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Abstract

By comparing expressions for degenerated curves, we show that combining
two semi-modular forms from the two different ansatze for the chiral super-
string measure in genus 5 yields a form that is not contained in either ansatz.
We use this form to construct a modified ansatz for genus 5. By calculating
the resulting two-point function for genus 4 and the cosmological constant
in genus 5 we show that for our modified ansatz, both of them vanish as
required. Thus, we solve the problem posed in [1]. Last, we show that from
the currently known forms we cannot construct an ansatz for genus 6 that
satisfies all requirements.
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Chapter 1

Introduction

In perturbative string theory scattering amplitudes can be represented as integrals over the
moduli space of Riemann surfaces M, with respect to a certain measure. Therefore, this
string measure is one of its main ingredients. In the case of NSR superstring theory, for
every genus a set of measures is needed, which correspond to theta characteristics: vectors
containing a zero or one for each out of the 2¢g non-contractable cycles, up to homotopy,
on the Riemann surface.

Constructing these superstring measures directly has proven to be exceedingly
difficult, and it took many years until in 2002 the genus 2 measure was found, in the
papers [2] by E. D’'Hoker and D. Phong. Another approach has surfaced recently, where
instead of explicit calculation, ansétze were made based on supposed requirements for the
measure.

It has been conjectured [3] that the NSR measures du[e] can be written as a product
of the Mumford measure for the critical bosonic string dp and for each characteristic a
semi-modular form Zle] of weight 8 on the Siegel upper half-space:

dple] = Eleldp. (1.1)

In genus g < 3 it is known that this is in fact the case, but in general for higher
genera it is not known a priori whether a suitable form can be constructed, even if the form
is only defined on the subspace of period matrices inside the Siegel upper half-space. The
closure of the subspace of period matrices is called the Jacobian locus and it has nonzero
codimension from genus 4 on. All definitions can be found in section 2.3.

The conditions to which the measures, if the above conjecture holds, must conform
are the following:

[1]

a) The forms =Z[e| are semi-modular forms of weight 8 when restricted to the Jacobian
locus.

b) When the Riemann surface degenerates to a disjunct union of lower-genus surfaces, the

. . . H( +g2) T (91) 0
forms factorize into a product of lower-genus forms. That is, 27,7 0 e )=

Eggl) (T(gl)) EggZ) (7-(92))
c¢) The trace (the cosmological constant) should vanish, i.e. > _Z[e] = 0. Also, the trace
of the 1, ..., 3-point functions ) A,[e] should vanish, cf. [4].
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d) In genus 1 and 2 the ansatz should conform to the known answers.

Two sets of ansatze were proposed: one in terms of theta series for 16-dimension
self-dual lattices by M. Oura, C. Poor,R. Salvati Manni and D. Yuen (OPSMY) in [5],
and one in terms of summations of powers of products of ordinary theta constants, which
was originally suggested by S.L. Cacciatori, F. Dalla Piazza and B. van Geemen in [6] and
written in its final and elegant form by S. Grushevsky in [7]. These have been shown to
coincide for genus g < 4 and, in fact, to be the unique measures constructed in the above
way that conform to all requirements for these genera.

As shown by S. Grushevsky and R. Salvati Manni in [8], the genus 5 cosmological
constant did not vanish for these ansatze. This problem with the cosmological constant
was solved by OPSMY and Grushevsky by modifying the genus 5 ansatze. However, it was
shown by M. Matone and R. Volpato in [1] that the genus 4 two-point function obtained
by degeneration from the modified genus 5 ansétze does not vanish, contrary to the above
requirements.

A natural question, then, became whether these anséitze do in fact coincide for
genus g = 5 and if not, what can be done by combining their building blocks.

The paper [9] compares the semi-modular forms G,()g) and 19;5’), from which the
Grushevsky and OPSMY ansétze were constructed. For all but one p (where 0 < p < 7)
it was shown that 195;9) was expressible through the Gz(g), for all genera. For genus 5 and

above, however, the question remained open whether Gég) and ﬁég) agree on the Jacobian
locus.

Results In the present paper (at the end of section 3.1) we show that in fact, for genus

g > 5, on the Jacobian locus, Gég) and ﬁég) do not agree. We use the fact that 799 - G?)
is nonzero on the Jacobian locus to present a modified genus 5 ansatz,

222647008 77245568
o — Z208 (0 _ ) TE2550S (0 _ o) (1

[1]:
[1]

We prove the vanishing of both the genus 5 cosmological constant and the genus 4 two-
point function, obtained from degeneration, for this modified ansatz. Then, we look at the
situation in genus 6. We show that it is not possible to construct a genus 6 ansatz from
the currently known forms that satisfies all properties. To be precise, condition ¢) cannot
be satisfied.

Structure of the present paper The paper is organized as follows: in section 2.3 we
define the semi-modular forms used in the OPSMY and Grushevsky ansatze and list the
known relations between those sets of forms. In section 3.1 we expand 199 - G?) in a
perturbative series by contracting one handle of the curves and show that this series does
not vanish on the entire Jacobian locus, which means ﬁé5) — Gg’) is nonzero there. In
section 3.2 we calculate the trace (the summation ), fle] over even characteristics) of this

function. We need this to prove that the cosmological constant for our modified ansatz



in genus 5 vanishes. In section 3.3 we compare 199 - Gés) with other semi-modular forms

to show it is not equal to one of the already known forms. In section 3.4 we look at the
two-point function in genus 4 obtained by degenerating the genus 5 ansatz Eg’},SMY +
c (19? - 19(75)) +d (ﬁg5) — GéS)), by the method used in [1]. We show that this, together
with the condition of vanishing genus 5 cosmological constant leads to our main formula
(3.76): a unique ansatz built from the known semi-modular forms in genus 5. In section
3.5 we discuss the factorization property for any genus 6 ansatz implied by our proposed
modification for genus 5. We show that it cannot be satisfied using only the known forms.
Finally, in section 3.6 we briefly summarize our results.



