hydrodynamical simulation. SRM are a set of ma-

chine learning algorithms designed to identify the parameters that better describe

a dependent variable, then discard the remaining unnecessary ones. Recently they

have been suggested as the appropriate framework to extract the equation of states

of a physical system from collected data and with minimal knowledge of the physics

of the system (Brunton et al., 2016).

In chapter 5 we were interested in developing and testing the methodology in a

simple scenario without going into some of the more complicated challenges that

populating a realistic N-body mock accurately would require. With that in mind,

we tested our methodology on central galaxies (the main galaxy within each dark

matter halo) only as they have monotonic growths with time which makes them

easier to model. In this chapter, we test our methodology including satellite galax-

ies. Satellite galaxies (and their associated dark matter subhalos) are created when

a smaller dark matter halo is accreted by a larger one. This is a common process

in the Λ-CDM model. As they orbit within the larger halo, satellite galaxies (and

their remnant dark matter subhalos) undergo a much more diverse range of physical

processes than their central galaxy counterparts. Unlike the main dark matter halo,

which undergoes monotonic mass growth, the remnants of smaller accreted halos

may decay with time (e.g. Bower and Balogh, 2004; van den Bosch et al., 2018)

as they lose mass due to processes such as tidal stripping and heating (Lynden-

Bell, 1967; Merritt, 1983; Hayashi et al., 2003; Green and van den Bosch, 2019).

Moreover, the satellite galaxies residing inside these remnant halos are subject to

‘environmental’ processes that remove cold gas and suppress the accretion of more

material (Gunn and Gott, 1972; Vollmer et al., 2001; Larson et al., 1980; Bahé
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and McCarthy, 2015; Correa et al., 2019). As a result, star formation in satellite

galaxies is significantly suppressed compared to central galaxies and we expect less

stellar mass growth.

In EAGLE, the differentiation between central halos and subhalos is done by the

SUBFIND algorithm (Springel et al., 2001). Within each sub-halo, the algorithm

identifies the self-bound overdensities and classifies them as independent subhalos.

The subhalo with the lowest potential energy is classified as the central halo and

assigned any diffuse mass that has not already been associated with a sub-halo.

This distinction is made separately at each output time and is not a fundamental

differentiation, but dependent on the details of the algorithm. In some cases, this

leads to anomalous behaviour, in particular inconsistent classifications of the same

subhalo at different redshift slices (e.g. Behroozi et al., 2015). It is, therefore, desir-

able to use a methodology that does not make a fundamental distinction between

central and satellite galaxies when modelling the stellar mass, but rather to use

the same approach based on the overall halo mass history.

In this chapter, we also use a smaller cut in the halo mass of the galaxies host

halos that we used last chapter in our central galaxy sample, reducing it from

M = 1011.1M⊙ to M = 1010.6M⊙. This allows us to identify low mass halos which

contain relatively large galaxies (with stellar masses greater than 109M⊙). This is

a particularly important consideration for satellite galaxies, if we are to generate a

stellar-mass complete catalog.

Other works have used machine learning algorithms to model the relationship

between the halo and stellar properties inside a hydrodynamical simulation (e.g.

Kamdar et al., 2016; Agarwal et al., 2018). Their models accurately reproduce sev-

eral statistics of the original simulation. However, given that these types of models

generate ’black box’ answers it might be complicated to modify them to reproduce

statistics from observations instead. Studies of this sort have also been done on

the EAGLE simulation by Lovell et al. (2021) which uses random forests to learn

the stellar mass properties inside both the EAGLE and C-EAGLE simulations and
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uses them to populate the P-Millennium N-body simulation (Baugh et al., 2019).

Moster et al. (2021) uses a neural network approach that rewards the algorithm for

reproducing observed statistics of a survey (like correlation functions and stellar

mass functions) instead of properties of individual galaxies. This circumvents the

problem of differences in statistics between the hydrodynamical simulation used

to calibrate the model and those from an observational survey, at the cost of not

requiring accuracy in the predictions of the individual values of galaxy properties.

Given that our model is an equation of state with a set of input parameters fitted

by the model, it is in principle possible to extract the best advantages of both

approaches, extracting the important physical parameters by comparison to the

simulation, but optimising the coefficients of these terms to reproduce the statist-

ics of an observational data set.

This chapter is organised as follows. Section 6.2 introduces the data set that we

use and any enhancements to the model that we have made to handle the more

complex data-set. In particular, Section 6.2.1 explains the details of the bijective

match between our hydrodynamical simulation and a EAGLE dark matter (DM)

only simulation. Section 6.2.2 and Section 6.2.3 describe the methodology used

to extract our training data set from the EAGLE DM only simulation as well as

the new parameterisation of the model and the new weighting scheme adopted.

The results from our different models are shown and analysed in Section 6.3. In

particular, we show that a single model can be built to describe both central and

satellite galaxies, avoiding the need to make a distinction beyond quantifying their

halo mass histories. Our conclusions and thoughts on the potential of the current

methodology are discussed in section 6.4.

6.2 Methodology

This chapter considers the same sparse regression method and uses the same simu-

lations as in chapter 5: the EAGLE hydrodynamical and DM only simulations built
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in a 100 comoving Mpc box (section 5.3.1). This section summarizes the small

differences in the method used to generate the models presented in this chapter

compared to that of chapter 5. These differences are made with the objective of

including satellite galaxies and applying a smaller mass cut to the data. Among

these changes we include:

• a new re-run of our matching methodology (see section 6.2.1), which so far

has only been done on central galaxies.

• a re-definition of our dependent variables, so that they can efficiently para-

metrize the growth of subhalos (see section 6.2.2).

• the addition of a new weighting scheme that incentivizes the method to fit

the rare and massive galaxies equally well as the significantly more numerous

and smaller galaxies (see section 6.2.3).

6.2.1 Matching

The goal of this work is to develop a fitting function that allows the mass of a

galaxy to be estimated from knowledge of its DM halo’s formation history only.

