PUBLISHED FOR SISSA BY @ SPRINGER

RECEIVED: May 7, 2020
ACCEPTED: May 19, 2020
PUBLISHED: July 6, 2020

Decagon at two loops

Thiago Fleury® and Vasco Goncalves®
@ International Institute of Physics, Federal University of Rio Grande do Norte,
Campus Universitdrio, Lagoa Nova, Natal, RN 59078-970, Brazil

b Instituto de Fisica Teorica, UNESP — Universidade Estadual Paulista,
ICTP South American Institute for Fundamental Research,
Rua Dr. Bento Teobaldo Ferraz 271, Sao Paulo, SP 01140-070, Brasil

E-mail: tsi.fleury@gmail.com, vasco.dfg@gmail.com

ABSTRACT: We have computed the simplest five point function in N' = 4 SYM at two
loops using the hexagonalization approach to correlation functions. Along the way we have
determined all two-particle mirror contributions at two loops and we have computed all the
integrals involved in the final result. As a test of our results we computed a few four-point
functions and they agree with the perturbative results computed previously. We have also
obtained [ loop results for some parts of the two-particle contributions with [ arbitrary.
We also derive differential equations for a class of integrals that should appear at higher
loops in the five point function.

KEYWORDS: Integrable Field Theories, Supersymmetric Gauge Theory

ARX1v EPRINT: 2004.10867

OPEN AcCCESS, (© The Authors.

Article funded by SCOAP®. https://doi.org/10.1007/JHEP07(2020)030


mailto:tsi.fleury@gmail.com
mailto:vasco.dfg@gmail.com
https://arxiv.org/abs/2004.10867
https://doi.org/10.1007/JHEP07(2020)030

Contents

1 Introduction 1
2 Integrability 3
2.1 Review of hexagonalization 3
2.2 Two-particle contributions at two-loop 8
3 Planar correlation functions 15
3.1 Five point function 15
3.2 Four-point functions 18
4 Conclusion 22
A Finite coupling expressions and the one-particle contribution 23
B Feynman integrals 25

1 Introduction

Correlation functions of local operators are one of the most interesting physical observables
that can be considered in a conformal field theory. Corrrelators of half-BPS operators in
N =4 SYM have seen in the last two decades an abundance of new results for weak [1-9],
strong [10-21] and in some cases finite coupling regime [22-29]. However, the results for
more than four operators are scarce and in most cases limited to one loop computation
which due to the nature of interactions of N' =4 SYM does not explore the full complexity
of the problem. Two exceptions are the two-loop computations of five and six point corre-
lators of length two half-BPS operators of [30, 31] and the recent supergravity computation
of a five point function [32].

One of the reasons for the lack of results is that the complexity of the computations
grows both with the number of operators and number of loops. One promising and al-
ternative method to compute higher point correlation functions is the integrability based
approach called hexagonalization [33-39]. The main idea of the method is to cut the
correlators into more fundamental objects, the hexagon form-factors, and then glue them
back by inserting weighted complete sets of mirror particles states. Notice that both the
hexagons and the others building blocks in this formalism are known at finite g where g
is the coupling constant. The gluing process is the hard part of this approach and at the
moment there is no efficient way of evaluating these corrections for a generic situation.
Moreover in some cases there are divergences that require a still not fully understood regu-
larization prescription [40]. However, it has been recently shown [22-25] that by considering



both very large operators in a particular polarization the glue back process simplifies and
in the case of four operators the gluing process can be performed at finite coupling. This
observable was dubbed the simplest four point function in /' =4 SYM and in the integra-
bility language it corresponds to an octagon square where by definition an octagon is the
object obtained by gluing one length zero mirror edge of two hexagon form-factors with
all the other edges having huge bridge lengths. Giving the great success of the octagon,
in this work we consider the next object in complexity which we call the simplest five
point function or the decagon square. The gluing back process for the simplest five point
function is considerably harder than the four point analogue. In this case, one has to glue
two adjacent mirror edges and the mirror particles in the different edges have a non trivial
interaction. This implies that a new kind of integrability contribution shows up: the two-
particle in different edges contribution. This contribution was analyzed for the first time
at one-loop in [36] and its computation involves the mirror bound-state S-matrix which is
a very complicated object. Due to the complexity of the decagon, we will present the two-
loop computation of it in this work. Nevertheless, along the way we have computed some
components of the two-particle contributions at [ loop for arbitrary [ and the full results
will appear elsewhere. Recall that the simplest four-point function can be bootstrapped
as it satisfies some all loop identities [23]. One of the goals of our two-loop computation is
also to take the first steps in a possible analytical bootstrap approach to the decagon. The
simplest five point result is given in terms of four different types of Feynman integrals with
two of them being the well known one and two-loop ladder functions and the other two
are a generalization of the ladder and pentaladder integral both involving the five external
points. The new integrals are defined in (2.26) and (2.27).

As mentioned above, the simplest four-point function involves very long operators and
it is special polarized. One very interesting open problem is to study deformation of it, i.e.
taking one of the bridges to have finite length. This problem also involves computing multi-
particle integrability contributions and it is hard in general. In this work, we have computed
some [-loop four-point functions using integrability by reducing our results from five to
four-points by identifying a pair of operators. Up to five-loops the results are not new and
they have been computed in [8, 9] by different techniques. In all cases where comparison
is possible, we have got agreement with the literature and this is a strong check of our
integrability calculations. Our approach for computing the integrability contributions was
to generate power series and then fit the result against a basis of integrals taking into
account the symmetries of the objects being computed. One drawback of this method is
that it is not possible to study four-point functions directly because in order to generate the
power series one has to resum parts of the integrand. Specifically, a four-point series does
not truncate unless one performs a summation over one of the bound state indices in the
integrability integrand. So, in this work, we have computed the integrability contributions
for five points and then reduced the result to four by identifying a pair of points. This can
be improved by a deeper understanding of the integrability integrand and by performing
some analytical integrations, see [41, 42| for interesting progress in this direction.

This paper is organized as follows. Section 2 has a brief review of the hexagonalization
formalism and the multi-particle integrability contributions. In addition, the new two-loop



expressions are presented and their derivation explained. Our main result is in section 3
where we compute the simplest five point function at two-loops and a set of four-point
functions. The section 4 has our conclusions and a list of possible continuations of this
work. In the appendices, we have a list of the necessary building blocks and we also both
explain how to compute the relevant Feynman integrals and derive differential equations
for them.

2 Integrability

In this section, we briefly review the hexagonalization procedure and its properties such as
the flipping invariance and the coupling dependence of several multi-particle configurations.
We also explain how the two-particle contributions at two-loop are computed and we give
their results.

2.1 Review of hexagonalization

The hexagon form-factors H were firstly introduced in [33] as an integrability based solution
to the three-point function problem in N/ = 4 SYM. The structure constants are written
in this formalism as a product of two hexagon form-factors and sums over both partitions
of the physical external states and complete sets of mirror particles living in the so called
mirror edges, we refer the reader to [33] for details and explicitly expressions. The sum
over mirror particles is equivalent to the insertion of a resolution of the identity and it is
responsible for gluing the hexagons back to recover the original object. The three-point
function is an example of a more general procedure called hexagonalization where the
hexagons are glued together to compute planar higher-point functions [34, 35] and non-
planar quantities [37-39]. In this work, only the sphere topology will be considered, i.e.
only planar correlators are going to be computed. In addition, all the external operators
are going to be half-BPS operators and consequently there will be no physical rapidities.
This means that only the mirror edges of the hexagon form-factors will have particles,
see figure 1. Recall that a half-BPS operator O, (x) is completely characterized by a null
vector yy, its position x* and its length L and it is given by

Or(z) =Tr ((y - ®(2))"), (2.1)

where ®!(x) are the six scalars of ' =4 SYM.

