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Abstract

A derivation of the Gutzwiller trace formula is carried out, making it
possible to express quantum mechanical energy levels by means of purely
classical quantities of the system. Quantizing a system in this fashion
makes it possible to get the energy levels on not only integrable systems,
but also classical systems being chaotic.

The energy levels from the Gutzwiller Trace Formula is expressed as
a sum over all classical closed trajectories of the systems, thus one is in
need of some sort of method to find closed trajectories of a chaotic system
in order to quantize it.

In this report the system described by the Hamiltonian H(p, q) =
1
2
p2

1 + 1
2
p2

2 + 1
2
q2
1q

2
2 , being classically chaotic, is treated. Some structure

and order is found for the systems closed trajectories, but much work is
needed in order to get the energy levels of the system for any accuracy.
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1 Introduction

Already in 1917 Albert Einstein pointed out that it would not be possible, with
the methods at hand at that moment, to quantize systems that were later to
be called classically chaotic. That point was ignored although it was in fact a
great problem for quantum mechanics, even the helium atom turns out to be
a classically chaotic system. Later on the problem was recognized although it
was not really remedied until 1971 when Martin C. Gutzwiller came up with the
Trace Formula that by a semiclassical approach is able to express the energy
levels of certain quantum mechanical systems in terms of its classical closed
orbits.

Using the Madlung fluid picture to express a propagator for a quantum
mechanical system leads to the Van Vleck propagator. This propagator can be
Fourier transformed to its Green function by means of stationary phase method
to gain a semiclassical Green function for the system.

Taking the trace of the Green function means integrating the Green func-
tion in the same starting and end point over all space. Again evaluating this
integral with the stationary phase method gives the condition that the starting
and ending momentum has to coincide as well, meaning that the trajectory is
classical and starts and ends in the same point in the phase space and is thus a
closed classical trajectory.

The energy levels of the system are easily expressed in the trace of the Green
functions which in turn were possible to express in terms of closed classical
trajectories. Thus semiclassically the energy levels can be expressed in terms of
closed classical orbits so that even energy levels of classically chaotic systems
can be obtained provided that one knows its closed orbits.

Our main objectives were first to understand in detail the Gutzwiller Trace
formula and second to try to apply it to some classically chaotic Hamiltonian,
that is trying to find all shorter classical periodic orbits for the Hamiltonian and
to find certain properties of the orbits.

The Hamiltonian we have been looking at appears in several modern contexts
and has, to our knowledge, not yet been quantized successfully. The Hamilto-
nian is on a tauntingly simple form, but exhibit complex chaotic behavior.

We have explored the flow in phase space described by this Hamiltonian in a
severely pedestrian way, as we did not have much experience on such problems.
Although progress was slow it has been inspiring to work with the problem.
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2 Gutzwiller Trace Formula

The derivation below for the Gutzwiller Trace Formula, first derived by Martin
C. Gutzwiller[2], is more or less a review of the derivation made by Predrag
Cvitanović[1] et.al. with some minor modifications.

2.1 The Trace

A quantum mechanical system is completely described by its wave function
which should satisfy the Schrödinger equation

−ih̄∂tψ(q, t) = Ĥ(q,−ih̄∇)ψ(q, t). (1)

For a bound, quantum mechanical system there exist a set of functions φn(q)
in the Hilbert space that are orthonormal, i.e.∫

ddq φn(q)φ∗m(q) = δnm,

and complete, i.e. ∑
n

φn(q)φ∗n(q′) = δ(q − q′),

being the eigenfunctions to the systems Hamiltonian so that Ĥ(q,−ih̄∇)φn(q) =
Enφn(q). Thus any solution of the Schrödinger equation (Eq. 1) can be written
as a sum of the set of functions,

ψ(q, t) =
∑
n

cne
−iEnth̄ φn(q),

with cn =
∫

ddq φ∗n(q)ψ(q, 0).
The wave function can be written

ψ(q, t) =
∑
n

∫
ddq′ φ∗n(q′)ψ(q′, 0)e−i

Ent
h̄ φn(q)

=
∫

ddq′
∑
n

φ∗n(q′)φn(q)e−i
Ent
h̄ ψ(q′, 0)

=
∫

ddq′K(q, q′, t)ψ(q′, 0) (2)

where K(q, q′, t) =
∑
n φ
∗
n(q′)φn(q)e−i

Ent
h̄ is called the propagator. The only

q- and t-dependence lies within the propagator part of the wave function for
ψ(q, t), therefore it has to satisfy the Schrödinger equation

−ih̄∂tK(q, q′, t) = Ĥ(q,−ih̄∇)K(q, q′, t).

Combining the expression above with Eq. 2 for t = 0 gives K(q, q′, 0) = δ(q−q′).
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The Fourier transform of the propagator is called the Green function denoted
G(q, q′, E). The method to determine the Green function here is to give the
energy a positive imaginary shift, iε, to ensure the existence of an integral and
then taking the limit where ε→ 0,

G(q, q′, E + iε) =
1
ih̄

∫ ∞
0

dt e
i
h̄ (E+iε)tK(q, q′, t)

=
1
ih̄

∫ ∞
0

dt e
i
h̄ (E+iε)t

∑
n

φ∗n(q′)φn(q)e−i
Ent
h̄

=
1
ih̄

∑
n

φ∗n(q′)φn(q)
∫ ∞

0

dt exp
(
− i
h̄

(E − En + iε)t
)

=
∑
n

φ∗n(q′)φn(q)
E − En + iε

.

The information about the eigen energies is preserved when taking the trace of
the Green function,

TrG(q, q′, E + iε) =
∫

ddq G(q, q, E + iε) =
∫

ddq
∑
n

φ∗n(q)φn(q)
E − En + iε

=
∑
n

δnn
E − En + iε

=
∑
n

1
E − En + iε

.

Using the identity

δ(x− x′) = − lim
ε→0

1
π

Im
1

x− x′ + iε

one can express the density of states in terms of the trace of the Green function
for real energies

d(E) =
∑
n

δ(E − En) = − lim
ε→0

1
π

Im TrG(q, q′, E + iε).

Hence, to obtain the energy spectrum of a closed quantum system one needs to
calculate the trace of its Green function.

2.2 The Madlung flow picture

In the semiclassical approach the de Broglie wavelength is short compared to the
length scale in where the potential is varying considerably. As the de Broglie
wave length is proportional to h̄ the semiclassical limit can be viewed as the
limit where h̄ → 0. In this approximation the wave function can be expressed
on the form

ψ(q, t) = A(q, t)eiR(q,t)/h̄

also known as the Wentzel-Kramers-Brillouin (WKB) Ansatz.
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Inserting this Ansatz in the Schrödinger equation (Eq. 1), with the Hamilto-
nian on the form H(q, p) = 1

2mp
2 − U(q), yields (from real and imaginary part

respectively)

0 = ∂tR+
1

2m
(∇R)2 + U(q)− h̄2

2m
4A
A

(3)

0 = ∂tA+
1
m

(∇R)(∇A) +
1

2m
A(4R). (4)

Using in Eq. 3 and Eq. 4 the substitution ρ = A2(q, t) and v = 1
m∇R(q, t)

Eq. 4 becomes equivalent to ∂tρ +∇(ρv) = 0 , i.e. a continuity equation for a
flow described by density ρ and velocity field v. In the semiclassical approxima-
tion, where h̄ → 0, Eq. 3 becomes equivalent to the classical Hamilton-Jacobi
equation

∂tR+H(q,∇R(q, t)) = 0. (5)

The flow of ρ and v is called the Madlung flow.
For a trajectory starting in the point q(0) = q′ with the initial momentum

p(0) = p′ = ∇q′R(q′, 0), from the Madlung flow, the final value of R can be
calculated along the trajectory evolving from q′ at time t = 0 using

dR(q(t), t)
dt

= ∂tR(q, t) +∇R(q, t) q̇ = −H(q, p) + pq̇ = L(q(t), q̇(t), t)

where L is the Lagrangian of the classical system. The evolution of R(q, t) is
given by

R(q(t), t) = R(q′, 0) +
∫ t

0

dt′ L(q(t′), q̇(t′)) (6)

where the last term, R(q, q′, t) ≡
∫ t

0
dt′ L(q(t′), q̇(t′)), is Hamilton’s principal

function. From Eq. 6 one obtain the initial and final momenta

p′ = −∇q′R(q, q′, t),
p = ∇R(q, q′, t).

