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The Lambda-Cold Dark Matter (ACDM) model agrees with most of the cosmological
observations, but has some hindrances from observed data at smaller scales such as
galaxies. Recently, Berezhiani and Khoury proposed a new theory involving interacting
superfluid dark matter with three model parameters in,! which explains galactic dynam-
ics with great accuracy. In the present work, we study the cosmological behaviour of this
model in the linear regime of cosmological perturbations. In particular, we compute both
analytically and numerically the matter linear growth factor and obtain new bounds for
the model parameters which are significantly stronger than previously found. These new
constraints come from the fact that structures within the superfluid dark matter frame-
work grow quicker than in ACDM, and quite rapidly when the DM-baryon interactions
are strong.
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1. Introduction

With the advent of precision cosmology and satellites like Planck and WMAP, we
have gained new insights about the evolution of the universe. Till date, Lambda-
Cold Dark Matter (ACDM) provides the best fit to these available data and has
been widely accepted as the standard model of cosmology.? The hypothesis of CDM,
which are assumed to be collisionless non-relativistic particles, along with bary-
onic matter explains the CMB temperature anisotropy, matter power spectra, large
scale galaxy distributions and lensing data remarkably well. In fact, the abundance
of galaxy clusters and observed large scale structure formation history strongly
supports the collisionless CDM scenario as opposed to any alternative theories to
ACDM.3® However, at smaller scales, CDM faces a number of challenges that
need to be addressed.® For example, the Baryonic Tully-Fisher relation and the
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corresponding tight correlation between the mass and dispersion velocity at the
high-mass end can not satisfactorily be explained by CDM halo which predicts a
larger scatter due to feedback processes in the galaxy.” Apart from this, there is
another issue with the standard CDM picture in the galactic scale, known as the
cusp-core problem.® The simulations of galactic halos with CDM produce a kink
(cusp) at the center of the galaxy, whereas observations of various galactic density
profile suggest a flat core. With improved observations of the faint dwarf galaxies
and substructures within the galaxies like Milky Way and Andromeda, new set of
discrepancies arise. While the missing satellite problem in dwarf galaxies® has been
addressed to some extent, the Too Big To Fuail Problem, arising from the predic-
tion of satellites that are too massive and too dense by ACDM, compared to those
observed, still remains unresolved.!0> 11

Due to the above unresolved issues, scientists have looked into other alternative
explanations through modifications of General Relativity (GR). Several models have
been proposed so far with the aim to explain existing data to the same degree of
accuracy as ACDM as well as overcome its drawbacks. Many of them have already
been ruled out or are highly constrained by the ongoing observations of gravitational
waves, but some theories like f(R), f(T), f(G), Scalar-tensor-vector theories of
gravity etc. are still consistent with the data, and new observations are required to
falsify these theories.!'? ¥ These theories are relativistic corrections of GR which
modify the dynamics of spacetime through the modified field equations. The theory
of Modified Newtonian Dynamics (MOND), on the other hand, is a modification
to the Newtonian force law that changes the dynamics of interaction between two
massive bodies in the non-relativistic limit.!?>2% MOND was first proposed in 1983
by Milgrom to account for the flattened galaxy rotation curves near the edge of the
spiral galaxies like Milky Way. There is a universal acceleration scale ag in MOND,
whose value is obtained as 10~8cm/s%. For accelerations much lower than this scale,
the Newtonian law is modified, and this explains the flat galaxy rotation curve data
for a large number of galaxies.?! Interestingly, the Baryonic Tully-Fisher relation
in galaxies can exactly be derived from MOND where M o vi. MOND can also
explain several other galactic observations like the planar structure of galaxies, low
merger rate etc.?2 Thus, we see that MOND, with just one free parameter, is a very
well-behaved theory at the galactic scale. However, despite these successes, MOND
faces several challenges in extragalactic and cosmological scales. Proper relativistic
extension of MOND is not available.?? Hence it cannot be applied at cosmological
scales.

