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Abstract This work is seeking for the existence of stable
quark stars (QSs) in the framework of a modified theory of
gravity known as gravity’s rainbow. This modification comes
from the fact that the geometry of spacetime depends on the
energy of the test particle. We solve numerically the modified
TOV equations and present the mass–radius (M–R) diagram
for quark matter equations of state. To constrain the allowed
values of the model parameters, we use current astrophysi-
cal measurements of the masses and radii of neutron stars.
Finally, we investigate the dynamical stability of the hydro-
static equilibrium equations in gravity’s rainbow by analyz-
ing the static stability, adiabatic index, and sound velocity
profiles.

1 Introduction

During the past few decades, there have been drastic improve-
ments in astronomical observations that have opened a new
window to look at high-energy phenomena on relatively
small astronomical scales. This observation raised an intrigu-
ing question related to the properties of matter at high den-
sities and temperatures in neutron stars (NSs). Under such
extreme conditions, it’s hard to deal with the matter in a
laboratory; therefore, the equation of state (EoS) of dense
matter (expected to be many times higher than the nuclear
saturation density) cannot be determined by experimental
methods alone [1,2]. Indeed, substantial efforts have been
devoted to addressing this situation while determining the
gross structure of compact stars. Within these constraints,
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scientists proposed a variety of exotic states of matter, such as
Bose-Einstein, quark-gluon plasma, high-temperature super-
conductors, and so on.

More realistically, strong coupling-based phenomena
offer an exciting arena in particle physics and lead to the dis-
covery of of new principles. The outcome mainly depends
on the interaction between quarks and gluons, as described
by quantum chromodynamics (QCD) [3]. As a result, QCD
provides a successful description of matter at extreme envi-
ronments, such as the astrophysics of compact stars [4–6].
in non-central, high-energy heavy ion collisions [7–9] and
in the early universe [10,11]. It is therefore speculated that
such a phase transitions of hadronic matter to deconfined
quark matter could be occur inside the cores of massive NSs.
In particular, most of the examined model favor a first-order
deconfining transition [12,13].

Even more intriguing, the predicted quark matter in a core
of NS was first proposed by Itoh [14] in 1970. Prior to that,
Ivanenko and Kurdgelaidze [15] thought that a quark star
(QS) might exist in 1965. The key ingredient to describe
a QS is quark matter (strange quark matter), characterized
most simply by up, down and strange quarks (together
with an appropriate number of electrons to guarantee elec-
trical neutrality) satisfying the Bodmer–Witten hypothesis
[16,17]. According to this conjecture, quark matter may actu-
ally be more stable than ordinary nuclear matter (see [18] for
a review).

In this paper, we investigate the possible existence of
QS in the context of rainbow gravity. For quark matter,
we Consider the MIT bag model. Specifically, the MIT bag
model, developed at the Massachusetts Institute of Technol-
ogy in Cambridge (USA) in 1974, considered as a successful
phenomenological model for quark confinement. Using this
model, authors in [19] have obtained 2M� hybrid stars for
reasonable values of the bag model parameters; see also Ref.
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[20]. In particular, it was found that the MIT bag model can
successfully describe the structural properties of SQSs in a
modified theory of gravity; see, e.g., [21–28]. Moreover, QSs
with the inclusion of charged effect have also been found in
modified gravity theory [29–33].

The goal of the present article is to see the effect of
anisotropic pressure and investigate the structural properties
of QSs in a modified theory of gravity known as rainbow
gravity. The theory of rainbow gravity has been proposed
as a generalization of doubly (or deformed) special relativ-
ity. In this formalism, the geometry of spacetime depends on
the energy of the probe particle, which affects the spacetime
background and leads to distinct distortions in spacetime.
Within the framework of rainbow gravity, exact black hole
solutions and their interesting properties have been studied
by many authors in [34–38]. Most recently, gravastar and
wormhole solutions have been found in gravity’s rainbow
theory; see Refs. [39,40]. Such modification of gravity can
address a number of important physical properties of astro-
nomical objects at extreme situation, such as dark stars [41]
and neutorn stars [42]. Considering the same modified grav-
ity, our interest lies in analyzing the structural properties of
QSs. Later, we consider available mass and radius measure-
ments of pulsars to constrain the free model parameters.

