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Abstract

In the process of work it has been found that space-time quan-
tum fluctuations are naturally described in terms of the deformation
parameter introduced on going from the well-known quantum me-
chanics to that at Planck’s scales and put forward in the previous
works of the author. As shown, with the use of quite natural as-
sumptions, these fluctuations must be allowed for in Einstein Equa-
tions to lead to the dependence of the latter on the above-mentioned
parameter, that is insignificant and may be ignored at low energies
but is of particular importance at high energies. Besides, some in-
ferences form the obtained results are maid.

1 Introduction

The notion ”space-time foam”, introduced by J. A. Wheeler about 60 years
ago for the description and investigation of physics at Planck’s scales (Early
Universe) [1],[2], is fairly settled. Despite the fact that in the last decade
numerous works have been devoted to physics at Planck’s scales within the
scope of this notion, for example [3]-[22], by this time still their no clear
understanding of the ”space-time foam” as it is.

On the other hand, it is undoubtful that a quantum theory of the Early
Universe should.be a deformation of the well-known quantum theory.
The deformation is understood as an extension of a particular
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theory by inclusion of one or several additional parameters in
such a way that the initial theory appears in the limiting transi-
tion [23].

In his works with the colleagues [24]-[32] the author has put forward one
of the possible approaches to resolution of a quantum theory at Planck’s
scales on the basis of the density matrix deformation. This work demon-
strates that space-time quantum fluctuations, in essence generating the
space-time foam, may be naturally described in terms of the deformation
parameter «; introduced in [24]-[32], where | — measuring scale. Further it
is shown that, with the use of quite natural assumptions, these fluctuations
must be allowed for in Einstein Equations [33] to result in their dependence
on the parameter «,, insignificant and negligible at low energies (i.e. in
the limit ! — oo) but important at Planck’s scales | —o Ip.

Actually it is revealed that, if the metrics g,, is measured at some fixed
energy scale E ~ 1/1 (as is always the case in real physics), Einstein Equa-
tions are a;—deformed, and the known Einstein Equations [33] appear in
the low-energy limit. However, this aspect may be ignored in all the known
cases and the corresponding energy ranges because the scale ! is very dis-
tant from {p. Two clear illustrations of the high-energy o;—deformation of
Einstein Equations are given.

Some inferences from the results obtained are considered, in particular for
the cosmological term A.

This work is a natural continuation of the paper [50]. In [50] it has been
shown that in particular cases the General Relativity Einstein Equations
may be written in the a;-representation, i.e. they are dependent on the
parameter ;. Also, it has been demonstrated that for the indicated cases
one can derive the high-energy (Planck) «; - deformation of Einstein Equa-
tions. Then the question arises whether Einstein Equations are dependent
on q; in the most general case.

Proceeding from the present work, this question may be answered posi-
tively.

2 Quantum Fluctuations of Space-time and
High-Energy Deformation

In accordance with the modern concepts, the space-time foam [2] notion
forms the basis for space-time at Planck’s scales (Big Bang). This object
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is associated with the quantum fluctuations generated by uncertainties
in measurements of the fundamental quantities, inducing uncertainties in
any distance measurement. A precise description of the space-time foam
is still lacking along with an adequate quantum gravity theory. But for
the description of quantum fluctuations we have a number of interesting
methods (for example, [34],[12]-[22]).

In what follows, we use the terms and symbols from [14]. Then for the
fluctuations ol of the distance [ we have the following estimate:

oL 2 I, (1)

where 0 < v < 1 and lp = (AG/c®)Y/? is the Planck length.
At the present time three principal models associated with different values
of the parameter y are considered:

A) v =1 that conforms to the initial (canonical) model from [2]

8l 2 1p; (2)

B) v = 2/3 that conforms to the model [34],[14] compatible with the
holographic principle [35]-[39]

5 1\ /3

Az =tn (1) 3)
C) v=1/2 - random-walk model [21] [22]

_ 1\ 12

SR (Up)? =1p (E) ' (4)

But, because of the experimental data obtained with the help of the Hub-
ble Space Telescope [40], a random-walk model C) may be excluded from
consideration (for example, see [19]) and is omitted in this work.