2.3 Maslov index

The Madlung flow is conserved in time. Thus, an infinitesimal volume of the
matter will be conserved as it evolves in time

ρ(q(t), t)ddq = ρ(q′, 0)ddq′ = ρ(q′, 0) det
(
∂q′

∂q

)
ddq

giving ρ(q(t), t) = det
(
∂q′

∂q

)
ρ(q′, 0) and A(q(t), t) =

√
det
(
∂q′

∂q

)
A(q′, 0). To-

gether with Eq. 6 it is possible to separate the time dependence from the WKB
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Ansatz

ψ(q, t) = A(q, t)eiR(q,t)/h̄ =

√
det
(
∂q′

∂q

)
A(q′, 0)ei(R(q′,0)+R(q,q′,t))/h̄

=

√
det
(
∂q′

∂q

)
eiR(q,q′,t)/h̄A(q′, 0)eiR(q′,0)/h̄

=

√
det
(
∂q′

∂q

)
eiR(q,q′,t)/h̄ψ(q′, 0).

The sign of the square root may be expressed in terms of Maslov index ν, count-
ing the number of sign changes of the Jacobian determinant on the trajectory
connecting q′ and q√

det
(
∂q′

∂q

)
=

√
e−iπν(q,q′,t)

∣∣∣∣det
(
∂q′

∂q

)∣∣∣∣ = e−
iπν(q,q′,t)

2

√∣∣∣∣det
(
∂q′

∂q

)∣∣∣∣.
So far the fact that there might be several possible paths from one point in
configuration space to another has been neglected. When taking in account that
the two points might be connected by several trajectories, the wave function
must be summed over all possible paths. Every path will then have its own
Maslov index νj , determinant and Rj(q, q′j , t), i.e.

ψ(q, t) =
∑
j

∣∣∣∣det
(
∂q′j
∂q

)∣∣∣∣
1
2

eiRj(q,q
′
j ,t)/h̄−iπνj(q,q

′,t)/2ψ(q′j , 0), (7)

summed over all possible classically allowed trajectories ending up in q at time
t.

2.4 The Propagator

To obtain the propagator one has to have the wave functions time dependence
on the same form as in Eq. 2, that is as an integral over q′, not as in in Eq. 7, as
a summation over the allowed q′j . Doing so, the wave function from each starting
point q′ can be considered a Dirac delta distribution at q′, then integrating over
q′. To avoid the infinite distribution amplitude in configuration space one can
look at the distribution in momentum space instead. The point like distribution
in configuration space corresponds to a constant distribution |C|2 in momentum
space where the conservation of the Madlung flow is expressed by

ρ(q, t)ddq = |C|2ddp′ = |C|2 det
(
∂p′

∂q

)
ddq.

Using the relation p′ = −∇q′R(q, q′, t) on component form p′j = −∂q′
j
R(q, q′, t)

(here q′j denotes the j:th element of the starting point, not the j:th starting
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point in the summation) the density evolution in time can be expressed as

ρ(q, t) = |C|2 det
(
−∂qi∂q′jR(q, q′, t)

)
.

Inserting this expression into the WKB Ansatz as previous, and integrating over
all starting points q′, the time dependence of the wave function is received on
the desired form

ψ(q, t) =
∫

ddq′K(q, q′, t)ψ(q′, 0),

where the propagator K(q, q′, t) is given by

K(q, q′, t) =
∑
j

C
∣∣∣det

(
−∂qi∂q′jR(q, q′, t)

)∣∣∣ 1
2
eiRj(q,q

′
j ,t)/h̄−iπνj(q,q

′,t)/2

the summation goes over all allowed trajectories from q′ to q in time t. The sign
on the determinant is separated into Maslov index as discussed previously.

The value of the constant C is determined by considering the time evolution
of R(q, q′, t) evolve for a short time interval δt

R(q, q′, δt) =
∫ δt

0

dt′ L(q(t′), q̇(t′)) ≈ δtL(q′,
q − q′

δt
) =

m(q − q′)2

δt
− δtU(q).

For a short time the first term will be dominant for the derivative within the
determinant so that

∂2R(q, q′, t)
∂qi∂q′j

≈ −mδij
δt

.

Thus
∣∣∣det

(
−∂qi∂q′jR(q, q′, t)

)∣∣∣ ≈ (mδt)d giving that the short time propagator
will become

K(q, q′, δt) ≈ C
(m
δt

)d/2
e
im
h̄2δt (q−q′)2

(8)

again omitting the term δtU(q). If this simple gaussian is to be preserved it has
to be normalized giving the condition C = (2πh̄i)−d/2. Inserting this condition
into the expression for the propagator the semiclassical Van-Vleck propagator
is finally obtained,

K(q, q′, t) =
∑
j

1

(2πh̄i)d/2

∣∣∣det
(
−∂qi∂q′jR(q, q′, t)

)∣∣∣ 1
2
eiRj(q,q

′
j ,t)/h̄−iπνj(q,q

′,t)/2.

2.5 The Green function

Calculating the Green function one can do it term by term as

G(q, q′, E) =
1
ih̄

∫ ∞
0

dt e
i
h̄EtK(q, q′, t) =

1
ih̄

∫ ∞
0

dt e
i
h̄Et

∑
j

Kj(q, q′, t)

=
∑
j

1
ih̄

∫ ∞
0

dt e
i
h̄EtKj(q, q′, t) ≡

∑
j

Gj(q, q′, E).
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An integral on the form of Gj(q, q′, E) can be solved in general using the sta-
tionary phase method. This method is exact when the integration goes from
−∞ to∞, it works also as a good approximation when integrating from 0 to∞
if the saddle point occurs at a sufficiently large time t so that the whole effect
of the saddle point lies in positive time.

Here the expression for the Green function is

Gj(q, q′, E) =
1
ih̄

∫ ∞
0

dt e
i
h̄EtKj(q, q′, t)

=
1
ih̄

∫ ∞
0

dt e
i
h̄Et

1

(2πh̄i)d/2

∣∣∣∣∣det

(
−∂

2R(q, q′, t)
∂qi∂q′j

)∣∣∣∣∣
1
2

·
(
ei(Rj(q,q

′
j ,t)+Et)/h̄−iπνj(q,q

′,t)/2
)
.

The exponent in the equation above reaches its extremum for ∂tRj(q, q′, t)+E =
0 as νj(q, q′, t) stays unchanged for the same trajectory. From the stationary
condition the time of the saddle point can be expressed as t∗ = t∗(q, q′, E).
Comparing the stationary condition with the Hamilton-Jacobi equation (Eq. 5)
one sees that t∗ is simply the time it takes for a particle of energy E to go from
q′ to q implying that the stationary phase condition holds valid for long time
trajectories.