Chapter 2

Definitions

In this chapter, we define the relevant concepts and introduce the semi-modular forms Gég )
and 79,(;]).

2.1 The symplectic group

A 2n x 2n matrix A containing entries in a ring R is called symplectic if A!MA = M,

where M = [ _Oj. é ] This implies, among other things, that A has determinant 1
and is invertible. The set of all such matrices A form a group under ordinary matrix

multiplication: the symplectic group Sp(2n, R).

2.2 The Abel-Jacobi map and the period matrix

Let C' be a complex manifold of genus g. This means, or implies, that there are 2g
classes of loops in C' generating the first homology group. It also implies that the space of
holomorphic differentials on C' has dimension g; we pick a basis v; with 1 < i < g. Now, let
us take a representative ~; from each of the 2¢ classes of loops mentioned above. Define a

lattice L in CY by the following basis: [; := <fv UVlyevny fﬂ/,_ vg>. Then, picking an arbitrary
pvl,...,f;;vg> mod L.

Po
In a similar construction, we can divide the set of loops 7; in two sets with ¢

elements, A and B, by requiring that A; N B; = d;j, AiNA; = B;N Bj = 0,1 # j. Then,
choose a basis w; for the space of holomorphic differentials by requiring that | B, Wi = ij.
This leaves us with a symmetric g X g matrix determined by the manifold C', as follows:
T = [ A, Wit This matrix 7 is called the period matriz and is symmetric, with positive
definite imaginary part.

base point py € C, we define the Abel-Jacobi map: A(p) := (



2.3 The semi-modular forms from OPSMY and Gru-
shevsky

The superstring ansatze are composed of linear combinations of semi-modular forms of
weight 8 on the Jacobian locus. Here, we will define the relevant concepts.

Let H, be the Siegel upper half-space, i.e. the set of complex symmetric g x g-
matrices for which the imaginary part is positive definite. Let Sp(2g,Z) be the symplectic
group of degree 2g over Z, here called the modular group I'j. The modular group acts
on the Siegel upper half-space through modular transformations, defined as follows: let

y= <é ZB;) € I'y. Then,
yor1:=(Ar+ B)(CT+ D)™, TEH, (2.1)

Hence we can also define an action on functions on the Siegel upper half-space. The action
is defined as follows, for a given k:

(flen)(7) == det(CT + D)™ f (yor). (2.2)

Theta characteristics are elements of IFéQg) which we will write as e or as [?], where
§, e € F9; see the introduction. We will often regard theta characteristics as vectors in C%9,
sending the unit of Fy to 0 and the other element to 1.

The theta characteristics are called even (resp. odd) if ), d;¢; is even (resp. odd).

There is a natural set of subgroups of the modular group, corresponding to the

diag(ATC)

diag(B” D) } = e, and let I'(1,2), be the
subgroup of the modular group for which the diagonals of ABT and C'D? contain only
even elements. Then, define T'le], := 7.I'(1,2),7,'. This definition does not depend on
the particular choice of 7., because any two such elements v, and 7. are conjugated by an
element of I'(1, 2),,.

A holomorphic function f on the Siegel upper half-space is called a semi-modular
form of weight k if the following holds:

vy € llely,  (fley) = 1. (2.3)

Let C be a Riemann surface of genus g. Let us pick a basis for the homology
group Hy(C,Z). Then we have the period matrix 7 € H, of C; for details, we refer to
[10]. The period matrix induces a map M, — H,/I',, where M, is the moduli space of
Riemann surfaces of genus g. We will write w; for the 7th holomorphic differential in the
basis corresponding to the period matrix. Also, we use the Abel-Jacobi map A, constructed
from the same basis mentioned above, and we will write A,, := A(p) — A(q).

The OPSMY ansatz from [5] is constructed using lattice theta series, defined as
follows for any lattice A C R™:

()= Y e (2.4)

theta characteristics: let 7. € I'y be such that [



The theta series of self-dual 8n-dimensional lattices provide us with semi-modular forms of
weight 4n, which are in addition modular with respect to the entire group I'y if the lattice
is even.

There are 8 self-dual lattices of dimension 16, the theta series of which we will
write in shorthand as follows, in line with [9],

Notation Lattice Glueing vectors
190 Zl6 _
W 78 & Ey -
0, Z* @ Df, (04,1
U3 7@ (E: ® Er)" (i(iv _%27 %167 _%2)
9, 7.6 AL (%127_%2)’(%8’_%8)’(%87_}112)
Vs (Ds @ Dg)" (1%,07,1)
Us Es @ Eg -
U Dig ()

The Grushevsky ansatz, from [7], is instead built using Riemann theta functions,
defined as follows for a theta characteristic e = [?], here regarded as a vector in C%,

019 (z,7) = ,; exp {m (n + %5)t7 (n + %5) + 2mi (n + %5>t <z -+ %e) } . (25)

Riemann theta functions for z = 0 are called Riemann theta constants. The Riemann theta
constants of odd characteristics are zero for any 7 € H,. We will write 0, := 6 [°] (0, 7).

