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Abstract
Generalized algebras and superalgebras whose generators and
structure constants take values in a Grassmann algebra are
introduced. They arise when the superfield formalism is used to
describe equal time (super)algebrag.

1. Introduction

It is well known that the procedure to obtain a current algebra
structure (as, e.g., Gell-Mann current algebra) from a Lagrangian field
theory follows essentially two steps (see, e.g., (1)). First, one
finds the expression for the currents associated with the different
parameters of the inner group of transformations. These expressions,
as well as the value of the divergences of the currents, can be read
directly from the Lagrangian density by means of the Gell-Mann-Lévy
identities (2). Secondly, one uses the canonical commutation/an-
ticommutation relations to obtain, for instance, the equal time
commutators of the time components of the currents by taking advantage
of the fact that the charge densities are bilinears in the original

Tields and their conjugate momenta. The important point here is that

—
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these commutators make no reference to the detailed structure of the
Lagrangian; they are solely determined by the structure of the
transformations which generate the currents. As a result, the
commutation relations of the original algebra are reproduced through
the closure of the algebra of charge densities. (Also, the algebra may

be enlarged by considering more general bilinears).

The situation is however different when trying to apply the same
philosophy to supersymmetric field theories. These theories present a
highly constrained structure: apart from the usual constraints for the
fermionic fields, the relations between the auxiliary and the
dynamical fields, inherent to any supersymmetric theory, prevent the

existence of simple commutation relations of the type

[pu.0), pxien], =0 L L), T .

x ;‘01

Lo, 0] , = ik §(2-X & (6-0") (1.1)

where 1T(K,9)= g‘{/'a;p(x,ej . Thus, the canonical quantization
formalism cannot be directly applied in superspace and, one way or
another, the constraints have to be taken into account to achieve the
quantization of superfields (3). The net result is that egs. (1.1)
are modified and, although relations equivalent to the Gell-Mann-Lévy
identities can still be defined in superspace (5,6), there does not
exist the canonical structure in Dirac deltas (product of 8(; -xX")
and &( 6-6') = (0-8')) which is essential for the second part of

the above construction to hold.

This fact provides a motivation to look for more general algebraic
structures involving superfields (see also (5,7) for a further

discussion).
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2. Closed superfield algebraic structures

Let us write the expansion of a Bose (internal) supercurrent J% in

the form
a ~
T BmIM0-80=)"+ Jou O+ -+ Jiiein B B 31008y (o)

were i,j = 1...N and a is the internal index. We shall omit the
space-time indices. For D = 1+0 supersymmetry, where superfields
depend only on t, this corresponds to considering (2.1) at a given
time; for D 3» 1 the ja(i i) may be understood as the result of
smearing out the components ja?i i )(t,';) with a test function
£(t,X) (if f=8(t), then (2.1) is'éhe superfield expansion at fixed
time of a local supercurrent integrated over the (D-1) spatial
coordinates). Allowing also for the presence of Fermi operators
s® (91...9N), the most general closed algebraic structure is of the

[3°6),3°@"] = ¢4 (p2 BBD 36 +

W @E0,7) 8% ]
(26, 5@ |4 (1% G.87) )+
k“: (8, -9'; ;Z) Jc(z) ] (2.2b)

(2.2a)

 519), 8280} = |& 3 05,9 3 +
WEGEDS(]) (2.20

Where the integration over‘i is understood in sense of Berezin (8) and
the three different types of f's (h's), which have an even (odd)

Number of Greek indices,are even (odd} functions of the Grassmann

Variables if N is even; if N is odd, their grading is the opposite.
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The position of the greek and latin indices should be noticed: for
instance, fac;b and fq/sc have the same parity, but they multiply
generators with opposite gradings in (2.2b}) and (2.2c) respectively.

The f's and the h's satisfy the obvious relation

LY eals u.dequ puu el e
O IS A LA (2.9
where deg u is the grading of the index u = a, b ... or d,

{deg u = 0(1) for latin {Greek) indices). Notice that with J“(e

Tr(ﬁ)ﬁ @ (9) and canonical commutators we wou}.d get the commutator
(223)w1thS Oandf(ee’Z) (8 - ’Z)(’Z 5). Fcab but, as
already mentioned, quantized superfields do not follow the canonical
formalism. As a result, the r.h.s. of the commutators of the charge
components is not reduced to a product of Dirac deltas in the
Grassmann variables with the structure constants F:b of the inner

algebra.

