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Abstract 
In the process of work it has been found that space-time quan­

tum fluctuations are naturally described in terms of the deformation 
parameter introduced on going from the well-known quantum me­
chanics to that at Planck's scales and put forward in the previous 
works of the author. As shown, with the use of quite natural as­
sumptions, these fluctuations must be allowed for in Einstein Equa­
tions to lead to the dependence of the latter on the above-mentioned 
parameter, that is insignificant and may be ignored at low energies 
but is of particular importance at high energies. Besides, some in­
ferences form the obtained results are maid. 

1 Introduction 

The notion " space-time foam" , introduced by J. A. Wheeler about 60 years 
ago for the description and investigation of physics at Planck's scales (Early 
Universe) [ l] , [2] , is fairly settled. Despite the fact that in the last decade 
numerous works have been devoted to physics at Planck's scales within the 
scope of this notion, for example [3]-[22] , by this time still their no clear 
understanding of the " space-time foam" as it is. 
On the other hand, it is undoubtful that a quantum theory of the Early 
Universe should .be a deformation of the well-known quantum theory. 
The deformation is understood as an extension of a particular 
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theory by inclusion of one or several additional parameters in 
such a way that the initial theory appears in the limiting transi­
tion [23] . 
In his works with the colleagues [24H32] the author has put forward one 
of the possible approaches to resolution of a quantum theory at Planck's 
scales on the basis of the density matrix deformation. This work demon­
strates that space-time quantum fluctuations, in essence generating the 
space-time foam, may be naturally described in terms of the deformation 
parameter o:1 introduced in [24]- [32] , where l - measuring scale. Further it 
is shown that, with the use of quite natural assumptions, these fluctuations 
must be allowed for in Einstein Equations [33] to result in their dependence 
on the parameter o:1 , insignificant and negligible at low energies (i.e. in 
the limit l ---+ oo) but important at Planck's scales l --+ex: lp. 
Actually it is revealed that, if the metrics gµv is measured at some fixed 
energy scale E ,..., 1 / l (as is always the case in real physics) , Einstein Equa­
tions are o:1-deformed, and the known Einstein Equations [33] appear in 
the low-energy limit. However, this aspect may be ignored in all the known 
cases and the corresponding energy ranges because the scale l is very dis­
tant from lp . Two clear illustrations of the high-energy o:1-deformation of 
Einstein Equations are given. 
Some inferences from the results obtained are considered, in particular for 
the cosmological term A. 
This work is a natural continuation of the paper [50] . In [50] it has been 
shown that in particular cases the General Relativity Einstein Equations 
may be written in the o:1-representation, i .e. they are dependent on the 
parameter o:1 • Also, it has been demonstrated that for the indicated cases 
one can derive the high-energy (Planck) o:1 - deformation of Einstein Equa­
tions. Then the question arises whether Einstein Equations are dependent 
on o:1 in the most general case. 
Proceeding from the present work, this question may be answered posi­
tively. 

2 Quantum Fluctuations of Space-time and 
High-Energy Deformation 

In accordance with the modern concepts, the space-time foam [2] notion 
forms the basis for space-time at Planck's scales (Big Bang) . This object 
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is associated with the quantum fluctuations generated by uncertainties 
in measurements of the fundamental quantities, inducing uncertainties in 
any distance measurement. A precise description of the space-time foam 
is still lacking along with an adequate quantum gravity theory. But for 
the description of quantum fluctuations we have a number of interesting 
methods (for example, [34] , [12]- [22] ) .  
In what foll�ws, we use the terms and symbols from [14] . Then for the 
fluctuations ol of the distance l we have the following estimate: 

'lz "' rr z1-7 f'V p ' 

where 0 ::::; 'Y ::::; 1 and lp = (nG/c3) 112 is the Planck length. 

(1) 

At the present time three principal models associated with different values 
of the parameter "( are considered: 
A) 'Y = 1 that conforms to the initial (canonical) model from [2] 

(2) 

B) "( = 2/3 that conforms to the model [34] , [14] compatible with the 
holographic principle [35]-[39] 

'lz � (ll�) l/3 = lp c�) 
1/3

; 

C) "( = 1/2 - random-walk model [21] [22] 

( 
) 

1/2 'lz � (llp) 112 = lp z� 

(3) 

(4) 

But, because of the experimental data obtained with the help of the Hub­
ble Space Telescope [40] , a random-walk model C) may be excluded from 
consideration (for example, see [19] )  and is omitted in this work. 