Moreover, in fact it is clear that at Planck’s scales, i.e. for
l -xl P (5)

models A) are B) are coincident.
Using(2)—(4), we can derive the quantum fluctuations for all the primary
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space-time characteristics, specifically for the time Z):t, energy 0E , and met-
rics _
09, (formula (10) of [14]):

0gu 2 (Lp/1)7. (6)

It is obvious that all of them are dependent on one and the same dimension-
less parameter {p/l and on the Planck length lp, i.e. on the fundamental
constants.

Note also that in fact this parameter is introduced as a deformation param-
eter on going from the well-known quantum mechanics (QM) to a quantum
mechanics with the fundamental length (QMFL), provided this length /.,
is.on the order of Planck’s length ,,;, o< Ip , as revealed by the author in
the works written with his colleagues [24] —[32]. Let us recollect in short
the central idea of the above-mentioned works (pp. 1267,1268 in [25]).
The main object under consideration in this case is the density matrix p.
We assume that in QMFL the measuring procedure adopted in QM is valid
being defined by p. Then

Spl(pX?) — Sp*(pX)] = &1 > 0, (7)

where X is the coordinate operator. Expression (7) gives the measuring
rule used in QM. However, in the case considered here, in comparison with
QM, the right part of (7) cannot be done arbitrarily near to zero since it
is limited by {2, > 0. A natural way for studying QMFL is to consider
this theory as a deformation of QM, turning to QM at the low energy limit
(during the expansion of the Universe after the Big Bang).

We will consider precisely this option. Here the following question may be
formulated: how should be deformed density matrix conserving quantum-
mechanical measuring rules in order to obtain self-consistent measuring
procedure in QMFL? For answering to the question we will use the R-
procedure. For starting let us to consider R-procedure both at the Planck’s
energy scale and at the low-energy one. At the minimal length scale | =~
ilmin where 7 is a small quantity. Further [ tends to infinity and we obtain
for density matrix [24]-[32]:

Splpl?] — Splpl)Splpl] = 17, or Splp] — Sp®lp] ~ [ /12 (8)

Therefore:
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1. When [ < oo, Sp[p] = Sp[p(l)] and Sp(p] — Sp*(p] > 0. Then,
Splp] < 1 that corresponds to the QMFL case.

2. When | = oo, Sp[p] does not depend on ! and Splp] — Sp?[p] —
Then, Sp[p] = 1 that corresponds to the QM case.

The above deformation parameter is as follows:

a =l /1P 9)
This parameter is variable within the interval

0< e <1/4, (10)

whereas the density matrix in QMFL becomes deformed and dependent
on a;: p = p(ay), and we get

Jim plar) = p, (11)

where p — known density matrix from QM.
When lmm o lp, it is cleat that a; o {%/(? and all the fluctuations above
5l 6g,“,, Jt SE may be expressed in terms of the deformation parameter q.
For example, this is the case when the Generalized Uncertainty Principle
(GUP) [41])-[48] is valid

h Ap

Az > — + 0222

pa = B, (12)

and A is the model-depended dimensionless numerical factor.
Then, as seen in (12), we have a minimal length on the order of the Planck
length

Lnin = 2V/Alp. (13)
Therefore, we obtain
lpyo 1
(7) =D (14)

and the factor - is introduced into all of the formula (2)-(8) as soon as the

fundamental quantities involved are expressed in terms of ¢. Specifically,
the most important formula (6) in this case is of the form

Ogu R (A0) %), (15)
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In what follows we assume that a minimal length in a theory - [, is
existent no matter how it is introduced, from GUP (12) or in some other
way. Then the parameter «; (9) is quite naturally brought about from (7),
(8).