The semi-modular forms used in [7] are defined as follows. Let V' C IF%QQ ) be a set
of characteristics in genus g. Then, we define

PV)=]]¢.. (2.6)

ecV

Now, define .A;(,g) to be the set of all p-dimensional subspaces of IF%QQ ), Then, we define the
Grushevsky forms {GY),0 < p < g € Z} as follows:

GY .= > Pv)". (2.7)

VGAZ(,,”

Note that this notation differs from that in [9] as follows:

24-p

Gl — (2(5)12[ (21 - 1)) 3 T o (2.8)

(taken to be 1 for p = 0).



From [9] we have several equalities between lattice theta series and Riemann theta
constants, in our notation less elegantly written

p k p—Fk -1
GO =3 (—1)k. o MRt (H(Qi - - 1)) 99 p=0,...,4 (2.9)

k=0 i=1 i=1

where []F_, (2! — 1) is taken to be 1 for k = 0.
We will throughout the paper denote

f9 =9 - GY (2.10)
J = 9l _ yl9), (2.11)

It was shown in [9] that £ vanishes on the Jacobian locus J, for ¢ < 4. In the present
paper we show that f®) does not vanish on Js.



Chapter 3

Research

In this chapter, we present the actual research done in the accompanying paper.

3.1 Degeneration

The conjecture which we in this section investigate and disprove, is whether Gé‘r)) and 199
agree on the Jacobian locus Js.

If it were to be the case that GéS) = ﬁéS) on J5, then also on the closure, and in
particular on genus 4 degenerations. But we show that the latter is not the case.

To achieve this, we express fo) and 19;5) for genus 5 surfaces that degenerate by
pinching one of the handles, in the way used in [8], originally from [11], and show that
these expressions do not agree on Js.

More precisely, we will take a 1-parameter family of Riemann surfaces C'y C Ms,
with parameter s, which degenerates to a genus 4 surface C' with two indistinguishable
marked points p and ¢, inside the boundary divisor 8o C Mj. The points p and ¢ are the
endpoints of the cusps that used to be the now-pinched handle.

Namely, following [8], we take such a family of surfaces that their period matrices
Ts have the following form:

. ( Aoz ) _ ( In s+ c; + o8 AL+ Ls(w(p) — w(q))! ) (3.1)

2T Apg + 35(w(p) — w(q)) T+ so

for some constants ¢; and ¢y, where 7y is the period matrix of Cy and

7 = 7 D)~ wi(0) () — (), ij <4

Define, for legibility,
q =¥ (3.2)

Now, if we obtain the Fourier-Jacobi expansions of Gg’) and 1925), we can use this to ex-
press the forms evaluated in 7, as series in s. That is, for anyz function f on [J5 that is
holomorphic on a neighbourhood of the curve {7} C Js, if

f(r) = fo(r) + afi(7,2) + O(q*) (3-3)



we have

ag(;(T) oii(p, q) + fi(7, Z)> +0(s). (3.4)

f(75) = fo(mo) +5 (

1<j
We will express the first terms above in a Taylor series. We take for a local chart
x the parameter u = x(p) — z(u) near u = 0 and calculate

0ii(p,q) = Si; + O(u 4) (3.5)
u? Owi(p) Ow;(p) | u® 0Pwi(p) Ow;(p)

Sig 1= 4 Oz oxr 2 O2 oxr (3.6)
and therefore, if 8f1 and 77 8f 36 vanish,
dfo 9
f(7s(p,q)) = fo(mo) + s ; ( azlazj w;(p)w;(p) + ors ——5;; + O(u N +0(s?). (3.7)

These series for GéB) and 199, then, can finally be shown to disagree, by an argument used
in [8].

3.1.1 The expansion of Gé5)

To determine the degeneration of G?) and 19&5> we will here take the Fourier-Jacobi ex-

pansion of Gé5), obtaining the analogue of (3.3). That is, we will express G?)(TS) in the

limit A — oo. Also, we will calculate 2‘ }6‘; where h; stands for the g-linear term in the
10%j

Fourier-Jacobi expansion of G5

Expanding P(V)z

First, we will calculate the Fourier-Jacobi expansion of the summands P(V)2 for V e A?)
Let 0" stand for the first entry in the vector § € F{. Let 7 be the projection from F5*?
Iy (2972) 1,y deleting the first coordinates (61, €l) of 6 and e. We will write [gﬂ =¢é:=m(e).

We will use the known formulae for the Fourier-Jacobi expansion of theta constants, which
look as follows:

0 Se A _ 7rzl)\+le >
eLi EKZ ) 0 +2Z 0: (1Z,7) (3.8)

A2\ L m(aria), Lo mi((+ )22+ D)) g 1) -
](z T)—e z 96(52,7')-1-2;6 0z l+§ 2T
(3.9)

As each component of the characteristics contained in V' can be either 0 or 1, and
P(V)2 vanishes if V' contains any odd characteristics, we can distinguish three kinds of
subspaces V:

<>
—
L
My S

®
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0

1
€e

a
@2@53')1
—_

1. First, we consider subspaces containing only characteristics of the form e = {

Thus, expanding P(V;) for Vi of this type, using (3.8), we get

P(Vi) =[] 0: +2¢"*> " em0a(r,2) [] 05

ecVq ecVq UE7£V1
+ 2¢ Z e”i(€é1+6‘1€2)051 (T, 2)0z,(T, 2) H 05 + O(q°). (3.10)
61,62€V1 veVy
e17#e2 vFel

v#eo

For such Vi, the image m(V}) is totally isotropic, and therefore the space w(V;) has
maximal dimension 4. Because additionally the kernel of 7 has a maximal dimension
of 1 (only €! can be picked freely), the é are necessarily pairwise equal, the corre-
sponding pairs of e differing only in their e . We denote by e* the characteristic which
equals e € V; except in the component €. The above consideration shows that e* is
contained in V. Unless e; = e}, then, each term eq, €5 in the summation in the third
term from (3.10) will be canceled by a e}, es term. Combining these facts, we can
rewrite the above formula as follows:

= II 62-4¢ > 6(r.2) ] 62+0( (3.11)
een(Vr) een(Vr) vem(Vh)
VF£E
Expanding the square root then easily yields

%%:H&_Q Zg2 )

éen(Vh) éem(W1)

IT 6 +o. (3.12)

Finally, we use the heat equation for the theta functions, where §;; is the Kronecker
delta,

%0, 00,
= 27i(1 + 0;;)—= 1
Gy, = i+ o) (3.13)
to obtain
92P(V;)z 90,
———— = —4mi(1+ 5y) § | | 05 | +0(q?). (3.14)
aZiaZj 2=0 ’ eer(V1) aTij vFe

Note that P(V) is an even function of z and thus the odd partial derivatives vanish

(up to O(q?)).

™y O
| S

2. Next, we consider subspaces containing both characteristics of the form e = { 8

andoftheforme—{1 (E]
0 €

11



For these subspaces V, (as well as for those under 3) below), every basis vector
will appear in exactly half of the characteristics because V3 is a vector space over Fs.
Thus, if there is least one e such that 58 = 1 we have exactly 16 e such that 5 =
and for the other ones 65" = 0. Therefore, using (3.8) and (3.9) to expand all theta
constants, we have

z
P(Va) =20 [] 0a(7.0) I (7. 5) +O(a”) (3.15)
e1eVo ea€Vy
s =0 s=1

Similar to case 1) above, the € are pairwise equal and the corresponding pairs of e
differ only in 5. Thus, we end up with

P(Vy)? = H 0:(7,0) 0 r§)+0( 7). (3.16)

Also, again using the theta heat equation, after a short calculation we find

P*P(V3)? i
SR N2l
02;0z; Z 821823 H9 +0lq
z=0 een(Va) U#€
= 32mi(1+ ;) Y be []6:+ 0. (3.17)

7’. .
gen(Va) U vzt

Note that P(V3)? is an even function of z and thus the odd partial derivatives vanish
(up to O(g?)).

. Last, we consider subspaces containing, in addition to characteristics contained in
06

subspaces from case 2) above, characteristics of the form e = 1 . These do not
€

have the simple pairings observed above, but we can still expand the theta constants

and obtain the similar expression below, but it cannot be simplified as easily. This,

however, will turn out not to be necessary for our purposes. The 16 factors of erice

together yield 1, and we end up with

L 58 z 2
Pt =2 | ] 0a(r0) T] 6ar.2) + O (3.15)
e1€V3 e2€V3
58)=0 =1

For any genus g there will be at least 2972 odd characteristics in 7(V3) when V3 is of
this type. Therefore, we have
OP(V3)?
8zi

_ PP(Vy):
(9ziazj

_ PP(V):

=8 = 1
aziazj(‘?zk 0 (3 9)

z=0 z2=0

up to O(¢?).

12



The expression for Gé5)

Let V. be the subset of A?) containing all subspaces from case 3) above. Now, combining
the results from the previous subsection,

GV =3 Pv)z= > TI0+a|2® [T]0 o —zz

“1Ie.

VGAS) VEAE;Q eeV eeV eeV e veV
8 0 O, (7, =) + O(¢?
+ Z 2 q H é1 H 62(7—75) + (q )
V3EVx e1€EVs e2€Vs

sV=0  sl)=1
(3.20)

Because 7(V), for V' & V,, is a totally isotropic element of A514), and in fact the image
Aé‘ﬂ \ V. under 7 is the set of all 4-dimensional totally isotropic elements of A514), we can
write the following:

Gg5>:G§4)+28q< 3 Hee-ee(T, Z (7. 2) IT¢.

e
VEAE;L) ecV ecV veV

+> | 11 0= 11 652(T=§)> + O(¢%). (3.21)

V3EVx 6(1§V3 6(2?‘/3
1 1
sM=0 =1

Also, this gives us

9°GY
azi(“)zj

a4, . oGty
= 28mi(1+6;)g D Z [T6. +O(¢*) = 28i(1 + 6;)q + O(g?).

-
2=0 vedd eEV Tij vite 0 i

(3.22)

And finally, as the contribution from all V3 € V, will vanish in z = 0 because 7(V3) contains
odd characteristics, we can see that

GP =1+2249)GY +0(). (3.23)

Note that, because the first terms from the expansion of Ggl)()\) are 1 + 224 ¢, this is
consistent with the factorization property for Gég)

3.1.2 The expansion of 19?)

We will now do the same for ﬁé5) as done above for GS’), that is, take the Fourier-Jacobi
expansion and calculate the z;, z; derivatives of the first terms.