Moreover, in fact it is clear that at Planck's scales, i.e. for 

l --+ex lp, (5) 

models A) are B) are coincident. 
Using(2)-(4) ,  we can derive the quantum fluctuations for all the primary 
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- -
space-time characteristics, specifically for the time 5t, energy 5E, and met-
rics 

5gµv (formula ( 10) of [14] ) :  

(6) 

It is obvious that all of them are dependent on one and the same dimension­
less parameter lp/l and on the Planck length lp, i .e . on the fundamental 
constants. 
Note also that in fact this parameter is introduced as a deformation param­
eter on going from the well-known quantum mechanics (QM) to a quantum 
mechanics with the fundamental length (QMFL) ,  provided this length lmin 
is on the order of Planck's length lmin ex: lp , as revealed by the author in 
the works written with his colleagues [24] -[32] . Let us recollect in short 
the central idea of the above-mentioned works (pp. 1267, 1268 in [25] ) .  
The main object under consideration in this case is the density matrix p. 
We assume that in QMFL the measuring procedure adopted in QM is valid 
being defined by p. Then 

(7) 

where X is the coordinate operator. Expression (7) gives the measuring 
rule used in QM. However, in the case considered here, in comparison with 
QM, the right part of (7) cannot be done arbitrarily near to zero since it 
is limited by z;,.in > 0. A natural way for studying QMFL is to consider 
this theory as a deformation of QM, turning to QM at the low energy limit 
(during the expansion of the Universe after the Big Bang) . 
We will consider precisely this option. Here the following question may be 
formulated: how should be deformed density matrix conserving quantum­
mechanical measuring rules in order to obtain self-consistent measuring 
procedure in QMFL? For answering to the question we will use the R­
procedure. For starting let us to consider R-procedure both at the Planck's 
energy scale and at the low-energy one. At the minimal length scale l � 
ilmin where i is a small quantity. Further l tends to infinity and we obtain 
for density matrix [24]- [32] : 

Sp[pl2] - Sp[pl]Sp[pl] '::::'. z;,.in OT Sp[p] - Sp2 [p] '::::'. z;,,in/l2 . (8) 

Therefore: 
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1 .  When l < oo, Sp[p] = Sp[p(l)] and Sp[p] - Sp2 [p] > 0. Then, 
Sp[p] < 1 that corresponds to the QMFL case. 

2. When l = oo, Sp[p] does not depend on l and Sp[p] - Sp2 [p] ---+ 0. 
Then, Sp[p] = 1 that corresponds to the QM case. 

The above deformation parameter is as follows: 

(9) 

This parameter is variable within the interval 

(10) 

whereas the density matrix in QMFL becomes deformed and dependent 
on 0:1: p = p(o:z ) , and we get 

(11)  

where p - known density matrix from QM. 
When lmin ex lp , it is cleat that o:1 ex l�/l2 and all the fluctuations above 
'll}gµ., , Jt, JE may be expressed in terms of the deformation parameter o:1 . 
For example, this is the case when the Generalized Uncertainty Principle 
(GUP) [41]-[48] is valid 

( 12) 

and >. is the model-depended dimensionless numerical factor. 
Then, as seen in ( 12) , we have a minimal length on the order of the Planck 
length 

(13) 
Therefore, we obtain 

(14) 

and the factor 4\ is introduced into all of the formula (2)-(8) as soon as the 
fundamental quantities involved are expressed in terms of o:1 . Specifically, 
the most important formula (6) in this case is of the form 

(15) 
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In what follows we assume that a minimal length in a theory - lmin is 
existent no matter how it is introduced, from CUP (12) or in some other 
way. Then the parameter a1 (9) is quite naturally brought about from (7) ,  
(8) . 
With the use of this "coordinate system" the above-mentioned models A) 
and B) of the space-time quantum fluctuations may be " unified" as follows: 

I. The minimal length lmin , similar to cases A)  and B) ,  is intro­
duced at Planck's level 

lmin ex lp. 
II. In both cases fluctuations of the fundamental quantities may 
be expressed in terms of the parameter a1 • 

III. The principal difference between A) and B) resides in the 
fact that in the second case a minimal fluctuati�n of the length 
is dependent on the measuring scale l, (Jminz) = (Jminz) [l] , whereas 
!_n the first case it is completely determined by the minimal length 
5min � lmin • being absolute in its character. 

