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Abstract Some years ago Gribov developed the so-called
supercritical light-quark confinement scenario. Based on
physical arguments he conjectured a drastic change in the
analytical properties of the quark propagator when the back
reaction of Goldstone bosons (pions) is considered. We in-
vestigate this scenario and provide numerical solutions for
the quark propagator in the complex plane with and without
the pion back reaction. We find no evidence for the scenario
Gribov advocated. As an aside we present a novel method to
solve the quark Dyson—Schwinger equation in the complex
plane and discuss new characteristics of dynamical chiral
symmetry breaking in our truncation scheme.

PACS 12.38.Aw - 12.38.Gc - 12.38.Lg - 14.65.Bt

1 Introduction

The phenomenon of confinement is usually thought of
as originating in the Yang-Mills sector of QCD. In the
quenched theory with heavy sources, confinement thus un-
derstood manifests itself in the behavior of the Wilson loop
at large distances; here an area law is associated with flux-
tube formation of color-electric fields and a linear rising
potential for heavy quarks. In the full theory, however, the
color-electric string between these charges breaks due to the
creation of light quark—antiquark pairs. Therefore the po-
tential is no longer rising but levels out at large distances.
Thus in a sense, made precise e.g. in [1, 2], full QCD is not
confining.

Nevertheless, free color charges are absent in the real
world and the precise mechanism for this absence has to be
determined in full QCD with realistic quark masses. This
so-called color confinement mechanism is still elusive, even
after three decades of intense efforts. In a series of (partly
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unfinished) papers [3-5] Gribov developed a scenario of
quark confinement arising from the supercriticality of color
charges. The basic idea, summarized in [6, 7], is the binding
of quarks with positive kinetic energy within a bound state of
total negative energy. In order to guarantee a stable vacuum
these states have to be filled up, therefore enforcing a vac-
uum with occupied quark states of positive kinetic energy in
addition to the negative energy quark states of the conven-
tional Dirac sea. Consequently, the Pauli principle prevents
single quarks from propagating and there can be no corre-
sponding asymptotic states of single quarks.

According to Gribov [3], an essential ingredient in this
picture is the appearance of Goldstone bosons due to the
dynamical breaking of chiral symmetry. The Goldstone
bosons, identified with the pseudoscalar pions, he conjec-
tured to change the analytical structure of the quark prop-
agator in such a way that the resulting quarks are confined
by the supercritical mechanism. It is the purpose of this pa-
per to critically investigate the actual influence of Goldstone
bosons on this structure.

To this end we employ a truncation scheme for the quark
Dyson-Schwinger equation (DSE) and the quark—gluon ver-
tex DSE developed in Ref. [8], which leads to a quark self-
energy governed by non-perturbative gluon and pion ex-
change. The structure of the resulting DSE for the quark
propagator is similar to the equation Gribov started with
originally. In contrast to Gribov, we work with the DSEs
as coupled integral equations rather than their—in principle,
equivalent—differential formulation that he favored for an-
alytical studies. However, in converting an integral equation
into a tractable differential equation many approximations
must be employed. Instead we work directly with the inte-
gral equation and apply a truncation scheme that contains
the same features implemented by Gribov, which has been
used as a basis for hadron phenomenology and comparisons
to lattice QCD results. In this truncation scheme we obtain
information on the analytic structure of the quark propaga-
tor with and without pion back reaction by a combination of
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Fig. 2.1 The Schwinger-Dyson
equation for the fully dressed
quark propagator

several methods. As a result we find no evidence in favor of
Gribov’s conjecture.

The paper is organized as follows. In section two we out-
line our truncation for the gluonic part of the quark-DSE, to-
gether with our approximation scheme for the hadronic part
of the vertex, following the procedure of [8]. We specify
our method for exploring the analytic structure of the quark
propagator in the complex plane, leaving details of the im-
plementation to Appendix. In section three we present our
numerical results, and we finally give our conclusions.

2 The approximation scheme for the quark-DSE
2.1 Gluon exchange part

The full Dyson—-Schwinger equation for the quark propaga-
tor is displayed diagrammatically in Fig. 2.1.

With the dressed inverse quark propagator S~!(p) =
i/A(p?)+ B(p?) and its bare counterpart Sy ' (p) =ip+m,
the equation is given by

S7(p) = 228, (p) + g*Cr Zir

4
x / (;17")4 YuS@T0(q. ) Dy k), @.1)
with kK = p — g, the Casimir operator Cr = (Ng —1)/(2N,)
and the renormalization factors Z; ¢ of the quark gluon ver-
tex and Z, of the quark propagator. In the course of this
work we shall consider the case Ny =2 and N. = 3. The
vector and scalar dressing functions A(p?) and B(p?) can
be recombined into the quark mass M (p?) = B(p?)/A(p?)
and the quark wave function Zf(pz) = 1/A(p2). The dress-
ing functions depend on the fully dressed quark—gluon ver-
tex I',(q, k) and the gluon propagator

kuky\ Z (k%) Z (k%)
K2) k2 T T

Dy (k) = (8,w - 2.2)

with the gluon dressing function Z(k2). Up to for our pur-
poses minor details in the far infrared, the function Z(k?) is
well known from both lattice calculations and the Dyson—
Schwinger equations (for a review see e.g. [9]).

Throughout this paper we shall work in the Landau gauge
as opposed to the choice of Feynman gauge Gribov adopted

in his work. We expect that if the physical mechanism for
quark confinement is triggered by the back coupling of
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Goldstone bosons to the quarks this mechanism should be
present in all continuously connected gauges. We prefer
Landau gauge over Feynman gauge because the gluon dress-
ing function is well known there (see below) and the tensor
structure of the propagator is particularly simple.!