With the use of this "coordinate system” the above-mentioned models A)
and B) of the space-time quantum fluctuations may be ”unified” as follows:

I. The minimal length [,,;, , similar to cases A) and B), is intro-
duced at Planck’s level
lmin 0,8 lP-

II. In both cases fluctuations of the fundamental quantities may
be expressed in terms of the parameter «;.

ITI. The principal difference between A) and B) resides in the
fact that in the second case a minimal fluctuation of the length
is dependent on the measuring scale [, (§™"]) = (6™"l)[l], whereas
in the first case it is completely determined by the minimal length
™" ~ l..:n, being absolute in its character.

IV. As noted above, in the high-energy limit, i.e. for
L= Lnin, (16)

both models are coincident.

3 Quantum Fluctuations and Einstein
Equations

Thus, from the preceding section it follows that in any case we have min-
imal fluctuations §™" (dependent on the measuring scale ! or on the en-
ergy E ~ 1/l) for all the fundamental physical quantities [, ¢, E, g, ...,
expressed in terms of the parameter o;. Specifically, we have

(S'minglw)[l] — (Smingw)[a,] e e 07/2. (17)

Next we make the only natural assumption
if the metric g, in General Relativity (GR) is measured at the
scale [ or, that is the same, on the scale of the energies E ~ 1/,

variation of the metric dg,, is governed by its fluctuation (gg,w)[l]

142



and hence it is dependent on [ or, actually, on ¢;
09y = (09uu)[l] = (0gpu)[ul.
In particular, it can’t be arbitrary small as its lower limit is the fixed value

(0™ g,,)[au] > 0.
That means

(6™ gy) o] = rag’?, (18)

where k > 0 — some model-dependent factor.
Obviously, we have

Jim (6g,) 1] = lim (8g,)[0u] — 0. (19)

From this it follows immediately that in this case variation of the action
of 6S¢ in General Relativity [33] is also dependent on o

8Sc = (65¢)[a) (20)

and hence Gy, = Ry, — 1Rg,, is dependent on q, too:

Gl = Guufeu]. (21)
Then the knowns Einstein tensor
lim Gled = Jim Gl =G, (22)

and Einstein Equations in the vacuum

lim Gl = lim G[o“] =Guw=0 (23)
=00 a—0
are brought about in the low-energy limit.
Naturally, the right side of Einstein Equations [33] should be dependent
on qy as
(87T — Agy)™ = (81T, — Agu)lou). (24)

Therefore, Einstein Equations with a nonzero right side are of the following

form:
lim GE”] = hm (81TT,,,, — Agp)ledl. (25)

a—0
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Of course, at low energies, i.e. for

I>I1p (26)

or,that is the same with a very high accuracy, for
=~ 0, (27)

the function of ; may be disregarded and in this case, with a very high
accuracy, we can obtain the well-known Einstein Equations

Gg’:ﬂ ~ Gy = (81T, — Agu) ~ (87T, — Aguu)[al]~

All the scales (energy), at which Einstein Equations have been studied
until the present time, satisfied (26),(27), being far away from the Planck
scale Ip oc 10~33¢m, and in fact had no o;—dependence.

But on going to the high-energy limit

U 2min < Ip;oy — 1/4 (28)

there appears a nontrivial o;—deformation of Einstein Equations, later re-
ferred to as a— deformation

Gl = (81T, — Agy,)™. (29)

Jw

Note that from [25] (practically from formula (7),(8)) we have found:
with the canonical measuring procedure (7), the minimal length ., is
unattainable and a minimal measurable length, denoted as [7:¢2*u"
is the quantity

lm{aasur — 21

min min (30)

in accordance with (28).
Consider two examples of the .~ deformation of Einstein Equations.

E1.Phenomenological Markov’s Model [49).

This example is taken from Section 3 of [50].