The work is structured as follows. In Sect. 2, we briefly
recall the basic equations of rainbow gravity. Assum-
ing spherically symmetric metric, we obtain the modi-
fied Tolman–Oppenheimer–Volkoff (TOV) equations that
describe solutions of stellar structure. In Sect. 3 we present an
overview of the equations of states (EoSs) that have been used
for the quark star model. Section 4 is devoted to studying our
numerical results focusing, in particular, on the mass–radius
relation. We then examine the dynamical stability of the stel-
lar configuration under consideration in Sect. 5. Finally, in
Sect. 6 we summarize the results and draw conclusions.

2 Review of Gravity’s Rainbow and stellar structure
equations

2.1 Rainbow theory

The theory of doubly special relativity (DSR) has been pro-
posed by Amelino-Camelia [43] as a generalization of special
relativity, see also Ref. [44] for more. Here, the terminology
“doubly special” is a very suggestive term as DSR possess
two quantities that are observer independent, the speed of
light and the Planck energy. Despite the success of DSR
there are several doubts that has so far no satisfactory answer,
such as the so-called “soccer ball” problem. To overcome
this problem, Magueijo and Smolin [45] proposed a general-
ization of the DSR to the curved spacetimes. Such theory is
called as rainbow gravity (or gravity’s rainbow) assuming the

geometry of spacetime depends on the energy of the test par-
ticle. Under these conditions varying particle energies lead
to distinct distortions in spacetime, and modify the standard
relativistic dispersion relation in the high-energy regime (or
Planck scale). Thereby, the associated modification could be
written as:

E2�(x)2 − p2�(x)2 = m2. (1)

where �(x) and �(x) are known to be rainbow functions
that are characterized by the dimensionless ratio x = E/Ep.
Here, E is the relativistic total energy of the probe particle

and Ep is the Planck energy, represented as Ep =
√

�c5

G .
Since, the rainbow functions with specific functional forms
are responsible for this modification in the ultraviolet regime
and plays a significant role within the framework of Rain-
bow gravity. However, in the low energy scale where x =
E/Ep → 0, the rainbow functions satisfy the following rela-
tions

lim
x→0

�(x) = 1, lim
x→0

�(x) = 1, (2)

and the standard energy dispersion relation is recovered. For
this purpose, authors in [45] had pointed out that metrics are
given in terms of energy-dependent, which is

gμν(x) = ηabeμ
a (x) ⊗ eν

b(x), (3)

where the energy-dependent vierbein fields represented as
eμ
a (x) with the relation

eμ
0 (x) = 1

�(x)
ẽμ

0 , eμ
k (x) = 1

�(x)
ẽμ
k , (4)

and the tilde quantities refer to the energy-independent
tetrads, where the index k is used to denote the spatial coor-
dinates and assume the values (1, 2, 3). It may be noted that
the modified form of the relativistic dispersion relation by the
rainbow functions is not unique, because they are implicitly
dynamical functions of the coordinates. Thus, the gravity’s
rainbow is a promising candidate to probe quantum gravita-
tional effects in the core of a compact star. In this prescription,
the equation of motion in gravity’s rainbow turns out to be
[45]

Gμν(x) ≡ Rμν(x) − 1

2
gμν(x)R(x) = k(x)Tμν(x), (5)

where Gμν(x) is the Einstein tensor with k(x) = 8πG(x),
and the stress-energy tensor is given by Tμν(x) which acts as
the source of spacetime curvature. For simplicity, we work
in units where G(x) = 1.
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2.2 Modified TOV equations of gravity’s rainbow

Following the approach presented in Ref. [45], one can
replace the conventional spherical symmetric metric by a
rainbow metric in the following form,

ds2 = − e2�(r)

�2(x)
dt2 + e2λ(r)

�2(x)
dr2 + r2

�2(x)
d	2, (6)

where �(r) and λ(r) are radial dependent functions and we
have defined d	2 = (dθ2 + sin θ2dφ2). Also, the rainbow
functions �(x) and �(x) do not depend on spacetime coor-
dinates (r , t , θ , φ).

