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Abstract
By comparing expressions for degenerated curves, we show that combining
two semi-modular forms from the two different ansätze for the chiral super-
string measure in genus 5 yields a form that is not contained in either ansatz.
We use this form to construct a modified ansatz for genus 5. By calculating
the resulting two-point function for genus 4 and the cosmological constant
in genus 5 we show that for our modified ansatz, both of them vanish as
required. Thus, we solve the problem posed in [1]. Last, we show that from
the currently known forms we cannot construct an ansatz for genus 6 that
satisfies all requirements.
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Chapter 1

Introduction

In perturbative string theory scattering amplitudes can be represented as integrals over the
moduli space of Riemann surfaces Mg with respect to a certain measure. Therefore, this
string measure is one of its main ingredients. In the case of NSR superstring theory, for
every genus a set of measures is needed, which correspond to theta characteristics: vectors
containing a zero or one for each out of the 2g non-contractable cycles, up to homotopy,
on the Riemann surface.

Constructing these superstring measures directly has proven to be exceedingly
difficult, and it took many years until in 2002 the genus 2 measure was found, in the
papers [2] by E. D’Hoker and D. Phong. Another approach has surfaced recently, where
instead of explicit calculation, ansätze were made based on supposed requirements for the
measure.

It has been conjectured [3] that the NSR measures dµ[e] can be written as a product
of the Mumford measure for the critical bosonic string dµ and for each characteristic a
semi-modular form Ξ[e] of weight 8 on the Siegel upper half-space:

dµ[e] = Ξ[e]dµ. (1.1)

In genus g ≤ 3 it is known that this is in fact the case, but in general for higher
genera it is not known a priori whether a suitable form can be constructed, even if the form
is only defined on the subspace of period matrices inside the Siegel upper half-space. The
closure of the subspace of period matrices is called the Jacobian locus and it has nonzero
codimension from genus 4 on. All definitions can be found in section 2.3.

The conditions to which the measures, if the above conjecture holds, must conform
are the following:

a) The forms Ξ[e] are semi-modular forms of weight 8 when restricted to the Jacobian
locus.

b) When the Riemann surface degenerates to a disjunct union of lower-genus surfaces, the

forms factorize into a product of lower-genus forms. That is, Ξ
(g1+g2)
e1×e2

(
τ (g1) 0

0 τ (g2)

)
=

Ξ
(g1)
e1

(
τ (g1)

)
Ξ

(g2)
e2

(
τ (g2)

)
.

c) The trace (the cosmological constant) should vanish, i.e.
∑

e Ξ[e] = 0. Also, the trace
of the 1, . . . , 3-point functions

∑
eAn[e] should vanish, cf. [4].
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d) In genus 1 and 2 the ansatz should conform to the known answers.

Two sets of ansätze were proposed: one in terms of theta series for 16-dimension
self-dual lattices by M. Oura, C. Poor,R. Salvati Manni and D. Yuen (OPSMY) in [5],
and one in terms of summations of powers of products of ordinary theta constants, which
was originally suggested by S.L. Cacciatori, F. Dalla Piazza and B. van Geemen in [6] and
written in its final and elegant form by S. Grushevsky in [7]. These have been shown to
coincide for genus g ≤ 4 and, in fact, to be the unique measures constructed in the above
way that conform to all requirements for these genera.

As shown by S. Grushevsky and R. Salvati Manni in [8], the genus 5 cosmological
constant did not vanish for these ansätze. This problem with the cosmological constant
was solved by OPSMY and Grushevsky by modifying the genus 5 ansätze. However, it was
shown by M. Matone and R. Volpato in [1] that the genus 4 two-point function obtained
by degeneration from the modified genus 5 ansätze does not vanish, contrary to the above
requirements.

A natural question, then, became whether these ansätze do in fact coincide for
genus g = 5 and if not, what can be done by combining their building blocks.

The paper [9] compares the semi-modular forms G
(g)
p and ϑ

(g)
p , from which the

Grushevsky and OPSMY ansätze were constructed. For all but one p (where 0 ≤ p ≤ 7)

it was shown that ϑ
(g)
p was expressible through the G

(g)
i , for all genera. For genus 5 and

above, however, the question remained open whether G
(g)
5 and ϑ

(g)
5 agree on the Jacobian

locus.

Results In the present paper (at the end of section 3.1) we show that in fact, for genus

g ≥ 5, on the Jacobian locus, G
(g)
g and ϑ

(g)
5 do not agree. We use the fact that ϑ

(5)
5 −G

(5)
5

is nonzero on the Jacobian locus to present a modified genus 5 ansatz,

Ξ̃ := Ξ
(5)
OPSMY −

222647008

217

(
ϑ

(5)
6 − ϑ

(5)
7

)
+

77245568

17

(
ϑ

(5)
5 −G

(5)
5

)
. (1.2)

We prove the vanishing of both the genus 5 cosmological constant and the genus 4 two-
point function, obtained from degeneration, for this modified ansatz. Then, we look at the
situation in genus 6. We show that it is not possible to construct a genus 6 ansatz from
the currently known forms that satisfies all properties. To be precise, condition c) cannot
be satisfied.

Structure of the present paper The paper is organized as follows: in section 2.3 we
define the semi-modular forms used in the OPSMY and Grushevsky ansätze and list the
known relations between those sets of forms. In section 3.1 we expand ϑ

(5)
5 − G

(5)
5 in a

perturbative series by contracting one handle of the curves and show that this series does
not vanish on the entire Jacobian locus, which means ϑ

(5)
5 − G

(5)
5 is nonzero there. In

section 3.2 we calculate the trace (the summation
∑

e f [e] over even characteristics) of this
function. We need this to prove that the cosmological constant for our modified ansatz
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in genus 5 vanishes. In section 3.3 we compare ϑ
(5)
5 −G

(5)
5 with other semi-modular forms

to show it is not equal to one of the already known forms. In section 3.4 we look at the
two-point function in genus 4 obtained by degenerating the genus 5 ansatz Ξ

(5)
OPSMY +

c
(
ϑ

(5)
6 − ϑ

(5)
7

)
+ d

(
ϑ

(5)
5 −G

(5)
5

)
, by the method used in [1]. We show that this, together

with the condition of vanishing genus 5 cosmological constant leads to our main formula
(3.76): a unique ansatz built from the known semi-modular forms in genus 5. In section
3.5 we discuss the factorization property for any genus 6 ansatz implied by our proposed
modification for genus 5. We show that it cannot be satisfied using only the known forms.
Finally, in section 3.6 we briefly summarize our results.
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Chapter 2

Definitions

In this chapter, we define the relevant concepts and introduce the semi-modular forms G
(g)
p

and ϑ
(g)
k .