The pre-exponential will also have contributions from ∂2
t (Rj(q, q′j , t)+Et) =

∂2
tR(q, q′, t) and we end up with

Glong
j (q, q′, E) =

√
2πh̄i

∂2
tR(q, q′, t∗)

1

ih̄ (2πh̄i)d/2

∣∣∣det
(
−∂qi∂q′jR(q, q′, t)

)∣∣∣ 1
2

·ei(Rj(q,q
′
j ,t
∗)+Et∗)/h̄−iπνj(q,q′,t∗)/2

=

∣∣∣det
(
−∂qi∂q′jR(q, q′, t)

)∣∣∣ 1
2
eiSj(q,q

′
j ,E)/h̄−iπνj(q,q′,t∗)/2

ih̄(2πh̄i)(d−1)/2
√
∂2
tR(q, q′, t∗)

(9)

where S(q, q′, E) denotes the action function defined as

S(q, q′, E) = R(q, q′, t∗) + Et∗ =
∫ t∗

0

dt (L(q′′(t), q̇′′(t)) + E)

=
∫ t∗

0

dt p(t)q̇(t) =
∫ q

q′
pdq. (10)

A useful property with the action function is

∇S(q, q′, E) = ∇R(q, q′, t∗) + ∂t∗R(q, q′, t∗)(∇t∗) + E(∇t∗)
= ∇R(q, q′, t∗) (11)

from the stationary condition.
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2.6 The Determinant

To determine an expression for the determinant in the propagator it is conve-
nient to separate the direction of q being in the direction of the flow. For the
separated dimensions we will get

p‖ = ∂q‖R(q, q′, t) = |p|,
p⊥ = ∇q⊥R(q, q′, t) = 0.

The determinant can then be calculated det
(
−∂qi∂q′jR

)
= det

(
−

(
∂q⊥,i∂q′⊥,jR(q, q′, t) ∂q⊥,i∂q′‖R(q, q′, t)
∂q‖∂q′⊥,jR(q, q′, t) ∂q‖∂q′‖R(q, q′, t)

))

= det

(
−

(
∂q⊥,i∂q′⊥,jR(q, q′, t) 1

|q̇′|∂q⊥,i∂tR(q, q′, t)
1
|q̇|∂t∂q′⊥,jR(q, q′, t) 1

|q̇||q̇′|∂
2
tR(q, q′, t)

))

=
1
|q̇||q̇′|

det

(
−

(
∂q⊥,i∂q′⊥,jR(q, q′, t) ∂q⊥,i∂tR(q, q′, t)
∂t∂q′⊥,jR(q, q′, t) ∂2

tR(q, q′, t)

))
from the relation ∂q‖R = ∂t

∂q‖
∂tR = 1

q̇‖
∂tR = 1

|q̇|∂tR. Using Eq. 11 one can
express the upper left piece of the determinant in terms of the action S(q, q′, E)

∂q⊥,i∂q′⊥,jR(q, q′, t) = ∂q′⊥,j∂q⊥,iR(q, q′, t)

= ∂q′⊥,j∂q⊥,iS(q, q′, E) + (∂E∂q⊥,iS(q, q′, E))(∂q′⊥,jE).

Taking the derivative ∂q′⊥,j of the saddle point condition ∂tR(q, q′, t) + E = 0
gives

∂q′⊥,jE = −∂t∂q′⊥,jR(q, q′, t)

and taking the derivative ∂E of Eq. 11 using the relation ∂Et = −(∂2
tR(q, q′, t))−1

(from the saddle point condition)

∂E∂q⊥,iS(q, q′, E) = (∂t∂q⊥,iR(q, q′, t))(∂Et)

= −(∂q⊥,i∂tR(q, q′, t))(∂2
tR(q, q′, t))−1.

Thus, we get the relation ∂q⊥,i∂q′⊥,jS(q, q′, E)

= ∂q⊥,i∂q′⊥,jR(q, q′, t)−
(∂q⊥,i∂tR(q, q′, t))(∂t∂q′⊥,jR(q, q′, t))

∂2
tR(q, q′, t)

.

This can be rewritten using a matrix relation

det


a11 a12 · · · a1n x1

a21 a22 · · · a2n x2

...
...

. . .
...

...
an1 an2 · · · ann xn
y1 y2 · · · yn E

 = E det
(
aij −

xiyj
E

)
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which has the exact form of our determinant. Hence, the determinant of
−∂qi∂q′jS(q, q′, E) can be expressed as

1
∂2
tR(q, q′, t)

det

(
−

(
∂q⊥,i∂q′⊥,jR(q, q′, t) ∂q⊥,i∂tR(q, q′, t)
∂t∂q′⊥,jR(q, q′, t) ∂2

tR(q, q′, t)

))
,

giving the relation

det
(
−∂qi∂q′jR

)
=

∂2
tR(q, q′, t)
|q̇||q̇′|

det
(
−∂qi∂q′jS

)
≡ ∂2

tR(q, q′, t)
|q̇||q̇′|

det D⊥(q, q′, E). (12)

Inserting Eq. 12 to the Green function in Eq. 9 yields

Glong
j (q, q′, E) =

|det D⊥,j(q, q′, E)|
1
2 eiSj(q,q

′
j ,E)/h̄−iπνj(q,q′,t∗)/2

ih̄(2πh̄i)(d−1)/2
√
|q̇||q̇′|

,

where j is the summation index of trajectories.

2.7 Short time trajectories

The stationary phase method was only valid for long time trajectories. In this
section short time approximation is considered. The Green function of trajec-
tory j, Gshort

j (q, q′, E) is approximately obtained using Eq. 8 where the term
containing the potential in the exponent now is taken into account

Gshort
j (q, q′, E) ≈ 1

ih̄

∫ ∞
0

dt
( m

2πih̄t

)d/2
e
i
h̄

(
m(q−q′)2

2t −U(q)t+Et

)
.

Rewriting this integral can be expressed as the definition of the first Hankel
function H

(1)
ν the Green function can be expressed as

Gshort
j (q, q′, E) ≈ − im

2h̄2

(√
2m(E − U(q))
2πh̄ |q − q′|

) d−2
2

H
(1)
d−2

2
(S0(q, q′, E)/h̄)

where

H(1)
ν (x) =

1
πi

∫ ∞
0

dt
e
x
2 (t− 1

t )

tν+1
,

and S0(q, q′, E) =
√

2m(E − U(q)) |q − q′| is the short distance approximation
of the action, S ≈ p∆q =

√
2m(E − U(q)) |q − q′| .

11



2.8 The Trace formula

To make something out of the trace of the Green function one can not simply
integrate G(q, q, E) over configuration space just summing over the trajectories
returning to point q with energy E. The short time trajectory contribution
discussed in Subsection 2.7 will be substantial in the limit limq′→q G(q, q′, e)
being zero length trajectories starting and ending in q. The total trace of the
Green function must thus be divided into two parts

TrG(E) = TrG0(E) +
∑
j

TrGlong
j (q, q′, E)

where the first term represents zero length contributions

TrG0(E) =
∫

ddq lim
q′→q

Gshort(q, q′, E)

and the second term long trajectory contributions

TrGlong
j (q, q′, E) =

∫
ddq Glong

j (q, q, E)

=
∫

ddq
|det D⊥,j(q, q, E)|

1
2 eiSj(q,q,E)/h̄−iπνj(q,q,E)/2

ih̄(2πh̄i)(d−1)/2|q̇|
.(13)

Once again we have an integral on a form suggesting stationary phase method.
Here the stationary condition for the exponent is

0 = ∇S(q, q, E) = ∇qS(q, q′, E)|q′=q + ∇q′S(q, q′, E)|q′=q = p− p′.

Thus, the stationary condition demands that the starting point and ending point
are the same not only in configuration space but also in momentum space. The
trajectory ends up in the same point in phase space giving that the trajectory
is in fact a classical, stable orbit in phase space. In fact the stationary phase
method will only be carried out in the d − 1 dimensions being perpendicular
to the flow restricting only p⊥ = p′⊥. But as the energy and the configuration
space coordinates are the same for starting and ending point also p‖ has to be
equal to p′‖ to fulfill the energy relation E = 1

2p
2 + U(q).