In this work, we aim to explore the effect of local
anisotropy within a QS. For such a fluid, the stress-energy
tensor of the form [63]

Tμν = (ρ + pt )uμuν + pt gμν − (pt − pr )χμχν, (7)

where ρ(r) is the energy density with pr (r) and pt (r) are
the radial and transverse pressure, respectively. The fluid 4-
velocity is define as

uμ =
(

�(x)

e�(r)
, 0, 0, 0

)
, (8)

with following restriction uμuμ = −1 and χμ is the unit
normal vector in the radial direction with χμχμ = 1.

Finally, using the above mentioned metric (6) and stress-
energy tensor (7), we are in a position to write down the mod-
ified Tolman–Oppenheimer–Volkoff (TOV) equations for a
spherically symmetric and static metric [42]

Meff(r, x) =
∫ r

0

4πr2ρ(r)

�2(x)
dr ≡ m(r)

�2(x)
, (9)

p′
r = −(ρ + pr )�

′ + 2

r
(pt − pr ) , (10)

�′(r) = Meff(r, x)�2(x) + 4πr3 pr (r)

r (r − 2Meff(r, x)) �2(x)
, (11)

where prime denotes the first order derivative with respect to
the radial coordinate, r . The gravitational field equations (9)–
(11) describing a stellar structure in rainbow gravity should
be closed by assuming a constitutive equation of state (EoS)
relating the pressures and the density. Furthermore, Eqs. (9)–
(11) with an ad hoc EoS (which we will discuss later) can be
solved numerically by imposing a suitable boundary condi-
tions m(0) = 0 and ρ(0) = ρc, and then integrates outward
to a radius r = R where radial pressure vanishes at the sur-
face of the star i.e., pr (R) = 0 for selecting ρc.

3 Theoretical framework

3.1 MIT bag model

Theoretically, QSs are composed of entirely or almost
entirely of quark matter which could be the true ground state
of baryonic matter with an energy per baryon ε ≡ E/A could
be less than that of the most stable atomic nucleus, such as
56Fe and 62Ni. On the other hand, the landmark detection
of GWs by the Advanced LIGO and Advanced Virgo detec-
tors [46–48] has opened up the prospect of testing the inter-
nal structure of ultra-massive NSs. Beside that it helps us to
choose reliably EoS, give also insight on the behavior of mat-
ter at such high densities. In this sense, it is speculated that
deconfined quark matter exists in the core of massive NSs.
As a result, the EoS of quark matter can have a significant
role in pushing up massive NSs detected in the last decade
or so.

Here we focus on the most successful phenomenological
model for quark matter is the MIT bag model to explain
hadrons in terms of quarks [49]. According to this model,
quarks are asymptotically free and confined in a finite region
called ‘bag’. Therefore, MIT bag model can be viewed as
a relativistic particle confined in a box. The EoS relating
energy density and pressure is given by:

pr = 1

3
(ρ − 4B) . (12)

where B represents the bag constant with vanishing external
pressure at ρ = 4B. The parameter value of B typically
lies within a range of 57 ≤ B ≤ 92 MeV/fm 3, as can be
seen in Refs. [50,51]. Throughout our numerical calculation,
we choose the value for B = 60 MeV/fm3, and using this
value one can predict the existence of massive compact object
satisfying 2M� limit within general relativity (GR) context
(see Refs. [52–54] for a detailed review).