2.1 The symplectic group

A 2n × 2n matrix A containing entries in a ring R is called symplectic if AtMA = M ,

where M =

[
0 I
−I 0

]
. This implies, among other things, that A has determinant 1

and is invertible. The set of all such matrices A form a group under ordinary matrix
multiplication: the symplectic group Sp(2n,R).

2.2 The Abel-Jacobi map and the period matrix

Let C be a complex manifold of genus g. This means, or implies, that there are 2g
classes of loops in C generating the first homology group. It also implies that the space of
holomorphic differentials on C has dimension g; we pick a basis vi with 1 ≤ i ≤ g. Now, let
us take a representative γi from each of the 2g classes of loops mentioned above. Define a

lattice L in Cg by the following basis: li :=
(∫

γi
v1, . . . ,

∫
γi
vg

)
. Then, picking an arbitrary

base point p0 ∈ C, we define the Abel-Jacobi map: A(p) :=
(∫ p

p0
v1, . . . ,

∫ p
p0
vg

)
mod L.

In a similar construction, we can divide the set of loops γi in two sets with g
elements, A and B, by requiring that Ai ∩ Bj = δij, Ai ∩ Aj = Bi ∩ Bj = ∅, i 6= j. Then,
choose a basis ωi for the space of holomorphic differentials by requiring that

∫
Bi
ωj = δij.

This leaves us with a symmetric g × g matrix determined by the manifold C, as follows:
τij :=

∫
Ai
ωj. This matrix τ is called the period matrix and is symmetric, with positive

definite imaginary part.
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2.3 The semi-modular forms from OPSMY and Gru-

shevsky

The superstring ansätze are composed of linear combinations of semi-modular forms of
weight 8 on the Jacobian locus. Here, we will define the relevant concepts.

Let Hg be the Siegel upper half-space, i.e. the set of complex symmetric g × g-
matrices for which the imaginary part is positive definite. Let Sp(2g,Z) be the symplectic
group of degree 2g over Z, here called the modular group Γg. The modular group acts
on the Siegel upper half-space through modular transformations, defined as follows: let

γ =

(
A B
C D

)
∈ Γg. Then,

γ ◦ τ := (Aτ +B)(Cτ +D)−1, τ ∈ Hg (2.1)

Hence we can also define an action on functions on the Siegel upper half-space. The action
is defined as follows, for a given k:

(f |kγ)(τ) := det(Cτ +D)−kf (γ ◦ τ) . (2.2)

Theta characteristics are elements of F(2g)
2 which we will write as e or as [δε], where

δ, ε ∈ Fg2; see the introduction. We will often regard theta characteristics as vectors in C2g,
sending the unit of F2 to 0 and the other element to 1.

The theta characteristics are called even (resp. odd) if
∑

i δiεi is even (resp. odd).
There is a natural set of subgroups of the modular group, corresponding to the

theta characteristics: let γe ∈ Γg be such that

[
diag(ATC)
diag(BTD)

]
= e, and let Γ(1, 2)g be the

subgroup of the modular group for which the diagonals of ABT and CDT contain only
even elements. Then, define Γ[e]g := γeΓ(1, 2)gγ

−1
e . This definition does not depend on

the particular choice of γe, because any two such elements γe and γ̃e are conjugated by an
element of Γ(1, 2)g.

A holomorphic function f on the Siegel upper half-space is called a semi-modular
form of weight k if the following holds:

∀γ ∈ Γ[e]g, (f |kγ) = f. (2.3)

Let C be a Riemann surface of genus g. Let us pick a basis for the homology
group H1(C,Z). Then we have the period matrix τ ∈ Hg of C; for details, we refer to
[10]. The period matrix induces a map Mg → Hg/Γg, where Mg is the moduli space of
Riemann surfaces of genus g. We will write ωi for the ith holomorphic differential in the
basis corresponding to the period matrix. Also, we use the Abel-Jacobi map A, constructed
from the same basis mentioned above, and we will write Apq := A(p)− A(q).

The OPSMY ansatz from [5] is constructed using lattice theta series, defined as
follows for any lattice Λ ⊂ Rn:

ϑ
(g)
Λ (τ) :=

∑
p1,...,pg∈Λ

eπi
∑

i,j τijpi·pj (2.4)

6



The theta series of self-dual 8n-dimensional lattices provide us with semi-modular forms of
weight 4n, which are in addition modular with respect to the entire group Γg if the lattice
is even.

There are 8 self-dual lattices of dimension 16, the theta series of which we will
write in shorthand as follows, in line with [9],

Notation Lattice Glueing vectors
ϑ0 Z16 -
ϑ1 Z8 ⊕ E8 -

ϑ2 Z4 ⊕D+
12 (04, 1

2

12
)

ϑ3 Z2 ⊕ (E7 ⊕ E7)+ (1
4

6
,−3

4

2
, 1

4

6
,−3

4

2
)

ϑ4 Z⊕ A+
15 (1

4

12
,−3

4

2
), (1

2

8
,−1

2

8
), (3

4

8
,−1

4

12
)

ϑ5 (D8 ⊕D8)+ (1
2

8
, 07, 1)

ϑ6 E8 ⊕ E8 -

ϑ7 D+
16 (1

2

16
)

The Grushevsky ansatz, from [7], is instead built using Riemann theta functions,
defined as follows for a theta characteristic e = [δε], here regarded as a vector in C2g,

θ [δε] (z, τ) :=
∑
n∈Zg

exp

{
iπ

(
n+

1

2
δ

)t
τ

(
n+

1

2
δ

)
+ 2πi

(
n+

1

2
δ

)t(
z +

1

2
ε

)}
. (2.5)

Riemann theta functions for z = 0 are called Riemann theta constants. The Riemann theta
constants of odd characteristics are zero for any τ ∈ Hg. We will write θe := θ [δε] (0, τ).

The semi-modular forms used in [7] are defined as follows. Let V ⊂ F(2g)
2 be a set

of characteristics in genus g. Then, we define

P (V ) :=
∏
e∈V

θe . (2.6)

Now, define A(g)
p to be the set of all p-dimensional subspaces of F(2g)

2 . Then, we define the

Grushevsky forms {G(g)
p , 0 ≤ p ≤ g ∈ Z} as follows:

G(g)
p :=

∑
V ∈A(g)

p

P (V )24−p

. (2.7)

Note that this notation differs from that in [9] as follows:

G(g)
p =

(
2

p(p−1)
2

p∏
i=1

(
2i − 1

)) ∑
e1,...,ep∈F(2g)

2
e1,...,ep lin.ind.