13



Note that as J5(7)9) =" e™ PR P e can write

P1,---,Pg EA5
A Zt TIP1L-PIA 278 Y P1PiZi ﬂ'izs- DiD;Tij
U5 = E e e i PAPiZi g0 2 4i j>1 PiPjTij (3.24)
Zz T
P1,--P5EAN5

The first term in the g-expansion is easy to obtain, and we will obtain the g-linear term as
n [1] by writing

F(g) (7—, Z) e Z ewiZi]‘:lpi;ﬂjT—;j Z 627ri219:1 Ppizi (325)
PPy €(Ds®Dg) ™ pp=2

Clearly, the norm 2 vectors are (..., +1,...,4+1,...,0%) and (0%,...,4+1,...,41,...), where
. denotes a possibly empty sequence of zeroes. There are 2 -4 - (g) = 224 of those.
Now the first terms of the series in ¢ will be:

t
80 (2 7) =00+ a0+ 002, 320

zZ T

Now we will express the z;z;-derivatives of F()| the g-linear term from (3.26), as

done above for Gé5). Because the norm 2 vectors are the same as those from Dg, we can
use the fact that

> (pi-D)p D) =28p;i-pj, (3.27)

pE(Ds®Ds)t:pp=2

which is mentioned and used in [1]. We then obtain

aQF(4) i Zg . DiDiTij 2 N2/~ ~
azzazj 0 - Z € = L ( 7TZ) (pp’l>(ppj)
? P1--P4€As pp=2
OF®W 819
=28 - 2mi(1 + 0;5) —— =28 - 2mi(1 + &;5) ——. (3.28)
87'1']' 2=0 6’7'”
3.1.3 The final expression
Let now, for brevity, f@, £{” and f\ be defined by
— 9
f9 =9 - GY (3.29)
19 = 17+ afi” + 0(a). (3.30)

We now develop f® as a function of s. Applying formula (3.4) to f® and noting that
£ = f@, we have

(4)
f(5)(75) = f ( 0) + <f15) T0,2) + Z or - Tij (p,q ) +O(s ) (3.31)

14



Now, we expand this using (3.7), letting u := z(p) — x(q) for a local chart x. For
brevity we write

? Du(p) Duoy(p) | () Oy (p)

4 Oxr  Ox 2 0x2 Ox
Remember that o;;(p, q) = S;; + O(u*). Then,

Sij =

(3.32)

(4 82 (5) f(4) ,
FOr) = fD(r) + s | u 821821 wi(p)w;(p) + o =S+ 0 | +0(s?).  (3.33)

1<j

By (3.22) and (3.28) we know that 3 f1 = 287i(1 + 04j) 5— f( L This leaves us with

(287r7,(1 + 0;)uw; (p)w; (p) + Sij + O(u')) + O(s?).
(3.34)

Now, let J) .= 19&9) — 19(79). Because f¥ = %J(‘Q, from [9], we can rewrite the above as
follows:

FO(ry) = 2T (7)) + 3s T 0JW — (28mi(1 + 6;5)ulw;(p)w; (p) + Sij + O(u*)) + O(s?).

(3.35)

In [8, p. 16-17] Grushevsky and Salvati Manno obtain a similar expression for
the degeneration of J®), differing only in the numerical coefficients. They show that the

w;(p)w;(q) term vanishes and that . ‘98‘]7( )S cannot vanish everywhere due to the fact

that J*) is the Schottky form. We refer to [8] for details. This shows that f®)(7,) does
not vanish everywhere. Thus, the above leads to the conclusion

5 £ Gl (3.36)

when restricted to Js5, as promised. O

3.2 The trace of f©®

Here we will look at the trace of f©®) defined as Y, f®[e], because it occurs in the
cosmological constant and is thus of interest for the genus 5 measure.
The definition of a term f®)[e] is as follows: for any semi-modular form f and for

_ (A B diag(ATC) | B '
Ve = ( c D ) such that {diag(BTD) = e, we have fle] := (f],.). Because f is a

semi-modular form, f[e] does not depend on the particular choice of ~..
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In [8] Grushevsky and Salvati calculate the traces of the forms G . They use a
different notation: their S; is 27° > _Gj[e]. Here we present their formulae. Note that they

are only valid for the G’(g) with p < g, because the others vanish identically.

523720(} J=2" 32 (227° = 1) G¥[e Z9OG (3.37)
2_42840(}(9)[ | = —22(229—4— 1) GY[e 3242@ (3.38)

e

3 Z 168 GY[e Z (2272 - 1) G\V[e] — 272 Z 18GY[e] (3.39)
-2 Z 24GP[e] =D (2% - 1) Gle] — 27! Z 6G (3.40)

€

Because G{”[e] = 616 and G\V[e] = 6% D 120 051e,, we see that 3 GPlel = 32,6016 = oy,
and 3, GVle] = (32, 68)° = 32, 626 = 196 — 9. Therefore, we have

20(5 - 217 (950 99— 73398 ) (3.41)

Z GO = (2219 — 29 19$4>> . (3.42)
From [1, p. 28] we learn that

>0l =20 (98 +07) (3.43)

Combining the above facts, we obtain the following expressions for the genus 4 and genus
5 trace of f9):

> 0l = -22 2 (3.44)

24.32.11-17

In genus 4 there are 23(2* + 1) even characteristics. In genus 5, there are 24(2° +1)
even characteristics. Because J@ is a modular form with respect to the entire modular
group I'y, its trace is simply the number of even characteristics times .J 9. Note that
> fP[e] £ e Jle]
> file] e Tl
cosmological constant in genus 5 and a vanishing two-point function in genus 4; in [1] it

was shown that it is impossible to do this using only the OPSMY forms while conforming
to the other requirements for the measure.