Since DM halos in hydrodynamical simulations are affected by baryonic processes

that might alter their density profile (Schaller et al., 2015; Martizzi et al., 2012;

Navarro et al., 1996), or other properties like the shape of the halo (Katz and Gunn,

1991; Bryan et al., 2013), it is important that we match the halos in the hydro-

dynamical simulation with the same halos in a dark matter only simulation (with

the identical cosmology and initial conditions). By making a one-to-one matching

between the DM-only simulation and the hydrodynamical one, the properties of the

DM-only simulations can be used as the input variables of the model (the column

vectors z⃗′
i of section 5.2.1) while the stellar mass is measured in the full-physics

hydrodynamical simulation. The matching is done by following the procedure of

Schaller et al. (2015). To summarise, we look at the 50 most bound DM particles
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of each halo or subhalo in the hydrodynamical simulation: if a halo or subhalo

of the DM-only simulation contains at least half of these particles, then they are

matched. The matching is done for all halos above Mtotal > 2×109 and both halos

need to be above this value to be matched, where Mtotal is the summed mass of all

particles assigned to the halo or subhalo.

6.2.2 Halo Selection and Input Parameterisation

We begin our selection of halos by tracing the evolution of the halo mass at 19

redshift slices between z = 0 and z = 4. This initial selection is based on Mtotal(z),

the total mass of the particles associated to the halo or sub-halo by the SUBFIND

algorithm. These trajectories summarise the evolution of the galaxy’s host halo

mass as a function of redshift and give us a relation between halo mass and time

for each galaxy. In order to ensure that the trajectory is not overly affected by the

algorithm used in the selection process, we use a Gaussian kernel with a σ of one

redshift slice to smooth this evolution history. Since halo masses can increase as

well as decrease (for satellite galaxies in particular), we base our halo selection on

the maximum value of Mtotal(z) in the smoothed trajectory. The success rate of the

matching is dependent on the halo mass, with more massive halos being more likely

to be matched. We found that Max(Mtotal(z)) = 1010.66M⊙, corresponds to the

threshold at which more than 95 per cent of halos are successfully matched, and we

define this threshold as the cutout value of our sample. In order to avoid missing

data, we discard all galaxies that do not have a well-defined main progenitor at

all redshift slices up to z = 4. For Max(Mtotal(z)) > 1010.66M⊙, this cut is

unimportant and we keep 99.6 per cent of all galaxies. Our final sample consists

of a total of 34,654 galaxies, of which 9,967 live inside subhalos, and 25,492 inside

central halos∗.
∗Note that satellite galaxies are generally smaller than centrals. The halo mass cut used in this

work discards disproportionately more satellite halos than centrals and the final sample contains
a larger amount of central galaxies.
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Figure 6.1: Distribution of the halos (blue dots) and subhalos (red dots) in our
sample in the Mmax-M∗ space, where Mmax is the largest halo mass the halos main
progenitors reached. The solid lines show the median value of the distributions.
The plot shows that at a fixed Mmax the median galaxy mass of a satellite galaxy
is larger than that of a central galaxy.
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Figure 6.2: Left: halo mass function (HMF), as characterised by Mmax (dashed
lines) for each of our three samples: satellite galaxies (red), central galaxies (blue),
and a combined sample with all centrals and satellites (green). The solid lines show
the linear HMF fits used by the weighting scheme. Right: Values of the weights
w as a function of Mmax.
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We now describe the input parameters used in this work, which are the values of

the column vectors z⃗′
i of section 5.2.1. Although our selection of halos is based

on Mtotal(z), the conventional way of defining the mass of a central halo is using

M c
200. For central galaxies, Mtotal(z) is derived from the FOF mass, which can

deviate significantly from the intuitive notion of a halo. It is standard practice,

therefore, to use the spherical M c
200 mass (i.e. the mass around the centre of a halo

inside the radius at which the density is 200 times larger than the critical density

of the universe). In practice we compared both mass definitions, and found that

models based on M c
200 gave more accurate stellar mass predictions. At z = 0, M c

200

is defined for central halos only, therefore, the mass of satellite halos is computed

using Mtotal. Of course, subhalo main progenitors are labeled as central halos before

they merged with the main halo, therefore at some point in their history subhalo

main progenitors should have a well-defined value of M c
200. In practice, however, the

redshift at which a subhalo reaches its maximum and the one at which it becomes

a central galaxy is not always the same, and some subhalo main progenitors can

oscillate between being considered central halos and subhalos throughout several

redshift slices due to either complicated orbits or degeneracies in the classification

scheme. With this in mind and to avoid any discontinuity due to changes in the

mass definition, all halos classified as a subhalo at z = 0 have their evolution tracked

with Mtotal(z) at all redshifts, in the same way all halos classified as centrals at

z = 0 are tracked with M c
200(z). We use the interpolation scheme developed in

5 to ensure the halo masses of central galaxies are not affected by inconsistent

classification between snapshots.

Since the satellite halo mass cannot be expected to grow monotonically with de-

creasing redshift, a more important parameter for each galaxy is instead its max-

imum halo mass. In the rest of the paper, we refer to this as Mmax:

Mmax =

 Max(Mtotal(z)) for satellite galaxies

Max(M c
200(z)) for central galaxies

Central galaxies tend to grow monotonically with time, and Mmax is correlated
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with the stellar mass through the z = 0 stellar mass - halo mass (SMHM) relation.