The other input into (2.1) is the fully dressed quark—gluon
vertex I,(g, k). An approximation for the vertex in terms
of the quark self-energies and the dressing function G(p?)
of the propagator of Faddeev—Popov ghosts has been devel-
oped in [11, 12]. The ansatz

Ny(q. p) = V¥ (q, pyw™(q, p), 2.3)

with
wabel(g, p) = G2((q — p)?) Z3,
vaelg, py=rF(q, p)
AP+ A@g?)
o 2
.B(p?) — B(g?)
+1—p2 —q2
AP — A(gH
27— o) A+ (p+a9v
A(p?) — A(gH
f[(p2 —q%)
- (17/—9’)(17 +‘Z)v]
Xy 2 Pt ’
(P2 — q»2 + (M2(p?) + M2(g%))?

v

(p+q)v
(2.4)

+

where the ghost wave function renormalization 73 has been
shown to lead to a quark-DSE which has the correct ultravi-
olet asymptotic limit and respects multiplicative renormal-
izability. In addition, the Abelian part V%! of the construc-
tion is identical with the so-called Curtis—Pennington vertex
FUCP [13]. Tts first three terms have been shown by Ball and

UIn other linear covariant gauges the propagator is given by Dy, (k) =

2
v — k‘,ﬁ" ) Z](\’Z )4t k’]:# where ¢ is the gauge parameter and ¢ = 1

for the Feynman gauge. Due to an exact Slavnov—Taylor identity the
longitudinal part of this propagator remains undressed. Only for a non-

linear gauge condition can the propagator be rewritten as Dy, (k) =

%a(kz) [5, 10], where the choice of the running coupling as the dress-

ing function is inspired from the Abelian theory. In the non-Abelian
case such a choice already represents a combination of dressings for
the gluon propagator and the quark—gluon vertex.
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Chiu [14] to satisfy the Abelian Ward—Takahashi identity
(WTD),

ik, [P (¢, p) = S~ (p) — S (g), 2.5)

with the quark momenta ¢ and p and the gluon momentum
k =q — p. As found in [12], the presence or absence of the
scalar interaction term proportional to (p + ¢), is of par-
ticular importance for the analytical structure of the quark
propagator. In Sect. 3 we therefore contrast results obtained
with the ansatz (2.4) also with the simpler vertex

Wl (g, p) = G?((qg — p)*)Z3,
_APH) + Ag?)
= fh,

(2.6)
vl g, p)

which does not contain the scalar interaction term. Since
the approximation (2.6) consists of only the first term of
the Ball-Chiu solution of the WTI we shall refer to it as
‘1BC vertex’. It represents a form of the rainbow-ladder ap-
proximation of the quark-DSE, which has been successfully
applied to the physics of light mesons [15].

We wish to emphasize that the ansatz (2.3) for the quark—
gluon vertex has similar properties as a recent explicit so-
lution of the quark—gluon vertex DSE [16, 17]. In particu-
lar the infrared singularity W™2¢l(q, p) ~ G((g — p)?) ~
((g — p)») ™% with k 2~ 0.595 [18, 19] present in all ten-
sor structures of the vertex is also an approximate prop-
erty of the explicit solution which is proportional to ((¢ —
p)z)_l/z_" [16, 17]. We need to keep in mind, however,
that the relative strength of the different tensor structures in
the full vertex may not be represented well by the Curtis—
Pennington part (2.4) of our vertex ansatz. This will play an
important part in our discussion of the analytical properties
of the quark propagator at the end of Sect. 3.1.

In the quark-DSE the combination of the ghost dress-
ing functions from the non-Abelian part of the vertex and
the dressing function from the gluon propagator can be re-

combined to form the strong running coupling in a MOM
scheme, i.e. defined from the ghost-gluon vertex:

a(k?) = g—2G2(k2)z(k2).

e 2.7)

The Dyson—Schwinger equation for the quark propagator
then reads

S (p) = Z,857\ (p) + CrZ /d4—q
p) =425y (p FL2 (271)4Vu
a(k?)

X S@ LG, 0 Puy =5

(2.8)
This equation, first developed in [11], is quite similar to
the integral equation Gribov derived his differential equa-
tion from. The quark—gluon interaction is basically given by

the strong running coupling and the dressed vertex is cho-
sen such that it satisfies the Abelian version of the Slavnov—
Taylor identity. Note, however, that the present approxima-
tion is more sophisticated compared to the one of Gribov
with respect to two points. First, the coupling under the inte-
gral is momentum dependent, whereas Gribov approximated
even further by replacing «(k*) — «(0). As a consequence
we find the correct leading order anomalous dimensions for
the quark dressing functions in the UV. Second, the Abelian
part of the vertex nevertheless satisfies the full WTI as op-
posed to Gribov’s version which satisfied only the differ-
ential form of the WTI valid for zero gluon momentum.
For these reasons we believe that the approximation (2.8) is
more accurate than the version of Gribov.

The explicit expression for Z(k?) used in this work has
been determined in Ref. [12] by a fit to numerical solutions
of the coupled system of DSEs for the ghost and gluon prop-
agators. It is given by

Z(k?) = < k* >2K<aﬂt(k2)>_y
- > i
k* 4+ Agep X

with the gluon momentum k2, the one-loop value y =
(=13N¢. + 4Ny)/(22N. — 4Ny) for the anomalous di-
mension of the re-summed gluon propagator and o, = 0.2
at the renormalization scale u? = 170 GeV2. We use
AéCD = 0.5 GeV?Z similar to the scale obtained in Ref. [12].
The infrared exponent x has been determined analytically
in [18, 19] and is given by « = (93 — 4/1201)/98 >~ (0.595.
The running coupling «(p?) is parameterized such that the
numerical results for Euclidean scales are accurately repro-
duced [12]:

(2.9)

as(0) v p?

2
ag(p)l=—"—"—+——"—
(7 L+ p? /A Bo Adep + 1P

1 1
X - . 2.1

<ln(P2/A(23CD) PZ/AéCD - 1) @10
Here Bo = (11N, — 2Ny)/3, and as(0) is the fixed point
in the infrared, calculated to be ag(0) = 8.915/N, for our
choice of «. Note that such a fixed point has also been found
for the couplings from the three-gluon and four-gluon ver-
tices [20, 21].

The expressions (2.9) and (2.10) represent solutions of
the Yang-Mills part of QCD with important properties.
First, note the analytic structure of the gluon dressing func-
tion (2.9) produces a cut along the entire time-like k2-axis
representing the possibility of the gluon to decay into ghost—
antighost pairs and also into gluons. However, these parti-
cles are not physical and need to be confined. For the gluon
dressing function this is reflected in its spectral properties
which have been determined in [12]: the gluon has a pos-
itive spectral function for scales below approximately one
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fermi, whereas it is negative for larger scales. As a result
the gluon appears to be a free particle in perturbation theory,
whereas it cannot propagate freely at larger scales.