 ∏
e∈span{e1,...,ep}

θe

24−p

(2.8)

(taken to be 1 for p = 0).
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From [9] we have several equalities between lattice theta series and Riemann theta
constants, in our notation less elegantly written

G(g)
p =

p∑
k=0

(−1)k+p · 2
k(k+2(g−p)+1)

2 ·

(
k∏
i=1

(2i − 1)

p−k∏
i=1

(2i − 1)

)−1

ϑ
(g)
k , p = 0, . . . , 4 (2.9)

where
∏k

i=1(2i − 1) is taken to be 1 for k = 0.
We will throughout the paper denote

f (g) := ϑ
(g)
5 −G(g)

g (2.10)

J (g) := ϑ
(g)
6 − ϑ

(g)
7 . (2.11)

It was shown in [9] that f (g) vanishes on the Jacobian locus Jg for g ≤ 4. In the present
paper we show that f (5) does not vanish on J5.
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Chapter 3

Research

In this chapter, we present the actual research done in the accompanying paper.

3.1 Degeneration

The conjecture which we in this section investigate and disprove, is whether G
(5)
5 and ϑ

(5)
5

agree on the Jacobian locus J5.
If it were to be the case that G

(5)
5 = ϑ

(5)
5 on J5, then also on the closure, and in

particular on genus 4 degenerations. But we show that the latter is not the case.
To achieve this, we express G

(5)
5 and ϑ

(5)
5 for genus 5 surfaces that degenerate by

pinching one of the handles, in the way used in [8], originally from [11], and show that
these expressions do not agree on J5.

More precisely, we will take a 1-parameter family of Riemann surfaces Cs ⊂ M5,
with parameter s, which degenerates to a genus 4 surface C with two indistinguishable
marked points p and q, inside the boundary divisor δ0 ⊂M5. The points p and q are the
endpoints of the cusps that used to be the now-pinched handle.

Namely, following [8], we take such a family of surfaces that their period matrices
τs have the following form:

τs =

(
λ z
zt τ

)
=

(
ln s+ c1 + c2s Atpq + 1

4
s(ω(p)− ω(q))t

Apq + 1
4
s(ω(p)− ω(q)) τ0 + s σ

)
(3.1)

for some constants c1 and c2, where τ0 is the period matrix of C0 and

σij :=
1

4
(ωi(p)− ωi(q)) (ωj(p)− ωj(q)) , i, j ≤ 4.

Define, for legibility,

q := e2πiλ. (3.2)

Now, if we obtain the Fourier-Jacobi expansions of G
(5)
5 and ϑ

(5)
5 , we can use this to ex-

press the forms evaluated in τs as series in s. That is, for anyz function f on J5 that is
holomorphic on a neighbourhood of the curve {τs} ⊂ J5, if

f(τs) = f0(τ) + qf1(τ, z) +O(q2) (3.3)
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we have

f(τs) = f0(τ0) + s

(
4∑
i≤j

∂f0(τ)

∂τij
σij(p, q) + f1(τ, z)

)
+O(s2). (3.4)

We will express the first terms above in a Taylor series. We take for a local chart
x the parameter u = x(p)− x(u) near u = 0 and calculate

σij(p, q) = Sij +O(u4) (3.5)

Sij :=
u2

4

∂ωi(p)

∂x

∂ωj(p)

∂x
+
u3

2

∂2ωi(p)

∂x2

∂ωj(p)

∂x
(3.6)

and therefore, if ∂f1
∂zi

and
∂f31

∂zi∂zj∂zk
vanish,

f(τs(p, q)) = f0(τ0) + s

4∑
i≤j

(
u2 ∂2f1

∂zi∂zj
ωi(p)ωj(p) +

∂f0

∂τij
Sij +O(u4)

)
+O(s2). (3.7)

These series for G
(5)
5 and ϑ

(5)
5 , then, can finally be shown to disagree, by an argument used

in [8].

3.1.1 The expansion of G
(5)
5

To determine the degeneration of G
(5)
5 and ϑ

(5)
5 we will here take the Fourier-Jacobi ex-

pansion of G
(5)
5 , obtaining the analogue of (3.3). That is, we will express G

(5)
5 (τs) in the

limit λ → ∞. Also, we will calculate ∂2h1
∂zi∂zj

where h1 stands for the q-linear term in the

Fourier-Jacobi expansion of G
(5)
5 .

Expanding P (V )
1
2

First, we will calculate the Fourier-Jacobi expansion of the summands P (V )
1
2 for V ∈ A(5)

5 .

Let δ1 stand for the first entry in the vector δ ∈ Fg2. Let π be the projection from F(2g)
2 to

F(2g−2)
2 by deleting the first coordinates (δ1

e , ε
1
e) of δ and ε. We will write

[
δ̃e
ε̃e

]
:= ẽ := π(e).

We will use the known formulae for the Fourier-Jacobi expansion of theta constants, which
look as follows:

θ

[
0 δ̃e
ε1e ε̃e

](
λ zt

z τ

)
= θẽ + 2

∞∑
l=1

eπi(l
2λ+lε1e)θẽ (l~z, τ) (3.8)

θ

[
1 δ̃e
ε1e ε̃e

](
λ zt

z τ

)
= eπi(

1
4
λ+ 1

2
ε1e)θẽ(

1

2
~z, τ) + 2

∞∑
l=1

eπi((l+ 1
2

)2λ+(l+ 1
2

)ε1e)θẽ

((
l +

1

2

)
~z, τ

)
.

(3.9)

As each component of the characteristics contained in V can be either 0 or 1, and
P (V )

1
2 vanishes if V contains any odd characteristics, we can distinguish three kinds of

subspaces V :
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1. First, we consider subspaces containing only characteristics of the form e =

[
0 δ̃e
ε1e ε̃e

]
.

Thus, expanding P (V1) for V1 of this type, using (3.8), we get

P (V1) =
∏
e∈V1

θẽ + 2q1/2
∑
e∈V1

eπiε
1
eθẽ(τ, z)

∏
v∈V1
v 6=e

θṽ

+ 2q
∑

e1,e2∈V1
e1 6=e2

eπi(ε
1
e1

+ε1e2)θẽ1(τ, z)θẽ2(τ, z)
∏
v∈V1
v 6=e1
v 6=e2

θṽ +O(q2). (3.10)

For such V1, the image π(V1) is totally isotropic, and therefore the space π(V1) has
maximal dimension 4. Because additionally the kernel of π has a maximal dimension
of 1 (only ε1e can be picked freely), the ẽ are necessarily pairwise equal, the corre-
sponding pairs of e differing only in their ε1e. We denote by e∗ the characteristic which
equals e ∈ V1 except in the component ε1e. The above consideration shows that e∗ is
contained in V1. Unless e1 = e∗2, then, each term e1, e2 in the summation in the third
term from (3.10) will be canceled by a e∗1, e2 term. Combining these facts, we can
rewrite the above formula as follows:

P (V1) =
∏

ẽ∈π(V1)

θ2
ẽ − 4q

∑
ẽ∈π(V1)