Meanwhile, we consider the quasilocal EoS [55] that
describe local anisotropy pressure inside a compact star.
Within this approach, various anisotropic solutions were
found in both GR and modified gravity theory. So the pres-
sure anisotropy, in our case leads to the following expression

� ≡ p⊥ − pr = βprμ. (13)

Here β is a dimensionless free parameter that measures the
deviation from isotropy in the fluid. Since, the values of β

lies within the range −2 ≤ β ≤ 2 provides a good accuracy
with the data obtained from observational astronomy (check,
e.g., [56–63] and their references). Further, μ ≡ 2m(r)/r
represents the measure of local compactness and m(r) is the
gravitational mass enclosed within a radius r . Since the effect
of anisotropy vanishes at the center of the star i.e., � = 0
when r → 0, and thereby recovering the isotropic solution.
This anisotropy model also permits the vanishing pressure
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Table 1 The table summarizes results for QS properties, such as the maximum mass Mmax and their corresponding radius Rmax in units of M�
and km, respectively. The range for parameters are B = 60 MeV/fm3 and β = 0.5 with varying �(x) ∈ [0.85, 1.15]
�(x) M [M�] RM [km] ρc [MeV/fm3] M/R

0.85 1.80 9.30 1069 0.3

0.90 1.91 9.84 1069 0.3

1.00 2.13 10.94 1069 0.3

1.05 2.23 11.48 1069 0.3

1.10 2.39 12.03 1069 0.3

1.15 2.45 12.57 1069 0.3

Fig. 1 Mass–radius and maximum compactness diagrams of QSs in
rainbow gravity. For our analysis, we adopt the B = 60 MeV/fm3 and
β = 0.5 with varying�(x) ∈ [0.85, 1.15]. The boundaries of each color
band are obtained form the mass–radius measurement of the maximum-
mass of pulsars: PSR J0348+0432 (LightRed) [64], PSR J0740+6620
(Pink) [65] and PSR J0952-0607 (Magenta) [66], PSR J1614-2230 [67]
(Purple). The shaded areas correspond to the constraints from the binary
NS merger GW170817 event [68]. The case �(x) = 0 (dashed-black
line), gives the curve for GR solution

components at the surface of the star, i.e., pr (r → R) =
p⊥ (r → R) = 0. Moreover, the expression (13) vanishes
at β = 0 which satisfy the regularity conditions at stellar
interior. In our calculation we use the range β ∈ [−1, 1],
where the changes in mass–radius relation are visible.

Fig. 2 Mass–radius and maximum compactness diagrams of QSs in
rainbow gravity. For our analysis, we adopt the B = 60 MeV/fm3 and
�(x) = 1.1 with varying β =∈ [−1.0, 1.0]. The case β = 0 (dashed-
black line), gives the curve for isotropic solution. To compare with
observational constraints, we indicate the same pulsar measurements as
in Fig. 1

4 Numerical results and discussions

In this section, we will explore the properties of QSs by solv-
ing numerically the differential equations (9)–(11) together
with the EoSs (12) and (13), respectively. We then show the
impact of model parameters (�, β) on the mass–radius rela-
tion. Finally, we examine the stability of stellar configura-
tions within this model of gravity via static stability criterion,
adiabatic index and checking the sound velocity.
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Table 2 The table summarizes results for QS properties, such as the maximum mass Mmax and their corresponding radius Rmax in units of M�
and km, respectively. The range for parameters are B = 60 MeV/fm3 and �(x) = 1.1 with varying β =∈ [−1.0, 1.0]
β M [M�] RM [km] ρc [MeV/fm3] M/R