In satellite galaxies, however, Mmax corresponds to the redshift at which their host

halo merges and becomes the subhalo of a larger system. Once a halo merges the

mass of the halo declines due to tidal processes. We can expect, therefore, that the

galaxy mass at z = 0 will be well correlated with the mass of the host halo before

merging. Fig. 6.1 shows the distribution of galaxies in the Mmax-M∗ space. Note

that a small subset of central galaxies (blue dots) have values below Mmax(z) =

1010.66M⊙. This is due to galaxies in this subset satisfying [Mmax = Max(M c
200) <

1010.66M⊙ < Max(Mtotal)]. We also note that the median stellar mass of satellite

galaxies is larger than that of centrals at fixed Mmax, i.e. for a fixed Mmax satellite

galaxies are more massive. The offset in the SMHM relation for satellites and

centrals is driven by two competing processes. On the one hand, satellites may

undergo a strong suppression of their star formation as they orbit within the main

halo due to the combined effects of ram-pressure stripping (the removal of the

interstellar medium of the galaxy by ram pressure) and ‘strangulation’ (the absence

of gas infall onto the satellite). On the other hand, while the halo mass of the

central continues to grow with cosmic time, the satellite reaches its peak mass

and Max becomes frozen thereafter. The net offset is determined by whether the

halo mass or the stellar mass grow fastest in the central galaxies, and by whether

satellite galaxies are able to continue to grow in stellar mass after they are accreted

(Behroozi et al., 2019). Because the effect on the stellar mass growth tends to be

delayed compared to the effect on the halo, satellite galaxies tend to have larger

stellar mass than their central counterparts.

In 5, we tested different parameterisations and concluded that parameters that

measure the SMHM relation and the halo growth trajectory are the most useful for

modelling the stellar mass at z = 0. We also found no improvement in our models

when adding parameters correlated with the angular momentum evolution of the

halo. The best model that we found used log10(M200(z = 0)) as the input parameter

that traced the SMHM relation, as well as a set of formation criteria parameters
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log10 M∗/M⊙ lgMmax FC′
20 FC′

30 FC′
50 FC′

70 FC′
90

µ 8.760 11.12 3.096 2.547 1.743 1.151 0.6259
σ 0.8002 0.4586 0.7978 0.8427 0.7376 0.6053 0.4923

Table 6.1: Normalisation parameters used for the stellar mass and the DM halo
variables. These parameters are for the model that mixes central and satellite
galaxies. The µ and σ rows correspond to the mean and standard deviation of
the variables respectively and are used in Eq. 5.3 to standardise the range of the
variables considered.

FCp that model the assembly history, where FCp is the redshift by which a central

galaxy has assembled p = [20, 30, 50, 70, 90] per cent of its current mass. In order to

accommodate satellite galaxies, we substitute the input parameter log10(M200(z =

0)) with Mmax and we define the dimensionless parameter

lgMmax = log10(Mmax/M⊙) (6.1)

and redefine the formation criteria parameters FCp as follows: We find the redshift

zi at which a halo or subhalo reaches Mmax, we then look at the evolutionary

history of the halo from z = 4 up until zi, and find the redshift (zi < FCp < z = 4)

at which the halo assembles the percentage p of Mmax. Note that if z is such

that M(z) = Mmax, then z < FC90 < FC70. This parameterisation is almost

equivalent to the one used in 5 when only considering central galaxies as in this

case M(z = 0) ∼ Mmax. As a check, we ran our methodology on the data set of 5

with the new parameterisation, the resulting model is comparable to the original

one in accuracy and simplicity. In total we use six independent variables in our

methodology [lgMmax, FC20, FC30, FC50, FC70, FC90]. Each of these parameters

is transformed to the standardised space defined by equation 5.3. Since we consider

cubic combinations of these parameters this leads to a model with up to D = 84

parameters.

To test the differences between modelling satellite and central galaxies separately

and modelling them together with a single model, we run three models independ-

ently of each other:

• A model that only contains central galaxies, with N = 25, 492 data points.
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• A model that only contains satellite galaxies, with N = 9, 967 data points.

• A model that combines central and satellite galaxies and fits them all at the

same time, with N = 34, 654 data points.

6.2.3 Weighting the Cost Function

In 5, we used a simple χ2 measure to assess the quality of the model’s prediction

of the data (i.e. χ2 is the cost function). In the CDM paradigm, however, smaller

halos are always much more numerous than massive ones. As a consequence, such

methodology would have a stronger incentive to fit numerous smaller halos more

accurately at the expense of a less accurate fit to less numerous massive ones. In 5,

we concluded that our methodology became more inaccurate for galaxies larger

than log10(M∗/M⊙) > 11.0 (see discussion of Fig. 5.14) due to a relatively small

fraction of galaxies above the threshold (90 out of ∼9,500). Given that in this

iteration of the work we reduced the cutout value of galaxies even further, we now

have a larger number of smaller galaxies making the issue even more problematic.

A good solution to this problem is to assign a weight w′
i to each halo. This weight

determines how much of an incentive the code will have to fit a particular halo mass

correctly. If the weight w′
i is larger for galaxies in larger halos, then by modifying

Eq. ?? to include a normalised weight wi as below, we will give a larger importance

to the rarer larger halos:

χ2
w =

N∑
α=0

wα(M∗
α − M∗

pα(C))2

N2 . (6.2)

To compute the weight of a halo we first look at the halo mass function (HMF) as

a function of lgMmax. These are shown as dashed lines in the left panel of Fig. 6.2.

To avoid noisy weights from having a small number of objects in the more massive

bins, we make use, in this plane, of a linear fit, shown as the solid lines, to the

HMFs. Referring to the linear fits as fl(lgMmax), the weight of a halo is defined

as:

w′
α = 10fl(µ)

10fl(lgMmaxα)
(6.3)
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Coefficient Centrals Satellites Combined
Constant 0.132 - 0.118
lgMmax 1.22 1.19 1.19
lgMmax

