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Abstract 
Generalized algebras and superalgebras whose generators and 

structure constants take values in a Grassmann algebra are 
introduced. They arise when the superfield formalism is used to 
describe equal time (super)algebras. 

i. Introduction 

It is well known that the procedure to obtain a current algebra 

structure (as, e.g. , Gell-Mann current algebra) from a Lagrangian ~id 

theory follows essentially two steps (see, e.g., (I)). First, one 

finds the expression for the currents associated with the different 

parameters of the inner group of transformations. These expressions, 

as well as the value of the divergences of the currents, can be read 

directly from the Lagrangian density by means of the Gell-Mann-L~vy 

identities (2). Secondly, one uses the canonical commutation/an- 

ticommutation relations to obtain, for instance, the equal time 

commutators of the time components of the currents by taking advantage 

of the fact that the charge densities are bilinears in the original 

fields and their conjugate momenta. The important point here is that 

.,, .. . . . . . . . . .  ~ . . .  
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these commutators make no reference to the detailed structure of the 

Lagrangian; they are solely determined by the structure of the 

transformations which generate the currents. As a result, the 

commutation relations of the original algebra are reproduced through 

the closure of the algebra of charge densities. (Also, the algebra may 

be enlarged by considering more general bilinears). 

The situation is however different when trying to apply the same 

philosophy to supersymmetric field theories. These theories present a 

highly constrained structure: apart from the usual constraints for the 

fermionic fields, the relations between the auxiliary and the 

dynamical fields, inherent to any supersymmetric theory, prevent the 

existence of simple commutation relations of the type 

]x x. = o , 

where ]~'~,e)= 9~/9~(X,g ~ Thus, the canonical quantization 

formalism cannot be directly applied in superspace and, one way or 

another, the constraints have to be taken into account to achieve the 

quantization of superfields (3). The net result is that eqs. (i.i) 

are modified and, although relations equivalent to the Gell-Mann-L~vy 

identities can still be defined in superspace (5,6), there does not 

exist the canonical structure in Dirac deltas (product of ~(~ - ~') 

and ~( 8- ~') = (e- ~,)) which is essential for the second part of 

the above construction to hold. 

This fact provides a motivation to look for more general algebraic 

structures involving superfields (see also (5,7) for a further 

discussion). 
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2. Closed superfield algebraic structures 

Let us write the expansion of a Bose (internal) supercurrent ja in 

the form 

were i,j = I...N and a is the internal index. We shall omit the 

space-time indices. For D = i+0 supersymmetry, where superfields 

depend only on t, this corresponds to considering (2.1) at a given 
,a 

time; for D ~ 1 the J Ci i ~ may be understood as the result of 
"~ak -~ 

smearing out the componentS' 3 ~ . ~ (t, x) with a test function 
.ll...ik, 

f(t,~) (if f=6(t), then (2.1) is the superfield expansion at fixed 

time of a local supercurrent integrated over the (D-l) spatial 

coordinates). Allowing also for the presence of Fermi operators 

S a (0~..~N) , the most general closed algebraic structure is of the 

form 

- [C 
J -~.-..., . . ._ 

+ 

(2.2a) 

(2.2b) 

Where the integration over ~. is understood in sense of Berezin (8) and 

the three different types of f's (h's), which have an even (odd) 

number of Greek indices, are even (odd) functions of the Grassmann 

variables if N is even; if N is odd, their grading is the opposite. 
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The position of the greek and latin indices should be noticed: for 

instance fa~ ~c , ~ and f have the same parity, but they multiply 

generators with opposite gradings in (2.2b) and (2.2c) respectively. 

The f's and the h's satisfy the obvious relation 

( 2 . 3 )  

where deg u is the grading of the index u = a, b ... or (~ ,~ ... 

(deg u = 0(I) for latin (Greek) indices). Notice that with J(%(el---- 

~(0) 4% ~ (e) and canonical commutators we would get the commutator 

--,-n ~ ' ~  ~ - F ab but, as (2.2a) with S = 0 and f ( e,e,~ ) = (~- )-(~ ~)" c 

already mentioned, quantized superfields do not follow the canonical 

formalism. As a result, the r.h.s, of the commutators of the charge 

components is not reduced to a product of Dirac deltas in the 

Grassmann variables with the structure constants F ab of the inner 
C 

algebra. 

Assuming irreducibility for ja and S a, the graded Jacobi 

identities lead to the following identities for the structure 

functions fuvw h uv , W 

,,.ql, * I II ÷ C ~', ((~, ~," ~ k ~°, (~, ~", ~,')1 ÷ ~,~ {(,~,~),(~)} -o 
" ~  " '  ,¢.,C e C  
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(2.4c) 

where 

i) in formulae (2.4b) and (2.4d) the index u is greek or latin 

depending on the permutation, in such a way that the f's (h's) have 

always an even (odd) number of greek indices, 

2) in formula (2.4d) graded cyclic means that (d@), (~e') (c@m) 

and (ce~ (#~) (~@') have a "+" sign and ~') (ce') (~) a "-" one 
I (/~ jumps over~). 

I 

It is not difficult to give a realization of the algebraic 

Structure (2.2). It turns out that by calculating the E.T. commutators 

of bilinear products of free superfields the relations (2.2a-d) 

emerge provided that we consider products which are bilocal in the 

Qrassmann variables, (for instance, of the form ~(~)~ ~(t~)~(~) 

Where we have omitted the inner indices). Therefore in superfield 

applications the Grassmann algebra generated by el...g N., is described 

by a graded tensor product of two copies of the Grassmann algebras 

describing the anticommuting superspace coordinates. We shall not 

discuss this here and will refer to (9) instead for details. 
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3. Final remarks 

The superalgebra (2.2a-d) can be rewritten in various ways. For 

instance, one may expand ja (~,) (and similarly S a (~')) in the power 

series 
## 

(3.z) 

In this form, (2.4a-d) can be written as a finite superalgebra in 

a g . i ~ ( ~  • With terms of the superfields ~il...i~(~), ~i'" 

j~ (~) = ~ja (il'''ik) (k even), S ~(il...lk ) (k odd) 

. (il...ik) (k even) }~ (3.2) 

eq.(2.2a), for example, would read 

(3.3) 

where the new structure functions F, H are obtained from the previous 

f, h by performing the corresponding Taylor expansions. 

It is also possible to express (2.2) in terms of 

commutators/anticommutators(with numerical structure constants) in the 

"charge" components d Is (i ...i )' sa (il'''i) of ja(~ ) and sa(~ ). 

. . . .  1 the kcomplete expansion of the To thls end, it is sufflelent ~o perform 

f's and the h's in their Grassmann arguments to extract the relations 

between the charge components. 

As mentioned above, the superalgebra (2.2a-d) may be realized by 

means of the equal time bilinears of D=I free superfields (the 

superfields of the superharmonic oscillator; see, e.g. (4)) and their 

covariant derivatives. In the presence of interactions, the basic 

superfield commutators are modified, and these bilinears cease to form 
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a closed algebraic system (2.2a-d). In the presence of interactions 

describing an asymptotically free theory, one can introduce fully 

bilocal products of superfields (bilocal in the Grassmann and 

space-time coordinates). If D > i, one can consider their graded 

supercommutators for superspace coordinates with differences lying on 

the super-light cone. The postulate that such a superalgebra closes 

leads to the supersymmetric extension D = 4 Fritzsch-Gell-Mann algebra 

for bilocal internal symmetry currents (7). 
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