θ2
ẽ(τ, z)

∏
ṽ∈π(V1)
ṽ 6=ẽ

θ2
ṽ +O(q2). (3.11)

Expanding the square root then easily yields

P (V1)
1
2 =

∏
ẽ∈π(V1)

θẽ − 2q
∑

ẽ∈π(V1)

θ2
ẽ(τ, z)

θ2
ẽ(τ, 0)

∏
ṽ∈π(V1)

θṽ +O(q2). (3.12)

Finally, we use the heat equation for the theta functions, where δij is the Kronecker
delta,

∂2θe
∂zi∂zj

= 2πi(1 + δij)
∂θe
∂τij

(3.13)

to obtain

∂2P (V1)
1
2

∂zi∂zj

∣∣∣∣∣
z=0

= −4πi(1 + δij)

 ∑
ẽ∈π(V1)

∂θẽ
∂τij

∏
ṽ 6=ẽ

θṽ

+O(q2). (3.14)

Note that P (V1) is an even function of z and thus the odd partial derivatives vanish
(up to O(q2)).

2. Next, we consider subspaces containing both characteristics of the form e =

[
0 δ̃
0 ε̃

]
and of the form e =

[
1 δ̃
0 ε̃

]
.

11



For these subspaces V2 (as well as for those under 3) below), every basis vector
will appear in exactly half of the characteristics because V2 is a vector space over F2.
Thus, if there is least one e such that δ

(1)
e = 1 we have exactly 16 e such that δ

(1)
e = 1,

and for the other ones δ
(1)
e = 0. Therefore, using (3.8) and (3.9) to expand all theta

constants, we have

P (V2) = 216q2
∏
e1∈V2
δ
(1)
e1

=0

θẽ1(τ, 0)
∏
e2∈V2
δ
(1)
e2

=1

θẽ2(τ,
z

2
) +O(q2) (3.15)

Similar to case 1) above, the ẽ are pairwise equal and the corresponding pairs of e

differ only in δ
(1)
e . Thus, we end up with

P (V2)
1
2 = 28q

√ ∏
ẽ∈π(V2)

θẽ(τ, 0) θẽ(τ,
z

2
) +O(q2). (3.16)

Also, again using the theta heat equation, after a short calculation we find

∂2P (V2)
1
2

∂zi∂zj

∣∣∣∣∣
z=0

= 24
∑

ẽ∈π(V2)

∂2θẽ
∂zi∂zj

∏
ṽ 6=ẽ

θṽ +O(q2)

= 32πi(1 + δij)
∑

ẽ∈π(V2)

∂θẽ
∂τij

∏
ṽ 6=ẽ

θṽ +O(q2). (3.17)

Note that P (V2)
1
2 is an even function of z and thus the odd partial derivatives vanish

(up to O(q2)).

3. Last, we consider subspaces containing, in addition to characteristics contained in

subspaces from case 2) above, characteristics of the form e =

[
0 δ̃
1 ε̃

]
. These do not

have the simple pairings observed above, but we can still expand the theta constants
and obtain the similar expression below, but it cannot be simplified as easily. This,
however, will turn out not to be necessary for our purposes. The 16 factors of eπiε

1
e

together yield 1, and we end up with

P (V3)
1
2 = 28q

√√√√√ ∏
e1∈V3
δ
(1)
e1

=0

θẽ1(τ, 0)
∏
e2∈V3
δ
(1)
e2

=1

θẽ2(τ,
z

2
) +O(q2). (3.18)

For any genus g there will be at least 2g−2 odd characteristics in π(V3) when V3 is of
this type. Therefore, we have

∂P (V3)
1
2

∂zi

∣∣∣∣∣
z=0

=
∂2P (V3)

1
2

∂zi∂zj

∣∣∣∣∣
z=0

=
∂3P (V3)

1
2

∂zi∂zj∂zk

∣∣∣∣∣
z=0

= 0 (3.19)

up to O(q2).
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The expression for G
(5)
5

Let V∗ be the subset of A(5)
5 containing all subspaces from case 3) above. Now, combining

the results from the previous subsection,

G
(5)
5 =

∑
V ∈A(5)

5

P (V )
1
2 =

∑
V ∈A(4)

4

∏
e∈V

θe + q

28

√∏
e∈V

θe · θe(τ,
z

2
)− 2

∑
e∈V

θ2
e(τ, z)

θ2
e

∏
v∈V

θv


+
∑
V3∈V∗

28q

√√√√√ ∏
e1∈V3
δ
(1)
e1

=0

θẽ1
∏
e2∈V3
δ
(1)
e2

=1

θẽ2(τ,
z

2
) +O(q2).

(3.20)

Because π(V ), for V 6∈ V∗, is a totally isotropic element of A(4)
4 , and in fact the image

A(5)
5 \ V∗ under π is the set of all 4-dimensional totally isotropic elements of A(4)

4 , we can
write the following:

G
(5)
5 = G

(4)
4 + 28q

( ∑
V ∈A(4)

4

√∏
e∈V

θe · θe(τ,
z

2
)− 2−7

∑
e∈V

θ2
e(τ, z)

θ2
e

∏
v∈V

θv


+
∑
V3∈V∗

√√√√√ ∏
e1∈V3
δ
(1)
e1

=0

θẽ1
∏
e2∈V3
δ
(1)
e2

=1

θẽ2(τ,
z

2
)

)
+O(q2). (3.21)

Also, this gives us

∂2G
(5)
5

∂zi∂zj

∣∣∣∣∣
z=0

= 28πi(1 + δij)q
∑

V ∈A(4)
4

∑
e∈V

∂θe
∂τij

∏
v 6=e

θv +O(q2) = 28πi(1 + δij)q
∂G

(4)
4

∂τij
+O(q2).

(3.22)

And finally, as the contribution from all V3 ∈ V∗ will vanish in z = 0 because π(V3) contains
odd characteristics, we can see that

G
(5)
5

∣∣∣
z=0

= (1 + 224 q)G
(4)
4 +O(q2). (3.23)

Note that, because the first terms from the expansion of G
(1)
1 (λ) are 1 + 224 q, this is

consistent with the factorization property for G
(g)
g .

3.1.2 The expansion of ϑ
(5)
5

We will now do the same for ϑ
(5)
5 as done above for G

(5)
5 , that is, take the Fourier-Jacobi

expansion and calculate the zi, zj derivatives of the first terms.