-1.0 1.80 11.30 1,294 0.236

-0.5 1.97 11.54 1,238 0.252

0.0 2.15 11.76 1,182 0.270

0.5 2.34 12.03 1,069 0.289

1.0 2.54 12.30 959 0.306

4.1 Profiles for variation of �(x)

More details about the structural properties of QSs have
been found in Table 1. Furthermore, it can be seen from
Table 1 that the Mmax for QS reaches its maximum value
of 2.45 M� with radius R = 12.57 km for �(x) = 1.15.
Furthermore, the results of the maximum mass of QSs are
being constraints derived from the available mass and radius
measurements of pulsars: PSR J0348+0432 with a mass of
M = 2.01 ± 0.04M� (LightRed) [64], PSR J0740+6620
with a mass of M = 2.08 ± 0.07M� (Pink) [65] and
PSR J0952-0607 that corresponds to M = 2.35 ± 0.17M�
(Magenta) [66] and PSR J1614-2230 with a mass of M =
2.35 ± 0.17M� (Purple) [67]. In figure, the shaded areas
correspond to the constraints from the binary NS merger
GW170817 event [68]. Observing the mass–radius curves
from Fig. 1 (upper panel), we can say that our results are
comparable with the mass and radius measurements of pul-
sar observations. More importantly, �(x) = 0 reveals the
GR solution with maximum mass greater than 2 M�. As a
consequence, we see the effect of rainbow function allows
us to obtain more massive stars in rainbow gravity. We also
investigated the effect of �(x) on the properties of maximum
compactness in the lower panel of Fig. 1. Also in Table 1, we
tabulated the value of maximum compactness. Observing the
table we see that the value of maximum compactness does
not affected for different groups of parameters, and its value
is M/R = 0.3. We also note that the Buchdahl limit is not
violated i.e., M/R < 4/9, as shown in Fig. 1.

4.2 Profiles for variation of β

Here we present the outcomes of our numerical analysis
for the variation of β. The resulting (M–R) and (M–M/R)

curves are displayed in Fig. 2. We present the results of prop-
erties QSs from our calculations in Table 2. Examining the
table, we observe that the maximum mass increases with
positive increasing values of β, and we find that the maxi-
mum mass becomes Mmax = 2.54M� for β = 1.0. We can
also see that the maximum mass exceed the 2M� limit when
β > 0 (see Table 2). At the same time we recorded the max-
imum mass for β = 0 that represents the isotropic case for

Fig. 3 The M vs ρc relations for a family of anisotropic QSs with IQM
EoS

QS. It is interesting that the presence of anisotropy leads to
higher mass of a star as compared to isotropic case when
we vary β > 0. Moreover, the M–R relations are affected
significantly at high mass region due to the presence of an
anisotropic pressure. We further impose constraints on the
mass–radius relations depending on the measurements of the
most massive pulsar observed, as of Fig. 1. Next, we plot the
(M–M/R) curves in the lower panel of Fig. 2. It is intriguing
to note that the parameter β is sensitive to the compactness
relation, and the results are tabulated in Table 2 also. From
the table we see that by increasing β i.e., when anisotropic
effects become stronger, the value of maximum compactness
also increases. Here, the Buchdahl limit still meets the con-
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Fig. 4 The adiabatic index as functions of radial coordinate for a family
of anisotropic QSs with IQM EoS

straint M/R < 4/9, as seen in Fig. 2. Finally, we are tempted
to conclude that the presence of anisotropy inside a star leads
to more acceptable models than isotropic one.

5 Stability analysis of quark stars

To demonstrate the stability of QSs for anisotropic matter
in rainbow gravity, we perform the static stability criterion,
adiabatic index and the speed-of-sound. We will discuss all
of them step by step with graphical representation.

5.1 Static stability criterion

To address the dynamical stability of an equilibrium solution,
we delve deeper into the matter of static stability criterion
[69,70]. The results are presented in the M−ρc plane, where
M and ρc represent the total mass and central density, respec-
tively. This approach has been widely considered in modified
gravity theories, see [71,72] for reviews. We will incorporate
this criteria by the following way,

dM

dρc
< 0 → indicating an unstable configuration, (14)

Fig. 5 The squared speed of sound along the tangential direction inside
the QSs

dM

dρc
> 0 → indicating a stable configuration. (15)

From a conceptual view point, the above criteria represents
a necessary condition for stability but not sufficient one. In
Fig. 3, we depict the M vs ρc curves for the variation of
model parameters as of Figs. 1 and 2, respectively. As one
can see from figures that transitions from stable to unstable
configurations is indicated by the critical points (the black
circle), defined by dM/dρc = 0. This implies that stable
configuration lies in the region where dM/dρc > 0.