Remark. Note that if f® were to vanish on Js, this would imply that the trace
would vanish as well. Since J® is not everywhere zero on Js, see [8], this gives a second,
less explicit, proof of the nonvanishing of f®)

This fact will be used in Section 3.4 to obtain both a vanishing
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3.3 The difference between f(5> and J®

Now that we know that f® does not vanish everywhere on J;, a natural question which
arises is whether this form is linearly independent from the already known modular forms
on Js. By the factorization property for both the Grushevsky and OPSMY basis, we can
eliminate all but one candidate. Because (from [9]) f® = 2J™ we see that

A0 (1) 7(4
£ (o T> 9 ) 5195 JW. (3.46)

Because J® vanishes on 7y, the only form that factorizes similarly is J®): there are
no other linear combinations of lattice theta series for which the restriction to J; X J1 C Js
vanishes, and the other functions from the Grushevsky basis (i.e., Gég) for p < 5) can be
expressed in terms of the lattice theta series in every genus.

We will prove by a simple argument that f©® and J®) cannot coincide on the
Jacobian locus J5. Because

3-17
B[] = _§ : () 4
ge €] 7312 JV[e], (3.47)
if £ i (4) i 3-17 7(5) i i
if f)is a multiple of J**) it must be equal to Z57J%). Looking at the degeneration found

in section 3.1,

o1 0w; , | Ow;
() — @) Z 28u2(1 2 Wi Wi
f + S aTZ] < 8“ + 5lj)wl( ) (C.Z) + U 4 ax (q) 8.17

(9)

L p0%wila) 9wy (a) +O(u4)) +O(s2), (3.48)

2 0x? ox

we can compare it with the very similar expression found in [8] for the first terms in u in
the s-linear term when taking the same degeneration for J©®,

oJW o1 0w; , | Ow,
5) _ @) 201 4 5 Vs (0 o N
1= S (300200 + gt + 23 55052 0)
1 50%wi(q) Ow;(q) 4 2
= . 4
+ Rl E +O0(u*) | + O(s?) (3.49)
Because
oJ®
5w (14 0i)wi(g)w;(g) = 0 (3.50)
i<y 0T
@ _ 3 5@
JO =g, (3.51)
formula (3.48) differs from formula (3.49) by a factor of 2. Together, this implies
7-31
B O £ g6 (3.52)

on Js and therefore, f® cannot be a multiple of J® everywhere on Js.
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3.4 The two-point function in genus 4

Matone and Volpato show in [1] that it is not possible to make a genus 5 measure from the
OPSMY forms that satisfies all requirements. To be precise, the degeneration to genus 4
yields a nonvanishing two-point function if the genus 5 cosmological constant is made to
vanish, i.e. requirement c) from the introduction is not satisfied. Therefore, one may ask
whether by combining these forms with Gé5) one can construct a measure that does satisfy
these properties. The answer is yes.

In order to obtain the genus 4 two-point function from the genus 5 measure, we

follow the procedure set by [1]. That is, consider Xng[(4,€)] := 1 (é(gﬂ) 69 4 StV ¢ ?])

and contract one handle from a family of curves, where then the term linear in the per-
turbation parameter will be the two-point function. As the argument from [1] is quite
detailed, we will just look at what happens with the terms c;J® + crf ®) which we would
like to add to the measure, instead of —BsJ® as originally proposed, where Bj is the
coefficient of J®) in the cosmological constant from the ’plain’ OPSMY ansatz. From the
degeneration in the limit s — 0, we obtain a surface with two marked points a and b, where
the handle was pinched. Now, let v2(c) = 9;0.(0)w;(c) for an odd theta characteristic *
and define

0*(*’4(117)
Vi (a)v.(b)

which is the prime form, see [11]. Let Ase](a,b) be the two-point function. We will have
up to a factor independent of e, in some choice of local coordinates,

Xnsle] = sE(a,b)?Agle](a, b) + O(s?), (3.54)

E(a,b) = (3.53)

from [1]. For the OPSMY part of the ansatz we will stick to the notation from Matone and
Volpato, that is, we will write ©, for the lattice theta series, with a different numbering
of lattices for k£ < 5, so that it is easier to compare the formulae. Here we present a
translation diagram:

[1] notation Lattice Our notation | [1] notation | Lattice | Our notation
O (Ds @ Dg)* Vs 0,4 78 ® Fy A
O, 7Z® Al Uy O A Yo
O Z?® (E; @ Eq)" U3 Og Es & Ey Ug
O3 Z* @ D, ) O Dy U7

Let Ny be the number of norm two vectors in the lattice corresponding to ©. Let ¢] be
the coefficient of O in the OPSMY ansatz for genus g, where the same normalization as
in [7] is used (c} is 2% times the coefficients from [5]) for easier comparison.