IV. As noted above, in the high-energy limit, i.e. for 

both models are coincident. 

3 Quantum Fluctuations and Einstein 
Equations 

(16) 

Thus, from the pr�ceding section it follows that in any case we have min­
imal fluctuations 5min (dependent on the measuring scale l or on the en­
ergy E '°'"' ljl) for all the fundamental physical quantities l, t, E, gµv, . . . , 
expressed in terms of the parameter az .  Specifically, we have 

(17) 

Next we make the only natural assumption 
if the metric gµv in General Relativity {GR) is measured at the 
scale l or, that is the same, on the scale of the energies E '°'"' ljl, 
variation of the metric bgµv is governed by its fluctuation (Jgµv) [l] 
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and hence it is dependent on l or, actually, on a.1 

In particular, it can't be arbitrary small as its lower limit is the fixed value 

That means 
(omin9µ11) [a.z] = r;,a.jl2 , 

where K > 0 - some model-dependent factor. 
Obviously, we have 

lim (ogµ11) [l] = lim (ogµ11) [o:z] --+ 0. 
1--+oo a:--+0 

( 18) 

( 19) 

From this it follows immediately that in this case variation of the action 
of oSc in General Relativity [33] is also dependent on o:1 

oSc = (oSc) [a.z] (20) 
and hence Gµ11 = Rµ11 - !Rgµ11 is dependent on 0:1 too: 

G[ad - G [ ] µ11 = µ11 a.1 . (21) 
Then the knowns Einstein tensor 

lim Q[a�] = lim G[�] = G 11 
1--+oo µ a:--+0 µ µ (22) 

and Einstein Equations in the vacuum 

lim G[�] = lim G[a�] = G 11 = 0 
1--+oo µ 

a:--+0 µ µ (23) 

are brought about in the low-energy limit. 
Naturally, the right side of Einstein Equations [33] should be dependent 
on a.1 as 

(24) 
Therefore, Einstein Equations with a nonzero right side are of the following 
form: 

lim Q[ai] = lim (8rr� - Ag ) [ad 
a1 --+0 µv a:--+0 µII µII · (25) 
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Of course, at low energies, i .e .  for 

l » lp (26) 

or, that is the same with a very high accuracy, for 

Ctz ::::::; 0, (27) 

the function of a1 may be disregarded and in this case, with a very high 
accuracy, we can obtain the well-known Einstein Equations 

All the scales (energy) , at which Einstein Equations have been studied 
until the present time, satisfied (26) , (27) , being far away from the Planck 
scale lp ex 10-33cm, and in fact had no a1-dependence. 
But on going to the high-energy limit 

l --+ 2lmin ex lp; a1 --+ 1/4 (28) 

there appears a nontrivial a1-deformation of Einstein Equations, later re­
ferred to as a- deformation 

Q[az] = (87rT - Ag ) [az] µ,v µ,v µ,v · (29) 

Note that from [25] (practically from formula (7) , (8)) we have found: 
with the canonical measuring procedure (7) ,  the minimal length lmin is 
unattainable and a minimal measurable length, denoted as l";;';f�sur , 
is the quantity 

in accordance with (28). 
Consider two examples of the a- deformation of Einstein Equations. 

El.Phenomenological Markov's Model [49] . 
This example is taken from Section 3 of [50] . 

(30) 

Let us dwell on the work [49] , where it is assumed that " by the universal 
decree of nature a quantity of the material density {! is always bounded by 
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its upper value given by the expression that is composed of fundamental 
constants" ( [49] , p .214) : 

c5 n < n - ­" - "P - G2n '  

with {!p as "Planck's density" . 