Assuming irreducibility for 7% and Sa, the graded Jacobi

identities 1lead to the following identities for the structure

. uv uv
functions f w , h w

P"Z [{i q ¥ ({,637) +
(5'41 ;i) héc ("‘ o '")] +63,& %(ae) (ba) (C‘én)s =0

S [t"""(e,""’)k“ G810y 66.7) £ G.5m)]
+ oy {(a’é) OBy =0

(2.4a)

[ L GBI % (817) + WL (B3
cucd § @B, (v8) (BN Y =0
¢ [$% (587 W% G870+ W2 (5,8,7)
yd § (aB) (589, (B30 ; (2.40)
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P ESD TSGR« W BRI FED]
+05w? i(«e) (/se') (rew}: 0

dez [P GRD R A8+ wih @D 1% (ﬂlm;‘l
+ oyl (0), (4, (x©") I=o0

)

we

gcll'z H“/’u( ,‘z)¥ 7/9“ ) kd/li(é','én'i) we, -u..,)]+
* ‘T‘“‘ it e, (90, ¢ ] = o

S % [ BEDWS 8 0)+ Wi (8,88 087 ()2]+d)
"’%‘“J “3“1 i(de) (/56') (cQ")} o

where

1) in formulae (2.4b) and (2.4d) the index u is greek or latin
depending on the permutation, in such a way that the f's (h's) have
always an even (odd) number of greek indices,

2) in formula (2.4d) graded cyclic means that (48 ), 959') (c8")
and (c 8" (dO) (,!9') have a '"+" sign and Yja‘) (cO¥ (X8 ) a "-" one
(/5 jumps over & ).

It is not difficult to give a realization of the algebraic
Structure (2.2). It turns out that by calculating the E.T. commutators
°f bilinear products of  free superfields the relations (2.2a-d)
emerge provided that we consider products which are bilocal in the
Gl”assmarm variables, (for instance, of the form J(G) f(t O,b)ﬁ(teb)
Where we have omitted the inner indices). Therefore in superfield
8pplications the Grassmann algebra generated by 61"'9N is described
by a graded tensor prdduct of two copies of the Grassmann algebras
descz‘ibing the anticommuting superspace coordinates. We shall not

discuss this here and will refer to (9) instead for details.
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3. Final remarks

The superalgebra (2.2a-d) can be rewritten in various ways. For
-y
instance, one may expand J2 (5') (and similarly s@ (8')) in the power
series

TAE) =T L T (B0,) (04-60) T, (B)

ko Kl teik (3.1)

In this form, (2.4a-d) can be written as a finite superalgebra in

. a a o .
terms of the superfields o, . {(9), 8. . (6d. With
%11...1}2 %11...1]2
a = a o
Jg (@) = {J (il"'ik) (k even), S (il"'ik) (k odd)}
a a A
s @& ={J (i)t e 0a), 8% ;) G even)},’(S.Z)

eq.(2.2a), for example, would read
- - b A = -
[3:®,3,@7=F% 13,%:8) 356 +
+ sz (2'3';5-9-) S?‘, @) , (3.3)

where the new structure functions F, H are obtained from the previous

f, h by performing the corresponding Taylor expansions.

It is also possible to express (2.2) in terms of
commutators/anticommutators(with numerical structure constants) in the
" " a a a, A a, R

charge' components J (i)’ % (4.001) of J%(@ ) and S°(8 ).
To this end, it is sufficlIent %o perform the complete expansion of the
f's and the h's in their Grassmann arguments to extract the relations

between the charge components.

As mentioned above, the superalgebra (2.2a-d) may be realized by
means of the equal time bilinears of D=1 free superfields (the
superfields of the superharmonic oscillator; see, e.g. (4)) and their
covariant derivatives. In the presence of interactions, the basic

superfield commutators are modified, and these bilinears cease to form
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a closed algebraic system (2.2a-d}. In the presence of interactions
describing an asymptotically free theory, one can introduce fully
bilocal products of superfields (bilocal in the Grassmann and
space-time coordinates). If D » 1, one can consider their graded
supercommutators for superspace coordinates with differences lying on
the super-light cone. The postulate that such a superalgebra closes
leads to the supersymmetric extension D = 4 Fritzsch-Gell-Mann algebra

for bilocal internal symmetry currents (7).
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