The resulting running coupling (2.10) has an analytic
structure similar to the one anticipated from analytic pertur-
bation theory [22]. In addition, it displays an infrared fixed
point. Thus in contrast to the setup of Gribov, where this
infrared fixed point behavior had to be assumed, we are in
a position to use an explicitly calculated coupling with the
same property. Note, however, that this is only possible due
to our choice for the quark—gluon vertices (2.4) and (2.6). As
mentioned above the explicit solution for this vertex given
in [16, 17] is slightly less singular than our ansatz. Using
the model of [23], which reproduces this behavior, we have
checked that this difference has no qualitative impact on
most of our results with the exception of those reported in
Sect. 3.2, where we shall comment further.

2.2 Pion back coupling

As stated in the introduction, Gribov argued that the effects
of the back reaction by the Goldstone bosons on the quarks
should be crucial to generate color confinement [3]. To this
end he determined a form of the pion back reaction that cou-
ples the pion directly to the quark. This can be displayed
diagrammatically as done in Fig. 2.2. A similar expression
for the pion back reaction has been derived in Ref. [8]. Here

we develop a modified approximation scheme leading to a
slightly different interaction.

Consider the Dyson—Schwinger equation of the fully
dressed quark—gluon vertex, given in the first line of Fig. 2.3.
For very small momenta, a self-consistent solution to this
equation has been given in Ref. [16, 17]. Here we are pri-
marily interested in the mid-momentum behavior of the ver-
tex and in particular in hadronic contributions. To lowest
order in a skeleton expansion such contributions can only
occur in the diagram with the bare quark—gluon vertex at
the external gluon line. In the second line of Fig. 2.3 we
expand the quark—antiquark scattering amplitude of this di-
agram in terms of resonance contributions to the kernel and
one-particle irreducible Green’s functions. Amongst other
terms discussed in [8] one finds one-meson exchange be-
tween the quark and anti-quark lines. Of all the hadronic
contributions this term should be dominant, since diagrams
involving heavier mesons and baryons are suppressed by
factors of Agcp,/m7; with H € (K, p, N, ...},

Plugging the resulting approximation for the quark—
gluon vertex into the quark-DSE one arrives at the diagram-
matic expression shown in the upper panel of Fig. 2.4. Here
the part denoted by the subscript “YM’ denotes contribu-
tions of a purely gluonic nature. This Yang—Mills part of the
interaction has been specified in the previous subsection.
The pion part is quite complicated, since it involves not only
two-loop integrals but also the full pion Bethe—Salpeter ver-

YM

Fig. 2.2 The approximated Schwinger—Dyson equation for the quark propagator with effective one-gluon exchange and one-pion exchange

A A A AR

Fig. 2.3 The full, untruncated Dyson-Schwinger equation for the
quark—gluon vertex [24] is shown diagrammatically in the first line.
The second line describes the first terms of an expansion in terms
of hadronic and non-hadronic contributions to the quark—antiquark
scattering kernel. In both equations, all internal propagators are fully
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dressed. Internal dashed lines with arrows correspond to ghost prop-
agators, curly lines to gluons and full lines to quark propagators. All
internal propagators are fully dressed. In the second equation, the doz-
ted line describes mesons, the dashed line baryons and the double lines
correspond to diquarks
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Fig. 2.4 The Schwinger-Dyson
equation for the quark -1
propagator with the

-1 )66??5%
B YM

quark—gluon vertex from ——— =
Fig. 2.3 (upper panel) and
further approximated (lower
panel)
- & = — s - —

tex which needs to be determined from a Bethe—Salpeter
equation.

We shall further simplify this expression by noting that
one of the loops involves two bare quark—gluon vertices and
a dressed gluon propagator. The latter one is suppressed
at large momenta and at most constant if not vanishing in
the infrared (see e.g. [19, 25-28] and references therein). In
our earlier work [8] we have approximated this loop by the
Bethe—Salpeter vertex, which would be justified if the full
quark—gluon vertex is almost bare. However this leads to an
over-estimation of the back reaction and we therefore only
assume it to be proportional to Z,yst’ here. Indeed, a good
agreement with lattice QCD results for the quark propagator
and also meson phenomenology [29] is obtained by setting
the loop equal to Zoyst’. We have checked that the quali-
tative conclusions drawn in this paper do not change when
employing the truncation used in Ref. [8], which is actu-
ally more similar to Gribov’s approach. One then arrives at
the approximated quark-DSE displayed in the lower panel
of Fig. 2.4.

Both, gluon and pion exchange are now given by a one-
loop diagram with one dressed and one bare vertex, respec-
tively. Compared to the previous work of Ref. [8], Fig. 2.2,
one of the dressed pion—quark vertices has disappeared. As
an effect, the pion back reaction onto the quark is some-
what reduced. This is in line with the results of [8], where
it has been found that the interaction of Fig. 2.2 leads to
far too strong back reaction effects which finally resulted
in a dramatically small pion decay constant. Furthermore,
our new approximation removes potential problems with
double counting vertex contributions, which are generically
present in DSEs with all vertices dressed. For the purpose
of the present paper we shall use the approximation of
Fig. 2.4, though we also performed calculations with both
pion—quark vertices dressed.

In principle, the pion in the loop couples to the quark line
with its full Bethe—Salpeter vertex function at the dressed
vertex. In general this function can be decomposed into four
different tensor structures

Ii(p, P)=t'ys{Ex(p, P) —iPFz(p, P)
—ipgp- PGx(p, P)

YM

where 7! denotes the flavor structure of the vertex, p is
the relative and P the total momentum of the bound state.
This pion bound state is the pole contribution of the full
pseudoscalar vertex function. In the chiral limit an exact
solution for the functions E, Fr, G, Hy; in terms of the
quark self-energies and regular parts of the isovector axial-
vector vertex has been given in [30]. For the leading part E,
of the vertex the solution in the chiral limit depends on the
scalar part B(p?) of the quark propagator and the pion de-
cay constant f;; and is given by E; (p, P) = B(p?)/fx such
that the pion vertex in this approximation reads

B(p?
fr

For the given truncation scheme two of us have checked ex-
plicitly that this expression is also a very good approxima-
tion to the full amplitude E;; for a pion with realistic mass;
see the appendix of Ref. [29]. We therefore use (2.12) for the
pion vertex in the second diagram of Fig. 2.4. The resulting
complete quark-DSE then reads

Ii(p,P)=1'ys (2.12)

SV p) =228, M (p) + Cr 22 f&—q Y
0 (27T)4 2

a(k?)
X S@ TG, k) Puv—5~
d4q
—3Z, | ——v5S
2/(271)4 ¥5S(q@)ys

B((p+q)?/4 1
X 5
fn k2 +m721

(2.13)

with k = g — p and a factor of three in the pion interaction
part due to the flavor factors.

