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CONSPECTUS: Simulating molecular dynamics (MD) within a compre-
hensive quantum framework has been a long-standing challenge in
computational chemistry. An exponential scaling of computational cost
renders solving the time dependent Schrödinger equation (TDSE) of a
molecular Hamiltonian, including both electronic and nuclear degrees of
freedom (DOFs), as well as their couplings, infeasible for more than a few
DOFs. In the Born−Oppenheimer (BO), or adiabatic, picture, electronic and
nuclear parts of the wave function are decoupled and treated separately.
Within this framework, the nuclear wave function evolves along potential
energy surfaces (PESs) computed as solutions to the electronic Schrödinger
equation parametrized in the nuclear DOFs. This approximation, together
with increasingly elaborate numerical approaches to solve the nuclear time
dependent Schrödinger equation (TDSE), enabled the treatment of up to a
few dozens of degrees of freedom (DOFs). However, for particular applications, such as photochemistry, the BO approximation
breaks down. In this regime of non-adiabatic dynamics, solving the full molecular problem including electron−nuclear couplings
becomes essential, further increasing the complexity of the numerical solution. Although valuable methods such as
multiconfigurational time-dependent Hartree (MCTDH) have been proposed for the solution of the coupled electron−nuclear
dynamics, they remain hampered by an exponential scaling in the number of nuclear DOFs and by the difficulty of finding universal
variational forms.
In this Account, we present a perspective on novel quantum computational algorithms, aiming to alleviate the exponential scaling
inherent to the simulation of many-body quantum dynamics. In particular, we focus on the derivation and application of quantum
algorithms for adiabatic and non-adiabatic quantum dynamics, which include efficient approaches for the calculation of the BO
potential energy surfaces (PESs). Thereafter, we study the time-evolution of a model system consisting of two coupled PESs in first
and second quantization. In a first application, we discuss a recently introduced quantum algorithm for the evolution of a wavepacket
in first quantization and exploit the potential quantum advantage of mapping its spatial grid representation to logarithmically many
qubits. For the second demonstration, we move to the second quantization framework and review the scaling properties of two
alternative time-evolution algorithms, namely, a variational quantum algorithm (VQA) (based on the McLachlan variational
principle) and conventional Trotter-type evolution (based on a Lie−Trotter−Suzuki formula). Both methods clearly demonstrate
the potential of quantum algorithms and their favorable scaling compared to the available classical approaches. However, a clear
demonstration of quantum advantage in the context of molecular quantum dynamics may require the implementation of these
algorithms in fault-tolerant quantum computers, while their application in near-term, noisy quantum devices is still unclear and
deserves further investigation.
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• Ollitrault, P. J.; Mazzola, G.; Tavernelli, I. Nonadiabatic
Molecular Quantum Dynamics with Quantum Com-
puters. Phys. Rev. Lett. 2020, 125, 260511.2 This work
presents a novel quantum algorithm to simulate non-
adiabatic quantum dynamics on a spatial grid with
product formulas.

• Miessen, A.; Ollitrault, P. J.; Tavernelli, I. Quantum
algorithms for quantum dynamics: a performance study
on the spin-boson model, arXiv preprint, 2021,
arXiv:2108.04258, https://arxiv.org/abs/2108.04258.3

This work reports on a scaling study comparing a
time-dependent variational quantum algorithm and a
Trotter-based evolution for different spin-boson models.

1. INTRODUCTION
Quantum dynamics is of particular relevance when studying
nonequilibrium processes involving several potential energy
surfaces (PESs) (e.g., after photoexcitation), where pure non-
adiabatic quantum effects (such as internal conversion and
intersystem crossing) become dominant. The quantum
dynamics of molecular and solid-state systems deals with the
solution of the combined electron and nuclear dynamics as
described by the time dependent Schrödinger equation
(TDSE). However, the exact solution of the corresponding
“multicomponent” equations of motion (EOMs) for the total
electron−nuclear, or simply molecular, wave function is a
formidable task that can only be obtained for model systems
with few electrons and nuclei in low dimensions.
The Born−Oppenheimer (BO) approximation provides a