Let us dwell on the work [49], where it is assumed that "by the universal
decree of nature a quantity of the material density p is always bounded by
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its upper value given by the expression that is composed of fundamental
constants” ([49], p.214):

CS

o< op= IeiT s (31)
with pop as "Planck’s density”.
It is clearly seen that, proceeding from the involvement of the fundamental
length on the order of the Planck’s Iy, ~ Ip, one can obtain gp (31) up
to a constant. Indeed, within the scope of GUP (12) (but not necessarily)
we have ln;, o [p and then, as it has been shown in [26], (12) may be
generalized to the corresponding relation of the pair ”energy - time” as

follows: 5 AE
At > —— + AME— 32
> st (32)
This directly suggests the existence of the "minimal time” t,,;, « tp and
of the "maximal energy” corresponding to this minimal time E,,,, ~ Ep .
Clearly, this maximal energy is associated with some ”maximal mass”

Moz

Emaz = ma:c627 Mmaz ~ MP~ (33)

Whence, considering that the existence of a minimal three-dimensional
volume Vi = B3, ~ Vp = I3 naturally follows from the existence of
lmin ~ lp, we immediately arrive at the "maximal density” gp (31) but
only within the factor determined by A

Miez -,
me = Omax Op-
Actually, the quantity
po=10/op <1 (35)

in [49] is the deformation parameter as it is used to construct the defor-
mation of Einstein’s equation ([49],formula (2)):
v 1 v 87I'G v 2\n 2nsv

R, - §R6u = 7T“(l — )" — Apy"oy, (36)
where n > 1/2, T;/-energy-momentum tensor, A- cosmological constant.
The case of the parameter p, < 1 or ¢ < pp correlates with the classical
Einstein equation, and the case when p, = 1 — with the de Sitter Universe.
In this way (36) may be considered as p,-deformation of the General Rel-
ativity.
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As it has been noted before, the existence of a maximal density directly, up
to a constant, follows from the existence of a fundamental length (31). It
is clear that the corresponding deformation parameter p, (35 may be ob-
tained from the deformation parameter a, (9). In fact, since a, = (2., /z?,
we have

lS i Vmin
o/t = I~ TR (37)

where V is the three-dimensional volume associated with the linear dimen-
sion z.
As a; may be represented in the form [24]-(32]:

a, = E*/E2, (38)

Ermaz ~ Ep, and Vi ~ Vp = 13, then from (33)-(35),(37),(38) we get

E/V e 2

juauad = ... 39
Emaa:/ Vmin Omazx ( )

0o ~

Of course, the proportionality factor in (39) is model dependent. Specifi-
cally, if QMFL is related to GUP, this factor is depending on A (12). But
the deformation parameters p, and « are differing considerably: the limit-
ing value p, = 1 is obviously associated with singularity, whereas originally
(by the approach involving the density matrix deformation [25]-[27],[32])
no consideration has been given to the deformation parameter a = 1 asso-
ciated with singularity,(formula (30))).

So, gpe-deformation of the General Relativity [49] may be interpreted as
a-deformation.

E2.Spherically-symmetric horizon spaces [51].

As shown in [51], the Einstein Equation for horizon in this case may be
written as a thermodynamic identity (the first principle of thermodynam-
ics): ([51], formula (119))

/ 3 4
hcj (a) %d <i47ra2) _ %C_gﬁ — Pd (43103)7 (40)
™ N—— ———
kgT ds —dE pPdv

where a static, spherically symmetric horizon in space-time is described by

the metric
ds® = — f(r)cdt? + f~(r)dr® + r?dQ?, (41)
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and the horizon location will be given by simple zero of the function f(r)
(f(a) =0, f'(a) #0) at 7 = a.( Here r = a is the radius of a sphere.) And
P =TT is the trace of the momentum-energy tensor and radial pressure.
In Sections 5 and 6 of [50] first the Einstein Equations on horizon (40)
have been written in terms of the parameter «,, next the high-energy
(g = 1/4), @, — deformation of these equations has been derived in two
different cases: equilibrium and nonequilibrium thermodynamics.

The latter case is distinguished from the first one by the dynamic cosmo-
logical term dependent on «,, appearing with the corresponding factor in
the right side of high-energy deformed (40) as follows:

A = Ayl (42)

4 Comments and Conclusion

In this way we can conclude that

C1) with inclusion of the space-time quantum fluctuations (e.g., in the
form of (2) or (3), we can naturally assume that in the most general case
of Einstein Equations there is a dependence on the small dimensionless pa-
rameter oy, infinitesimal at normal energies to be neglected but important
at high energies which are on the order of the Planck energy.