The pion part of the quark-DSE can now be compared
with the one Gribov suggested in Ref. [3]. There are two
differences. The first one concerns the appearance of two
dressed pion—quark vertices in the back reaction diagram
considered by Gribov, whereas our approximation only in-
cludes one dressed vertex for reasons discussed above. The
second concerns the form of the pion Bethe—Salpeter ampli-
tude. Here Gribov considered the form

rip, Py=1'{ys, S~ (p)}/fx, (2.14)
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which involves further structure in the pion amplitude be-
sides the leading y5-part considered in (2.12). Unfortunately
these additional terms are proportional to the quark dressing
function A(p?) and therefore have the wrong asymptotics at
large momenta as compared to actual solutions of the pion
Bethe—Salpeter equation.

Finally we need to specify the values of the pion mass
my and decay constant f; for the pion propagator in the
DSE:s. In the chiral limit the pion is a Goldstone boson and
my; = 0 MeV. We use this value together with f; = 90 MeV.
Away from the chiral limit we use the physical values m, =
138 MeV and f; = 93 MeV for simplicity. We explicitly
checked that the qualitative features of all our results do not
depend on variations of these numbers. The quantitative ef-
fects are very small.

2.3 Renormalization procedure

Before we solve equation (2.13) we have to specify our
renormalization procedure. Upon multiplying (2.13) with
lax4 and p respectively and taking the Dirac trace, one
projects the equation onto the self-energies B(p?) and
A(p?) contained in the fully dressed quark propagator
S~ (p) =ipA(p?) + B(p?). Schematically one obtains

B(p?: 1?) = Za(w?)m + Zo (1) M5 (p*: 1%).

A(p*: %) = Za(1?) + Zo(1*) Ta(p*; 147),

(2.15)
(2.16)

where we have made the dependence on the renormaliza-
tion point u? explicit. The renormalization factor Z» is then
determined by evaluating the second equation at the renor-
malization point, i.e.

)

20 = Ty

(2.17)

with the renormalization condition A(u2; ©2) = 1. In a nu-
merical iterative procedure this is always the first step at
every iteration step. Furthermore, away from the chiral limit
m = 0 one can eliminate the renormalization-point inde-
pendent mass parameter m = m(u2) Zm (1?) by subtract-
ing (2.15) at the renormalization point. This results in

B(p*; 1?) = B(u*; 1) + Za (1)
x (Mp(p* 1?) = Mp(u*s 1)), (218

with the input mass B(u?; u?) = M(u?; u?) A(n?; n?) =
M (%; 1?) at the renormalization point 2.

2.4 Quark propagator in the complex plane

The behavior of the quark propagator in the complex mo-
mentum plane and the associated analytic structure of the

@ Springer

propagator can be investigated in two ways. One possibility
is to read off the analytic structure from the corresponding
Schwinger function,

d*p
Gs,v(l)=/d3x/ Q)

where og v are the scalar and the vector parts, respec-
tively, of the dressed quark propagator, i.e. os(p?) =
B(p»)/(p*A*(p*) + B*(p*) and ov(p?) = A(p?)/
(p*A2%(p*) + B?(p?)). This method has a long history;
see [12, 31-34] and references therein. According to the
Osterwalder—Schrader axioms of Euclidean field theory
[35, 36], the function os v(f) has to be positive to allow
for asymptotic quark states in the physical sector of the
state space of QCD. Conversely, positivity violations in the
Schwinger function show that the corresponding asymptotic
states (if present) belong to the unphysical part of the state
space. Thus positivity violations constitute a sufficient con-
dition for confinement. Moreover, by fitting os v(¢) with
appropriate forms one obtains information on the dominant
(i.e. closest to the origin) non-analyticity of the quark prop-
agator in the complex plane. In this work we use the form

e” o5 v(p?), (2.19)

os.v (1) = boe P cos(bat + b3), (2.20)

which corresponds to a pair of complex-conjugate poles of
the propagator in the time-like momentum plane located
at mpole = b1 £ ib2. The Schwinger function is then oscil-
lating around zero with periodicity b. If b = 0 one ob-
tains an exponentially damped Schwinger function corre-
sponding to a pole on the real negative momentum axis at
mpole = b1 (see Ref. [12] for more details). Thus, by calcu-
lating the Schwinger function once with and once without
the pion back reaction we have a reliable tool to assess pos-
sible changes in the analytical structure of the quark propa-
gator. This allows us to test Gribov’s conjecture.

These findings can be further corroborated by a direct
calculation of the quark propagator in the complex plane.
Technically, however, there is a caveat. Consider e.g. the ex-
plicit form of the DSE for the scalar self-energy B(p?) using
the 1BC vertex defined in (2.6):

CrZ a(k?)
B(p®) = Zom + = 5 / e
3B(g%) A(pH) + Ag?)
q2A%(g%) + B2(q?) 2
3 4 1
~ 20y /d T2 m2
B(q?) B((p +9)*/4)
. 2.21
“PAAD + B fa 2D

A similar equation holds for A(p?). Solving this equation
directly at complex momenta p? entails a complex argument
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k? = (p — ¢)? of the running coupling o (k?). This coupling,
however, has its own analytic structure, given by (2.10). Al-
though (2.10) represents a reasonably motivated and justi-
fied guess for the analytic structure of the coupling we would
rather avoid relying upon it. Fortunately it turns out that this
can be easily accomplished. To this end we shift the loop
momentum ¢? in the quark-DSE such that the complex ar-
gument k> does not appear in the gluon part of the loop but
instead runs through the internal quark part of the loop. For
the shifted equation we obtain

CrZy a(g?)
B(p?) = Zam + = /d4q 22
3B(k?) A(p?) + A(k?)
AR + B2k 2
- 22(271)4 /d qq2 +m2
B(k?) B((p + k)2 /4)
e e o o

and a similarly shifted equation for A(p?). The running cou-
pling is now evaluated for real momenta ¢> only, whereas
the quark propagator is determined self-consistently for
complex momenta p* and k.

The only caveat in this procedure is the interference with
the regularization procedure. Obviously, if we employ a
translation invariant regularization scheme such as dimen-
sional regularization such a shift would be harmless. In
our numerical procedure, however, we use a hard cut-off
scheme. Then it turns out, that the unshifted and shifted cou-
pled system of quark-DSEs for A and B precisely give the
same results, if Z; is kept fixed while shifting. In practice,
we calculate Z(u?) for a given renormalization point w2
from the fully converged unshifted equations and plug its
value into the shifted equations as an input parameter. Both
results then agree to numerical accuracy on the real axis. We
then use the shifted DSEs to solve for B(p?) and A(p?) in
the complex plane. Here we developed a new numerical al-
gorithm, which is described in detail in Appendix.