The general procedure to compute a planar correlator using hexagonalization is to first
list all tree-level graphs obtained by Wick contracting the operators and keeping only the
connected planar ones and the disconnected ones that can be embedded in a sphere. The
propagators connecting the operators ¢ and j are denoted by di; = v;;/ x?j and the number
of equivalent ones (homotopically equivalent) connecting the operators are called the bridge
lengths /;;. Representing the equivalent propagators as a single line and drawing them using
a double line notation, one verifies that the propagators divide the sphere into faces. If the
faces do not have an hexagonal shape (three physical and three mirror edges), one can add
additional lines (mirror lines) with zero bridge lengths connecting the operators in such
way that all the surface is cut into hexagons. In general, there are several ways of adding
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Figure 1. This figure firstly appeared in [39] and it is also discussed in [43]. The solid lines
correspond to physical edges of the hexagon form-factor and the dashed lines to mirror edges. The
rule appearing in the figure enables one to estimative at each order in the coupling constant g
a configuration of mirror particles involving various hexagon form-factors kicks in. One only has
to multiply the g factor obtained as in the figure for all the hexagons of a graph. FEach excitation
showed in the figure is properly normalized, i.e. it carries a square-root of the measure not explicitly
indicated. The rule in the figure can be derived by using the decoupling property of the hexagon
form-factors and the g dependence of its dynamical part, see [33]. The numbers n;’s indicate the
number of mirror particles (elementary or bound-states) in each mirror edge. The ng is selected
among the others by the constraints nz > n; and ng > na. The [; indicates the bridge lengths of
each mirror edge.

these extra lines but the final loop corrected result must not change; this is a consistency
condition of the formalism and it is called flip invariance. The loop corrections for each
graph is obtained by promoting each hexagon to an hexagon form-factor and by inserting a
resolution of the identity in all mirror edges which means exciting mirror particles in those
edges. Schematically, one has

hexagons

(Or,(21)...0L,(20)) =S~ Z H(dij)lij Z H Wijk %wi]”w]’kuwki , (2.2)

tlgerea—llﬁlvsel lij 1,7,k

where S refers to stratification and it is explained at length in [39]. It is a procedure to
properly take into account the graphs leaving in the boundary of the moduli space of the
surfaces, for example the disconnected graphs for computing the planar correlators. These
graphs can start to contribute at two-loop as the one-loop contribution was already proven
to be zero in general in [39]. The basic idea is that the effective genus of a graph can
increase once virtual corrections are taken into account, this is similar to what happens in
usual perturbation theory. The disconnected graphs are harder to compute as they involve
more zero length bridges, fortunately they do not play any role in this work because we
only compute special polarized five- and four-point functions and they not show up.

In equation (2.2) all the elements appearing on the right hand side are known for any
value of the coupling constant g. The Hy,; v, 4, are the hexagon form-factors and the v;;
are the set of mirror particles leaving in the three mirror edges. Integration over the mirror



Figure 2. The one- and two-particle length zero contributions. The blue squares denote the mirror
particles and the cross-ratios z; and z2 are defined in (2.3). The bridges connecting the operators
(solid lines) have non-zero bridge-lengths. At two-loops, there are two relevant types of one-particle
contributions, one if the bridge length is zero as shown in the figure and the other if the brigde has
length one. Similarly, there are three types of two-particle contributions depending on the bridge
lengths, see (2.15).

particles rapidities is assumed. The W, ;. denotes the normalized weight factor depending
on the flavor of the mirror-particles and on both the space-time and R-charge cross-ratios.
Its explicitly expression will be given later.

To get the finite g result of a correlator using hexagonalization is challenging as one has
to resum all the possible mirror particle configurations. As mentioned in the introduction
this can be done only for very special correlators at the moment. Nevertheless, for a fixed
order in ¢ only a finite set of mirror particle configurations contribute because it costs
factors of g to excite new particles. To estimate the order in g that a configuration of
mirror particles kick in, one can use the rule described in the figure 1. In this work, we
are going to compute special polarized four- and five-point functions mostly at two-loops.
In this case, only the one- and two-particle contributions showed in the figure 2 where the
bridges lengths can be zero or one are going to be relevant. It is easy to verify, for example,
that a contribution of two-particles in the same mirror-edge kicks in at four loops or that
a three-particle contribution with two in the same edge and the other one in an adjacent
edge kicks in at three-loops, see table 1 for a more complete list.

The one-particle contribution at any loop and for any bridge length can be computed
using the integrand given in equation (51) of [34]. The two-particle contribution at one-
loop was firstly analyzed in [36] and its result at two-loop is computed in this paper. The
relevant cross-ratios to compute their contributions, see figure 2, are given by

9 9 9 9 2 92 2 .2
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2.3

There are a similar set of R-charge cross-ratios where the x?j are replaced by y;; and
they will be denoted by {a1,a1} and {ag,@2}. In what follows, we will always work with
a restricted kinematics, i.e. we are going to consider that all the space-time points and
polarizations are restricted to a given plane. The reason for this restriction is that the



{n1,n2} kick in at
{1,0} g9
{2,0} g°
{1,1} g9
{2,1} g°
{3,1} g
{2,2} g°
{3,3} g'®

Table 1. The order in g that a configuration of multi-mirror particles leaving in one edge or
adjacent edges kicks in. More specifically, consider the second graph of figure 2. The number n,
(ng) correspond to the number of mirror particles in the edge denoted by 21 (z3) in that figure.
The power of g appearing in the table was computed by using the rule of figure 1. From the results
in the table, we conclude that at two loop only the cases {n; = 1,ny = 0} and {n; = 1,n2 = 1}
contribute.

integrability calculation is easier in this case as the general weight factor for gluing the
hexagons when the operators are out of the plane is more complicated. In this restricted
kinematics the fifth cross-ratio is a function of the ones introduced before and it is given by

l‘?szm _ (1 — 21+ 2’122)(1 —Z1+ 2122) (2 4)
Tha T 212122722 ’

and similarly for the fifth R-charge cross-ratio.