(31) 

It is clearly seen that, proceeding from the involvement of the fundamental 
length on the order of the Planck's lmin "" lp, one can obtain {!p (31) up 
to a constant. Indeed, within the scope of CUP (12) (but not necessarily) 
we have lmin oc lp and then, as it has been shown in [26] , (12) may be 
generalized to the corresponding relation of the pair " energy - time" as 
follows: 

(32) 

This directly suggests the existence of the " minimal time" tmin oc t p and 
of the " maximal energy" corresponding to this minimal time Emax "" E p . 

Clearly, this maximal energy is associated with some "maximal mass" 

(33) 

Whence, considering that the existence of a minimal three-dimensional 
volume Vmin = z;:,in "" Vp = zi naturally follows from the existence of 
lmin rv lp , we immediately arrive at the "maximal density" {!p (31) but 
only within the factor determined by .A 

Actually, the quantity 

Mmax 
-- = {!max "" (!p .  Vmin 

(34) 

(35) 

in [49] is the deformation parameter as it is used to construct the defor­
mation of Einstein's equation ( [49] ,formula (2) ) :  

R" - �Rc5" = 87rG 
T"(l - s:?r - Ap2n1511 µ 2 µ c4 µ u u µ > (36) 

where n � 1/2, r;-energy-momentum tensor, A- cosmological constant. 
The case of the parameter Pu « 1 or {! « {!p correlates with the classical 
Einstein equation, and the case when Pu = 1 - with the de Sitter Universe. 
In this way (36) may be considered as Pu-deformation of the General Rel­
ativity. 
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As it has been noted before, the existence of a maximal density directly, up 
to a constant , follows from the existence of a fundamental length (31) . It 
is clear that the corresponding deformation parameter p12 (35 may be ob­
tained from the deformation parameter ax (9) . In fact, since ax = l!;n/x2 , 
we have 

0:3/2 = 
l":;,,in ,..._, Vmin x x3 V ' (37) 

where V is the three-dimensional volume associated with the linear dimen-
sion x .  
As ax may be represented in the form [24]-[32] : 

(38) 

Emax ,..._, Ep, and Vmin ,..._, Vp = lj, , then from (33)-(35), (37) , (38) we get 

E/V _ _  (! _ _ �2 P12 '"'"' /V. - - '-'x · Emax min (!max (39) 

Of course, the proportionality factor in (39) is model dependent . Specifi­
cally, if QMFL is related to GUP, this factor is depending on A ( 12) . But 
the deformation parameters p12 and a are differing considerably: the limit­
ing value p12 = 1 is obviously associated with singularity, whereas originally 
(by the approach involving the density matrix deformation [25]-[27] , [32] ) 
no consideration has been given to the deformation parameter a = 1 asso­
ciated with singularity, (formula (30) ) ) .  
So, p12-deformation of  the General Relativity [49] may be interpreted as 
a-deformation. 

E2.Spherically-symmetric horizon spaces [51] . 
As shown in [51] , the Einstein Equation for horizon in this case may be 
written as a thermodynamic identity (the first principle of thermodynam­
ics) : ( [51] , formula ( 1 19)) 

ncf'(a) .i!_d (�47ra2) - � c4da = Pd (471" a3) (40) 471" Gn 4 2 G 3 ' 
� � '--v---" '"--v--"" �T � -� P W  

where a static, spherically symmetric horizon in space-time is described by 
the metric 

(41) 
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and the horizon location will be given by simple zero of the function J(r) 
(J(a) = 0, J'(a) I- 0) at r = a. ( Here r = a  is the radius of a sphere. ) And 
p = r; is the trace of the momentum-energy tensor and radial pressure. 
In Sections 5 and 6 of [50] first the Einstein Equations on horizon (40) 
have been written in terms of the parameter aa , next the high-energy 
(aa -+ 1/4) , C¥a - deformation of these equations has been derived in two 
different cases: equilibrium and nonequilibrium thermodynamics. 
The latter case is distinguished from the first one by the dynamic cosmo­
logical term dependent on aa , appearing with the corresponding factor in 
the right side of high-energy deformed (40) as follows: 

(42) 

4 Comments and Conclusion 

In this way we can conclude that 

Cl) with inclusion of the space-time quantum fluctuations (e.g. , in the 
form of (2) or (3) , we can naturally assume that in the most general case 
of Einstein Equations there is a dependence on the small dimensionless pa­
rameter ai , infinitesimal at normal energies to be neglected but important 
at high energies which are on the order of the Planck energy. 