3 Numerical results

3.1 Numerical results on the real axis and the Schwinger
function

We first compare the quark mass function M (p2) = B(p?)/
A(p?) and the wave function Zf(pz) = 1/A(p?) with
and without the pion back coupling for real momenta p?.
Our numerical results are shown in Fig. 3.1. In the upper
panel we compare results for the simpler 1BC vertex (2.6),
whereas in the lower panel results for the full Curtis—
Pennington construction (2.4) are shown. In both cases we

compare the solutions in the chiral limit and results with a
small quark mass m (10 GeV) = 3 MeV, which roughly cor-
responds to an up quark with myz(2 GeV) =4 MeV. For
both vertex constructions the results are qualitatively sim-
ilar. Including the pion back reaction into the quark-DSE
reduces the amount of dynamical chiral symmetry breaking
to some extent. This reduction is larger in the chiral limit.
Explicit values for the quark mass function at zero momen-
tum are given in Table 3.1 and agree with this observation.

The ultraviolet behavior of the quark mass function is
given by the analytic solution [37]

—()
P2 (3 log(p?/ Adep))

2 —Vm
o)
AQCD

with the anomalous dimension y,, = ﬁ The quan-
c

212y,
M(P?) yoym = =5

3.1)

tity m is related to the current quark mass m in the QCD
Lagrangian, whereas (ll_/lI/) is the (renormalization-point in-
dependent) chiral condensate. For m 7 0 the dominant part
of (3.1) in the far ultraviolet is the second logarithmic term,
whereas the 1/p’-term is important at intermediate mo-
menta. In the chiral limit this term is the only one present.
From the results of Fig. 3.1 we clearly infer that the conden-
sate term, representing dynamical chiral symmetry break-
ing, is modified by the pion back reaction whereas the log-
arithmic term, representing the explicit breaking due to m,
is not. This is in nice agreement with our expectations. The
explicit term should be largely independent of the details of
the strong interaction, whereas the condensate term is not.
One can determine the values of the chiral condensate ei-
ther from fitting (3.1) to the asymptotics of the quark mass
function or by calculating

~(0w), = Z2(1?) Zm (1) Ne
d*q
X trD/ Ws(qzi Mz),

in the chiral limit (the trace is over Dirac indices). We de-
termined the condensate at our renormalization point p =
10 GeV in the MOM scheme and converted it to the conven-
tional MS result at v =2 GeV using

(3.2)

= \MS = _\MOM
—(llll]/) = _<‘I"I’>1o GeV

2 2
) < In(4 GeV?/ A2

¥Ym
, 3.3
In(100 GeV2 /AIZWOM)) )

: 12
with y,, = TIN,-2N; and the scales Ay = 22§ Mey and
Amom = 500 MeV. We then find the values given in Ta-
ble 3.1 which support our qualitative findings from Fig. 3.1.
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Fig. 3.1 The mass function M(pz) = B(pz)/A(pz) of the quark and the wave function Zf(pz) with 1BC vertex (upper panel) and with CP

vertex (lower panel). The explicit mass m,, is taken at u = 10 GeV

Table 3.1 Infrared masses

M(0), chiral condensate M (0) [MeV] (—(ll_/lll)%ev)l/3 [MeV]  Location of poles mpoi. [MeV]
(—(@w)}8 )13 and pole ]
location e of the resulting IBC,m=0MeV,wor 269 216 295 (5) £i176 (10)
quark propagator determined 1BC, m =3 MeV, wo 294 - 322 (5) £i191 (10)
from fits to the Schwinger IBC,m =0MeV, withw 252 208 279 (5) £i160 (10)
function o (¢) for the 1BC . .
vertex (2.6) and CP vertex (2.4) 1BC, m =3 MeV, with 278 - 304 (5) £1180 (10)
choice and two different bare CP,m =0 MeV, wo 322 289 513 (10) £i0 (10)
quark masses CP, m =3 MeV, wo 331 - 530 (10) +i0 (10)
CP, m =0 MeV, with = 299 276 478 (10) +i0 (10)
CP, m =3 MeV, with = 309 - 493 (10) +i0 (10)

Note that the unquenching effects due to the pion back reac-
tion are small, i.e. of the order of 10 MeV in the (third root of
the) condensate. This agrees with previous findings both in
the DSE framework [11, 15] and in lattice calculations [38].

The effects in the quark mass function and the quark
wave function are compared with recent lattice results of

@ Springer

Bowman et al. [39] in Fig. 3.2. The current quark masses
employed on the lattice compare to m(11?) = 16 MeV with
i = 10 GeV in our momentum subtraction scheme. In the
plot our result for Z ¢ ( p?) is renormalized to u = 3 GeV by
a finite renormalization group transformation. M (p?) is a
renormalization group invariant. One finds very good qual-
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Fig. 3.2 The mass function M (p2) = B(p?)/A(p?) of the quark and
the wave function Z s (p?) with CP vertex compared to the lattice re-
sults of Bowman et al. [39]. The current quark masses employed on the
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Fig. 3.3 The absolute value of the Schwinger function o (t) with 1BC

itative and also quantitative agreement of the effects in the
quark mass function. In the wave function we only find small
effects which quantitatively agree with the effects on the lat-
tice, however with a different sign. A similar difference has
already been observed in Ref. [40] and should be clarified
in future work. Apart from this small deviation we therefore
consider the interaction defined in Sect. 2.2 to realistically
reproduce the pion back reaction effects (as opposed to the
stronger one considered in [8]).2 We wish to stress that the
agreement of our results with the lattice data underlines the
eligibility of our approach to critically assess the influence
of Goldstone bosons on the analytic structure of the propa-
gator.