conceptual and operational strategy for solving this issue. In
this case, the molecular wave function becomes a simple
product of the nuclear and electronic wave functions with only
the first one explicitly dependent on time. The Born−Huang
(BH) expansion is widely used since it gives rise to the very
intuitive picture of a nuclear wavepacket evolving along
parametrized PESs corresponding to the electronic eigenener-
gies. The couplings between the different PESs are called non-
adiabatic (or vibronic) couplings and mediate the transfer of
amplitude among the states. Many numerical approaches for
quantum dynamics in the extended BO picture4−6 have been
developed and are, today, routinely employed in molecular
simulations (in the adiabatic as well as non-adiabatic regimes
using wavepackets or trajectory-based approaches). However,
the accuracy is often sacrificed to lower the computational cost
on traditional computers. Further insights into state-of-the-art
quantum dynamics methods can be found in refs 7 and 8.
Alternatively, molecular quantum dynamics can also be

expressed as a simple product of time-dependent electronic
and nuclear wave functions. This formalism, first introduced by
J. von Neumann and G. Hunter (see ref 9 and references
therein), was recently further developed by Gross and co-
workers9 and turned into a numerical algorithm for the
simulation of non-adiabatic quantum processes.10 Interestingly,
within this framework, a single, explicitly time-dependent PES
describes the exact molecular quantum dynamics of the
electron−nuclear wave function, where the two components
are coupled through the action of a vector potential.9 Despite
the clear conceptual advantage associated with this representa-
tion, the equations of motion (EOMs) are quite involved,
hampering its deployment.
Today, quantum computing is emerging as a new computa-

tional paradigm for the simulation of quantum chemistry and

quantum physics with favorable scaling. A detailed introduc-
tion to quantum computing is given, for instance, in ref 11, as
well as in refs 12 and 13 for more specific applications in
quantum chemistry. In recent years, we have witnessed a fast
growth of quantum algorithms for the solution of electronic
structure problems for molecules13−15 and periodic16 or
condensed phase systems,17 as well as for the calculation of
time-dependent properties such as time correlation functions
and molecular dynamics (MD).
Concerning combined electron−nuclear quantum dynamics,

while formally possible and simple to formalize in second
quantization, this approach remains beyond what can be
currently achieved with state-of-the-art quantum computers. In
fact, in order to keep the resources (number of qubits) within a
reasonable boundary, current quantum algorithms are confined
to the BO picture, adding non-adiabatic effects perturbatively
(see section 4). For the same reasons, quantum algorithms for
trajectory-based approaches are currently limited to the
adiabatic case,18 although extensions to non-adiabatic sit-
uations are already within reach, especially after the develop-
ment of algorithms for the calculation of excited states
properties (see section 2.4). Due to these resource limitations,
current quantum computing applications in chemistry focus
mainly on simple molecules (with small basis sets) or
simplified model systems. Although considerable improve-
ments in quantum hardware are needed to go beyond the
treatment of illustrative models, quantum algorithms already
offer attractive scaling improvements.
Herein, we give our perspective on the design of algorithms

to exploit the enormous potential of quantum computers and
to solve efficiently, that is, with a polynomial scaling of the
needed resources, the molecular TDSE. In particular, we
present different visions for encoding the problem in quantum
computers (first and second quantization formulations) as well
as two approaches for the propagation of the nuclear wave
function, one based on the McLachlan variational principle
(MVP)19 and the other on the Trotter−Suzuki expansion of
the unitary time-evolution operator.20,21 Finally, we compare
them in several concrete applications and conclude on the
potential of quantum advantage for quantum dynamics with
near-term (noisy) and fault-tolerant (error corrected) quantum
computers. This work is organized in the following way. First,
we introduce quantum algorithms for the calculation of ground
and excited PESs in section 2, which form the basis of adiabatic
and non-adiabatic dynamics. In section 3, we then introduce a
series of quantum algorithms for quantum dynamics. Finally, in
sections 4 and 5, we present two applications, one on non-
adiabatic dynamics formulated in first quantization and the
other on a spin-boson system in second quantization. Section 6
concludes with discussing the potential of quantum algorithms
and their future role in molecular quantum dynamics.