13



Note that as ϑ5(τ)(g) :=
∑

p1,...,pg∈Λ5
eπi(pk·pl)τkl , we can write

ϑ5

(
λ zt

z τ

)
=

∑
p1,...,p5∈Λ5

eπip1·p1λe2πi
∑

i p1pizieπi
∑5

i,j>1 pipjτij . (3.24)

The first term in the q-expansion is easy to obtain, and we will obtain the q-linear term as
in [1] by writing

F (g)(τ, z) :=
∑

p1,...,pg∈(D8⊕D8)+

eπi
∑g

i,j=1 pipjτij
∑
p̃·p̃=2

e2πi
∑g

i=1 p̃pizi (3.25)

Clearly, the norm 2 vectors are (. . . ,±1, . . . ,±1, . . . , 08) and (08, . . . ,±1, . . . ,±1, . . .), where
. . . denotes a possibly empty sequence of zeroes. There are 2 · 4 ·

(
8
2

)
= 224 of those.

Now the first terms of the series in q will be:

ϑ
(5)
5

(
λ zt

z τ

)
= ϑ

(4)
5 (τ) + qF (4)(τ, z) +O(q2). (3.26)

Now we will express the zizj-derivatives of F (4), the q-linear term from (3.26), as

done above for G
(5)
5 . Because the norm 2 vectors are the same as those from D8, we can

use the fact that ∑
p̃∈(D8⊕D8)+:p̃·p̃=2

(pi · p̃)(pj · p̃) = 28 pi · pj, (3.27)

which is mentioned and used in [1]. We then obtain

∂2F (4)

∂zi∂zj

∣∣∣∣
z=0

=
∑

p1,...,p4∈Λ5

eπi
∑g

i,j=1 pipjτij
∑
p̃·p̃=2

(2πi)2(p̃pi)(p̃pj)

= 28 · 2πi(1 + δij)
∂F (4)

∂τij

∣∣∣∣
z=0

= 28 · 2πi(1 + δij)
∂ϑ

(4)
5

∂τij
. (3.28)

3.1.3 The final expression

Let now, for brevity, f (g), f
(g)
0 and f

(g)
1 be defined by

f (g) := ϑ
(g)
5 −G(g)

g (3.29)

f (g) = f
(g)
0 + qf

(g)
1 +O(q2). (3.30)

We now develop f (5) as a function of s. Applying formula (3.4) to f (5) and noting that

f
(5)
0 = f (4), we have

f (5)(τs) = f (4)(τ0) + s

(
f

(5)
1 (τ0, z) +

∑
i≤j

∂f (4)

∂τij
σij(p, q)

)
+O(s2). (3.31)
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Now, we expand this using (3.7), letting u := x(p)− x(q) for a local chart x. For
brevity we write

Sij :=
u2

4

∂ωi(p)

∂x

∂ωj(p)

∂x
+
u3

2

∂2ωi(p)

∂x2

∂ωj(p)

∂x
. (3.32)

Remember that σij(p, q) = Sij +O(u4). Then,

f (5)(τs) = f (4)(τ0) + s
∑
i≤j

(
u2 ∂

2f
(5)
1

∂zi∂zj
ωi(p)ωj(p) +

∂f (4)

∂τij
Sij +O(u4)

)
+O(s2). (3.33)

By (3.22) and (3.28) we know that
∂2f

(5)
1

∂zi∂zj
= 28πi(1 + δij)

∂f (4)

∂τij
. This leaves us with

f (5)(τs) = f (4)(τ0) + s
∑
i≤j

∂f (4)

∂τij

(
28πi(1 + δij)u

2ωi(p)ωj(p) + Sij +O(u4)
)

+O(s2).

(3.34)

Now, let J (g) := ϑ
(g)
6 − ϑ

(g)
7 . Because f (4) = 3

7
J (4), from [9], we can rewrite the above as

follows:

f (5)(τs) =
3

7
J (4)(τ0) +

3s

7

∑
i≤j

∂J (4)

∂τij

(
28πi(1 + δij)u

2ωi(p)ωj(p) + Sij +O(u4)
)

+O(s2).

(3.35)

In [8, p. 16-17] Grushevsky and Salvati Manno obtain a similar expression for
the degeneration of J (5), differing only in the numerical coefficients. They show that the
ωi(p)ωj(q) term vanishes and that

∑
i≤j

∂J(4)

∂τij
Sij cannot vanish everywhere due to the fact

that J (4) is the Schottky form. We refer to [8] for details. This shows that f (5)(τs) does
not vanish everywhere. Thus, the above leads to the conclusion

ϑ
(5)
5 6= G

(5)
5 (3.36)

when restricted to J5, as promised.

3.2 The trace of f (5)

Here we will look at the trace of f (5), defined as
∑

e f
(5)[e], because it occurs in the

cosmological constant and is thus of interest for the genus 5 measure.
The definition of a term f (5)[e] is as follows: for any semi-modular form f and for

γe =

(
A B
C D

)
such that

[
diag(ATC)
diag(BTD)

]
= e, we have f [e] := (f |γe). Because f is a

semi-modular form, f [e] does not depend on the particular choice of γe.
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In [8] Grushevsky and Salvati calculate the traces of the forms G
(g)
p . They use a

different notation: their Si is 2−i
∑

eGi[e]. Here we present their formulae. Note that they

are only valid for the G
(g)
p with p ≤ g, because the others vanish identically.

2−5
∑
e

3720G
(g)
5 [e] = 2−3

∑
e

(
22g−6 − 1

)
G

(g)
3 [e]− 2−4

∑
e

90G
(g)
4 [e] (3.37)

2−4
∑
e

840G
(g)
4 [e] = 2−2

∑
e

(
22g−4 − 1

)
G

(g)
2 [e]− 2−3

∑
e

42G
(g)
3 [e] (3.38)

2−3
∑
e

168G
(g)
3 [e] = 2−1

∑
e

(
22g−2 − 1

)
G

(g)
1 [e]− 2−2

∑
e

18G
(g)
2 [e] (3.39)

2−2
∑
e

24G
(g)
2 [e] =

∑
e

(
22g − 1

)
G

(g)
0 [e]− 2−1

∑
e

6G
(g)
1 [e] (3.40)

Because G
(5)
0 [e] = θ16

e and G
(5)
1 [e] = θ8

e

∑
e1 6=0 θ

8
e+e1

, we see that
∑

eG
(5)
0 [e] =

∑
e θ

16
e = ϑ7,

and
∑

eG
(5)
1 [e] = (

∑
e θ

8
e)

2 −
∑

e θ
16
e = ϑ6 − ϑ7. Therefore, we have∑

e

G
(5)
5 [e] =

32

217

(
950ϑ

(5)
6 − 733ϑ

(5)
7

)
(3.41)

∑
e

G
(4)
4 [e] = −16

7

(
22ϑ

(4)
6 − 29ϑ

(4)
7

)
. (3.42)

From [1, p. 28] we learn that∑
e

ϑ
(g)
5 [e] = 2g−1

(
ϑ

(5)
6 + ϑ

(5)
7

)
. (3.43)

Combining the above facts, we obtain the following expressions for the genus 4 and genus
5 trace of f (g): ∑

e

f (4)[e] = −23 · 3 · 17

7
J (4) (3.44)

∑
e

f (5)[e] =
24 · 32 · 11 · 17

7 · 31
J (5). (3.45)

In genus 4 there are 23(24 +1) even characteristics. In genus 5, there are 24(25 +1)
even characteristics. Because J (g) is a modular form with respect to the entire modular
group Γg, its trace is simply the number of even characteristics times J (g). Note that∑

e f
(5)[e]∑

e f
4[e]
6=

∑
e J

5[e]∑
e J

4[e]
. This fact will be used in Section 3.4 to obtain both a vanishing

cosmological constant in genus 5 and a vanishing two-point function in genus 4; in [1] it
was shown that it is impossible to do this using only the OPSMY forms while conforming
to the other requirements for the measure.