We have, for the OPSMY ansatz, from [1],

Xnslel(s, 2, 2) = > (1+ Nis + O(s%)) 6" [€] (). (3.55)
k=0
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We will write
Xnslel(s,7,2) = Tole](r, 2) + s Thle](r, 2) + O(s?). (3.56)

Note that Fg @ Eg and Dy contain 480 norm 2 vectors and (Dg & D8)+ contains 224 of

them. Also, the s-linear term from G?), formula (3.23), equals 244 G514) in z = 0. Therefore,
we have

25 .
ch e] +cJW 4 e fW = (C]— 73> JW e f® (3.57)
720253
Ti[e](r,0) = 12825 hg sy [€](7) + (480cJ - —) JG 4 224¢, f@ (3.58)
As s — 0, we get
4
95 . ) )
Xysle] = SZ 2mi E(a, b)*wi(a)w;(b)(1 + ;) ((CJ - 3) aa{_” +cy 88{_” )

| +sTD[e](r, Aw) + O(s?).  (3.59)

Calculating Ti[e](, Aap) from T} [e] (7, 0) can be done using the fact that T7[e] is a section of
|20], because it is composed of quasiperiodic forms. Here © is the divisor of fy(z). Matone
and Volpato prove that from that fact it follows that

Ti[e](7, Aw) = E(a,b)? (Tl[e]( Zaa Ty[e](7, 0)ws(a )wj(b)> . (3.60)

From [9], we have f*) = 2J® which is the Schottky form and vanishes on J;. Thus we
have Tile](7,0) = 128 E%}SMY on the Jacobian locus. Then, we get

Asle](a,b) = 128 2D e] (7)w(a, b)

4
, 25.3\ 0JW OFf@ 1
+ ) wia)w; (b) (27”(1 + dij) <(CJ - > o T 31;. ) + §3iajT1(4)[€](T7 0)) :
oy ij ij
(3.61)

Denoting by f1(5) the s-linear term from the s-expansion of f (5), and using the functions
F,gg)(T, Z) — Z ewiZf’j:lpiPﬂij Z o2mi 30y Ppizi (3'62)
P1,.-Pg EAR p-p=2
we end up with the modified formula

5

0.0, ") (7,0) = 0,0 (Z AFVe)(r,0) + e (B = F) + cfff5>> . (363)

k=0
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Here, Matone and Volpato introduce the coefficients s; and ¢, defined by the following
formula:

8:0;4 F9[e)(7,0) = 2mi(1 4 6;,)8:0;570V[e] — 1209 0,0; log 0]e] (. 0). (3.64)
(5)
Continuing the process from [1], and noting that f1(5) has the property that gzifé; =

28(2i) (1 + 6,;)

%’jzf) (see formulae (3.22) and (3.28)), we then get

5
8:0,TV[e](7,0) = 2mi(1 + %)% (Z st0We] (1) + 60c, T 4 28¢; f(4))
ij

<Z e ) 9,0;1og 0[e](1,0).  (3.65)

And further following the calculations from [1] the first term in big brackets can be written
as

5
PEHE! ) 4 60c;JW 4 28¢, W = 322WIe] (1) + <60cJ +
k=0

3-28 152-2°-3
_ (4)
7 Cf 7 ) J .
(3.66)

So, having carried the modified = through the degeneration, we end up with a slightly
different two-point function,

Asle](a, b) = 12824 wla,b) + Zwl a)w;(b) [~128=D[e] (1)8;0; log 0[e] (7, 0)
omi(1 + 5ij)aij (165(4> le](r) + ((30 1oy + (64 1)y — T0F 17) 2 3> JH))}
(3.67)

The last step of the procedure from [1] is to sum over even characteristics. This procedure
yields, finally,

4
_ . 0J@
g Asle](a,b) 7D ZJ wila)w;(b)2mi(1 + 5ij)aTj (3.68)
3704 2°-3
D=2°(2"+1)(16B, — 8D, — 77 +3ley + Tey (3.69)
So, to make ) _ As[e](a,b) vanish, we would need
25. 27 . 26.33.5.11
3ley +Tcyp =77 3 +8 3 — 375 . (3.70)

7 717 717
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The genus 5 cosmological constant from the 'plain’ OPSMY ansatz, that is, without

the —Bs.J®) part, equals (again, see [1]),

° 17
5 — _24 25 1
3 doukd = 2@ )
From Section 3.2, we have for the trace of f()

2 2321117
5) I (),
Zf 7-31 /

(3.71)

(3.72)

Because Eg @ Eg and Dy are even lattices, they are invariant under modular transforma-

tions and therefore

ZJ = 24(2° +1)J0.

Thus, to make the genus 5 cosmological constant vanish we would need

21.32.11.17 25.17
=22 +1 :
T A Gk ey

24(2° + 1)cy +
Combining the above linear equations (3.70) and (3.74), we find the solution

. 222647008 77245568
g = =

217 YT T a7

Hence we present our main formula:

) 222647008 (5, , 77245568

—_
— e —
—

== — O
OPSMY 217 17

and the above amounts to proving our main result:

(3.73)

(3.74)

(3.75)

(3.76)

Theorem 3.4.1. = is the unique linear combination of known semi-modular forms of
weight 8 that yields both a vanishing genus 5 cosmological constant and a vanishing genus

4 two-point function.

3.5 The situation in genus 6

Here we take a brief look at the current state of the ansatze in genus 6 and the possibility

of improving it using our findings.

Let 2% be the Grushevsky ansatz for genus 6 (see [7, Th.22]). Then, define

20 =29 4 ke fO 41T,

e

21

(3.77)



For genus 6, the factorization condition gives

Q ( A0 ) 2020 4 ks (9508 - GG ) + 1 (0000 — 0V0)

[1]:

0 7
PEPEM +ZW (ks fO) + 1;JP) (3.78)

and as G{") =9V 20 = 3 <Gél) - Gg”) and 9\ = o{" = > GS"[e], this implies
e] + Ig Z al) k;g, +15) (G le] — Gg”[e]) (3.79)

and that implies k¢ = lg = k5 + 5 = 0. By theorem 3.4.1 and equation (3.76) we have
ks 415 # 0; so if we want both the genus 4 two-point function and the genus 5 cosmological
constant to vanish, this cannot work.