2. CALCULATION OF THE POTENTIAL ENERGY
SURFACES

Within the BO picture, the first step toward simulating MD
resides in calculating the PESs, that is, finding the eigenstates
of the electronic Hamiltonian. While this task remains
challenging with traditional approaches, quantum computing
methods present themselves as possibly efficient alternatives.
In this section, we give a short summary of the main quantum
algorithms for electronic structure calculations in first and
second quantization.
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2.1. Mapping of a Many-Electron System to a Workable
Qubit Representation

Problems in first quantization naturally discretize space on a
grid, and the grid points are encoded in the basis states of
qubits. For instance, for an N-electron system, discretizing each
of the three spatial dimensions into P points requires storing
P3N × 2N complex amplitudes. This makes the classical
simulation intractable for systems with more than a few
particles. However, by encoding the points in the binary
representation of the qubit basis, only (3 log2(P) + 1)N qubits
are needed to store the same information. A drawback of this
approach is that it suffers from a large qubit number
overhead22 compared to the basis-set approach outlined in
the next paragraph. As a result, grid-based approaches are
largely under-studied compared to algorithms employing basis-
sets. Nonetheless, they enjoy interesting features such as a
better scaling in the number of qubits, the lack of classical
preprocessing, and a reduced number of measuring bases.
Therefore, in section 4, we use them to simulate non-adiabatic
quantum dynamics.
Alternative to a grid representation, the problem may be

encoded using basis functions (orbitals), where their
occupations are mapped to qubit states and the Hamiltonian
is rewritten in second quantization. In practice, qubit states
then represent sets of orbitals. Equivalently, creation and
annihilation operators, ai

† and ai, must be mapped to spin
(Pauli) operators, σi

± = (σi
x ± iσi

y)/2, obeying the correct spin-
statistics.
2.2. Quantum Algorithms for Ground State Calculations

A promising class of algorithms for near-term quantum
computing are variational quantum algorithms (VQAs). They
introduce an iteration loop between a quantum and a classical
processor, drastically reducing the quantum gate cost. The
quantum processor prepares a variational trial state |ψ(θ)⟩,
where θ is a vector of variational parameters encoded in the
quantum circuit as single-qubit rotation angles, Rμ(θ) =
exp(−iθσμ/2), with σμ (μ = x, y, z) being a Pauli matrix. An
observable is then measured on the quantum state, and the
result is passed to the classical computer, where new
parameters are computed by evaluating a problem-specific
cost function. The new parameters are fed back to the
quantum processor for the next iteration, and the procedure is
repeated until reaching convergence.
The most popular VQA, which is particularly relevant here,

is the variational quantum eigensolver (VQE).23,24 Relying on
the Rayleigh−Ritz variational principle, VQE approximates, for
example, the ground state of a Hamiltonian,

E( ) ( ) 0θ θψ ψ⟨ | | ⟩ ≥ (1)

where E0 is the ground state energy of the Hamiltonian . In
the general VQA framework presented above, the cost function
simply becomes the energy expectation value of the trial state,
and the parameters are classically optimized to minimize the
energy. Note that the energy gradient can also be measured on
the trial state,18,25,26 which some optimizers require as input.
2.3. Ansa ̈tze for the Variational Preparation of a
Many-Body Wave Function

A crucial aspect of VQAs is the choice of the wave function
ansatz. For the algorithm to be efficient and yield accurate
results, the variational form has to be flexible enough to
reproduce the correct state while maintaining low numbers of
parameters and quantum gates. Ideally, the parameter space

should scale polynomially with the system size and lead to a
well-behaved classical optimization. Satisfying these constraints
is a nontrivial task and, hence, finding variational forms for
approximating electronic ground states with VQE is an active
field of research.
The unitary coupled cluster (UCC) ansatz,23,27−29 inspired

from the standard coupled cluster (CC) method,30 is certainly
the most popular ansatz for electronic structure calculations. In
ref 31, we showed that the variational nature of the quantum
implementation can cure some of the issues associated with the
classical, canonical, projective implementation of CC. How-
ever, despite its theoretical success, concrete applications of
unitary coupled cluster (UCC) remain difficult as it comprises
multiple expensive nonlocal operations, even though several
approximations have been proposed to reduce its initial gate
complexity, N N( )orbitals

3
electrons
2 31−33

An alternative approach for designing wave function ansaẗze
suited to near-term quantum computing is heuristic and
tailored to the hardware. These hardware ef f icient ansa-̈
tze13,15,34 comprise alternating layers of single-qubit rotations
and entangling blocks adjusted to the hardware connectivity.
However, there is no guarantee that such variational forms can
reproduce the desired state with arbitrary accuracy.
In ref 35, we showed how to improve variational wave

functions through nonunitary operations without increasing
the circuit depth.