Remark. Note that if f (5) were to vanish on J5, this would imply that the trace
would vanish as well. Since J (5) is not everywhere zero on J5, see [8], this gives a second,
less explicit, proof of the nonvanishing of f (5).
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3.3 The difference between f (5) and J (5)

Now that we know that f (5) does not vanish everywhere on J5, a natural question which
arises is whether this form is linearly independent from the already known modular forms
on J5. By the factorization property for both the Grushevsky and OPSMY basis, we can
eliminate all but one candidate. Because (from [9]) f (4) = 3

7
J (4), we see that

f (5)

(
λ 0
0 τ̃

)
= ϑ

(1)
5 f (4) =

3

7
ϑ

(1)
5 J (4). (3.46)

Because J (4) vanishes on J4, the only form that factorizes similarly is J (5): there are
no other linear combinations of lattice theta series for which the restriction to J1×J4 ⊂ J5

vanishes, and the other functions from the Grushevsky basis (i.e., G
(g)
p for p < 5) can be

expressed in terms of the lattice theta series in every genus.
We will prove by a simple argument that f (5) and J (5) cannot coincide on the

Jacobian locus J5. Because ∑
e

f (5)[e] =
3 · 17

7 · 31

∑
e

J (5)[e], (3.47)

if f (5) is a multiple of J (5) it must be equal to 3·17
7·31

J (5). Looking at the degeneration found
in section 3.1,

f (5) = f (4) +
3

7
s
∑
i≤j

∂J (4)

∂τij

(
28u2(1 + δij)ωi(q)ωj(q) + u2 1

4

∂ωi
∂x

(q)
∂ωj
∂x

(q)

+
1

2
u3∂

2ωi(q)

∂x2

∂ωj(q)

∂x
+O(u4)

)
+O(s2), (3.48)

we can compare it with the very similar expression found in [8] for the first terms in u in
the s-linear term when taking the same degeneration for J (5),

J (5) = J (4) + s
∑
i≤j

∂J (4)

∂τij

(
30u2(1 + δij)ωi(q)ωj(q) + u2 1

4

∂ωi
∂x

(q)
∂ωj
∂x

(q)

+
1

2
u3∂

2ωi(q)

∂x2

∂ωj(q)

∂x
+O(u4)

)
+O(s2). (3.49)

Because ∑
i≤j

∂J (4)

∂τij
u2(1 + δij)ωi(q)ωj(q) = 0 (3.50)

f (4) =
3

7
J (4), (3.51)

formula (3.48) differs from formula (3.49) by a factor of 3
7
. Together, this implies

7 · 31

3 · 17
f (5) 6= J (5) (3.52)

on J5 and therefore, f (5) cannot be a multiple of J (5) everywhere on J5.
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3.4 The two-point function in genus 4

Matone and Volpato show in [1] that it is not possible to make a genus 5 measure from the
OPSMY forms that satisfies all requirements. To be precise, the degeneration to genus 4
yields a nonvanishing two-point function if the genus 5 cosmological constant is made to
vanish, i.e. requirement c) from the introduction is not satisfied. Therefore, one may ask

whether by combining these forms with G
(5)
5 one can construct a measure that does satisfy

these properties. The answer is yes.
In order to obtain the genus 4 two-point function from the genus 5 measure, we

follow the procedure set by [1]. That is, consider XNS[(δ, ε)] := 1
2

(
Ξ̃(g+1) [δ 0

ε 0] + Ξ̃(g+1) [δ 0
ε 1]
)

and contract one handle from a family of curves, where then the term linear in the per-
turbation parameter will be the two-point function. As the argument from [1] is quite
detailed, we will just look at what happens with the terms cJJ

(5) + cff
(5) which we would

like to add to the measure, instead of −B5J
(5) as originally proposed, where B5 is the

coefficient of J (5) in the cosmological constant from the ’plain’ OPSMY ansatz. From the
degeneration in the limit s→ 0, we obtain a surface with two marked points a and b, where
the handle was pinched. Now, let ν2

∗(c) = ∂iθ∗(0)ωi(c) for an odd theta characteristic ∗
and define

E(a, b) :=
θ∗(Aab)

ν∗(a)ν∗(b)
(3.53)

which is the prime form, see [11]. Let A2[e](a, b) be the two-point function. We will have
up to a factor independent of e, in some choice of local coordinates,

XNS[e] = sE(a, b)2A2[e](a, b) +O(s2), (3.54)

from [1]. For the OPSMY part of the ansatz we will stick to the notation from Matone and
Volpato, that is, we will write Θk for the lattice theta series, with a different numbering
of lattices for k ≤ 5, so that it is easier to compare the formulae. Here we present a
translation diagram:

[1] notation Lattice Our notation [1] notation Lattice Our notation

Θ0 (D8 ⊕D8)+ ϑ5 Θ4 Z8 ⊕ E8 ϑ1

Θ1 Z⊕ A+
15 ϑ4 Θ5 Z16 ϑ0

Θ2 Z2 ⊕ (E7 ⊕ E7)+ ϑ3 Θ6 E8 ⊕ E8 ϑ6

Θ3 Z4 ⊕D+
12 ϑ2 Θ7 D+

16 ϑ7

Let Nk be the number of norm two vectors in the lattice corresponding to Θk. Let cgk be
the coefficient of Θk in the OPSMY ansatz for genus g, where the same normalization as
in [7] is used (cgk is 24g times the coefficients from [5]) for easier comparison.