We conclude that to satisfy the factorization constraint in genus 6 while using the
proposed modification in genus 5, one needs a new form that degenerates in a way that
solves the above problem.

3.6 Conclusion

We have solved the problems posed in [9] and [1]: to compare the remaining two forms
from the OPSMY and Grushevsky ansétze and to use them to make vanish both the
cosmological constant in genus 5 and the two-point function in genus 4.

More precisely, we have shown that combining the two not previously compared
forms from OPSMY and Grushevsky yields a form that cannot be expressed through the
others. We have used this form to construct a slightly modified version of the OPSMY
ansatz for genus 5, which does not only have a vanishing cosmological constant in genus 5
but also a vanishing two-point function in genus 4, as obtained from degeneration.

We have looked at the behaviour of this form in genus 6. We found that there is
no way to satisfy the factorization property using our modified genus 5 ansatz and a genus
6 ansatz constructed solely from the currently known semi-modular forms of weight 8.

Thus, there are two possibilities: either there are more semi-modular forms to be
found, perhaps forms that, like the higher genus forms from Grushevsky, live only on the
Jacobian locus. Or, it may be that the conjecture that the NSR measures can always be
expressed in terms of semi-modular forms is wrong, and breaks down at genus 6.

22



Chapter 4

Popular summary

It is a disturbing fact that string theory, although it first arose as early as 1969 in the
study of what we now call quantum chromodynamics, leaves many questions wide open.
That is, many advances have been made in mathematics due to the interest in this area,
but the physical implications of the various kinds of string theory are not yet clear.

Lucky for aspiring mathematical physicists, this means there is a lot of work to be
done in relatively unexplored areas. Whether string theory correctly describes the physical
world around us is still very much unknown and might even be unlikely, seeing the lack of
supersymmetric partners observed in the Large Hadron Collider at CERN. Still, it is very
much possible that they will only be observed at much higher energies. Such concerns,
however, must not hold us back from advancing in this field.

The present thesis focuses on perturbative supersymmetric string theory, and on
a very specific problem in that area. ’Perturbative’ means, in this context, that the prob-
ability of interactions, which is after all what physics is ultimately all about, is calculated
by summing over the probability of all possible constituent processes. To be precise, we
expand everything in powers of the string coupling constant, thereby effectively assuming
that it is small, and then compute terms order-by-order, where terms then correspond to
different genera.

In a diagram, we might put it like this:

There is nothing on the left-hand side, because we are concerned with the probability of
the following event: we start out with a vacuum, wait a bit, and then we still have a
vacuum. This is of course the simplest case possible. On the right hand side we see all the
ways in which this may be brought about : it may be that a string pops up from nothing,
and then vanishes again, as in the first picture (the subpictures represent processes, with
time flowing from left to right inside them) or perhaps this string will split in two before
coming together again and then vanishing - or after coming together it might split again
for one last time, or... There is an infinite number of possibilities.

The way to neatly categorize all possibilities is to split the pictures of processes
by their genus, loosely the number of holes in the surface. Then, we can by a known
procedure assign for each genus a parameter to each possible surface of that genus, and
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integrate over the space of these parameters, to count all possibilities. The integration
here is as always the natural extension of the idea of summation in a space that countains
uncountably many elements.

What we are looking for, then, is the so-called superstring measure, something
that we can integrate over the space of all these parameters representing actual processes,
and that of course should be so defined that it gives physically relevant results.

As it turned out to be very hard to calculate the superstring measure, mathematical
physicists have started guessing it. That is less ridiculous than it sounds: the guesses are
very much educated, because we know a great deal of properties that the superstring
measure should possess, and it turns out there are preciously few objects possessing these
properties.

This program of guessing the superstring measure has yielded some promising
results a few years ago, but more recently it came to a grinding halt. Two proposals had
been put forward: the so-called OPSMY and Grushevsky ansétze (i.e. proposals). It had
been shown that they coincided, and were in fact unique, for genera 1 through 4, but in
genus 5 (a picture of a genus 5 surface is provided on the cover) scientists had not been
able! to compare them. Even more problematically, a paper was published in which it was
shown that the two proposals did not actually satisfy all the properties of the superstring
measure for genus 5, so they had to be modified.

Therefore, the present thesis set out to compare the OPSMY and Grushevsky
proposals in genus 5, and if they would differ, to try to combine their building blocks to
fix the problems that had popped up.

Slightly unexpectedly, we found by applying a rather lengthy calculation adapted
from a recent paper that the proposals did differ, and that the difference was very well
suited to fix the proposals to indeed satisfy all the properties of the superstring measure
in genus 5.

Sadly, it also turned out that we currently cannot construct the superstring mea-
sure in genus 6 and above. Some new, more general approach would be needed for that,
and might be as complicated as calculating it directly.

So, returning to the general setting, perturbative supersymmetric string theory
has still not yielded a clear physical model. It may be that all the complications that arise
now will be solved by turning to non-perturbative models, where there is no integration
needed, but it is conceptually unclear how they might be defined - or perhaps, it turns
out that the more interesting facts will only be found after a succesful generalization is
made to the currently speculative M-theory, of which all this would just be a specific case.
But as always in mathematical physics, because of the dense relations between areas of
mathematics and the unerring interest of mathematicians in all that can be thought, each
little step might someday make someone very happy.

Tt must be said that here, we are talking about complicated infinite sums depending on a matrix that
lives in a space with 24 real dimensions, and is not flat but has a very complicated shape. It is conceptually
nontrivial to see whether two such things are or are not the same.
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