Separating the dimension parallel to the flow in Eq. 13

TrGlong
j (q, q′, E) =

∫
dq‖d

d−1q⊥

q̇‖

|det D⊥,j(q, q, E)|
1
2 eiSj(q,q,E)/h̄−iπνj(q,q,E)/2

ih̄(2πh̄i)(d−1)/2

(14)
where Sj(q, q, E) depends only on q⊥ since Sj(q, q, E) =

∮
j
pdq is integrated

along the orbit and thus do not depend on the starting point on the orbit,
the same argument is valid for νj(q, q, E). The saddle point, where the action
has its extremum, lies on the periodic orbit, i.e. q⊥ = 0. The pre-exponential
determinant from the stationary phase method will be

det
(
∂qi∂qjS(q, q, E)

)
= det

(
∂qi

(
∂qjS(q, q′, E) + ∂q′

j
S(q, q′, E)

))∣∣∣
q′=q

12



= det
(
∂2
qiqjS(q, q′, E) + ∂2

qiq′j
S(q, q′, E)

+∂2
q′
i
qj
S(q, q′, E) + ∂2

q′
i
q′
j
S(q, q′, E)

)∣∣∣
q′=q

.

This complex looking determinant can be rewritten in terms of the stability
matrix J expressing the final deviation δq⊥ and δp⊥ from the orbit in terms of
initial deviation δq′⊥ and δp′⊥ as follows

δq⊥ = Jqqδq′⊥ + Jqpδp′⊥,

δp⊥ = Jpqδq′⊥ + Jppδp′⊥.

Using the relations p = ∇S(q, q′, E) and p′ = ∇q′S(q, q′, E) the deviations δp⊥
and δp′⊥ can be written on matrix form

δp⊥ = δ∂qS = (∂2
qqS)δq⊥ + (∂2

qq′S)δq′⊥,

δp′⊥ = −δ∂q′S = −(∂2
q′qS)δq⊥ − (∂2

q′q′S)δq′⊥.

The final deviations δq⊥ and δp⊥ can be extracted,

δq⊥ = −(∂2
q′qS)−1(∂2

q′q′S)δq′⊥ − (∂2
q′qS)−1δp′⊥, (15)

δp⊥ = ((∂2
qq′S)− (∂2

qqS)(∂2
q′qS)−1(∂2

q′q′S))δq′⊥ − (∂2
qqS)(∂2

q′qS)−1δp′⊥.(16)

Being on the right form it is easy so see the matrix elements. Inserting Eq. 15
and Eq. 16 in the expression det(I − J), with I being the unit matrix, shows
that det (I− J)

= det
(

I− Jqq −Jqp
−Jpq I− Jpp

)
= det

(
I + (∂2

q′qS)−1(∂2
q′q′S) (∂2

q′qS)−1

(∂2
qqS)(∂2

q′qS)−1(∂2
q′q′S)− (∂2

qq′S) I + (∂2
qqS)(∂2

q′qS)−1

)
= det

(
I (∂2

q′qS)−1

−(∂2
qq′S)− (∂2

q′q′S) I + (∂2
qqS)(∂2

q′qS)−1

)
= det

((
(∂2
q′qS) + (∂2

qqS) + (∂2
qq′S) + (∂2

q′q′S)
)

(∂2
q′qS)−1

)
=

det
(
∂2
qqS + ∂2

qq′S + ∂2
q′qS + ∂2

q′q′S
)

det
(
∂2
q′qS

) ,

where the denominator
∣∣det

(
∂2
q′qS

)∣∣ =
∣∣det

(
−∂2

q′qS
)∣∣ ≡ |det D⊥,j(q, q, E)| .

Substituting this result in Eq. 14,

TrGlong
j (q, q′, E) =

∮
dq‖
q̇‖

eiSj(E)/h̄−iπνj(E)/2

ih̄ |det(I− Jj)|1/2
.

The last integration is carried out over one period giving that
∮ dq‖

q̇‖
=
∮

dt = Tj .

The sum over all closed orbits will contain also orbits going several revolutions.
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These repeated revolutions can be dealt with by just summing over all prime
closed orbits, and for every prime orbit sum over the number of revolutions, r,
where S → rS, ν → rν and J → Jr. Finally the Gutzwiller Trace Formula is
obtained,

TrG(q, q′, E) = TrG0 +
1
ih̄

∑
j,r

Tr
1∣∣det(I− Jrj)

∣∣1/2 eirSj(E)/h̄−iπrνj(E)/2,

expressing the relation between the quantum mechanical energy levels of the
system and its purely classical stable orbits. According to this formula also zero
length contribution will be of pure classical nature.

2.9 Zero length contributions

Looking at the zero length contributions to the density of states leads to the
expression d0(E)

= − 1
π

Im TrG0 = − 1
π

∫
ddq Im lim

q′→q
Gshort

0 (q, q′, E)

=
∫

ddq Im lim
q′→q

im

2πh̄2

(√
2m(E − U(q))
2πh̄ |q − q′|

) d−2
2

H+
d−2

2
(S0(q, q′, E)/h̄)

=
∫

ddq lim
q′→q

m

2πh̄2

(√
2m(E − U(q))
2πh̄ |q − q′|

) d−2
2

Re
(
H+

d−2
2

(S0(q, q′, E)/h̄)
)

=
∫

ddq lim
q′→q

m

2πh̄2

(√
2m(E − U(q))
2πh̄ |q − q′|

) d−2
2

J d−2
2

(S0(q, q′, E)/h̄) (17)

where Jν(x) is the Bessel function (from H
(1)
ν (x) = Jν(x) + iNν(x)). In small

argument approximation the Bessel function can be expressed as

Jν(x) ≈ 1
Γ(ν + 1)

(x
2

)ν
for |x| � 1,

and together with the relation S0(q, q′, E) =
√

2m(E − U(q)) |q − q′| Eq. 17 can
be expressed as d0(E)

=
∫

ddq lim
q′→q

m

2πh̄2Γ(d/2)

(√
2m(E − U(q))
2πh̄ |q − q′|

) d−2
2

·

(√
2m(E − U(q)) |q − q′|

2h̄

) d−2
2

=
m

h̄d2d−1πd/2Γ(d/2)

∫
U(q)<E

ddq (2m(E − U(q)))
d−2

2 . (18)
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This is an expression for the average density of states for the system, d̄(E). The
density of states is the energy derivative of the number of states N(E) under
an energy E. For the average density of states the number of states N(E) is
approximated by N̄(E) being simply the volume of phase space not exceeding
the energy, E, divided by the size of every quantum cell hd,

N̄(E) =
1
hd

∫
ddq ddpΘ(E −H(p, q)) =

1
hd

∫
ddq ddpΘ(E − 1

2m
p2 − U(q)).

To evaluate the integral with respect to p, we consider the general volume of a
sphere of radius r in any dimension d,

Vd(r) =
πd/2rd

Γ(1 + d/2)
.

Substituting for the radius |p| =
√

2m(E − U(q)) gives

N̄(E) =
1
hd

∫
U(q)<E

ddq
πd/2

√
2m(E − U(q))

d

Γ(1 + d/2)

=
πd/2

hd d2 Γ(d/2)

∫
U(q)<E

ddq (2m(E − U(q)))d/2

Thus,

d̄(E) =
dN̄(E)

dE
=

πd/2

hd d2 Γ(d/2)

∫
ddq

d

2
2m (2m(E − U(q)))

d−2
2

=
2mπd/2

hdΓ(d/2)

∫
ddq (2m(E − U(q)))

d−2
2

=
m

h̄d2d−1πd/2Γ(d/2)

∫
ddq (2m(E − U(q)))

d−2
2

which is exactly the same as the energy density contribution from zero length
orbit in the Gutzwiller Trace Formula, as seen in the Eq. 18.

