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Abstract

In CLS, Deep Learning was applied to make a dynamic
model for the Orbit Correction System (OCS). The OCS
consists of 48 sets of BPMs BERGOZ (96 data sheets with
900 Hz recording) that measure the beam position and use
the SVD matrix to calculate the strength of the orbit correc-
tors (48 sets of Orbit Correctors ’OC’). The Neural Network
was built, trained, and tested using 96 BPM signals. Five
layers of the network (Input Layer, Three Hidden Layers, and
Output Layer) provide the time evolution of OC’s signals
(18 Hz), which can be achieved with high accuracy (Mean
Square Error = 10~7). The results are based on data collected
during all challenging situations of the CLS storage ring’s
current beam position. An Arduino Board was used to test
this methodology in real time, and the time of operation was
within the range of system timing (30 - 40 microseconds).

INTRODUCTION

CLS (Canadian Light Source) is a synchrotron light
source. There are 12 sections in the storage ring, which
runs at 2.9 GeV. A perturbation of the electron position in
the closed orbit leads to a decrease in beam lifetime and
fluctuations in light at the beamlines. These perturbations
are corrected by the Orbit Correction System (OCS). The
orbit correction system of the CLS includes a computer run-
ning Matlab, four Versa Module Eurocards (VMEs), each of
which corresponds to three sections of the storage ring, and
a Real-Time Executive for Multiprocessor System (RTEMS)
(Figure 1). The 96 Bergoz Beam Position Monitors (BPMs)
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Figure 1: Schematic of orbit feedback system in CLS.

are digitized by the Analog to Digital Converter (ADC)
ICS-110BL at 50Hz, and finally, the 96 correctors feed at
18Hz [1].
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Figure 2: BPMs and OCMs location in each cell for CLS.

In 2000, a Motorola single-board computer was installed
as the first real-time controller [2]. The old orbit correction
system was upgraded to the present OCS in 2008 [3]. A
fast orbit correction system was designed and tested in CLS
in 2009. The new system has a tunable rate between 20 Hz
and 100 Hz [4]. The CLS Matlab application (CLSORB)
has been developed to modify correction rates to 45 Hz
and 18 Hz for correctors [5]. Hardware and software orbit
control systems were developed until the RMS deviation of
beam motion was less than one micrometer in the X and Y
directions.

Every cell contains four horizontal and vertical beam
position monitors (BPMs), and 4 orbit corrector magnets
(OCMs), where 2 slow correctors are located between the
bendings, and 2 fast correctors are located on either side of
the dipoles (Figure 2) .

The Singular Value Decomposition (SVD) is provided by
the Matlab interface. The SVD can be calculated at all BPMs,
by adjusting the strength of each OCM by a small amount
[6]. As the main component of the orbit correction system,
this response matrix plays a crucial role. In this research, we
replace the SVD function with a neural network algorithm
as the orbit correction system’s brain.

Dynamic learning capabilities of neural networks can re-
duce unneeded fluctuations and resonances in beam position
and control chaotic behavior. We are now in the process
of developing a dynamic orbit correction controller for the
CLS.

NEURAL NETWORK MODEL

Artificial neural networks (ANNs) emulate biological neu-
ral networks, which are able to store and recall large amounts
of information and exhibit high levels of solving problems.
Using elementary operations, these mathematical models
can quickly solve stochastic, nonlinear, and complex prob-
lems. The creation of an ANN requires many parameters,
known as network architectures. Number of Inputs p; (neu-
rons or nodes), Number of Layers a’ , Biases b;, Weights w',

and Activation functions f? are shown in the Figure 3 [7].
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Figure 3: A three layers ANN with Number of Inputs p;,
Number of Layers a’, Biases b‘ Weights w!, and Activation

functions f*.
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Figure 4: Loss behaviour of MSE for 50 epochs.

The next sections discuss neural network architecture and
parameters for orbit correction system model of the CLS.

Network Architecture

In this case, the first layer should consist of 96 neurons
for 96 BPMs data, because the number of neurons depends
on the inputs, in addition, there are 96 outputs for 96 OCMs.
The same number of inputs and outputs prevent us from
expanding nodes in hidden layers, so we select 96 nodes per
hidden layer. Several hidden layers(1, 2, 3) are selected and
tested to find the best result. Additionally, increasing the
hidden layers can increase the calculation time, so in this
case, the maximum number of layers selected is 3 hidden
layers, which is a famous NN. Finally, the NN consists of 96
nodes for input, hidden layers, and output, as well as three
hidden layers [8].

In order to create this architecture, first, a code was cre-
ated by python and tested. In spite of the excellent results
with about 2.1 * 1076 Mean Square Error (MSE), the learn-
ing time was outside of the acceptable range. Modeling of
the TensorFlow-Keras library [9] was performed, MSE was
around 1077, and the calculation time was shorter, therefore,
we continued by using this library. Using a random weight
distribution, the mean square error is reduced rapidly in the
TensorFlow model, and after several iterations (EPOCH) has
reached an acceptable level. In Figure 4, TensorFlow-Keras
shows the loss behavior of MSE for fifty epochs.