2From the linear plot one can again clearly infer that the pion back
reaction of the quarks is largest in the infrared momentum region. This
is in marked contrast to the findings of previous attempts to quantify
the pion corrections [7, 41]. We attribute this difference to the wrong
asymptotics of the pion wave function (2.14) in Gribov’s equation.
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vertex (left diagram) and with CP vertex (right diagram)

In Fig. 3.3 we display the results from the Fourier trans-
form of the scalar part of the quark propagator. On a loga-
rithmic scale we show the resulting Schwinger function o ()
for the two different choices for the quark—gluon vertex once
without and once with the pion back reaction. It is evident
from the results that the pion back reaction does not change
the analytic structure of the quark propagator. Instead, it is
the form of the quark—gluon vertex that is crucial for the
form of the Schwinger function. If only the first term of the
Ball-Chiu solution of the Abelian WTI is used, (2.6) we ob-
tain an oscillating Schwinger function. In the plot this os-
cillation is manifest in the vertical spikes. An ansatz repre-
senting a pair of complex-conjugate poles in the momentum
plane fits such a behavior nicely and one obtains the pole lo-
cations reported in Table 3.1. All imaginary parts are clearly
significant and have roughly half the size of the real parts
of mpole. The inclusion of the pion back reaction here di-
minishes the real parts by about 20 MeV and the imaginary
parts by a somewhat smaller 10 MeV. The situation is to-
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tally different when the vertex construction (2.4) including
the Curtis—Pennington ansatz is used. The relative strengths
of the different tensor structures of the vertex are now such
that the Abelian WTI is satisfied. From the right diagram in
Fig. 3.3 we see that the resulting Schwinger function now
decays exponentially without any visible oscillations. Such
a behavior is characteristic for a quark propagator with a sin-
gularity on the real axis which may or may not be accompa-
nied by a cut. The location of this singularity is also reported
in Table 3.1. Again the inclusion of the pion back reaction
does not change the qualitative behavior of the Schwinger
function but merely shifts the location of the singularity by
20-30 MeV to lower values.

This is the central result of this work: the inclusion of the
pion back reaction does not change the analytical structure
of the quark propagator. Instead, as has been discussed pre-
viously in [12], it is the relative strength of the scalar and
vector terms in the Yang—Mills part of the quark—gluon in-
teraction which is crucial. Following Ref. [12] we can in-
terpret this result. Consider for a moment the Abelian the-
ory, i.e. QED. The non-Abelian part W2 of the vertex is
then absent and the Abelian WTI (2.5) exact. Gauge invari-
ance then dictates a form of the fermion—photon vertex like
the Curtis—Pennington construction. The resulting physical
electron propagator then is expected to have a singularity
at the electron mass accompanied by a cut due to the ac-
companying soft-photon cloud. This agrees well with our
findings. The quark—gluon vertex in the non-Abelian theory,
however, is necessarily modified compared to the Abelian
interaction. This can be seen from its Slavnov—Taylor iden-
tty

G~ (K)kuTyu(g. k) = S~ (p)H(q. p)

—1
—H(g,p)S (@), (3.4)
0.4 :
|- I 4
n - _—
02 =~ _ i
N Positive
S — — - Negative| |
3 m T~ . — .- Wigner
s 0
I ~
g, | - _ |
= Tl
N
02F -
L / -—-7 4
0.4 | | | |
’ -0.004 -0.002 0 0.002 0.004

m(u=10 GeV) [GeV]

where G(k?) is the dressing function of the Faddeev—
Popov ghosts and H(q, p) the ghost-quark scattering ker-
nel. It is currently not clear, though a matter of current
investigations [16, 17, 42] whether these modifications
lead to either of the singularity structures displayed in
Fig. 3.3. The answer to this question remains important,
since oscillations in the Schwinger function would be a
sufficient condition for quark confinement as discussed in
Sect. 2.4.

3.2 Numerical results for additional solutions
of the quark-DSE

For sufficiently strong coupling multiple solutions of the
quark-DSE exist in a domain D = {m : 0 < m < m¢} of
the current quark mass [43, 44]. The appearance of multiple
solutions is not surprising and has strong similarities with
hysteresis in ferromagnets. In his work Gribov emphasized
however that his equations for a supercritical coupling al-
low for presumably infinite different solutions in the chiral
limit [4]. This is in contrast to the finding in DSE inves-
tigations using the Maris—Tandy model [43, 44]. Here we
explore these multiple solutions without the inclusion of the
pion back reaction, indicating that the different behavior of
these multiple solutions is a result of the truncation scheme
employed and the form of the gluon interaction.

All of these multiple solutions are connected to the per-
turbative running of quark mass at large momenta, differing
only in their infrared behavior. They can be distinguished
by the number of zero-crossings that occur in the quark self-
energy B, or equivalently in the mass function M = B/A.
The energetically preferred or physical solution is strictly
positive definite. Without explicit symmetry breaking, i.e. in
the chiral limit, the symmetric solution without dynamical
mass generation has to exist as well.
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o,oz* v b
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> ool ]

(5}

) r v ]
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Fig. 3.4 We show the dynamically generated mass M (p> = 0) for various solutions of the quark-DSE as a function of the current quark mass.

The diagram on the right shows the behavior of M (m) close to the origin
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Fig. 3.5 In the left diagram we show the real versus imaginary parts
of the complex pole-mass mpole for different solutions of the quark-
DSE. Arrows indicate increasing current quark mass. On the right we
present nodal solutions of the mass function for the indicated current

In Figs. 3.4 and 3.5 we present various properties of the
multiple solutions. In Fig. 3.4 we follow the value of the
mass function M (0) starting with a positive definite solu-
tion beyond mc, denoted ‘positive’ in Fig. 3.4 and marked
with a ‘I". Decreasing the current quark mass to zero, i.e.
going to the chiral limit, the positive solution is degener-
ate with a negative solution, whose mass function has the
opposite sign. This is related to a Z, symmetry of the quark-
DSE when simultaneously sending m — —m and M (p?) —
—M(p?). This symmetry is also manifest in Fig. 3.4. Re-
stricting our attention to M (0) positive, we now introduce a
negative current quark mass, giving rise to a different pattern
of dynamical mass generation and the so-called ‘negative’
solutions, indicated by a ‘II".

The location of the complex poles, as obtained through
the Schwinger function is shown in the left diagram of
Fig. 3.5 and reveals that these positive and negative solu-
tions are smoothly connected. The key difference, however,
is that these negative solutions develop a node in the mass
function as we cross m = O—that is to say they are no longer
positive semi-definite with the scalar self-energy changing
sign for small (p < 10 GeV) momenta. On continuing to in-
crease the magnitude of the negative mass, we reach a criti-
cal point m¢ whose model-dependent value here is approx-
imately 43 MeV at u =5 GeV for the 1BC vertex and the
interaction described in Sect. 2. This critical mass merely
indicates a bifurcation where the negative solution is degen-
erate with the so-called Wigner solution. At this point, we
move again towards the chiral limit, this time following a
different path marked by a ‘III".