15



3 A suitable Hamiltonian

The recently proposed M-theory is supposed to contain the five known super-
string theories in certain limits. It is also believed to describe eleven-dimensional
supergravity at lower energies or larger distances. Banks, Fischler, Shenker and
Susskind[13] have proposed for infinite momentum the M(atrix)-theory using a
supersymmetric matrix model.

M-theory contains as the only degree of freedom Dirichlet zero-branes, being
possible to express as matrixes. A system of N such Dirichlet zero-branes is
expressed as N 9× 9-matrixes. The action for such a system will then be

S =
∫

dtTr
(

1
2

(DtXi) (DtXi) +
1
4

[Xi, Xj ] [Xi, Xj ]
)

+ fermionic part

where Dt = ∂t + iA0 and the fermionic part contains the supersymmetric part-
ners.

The equations of motion for the bosonic part, with A0 = 0 are calculated

δSboson =
∫

dt δTr
(

1
2

(∂tXi) (∂tXi) +
1
4

[Xi, Xj ] [Xi, Xj ]
)

=
∫

dtTr
(

1
2
δ(∂tXi) (∂tXi) +

1
2

(∂tXi) δ(∂tXi)

+
1
4
δ([Xi, Xj ]) [Xi, Xj ] +

1
4

[Xi, Xj ] δ([Xi, Xj ])
)

=
∫

dtTr
(
∂tXiδ(∂tXi) +

1
2

[Xi, Xj ] δ([Xi, Xj ])
)

using δ([Xi, Xj ]) = δ(XiXj −XjXi) = δXiXj +XiδXj − δXjXi −XjδXi, and
hence Tr ([Xi, Xj ] δ ([Xi, Xj ]))

= Tr ((XiXj −XjXi) (δXiXj +XiδXj − δXjXi −XjδXi))
= Tr ((XjXiXj −XiXjXj −XjXjXi +XjXiXj) δXi

(XiXjXi −XjXiXi −XiXiXj +XiXjXi) δXj)
= 2Tr ((XjXiXj −XiXjXj −XjXjXi +XjXiXj) δXi)
= 2Tr (([Xj , Xi]Xj −Xj [Xj , Xi]) δXi) = 2Tr ([[Xj , Xi], Xj ] δXi) .

As usual for this problem the term containing δ(∂tXi) is integrated by parts,
omitting the boundary terms at infinity giving

δSboson =
∫

dtTr
((
−∂2

tXi + [[Xj , Xi], Xj ]
)
δXi

)
.

For the action to have en extremum then

Ẍi = [[Xj , Xi], Xj ] .
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Yet another constraint can be found by varying A0 in the bosonic action giving

δSboson =
∫

dt δTr
(

1
2

(DtXi) (DtXi)
)

=
i

2

∫
dt δTr

(
δA0XiẊi − ẊiδA0Xi

)
=

i

2

∫
dt δTr

(
[Xi, Ẋi]δA0

)
giving the relation [Xi, Ẋi] = 0.

The Hamiltonian for the bosonic part will then be

Hboson = Tr (PiDtXi − L) = Tr
(
P 2
i −

1
2
P 2
i −

1
4

[Xi, Xj ]2
)

= Tr
(

1
2
P 2
i −

1
4

[Xi, Xj ]2
)

where Pi = ∂L
∂(DtXi)

= DtXi is the conjugate momentum.
The complexity of such a Hamiltonian can be studied for a toy model, very

much resembling the original Hamiltonian,

H(q, p) =
1
2
p2

1 +
1
2
p2

2 +
1
2
q2
1q

2
2 .

Thus the problems of quantizing such a Hamiltonian would be that it is chaotic,
as will be discussed in Section 4.

This Hamiltonian had been examined before, having been proved to have a
discrete spectrum by M. Lüsher[14], B. Simon[15] and B.V. Medvedev[16]. It
has then been further studied by Tomsovic[17].
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Figure 1: The potential U(q) = 1
2q1q2, cut at U(q) > 0.05

4 The Hamiltonian

The classical Hamiltonian considered here looks very simple at first glance,

H(q, p) =
1
2
p2

1 +
1
2
p2

2 +
1
2
q2
1q

2
2 . (19)

It is describing the dynamical system of a particle of unit mass moving without
friction in the two dimensional potential U(q) = 1

2q
2
1q

2
2 . That potential is made

up of two crossed valleys going along the two axis both becoming more and
more narrow as they approach both (±) infinities. In Figure 1 the potential is
drawn, cut at U(q) > 0.05 to make it more visable. The equal height curves of
the potential are simply the hyperbolas q1q2 = C for a real C.

Furthermore, if one of its coordinates was blocked the other coordinate would
be a simple harmonic oscillator. The system can thus be described as two
harmonic oscillators tightly coupled to each other resulting in a highly chaotic
system; a very small shift in initial conditions can make a great change in the
evolution of the system.

4.1 The flow in phase space

Hamilton’s equations of motion for the Hamiltonian are by definition

q̇1 =
∂H(q, p)
∂p1

= p1, (20)

q̇2 =
∂H(q, p)
∂p2

= p2, (21)

ṗ1 = −∂H(q, p)
∂q1

= −q1q
2
2 , (22)

ṗ2 = −∂H(q, p)
∂q2

= −q2
1q2. (23)
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The linearized flow of the system at a given point in phase space is defined as

F′(p, q) =


∂q̇1
∂q1

∂q̇1
∂q2

∂q̇1
∂p1

∂q̇1
∂p2

∂q̇2
∂q1

∂q̇2
∂q2

∂q̇2
∂p1

∂q̇2
∂p2

∂ṗ1
∂q1

∂ṗ1
∂q2

∂ṗ1
∂p1

∂ṗ1
∂p2

∂ṗ2
∂q1

∂ṗ2
∂q2

∂ṗ2
∂p1

∂ṗ2
∂p2

 =


0 0 1 0
0 0 0 1
−q2

1 −2q1q2 0 0
−2q1q2 −q2

2 0 0

 ,

giving that for shorter times
q1(δt)
q2(δt)
p1(δt)
p2(δt)

 ≈


q1(0)
q2(0)
p1(0)
p2(0)

+ δt · F′


q1(0)
q2(0)
p1(0)
p2(0)

 .

This can be easily shown for example for q1,

q1(δt) ≈ q1(0) + δt · q̇1(0)

= q1(0) + δt ·
(
∂q̇1

∂q1
q1(0) +

∂q̇1

∂q2
q2(0) +

∂q̇1

∂p1
p1(0) +

∂q̇1

∂p2
p2(0)

)
.

Looking for fixed points, that is where q̇1 = q̇2 = ṗ1 = ṗ2 = 0, gives that only
the origin is a fixed point.

4.2 Runge-Kutta

For a system of N variables x and N differential equations on the form ẋi =
fi(x1, . . . , xn) for i = 1 . . . N, the Runge-Kutta time evolution for a short time
δt is given by

x(t0 + δt) =
1
6

(k1 + 2k2 + 2k3 + k4),

where k1, k2, k3 and k4 are N -dimensional vectors defined as

k1 = f(x(t0))δt,

k2 = f(x(t0) +
k1

2
)δt,

k3 = f(x(t0) +
k2

2
)δt,

k4 = f(x(t0) + k3)δt.

The functions fi(x) can be determined from the equations of motion (Eq. 20–
23), defining x1 ≡ q1, x2 ≡ q2, x3 ≡ p1 and x4 ≡ p2 gives

f1 = x3,

f2 = x4,

f3 = −x1x
2
2,

f4 = −x2
1x2.
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Together with the Runge-Kutta method an approximation of a trajectory start-
ing in any point in phase space evolving it time step by time step can be ob-
tained. The plots made below all have time step δt = 0.01 unless otherwise
stated. This interval has turned out to be a sufficiently fine time step to show
stable orbits in the relevant time scales, i.e. having found initial conditions for
a closed trajectory to some accuracy for δt = 0.01 it is valid for smaller time
steps as well.