In this final part of the subsection, we are going for the convenience of the reader
to compile some of the results known in the literature [34, 36] about the mirror particle
contributions that are going to be used later. The new results at two-loop are going to be
presented with further explanations in the next subsection. In our conventions, the mirror
particles contributions are going to be denoted by

L L
Miv{)ll}('zl) , and Mgz,gll,b}(zlv 22) (2.5)

and the arguments are read anti-clockwise with respect to its graphic representation, see
figure 2. In (2.5), L denotes the loop order, n is the number of particles involved and {l;, 2}
has information about the bridge lengths of the mirror edges. Note that the mirror particle
contributions also depend on the R-charge cross-ratios {a, as}, but we have omitted them
as they can be deduced unambiguously from the dependence of the space-time cross-ratios.
All the one-particle contributions can be written in terms of the following function

m(z) = 2t EFA=@H) pay, o iy 2o D (2.6)
2 1672

and A is the t’Hooft coupling. It is clear that m(L)(z) depends on z and «, but again we
are excluding « from the list of arguments. Moreover,

L

_1)k _
0 = |5 S  og ) (M a(9) - L @) | - 27




The function F")(z, z) given above is related to the so called ladder integrals [44]. For

example,
2 .2 4 2,2 2 4, 74
F(l)( 7) = L13%94 d’xs F(z)( 7) = L14%13T94 d*wsd” g
“E) = T3 2 g2 2 a2 % %) = (72)2 2 g2 2 2 3 3 2
15725735745 157257 45561167367 46
with
2 .2 2 .2
_ T19T _ L5
zz:gig‘l, (l—z)(l—z)zggigl. (2.9)
L1314 T13T24

The one-loop length zero one-particle contribution was originally computed in [34] and it
is given by

M (2) =mO(z) + mD (7). (2.10)

Using the integrand appearing in that same paper, it is not difficult to compute other
one-particle contributions by doing the integration by residues and explicitly performing
the summation over bound-states. In fact, there is a closed expression for it, see [22]
and (A.11). For this work we will need the following two loop and three loop contributions

—
S
—
[u-—;
—~
N
N—
|

D) +mP (), MP () = —2MP) | (2).
( Pl () = —aMP (=), (2.11)

MP(2) =mP(2) 4+ mP (7Y, M iz
3 3
MP () =6 MP)y(2).

Notice that all the expressions above are invariant under z — 1/z. This invariance is
manifest when writing them in terms of the functions m()(z) and it follows because of the
important property of the ladder integrals

F(1/2,1/7) = 22 FP)(22) . (2.12)

This invariance of the one-particle contribution is called flip invariance. It corresponds
to the invariance of the position of the additional length zero bridge in the graphs or the
invariance under different tesselations. Concretely, if one moves the dashed line of the first
graph of the figure 2 to connect the operators O,, and Oy, instead of the operators O; and
O, the relevant cross-ratio change as z; — 1/2;.

The two-particle contribution appearing in the figure 2 was computed in [36] at one-
loop. Its calculation will be reviewed and extended in the next subsection. The result at

one-loop is
MS?O,O}(% ) =—mM(z1) —mP (")
_ N (2.13)
o <Zl 1> @ (121“122> D (21(1— 7).
2129 29

An interesting object to compute is the decagon showed in the figure 3 with five
different tessellations. It appears as a contributing diagram in several five-point functions.



Figure 3. The five different ways of cutting the inside of a decagon. The outside part can be cut
similarly in five different ways. If the solid lines have bridge length greater or equal to two, at one-
and two-loops only the one-particle and two-particle contributions of figure 2 have to be taken into
account for its computation. The result of the computation has to be the same for all the cuts, i.e.
the result is rotation invariant, for example, by doing ¢« — m,m — [...j — 4, the result does not
change.

At one-loop, it is given by a sum of two one-particle contributions and a two-particle
contribution. This sum is equal to

M)y (21, 0n) + M) (2, 00) + M ) (21, 20,01, 00) =

(1) 4 m (25) + mO) (Zl - 1) D (1—21“122) (21— 29)) .

2129 %)
(2.14)
The decagon is flip invariant or in other words the result is the same if we cut it in any

of the different ways showed in the figure 3. The right hand side of the expression (2.14)
is manifestly flip invariant because if one performs rotations on the figure (for example
i — m,m —l...j — i) the cross-ratios appearing as arguments of the functions m) are
mapped into themselves. As we will see, at two-loop we have similarly that the right hand
side is given by one function evaluated at five different points.

2.2 Two-particle contributions at two-loop

At two-loop there is three types of two-particle contributions depending on the length of
the bridges involved (the cross-ratios are defined in (2.3)):

Mé?o’o}(zl, ZQ) 5 MS%LD}(ZD ZQ) 5 Mggo,l}('zl’ ZQ) . (2.15)

The first one on the list above corresponds to the second graph of figure 2 and it involves
two bridges of length zero. The other two involves both a bridge of length one and a
bridge of length zero, see figure 4. The same figure shows a graph before and after a parity



Figure 4. The two-particle contributions Méﬁl,o} and MS‘%(M} with nonzero bridges lengths. In
the figure, the solid purple line has bridge length one and the dashed purple line has bridge length
zero. The blue squares denote the mirror particles Notice that the two figures represents the same
graph and they are related by a parity transformation. The equality of the graphs implies the all

loop parity relation M;;L{)l,o} (21,22) = M;;L{)OJ}(ZQ_I, 27 h).

transformation and the invariance of the result implies the following relation for any loop

order or any L

L L 1
M oy (z1,22) = M (25 ) (2.16)
A similar reasoning implies
L L 1
M;{)O’O}(zl, 22) = M;{)o,o}(% Lt (2.17)

The computation of the two-particle contributions involves three hexagons, see figure 5.
At one-loop, it was computed in [36]. The computation at two-loops follows the same steps
of the one-loop calculation described in that paper. One only needs to expand all the
building blocks at higher order in g or add a bridge of length one to the integrand. The
calculation involves three hexagon form-factors (left, middle and right) denoted by H;, H,
and H, respectively in the figure 5. To glue the hexagons one sum over a weighted complete
set of states (fundamental and bound states). We need to glue two edges so there will be
a double sum over bound states and a double integral over the rapidities u; (particles of
the first edge) and wug (particles of the second edge) of the mirror particles. One has after
collecting all the ingredients (see the appendix A):

1 duy dug o= 7 _F
MagayGoz =y 3 [GHGESS el
dressings=-+,— a=1 b=1

> Wiy () Wiary ]) Hal X,y (g ™)) Honx o,y 3) X a,1y (ug ) He D a,ry (u)] -
I
(2.18)

In the expression above p, is the measure or a normalization factor and the 7 over the
rapidities are mirror transformations. The E are the mirror particle energies and they are
multiplied by the bridge lengths so they correspond to damping factors. The indices a
and b are bound state indices and I and J are sums over complete set of states. More
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Figure 5. The computation of the two-particle contribution. At one-loop, it was computed in [36].
The calculation involves three hexagons. The left (H;) and right (#,) hexagons contains only one
mirror particle and they contribute only with a possible sign. The middle (H,,) hexagon has two
particles and its computation is non-trivial as it involves a dynamical factor plus the mirror-mirror
bound state S-matrix. The way of contracting the indices of the mirror particles is shown in the
figure 6. To glue the hexagons one sums over a weighted complete set of mirror states and the
empty and solid circles and squares of the same color correspond to a pair of conjugate indices.

specifically, each magnon x ) is schematically of the form

X{b}ee = |Xe)p @ [Xe)p s (2.19)

where ¢ and ¢ are sets of fundamental indices of the BMN symmetry group psu(2[2) ®
psu(2|2) and |X,)p is a basis for the b-th anti-symmetric representation which has dimension
4b. This means that the index I in (2.18) labels (4a)? states and similarly for J. The basis
states are built from the fundamental fields ¢, (bosonic) and 1, (fermionic) and they are
listed in the appendix B of [36]. Note that the bar over x means conjugation of all the
indices of the fields ¢1 <> ¢2 and 11 <> 1p3. The foremost sum in the expression (2.18) is
over the dressings, in other words, the naive basis of the bound states has to be modified
by inserting some Z-markers in two different ways denoted plus and minus (the factor
of half is because one has to take the average, see [41, 42] for a recent discussion about
Z-markers). The rule for the plus dressing is the following