The effectiveness of MOND at small scales and success of ACDM at cosmological
scales are the main motivations for scientists to look for models which are CDM-
MOND hybrids i.e., theories that include usual cold dark matter as collisionless
particles at cosmological scales, but give rise to a MOND-like modified force law
at galactic scales such that they satisfy both sets of observations. This class of
models take into consideration the interacting dark matter-baryon picture where
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a MOND-like force is mediated through this new interaction term. Based on this
idea, many models have been proposed which can reproduce both CDM features as
well as MOND in their respective regime of validity.!»24 27

In this paper we shall focus on one such model proposed recently by Berezhi-
ani and Khoury,! where CDM can form condensates at galactic scales depending
upon the surrounding temperature and can behave as superfluid. It has already
been shown by the authors that such model can explain a number of galactic scale
observations due to their MONDian behaviour, which normal CDM fails to ex-
plain.'» 28730 Although there are recent studies which suggest that the superfluid
DM model is disfavoured compared to a spherically symmetric CDM halo at galac-
tic scales as the superfluid DM overestimates the vertical acceleration which has
31,32 There are two free param-
eters in the theory which are assumed to be temperature dependent. It has been

to be counterbalanced to match the observations.

argued that at cosmological scales, the theory behaves as usual CDM and thus the
background evolution and other cosmic histories remain unchanged as compared to
ACDM. Here, we study the cosmological evolution of the background as well as the
matter perturbations. We check whether the present model remains well-behaved
at cosmological scales as has been claimed by the authors and compare our results
with ACDM.

2. Dark Matter Superfluid-Overview

The central idea of this model is that CDM is made up of particles which undergo
phase transition below a particular critical temperature and becomes a superfluid.
This requires that the particle CDM needs to be strongly interacting below a partic-
ular temperature. The superfluid behaviour depends on the strength of interaction
and the mass of the particle. It has been shown in' that in order to form a Bose-
Einstein Condensate (BEC) the following condition must be satisfied

ns(4)" »

where m and v corresponds to the mass and velocity of the particle respectively
and p is the density of the condensate. Assuming virialization of dark matter halo
at galactic scales, this gives an upper bound on the mass of the particle forming the
halo

M —1/4
mE280 4" (g ) oY .

Further assuming thermalization of CDM particles, one obtains the bound on in-
teraction cross section as

772 (T 4 M 2/ 2 _—1
2 52(1 + 2yir) (W) <1012h_1]\4@> cm g (3)

g9
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Using equipartition law, the critical temperature 7T, of the CDM condensate can be
obtained as

5/3
T.=6.5 (ev) (14 2y )*mK (4)
m

It has been argued in' that the temperature of CDM at cosmological scales is
much below the critical temperature (O(10728) for m ~ eV) which implies that the
condensate behaves as a T' ~ 0 superfluid at cosmological scales.

The description of superfluid dark matter is given in terms of a low energy
effective theory with the Lagrangian of the form:

3/2
. 2A(2m)3/? (émq> (vo)2)

3 - 2m

()

Let us now understand the motivation of choosing such a Lagrangian. Here, 6 is
the phase of the wavefunction describing the superfluid phonon modes and ® is the
gravitational potential in which the DM particle sits and is given by the standard
Newtonian potential in the usual non-relativistic case. This Lagrangian has a free
parameter A which defines the strength of the superfluid (i.e. defined by the number
of particles in the condensate state). The power of the Lagrangian is defined by the
choice of the equation of state (EoS), and a fractional power of 5/2 is indeed obtained
in superfluids formed by ultra cold atoms. In the case of CDM superfluid, the choice
of the power 3/2 in the Lagrangian is somewhat arbitrary, but motivated by the
fact that the superfluid DM should give rise to MOND-like dynamics at galactic
scales when baryons are also included. This also corresponds to an equation of state
P ~ p3 which is suggestive of a dominant three-body interaction process. What
kind of particles can lead to such a superfluid with this particular EoS and the
physics of its formation has not been discussed earlier and is beyond the scope of
this paper. For our purpose, we shall assume the form of this Lagrangian to study
the characteristic features of the resultant superfluid DM model.