We have, for the OPSMY ansatz, from [1],

XNS[e](s,Ω, z) =
7∑

k=0

c5
k

(
1 +Nks+O(s2)

)
Θ

(4)
k [e](Ω). (3.55)
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We will write

XNS[e](s, τ, z) = T0[e](τ, z) + s T1[e](τ, z) +O(s2). (3.56)

Note that E8 ⊕ E8 and D+
16 contain 480 norm 2 vectors and (D8 ⊕D8)+ contains 224 of

them. Also, the s-linear term from G
(5)
5 , formula (3.23), equals 244G

(4)
4 in z = 0. Therefore,

we have

T0[e](τ, 0) =
5∑

k=0

c5
kΘ

(4)
k [e] + cJ (4) + cff

(4) =

(
cJ −

25 · 3
7

)
J (4) + cff

(4) (3.57)

T1[e](τ, 0) = 128Ξ
(4)
OPSMY [e](τ) +

(
480cJ −

720 · 25 · 3
7

)
J (4) + 224cff

(4) (3.58)

As s→ 0, we get

XNS[e] = s
4∑
i,j

2πiE(a, b)2ωi(a)ωj(b)(1 + δij)

((
cJ −

25 · 3
7

)
∂J (4)

∂τij
+ cf

∂f (4)

∂τij

)
+sT

(4)
1 [e](τ, Aab) +O(s2). (3.59)

Calculating T1[e](τ, Aab) from T1[e](τ, 0) can be done using the fact that T1[e] is a section of
|2Θ|, because it is composed of quasiperiodic forms. Here Θ is the divisor of θ0(z). Matone
and Volpato prove that from that fact it follows that

T1[e](τ, Aab) = E(a, b)2

(
T1[e](τ, 0)ω(a, b) +

1

2

4∑
i,j

∂i∂jT1[e](τ, 0)ωi(a)ωj(b)

)
. (3.60)

From [9], we have f (4) = 3
7
J (4) which is the Schottky form and vanishes on J4. Thus we

have T1[e](τ, 0) = 128 Ξ
(4)
OPSMY on the Jacobian locus. Then, we get

A2[e](a, b) = 128 Ξ(4)[e](τ)ω(a, b)

+
4∑
i,j

ωi(a)ωj(b)

(
2πi(1 + δij)

((
cJ −

25 · 3
7

)
∂J (4)

∂τij
+ cf

∂f (4)

∂τij

)
+

1

2
∂i∂jT

(4)
1 [e](τ, 0)

)
.

(3.61)

Denoting by f
(5)
1 the s-linear term from the s-expansion of f (5), and using the functions

F
(g)
k (τ, z) :=

∑
p1,...,pg∈Λk

eπi
∑g

i,j=1 pipjτij
∑
p̃·p̃=2

e2πi
∑g

i=1 p̃pizi (3.62)

we end up with the modified formula

∂i∂jT
(4)
1 [e](τ, 0) = ∂i∂j

(
5∑

k=0

c5
kF

(4)
k [e](τ, 0) + cJ

(
F

(4)
6 − F (4)

7

)
+ cff

(5)
1

)
. (3.63)
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Here, Matone and Volpato introduce the coefficients sgk and tgk, defined by the following
formula:

∂i∂jc
g+1
k F

(g)
k [e](τ, 0) = 2πi(1 + δij)∂i∂js

g
kΘ

(g)
k [e]− tgkΘ

(g)
k ∂i∂j log θ[e](τ, 0). (3.64)

Continuing the process from [1], and noting that f
(5)
1 has the property that

∂2f
(5)
1

∂zi∂zj
=

28(2πi)(1 + δij)
∂f (4)

∂τij
(see formulae (3.22) and (3.28)), we then get

∂i∂jT
(4)
1 [e](τ, 0) = 2πi(1 + δij)

∂

∂τij

(
5∑

k=0

s4
kΘ

(4)
k [e](τ) + 60cJJ

(4) + 28cff
(4)

)

−

(
5∑

k=0

t4kΘ
(4)
k [e](τ)

)
∂i∂j log θ[e](τ, 0). (3.65)

And further following the calculations from [1] the first term in big brackets can be written
as

5∑
k=0

s4
kΘ

(4)
k [e](τ) + 60cJJ

(4) + 28cff
(4) = 32Ξ(4)[e](τ) +

(
60cJ +

3 · 28

7
cf −

152 · 25 · 3
7

)
J (4).

(3.66)

So, having carried the modified Ξ̃ through the degeneration, we end up with a slightly
different two-point function,

A2[e](a, b) = 128Ξ(4)[e](τ)ω(a, b) +
4∑
i,j

ωi(a)ωj(b)
[
−128Ξ(4)[e](τ)∂i∂j log θ[e](τ, 0)

+2πi(1 + δij)
∂

∂τij

(
16Ξ(4)[e](τ) +

(
(30 + 1)cJ + (6 + 1)cf −

(76 + 1) · 25 · 3
7

)
J (4)

)]
(3.67)

The last step of the procedure from [1] is to sum over even characteristics. This procedure
yields, finally,

∑
e

A2[e](a, b) =
J4D

4∑
i,j

ωi(a)ωj(b)2πi(1 + δij)
∂J (4)

∂τij
(3.68)

D = 23(24 + 1)

(
16B4 − 8D4 − 77

25 · 3
7

+ 31cJ + 7cf

)
(3.69)

So, to make
∑

eA2[e](a, b) vanish, we would need

31cJ + 7cf = 77
25 · 3

7
+ 8

27 · 3
7 · 17

− 26 · 33 · 5 · 11

7 · 17
. (3.70)
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The genus 5 cosmological constant from the ’plain’ OPSMY ansatz, that is, without
the −B5J

(5) part, equals (again, see [1]),

∑
e

5∑
k=0

c5
kΘk[e] = −24(25 + 1)

25 · 17

7 · 11
J (5). (3.71)

From Section 3.2, we have for the trace of f (5):∑
e

f (5)[e] =
24 · 32 · 11 · 17

7 · 31
J (5). (3.72)

Because E8 ⊕ E8 and D+
16 are even lattices, they are invariant under modular transforma-

tions and therefore ∑
e

J (5)[e] = 24(25 + 1)J (5). (3.73)

Thus, to make the genus 5 cosmological constant vanish we would need

24(25 + 1)cJ +
24 · 32 · 11 · 17

7 · 31
cf = 24(25 + 1)

25 · 17

7 · 11
. (3.74)

Combining the above linear equations (3.70) and (3.74), we find the solution

cJ = −222647008

217
, cf =

77245568

17
. (3.75)

Hence we present our main formula:

Ξ̃ := Ξ
(5)
OPSMY −

222647008

217
J (5) +

77245568

17
f (5) (3.76)

and the above amounts to proving our main result:

Theorem 3.4.1. Ξ̃ is the unique linear combination of known semi-modular forms of
weight 8 that yields both a vanishing genus 5 cosmological constant and a vanishing genus
4 two-point function.

3.5 The situation in genus 6

Here we take a brief look at the current state of the ansätze in genus 6 and the possibility
of improving it using our findings.