1 1
dressing + : Yo = Yo, Yo = Yo, {¢1, 03} = Z2{¢1, 03}, {¢1, 02} = Z72{¢;, 2}
(2.20)
and for the dressing —, one needs to change the sign of the exponents of all the Z-markers
above. One consequence of dressing the basis is that the Z-markers will appear inside

~10 -



the hexagon form-factors in the expression (2.18). They can them be moved and removed
using the rules given in the appendix C of [33]. Another consequence is that they give
contributions to the weight factors W, which is given by

W{ia n (’U,;Y) _ 6—2iﬁa(ui)log|zi| eiL(i)i eiR(Gi:l:goi) ’ (221)

where the =+ refers to the two dressings, p,(u;) is the mirror momentum and the angles are
defined in terms of the cross-ratios (2.3) as follows

el = b= |2 Qi 2.2
=2 e 2 = (2.22)

Finally, L and R in (2.21) are combinations of diagonal Lorentz and R-charge generators
given by
L= %(Ll1 ~13-L +1%), R= %(1—'@11 ~ RL - R+ R%). (2.23)
Notice that the weight factors act on the particles corresponding to its argument and all
the basis elements for the bound states are eigenstates of the above generators (the action
of them on the particles are canonical).
To compute (2.18) we need to evaluate three hexagons form-factors. The hexagons have
a dynamical scalar factor and a matrix part that boils down to a product of S-matrices.
The hexagons H; and H, have only one-particle and they evaluate to zero, one or minus
one. The non-zero cases occurs when the undotted indices are conjugate to the dotted
indices, i.e. only when one excites the so called tranversal excitations (the scalars YIQ, y2
or the derivatives D'2, D21 or fused products of it, see [33]. The middle hexagon (H,) has
two-particles and it is non-trivial. In order to compute it we are going by convenience to

analytically continue the rapity uy from u;” to uiw

as shown in figure 5. The matrix part
of the middle hexagon is the mirror bound state S-matrix computed in [36] by adapting
the previous calculations of the physical bound state S-matrix of [45]. The bound state
S-matrix is block diagonal and its blocks can be organized in three distinct cases. The
fact that the left and right hexagons are non-zero only for the tranverse excitations forces
the scattering in the middle hexagon to be diagonal and the matrix part of it is shown in
figure 6. The full integrand after the evaluation of the hexagon form-factors is very length
and it can be found at any loop order for the case with two length zeros in the appendix D
of [36]. The general case for non-zero bridge lengths only amounts to include the damping
factors appearing in (2.18). In this paper, we are going to evaluate the two-loop integrals
by expanding the building blocks of the integrand (2.18) to order g*. Notice that at this
order it is only possible to have bridge lengths zero and one becuase

e~Fali)h . o(g2h). (2.24)

Expanding the momentum factors of the two length zero integrand appearing from
removing the Z-markers one verifies that new R-charge structures appears at two-loop."

LAt the moment we do not have an explanation for the Z-markers prescription. It is possible that they
are related to a kind of spin-structure. Moreover, we are using an hybrid convention for the generators and

- 11 -



W(us) W(ui)

Figure 6. The matrix part of the two-particle calculation of (2.18). The left (#;) and right
(H.) hexagon form-factors have only one-particle (fundamental or bound-state) and they are easily
evaluated. They give a non-zero contribution only for x’s where the dotted indices are conjugate
to the undotted indices (1 <+ 2) as the one-particle hexagon form-factor is a product of ¢AZ. This
forces the scattering between the particles in the middle hexagon H,, to be diagonal as shown in
the figure where S means mirror bound state S-matrix. The VW are weight factors and they act on
the particles corresponding to its argument.

Specifically, one has that the two-particle length zero contribution involves the following
structures kicking in at the following loop order

1 1 « 1 «
92: {041042,,041,,1} ’ 94: {,042} ) 96: {2} . (225)
102 a9 (9 a1 (65}

Notice that no new structure appears at four-loops and beyond. In addition, the result
is symmetric under the exchange o <> & so the structures above always appears in a
combination with the bar ones.

The integrand involves various sums and it is complicated to analytically evaluate
the integral in general without further simplifications or a more deep understanding of
it. The only known complet analytically evaluation of a two-particle contribution is the
simpler case of the tree-level propagator contribution for fishnet theories appearing in [46].
It should be possible to extend these tecniques to more complicated integrals or greatly
simplifies the integrand, we hope to address these questions in the future and some recent
progresses in evaluating these integrals analytically can be found in [41, 42]. In this work,
we only generate power series from integrability and fit the results with a basis of two-loop
integrals that we evaluate as described in the appendix B. After the fitting, we have double
checked the result by computing the differential equations obeyed by the integrals and
applying them to the integrability series. Some care is needed in deriving the differential
equations because we are considering a restricted kinematics where the five-points are in a
plane, see also the appendix B. The basis of integrals we have used consists of the ladder

the fermionic transformations of the particles involve powers of Z-markers, thus the Z-marker prescription
is related somehow to supersymmetry. Notice that they are responsible for removing the square root
cuts of all integrability integrands and in this sense the prescription is almost unique [41, 42]. From
the relation to perturbative calculations it is possible to understand qualitatively the increasing of R-
charge structures of the multi-particle integrability contribution. At one-loop there is a map between the
integrability contributions and the supergluon exchange in the N’ = 2 formulation [37]. At two-loop the
computation involves multi gluon exchanges and it is more complicated.
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integral F(?)(z, ) given in (2.7), the double box integral?

I _ d zed a7 _ P R P T Ve T PEr T (2 26)
L2435 = | 02 02 02 g2 g2 g2 22 x2.12, 12 ’ '
162736674756 17 131425

and the pentaladder integral

CC2 1'2 $2 x2 $2 xz $2 CUQ
4 4 2 P ( 12734 1324 1534 13 45)
| s405 = / d*xed x7 Ti7 _ xl w3y aiady’ i a5, 27 a5y (2 27)
134,25 = 2,2 2N\ 2 (2.2 ,2 92\ 2 12,2 :
(216776736) T (T 03775, 757) (234)%735

Notice that the first subindex is special in this two integrals. Since for L it has conformal
weight two and is connected to both integration points and for P it appears both in the
numerator and in the denominator.

Our result for the two-particle contribution at two-loop involving bridges of lengths
zero and one is (z; and 2z are defined in (2.3) and we are using the conventions of the
figure 2)

Zl—l

Méﬁa,b}(zh 22) = — f(21) K5y (21, 22) — [z ) Ky 1y (21, 22) + f ( > K}y (21, 22)

R1%2

1—2z +
+f () Koy (o1 22) + £ (11— 22)) K3,y (21, 22).

2
(2.28)
where
f() = gt ET2) 3 Ch ) (2.29)
and fora=1and b=0
K{y (21, 2) = FP(21), K 0y (21,22) = (@) 2275 Pt i »
K{y oy (21, 20) = ajadahiLigiam,  K{ oy (21, 20) = e, L jhoim » (2.30)

K}y y(21,22) = FP(21(1 = 29)).