In the effective field theory formalism, the superfluid is described in terms of
interacting phonon modes. The phonon modes can be described by the scalar field
0, which, at a constant chemical potential u, can be expanded as,

0=ut+¢

where ¢ denotes the excitation of the phonon modes.
The DM superfluid couples to the baryons through the phonon modes via an
interaction given by the Lagrangian:

Lint = —a—l 0pp (6)

This kind of interaction ensures a MOND force. Here « is a dimensionless free
parameter, which sets the interaction strength of the interaction, and p; is the
baryonic mass density.
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Thus, the complete Lagrangian for an interacting superfluid DM is given by,

_20(2m)*2 [ (v9)2\*? A

It has been shown in' that the MONDian acceleration arises as a special case of the
dynamics of the above Lagrangian. The validity of this model in solar system and
Bullet cluster has also been discussed there.

In the cosmological context, although the authors in! discuss some general points
regarding the background behaviour and the equation of state of this new superfluid
dark matter, they do not shed much light on other important points such as growth
of perturbations and structure formation. In the next sections, we solely focus on
the cosmological aspects of this new theory.

3. Cosmological Solutions

In this section, we will study this theory in cosmological context. This is of particular
interest since the theory also needs to be consistent with the present cosmological
data.

3.1. Background Solutions

For the background cosmology, we have § = 0(t). In the FLRW background with a
scale factor a, the equation of motion for # can be derived from the action as,

(2m)3/2a391/2 _ 7M7Pla3pb (8)

Assuming the evolution of baryons i.e. p, & 1/a® as in standard ACDM, we get,

mAC
a3

9)

oA ot
=——m
Pm MP[ Pb

Here C' is an integration constant which has to be determined from the present
DM density. The second term (pgust) corresponds to the dust like evolution. The
form of the density is similar to those obtained in dynamical space-time theories as
discussed in.??3% For the second term to dominate (such that p,, behaves as dust),
it can be shown that one needs to satisfy the following constraint:

alpy

mig < 1 10
MPlpdust 0 ( )

where %, is the present age of the universe.
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Bounds on the model parameters:

e From the EoS- Equation of state for the DM superfluid (assuming negli-
gible interaction) is given by,

3
— ust 11
Y TaA2mb (11)

For DM to behave as dust at the background level, A should be bounded
from below,

A 0.1 (%) v (12)

e From coupling to baryons- From (10) and (12), and assuming a constant
baryon-to-DM ratio (pgust/ps = 6), we get,

a < 2.4x10° (%)2 (13)

These bounds are different from the bounds obtained for galaxies, as discussed
i 1,28
in."

3.2. Perturbations

Study of linear perturbation theory in the context of ACDM has been an important
step towards understanding the evolution of the universe. CMB spectra carries
information about the inhomogeneities present in the early universe. Hence, any
cosmological model needs to satisfy the CMB data to a high degree of accuracy.
This requires analysing the matter power spectrum resulting from the initial density
perturbations. In this section, we examine the growth of cosmological perturbations
in DM superfluid model at linear order.

The Lagrangian of the theory in an FLRW matter dominated universe is given

as,
. 0 2 3/2
L=c (9 — % — mq)) — coppl (14)
where cq, co are constants expressed as,
2A(2m)3/2
g = ———"—
3
A

Cy = Oém (15)

Here, 0(z,t) = 0(t) + 60(x,t) is a scalar field which is a fucntion of both space and
time.
We can find the Euler-Lagrange equation from the above equation as:

d (0L oL
(%) -5 =0 (19



The Sixteenth Marcel Grossmann Meeting Downloaded from www.worl dscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 01/30/23. Re-use and distribution is strictly not permitted, except for Open Access articles.