2.4. Quantum Algorithms for Excited State Calculations

The calculation of molecular excited state properties
constitutes an additional challenge for both classical and
quantum electronic structure algorithms.
In ref 1, we proposed a quantum algorithm for the

calculation of the molecular excited states, which relies solely
on the optimization of the ground state wave function,
followed by the measurement of “excited” matrix elements.
Alternative algorithms are reported in the literature, see, for
instance, refs 36−40. Within this approach, excited states |n⟩
are generated by applying an excitation operator of the general

form O n 0n = | ⟩⟨ |† to the ground state |0⟩ of the system, where
|n⟩ is the shorthand notation for the nth excited state of the
electronic structure Hamiltonian. The excitation energies
E0n = En − E0 can then be expressed as

E
O O

O O
0 , , 0

0 , 0n
n n

n n
0 =

⟨ |[ ]| ⟩
⟨ |[ ]| ⟩

†

†
(2)

where [A, B] = AB − BA and [A, B, C] = 1
2
{[[A, B], C] +

[A, [B, C]]} are the commutator and double commutator,
respectively. The EOM approach aims to find approximate
solutions to eq 2 by expressing On

† as a linear combination of
basis excitation operators with variable expansion coefficients.
The excitation energies are then obtained through the
minimization of eq 2 in the coefficient space, leading to the
following pseudoeigenvalue problem,

E
M Q

Q M

X

Y
V W

W V

X

Y
n

n
n

n

n
0* *

=
− * − *

i

k
jjjjjj

y

{
zzzzzz
i

k
jjjjj

y

{
zzzzz

i
k
jjjj

y
{
zzzz
i

k
jjjjj

y

{
zzzzz

(3)

where
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M
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†

† †

†

† †

α β α β

α β α β

α β α β

α β α β

Here, Eμα
(α) are the basis excitation operators expressed as

simple products of raising and lowering operators, a† and a, of
order α and with μα a collective index for all one-electron
orbitals involved in the excitation. Furthermore, the vectors Xn,
Yn comprise all variational expansion coefficients of On

†. The
rank of the matrices equals the number of excitations included
in the expression of the operator On

† (which can be truncated
to keep the scaling polynomial with the system size).1 The
eigenvalues of eq 3 can therefore be evaluated classically. In
particular, quantum advantage could be achieved through the
efficient measurement of each matrix element in the EOM
generalized eigenvalue problem. A graphical representation of
this procedure published under the name of quantum-EOM
(qEOM), is given in Figure 1.
We applied the method to the calculation of the excited

states of several small molecules, yielding (simulated)
excitation energies within chemical accuracy (≤1.5 mhartree).
Moreover, we also applied the algorithm on a quantum
computer41 to calculate the excitation energies of lithium
hydride in a minimal basis set. When combined with an error
mitigation scheme,42 we obtained results within an accuracy of
10 mhartree.
With the methods presented in this section, the electronic

properties (e.g., energies, forces, and non-adiabatic couplings)
can be efficiently computed with a quantum processor for a
given molecular geometry, that is, for given positions of the
nuclei. These can be used to drive classical or quantum
trajectories within the so-called trajectory-based quantum
dynamics approaches. On the other hand, the PESs required
to propagate the nuclear wavepackets (using the Born−Huang
expansion) can be obtained by repeating these calculations
along the relevant nuclear coordinates. In this case, the
quantum advantage will reside in the favorable scaling of
encoding the nuclear degrees of freedom (see ref 3). The next
section will introduce quantum algorithmic approaches to
address this task.

3. QUANTUM ALGORITHMS FOR QUANTUM
DYNAMICS SIMULATIONS

Although classical methods such as multiconfigurational time-
dependent Hartree (MCTDH) have become incredibly
efficient in simulating non-adiabatic dynamics,4,43−45 their
scaling in the number of nuclear degrees of freedom (DOFs)

remains exponential. On the contrary, simulating quantum
dynamics is one of the most promising applications of
quantum computing and a vast number of quantum algorithms
addressing this problem have been proposed. The choice of
algorithm, however, is a delicate question, and in this section,
we will give an overview over near- and long-term methods.
3.1. Hamiltonian Simulation with Product Formulas

Let us assume a Hamiltonian of the form hj
N

j1
h= ∑ = . The

corresponding time propagator, e i t− , can be approximated
with a Lie−Trotter−Suzuki formula.20,21,46,47 When t is small
and to first order, these product formulas give

i t N t dexp( ) e ( / )
j

N
ih t d

d

1

( / )
h

2 2j
h

∏− = +
=

−
i

k

jjjjjjj
y

{

zzzzzzz (4)