2 -0.158 -0.169 -0.168
lgMmax

3 0.00740 0.00833 0.0102
FC70 0.0959 - 0.128
FC90 - - 0.0681
FC2

30 - - 0.0227
FC3

20 0.0139 - -
FC3

30 - - 0.00394
FC3

50 0.0116 0.0467 -0.0150
FC3

70 - 0.00991 -
lgMmax × FC20 - - -0.0389
lgMmax × FC2

20 - 0.00196 -
lgMmax × FC2

30 - 0.00281 -
lgMmax × FC2

90 - - -0.00474
lgMmax

2 × FC20 -0.00515 - 0.00306
lgMmax

2 × FC50 - -0.0267 -
lgMmax

2 × FC70 - 0.0226 -
FC2

20 × FC50 - - 0.0161
FC2

30 × FC20 0.00392 - -
FC2

50 × FC20 - - 0.0327

Table 6.2: Parameters and their respective values for the surviving coefficients of
the three models. Note that the parameters presented here are in the standardised
space defined by Eq. 5.3. Parameters are shown to three significant figures, which
we find are enough to make the RMSE accurate to four significant figures.

where µ is the median value of lgMmax. As a final step, we normalise the weights

of a sample as follows

wα = N × w′
α∑N

α=1(w′
α)

. (6.4)

The right panel of Fig. 6.2 shows the weights of a galaxy as a function of lgMmax

for each of our three samples. Note that in the combined model, the weighting

scheme does not distinguish between central and satellite galaxies.
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6.3. Results

Figure 6.3: Comparison between the stellar mass of galaxies in EAGLE and the
stellar masses predicted by the model. The coloured dots show the actual values of
the individual galaxies and the solid lines are the mean values. The black dashed
line corresponds to the one-to-one line. The left plot corresponds to the separate
models where central (blue) and satellites (red) are run independently. The right
plot is for the combined model, with the results separated into centrals (green) and
satellites (purple).

6.3 Results

6.3.1 Comparing input and predicted stellar masses

We now present the results of each of our three models. The surviving coefficients

and their respective values are shown in table 6.2. In order to extract a fitting

function that can be applied directly to the input variables, one first needs to

transform the input data using equation 5.3 (which requires the mean and standard

deviation values of the dependent variables given in table 6.1∗.)

Fig. 6.3 shows a comparison between the stellar mass predicted by the models and

its actual value in EAGLE. The left panel shows the results when running the

central and satellite models independently, while the right panel shows the results

when they are fitted simultaneously on the combined model. The plot shows that
∗Note that the resulting stellar mass also needs to be converted from standardised units, and

we have therefore included the stellar mass parameters in this table as well
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6.3.1. Comparing input and predicted stellar masses

the mean closely follows the one to one line (black dashed line) for all models

above log10(M⋆/M⊙) = 9.5, but is also evident that both the independent and the

combined model tend to overpredict slightly the stellar mass of small satellites with

log10(M⋆/M⊙) < 9.5. This may be associated with the strongly asymmetric scatter

in this region of the plot. Overall, however, the plot is very encouraging and shows

that the properties of satellites, as well as centrals, can be accurately predicted by

the SRM approach. This is an important pre-requisite for constructing accurate

mock catalogs from dark matter simulations. We will explore the performance of

the models in more detail below.

A subsidiary aim, however, is to determine whether it was necessary to explicitly

distinguish between central and satellite galaxies in constructing the model. We

test this by comparing the model in which central and satellite galaxies are fitted

separately with one that combines all galaxies into one single model and relies

on the methodology to distinguish between satellite and central galaxies only on

the basis of their different formation histories. Note that in this model, there is no

binary distinction between satellites and central and the model varies its predictions

continuously. Removing this binary condition should result in an algorithm that is

less dependent on the details of the SUBFIND algorithm, making results simpler

to interpret.

In order to compare the accuracy of the models, we use the mean square error

(RMSE) statistic defined as:

RMSE =

√∑N
α=1(Mpα − M∗

α)2

N
. (6.5)

We find a RMSE of the central galaxies when modelled with our combined model

of RMSE = 0.208, this is essentially indistinguishable from the error of the model

ran with central galaxies only (RMSE = 0.210). We find similar results for satellite

galaxies, where their individual model has a RMSE of 0.286, compared with a

RMSE of 0.271 in the combined model. We can also look at all centrals and

satellites of the individual models used together which have a RMSE of 0.232.
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6.3.1. Comparing input and predicted stellar masses

This is comparable with the combined model that has an RMSE of 0.229. This

indicates that the individual models and the combined model have comparable

accuracies. Note that the combined model ends up with 14 terms while modelling

satellites and centrals individually requires 9 for each model (hence 18 terms in

total).

The accuracy of our models is comparable to what other methodologies have found.

For example, Kamdar et al. (2016) find an RMSE of 0.35 when using extremely

randomized trees to model the stellar mass in the Ilustrius simulation (Nelson

et al., 2015). While our RMSE is smaller than theirs, they fit all galaxies in their

simulation down to a stellar mass of ∼ 106M⊙, and therefore larger errors are

expected, as their galaxies are around two orders of magnitude smaller than those

we consider. This makes it hard to compare the models directly but our RMSE is

at least of similar amplitude to theirs. Given that it is difficult to know how much

larger their errors should be when compared to ours, we can compare a statistic like

the R2 statistic defined in equation 5.26 that normalises for the standard deviation

of the data set (although we should remember the warning in section 5.5 about

considering R2 estimates as they can be easily biased). Our combined model has a

R2 of 0.917 which is directly comparable with the values of 0.916 and 0.909 found

by Kamdar et al. (2016) and Agarwal et al. (2018) ∗ respectively.

A significant appeal of the SRM approach is that the surviving terms in Table 6.2

have a physical interpretation. Following the discussion in 5, we note that there

are four types of surviving parameters:

• A constant, or normalisation, term.

• Terms that only include lgMmax and no formation criteria parameter: these

terms model the underlying relation between Mmax and M∗. For central

galaxies they should correspond to a model of the SMHM relation.
∗Agarwal et al. (2018) uses a random forest algorithm to reproduce galaxy properties of halos

inside the MUFASA simulation (Davé et al., 2016). The code uses halo properties like halo mass,
environment, spin, and recent growth history, and models the following baryonic properties: stellar
mass, star formation rate, metallicity and neutral and molecular hydrogen mass.
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6.3.1. Comparing input and predicted stellar masses

• Terms that only include formation criteria parameters (e.g. FC50 and higher

order combinations): these terms quantify the growth history of the halo,

capturing scatter in the relation.