None of the discretized trajectories are exact, but they are at least shown to
exist. And for that δt = 0.01 is sufficiently small for trajectories at E = 1

2 with
an orbiting time in order of 101.

4.3 The Liapunov exponents

One way to investigate chaos is to look at the Liapunov exponent of the system.
For chaotic motion a small separation between two starting points in phase space
tends to grow exponentially with time |δ(t)| = |δ(0)|eλt where λ is the Liapunov
exponent. The Liapunov exponent is merely an approximation as there are in
fact several exponents fulfilling its properties; every real eigenvalue from the
matrix F′ will be momentaneous Liapunov exponent for the dimension of the
particular eigenvector. The Liapunov exponent is therefore defined as the rate
of separation for large times

λ = lim
t→∞

1
t

log
(
|δ(t)|
|δ(0)|

)
.

As a system with a large Liapunov exponent will be extremely much harder to
predict in long terms coming from the exponential growth of any initial errors,
it serves well as a parameter to estimate how chaotic a system is.

However, a large Liapunov exponent is not sufficient to achieve chaotic be-
havior. An overall expanding system will have a large Liapunov exponent, but
it does not have to be chaotic in any sense. For a system to be chaotic a small
separation between two trajectories does not only have to grow exponentially in
time but also change the characteristics of the two trajectories significantly at
larger times. Looking at Figure 2 one can see that a small separation in momen-
tum leads to a separation of the trajectories, after some time the trajectories
look totally different.

Thus, a chaotic system has to be stretching in some dimensions and com-
pressing in some others, without just flattening out to infinity. For this to be
fulfilled the system has to be folded back somehow, which is almost always
the case for chaotic structures. Therefore, the phase space of chaotic dynamics
is evolving somewhat like a dough of Danish pastry, being flattened, folded,
flattened, folded. . . etc.

One way to determine the Liapunov exponent is to let the deviation evolve
in the linearized flow of a trajectory, so that δ(t) =

√∑
i(a

2
i + ȧ2

i ) where a
is the solution of ȧ(t) = F′(x)a(t). Using this expression for δ(t) one obtains

λ(t) = limt→∞ χ(t) with χ(t) = 1
t log

( ∣∣√∑
i
(a2
i
(t)+ȧ2

i
(t))
∣∣∣∣√∑

i
(a2
i
(0)+ȧ2

i
(0))
∣∣
)

showing that χ(t)
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Figure 2: Two trajectories (both starting at *) with a small separation in mo-
mentum
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Figure 3: Shows on the left long time non-repeating trajectory and to the right
the corresponding evolution of the function χ(t) approaching a value of χ(t) ≈
0.4

will asymptotically approach the Liapunov exponent λ. Figure 3 shows a long
time non-repeating trajectory, next to the evolution of χ(t) approaching a value
of λ ≈ 0.4.

4.4 Chaos in Hamiltonian flow

A system must have at least d
2 conserved quantities where d is the number of

dimensions in phase space in order to be integrable. In case of a Hamiltonian flow
in phase space this condition not only restricts a trajectory to a d

2 -dimensional
subspace of the phase space but it can also be shown by action angles that
this subspace is a d

2 -dimensional torus, giving quasi-periodic motion. Thus, an
integrable system is not chaotic.

Here the phase space is four dimensional and since we have a Hamiltonian
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Figure 4: The Poincaré map at q1 = 0 of the flow of the Hamiltonian in Eq. 19

system, the energy is conserved. Thus for this system to be integrable we need
to find yet another conserved quantity.

One way to explore the existence of such a quantity is to look at a Poincaré
map of the system.

4.5 The Poincaré map

In 1893 Poincaré introduced a method to investigate chaotic systems by means
of Poincaré maps. By having a plane in phase space, here the (q2, p2)-plane, one
can plot the coordinates where a trajectory cuts it, giving the Poincaré map. In
this case one simply plots (q2, p2) every time q1 changes sign. Given the energy
of the trajectory p2 =

√
2E − p2

1 (and of course q1 = 0 ) the Poncaré map will
be a two dimensional cut of the three dimensional subspace of energy E. Hence,
every trajectory has its own map. Analyzing these maps for a given energy
would then give information on the subspace of constant energy.

For a non-chaotic 4-dimensional system with two conserved quantities the
Poincaré map would have the shapes of lines as it would be simply a 2-dimensional
cut of the 2-dimensional subspace generated by the constants of motion. Whereas
for the chaotic systems with only one conserved quantity the subspace would
be 3-dimensional resulting in an area filling set of points.

The Poincaré map of the system discussed here is plotted in Figure 4. The
structure of this map contains line shaped parts surrounding an area filling set
of points. The surrounding lines arise when the trajectory goes out in a valley
(following the q2-axis) as seen in the trajectory to the left in Figure 3. Such
an oscillation will go out crossing the axis with lower and lower momentum
resulting in these structures in the Poincaré map.
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5 Closed trajectories

As we had not yet gained much experience in problems such as finding closed
trajectories in a chaotic flow we started out with the näıve approach to find
closed trajectories just by shooting. We aimed to get somewhat familiar with
the system, to see if there turned out to be many closed orbits, if any, and to
get a feeling for what kinds of closed trajectories were possible. As it turned
out there was an unexpected abundance of stable trajectories in phase space
and we spent a great deal of time trying to, in some way, catalogize the found
trajectories.

The way we worked is presented below in a somewhat chronological fashion.
But as our progression of work was far from sequential – methods came slow,
we went back to old methods and we had many methods going on at the same
time – it is hard to give an explicit order in which the different strategies to find
some order in the closed trajectories were applied.

5.1 Scaling

If q(t) is a is a solution of the flow then so will Cq( tC ) for any real number
C. One can easily check that the flow equations will be invariant under the
transformation q → Cq, t → t

C and following p → C2p. The rescaling will
lead to a shift on the energy, E → C4E. Thus any closed trajectory exist
for any energy. Looking for trajectories it is then only necessary to look for
trajectories of one given energy. For convenience we have chosen to look for
closed trajectories with the energy E = 1

2 as it is the energy of a trajectory
starting from a zero potential (on the q1- or q2-axis) with initial momentum of
magnitude |p| = 1.

5.2 Analytical solutions

There is actually one closed trajectory which can be proved analytically to be
repeating itself. Looking at the flow in phase space (Eq. 20–23) one easily
sees that if a trajectory starts on a diagonal with the velocity going along the
diagonal it will stay on the diagonal. So for q = q1 = q2 and p = p1 = p2 (or
q = q1 = −q2 and p = p1 = −p2) we have from the Hamiltonian that E = p2+ q4

2
which just describes a flow around a hyper ellipsis in phase space. Thus the two
pure diagonal trajectories are closed with a period of

τ =
∫ τ

0

dt =
∮

dq
q̇

= 4
∫ 4√2E

0

dq√
E − q4

2

= 4 4

√
2
E

∫ 1

0

du√
1− u4

=
16Γ2

(
5
4

)
4
√

2π2E
≈ 6.236338

4
√
E

with energy dependence on ∼ 1
4
√
E

as expected from the scaling.
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Figure 5: Same trajectory in ordinary and folded representation

5.3 Folded representation

As it turned out many closed trajectories were easier to detect at shorter times
if one looked at only the fundamental domain of the configuration space. By
symmetry all four quadrants are similar, in addition to that every quadrant is
made up of two similar parts being each others reflection in the diagonal between
the axis. This smallest section of interest is the fundamental domain. Thus the
whole phase space can be folded on top of itself to fit into one of these eights
of phase space, so that a trajectory bounces back instead of going to the next
section, as they all have an identical potential. One closed trajectory that is
particularly much easier to see being repeating in this folded representation is
shown in Figure 5, it retraces itself in one eighth of the period.