5.2 Adiabatic indices

Following the above discussion, we next examine the stability
of QSs by analyzing the behaviour of the adiabatic index, γ .
This idea was developed by Chandrasekhar [73] to study the
dynamical stability of an equilibrium configuration, see Ref.
[74] for a detail discussion. Since, the adiabatic index γ ,
governing the perturbations, is expressed as

γ ≡
(

1 + ρ

p

)(
dp

dρ

)

S
, (16)

where the sound speed is define by dp/dρ is the speed of
sound (in units of the speed of light) and the subscript S indi-
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cates the derivation at constant entropy. Let us remark that
the value of γ is associated with the dynamical instability
of relativistic objects has some restrictions for isotropic fluid
sphere. The restricted value is known as critical adiabatic
index γcr , and the stability condition leads to the following
inequality < γ >> γcr , where < γ > stands for the aver-
aged adiabatic index [75]. In GR context this critical value
can be written as γcr = 4

3 + 19
42C , where C = 2M/R is the

compactness parameter [75]. In the pure Newtonian grav-
ity we always have γcr = 4/3, but when the effects of GR
make the gravity stronger, γcr becomes larger than 4/3. In
most of the NSs equations of state, its values range from 2
to 4 [76]. On the other hand, authors in [77] have used the
Chandrasekhar criterion of stellar instability by employing
a large number of realistic EoS of NS matter. Solving the
modified TOV equations (9)–(11), we have computed adia-
batic index γ in Fig. 4 for several representatives values of λ̄

and �(x). The results depicted here indicating a dynamically
stable configuration.

5.3 Sound speed and causality

As a last step, we perform the stability of QSs based on
checking the speed-of-sound which is determined by the
relation v2

r,t = dp{r,t}/dρ. Since, we know that the speed
of sound should be smaller than the speed of light i.e.,
v2
r,t < 1. Depending on the EoSs (12) and (13), we demon-

strate the speed of sound along radial and transverse direc-
tions. It should be noted that the radial velocity is constant
i.e., dpr/dρ = 1/3 inside the stellar interior. Whereas the
tangential velocity as a function of the radius is displayed
Fig. 5 for both cases. The figure shows the standard results
of stellar stability still hold in rainbow gravity.

6 Concluding remarks

Advances in nuclear physics and astrophysics have revealed
new insights into the internal properties of pulsars that
might be strange quark stars (SQS) rather than neutron stars.
Because the densities in the core of those objects are excep-
tionally higher than nuclear saturation density, and supposed
to compose of pure quark matter. Aiming this view point, our
main object in this article is to study the structural properties
of QSs in the framework of rainbow gravity. The basic key
ingredient in this formalism is that the geometry of spacetime
depends on the energy of the test particle. Here, we inves-
tigate the possible method to probe the existence of QS in
rainbow gravity.

In this theoretical framework we then present modified
TOV equations in spherical symmetry spacetime and solve
them numerically to obtain the properties of QSs. In our anal-
ysis, we have demonstrated the M–R profiles for anisotropic

QSs by varying the model parameters (�(x), β) inside the
star. As a result of this choice, the maximum gravitational
mass increases with increasing values of �(x) and β, respec-
tively. We further note that the radius of the star is also
increasing with its mass value. Our work demonstrates that
the (M–R) relations are qualitatively in agreement by the
astrophysical constraints on the dense-matter EoS, see Figs. 1
and 2, respectively. In addition, we provide tables for men-
tioned values of the parameters of our system, such as the
maximum masses and their corresponding radii, and the max-
imum compactness in Table 1 and Table 2, respectively. By
examining their behaviour, we can that the maximum com-
pactness is sensitive only on the value of β and the value
range changes from 0.236 to 0.306, see 2.

We have also investigated the role of model parameters
in the dynamical stability of QS based on the static stability
criterion, adiabatic index and checking the sound velocity.
Our results clearly show that the standard results of stellar
stability, given by both applied methods, still hold in rain-
bow gravity. Finally, our results suggest that the presence of
pressure anisotropy inside a non-rotating star causes a more
massive QS with respect to isotropic one. Moving forward,
we aim to extend our analysis on this subject in another mod-
ified gravity theory in the near future.
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