2107

This gives us the background equation of motion as shown in the previous subsection
as well as the first order perturbation equation of the dark matter density. But this
single governing equation is inadequate to obtain the complete numerical solution
which requires a complete set of differential equations.

In order to get the full set of perturbation equations, we start with the fluid
equations that govern the dynamics of the dark matter superfluid. The fluid equa-
tions, namely the continuity equation and the Navier-Stokes equation can be derived
using the Hamiltonian formalism, as described in.?% In,3% the authors work out the
fluid equations for an interacting two-component BEC dark matter. Here in this
work, we follow the same prescription for a superfluid dark matter which interacts
with the baryonic matter. The corresponding Lagrangian is given by (14).

From the Lagrangian, we get the conjugate momentum as,

R
(Y
2 1/2
_ 32 (g _ e (VO
A(2m) 0 —md o (17)

The Hamiltonian H describing the superfluid can be obtained as,

H=T0-L (18)
Since, 6 = m® + Y2° 4 16 fom (17 t the Hamiltonian H as foll
ince, 6 = m® + 55 + i rom (17), we get the Hamiltonian H as follows,
T3 (VH)? al
H=_-—"9_ P g + ——py0 19
3A2(2m)3+(m * om ) A T (19)

3.2.1. Hamilton’s equation of motion

The Hamilton’s equations of motion are :

. OH
0= — 20
and
. OH
My = —— 21
0 5 (21)
For this model, the two equations become, respectively,
. 12 (V)2
0= —-L—+md 22
A2mp T o, (22)

and

. 1 al
Iy = —V - (I[,VH) — — 2
0 mV ( GV) Mplpb (3)
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3.2.2. Fluid equations

In order to get the fluid equations from the above Hamilton’s equations of motion, we
identify the terms as corresponding hydrodynamical variables. We define the mass
density term (as the co-efficient of ® in the Hamiltonian) and the four-velocity of
the fluid, « as

pm =mlly, U©=-——. (24)

Using the above definitions, we get the fluid equations from equation (23) and (22)

as follow,
) . alAm
Pm+ V- (pmt) = — M, Py (25)
L oo PmVPm

These are the two fluid equations: Continuity equation and Navier-Stokes equa-
tion.
Now, the Poisson’s equation can be written as

V20 = 47G(5 + 0p) (27)

Integrating twice and substituting the background density using Friedmann equa-
tions, we get the potential as:

= L(H+ ) 40 (28)

where [ is the proper distance defined as [ = a(t)Z and ¢ is the potential due to
inhomogeneities.

Similarly, the four-velocity u# can be split into two parts, Hubble flow and a
peculiar velocity v as follows:

@=HI+7 (29)

Expressing everything in comoving co-ordinates ¥ and using V; = ﬁvw, we
get,

1 alAm

om + 3Hpm + =V - (pm¥) = — 30

pm + 3Hpm + V- (pm?) M, 7 (30)
and

iy — 1 — — val)m v¢

These are the two fluid equations of motion that we shall use for the rest of our
calculations.
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3.2.3. Evolution of perturbations
The total DM density p,, and the baryonic density p, can be split into two parts:
background and perturbation:
Pm = Pm + 0pm, po=Po+pp
respectively.
We define, the relative density perturbations for these two components as,
) )
5m:_’$_ and 5b:%-
Pm + Pb Pm + Pb

In the linear perturbation regime, we treat §p,,, dpp and ¥ to be small, and hence,

neglect the higher orders of these terms. Perturbing the two fluid equations in the
linear regime gives:

Pm— - alAm
Om + —= = — ) 32
+ aﬁV v Mpl b ( )
and
AN — ﬁmV(Spm 1
Hi=-fm>2lm _ —
v+ Hu P aV¢ (33)

By using the above equations along with the Poisson’s equation and assuming p,, ~
p, we get the evolution equation for é,, as follows:

N ﬁm(gm ﬁ?nVQCSm o _aAme _

5, +2H6b,, — o A L o

2M2 4a?A2mS My M, " 2M?