C2) The parameter @, is a deformation parameter on going from the
well-known quantum theory to a quantum theory of the Early Universe
(Planck’s scales)and hence the above-mentioned dependence of Einstein
Equations on this parameter may be considered as oy — deformation of the
General Relativity whose well-known, i.e. canonical, Einstein Equations
are brought about in the low-energy limiting transition.

The foregoing results are rather important for better understanding and
investigation of the cosmological term A, especially in view of the Dark
Energy Problem [52]-[56].

In principle, they may be used to answer the question whether A = const
or A = A(t) is a time-variable quantity.

Despite the fact that the works taking A as A(t), i.e. as a dynamic quan-
tity, are numerous(for example, [57]- [60]) quite forceful arguments are
given against this point of view (for example, [61]).

Indeed, according to the General Relativity, the cosmological term A has
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been considered constant A = const as, due to the Bianchi identities [33],
VG, = 0. (43)

But in this work it has been demonstrated that, actually, Bianchi identities
(43) are introduced at the low-energy limit only
] apf —

Jim, VAGI = VG, = 0. (44)
Because of this, the really measured cosmological term A in fact is dy-
namic A = A (t)], practically invariable in the modern epoch, i.e. at low
energies, due to slow variations of the deformation parameter o;(t) at low
energies and due to its very small value.
In the works [62]-[64] a behavior of the term A has been studied reasoning
from a(t) on the assumption that it is dynamic, similar to the case proven
in [62] GUP for the pair of conjugate variables (A,V), where V is the
space-time volume, as with the holographic principle applied to the whole
Universe [65]. The main difference of these two cases is in the leading order
of expansion A[a] in terms of . In the first case it is the second

ACYP(a) o (a® +ma® + .)A,, (45)
whereas in the second case it is the first
AP a) o (a4 &102 + ) A, (46)

where Ap = Aay1/4 — cosmological term at Planck’s scales.

As AP is practically coincident with the experimental value of the cosmo-
logical term Aczper, a holographic model is preferable — model B) of Section
2 developed for quantum fluctuations is supported experimentally.

In conclusion, let us state some important problems of the particular con-
cern:

A) What is the way to derive, in the most general case and in the explicit
form, the high-energy (a; — 1/4) a, - representation or, that is the same,
the high-energy o, - deformation of Einstein Equations?

B) Provided the foregoing representation is derived, is it possible to have
its logical series expansion in terms of «;? Note that we must allow for
the following: «; may be considered continuous with a high accuracy only
at low energies. Obviously, at high energies it is discrete as the length [
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is comparable to the minimal length [ < ln, i.e. in fact to the Planck’s
length [ o< lp.

As noted in point IV of Section 2, on approximation of the Planck ener-
gies, models (A) and (B) for the space-time fluctuations are practically
coincident. Because of this, we can raise the following questions:

C}) Is there some ”critical measure” or ”critical index” g iy =
2/3 < Yerit < ¥ = 1 — minimal bound, beginning from which models (A)
and (B) are practically identical at high energies, between the coefficients
v=2/3 and v =1 in formulae (3) and (3)? If such a ”critical index”
exists, what is it like? This may be of great importance for answering
the question that concerns the ”phase transition”, i.e. the minimal
energies, beginning from which one should take into account the quantum-
gravitational effects.

Another but similar problem:

C,) concerns a minimal bound for o, (denoted by af™ = [2,. /12 ..}, above
which models (A) and (B) actually result in the same physics. It is clear
that the problem at hand is associated with derivation of the correspond-

ing energy: Ecrit ~ 1/lerit-

And, finally, '

(D) it is interesting how the high-energy o - deformation of Einstein Equa-
tions is related to the adequate selection of a model for the space-time
foam. Is it representing a set of micro worm holes(for example, [3]-{6]),
micro black holes [7]- [9] or something else?

The author is planning to answer these questions, at least some of them,
in his future works.
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