• Terms that are a product of halo mass, lgMmax, and formation criteria

parameters: these terms model the dependence of the assembly history on

the final halo mass.

Comparing between the models, we see, firstly, that the lgMmax coefficients are

similar between all three models. This reflects the similar underlying shape of the

Mmax and M∗ relation. There is no constant term required for the satellite model,

which implies that the mean halo mass corresponds to the mean satellite stellar

mass∗, reflecting the offset between the central satellite relation seen in Fig. 6.1. In

the combined model, central and satellite galaxies are treated on an equal footing

and this offset is captured by the more complex dependence on formation time

parameters. For example, the model depends strongly on the FC90 parameter:

this quantifies the time at which the halo ceases to grow and becomes a satellite, so

its presence in the model is expected. There are also more subtle interplays between

terms in this model, with positive and negative coefficients appearing with similar

magnitude. It is interesting that the model also has a strong cross dependence

term between halo mass and formation time (i.e. lgMmax × FC20), suggesting

that the satellite-central offset is strongly dependent on both satellite mass and its

early formation history.

It is interesting to compare the central galaxy model with the one presented in 5.

It is important to stress that we do not expect identical models, since we have

broadened the range of masses considered and weighted the cost function to em-

phasise the importance of predicting stellar masses well over the full halo mass

range. Interestingly, this change has resulted in a simpler model. The number of

free parameters selected by the algorithm has been reduced from 17 to 9. Most
∗Of course a constant would appear in this relation if we were to convert to the original,

non-normalised, input space
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6.3.2. Predicting clustering and the stellar mass function

noticeably, the only surviving linear term of any of the formation criteria para-

meters is FC70 (the model of 5 had 3 linear terms FC30, FC50, FC90). Similarly

lgMmax
2 × FC20 is the only term relating the dependence of the assembly history

on the final halo mass, while previously we had five terms.

One difficulty becomes apparent when comparing the models in further detail,

however. Because of the significant correlation between parameters: models of

almost equivalent accuracy and complexity can vary in the final parameters chosen

if these parameters are correlated. For example, the central model includes strong

dependencies on terms in FC3
20, FC3

50 and FC70 while the satellite galaxies depend

on FC3
50 and FC3

70. The satellite model also includes terms in lgMmax
2 × FC50

and lgMmax
2 × FC70 with almost equal but opposite coefficients. It is difficult to

decide on the significance of these differences because of the underlying correlations.

Future investigations could consider methods like principal component analysis

(Jolliffe, 2005) to transform our input functions into a parameter space where they

are uncorrelated. However, this would lose the benefit of having a simple physical

interpretation of the input parameters and the resulting model.

6.3.2 Predicting clustering and the stellar mass function

Figure 6.4 shows how the stellar mass function (SMF) of our models split by galaxy

type (total in green, centrals in blue and satellites in red) compares to those from

EAGLE. The plot shows the SMF of the combined model (solid lines), of the

individual models (dotted lines) and of the EAGLE data (shaded area), the shading

indicating a bootstrap error estimate to account for sampling effects (Efron, 1979).

The different model SMFs are all comparable, as they seem to agree all similarly

well with the EAGLE SMFs, with the agreement worsening somewhat for masses

around log10(M⋆/M⊙) = 10.5, as identified already in 5. As we suggested in that

chapter, one possible reason behind this disagreement is the stochasticity of certain

baryonic processes which might affect the stellar mass, for example the feedback

from supermassive black holes (Bower et al., 2017; Martizzi et al., 2012). While this
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Figure 6.4: The galaxy SMF of EAGLE, represented as the shaded areas, compared
to the galaxy SMF of our models, shown as solid (combined model) and dotted
(individual models) lines. The green line corresponds to combined samples of all
galaxies, and the red and blue to the satellite and central subsets respectively. The
shaded region shows the bootstrap error on the EAGLE SMF estimate.

would be a challenging phenomenon to predict using input parameters from a DM

only simulation, it should be possible to develop in a future work SRM models that

estimate the stochastic scatter in predicted quantities as well as a central value.

As mentioned in section 4.3, Moster et al. (2021) uses a neural network approach

called Galaxy-net that asks the algorithm to reproduce observed properties such

as the SMF, the local clustering, the cosmic and specific SFRs, and the quenched

fractions. Their model is fitted to the EMERGE data described in Moster et al.

(2018). Their approach focuses on fitting these observed properties accurately

instead of trying to fit the individual values of galaxy properties. Our predicted

stellar mass function (SMF) agrees well with the one predicted by Galaxy-Net

(SMFGN ) with 1 − SMFGN/SMF < 0.1 for stellar masses bellow 1011M⊙ and

1 − SMFGN/SMF ∼ 0.2 for larger stellar masses. Interestingly, Galaxy-Net also

finds the same disagreement that we do between the stellar mass modeled and their

target stellar mass from EMERGE at around 1010.5M⊙ (see figure 6.4). The stellar

mass function predicted by Galaxy-Net seems to have similar accuracy to ours with
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Figure 6.5: Correlation function of EAGLE galaxies split into different mass bins
(as indicated in the title of the panels). The solid line shows the correlation function
of all galaxies in our combined model. The dotted lines show the same but for our
individual models. The shaded area corresponds to the correlation function of the
corresponding EAGLE galaxies including bootstrap errors.

the differences between their predicted stellar mass and their target stellar mass

being below 0.2 everywhere except around 1010.5M⊙, this is comparable to what

we found in the second panel of figure 6.4. At 1010.5M⊙ the difference between

our combined model rises to ∼ 0.2 and the difference between Galaxy-Net and

EMERGE to ∼ 0.35.