Network Parameters

As one of the most important issues in NN, the preparation
of data for learning is an essential part of the process. Inputs
and outputs in the network should be between 1 and -1, while
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Figure 5: Orbit Correction System outputs for 96 OCVs are
plotted in green, and neural network outputs to OCVs are
plotted in blue.

BPMs are between +103 and —103 , OCMs are distributed
between +10° and —10°. BPMs and OCMs are sampled at
1 kHz, and two huge tables(Inputs and outputs) with 1000
rows and 96 columns are available at one second, which
must be normalized. By dividing the absolute value of the
row maximum value for each row, normalization can be
achieved. A discussion about other faster normalization
techniques will follow in the conclusion.

There are many activation functions that can be used in
NN modeling, Sigmoid is the most famous, which changes
between 0 and 1 [10]. The Hyperbolic Tangent (7'anh) was
used because the input data changed between -1 and 1. By
comparing these two activation functions, Tanh found the
model faster than Sigmoid and it was predictable.

It is selected that, 70 percent of the database will be used
for training and 30 percent for testing.

This step, Learning, involves splitting the saved data
into five-minute, twenty-minute, and sixty-minute segments,
training the neural network, and finally creating the model.
The test mean square error is (3.152360 % 10~7) and the train
mean square error is (3.152210 % 10~7) with 20 epochs. The
MSE values of testing and training indicate that the new
model is fairly accurate. In the Figure 5, outputs of both
the orbit correction system (Green) and NN model (Blue) to
OCVs are plotted at the same time, since these outputs are
matched perfectly with real data.

REAL-TIME SIMULATION

The CLS orbit correction system receives a data stream
with 1 kHz from 96 BPMs, normalizes it to 1, passes it to the
NN model, and sends the output data with 1 kHz to OCMs.
In a correction system, NN model accuracy is adequate but
needs to be improved in terms of timing and modification
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Figure 6: The schematic of the simulator to generate BPMs
outputs and OCMs inputs.

based on real-time data. This was accomplished by generat-
ing a real-time serial data set as BPMs via a simulation. The
Arduino mega 2560 is programmed to generate 96 outputs
with compatible frequencies. The data stream is sent to a
system with 11th Gen Intel(R) Core(TM) i5-1145G7(2.60-
1.50GHz) processor and 7.39 GB RAM sent and processed,
then sent to the OCMs (Figure 6). The real system works at
900 Hz for BPMs outputs and 18 Hz for OCMs inputs, The
Arduino can produce 900 Hz (Serial 115200) but the existing
system could not work less than 50 Hz, Which means the
system must read (900*96) data per second and generate
(18*96) data per second, but this hardware reads (50%96)
data per second and produces (1*96) per second. For this
purpose, we have to upgrade the hardware in the future.

Arduino data is streamed to the hardware via the Serial li-
brary. BPMs and OCMs are normalized with constant values
instead of row-to-row normalizations to decrease calculation
time. According to CLS data, BPMs have maximum val-
ues of 5 103 (MxBPM) and OCMs have maximum values
of 5 % 106 (MxOCM). Inputs are divided by MxBPM and
outputs are multiplied by MxOCM.

In this method, normalization takes 16 milliseconds, and
NN modeling and data preparation for OCMs takes 46 mil-
liseconds, so 60 - 65 milliseconds is close to real system
time.

An evaluation of the NN model’s long-term ability was
conducted, and the new algorithm worked flawlessly for 56
hours.

CONCLUSION

This research is about using TensorFlow to develop the
CLS orbit correction system. Learning and operating the sys-
tem with fast real-time data are its main objectives. Clearly,
the error on learning decreases with the time of algorithm
training, as seen in Figure 7 where three trainings are shown
with 60k, 300k, and 600k data. The average error per-
centage for the first training is 1.692526%, for the second,
1.061518%, and the last one has 0.91738%. A mean square
error of 1077 was found in the model, and real-time data
was operated at 65 ms intervals. After one hour of training
(3.6M data), the error goes down to (3.152200 = 1077).

In addition, this learning works with two hidden layers,
except the calculation time is faster, but the error rate de-
creases more slowly. Faster calculations are more important
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for deep learning models than speed rates of error, so two
hidden layers are a better architecture.

The real BPMs system sends 900 data per second to OCS,
then 18 data passes to OCMs, so we must average 50 in-
puts before passing them to the algorithm. We tested three
methods,

1- Waiting for 50 inputs, then averaging them,

2- Adding 50 data together at the moment, then dividing
by 50,

3- Averaging every 50 data at the moment.

The second technique was 13 percent faster than the oth-
ers, and this method is used for normalization. The system
appears to be faster at calculating than saving and reading
data.

Using the Arduino simulator, the Dynamic model reads,
analyses, and generates OCM outputs very smoothly, show-
ing the ability of the model to function on the actual machine.

Based on all calculations, the results obtained were quite
impressive. As a result of this study, it was demonstrated
that deep learning is a powerful tool for orbit correction
systems in storage rings.

Further applications of deep learning could be found for
accelerators, synchrotrons, light sources, and beam lines in
the future.
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Figure 7: The percent error of OCMs (Red line), and average
error (Blue line), with 60k (1.69%), 300k (1.06%) and 600k
(0.92%) data training by 20 epochs.
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