5.4 Shooting

At start, when we did not know how many closed trajectories we were to find,
we wanted to be able to look for them by varying a single parameter. To find
an appropriate one dimensional subspace of the phase space we needed to have
two constraining equations in addition to the energy equation. We made up
three symmetry conditions to start with:

• Closed trajectories unchanged under inversion of q2.

• Closed trajectories unchanged under reflection in the diagonal between
positive q1- and q2-axis.

• Closed trajectories going through the origin.

The first type of trajectory can be found by looking at trajectories starting
on the q2-axis with an initial velocity along the q1-axis. As the potential is
symmetric the trajectory will be unchanged under inversion of q2 given that it
is closed. Thus the three constraining equations will be q1(0) = 0, p2(0) = 0

24



−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

−1.5 −1 −0.5 0 0.5 1 1.5

−1.5

−1

−0.5

0

0.5

1

1.5

Figure 6: A symmetric trajectory with a skew companion

and E = 1
2p

2(0) ≡ 1
2p

2
0 = 1

2 giving p0 = 1. Varying q2(0) ≡ q0, seeing if they
get back to the point (0, q0) with unit momentum in positive q1-direction, will
then make it possible to find closed orbits being unchanged under inversion of
q2, not exceeding a certain period.

The second type has the initial conditions q1(0) = q2(0) = q0 and p1(0) =

−p2(0) = p0. The energy constraint will be 1
2 = E = p2

0+ 1
2q

4
0 giving p0 =

√
1−q4

0
2

thus q0 can be varied in the range 0 < q0 < 1 finding returning trajectories.
The third type has the obvious constraining conditions q1(0) = q2(0) = 0 and

|p| = 1. Thus the orbits are to be found by varying θ in the initial momentum
p1(0) = cos θ and p2(0) = sin θ looking for trajectories returning to the origin
in the same angle. As the system is symmetric in q1 and q2 the angle 90◦ − θ
will give the same trajectory as θ thus it is sufficient to vary θ in the range
0◦ < θ < 45◦.

Of these three initial condition only the third will be able to find all kinds of
solutions fulfilling the symmetry conditions, there might for the two first cases
be that the closed trajectory of that symmetry do not cross the line of reflection
vertically.

We wanted also to have a method that would make it possible to find non-
symmetric closed trajectories, so that we could explore them in the same fashion
as for the three symmetrical cases above. Many of the trajectories we had found
so far were turning back at some point, that is they went straight up a potential
slope, stood still momentaneous and went back. All these curves must turn on
a point on the lines |q2| = 1

|q1|as that is where the potential energy is 1
2 . Thus all

these trajectories could be found with the initial condition p1(0) = p2(0) = 0,
q1(0) = q0 and q2(0) = 1

q0
by varying q0 in the range 1 < q0. That is just

dropping it from a given potential.
Varying q0 we noticed that many of the trajectories we had found had similar

skew trajectories also being closed (See Figure 6). These skew trajectories made
catalogizing much harder.
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5.5 Sweeping

We wanted not only to explore some certain symmetric cases manually; we
wanted to make a computer program sweeping through a parameter space, look-
ing for trajectories returning to the vicinity of the initial condition. One could
then go through the found initial values to see if they were actually closed
trajectories. In that way one would be able to find closed trajectories not be-
ing symmetric nor turning around like the trajectories discussed in the end of
Section 5.4.

In order to get an initial condition that would make it possible to find any
closed trajectory the following observation were made. Any closed trajectory
has to cross the axis of q1 or q2 at least once due to the shape of the potential.
The potential is, in every quadrant, everywhere slanted down towards the axis,
so no closed trajectory could stay in one quadrant. In addition to that every
closed trajectory, except the analytical, diagonal one described in Section 5.2,
will somewhere cross the axis of q1 or q2 not only in the origin, as the diagonal
trajectory is unstable and thus a deviation from it will grow in time making it
cross the axis away from the origin.

Thus the following initial condition must be able to express any closed tra-
jectory, except the pure diagonal one: q1(0) = 0, q2(0) = q0, p1(0) = cos θ and
p2(0) = sin θ letting q0 > 0 and 0 < θ < 90◦. The angle θ does not have to be
varied from −90◦ as −θ will only correspond to the other, incoming end of the
closed trajectory for θ, and as the flow is invariant to time (and momentum)
inversion a closed trajectory with initial condition −θ would be the trajectory
of θ traced backwards.

There are indeed trajectories not crossing the positive q2-axis but other axes.
These trajectories will be known to exist as there will exist identical trajectories,
rotated 90◦, 180◦ or 270◦ crossing the positive q2-axis and can be found by
symmetry reasoning. So one would in theory be able to find all different closed
trajectories not exceeding a certain time by this method.

In the beginning of this project we set up a Matlab script to sweep through
a parameter space. Unfortunately we made it before we had really gained any
experience, and thus the parameter space is not normalized to energy. We used
the initial conditions q1(0) = 0, q2(0) = 1, p1(0) = p10 and p2(0) = p20 varying
p10 and p20 and thus E = 1

2p
2
10 + 1

2p
2
20. Every trajectory was iterated to t = 20

seeing if the trajectory returned close to the initial point in phase space, or to a
corresponding point in any fundamental domain. As it turned out the collected
data disappeared during a computer crash before we had time to analyze it
thoroughly.

The script found many of the symmetric closed trajectories we had already
found, but in addition to them even two or three non-symmetric ones, never
crossing the axis nor the diagonal vertically nor standing still momentaneously,
that seemed to repeat them selves. There were exceedingly many more sym-
metric closed trajectories found. Looking at the distribution of trajectories
returning to the vicinity of their starting point in phase space reveled nothing
new, the shorter time trajectories had larger areas returning, as the close initial
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Figure 7: The first three closed trajectories in a family

points had not yet been separated that much. These areas were stretched in
the radial direction, giving that the angular part of p was more critical than the
radial.

Unfortunately nothing more can be reported from that computation, except
that if we were to do it again we would normalize the initial condition to energy
and expand the tolerated vicinity of the initial point like eλt where λ is the
approximated Liapunov exponent in Figure 3.

5.6 Families

As it turned out many closed trajectories were in some ways similar so that they
formed families. The three first members in the two simplest of such families
were the ones presented in Figure 7 and 8, they are both simple to generalize
for n > 3.

Looking at the initial conditions for both families, q1(0) = 0, q2(0) = q0,

p1(0) = 1 and p2(0) = 0, turned out to follow closely to the relation q(n)
0 ∼ n−4

where q(n)
0 is q0 for the n:th family member. In fact they both followed that

relation close enough to make a routine in Matlab finding the (n+1):th member
in a family having qi0 for i = 1 . . . n for n > 1.

The routine worked as follows: for the relation
(
q

(n)
0

)−4

= A+Bn with n =

1 . . . n, A and B was approximated and then q(n+1)
0 was extrapolated as q(n+1)

0 =
(A + B(n + 1))−

1
4 . The initial condition could then be fine tuned to desired

accuracy by using the Newton-Raphson method
(
q

(n+1)
0

)
i+1

=
(
q

(n+1)
0

)
i
−

f
(
q
(n+1)
0

)
f ′
(
q
(n+1)
0

) where f(q0) is the deviation from q2 = q0 when crossing the q2-

axis after one revolution and f ′(q0) being approximated by f(q0+δq)−f(q0)
δt for

small δt. This simple method turned out to work well and gave us the first 25
trajectories in both families.