It is possible to obtain the result for a = 0 and b = 1 using the parity invariance of (2.16),
but we are going to write it down explicitly for the readers convenience

Koy (21,22) = (@) enu Pravam Ky p(21,22) = FO (251,

z1—1
Ky 1y(21,20) = F® < ;12:2 ) ; K{o1y(215 22) = 2350587 L fm.ij (2.31)

5 _ 2.2 2
K{O,l}(zl’ 72) = T35 T i3 L ke i -

Notice that the structure for the two-loop two-particle contribution Mé?a b}(zl, 2z9) is sim-
ilar to the structure of the one-loop two-particle result given in (2.13). In particular, both

2This integral for five-points at generic positions depends on five cross-ratios instead of four. The result
for the general case is known and it was obtained by Matthias Wilhelm in [47]. In order to reproduce
Matthias’s result from integrability, it is necessary to use an out of plane weight factor.
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cases have five terms and the arguments of the functions m are the same as the arguments
of the functions f. This means that effectively to go from one-loop to two-loop, one pro-
motes the one-loop integrals to two-loop integrals keeping the prefactors unchanged. This
pattern seems to be true to [ loops for any [ and for any values of a and b with

at+b=1—1. (2.32)
We have tested up to five loops that

K{, 0 (21,20) = FT0(21), K7, 0y(21,22) = FOM (21 (1 = 29)), (2.33)
and we have also found [ loop integral representations for others K Ea’b}. We hope to report
these and further results in a future publication.

The other two-particle contribution involves only bridges of length zero and it is a
highly constrained object. It is parity invariant (2.17) and the sum of it with two one-
particle contributions is flip invariant or rotation invariant, see figure 3. Our result is given
below using the following definition

Poo = ME) (1) + MPYgy (22) + MY (21, 22), (2.34)

and
Py = h(2)(21 22) + h(2) < 2 A 1) + h(2) (1 21(1 — ZQ))
’ 14+ 21(22— 1) 2129 zo
@ (22 1) et 1tzlz-l )

+h <21—172’1> +h <Z1(1—2’2)7 Z9 ’ ( '35)

with
1
B (21, 2) = 5(041(1 —ag) — z1(1 — 22) + c.c.) [w%x?l:ﬂlngkaJ (2.36)

—3 % (Ljami k5, + Limijriy,) + 2F P (21(1 = 22)) | .

The two-loop result given above has the same structure as the one-loop result of (2.14),
in other words, the two-results are given by a sum of one function evaluated at five different
points. To go to one-loop to two-loop one only has to correct this function. It seems
that (2.35) is the general solution to flip invariance and at all loops one only needs to correct
the function h. We hope to address this question in the future. There is one further property
of all two-particle contributions: they vanish after twisting the polarizations «; — z;. In
fact this property together with the degree of the polarizations might prove that the same
structure appear at all loops. In addition, all the results for the two-particle contributions
are definite combinations of Feynman integrals. This result is non-trivial because there
was the possibility that Feynman integrals only show up when one computes a complete
correlation function and sums over all the mirror particles contributions.
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3 Planar correlation functions

The results described in the previous section will be used in the following to obtain cor-
relation functions of half-BPS operators in N/ = 4 SYM. As we will see, the one and two
particle contributions are enough to obtain a five point function with special polarizations
and some four point functions.

3.1 Five point function

In the following, we will focus on planar five point correlation functions of large half-BPS
operators L; = 2K > 1. The starting point of the hexagonalization procedure is the
enumeration of all skeleton graphs which are obtained by tree level Wick contractions

yzmymlylkykj y]z
= Z at, s (Ne) Gyt (Zis @) 5
.CC2 12 l‘ x B Jilj
tree im“ml<lk k] ]z

l N\ U l; L l;
woulT \ ™ (o1t Ljm up \ * (o1 7 o9\ Y
Glilliklmklmjllj (ziy i) = )
010201 Ult 01 Va2U1 u9

(3.1)

(O2kc (i, yi) - - - Oarc (24, 5))

where a(N,) are constants that depend on the number of colors and symmetry factors of
each diagram and with the cross ratios®

2,2 2.2 2,2
Y2 Y YA Ym YiYik _ YirY5 _ YikYim 39

g1 = 2 92 1= 5 5 02 = 2 92 T2 = 2 92 - "9 9 ()
YikYim YikYim YiiY YiiYi YimYjk

The next step is to tessellate each skeleton graph into six hexagons as shown in figure 7.
As pointed out in [22] the computation of a generic skeleton graph is complicated as it
involves the contribution of multi-particle states in different edges. A simplification is
obtained by projecting the five point function to a specific polarization in which case only
the one-particle and two-particle contributions are relevant. One such polarization is

Yi = {0707070717i}7 Ym = {070717i7/87 _7’6}7 Y1 :{1)_2'717_1-7070}7 (33)
Yk = {l,i,0,0,0,0}, Y; = {17_7;70707’% _Z"Y}-
As can be seen in figure 9 all corrections that connect the inside with the outside of the

frame are suppressed in the limit K > 1. Consequently this specific five point function is
given by the square of an object which will be called from now on, the decagon D

D? ONE oK
= (@) i Y1 (@) ms Ym .0 s Yg
(22,22 zl‘?kx%ﬂ?i)f( <3ﬁ> <0’Y> (O2x¢ (@1, 1) Ok (B, Ym) 2k (25, 3))

mm ﬁ:’yzo

(3.5)
Another way to see this is by looking into the tessellation of this five point function and to
notice that these limits and polarizations make the bridges l;41 ~ K,* which isolate the

3The space time cross ratios will not be used explicitly and so we do not give their definition.
4The ~ shows up here because the effect of neighbouring graphs can mix different skeletons graphs
contributing to a particular polarization as is discussed below.
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Figure 7. Tessellation of a particular five point function skeleton graph where we assumed I35 = 0.
Notice that the configuration with all /;; non-zero has a non-planar topology. After tessellating a
given skeleton graph one is instructed to insert a complete set of mirror particle states to glue the
hexagons back, see the figure on the left.

hexagons 1, 2,3 and 4,5, 6 in figure 7 from each other. At tree level there is just one graph
that contributes to the simplest five point function of (3.5) which is

i, dfdfde;dy (3.6)
which should be dressed with the zero length one and two particle contributions for loop
corrections. The contribution of mirror particle states have R-charge which can change the
polarization of a given skeleton graph to (3.6). As we have seen in the previous section
the hexagonalization of any of the graphs in 8 apart from the first can be written as a
combination of seven polarization structures

f <1> P;T+f(22)77a2—f <21_1> P —f (1_214_2122> P%_f(zl(l_@)ﬂ)alaz

21 2122 arag 22

+f(z1) (Pa1+P% +Pa1a2)+f (;) <,P(11+P1+’Pa1> . (3.7)

2 a1 a2

where P, represents the one or two particle contribution with one or zero length bridges
and the function f(z) was defined in (2.29). The structures in the first line transform
among each other upon a cyclic rotation of the decagon, i.e. i — m, m — [... while

5 The relevant

the two on the second line transform differently under the cyclic rotation.
skeleton graphs that contribute to the correlation function (3.5) are given by the solutions

of (see figure 8 for all possible nonzero graphs®)

Glilliklmklmjllj (zi06) x f(z:) =1, (3.8)

°It is then easy to understand why the combination multiplying both f(z1) and f (i) vanishes in the
tessellation of a decagon with zero length bridges.