Figure 6.5 shows the galaxy correlation functions of our models, split by the pre-

dicted galaxy stellar mass. The figure also includes the correlation function of

215



6.4. Conclusions

galaxies when split by their stellar mass in the EAGLE simulation. As with fig-

ure 6.4 we have included an estimate of the error due to sampling effects using the

bootstrap method. The correlation function of both models with central and satel-

lites galaxies (green lines) agrees with the EAGLE correlation function within er-

rors. For central galaxies (blue lines), the agreement with EAGLE is generally good,

however, the separate model (dashed line) shows a slightly lower clustering amp-

litude for galaxies within 9 < log10 M∗/M⊙ < 9.5. Similarly, satellite galaxies (red

colour) are slightly more strongly clustered within the 9.5 < log10 M∗/M⊙ < 10 bin

in the combined model (solid line) compared to EAGLE. Interestingly, the discrep-

ancies in the correlation functions are much less evident when satellites and central

galaxies are modelled together. This is encouraging since the binary distinction

between central and satellite galaxies is unnecessary in order to model the overall

correlation function.

One of the advantages of our methodology over standard machine learning tech-

niques is the fact that our solution is expressed as a simple equation of state with

14 free parameters fitted by the algorithm. This is important as the model can

be modified to fit other data sets different from EAGLE, which is a requirement

needed to use our method to populate DM-only simulations that would be used to

analyze observational data set. This would not be achievable by a more complex

’black box’ model.

6.4 Conclusions

In 5 we used a sparse regression methodology to fit the stellar mass of central

galaxies as a function of properties of their host halos. In this chapter we expand

our study to cover a wider halo mass range, and to model the properties of satellite

galaxies. The distinction between central and satellite galaxies relies on identifying

subhalos as self-bound substructures within larger halos, for example by using the

SUBFIND algorithm. This classification is uncertain and may be inconsistent for
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the same subhalos in adjacent snapshots outputs. We therefore explored whether

we need to make a fundamental distinction between halos and subhalos. With

this in mind, we use the maximum mass that a halo has ever reached during its

evolution, denoted Max(Mtotal(z)) and use this in place of the final (sub)halo mass

at z = 0. Given that central galaxies grow monotonically then Max(Mtotal(z)) ∼

M(z = 0) and this results in little change. In subhalos, however, it corresponds

to the mass of their main progenitor before merging with their central halo. In

order to quantify the prior growth history of the halo, we define a set of formation

criteria parameters, that measure the redshift at which a halo has formed a given

percentage of its mass and before it reaches Max(Mtotal(z)).

Our data is taken from the EAGLE hydrodynamical simulation. In order to avoid

selection biases when predicting stellar mass, we use a bijective matching between

the EAGLE hydrodynamical simulation and a DM-only simulation with the same

cosmology and initial conditions. We select all galaxies that have a halo mass

larger than Max(Mtotal(z)/M⊙) > 1010.66, this value corresponds to the threshold

at which our matching methodology successfully matches more than 95 percent of

all galaxies. We use a total of 34,654 galaxies, 9,967 of them live inside subhalos

and 25,492 inside central halos. Because our sample has significantly increased

the fraction of low-mass galaxies considered compared to the previous work, we

weight residuals according to stellar mass, giving a larger incentive to the model

to accurately fit less represented galaxy masses.

The SMF of our models agrees well with that of EAGLE at all stellar masses

except at log10(M∗/M⊙) = 10.5 where our models tend to slightly under-predict

the amount of galaxies when compared with the EAGLE simulation. This could

be related to the stochasticity of baryonic processes that might alter the stellar

mass of a galaxy, this would be hard to predict using parameters from a DM-only

simulation. We also calculate the correlation function of our models when separated

by their predicted stellar mass, and find this to also agree well with the EAGLE

correlation functions. The model that combines central and satellite galaxies has
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comparable accuracy to the models in which centrals and satellites are treated

independently, while using an overall smaller number of model parameters. This

suggests that a binary classification is unnecessary and the stellar mass of both

galaxy types can be predicted by suitable measurement of their halo mass history.

The SRM approach can be viewed as a machine learning algorithm. It can accur-

ately model the stellar masses of EAGLE from the data itself and without requiring

previous knowledge of physics behind the system. At the same time, the approach

results in a prediction algorithm that is explicit and simple (compared with the

solutions of other machine learning techniques), and the terms that are retained

give physical insight into the important processes at work.

We have seen that the correlation function and the stellar mass function of our

models agree well with the EAGLE data set. This is encouraging as both of these

EAGLE statistics have been positively compared with observational data. For ex-

ample, Furlong et al. (2015) has shown that the EAGLE SMF at z = 0 agrees

reasonably well with the ones observed by the SDSS (Li and White, 2009) and

GAMA (Baldry et al., 2012) surveys. Similarly (Artale et al., 2017) shows that the

EAGLE correlation function reproduces observations accurately at 1h−1Mpc and

up to 6h−1Mpc. This suggests that our methodology is a promising approach to

populate N-body simulations with galaxies of the correct stellar mass and spatial

distribution. However, the ultimate goal is to generate mock catalogs that provide

an even better representation of the observed universe. An attractive idea is there-

fore to iterate on the coefficients of the terms selected by comparison to EAGLE,

creating an even closer match to target observations. This would retain the same

physical processes, but accept that their relative importance might differ between

the true universe and the Eagle simulation. This is an interesting possibility that

we will explore in more depth in future work.
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Chapter 7

Summary and Future Work

In this thesis, I have presented two independent pieces of research that explore the

nature of the dark sector of the universe. In the first research project, I performed

a full shape analysis of the eBOSS LRG sample, where new constraints on specific

RSD parameters were obtained. The second project proposes a novel approach to

study the relation between galaxies and their host halos using sparse regression

algorithms.

These two projects were the bulk of the work that I did during my PhD in Durham†.

In this final chapter, I provide a summary of each of the two projects and briefly

describe the next steps that I intend to explore in the future.