(34)

This is a second order differential equation. The coefficient of the spatial derivative
V? gives the square of the sound speed c,. Thus, we get,

=2

2 pm
= A2t (35)

Below in Fig. 1, we show the plot for ¢ vs the redshift z for m = 1 eV and A = 500
eV. We take the time evolution of the background density p,, as

0414 2)8

Pm = (14 1000)3 (36)

where the value of p,, at equality (z = 1000) is set as 0.4 eV* (36). As evident from
the plot, the sound speed is very small (compared to the speed of light ¢ = 1).

3.3. Analytical Solution

We now have the perturbation equations (32) and (33) supplemented by the Poisson
equation. In the absence of baryons, we recover the usual evolution of CDM as a
non-relativistic fluid. This can be seen as follows.
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Fig. 1. Plot for ¢2 vs z. As can be seen, the sound speed is very small compared to the speed of
light (¢ =1 in this case) at all times.

Without baryons:
In the absence of baryons, i.e. by setting p, = 0 and dp, = 0 in equations (32) and
(33), we obtain a set of equations as follows:

. 1

Om + EV -7=0 (37)
and
P 200m _ ~V¢ (38)

For A > 1, i.e, when the sound speed ¢, is taken to be very small, the above set
of equations reduce to the usual perturbation evolution equations in a ACDM model
in the matter-dominated regime.3” Thus, in the absence of baryons, usual CDM like
evolution is recovered at the background level as well as for the perturbations. This
can also be seen from the second order differential equation governing the evolution.
From equation (34), in the absence of baryons, we obtain,

A

6m + 2HS —
m m 2M§l 4a2A2mb

=0 (39)

As expected, the above equation is the usual evolution equation for CDM in a
flat ACDM universe, with a small sound speed given by (35). Since the sound speed
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is very small, for all practical purposes, this term can be neglected and we end up
with the following second order differential equation:

PmOm

This is the evolution equation of non-relativistic CDM in the ACDM model.?® The
growing solution of this equation is the usual CDM like evolution, which is § «x a
for a matter dominated universe.?”>3® In the absence of baryons, the superfluid dark
matter thus behaves exactly like CDM and the growth of perturbations follow the
ACDM-like evolution.

With baryons:

We now investigate how the perturbations evolve when both baryons and baryonic
interactions with superfluid dark matter is present. A complete solution is to be
found numerically for different values of the model parameters. This will be pur-
sued in the next section. For now, we try to find the generic nature of the DM
perturbations growth with some basic assumptions regarding the baryonic density
evolution and the interaction strength between baryons and the superfluid. We as-
sume that the baryon perturbation ¢, follows the same rate of growth as in ACDM
i.e. at late times d;, o< a as obtained from the observed power spectrum. We now
consider equation (34) which is the single second order evolution equation. We are
only interested in the temporal behaviour of 6,,. With the assumption that ¢ < 1,
equation (34) can be analytically solved for two limiting cases. For the first case
when the interaction strength is negligible, one can set a = 0. With this condition,
the only remaining term in the RHS of (34) is the last term. The resulting equation
has a power law solution of the form § x ¢2/3 x a in the matter dominated era.
This is the usual CDM-like behaviour as expected when the interaction strength
is negligible. The other limiting case solution can be obtained by setting a very
strong interaction strength i.e. by taking a large enough « such that the first two
terms in the RHS of (34) become dominant. In this case, the solution for the matter
dominated universe comes out to be of the form

6m o 773 o a®/? (41)

The time evolution of The DM perturbation growth in the two cases is thus
captured by the following form:

Om X a for no interaction (42)

5/2

Om X a for strong interaction (43)