For Hamiltonians that can be mapped to a qubit lattice with a
splitting into even and odd summands, like for the spin-boson
Hamiltonian of section 5, the scaling of the error reduces to
linear in Nh, N t d( / )h

2 .48,49

The error can also be reduced by increasing the order of the
product formula. From a quantum computing perspective, the
Trotter approach is employed when e i t− cannot exactly be
translated into a quantum circuit, but each individual e ih tj− can.
This implies that a decomposition of the Hamiltonian into
easily implementable terms is known.
3.2. Hamiltonian Simulation with Variational Quantum
Algorithms

The quest for noise resilient quantum dynamics algorithms
that can be implemented in near-term (i.e., not error
corrected) quantum computers has sparked the development
of time-dependent VQAs. These were first proposed by Li et
al. in 2017.50,51 Generally, a time-dependent variational state
|Φ(θ)⟩, with θ = θ(t), aims to approximate the solution of the
TDSE, |Ψ(t)⟩. Preparing such a state on a quantum computer
amounts to the action of a parametrized unitary (the quantum
circuit) onto a reference qubit-state, |Φ(θ)⟩ = U(θ)|ϕ⟩. Since
the parameters enter as qubit-gate angles, all parameters must
be real.
Our implementation is based on the MVP,19 which reads

i 0δ |Θ⟩ − |Φ⟩ = (5)

where variation is with respect to |Θ⟩ = |Φ̇⟩. Equation 5 yields
the condition i 0tδ⟨ Φ| ∂ − |Φ⟩ = . With all time-depend-
ence in θ and including a potential global phase mismatch,51

|Φ⟩ → eiα(t)|Φ⟩, we obtain as EOMs

θ ̇ = (6)

with the matrix elements

Figure 1. Graphical representation of the qEOM algorithm. Reproduced with permission from ref 1. Copyright 2020 American Physical Society.
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ij
i j i jθ θ θ θ

= ∂⟨Φ|
∂

∂|Φ⟩
∂

+ ∂⟨Φ|
∂

|Φ⟩ ∂⟨Φ|
∂

|Φ⟩
i

k
jjjjjj

y

{
zzzzzz (7)

and the vector elements

i
i iθ θ

= ∂⟨Φ|
∂

|Φ⟩ − ∂⟨Φ|
∂

|Φ⟩⟨Φ| |Φ⟩
i
k
jjjjj

y
{
zzzzz (8)

In principle, eq 6 can then be integrated with any numerical
ODE-solver. In practice, however, the stability of the dynamics
depends on the system investigated and a number of numerical
aspects, such as singular value cutoffs and errors associated
with numerical integration. In ref 3, we report a detailed study
on the influence of quantum hardware noise on the integration
of eq 6.
We emphazise that the MVP and the previous derivation are

valid for any variational classical or quantum ansatz. What is
distinct in the quantum setting is the preparation of the ansatz
and the evaluation of individual matrix elements using
quantum circuits.50,52,53

For completeness, we also mention (without discussion)
other near-term approaches for quantum dynamics, namely,
the adaptive variational quantum dynamics simulation,54 the
subspace variational quantum simulation,55 and the variational
fast forwarding.56

4. GRID-BASED NON-ADIABATIC QUANTUM
DYNAMICS

In the previous sections, we presented different approaches for
encoding a problem in quantum computers as well as to
perform quantum dynamics. In the following, we give a
concrete example of the more “long-term” vision. Particularly,
in ref 2, we showed how to employ the grid-based quantum
encoding discussed in section 2.1 to study the dynamics of a
wavepacket on several coupled diabatic surfaces, targeting an
exponential advantage compared to the corresponding classical
simulation. To be specific, we present our method employing
two one-dimensional diabatic curves and the generalization to
multiple dimensions is straightforward.
The Hamiltonian of the system is given by

K V V C1 0 0 1 1 x
0 1 σ= ⊗ + ⊗ | ⟩⟨ | + ⊗ | ⟩⟨ | + ⊗

(9)

where K is the kinetic energy operator, V0 and V1 are the
potentials of the first and second diabatic curves, respectively,
and C is the coupling operator. The corresponding time
propagators act on a log ( )2 -qubit register, representing
spatial grid points, entangled with an ancilla qubit qN, which
controls the non-adiabatic dynamics across the diabatic curves.
qN is initialized in the state |0⟩ (|1⟩) depending on whether the
wavepacket is placed on the first or the second diabatic
potential at time t = 0. Additionally, an extra qubit register is
required to implement C (see below). For concreteness, we
specialize to the Marcus model,57,58 which provides a
simplified description of the electron-transfer reaction rate
driven by collective outer and inner sphere coordinates.59 In
this model the potentials are harmonic and shifted in energy by
a given offset as shown in Figure 2a.
Before the dynamics can be simulated, the wavepacket must

be initialized in the quantum register. We work with nuclear
wavepackets here, meaning the wave function does not need to
be antisymmetrized. For the initialization, we rely on a VQE

calculation23,24 to prepare the ground state of a harmonic
Hamiltonian, p p x x1/2( ) 1/2( )0