5Both one and two particle contribution can only change the R-charge structure by two units, so it is
enough to consider only the graphs in 8.
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Figure 9. At tree level the five point function is just given by (3.6). As the coupling is turned on
there are many different interactions that can take place. In principle, both figures on the left and
right would be possible. However, since we take the operators to be large the figure on the right
hand side is suppressed. Thus, we are left with interactions that live either on the inside or on the
outside of the frame created by the five points. So the five point function is given by the square of
the object we call the decagon which is nothing more than the contribution of these interactions on
the inside of the frame.

where f is one of the seven structures that appear in the tessellation of the skeleton graphs,”
G is defined in (3.1). As an example, pick the second term in (3.7) which can be written
as 1 + 092 — 1 and consider it on (3.8). It is straightforward to see there is no solution to
this equation. Since the first five terms in (3.7) transform into each other under rotation
there is no solution of (3.8) for any of them. A similar and small computation implies that
there are two other solutions l; = 1,1,y = 0 and l;;; = 1,1, = 0 for the remaining
structures in (3.7).

For example the second graph in the second line in figure 8 where l;; = 1 the only
nontrivial component comes from f(z1) and contributes to the correlator (3.5) as

22—1 1—2’1(1—22))

(3.9)

z21721 (Pal + ,PO;l + Pauxg) - ZIEIP < )
a Z9 Z1%9

The contribution from the other graphs can be obtained by a cyclic rotation. It is now

"The 1 on the right hand side of (3.8) appears because we have normalized (3.1) with the only prefactor
that is relevant for the polarization that we want.
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simple to obtain the final result for the correlator

r@
D= g2 (ZQ + 2o — 1)2(22) — ZlilF(l)(Zﬂ]
= 1 1
g (1—2—2) [ PA—21(l—2),1-2) 25l <ﬁ21) +L (1 - 22, z)
2 2929 (1 *21(1 *22))(1 *21(1 *22))

zZ -1 1—2z(1-
+2F@ (z) | + A p <22 , il zQ)) + 2121 F®) (21) | + cyclic rotations.

2 Z9 Z1%29

(3.10)

In [5], it was shown how to obtain any one loop n-point function of half BPS operators.
We have checked that the integrability method laid out above reproduces exactly the one
from [5] at one-loop. The two loop correction for our five point function was not known in
the literature. However we manage to compute it with a different method that uses both
Lagrangian insertion method [6] and chiral algebra twist [32, 48]. The details will appear
elsewhere [49].

3.2 Four-point functions

The knowledge of both one-particle and two-particle contributions enables one to compute
several four-point functions as well. It is easy to reduce the two-particle contribution
from five operators to four by identifying a pair of operators. In all the needed cases the
reduction of the integrals does not produce any divergence and it can be done easily by
also identifying points. In this section, we are going to compute a few planar four-point
functions at two- and three-loops of half-BPS operators using integrability and we will
compare the results with the perturbative ones obtained in [8]. Notice that the correlators
considered in this section are known up to five-loops [9]. The comparison is a strong test
of our integrability computations of section 2. Specifically, we are going to consider the
following class of operators (the setup is shown in figure 10)

O, = Tr(zE X2y E) 4+ perm , Oy = Tr(XK+h2)

_ _ 3.11
O3 = Tr(ZKXKYK) + perm, Oy = Tr(Z2K) , ( )

with K > 1 and l12 = 0,1, 2,3. The cases l12 = 0, 1, 2 are going to be computed at two-loop
and the remaning case l;3 = 3 at three-loop.® In fact, we can compute the case l1o = I
up to [ loops as it needs only the one-particle contributions and one component of the
two-particle at [ loops. The needed component is precisely the one determined at (2.33),
see the discussion below.

Note that the polarizations and the lengths of the operators in (3.11) were judicious
chosen in order for the integrability computation to only involves the one-particle and

8The minimum value of K depends on the loop order. To suppress unwanted multi-particle contributions,
K has to be greater than 2 for the two-loop cases (l12 < 3) and greater than 3 for the three-loop case
(liz = 3).
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Figure 10. An example of a tree-level contribution to the four-point functions computed using
integrability. The other tree-level graphs are obtained by moving some of the lines connecting the
operators O and O3 to the dashed line and there are K of them. For l15 = 0 there are K — 1
additional graphs obtained by permuting O; and Oy in the figure and moving the propagators. The
bridge length [15 will varry from case to case and the polarizations are such that yoq = 0, see (3.12).
As explained in the main text, using the two-particle integrability result computed in this paper we
can evaluate l12 < 3 up to two-loop and l;2 = [ up to [ loops. Notice that it is important to have
non-zero connections between the operators O; and O3 in order to suppress two new integrability
contributions: three-particle in different edges and the loop over an operator which correspond to
a four-particle contribution.

two-particle contributions. It is important that the operators @7 and O3 are connected at
tree-level (they have the Y and the Y fields respectively) otherwise there will be additional
integrability contributions. For example, consider the four-point function of four half-
BPS operators of length two (the so called 20’ operators). Using the rule described in
figure 1 for determining at each order in ¢ a multi-particle contribution kicks in, one can
see that the computation of the 20”’s correlation function needs one-, two-, three- and
four-particle contributions at two-loop (at one loop it only needs one- and two-particle
contributions). Note that the four-particle contribution closes to form a loop. The three-
particle contribution is only known at one-loop (in fact any string of mirror particles is
known by recursion relations at one-loop, see [39]) and its knowledge at two-loop would
enable one to also compute the dodecagon or a special polarized six-point function. On
the other hand, almost noting is know about the mirror loops apart from the fact that its
leading contribution is zero because of supersymmetry (one is wrapping a BPS operator).
The four-point function of the operators (3.11) are obtained by setting the polarizations
vectors as
y1 =1{1,4, 0,10, 3,1}, y2 ={0,0,1,—4,0,0},
ys ={1,—1,0,0,0,0}, ys ={1,i,1,4,1, =i},

and applying the following differential operators in the correlation functions

(3.12)

cui=(2) ()" ©Eowomoiw| . 6w
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The perturbative result for the correlators Giazs = H?Zl VL; Gl334/N? at the necessary
loop order can be read from [8]. The expressions depend only on the ladders integrals
F()(z,%) of (2.7) and they are given in our conventions by

g* z
! =(1-2)(1-2F?]1 -2+ F®
1234, (1—2)(1—2)F7[1 -2+ P
g* (1—z2) z
! — 5 2.5 FA — ) gp@ =
1234, (z+2—222) 71 — 2] + (I—2)(1-2) I
) o 21 (3.14)
P A — Y=
=2z F@[ — R
1234, = #F [1—z]+ - ;
46 F3) [z—l]
! — s F® -3 L=z1
1234), o 2ZF[1—2] =3 = )

where the cross-ratios z and zZ were defined in (2.9).