7.1 Summary of RSD modelling

Measurements of standard rulers (like the BAO scale) and standard candles (like

SN-Ia analysis) are not enough to constrain a cosmological model, as an appropriate
†As part of the Centre for Doctoral Training in Data Intensive Science (CDT-DIS) program, I

worked on two projects outside of academia that were not related to astronomy. The first of these
projects was an internship of five months in total that I did in the consumer goods company Procter
& Gamble (P&G). During this time we developed a sparse regression methodology that predicts
physical properties of laundry powder as a function of the configuration of the manufacturing
machine, which then led on to our astronomy focused SRM work presented in chapters 5 and 6.
In a second independent project, I worked as part of Durham University’s JUNE project (Bullock
et al., 2020). We modeled the covid-19 pandemic in the UK using detailed census data to accurately
reproduce the population distribution across the country and their interactions. My work whitin
this collaboration mostly centred on modelling the different infection progression paths that an
individual would follow once infected depending on their age and gender.
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selection of the equation of state can result in the same expansion history for

different models. Therefore, there is a need for a new independent parameter that

can break this degeneracy. One parameter that is commonly used is the growth rate

f which in turn is related through the continuity equation to the peculiar velocity

of galaxies. One can study these peculiar velocities through their contribution to

the redshift that one measures in large-scale structure surveys. When observed in

redshift space, this effect causes an anisotropy in the distribution of galaxies which

can be studied using two-point correlation function statistics.

A RSD analysis uses an estimate of the 2-point correlation function of a given

survey and compares it to the prediction of a theoretical model that predicts the

evolution of δ(r⃗). On linear scales, the peculiar velocity of the galaxy should be a

function of the growth rate f , and therefore theoretical models include it as a free

parameter. One can also include parameters that give the model the freedom to

explore if the fiducial cosmology assumed in the analysis could be different from

the true cosmology of the universe. This can be done using the Alcock-Paczynski

parametrisation.

In chapter 3 we present the first full-shape analysis (e.g. Alcock-Paczynski and

RSD) done with the eBOSS LRGs sample. The sample includes galaxies from

the 14th data release of the survey corresponding to all observations done in the

survey’s first two years.

We compute the monopole, quadrupole, and hexadecapole of the correlation func-

tion of our sample. We use a model that combines Convolution Lagrangian Per-

turbation Theory with Gaussian Streaming theory to model these multipoles within

the ΛCDM cosmology model and assuming Planck 2018 parameters. The model

considers four RSD parameters (f , F ′, F ′′, σFOG) and two Alcock-Paczynski para-

meters (α,ϵ). Using a MCMC algorithm we explore the parameter space to find the

regions of high likelihood. The covariance matrix used for the likelihood estimations

is computed from a set of 1000 QPM mocks.
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When fitting our model to the mean of the N-series high precision mocks we con-

cluded that the best-fit models do not match the amplitude of the hexadecapole

(see discussion around figure 3.7). We considered that this needed further explor-

ation. Given that this were the only high-precision mocks with the properties of

eBOSS LRGs available, we decided to follow a conservative approach and report

the fits done with ξ0 and ξ2 as our final result, but include the result from models

with ξ4 for consistency.

The data sample correlation had a very high amplitude in its quadrupole at large

scales, which is well outside the 1σ variances of the mocks. At the moment of

finishing this study, this feature was not properly understood and it was speculated

that it could be a consequence of either a large statistical fluctuation or a systematic

effect that was not properly understood. Since then, the final data release of eBOSS

has been published, and it did not present this feature (e.g. Bautista et al., 2021).

Therefore, a statistical fluctuation is now the preferred explanation.

Our final constraints for our parameters of interest are f(0.72)σ8(0.72) = 0.454 ±

0.134, DA(0.72) = (1466.5 ± 133.2)(rs/rfids ) and H(0.72) = (105.8 ± 15.7)(rfids /

rs) km s−1 Mpc−1. These results are consistent with previous measurements and

with a ΛCDM model using the Planck 2018 cosmology.

7.2 Summary of SRM

Hydrodynamical simulations are arguably the best tool to study the relation between

galaxies and the underlying DM distribution theoretically. However, hydrodynam-

ical simulations with good resolution are limited in volume to around ∼ (300[Mpc])3.

Surveys designed to study galaxy evolution require mock catalogs of galaxies with

a volume of around ∼ (1[Gpc])3. There is therefore an incentive to better un-

derstand the relation between galaxies and their host halos inside hydrodynamical

simulations and use them to populate halo catalogs of the required size.
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The models they produce can be very accurate and reproduce statistics like the

stellar mass function or the correlation function of the original hydrodynamical sim-

ulation with remarkable accuracy. One of their shortcomings is that the resulting

models are complex ’black box’ answers that are difficult to modify. This becomes

an issue for certain statistics for which the volumes of hydrodynamical simulations

are too small to predict accurately, e.g. the large-scale correlation function.

We propose a novel approach where we use sparse regression methods, which are

a type of machine learning algorithm, to model an equation that relates the stel-

lar mass with properties of its host DM halo. The resulting equations are linear

combinations of a set of functional forms and are therefore explainable and easy to

modify.

To build a model without knowledge of the underlying physics, one uses a large

number of free parameters, each of which models a different behavior of the halo

properties. The optimised value of the parameters is found with a LASSO al-

gorithm, which is designed to penalise the number of relevant coefficients used in

such a way that it discards all but the most relevant. This is achieved by minim-

izing the LASSO function, which combines a penalty term, which incentivises the

minimisation to discard unnecessary free parameters, with a goodness of fit estim-

ator. The relative magnitude of the penalty term with respect to the goodness of

the fit is regulated by the hyperparameter λ, which is optimised with the k-fold

methodology.

The models presented here are built using the EAGLE hydrodynamical simulation

100 Mpc box. To avoid any bias due to alterations of the halo properties, which

could be generated by the presence of baryons, we collect the halo data from a

DM-only simulation with the same initial conditions and with the same volume as

the full hydrodynamical simulation. Then we perform a matching between both

simulations and read the baryonic properties from the hydrodynamical simulation.