Important distinct features arise when we look at the time evolution of é,, for
each mode. During the matter dominated era, d,, grows as a in ACDM whereas
in this model, it grows as a°/? i.e. at a much faster rate compared to ACDM.
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Fig. 2. Growth of d,, with respect to z. The red solid line represents the growth for ACDM and
the black dashed line corresponds to the growth for superfluid for a = 10~6. The growth in case of
superfluid DM is dominated by the term proportional to a®/2 and is higher compared to ACDM.
The higher the value of «, i.e. the stronger the superfluid DM-baryonic interaction, the steeper is
the growth rate (as will be discussed in the next section).

For convenience, we write the evolution of d,, in terms of the redshift:

1

P —
U+ )52

(44)

Fig. 2 shows the nature of growth in both the models (red solid curve represent-
ing ACDM, black dashed curve representing superfluid DM).

A proper way to find the full solution for the perturbed quantities is to solve
coupled differential equations using a numerical approach. In the next section we
solve the perturbation equations numerically in the linear regime and look for any
possible deviations from ACDM.

4. Numerical Solution

In order to obtain the solutions for d,,, we rewrite equations (32) and (33) in the
Fourier domain in physical co-ordinate as,

alAm
M,

pl

G + %’”(iku) = -, (45)
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and
. %2 P PO, a? 3iaH pv
ik +ikHv = AAZE 2072, 0pm + dpp + ’ (46)
To solve the above equations, we write them in terms of redshift,
dé P . alm
—H(1 — + —(tkv) = — 0 47
(142 + i) = =57 (47)
and
dv k2B pOm p 3iHv
—ikH(1 — +ikHv = Om +0p + ———— 4
WH(L =)+ ko= e Y ara e Pt Ry ) @

Parameters and initial conditions:

The model parameters involved are m, A and a. We take m = 1 eV and A = 500
eV while keeping the parameter « as free parameter which is varied to check where
the model deviates from flat ACDM.

We integrate the perturbation equations using the following initial conditions at
the epoch of equality z = 1000: We set §,(z = 1000) = J,,(z = 1000) = 10~° and
H(z=1000) =m =1 ¢€V.

Since pp, > Py, We assume p = P, + Pp A Py, as given in (36).

The initial value of v at z = 1000 is chosen to be around 1. For the time evolution
of the background density and Hubble parameter, we take the usual ACDM evolu-
tion of these quantities in matter-dominated era, i.e. p,, & 1/a and H 1/a3/2.
Furthermore, we take &, o< a. We keep the wavenumber k fixed at 0.0001 eV, al-
though the nature remains same for larger values of k.

Figure 3 shows the evolution of the DM density perturbation §,, with respect
to the redshift z for different values of @ = 1078, 10=7, 1076, 10~* and also for
ACDM corresponding to a = 0, A — oco. As expected, the smaller the value of «,
the closer the resemblance with ACDM-like evolution. As we see in Fig. 3, the plot
for o = 10~® coincides with ACDM. When « is large enough, the growth is very
steep. This is because a large enough a implies large interaction strength between
the superfluid phonons and baryons, ensuring that structure formation takes place
at an earlier epoch as compared to ACDM.

In Figure 4, we plot the relative differences between the perturbation growth
in ACDM model and superfluid DM model for different values of « in terms of
Osuperfinid/OacpmM. As expected, the ratio is very high at a lower redshift. As we
go to higher redshifts, the ratio tends to 1 i.e., they eventually agree with ACDM
at very high redshifts and matches exactly at z = 1000 where we set our initial
conditions. The ACDM model corresponds to a = 0. For o = 1078, the deviation
from ACDM at low redshift goes up to 0.13% at z = 0.01. The larger the value of
«, the higher is the ratio, implying a stronger deviation from ACDM at low enough
redshifts. As « is increased to 1077, the deviation from ACDM becomes much larger