Interestingly, the Wigner solution does not connect im-
mediately to the trivial solution M (0) = 0 at m = 0. Instead,
we find M (0) > O for m = 0 and therefore a second non-
trivial solution in the chiral limit. This behavior was not
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quark masses. The solution with one node corresponds to region III
in the right diagram of Fig. 3.4, the dotted solution corresponds to re-
gion 1V, the dashed curve to region V and the dash-dotted to a yet
additional solution close to the origin of the M—m plane

observed in previous studies® of these solutions [43, 44].
There, extensive use of the Maris—Tandy [45] interaction
has been made. Also the soft-divergence model of [23] con-
structed to exhibit the infrared properties of the quark—gluon
vertex determined in [16, 17] does not show the second class
of non-trivial Wigner solutions observed in the right dia-
gram of Fig. 3.4. Both the Maris—Tandy model and the soft-
divergence model vanish at zero momentum with different
powers of momentum squared. The behavior of Fig. 3.4 is
only present when the quark—gluon vertex is given enough
strength leading to either an infrared fixed point or a singu-
lar behavior in the effective running coupling, as is the case
in our interaction and that of Gribov’s.

This second Wigner solution develops a total of two zero-
crossings in the mass function as we cross m = 0. Increasing
the mass, we follow curve ‘IV’, which again bifurcates into
two solutions at some second critical mass m =~ 0.029 MeV.
Continuing the procedure we follow path ‘V’ and again
cross m = 0 with the now characteristic development of
an additional node in the mass function (see Fig. 3.5). At
this point, we make no further attempt to resolve such solu-
tions since the critical mass now oscillates around m = 0
with rapidly decreasing amplitude. We can only presume
that such solutions continue to exist, with yet more nodes
developing in the mass function as the trivial solution is
approached. We expect the multitude of these solutions to
smoothly connect the location of the complex poles to the
trivial solution, as indicated in the left diagram of Fig. 3.5.

Once again, we point out that we did not include pion
effects here, due in part to the ambiguity of choosing M

3We did, in fact, find two-noded solutions with the Maris—Tandy inter-
action. However, these have poles on the negative real axis and do not
smoothly connect to the positive solution as we find in Fig. 3.5.
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and f; for varying quark mass. Since Gribov found the same
results in his approximation with the pion back reaction [4],
it seems likely that the inclusion of pions does not change
this picture quantitatively.

3.3 Numerical results in the complex plane

To give a better picture on the influence of the pion back
reaction on the dressing functions at complex momentum
and also to show the efficacy of the expanding shell method,
detailed in Sect. 2.4 and Appendix, we show explicit solu-
tions to the quark DSE in the complex plane in Fig. 3.6. For
the purposes of demonstration, we employed the 1BC vertex
with a small quark mass m (10 GeV) = 3 MeV and include
the contribution from the pion back reaction.

The advantages of employing such an expanding shell
method and the associated interpolation scheme becomes

0.2
Re[p?] GeV?

Fig. 3.6 The real and imaginary parts of the quark self-energies A
and B in the complex plane for the 1BC vertex, including the pion
back reaction. The vertical lines show the position of the complex
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apparent when we use our solutions in studies of the Bethe—
Salpeter equations. Not only are we able to provide solu-
tions to the quark-DSE in the complex plane for any numer-
ically determined gluon propagator or quark—gluon vertex—
without changing or making assumptions of the analytic
structure by use of fit functions—but we can do this quickly
and accurately. Indeed, it is gratifying to see that our bound-
state solutions change by less than a percent for a wide se-
lection of coarse and fine grids [29].

As we expand our parabolas outward into the complex
plane, our domain of exploration approaches the location of
the complex poles. Close to these poles, the function be-
comes steep and cannot be reliably represented by our inter-
polation scheme without adaptive modification of the grid
points. With such tuning, it is possible to see the onset of
conjugate poles in the complex plane by looking for bumps
arising in the solutions. Since we do not know the precise

0.2
Re[p?] GeV>

0.2
Re[p?] GeV?

poles, here at p? = (—0.0626 & i0.111) GeV?. Solutions without the
inclusion of pion unquenching effects are qualitatively similar
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Table 3.2 The parabola on . N

which the complex-conjugate Vertex characterizing the parabola [GeV~]

poles are located, as determined Schwinger function Shell method
via the Schwinger-function and

by the breakdown of the direct 1BC, m =0 MeV, wo (—0.087,0) (< —0.082,0)
numerical procedure. The . _ _

vertex, (—m?. 0) is defined as IBC, m =3 MeV, w'o b4 (—0.104,0) (< —0.100, 0)
the point at which the parabola 1BC, m =0 MeV, with = (—=0.077,0) (< —0.072,0)
crosses the real axis 1BC, m = 3 MeV, with (—0.092,0) (< —0.086, 0)

location of the pole or its residue, we cannot extend our
parabolas any further. Moreover, there comes a point where
the poles affect our numerical stability and lead to a break-
down of the numerical procedure.

This breakdown allows us to determine approximately on
which parabola the complex poles are located, where each
parabola is characterized by its vertex (—m?2, 0), the point at
which the parabola crosses the real axis. In Table 3.2 we list
the vertex of the parabolas on which the complex pole lies,
as determined from the Schwinger function and as inferred
by the breakdown of our numerical method. Both meth-
ods are in excellent agreement. This provided additional
justification for the Fourier transform method exploited in
Sect. 3.1.

While this procedure can in principle be applied to the CP
vertex, whose solutions contain a pole on the negative real
axis, perhaps accompanied by a branch cut, the numerical
solution becomes much more involved due to the derivative-
like terms appearing in the vertex. By implementing a robust
numerical procedure that deals with this numerical singu-
larities correctly, we believe that our method is applicable
to finding solutions in the complex plane for such a vertex
construction. We defer a detailed calculation to future work.

4 Conclusion

We studied the analytic structure of the quark propagator
with and without the inclusion of pion effects, in order to
compare and contrast with Gribov’s conjecture of quark con-
finement due to supercriticality of the color charge. He advo-
cated the viewpoint that these pions play an important role
for the confinement of quarks, as indicated in the analytic
structure of their propagator. Studying a truncation scheme
that essentially includes all features introduced and studied
by Gribov, we determined the unquenching effects in the
quark propagator due to the back reaction of pions onto the
quarks. Our numerical results agree nicely with correspond-
ing lattice calculations thus underlining the reliability of our
truncation scheme. Investigating the analytic structure of the
quark propagator by means of its Schwinger functions and
direct solutions of the quark-DSE in the complex plane we
found that the inclusion of pion effects had no qualitative

effect. This is the central result of our work: Gribov’s con-
jecture does not seem to hold.