In the first iteration of our work, we restrict our data set to central galaxies with a
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relatively large halo mass cut of M(z = 0) > 1011.1M⊙. The parameters of the host

halos selected for this first interaction included the halo mass at M(z = 0) (so that

our model could predict the SMHM relation), the formation criteria parameters

FCp, which measures the redshift at which a halo has assembled a percentage p of

its final mass, and parameters that quantify the angular momentum evolution of

the host halo.

Our resulting models discarded all angular momentum parameters, which suggests

that the observed correlation between the residuals of the SMHM relation and

the angular momentum of the host halo is a consequence of a correlation between

angular momentum and the mass history of the halo.

We find that most models include terms that relate the halo mass of the galaxy

with our formation criteria parameters at different orders. This suggests that the

relation between the stellar mass and the history of the halo mass is not the same

for all galaxies, but it depends on the halo mass at z = 0.

In the second iteration of our work, we included satellite galaxies, which were

originally left out due to their host halos having a complicated evolution after

merging with their central halo. This is in contrast with central halos that grow

monotonically during their evolution. We also reduced our halo mass cut to M =

1010.66M⊙, which is the threshold at which our matching methodology has a success

rate of 95%.

In this second iteration, we were interested in exploring whether or not we were

required to make a fundamental distinction between satellites and central galaxies

in our models. With this in mind, we modified our parametrisation: we select the

largest mass the halo reached during its evolution (Max(M(z))) as a substitute

parameter for M(z = 0), and at the same time the formation criteria parameters

FCp are modified so that they represent the redshift before the halo reached its

maximum where a percetnage p of Max(M(z)) has been assembled. We note

that given that central galaxies grow monotonically, we have typically for central
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galaxies Max(M(z)) ∼ M(z = 0).

Also given that our halo mass cut is lower in this second iteration the fraction of

low-mass galaxies has increased considerably. We needed to incentivise the model

to accurately fit the larger galaxies, which is achieved with the introduction of

stellar mass-dependent weights.

We find that the accuracy of modelling both central and satellites galaxies separ-

ately is comparable to when we combine them into one sample. This suggests that

this binary classification is unnecessary for our methodology.

Our resulting models can accurately reproduce the stellar mass function of EAGLE.

This is true for all stellar-mass values, except for a bump at log10(M ∗/M⊙) = 10.5.

We suspect that this might be related to the stochasticity of baryonic processes

altering the stellar mass. We also find good agreement between the correlation

function of EAGLE and the one predicted by our model when these are split into

stellar mass bins.

7.3 Future work

We have mentioned that one of the current issues with machine learning meth-

ods is that they can generate somewhat inflexible models. While some methods

can model the properties of galaxies very accurately, they are fitted to a specific

hydrodynamical simulation. The statistics of the data sets generated by these

models, e.g the correlation function or the stellar mass function, will be similar to

those of the original hydrodynamical simulation. This becomes an issue when the

original simulations does not have a large enough volume to reproduce these stat-

istics accurately. For example, it has been shown that simulations underestimate

the correlation function, even at scales much smaller than the simulation length

Gelb and Bertschinger (1994); Bagla and Prasad (2006); Bagla and Ray (2005)

and therefore the relatively small volumes of hydrodynamical simulations result in

underpredicted correlation function at large scales.
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For some machine learning models it is hard to modify them to fit the galaxy

properties in such a way that they would reproduce statistics of other data sets

that are different from those in the original hydrodynamical simulation. However,

our sparse regression models are polynomial equations, and the algorithm decides

the subset of polynomial terms it needs and the value of the coefficients associated

with each polynomial. We suggest that, while there is physics determining which

parameters are kept, the exact values of the coefficients are tailored to EAGLE.

The shape and the amplitude of statistics like the SMF and the 2-pt correlation

function depend on the values of these coefficients.

We propose to run, e.g., a MCMC chain over the parameters, intending to optim-

ise the models of a set of target statistics like the SMF and the 2-pt correlation

function of a given survey. This algorithm should be limited by a set of priors

that preserves the general shape of the original model. Building this methodology

should allow us to use our sparse regression methods to populate galaxy mocks

useful for analysing data of upcoming galaxy surveys by ensuring the mock repro-

duces some key properties of the sample considered. An application to DESI BGS

might be of particular interest and rather timely, given that DESI started survey

operations in May 2021.

One possible application of our method is to build mocks to be used in galaxy

evolution surveys. In general, these mocks can benefit from other galaxy inform-

ation besides the stellar mass. We are interested in expanding our methodology

to include the prediction of other free parameters like the star formation rate, the

metallicity, or the luminosity of a galaxy. Other machine learning methods (e.g.

Agarwal et al., 2018) have been able to model these properties fairly accurately

using halo properties as their only input, so there are encouraging precedents for

our project.

One of the current shortcomings of our sparse regression method is the lack of

reproducibility of the resulting models: given that there is a strong correlation

between several of our functional forms, the method tends to select different subsets
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of the parameters depending on, e.g., the initial position of the minimiser (see

discussion about figure 5.8) or the way one divides the data set into a training

and a holdout set (see discussion about figure 5.9). The resulting models are of

comparable accuracy and complexity so these differences do not affect the quality

of the model. The study of chapter 5 showed that 2/3 of the parameters seem to be

chosen consistently, so the reproducibility issue in that analysis was only present

in the remaining 1/3 of the parameters.

One approach to deal with this reproducibility issue is to use a method that trans-

forms the parameter space into one where free parameters are not correlated, e.g.

using principal component analysis. This method will transform the parameter

space into a new one with no correlations between parameters, but the new para-

meters can be generated with complicated functions of the old ones. This will make

it harder to give a physical interpretation to the surviving coefficients. However,

the resulting model will still be dependent on a small set of free parameters and

therefore it will still be possible to fit it to a desired set of statistics.
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