(~ 62%).
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Fig. 3. Plot for d,, vs z for different values of « as obtained numerically. The different curves
correspond to different o as shown in the figure. The curve corresponding to o = 108 coincides
with ACDM. For higher values of «, the deviation from ACDM increases gradually. The growth
rate at a given redshift is maximum for o = 104 for the cases considered here.
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Fig. 4. Plot for dsuperfiuid/dacpm vs z for different values of . For an exact coincidence with
ACDM, this ratio should be 1. Values > 1 signify larger deviation from ACDM. For a = 1078,
the ratio is almost nearly 1 showing a deviation only up to 0.13% at z = 0. For a = 1077, the
deviation increases up to 62% at the same redshift.
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Fig. 5. Plot for |6%|? vs k at z = 0. This is the matter power spectrum up to a constant factor.
The plot reaffirms our previous results. In general the power increase approximately linearly with
k. However, for large enough ¢, it becomes relatively flatter.

We can also plot the matter power spectrum P(k) as a function of k at z = 0.
The matter power spectrum P(k) o< |§,,,(k)|?. In Fig. 5, we plot |8,,,(k)|? vs. k which
shows how the power varies for different values of «. As shown in the figure, the
power spectrum for o = 1078 matches with the ACDM prediction. As can be seen,
the power increases for larger values of a at a given value of k. This is because the
perturbation growth is stronger for large o as discussed earlier.

5. Results and Discussions

The superfluid dark matter model is a very promising and newly emerging model of
cosmology combining together the rich physics of condensed matter, particle physics
and cosmology. In view of its success in explaining a number of observations within
the galaxies where ACDM fails to provide a satisfactory explanation, this model
can be said to offer a greater understanding of the universe. In their earlier works,
Khoury and his collaborators have investigated the implications of this model at
galactic scales. However, a complete study of cosmological implications have not
been performed earlier. In this paper, we have tried to investigate, both analytically
and numerically, whether the predicted cosmology of the model tallies well with the
observations and how different the predictions are from that of ACDM. In the
realm of non-relativistic low energy effective theory of superfluid, the background
cosmology agrees with the predictions of ACDM, and this gives a constraint on the
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two model parameters o and A which turn out to be different than their galactic
scale constraints. This result has also been discussed in.! At the level of first order
perturbation, we find that the above constraints lead to a cosmology which differ
significantly from ACDM. In particular, our analytical results suggests that the
growth of density perturbations of dark matter superfluid roughly goes as a’/2,
which is much higher compared to the ACDM picture (d,, o< a). This might be due
to the strong interaction between superfluid phonons and baryonic matter. This
behaviour has also been verified from the numerical solutions. For the numerical
calculations, in particular, we have kept two of the model parameters m and A fixed
at 1 eV and 500 eV respectively. This gives an upper bound on the third parameter:
a < 1078 corresponding to just 0.13% deviation from ACDM. This is different
from the value quoted in.! The bound obtained in,' for m = 1 eV, is a < 1074,
which, even though predicts the correct background evolution, strongly deviates
from ACDM in the context of perturbation growth in the present epoch. This can
be seen in Figs. 3, 4 and 5. In our analysis, we have assumed the baryonic component
to follow standard dust evolution (o a%) In the absence of baryons, however, this
model successfully reproduces the usual non-relativistic CDM evolution as obtained
in case of a flat matter dominated ACDM universe, both at the background as well
as first order perturbation level.

A more complete analysis of the perturbation growth should rely on the proper
relativistic extension of the theory, which has not been attempted in this paper.
Some relativistic models have been discussed in the original paper,’ however a
rigorous analysis is still lacking. We hope to address the same in a future work. Our
work looks into the solution in the linear regime where perturbations are taken to be
small. In future, we plan to extend our analysis to the non-linear regime and study
the structure formation through spherical collapse. It would also be interesting to
see how well this model predicts the CMB or the halo mass function.
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