Let Ξ
(6)
e be the Grushevsky ansatz for genus 6 (see [7, Th.22]). Then, define

Ξ̃(6)
e := Ξ(g)

e + k6f
(6) + l6J

(6). (3.77)
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For genus 6, the factorization condition gives

Ξ̃(6)
e

(
λ 0
0 τ̃

)
= Ξ(5)

e Ξ(1)
e + k6

(
ϑ

(1)
5 θ

(5)
5 −G

(1)
1 G

(5)
5

)
+ l6

(
ϑ

(1)
6 ϑ

(5)
6 − ϑ

(1)
7 ϑ

(5)
7

)
?
=Ξ(5)

e Ξ(1)
e + Ξ(1)

e

(
k5f

(5) + l5J
(5)
)

(3.78)

and as G
(1)
1 = ϑ

(1)
5 , Ξ(1) = 1

2

(
G

(1)
0 −G

(1)
1

)
and ϑ

(1)
6 = ϑ

(1)
7 =

∑
eG

(1)
0 [e], this implies

k6G
(1)
1 [e] + l6

∑
e′

G
(1)
0 [e′] =

1

2
(k5 + l5)

(
G

(1)
0 [e]−G(1)

1 [e]
)

(3.79)

and that implies k6 = l6 = k5 + l5 = 0. By theorem 3.4.1 and equation (3.76) we have
k5 + l5 6= 0; so if we want both the genus 4 two-point function and the genus 5 cosmological
constant to vanish, this cannot work.

We conclude that to satisfy the factorization constraint in genus 6 while using the
proposed modification in genus 5, one needs a new form that degenerates in a way that
solves the above problem.

3.6 Conclusion

We have solved the problems posed in [9] and [1]: to compare the remaining two forms
from the OPSMY and Grushevsky ansätze and to use them to make vanish both the
cosmological constant in genus 5 and the two-point function in genus 4.

More precisely, we have shown that combining the two not previously compared
forms from OPSMY and Grushevsky yields a form that cannot be expressed through the
others. We have used this form to construct a slightly modified version of the OPSMY
ansatz for genus 5, which does not only have a vanishing cosmological constant in genus 5
but also a vanishing two-point function in genus 4, as obtained from degeneration.

We have looked at the behaviour of this form in genus 6. We found that there is
no way to satisfy the factorization property using our modified genus 5 ansatz and a genus
6 ansatz constructed solely from the currently known semi-modular forms of weight 8.

Thus, there are two possibilities: either there are more semi-modular forms to be
found, perhaps forms that, like the higher genus forms from Grushevsky, live only on the
Jacobian locus. Or, it may be that the conjecture that the NSR measures can always be
expressed in terms of semi-modular forms is wrong, and breaks down at genus 6.
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Chapter 4

Popular summary

It is a disturbing fact that string theory, although it first arose as early as 1969 in the
study of what we now call quantum chromodynamics, leaves many questions wide open.
That is, many advances have been made in mathematics due to the interest in this area,
but the physical implications of the various kinds of string theory are not yet clear.

Lucky for aspiring mathematical physicists, this means there is a lot of work to be
done in relatively unexplored areas. Whether string theory correctly describes the physical
world around us is still very much unknown and might even be unlikely, seeing the lack of
supersymmetric partners observed in the Large Hadron Collider at CERN. Still, it is very
much possible that they will only be observed at much higher energies. Such concerns,
however, must not hold us back from advancing in this field.

The present thesis focuses on perturbative supersymmetric string theory, and on
a very specific problem in that area. ’Perturbative’ means, in this context, that the prob-
ability of interactions, which is after all what physics is ultimately all about, is calculated
by summing over the probability of all possible constituent processes. To be precise, we
expand everything in powers of the string coupling constant, thereby effectively assuming
that it is small, and then compute terms order-by-order, where terms then correspond to
different genera.

In a diagram, we might put it like this:

There is nothing on the left-hand side, because we are concerned with the probability of
the following event: we start out with a vacuum, wait a bit, and then we still have a
vacuum. This is of course the simplest case possible. On the right hand side we see all the
ways in which this may be brought about : it may be that a string pops up from nothing,
and then vanishes again, as in the first picture (the subpictures represent processes, with
time flowing from left to right inside them) or perhaps this string will split in two before
coming together again and then vanishing - or after coming together it might split again
for one last time, or... There is an infinite number of possibilities.

The way to neatly categorize all possibilities is to split the pictures of processes
by their genus, loosely the number of holes in the surface. Then, we can by a known
procedure assign for each genus a parameter to each possible surface of that genus, and
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integrate over the space of these parameters, to count all possibilities. The integration
here is as always the natural extension of the idea of summation in a space that countains
uncountably many elements.

What we are looking for, then, is the so-called superstring measure, something
that we can integrate over the space of all these parameters representing actual processes,
and that of course should be so defined that it gives physically relevant results.

As it turned out to be very hard to calculate the superstring measure, mathematical
physicists have started guessing it. That is less ridiculous than it sounds: the guesses are
very much educated, because we know a great deal of properties that the superstring
measure should possess, and it turns out there are preciously few objects possessing these
properties.

This program of guessing the superstring measure has yielded some promising
results a few years ago, but more recently it came to a grinding halt. Two proposals had
been put forward: the so-called OPSMY and Grushevsky ansätze (i.e. proposals). It had
been shown that they coincided, and were in fact unique, for genera 1 through 4, but in
genus 5 (a picture of a genus 5 surface is provided on the cover) scientists had not been
able1 to compare them. Even more problematically, a paper was published in which it was
shown that the two proposals did not actually satisfy all the properties of the superstring
measure for genus 5, so they had to be modified.

Therefore, the present thesis set out to compare the OPSMY and Grushevsky
proposals in genus 5, and if they would differ, to try to combine their building blocks to
fix the problems that had popped up.

Slightly unexpectedly, we found by applying a rather lengthy calculation adapted
from a recent paper that the proposals did differ, and that the difference was very well
suited to fix the proposals to indeed satisfy all the properties of the superstring measure
in genus 5.

Sadly, it also turned out that we currently cannot construct the superstring mea-
sure in genus 6 and above. Some new, more general approach would be needed for that,
and might be as complicated as calculating it directly.

So, returning to the general setting, perturbative supersymmetric string theory
has still not yielded a clear physical model. It may be that all the complications that arise
now will be solved by turning to non-perturbative models, where there is no integration
needed, but it is conceptually unclear how they might be defined - or perhaps, it turns
out that the more interesting facts will only be found after a succesful generalization is
made to the currently speculative M-theory, of which all this would just be a specific case.
But as always in mathematical physics, because of the dense relations between areas of
mathematics and the unerring interest of mathematicians in all that can be thought, each
little step might someday make someone very happy.

1It must be said that here, we are talking about complicated infinite sums depending on a matrix that
lives in a space with 24 real dimensions, and is not flat but has a very complicated shape. It is conceptually
nontrivial to see whether two such things are or are not the same.
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