Remarkably it turned out that it was possible to find a simple expression for
q0 for a merged family where

q
(n)
0 =

{
qi0 of family 1 for n = 2i− 1
qi0 of family 2 for n = 2i.
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Figure 8: The first three closed trajectories in another family
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Figure 9: Plots for the merged family, n to q(n)
0 and n to 1

(q
(n)
0 )4

The merged group is presented in Figure 9, where the · is for family 1 and + is
for family 2.

For the first family (in Figure 7) one could use the same starting condition
for the same trajectory rotated 90◦. Looking at that side of the q0:s one easily
sees that it follows closely to the relation q

(n)
0 ∼

√
n.

Using this short end as a starting point it was possible to find many other
such families, such as the one presented in Figure 10. These families did not
have as obvious relations as for the first two families, but exploring them led
us to a method to find closed trajectories by dividing them in parts, not all
being symmetric in any way. We wanted to find families containing members
not crossing the axis vertically, we found a method for that, it is described in
Section 5.8.

5.7 Ordering trajectories

To be able to sort the found closed trajectories, we wanted to have some sort
of formal language to tell the trajectories from one another. A formal language
would be very helpful not only in ordering found trajectories, but also to figure
out expected closed trajectories. An ideal formal language would have some sort
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Figure 10: The first three closed trajectories in a third family

of grammar, making it only possible to write down allowed closed trajectories.
This language would give the topological closed trajectory, being a repeated

sequence of characters. The length of this sequence is then the topological length
of the trajectory but it is not similar to the real length of the trajectory in time.
Although having theses topological trajectories would immensely simplify the
search for closed trajectories not exceeding some time.

To exemplify how a formal language might work, imagine phase space having
three fundamental domains: A, B and C, all being identical, so that a ’rotation’
like A → B → C → A would give a similar trajectory. The simplest way to
define a formal language here for a trajectory would be just to write down in
order the domains it has gone through, like ABACBAB . . . . For it to be closed
it has to be repeated. With this simple language it is possible to express non
allowed trajectories containing parts like . . . AA . . . . This is avoided by having a
language containing only two letters, 0 and 1 where 0 means ’back to the domain
it came from’ and 1 means ’on to the third domain’. That is ABC repeated will
be expressed as 1 repeated (that is 111 repeated) and AB as 0 (00) that means
actually no confusion for closed trajectories as they are repeated so that one
always know what domain it came from. So having the repeated sequence 01
will express all three symmetrically identical trajectories ABAC, BABC and
CACB (all being repeated).

The most straightforward way to make a formal language to express the
closed orbits would be simply to point down what domains they pass. Unfortu-
nately, as it turns out, this approach is too general, there are closed trajectories
passing the fundamental domains in the same order as others, like the two in
Figure 11 (and in Figure 6 as well). These two would yield the same expression
in such a formal language, and it would be of no use.

We spent weeks trying to figure out a language being complex enough to
identify all closed trajectories, still being simple enough to make it possible
only to express existing closed trajectories. It might be possible to do so, and
we actually had some candidates for languages separating the two in Figure 11
(and Figure 6) but they all turned out to be far to complex and we did not
find any grammar excluding non existing closed trajectory. In addition to that
more trouble was coming from trajectories being even harder to separate in the
formal language. We still have not come up with any sensible formal language
separating the two closed trajectories in Figure 12 and do not think we ever
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Figure 11: Two similar closed trajectories
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Figure 12: Two even more similar closed trajectories

will.
These drawbacks led us to surrender this approach of finding all trajectories

not exceeding some topological length by expressing them in a formal language.

5.8 Dividing into parts

The most promising method to obtain and to order closed trajectories we man-
aged to come up with was to study the parts making up trajectories.

It was desired to somehow explore for what shapes of closed trajectories
there existed similar but not identical closed trajectories. To do so it turned
out to be instructive to study what parts made the trajectory stable. These
smaller parts could then be presented as lines in the (q0, θ)-plane for the initial
conditions (q1(0), q2(0), p1(0), p2(0)) = (0, q0, cosθ, sinθ). Studying these lines,
the intersection of two of them, one having negative θ, would then be a closed
orbit.
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Figure 13: The trajectories in Figure 12 in folded representation

To exemplify look at the case for the two similar closed trajectories in Figure
12, why are there two similar, flower shaped closed trajectories? Are there any
more? Plotting them in folded representation (Figure 13), presented in Section
5.3, one sees that the trajectories are very simple indeed. Dividing it into two
parts – the upper arc connecting the axis to itself and the lower arc connecting
the axis and the diagonal – one can look for the curve in the (q0, θ)-plane for
the two.

Again using a Matlab routine to extrapolate the value from earlier values
made it possible to get the line in the (q0, θ)-plane. This time it proved to be
sufficient to use only two proceeding values to get the third value close enough
to automatically fine tune it to desired accuracy. Thus it was possible to find
q0(θ) from the values of q0(θ − δθ) and q0(θ − 2δθ) for a sufficiently small δθ.

The first part is only possible to get for 0◦ < θ < 90◦ as it for θ ≤ 0◦

would be impossible to make the trajectory cross the same axis vertically as the
potential is slanted towards negative q2 so that |p2| does not decrease as in the
case for θ > 0◦. The second part exist for −90◦ < θ < 90◦. For these two to form
a closed trajectory they have to fulfill q1

0(θ) = q2
0(−θ) where q1,2

0 (θ) is describing
the curve in the (q0, θ)-plane for the first and the second part. Both plots for
δθ = 0.01(rad) are presented on top of each other, with the second part being
inverted in θ, in Figure 14. On the zoomed plot one can see that they actually
intersect each other twice, resulting in the two similar closed trajectories being
consisted of the same parts. The same reasoning can be used to show that there
are no closed trajectories looking like the ones in Figure 12 but with double balls
on each corner. Plotting the curve for the double balls on top of the curve for
the line connecting the axis and the diagonal shows that they do not intersect
as seen in Figure 15.
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Figure 14: The lines for the two parts in the (q0, θ)-plane, with θ in radians
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Figure 15: The second case
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6 Conclusions

In retrospect we realize that far too much time was spent on the näıve, botanistic
approach of shooting described in Section 5.4. We met an unexpected fauna of
these symmetric closed trajectories for all three conditions above and spent
much effort in trying to catalogize and express these different trajectories in
some sort of formal language (See Section 5.7). Finding non-symmetric skew
partners to many trajectories made us abandon our attempts to get a formal
language.

Unfortunately, even the latter most successful method discussed in Section
5.8 has its drawbacks, actually as it is it can not find any closed trajectories that
could not be found before. For a closed trajectory to be possible to divide into
parts as above it has to turn back in some sense so that the two parts will have
only one end each to connect. Looking at the folded representation one sees
that for it to turn back on the fundamental domain it can either cross an axis
vertically, cross a diagonal vertically or turn around, momentaneously stand
still at potential U(q) = E. All such could be found by the initial conditions in
Section 5.4.

The advantage of it is that having found a trajectory one can see if there
exist others consisting of the same parts. Furthermore finding these curves
makes it possible to find several other closed trajectories and argue whether one
is to suspect any closed trajectories of certain kinds. It would be possible to
find these curves for all parts not exceeding a certain time and the put them
together constructing all symmetric closed trajectories not exceeding some time.

Unfortunately if the non-symmetric closed trajectories discussed in Section
5.5 would not be possible to find by using this method, as they can not be split
up in parts the same way.

Given the opportunity we will continue to explore the same Hamiltonian
trying in a more analytical approach. Another natural continuation of our work
would be to try to study the stability matrixes for the different trajectories.
We have already made some efforts trying to estimate it for some found closed
trajectories simply by varying the initial conditions slightly around the found
initial condition for some accuracy.

Yet another thing one has to do in order to get the energy levels is to
calculate the action (Eq. 10) for the found trajectories. The action for some of
the closed trajectories has been studied, simply by summing up the value of the
Lagrangian along the path, which has turned out to work fairly well.
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