To compute the correlators above using integrability, we follow the same steps as in
the five-point function computation. Besides evaluating the mirror particle corrections to
the tree-level graphs, it is also necessary to deform a bit the polarizations and compute
some neighboring graphs. The neighboring graphs give a finite contribution after sending
the deformation to zero at the very end because the mirror particles contributions carry
R-charge and consequently they change the R-charge structure of the original graphs.
To perform the computations one reduces the two-loop two-particle contributions given
in (2.28) and (2.35) to the case of four-points by identifying the fifth point with one of
the four-points. The precise identification depends on the graph being computed. As
mentioned before, the integrals can be easily reduced as no divergence shows up and one
can identify the points on the level of the integrand and then perform the integral after the
identification which always give in our cases a ladder two computed for a specific cross-ratio.
If one expresses the four-point R-charge cross-ratios as

Z
ad:?zé, (1—04)(1—64):?(1—2)(1—2), (3.15)
with
Y12Y34 Y13Y24 Y14Y23
X="5"75, Y=F"%, Z="5"75, (3.16)
L1934 L13T24 L1423

one verifies that all reduced one-particle and two-particle contributions are first order
polynomials in A/B where both A and B are X,Y or Z. This implies that the mirror
particles can only change the R-charge structure of a graph by two units. Thus it is
only possible to have neighbouring graphs which differ from the original graph by four
propagators and each line can differ from the tree-level graphs by at most one propagator.
The relevant graphs, more precisely the propagator structures, are shown in figure 11. As
two examples, let us explicitly compute the graphs (a) and (c) of the figure 11 for 15 = 1.
Dividing each graph by the unique tree-level propagator structure, we have the following
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Figure 11. All the propagators structures used for computing the four-point functions using inte-
grability. The graph (a) has the tree-level propagator structure and all the others are neighboring
graphs. To find all the graphs from the diagrams above one has to connect the four operators in all
inequivalent ways keeping both planarity and the propagator structure showed. For example, four
graphs of case (a) give a nontrivial contribution for I35 # 0 at two-loop (at three-loop or l;2 = 3
the number of graphs is six and for I35 = 0 there are additional graphs by permuting the operators
O; and O4). The four graphs are obtained by moving the propagators connecting the operators
01 and Os, they are: the graph showed, the graph when there is one propagator inside the middle
square, the graph when all the propagators are inside the middle square and the graph when only
one propagator is outside the square. Similarly, the cases (b), (¢), (d) and (e) give rise to several
graphs. The contribution of each graph is computed by using the reduced to four-points two-loop
two-particle contribution of this paper.

contributions to the final result using the expressions and notations of section 2

@ (2 2) 2 z
(@) - Mgy ( ) + M (1) + Mg g <1’ o 1>

z—1 Reeh
zero Iv—charge (317)
=g+ 2+2—2273) (F(Q)[l—zh—[_Z] .
2 2z
where we have used that /\/lle}(l) =0 and
Y <
(c): Ml,{o} <z — 1)

component Z/X (318)

_ Ap(2) Z
g F L_J.

Continuing in this way and summing all the integrability contributions one gets agreement
with the perturbative results given in (3.14).
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Note that the calculation at three-loop for {15 = 3 was possible because there is only
two graphs which have two-particle corrections for this case. They are inside case (e) of
figure 11. Precisely one needs Mg?%zo} and Mg;?oz}' These two-particle contributions
have the structure given in (2.28) and due to the R-charge we only need to know for
the computations of the four-point correlator the functions K ?270} and K ?072} which were
determined in (2.33).° Similarly, it is possible to compute the case Iy = [ up to I loops
only using (2.33) and the expressions for multi-particle contributions in the same edge
of [22]. We are not going to write the explicitly result here, because we do not know a
closed expression for any [ and the computation is straightforward. For [ greater than five,

the result is new.

4 Conclusion

In this paper, we have computed the simplest five point function in N' = 4 SYM at two-
loops using integrability. The result is expressed in terms of ladders and pentaladder
integrals which were computed for the first time in this paper. To obtain this result we
have computed all the two-loop two particle integrability contributions and derived some [
loop results along the way. The knowledge of the two particle contribution enables us also
to compute a set of four point functions by reducing the results from five to four points.
The reduction is straightforward since no diverge appears.

As mentioned in the introduction, one of the goals of our two-loop computation is
also to take the first steps towards a bootstrap approach to the decagon. One important
question is what is the all loop basis of Feynman integrals. There are obvious generalizations
of both the ladder and pentaladder with five points and the differential equations derived
in the appendix B can be used to study these integrals but it is not clear if this is enough
to cover the space of functions of this special five point function. It would be interesting to
check this at higher loops. Recall that starting at three loops new kinds of contributions
appear. One new contribution is the three-particle contribution with two particles in the
same edge and the third one in an adjacent edge, see table 1 for more cases. This kind of
contribution has never been analyzed and it would be interesting to obtain the integrand
for this case and check which integrals it generates. In this work, we have computed the
decagon with all the five points on a given space-time and R-charge plane. In this restricted
kinematics one of the cross-ratios is expressed as a function of the others. It is possible to
lift this restriction and explore the full kinematical space. The only modification needed
in the integrability calculation is to include in the weight factor generators that move
points outside the plane. In principle there is no new integral appearing and one could
reproduce the out of plane double box result of [47]. One motivation for studying out of
plane configurations is that the differential equations obeyed by the integrals simplifies and
it is possible to study them at the level of the integrability integrand.

The multi-particle integrability contributions are very constrained objects. For exam-
ple, the knowledge of just one R-charge structure of the two-particle length zero enables
one to fix this contribution entirely by using the flip invariance. We believe that exploring

9The function K%O,u} can be obtained from K{Sayo} because of the parity invariance of (2.16).
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and solving all the symmetries will be important for higher loop integrability computa-
tions. There are more constraints that one can try to explore. It is known that any n-point
function of half-BPS operators does not receive any quantum corrections if one applies the
Drukker-Plefka twist [5, 50]. This constraint is trivially implemented in the hexagonaliza-
tion approach because when imposing the twist the functions f(z) of (2.28) and all the
prefactors of the functions h(®)(z1, zp) given in (2.36) vanishes identically. This property
can be traced back to the form of the weight factor. However, there is an additional twist
that seems to be realized non trivially, the chiral algebra twist of [48]. It would be in-
teresting to check what kind of constraints this puts on the different multi-mirror particle
contributions.

In this work, we have computed the mirror particle contributions by fitting series ex-
pansions on the cross-ratios by a basis of integrals. It will be great to develop a deeper
understanding of the integrability integrand. An interesting analysis of the one loop inte-
grand has been put forward in [41, 42]. The one loop result has been known for a while
however the approach taken in that papers might shed some light on the space of functions
that the integrand integrates to. It is possible that the integrand can be great simplified
and some of its summation done explicitly. In this case, maybe it would be possible to
evaluate it numerically. The quantum spectral curve and the SoV basis has been applied to
the computation of correlations functions recently [51-57]. It is likely that these techniques
could help in the simplification of the integrand.
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A Finite coupling expressions and the one-particle contribution

The goal of this section is to collect the finite coupling expressions involved in the integra-
bility integrand (2.18). They can be easily expanded to compute the integrand up to any
desired loop order. The mirror bound-state S-matrix will not be given here and it can be
derived by following the procedures described in [36]. Most of the expressions are given in
terms of Zhukowsky variables x defined by the relation

E:x—i-l, (A1)
g x
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and one selects the solution with good weak coupling behavior. The energy and momenta
of a mirror particle bound state with length «a is given by