2
0

2= − + − , where p
and x are the momentum and position operators, respectively,
and p0 and x0 the initial position and momentum. At each
iteration of the VQE, the total energy of the trial wave
function, E = Epotential + Ekinetic, can be calculated by sampling
both in the position and in the momentum basis. For the latter,
a centered quantum Fourier transform (cQFT)2,60 must be
applied before the measurement.
Once initialized, the wavepacket is propagated by applying

the Trotterized time evolution operator (cf. section 3.1). A
quantum circuit for implementing the time evolution with the
kinetic operator and harmonic potentials was presented in refs
61 and 62, and is obtained by discretizing the coordinate x as
x = ∑j=0

N−12jkj into the states kj of N qubits. This formula can be
translated to a quantum circuit via the single-qubit rotations

U R( ) e ( )
1 0

0 e
i

z i1
/2λ λ= =λ

λ

i
k
jjjjj

y
{
zzzzz (10)

Indeed, the propagator e−ixt can be decomposed into a product

of operators e−i2
jkjt equivalent to the above U1 gate applied to

qubit j. The same idea can be employed for executing
polynomial functions of x as the single-qubit gates can be
replaced by controlled multiqubit operations. The kinetic part
of the operator is applied similarly in the momentum space,
after performing a cQFT to transition to the momentum basis.
While the quantum circuit for the kinetic part of the evolution
can be directly applied to the first N qubits, the potential parts
must be controlled by the state of the ancilla qubit, qN, such
that the wavepacket evolves under the action of e−iV0t/n or
e−iV1t/n when qN is in the state |0⟩ or |1⟩, respectively.
One of the main methodological novelties of our approach

resides in the encoding of the coupling operator, which
corresponds to a rotation of the ancilla qubit around the x-axis
by an angle proportional to the coupling function, f(x). To
avoid an exponential scaling in the quantum resources,63 f(x) is
approximated as a piece-wise linear function.64 Importantly, we
observe that only a few pieces suffice to obtain accurate results.
The full quantum circuit is summarized in a graphical
representation shown in Figure 2b.

Figure 2. (a) Graphical representation of the Marcus model. (b)
Circuit for the time evolution of the wavepacket. The K, Vi, and C
blocks represent the time evolution operators for the kinetic, ith
potential, and coupling terms, respectively. Reproduced with
permission from ref 2. Copyright 2020 American Physical Society.
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We computed the dynamics of a wavepacket initialized on
V1 for various offset values (Figure 2a). The simulations were
run with a classical emulation of the quantum circuit (dots)
and compared to the exact evolution with both a full Gaussian
coupling (full lines) and its piece-wise approximation (dashed
lines). The piece-wise approximation of the coupling function
together with the use of the truncated Trotter expansion of the
time-evolution operator lead to the deviations from the exact
curve observed in Figure 2a. Here, the population fraction P0
in the product well V0 was computed from the expectation
value of the ancilla qubit as P0 = (⟨σqN

z ⟩ + 1)/2. The initial rate
constants (obtained as the slope of linearly fitting the first ten
steps of the dynamics, as shown in Figure 3b) resulting from
our simulations recover the expected volcano shape behavior
predicted by Marcus theory (Figure 3c).

Although this approach is simple with, in principle, a clear
exponential advantage regarding memory, the encodings of
arbitrary potentials and couplings remain challenging. More-
over, the large number of queries to one Trotter step leads to
very deep quantum circuits, which are far beyond the capacities
of current quantum computers. In the following section, we
present an opposite vision of quantum algorithms for
Hamiltonian simulation, a near-term approach, but with
ambiguous quantum advantage.