C2) The parameter a1 is a deformation parameter on going from the 
well-known quantum theory to a quantum theory of the Early Universe 
(Planck's scales)and hence the above-mentioned dependence of Einstein 
Equations on this parameter may be considered as a1 - deformation of the 
General Relativity whose well-known, i.e. canonical, Einstein Equations 
are brought about in the low-energy limiting transition. 

The foregoing results are rather important for better understanding and 
investigation of the cosmological term A, especially in view of the Dark 
Energy Problem [52]-[56] . 
In principle, they may be used to answer the question whether A = canst 
or A = A(t) is a time-variable quantity. 
Despite the fact that the works taking A as A(t), i.e. as a dynamic quan­
tity, are numerous(for example, [57]- [60] ) quite forceful arguments are 
given against this point of view (for example, [61] ) .  
Indeed, according to  the General Relativity, the cosmological term A has 
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been considered constant A = canst as, due to the Bianchi identities [33] , 

(43) 

But in this work it has been demonstrated that, actually, Bianchi identities 
(43) are introduced at the low-energy limit only 

(44) 

Because of this, the really measured cosmological term A in fact is dy­
namic A =  A[a1 (t) ] , practically invariable in the modern epoch, i .e . at low 
energies, due to slow variations of the deformation parameter a1(t) at low 
energies and due to its very small value. 
In the works [62]-[64] a behavior of the term A has been studied reasoning 
from a1(t) on the assumption that it is dynamic, similar to the case proven 
in [62] GUP for the pair of conjugate variables (A, V) , where V is the 
space-time volume, as with the holographic principle applied to the whole 
Universe [65] . The main difference of these two cases is in the leading order 
of expansion A[a] in terms of a. In the first case it is the second 

(45) 

whereas in the second case it is the first 

(46) 

where AP = Aa-+l/4 - cosmological term at Planck's scales. 
As A Hal is practically coincident with the experimental value of the cosmo­
logical term Aexper , a holographic model is preferable - model B) of Section 
2 developed for quantum fluctuations is supported experimentally. 
In conclusion, let us state some important problems of the particular con­
cern: 

A) What is the way to derive, in the most general case and in the explicit 
form, the high-energy (a1 -+ 1/4) a1 - representation or, that is the same, 
the high-energy a1 - deformation of Einstein Equations? 

B) Provided the foregoing representation is derived, is it possible to have 
its logical series expansion in terms of a1? Note that we must allow for 
the following: a1 may be considered continuous with a high accuracy only 
at low energies. Obviously, at high energies it is discrete as the length l 
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is comparable to the minimal length l rx lmin , i .e . in fact to the Planck's 
length l rx lp . 
As noted in point IV of Section 2, on approximation of the Planck ener­
gies, models (A) and (B) for the space-time fluctuations are practically 
coincident . Because of this, we can raise the following questions: 

C1 ) Is there some "critical measure" or "critical index" /crit :/ = 
2/3 < /crit < I = 1 - minimal bound, beginning from which models (A) 
and (B) are practically identical at high energies, between the coefficients 
I =  2/3 and I = 1 in formulae (3) and (3)? If such a " critical index" 
exists, what is it like? This may be of great importance for answering 
the question that concerns the " phase transition" , i .e . the minimal 
energies, beginning from which one should take into account the quantum­
gravitational effects. 

Another but similar problem: 

C2) concerns a minimal bound for a1 (denoted by a/it = z;,,in/z;;t) ,  above 
which models (A) and (B) actually result in the same physics. It is clear 
that the problem at hand is associated with derivation of the correspond­
ing energy: Ecrit '"" l/lcrit · 
And, finally, 
(D) it is interesting how the high-energy a1 - deformation of Einstein Equa­
tions is related to the adequate selection of a model for the space-time 
foam. Is it representing a set of micro worm holes(for example, [3]-[6] ) ,  
micro black holes [7]- [9] or something else? 
The author is planning to answer these questions, at least some of them, 
in his future works. 
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