_F 1 _ la g 1
Ea _ _ ¢, 9 _ plal
e algal’ Pa ) [2 + - <a;[—a] T )] , (A.2)

where we used the short hand notation
fih = f (u+i3) - (A.3)
In addition, we have for a physical magnon
[a]
T

zl=al’

e'Pa =

The measure is given by
() = alcte )
@l Tal= — (@2 — ()2 = 1)

and the dynamical part of the hexagon form factor for the case of fundamental particles

(A.5)

can be written in a compact form as

h(u,v) = 2%

(A.6)

Ty —xd 1 —1/2d el ow

with oy, the BES dressing phase [58]. The fused transitions relevant for this paper are

obtained as
a—1 b
2

By (u,v) = H ulPkl 20y (A7)

k=—251 =21

The dressing phase in the mirror-mirror kinematms was derived in [59] and is given by
Tap(u?,07) = (a7, y ")+ 0(aT,yT)+0(aT,y )+ R(aT,yT)

(et y ) +(a, y‘)+b(w+, y )+e(z,y7) (A.8)
r(1- (14+252 —i(u—0)) T (1+L—iv)

i

§+iu) T
g : A9
I (1+4%—iu) T (1- i(u—v)) T (1= —iv) (A.9)
—1)"sin 7Tm—}-n €7t
O(z,y) = Z/t(ett_l)‘h"‘m(gt)‘h"‘"(gt)% ,7133+”y1+m +/ 2‘3 di [;i} , (A.lO)
cos (% (mm+(fatu cos (% (ma+ (ke
U(z,y) = 2(— m+12/ T (gt) ( (2 (ymi'l( 2 ))) -~ (2 (xmi'l( 2 )))) 7

e“tgdt [2 2 e“tgdt [1 1
b(mvy) _/ t [x—i—x_y_y} ) C(l‘,y) _/ t |:£L'_y:| )

where each sum runs from i_Tli' to oo.
We also provide the weak coupling expansion of the integral of the one particle contri-
bution at any loop order [22]

o (—4)i—1 (1) i A .
Mygy(z) =" ( )(1)'(2)11 (1(i)z ) (m(2) + mD(z71)), (A.11)
i=1 i-1

where [ is the bridge length.
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B Feynman integrals

The integrability integrand associated with more than one particle on different mirror
edges is a complicated object that depends in an intricate way on the bound state number,
rapidities and cross ratios. Its contribution enters to the correlation function after summing
and integrating over the bound states indices and rapidities respectively. However, the best
one can do for now is to truncate the sum over the bound states indices up to some number
and then do the integration over the rapidities. This is the same as computing the power
series expansion in terms of cross ratios up to some order. To have a better control over
the full function of cross ratios we have matched the power series expansion against a set of
Feynman integrals for which we have explicit expressions in terms of Goncharov functions.

We have focused, in this paper, on the two loop contribution to the two particle
integrand in a special plane kinematics which depends on two complex cross ratios. It is
then natural to consider a set of two loop conformal integrals in position space depending
on five external points with a two dimensional kinematics. The two simplest finite integrals
involving five points are

4,. 74 - -
I B d*zgd* 7 _ L(z,Z,w,w,h) (B.1)
1,24,35 = 2272 22 22 2 2 42 2 2 2 ) :
16L27736 L7 L7 L56L17 12215734
4. 4 2 - -
Pratas _/ d*xed*x7 7, _ P(z,z,w,w,h) (B.2)
;34,25 = 2.2 9N\ 2 (2 2 .2 2 2 \2..2 ) .
(216716736) T57 (247037057757 (234)%w35

where h is associated with the distance out of the plane

2 .2 2 .2 2 .2 2 .2
T N S ¥ _ X _ x5,
2z = %2 34, (1—-2)(1-2)= %4 33 ww = %5 34, (1—-w)(1—w)= ;4 35,
i i i1 Tiax
13724 13724 13745 13745

x§5az%4:ww—u’)z—w2+zé+h

2 .2 5
TioTys5 zZZ

The first integral can be thought as a simple generalization of the ladder integral with four
points (in fact one can get back to it by taking x5 equal to x5 or x4). To our knowledge
these two integrals have never been computed in the literature'? and so in the rest of this
section we will sketch the main steps involved in their computation.

Fortunately each of these two integrals in a plane can be computed in parametric space
by direct integration of the Schwinger parameters. For example

Jim Z3LC), 55 = H/ daz}_z : (B.3)

where both U and F are polynomials of degree 2 and 3, respectively, in the Schwinger
parameters «; see [60] for more details.!! The integration in parametric space is possible
for these integrals following an algorithm introduced in [61] and implemented in Maple

10T et us remark that these integrals have been computed in other kinematical regimes where the number
of cross ratios is less than four.
U he Schwinger parametrization of the integral P; 3425 can be obtained similarly.
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Figure 12. Both position and momentum space representation of the ladder integral with 5 points
are represented on the left. On the right there is the analogue for the pentaladder integral. The
dashed line represents a numerator.

in [60].12 We will now present a different approach to these integrals which can be also
applied to their higher loop generalizations, see figure 12. Notice that both integrals satisfy
a differential equation as the action of V3 or V2 localizes one of the integration

v2i2 = —47%5(x). (B.4)
T

For example for the integral (B.1) we have

232,.2 - - 2,2 .2 .2 4
(715) La3 v2 L(z,z,w,w, h) _ X1aT75%23%34 d’z7 (B.5)
x2 2 x2 N x2,. 22 x2. 2.2 a2 '
13 12 13724 161267367156

We are interested in the kinematics where all points are on the plane but this differential
equation is derived assuming the points are at generic positions. Inserting the expansion
of the integral L around the perpendicular distance h out of the plane

L(z zw,w,h) =Y L"(z,z,w,@)h", (B.6)
n=0

in the differential equation we see that the leading order in this expansion involves both
L©® and LW,

Acting with the Laplacian Vg on the integral L gives another differential equation for
L(z,z,w,w, h)

(:L'%5)31'%3£L'§4 v2 <L(Z> 27 w, ’LZ), h)> _ (l‘%5)2$%31’§4 / d4fL‘7 (B 7)
2 5 2 2 9 = 2 2 2 2 2 92 ° :
213 12775234 213735 L1727 Ty7¥57
It is possible to find a combination of each differential equations
2Z(ww)?(z — 2)2(1 — 2)(1 — 2) v wwzz(w — w)?(1 — 2)(1 — 2) Vg} I (B.8)
4 4
_ (ww)?(z — 2)? / d*zy Cwwzz(l —2)(1 - 2)(w - w)? / d*xg
- 4 T17%3; %5728, 4 21623623675
(B.9)

12We have also checked the results using the method of asymptotic expansions [62—-65].
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such that the leading order in the expansion out of the plane only involves L(®)

[(z 20,0 — (w0 — 0)20008 — =Dy 4 FEZE w0 g )
z z w
_ _ (z — 2)2woF® (2U=w 20-D) N2 (1) (2 2
_w(w—w)a_ 70 _ T R)jww w0 e ) (w—w)7zEF (2,2)
w v B (w—2)(w — 2) (1 —-w)(1—w)ww
where
(1) z(1—w) Zz(1—w)
/ d*ze B F ( Z—w O Z—w ) (B.11)
2 2 .92 2 2 2 : :
T16726736256 T13%25

The same strategy can be applied both to the pentaladder P; 34925 and to higher loop
generalizations of these integrals. It would be interesting to obtain the solution to these
types of differential equations.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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