5. QUANTUM DYNAMICS OF THE SPIN-BOSON
MODEL

While the gate-based implementation of the exponential of a
Hamiltonian with arbitrary potentials and couplings in first
quantization is a nontrivial task, most limitations can be
overcome in the second quantization framework by introduc-
ing appropriate basis functions.65 In fact, alternative to the
grid-based approach of section 4, it is straightforward to
rewrite the Hamiltonian of eq 9 in second quantization.
Furthermore, as eluded to in previous sections, Trotter
evolution is typically far too resource-intensive for applications
on currently existing, near-term quantum hardware, while time-
dependent VQAs appear as resource-efficient alternatives.
Hence, complementary to the grid-based approach studied
with Trotter evolution, in ref 3, we studied the problem of
section 4 in second quantization using a VQA as depicted in
Figure 4b.
With harmonic potentials and a coupling C = f(x) ∝ x, eq 9

can be rewritten as the second-quantized Hamiltonian of a
two-level system (the spin) coupled to M bosonic modes
(harmonic oscillators),66−68

a a g a a
2

( )
k

M

k k k
z x

k

M

k
x

k k
1 1

∑ ∑ω σ σ σ= + ϵ + Δ + +
=

†

=

†

(11)

Here, bosonic modes with eigenfrequencies ωk are created
(annihilated) by ak

† (ak) and couple to the spin with strength
gk, whereas Pauli matrices σμ, μ ∈ {x, y, z}, act on the spin-state
with eigenfrequency ϵ and tunneling rate Δ.
As outlined in section 2.1, basis states and operators must be

mapped to a suitable qubit representation maintaining the
correct spin statistics. The state of the spin can be straight-
forwardly encoded in a single qubit. In the direct mapping,69

each bosonic mode’s occupation number vector (ONV) is
truncated at a maximum excitation nmax (cf. Figure 4a) and
mapped to an nmax + 1 qubit register, |nk⟩ → |ñk⟩ =
|0nmax...0nk+11nk0nk−1...00k⟩. Operators must obey bosonic spin-

statistics, leading to a a n 1k k n
n

k n n0
1

1k

k
k k

max

σ σ→ ̃ = ∑ +† †
=

− +
+

− and

analogously for ak, where i( )/2n n
x

n
y

k k k
σ σ σ= ±± .

Crucially, the choice of variational ansatz heavily impacts
resulting performance and accuracy. We use a variational
Hamiltonian ansatz (VHA),70 closely resembling the unitary
time-evolution operator but with the time simply replaced by
distinct variational parameters for each term in the
Hamiltonian,
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The resulting qubit-mapped exponential is approximately
expanded into product form using a Trotter series with d
circuit layers, suitable for implementation in terms of one- and
two-qubit gates.
In the following, we summarize the findings of ref 3, focusing

on the robustness and versatility of algorithm and ansatz as
well as its scalability compared to Trotter evolution. We
simulated the dynamics of eq 11 in the resonant case, ωk ≡ ω

Figure 3. (a) Time evolution of P0 (see main text) obtained with our
algorithm in classical simulations (dots), showing the exact evolution
with the reference coupling (full lines), and the exact evolution with
the approximate coupling (dashed lines). Colors represent different
offset values between V0 and V1. (b) Linear fitting of the ten first steps
of the evolution to approximate the rate constants. (c) Approximate
rate constants, k, as a function of the offset obtained with our
algorithm (dots) and from the exact evolution with the reference
coupling (crosses). The Marcus rates are shown as a dashed line for a
qualitative comparison. The colored stickers label different charge
transfer regions (A, normal regime; B, at reorganization energy; C,
inverted region). Reproduced with permission from ref 2. Copyright
2020 American Physical Society.
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and gk ≡ g, for various Hamiltonian parameter regimes,
(ϵ, Δ) ∈ {(−1, 0), (0, 1)}, and coupling strengths
g/ω ∈ [0.1, 1] (ultrastrong coupling). The initial qubit state
is prepared in the noninteracting ground state of eq 11. We use
the infidelity of the approximate state, ΔΦ(t) = 1 − |⟨Φ|Ψ⟩|, as
a measure for accuracy and monitor the spin orientation, Pz =
⟨σz + 1⟩/2, throughout each simulation.
Figure 4c−f displays simulation outcomes obtained from

variational simulation of different system sizes. The respective
legends report the minimal numbers of circuit layers in the
Trotter expansion of the ansatz, d, necessary to reproduce the
correct dynamics. These results emphasize the flexibility of our
ansatz to resemble various system setups with far less than
exponentially many DOFs, which becomes evident as the
number of variational parameters scales linearly with the
system size, Nθ = 2d(Mnmax + 1). For instance, Nθ = 6 (d = 1)
and Nθ = 12 (d = 2) parameters in the 5-qubit case. Note that
the results presented here are noise-free. A series of simulations
including the realistic hardware noise of IBM’s quantum
computer ibmq_santiago41 was presented in ref 3.
Furthermore, we performed a comparative study between