Instead, it is the relative strengths of the various tensor
components that constitute the fully dressed quark—gluon
vertex, in particular whether these are in agreement with
those occurring in QED due to the Ward identity. This find-
ing is in agreement with a previous investigation of the
structure of the quark propagator [12]. It relegates the ques-
tion of quark confinement due to positivity violations in its
Schwinger function to a more refined determination of the
details of the quark—gluon vertex, see e.g. [16, 17].

We also determined the multiple solutions of the quark-
DSE as a function of the current quark mass. In the
M(p?* = 0)—m plane we find a behavior similar to hystere-
sis effects in ferromagnets connected to the phenomenon of
dynamical symmetry breaking. Close to the origin of this
plane we find the critical behavior of the Wigner solution to
be connected to the form of the effective running coupling
associated with the quark—gluon interaction. Employing a
sufficiently strong coupling with an infrared fixed point as
also being used in Gribov’s work, we find a multitude of
solutions near the trivial point.

Our approximation scheme for the quark—gluon inter-
action as a composition of a Yang—Mills part and a part
due to the pion back reaction onto the quark is a modifi-
cation of the one used in [8]. This modification leads to im-
proved values for low-energy constants as the chiral con-
densate and the pion decay constant and therefore has the
potential to describe pion cloud properties of mesons and
baryons via bound-state equations. This is further explored
elsewhere [29].

Acknowledgements This work has been supported by the Helm-
holtz-University Young Investigator Grant No VH-NG-332 and by the
DFG under grant number Ni 1191/1-1.

Appendix: Solving the quark DSE in the complex plane

Here we give details of our numerical method for calculating
the quark DSE for complex momenta. In Euclidean space,
our quark-DSE is conventionally written as
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S(p)~' =228y + ¢*CrZirp

4
x / %Vus(q)Fu(q,k)Duu(k), (A1)
with kK = p — g the momentum flowing through the gluon.
We want to solve this equation (in the previously described
approximation) for complex p? but using real k* only. This
also appears on consideration of the Bethe—Salpeter equa-
tions. For those we find ourselves in need of the quark prop-
agator evaluated at the momenta

p+=p+nP,

A2
p-=p+{1—nP, (A2

with n € (0, 1) a momentum partitioning parameter and P
the total momentum of the meson. In Euclidean space, a
bound state in the rest frame has total momentum P4 =iM
and P = 0, and so the momenta pi of (A.2) define parabolic
curves in the complex plane. The necessary integrals over
the angles (p - P) lead us to require solutions to the quark-
DSE for all complex momenta bounded by these curves. For
equal momentum partitioning, n = 1/2, the region is sym-
metric about the real axis (see Fig. A.1 for an example). The
vertex of the parabola is located at p? = (—M?/4,0) and
the focus at p2 = (0, 0).

Im[p?] GeV?

2+

iRe[p?] GeV*

—2f

Fig. A.1 The bounded parabolic region in the C plane defined
by (A.2), for equal momentum partitioning n = 1/2, M = 1.2 GeV.
Solutions to the quark-DSE are required for the whole shaded region,
with Re( p2) extending as far as the UV cut-off
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In contemporary BS studies, one is generally forced to
work in the rainbow-ladder approximation whereby the full
quark—gluon vertex "V (g, k) of (A.1) is replaced by its bare
counterpart y”. We can then solve (A.1) for p? € C with-
out iteration, requiring only as input the quark propagator
on RT. In practice, we need only perform calculations in the
upper half-plane, H™, since solutions are related by com-
plex conjugation. The caveat, however, is that we require
knowledge of the gluon interaction for complex momenta
k = p — q. In general, though the analytic structure of the
gluon may be surmised, the analytic continuation of some
phenomenological ansatz is at best ill-defined.

To avoid evaluating the gluon for complex momenta, we
modify the momentum routing in the quark-DSE such that
its momentum is manifestly real. This amounts to intro-
ducing a shift in the integration variable, ¢ — k, which is
of course valid in any translation invariant regularization
scheme. Such schemes are in general not employed in DSE
studies, for technical reasons, so one should be mindful of
any boundary terms that may arise; with a subtractive renor-
malization scheme and careful consideration of the renor-
malization conditions these spurious terms may be rigor-
ously eliminated. What remains is the equation:

S(p)~' =228y + g*CrZir

4
x / (;T]; yS(@)I'"(q. k) Dy (k), (A.3)
where again we consider p?> € H* along the parabolas
of (A.2), and now k% € Rt, q2 € C. Now that the integral
equation depends on the a priori unknown quark propagator
in the complex plane, we must employ an iterative scheme
to obtain solutions.

If we choose a point p? that lies on a parabola with ver-
tex at (—m?, 0), then the integral equation only requires the
quark propagator be known in the region of the complex
plane bounded by the same parabola. The most efficient way
to obtain solutions is then to expand in a series of parabolic
shells stemming from the real axis, as shown in Fig. A.2(b).
To accelerate the iteration process, the previously converged
shell is extrapolated outwards, using the Cauchy—Riemann
equations, and used as an initial guess for the next shell.

Im[p?] GeV?
4

4 Re[p*] GeV>

Fig. A.2 The mapping we employ to internally represent the parabolic shells and the 2D interpolation
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Because we are dealing with complex numbers, it is nec-
essary to employ some 2D interpolation scheme. Internally,
our parabolic shells are characterized by their vertex m?
and a parameter 7, shown as stacks in Fig. A.2(a), which
are mapped onto the parabolas of Fig. A.2(b). It is thus
straightforward to take any point p? € C and determine its
corresponding value in (12, m?) space. Cubic-spline inter-

polation is used to interpolate along the closest two shells

ml2 <m? < m?_H in 2, whilst linear interpolation in v/m?

is sufficient for determining the value in-between. This es-
sentially leads to interpolation along a parabola, such as the
dashed curve shown in Fig. A.2.

The drawback of this approach, however, is that without
precise information about the location of the poles and their
residues, we are unable to explore beyond the singularities
appearing in the quark propagator. This is discussed also in
the main body of this work.
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