variational and Trotter simulation. The applicability of Trotter
evolution is mainly limited by a rapidly increasing circuit
depth, quickly exceeding the capabilities of today’s available
quantum hardware. Hence, in Figure 4g, we compare the final
number of circuit layers required by Trotter simulation to
reach a target accuracy ΔΦ < ε ∈ {10−4, 10−3, 10−2} (see
legend) as a function of system size and compare to that of the

variational approach for ε = 10−4. Importantly, the circuit
depth is fixed throughout the variational simulation, whereas it
increases with simulation time during Trotter evolution. The
data obtained with both simulation methods was fitted linearly
(cf. lines in Figure 4g). In this way, we could extrapolate the
observed scaling to system sizes currently out of reach for both
classical and quantum computers. Evidently, the variational
approach required far fewer circuit layers than Trotter
simulation. This, however, has to be put in relation to the
additional cost associated with the circuit evaluations in the
variational approach.
Given a storage of 1012 bits (as available on a state-of-the-art

supercomputer) one could store the wave function of, for
example, 12 bosonic modes with 10 DOFs per mode (M = 12,
nmax = 9). With the methods discussed here, this corresponds
to 121 qubits. Keeping the simulation error ε < 10−4 and
extrapolating the above fit results, Trotter evolution neces-
sitates roughly d = 3400 circuit layers. Taking into account the
time needed to execute each gate in a layer, this amounts to
approximately 1 s compute time to reach the final simulation
time.
Analyzing the cost of the variational approach, one needs to

account for classical contributions given by the number of time
steps, and the cost at each time step, determined by the
number of parameters, which is linear in system size. Further,
quantum contributions to the cost arise from the time taken
per circuit execution, which is obtained analogous to the cost
for Trotter evolution, as well as the number of circuit

Figure 4. (a) Schematic of the qubit mapping, with a single qubit representing the spin and one qubit for each bosonic nk. (b) Variational quantum
algorithm (VQA) for quantum dynamics. (c−f) Variational simulation results for different system sizes and Hamiltonian parameters, (c) M = 1,
nk
max = 1, g/ω = 0.5, (d)M = 2, nk

max=1, g/ω = 0.2, (e)M = 2, nk
max = 1, g/ω = 1.0, and (f)M = 5, nk

max=1, g/ω = 0.5. The minimum number of circuit
layers, d, required to reproduce the correct dynamics is indicated in each subplot. (g) Comparison of the number of circuit layers for the variational
algorithm (diamonds) and Trotter evolution (dots) and extrapolation of the scaling to larger qubit numbers (fit lines).
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evaluations to populate matrix and vector in the EOM, eq 6, at
each time step. All this combined results in a total of
Ncirc ≈ 1018 circuit evaluations, amounting to roughly
1015 s ≈ 3 × 107 yr for a 121-qubit simulation.

6. CONCLUSIONS AND OUTLOOK
In summary, molecular quantum simulations are challenging
due to the unfavorable scaling of the classical algorithms with
the dimensionality of the problem. In a quest for finding
methods to improve the efficiency and quality of large scale
computations, quantum algorithms appear as an interesting
path to pursue. This rather new area of research has already led
to several different approaches to tackle the simulation of
molecular quantum dynamics.2,3

In this Account, we gave an overview of various such
methods and showed how they apply and compare in concrete
physical examples. While the theoretical advantage associated
with the polynomial encoding of the molecular DOFs is
evident for both electronic and nuclear components, there
remain important technical issues that hamper the use of
quantum computers for solving time-dependent problems of
this complexity. Our results highlight the need for quantum
hardware on which long circuits (with a coherence time on the
order of seconds) can be executed with high fidelity. Moreover,
additional efforts must be made for designing algorithms with
the right trade-off between circuit depth and the number of
measurements (or parallelizable parts). Since the computa-
tional bottleneck does not reside in the memory of quantum
computers, we expect that the simultaneous treatment of both
electrons and nuclei, in the adiabatic and non-adiabatic
regimes, will follow once the necessary technological develop-
ments for near-term (i.e., error mitigated) and fault-tolerant
(i.e., error corrected) quantum computers will become
available.
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