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Abstract In holographic dark energy (HDE) models,
infrared cut-offs with derivatives of the Hubble parameter,
such as the Granda–Oliveros cut-off, offer a coherent expla-
nation for late-time acceleration while ensuring causal con-
sistency. We show that such HDE will inevitably mimic the
dominant energy forms unless we forcefully calibrate the free
parameters. This feature reveals the dependency between the
model’s ability to explain the late-time acceleration and the
integration constant, highlighting that one cannot arbitrarily
set this constant to zero. We see that the origins of HDE and
the Friedmann equations from the first law of horizon thermo-
dynamics offer a natural explanation for this behaviour. Thus,
the holographic principle naturally extends to all energy com-
ponents, diverging from the prevalent notion in HDE models.
The model also allows dark energy to transit from an early
negative energy to a present positive value, with a singular
dark energy equation of state parameter, which can relax the
tension in the BAO Lyman-α observations. Furthermore, we
present observational constraints utilizing Pantheon+, OHD,
CMB Shift parameter, QSO and BAO data, indicating the
presence of early negative energy as an unavoidable conse-
quence. Upon using the SH0ES prior, we see that the model
accounts for the Hubble parameter at the cost of affecting the
matter density while simultaneously relaxing the tensions in
BAO Lyman-α observations and the age estimations. This
study also underscores notable features stemming from the
comprehensive utilization of the covariance matrix within
cosmic chronometers, BAO and CMB distance prior and clar-
ifies the implications of negative dark energy density derived
from the high redshift Pantheon+ sample. Additionally, we
provide a brief overview of the theoretical framework sur-
rounding linear perturbation within the wGOHDE model.

a e-mails: tm.manosh@gmail.com; tm.manosh@cusat.ac.in (corre-
sponding author)

1 Introduction

Established by notable observations, the late-time acceler-
ated expansion of our universe prompts debates regarding
its driving force, anointed “dark energy” [1–4]. While its
origin remains obscure, a constant energy density with suf-
ficient negative pressure can reasonably explain this obser-
vation. Most theories of gravity can incorporate such a con-
stant, but often, this leads to tussling with the cosmological
constant problems [5–8]. The simplest solution is to con-
sider a dynamic dark energy with minimal extra parame-
ters. The barest choice of w Cold Dark Matter (CDM) or its
parametrisations uplifts the constant � in the vanilla �CDM
model to a dynamical form, and there are several attempts
to define the physical origin of such extensions [9–11]. This
article explores the characteristics of the Granda–Oliveros
holographic dark energy (GOHDE) model built on the holo-
graphic principle, offering observational constraints along-
side compelling new insights.

Based on the holographic principle, which limits the max-
imum possible entropy in a given volume of space, together
with the first law of horizon thermodynamics, one can pro-
pose an effective “total” energy density as,

�4 ∼ ρ � S

L4 . (1)

Hereafter referred to as the CKN bound based on its authors
Cohen et al. [12], Eq. (1) yields an energy density consistent
with observational data when applied in a universe “domi-
nated” by dark energy. Their approach claims to resolve the
fine-tuning problem and leads to the description of the holo-
graphic dark energy (HDE) [13–22]. Hsu [23] showed that
the above relationship yields an incorrect equation of state
for the dark energy with the Hubble scale as IR cut-off. Fur-
ther, Li [24] showed that the particle horizon encountered the
same issues highlighted in [23], and Myung [25] noted that
the event horizon brings circular reasoning. Thus, the correct
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equation of the state is more of a consistency condition than
a derived result [25], and the choice of IR cut-off remained
an open problem. To resolve the challenges posed by the
standard HDE paradigm, Granda and Oliveros introduced a
comprehensive IR cut-off, including derivatives of the Hub-
ble parameter [26], hereafter the GOHDE. The notion of the
Ricci HDE aligns with this effort [27–30], and they demon-
strate strong physical justifications [31]. Several versions of
HDE using GO cut-off have been proposed and scrutinised
[32–36].

This article shows that GOHDE will mimic the domi-
nant energy forms, which reveals the dependency between
the model’s ability to explain the late-time acceleration and
the integration constant. We attribute this nature to the com-
mon origin of HDE and the Friedmann equations from the
first law of horizon thermodynamics. Thus, the holographic
principle naturally extends to all energy components, diverg-
ing from the prevalent notion in HDE models. Interestingly,
the GOHDE model allows dark energy to transit from an
early negative energy to a present positive value, relaxing
the tension in the BAO Lyman-α observations. We present
observational constraints utilising Pantheon+, OHD, CMB
Shift parameter, and BAO data, indicating early singular dark
energy equation of state as an inevitable consequence. Upon
using the SH0ES prior, we see that the model accounts for the
Hubble parameter at the cost of affecting the matter density
while simultaneously improving the BAO Lyman-α obser-
vations and the age predictions.

The article is as follows. We build our model and explain
its implications in Sects. 2 and 3. In Sects. 4 and 5, we employ
observational data to estimate the model’s free parameters
and investigate its statistical properties. In Sect. 6, we high-
light some aspects to be cautious about using specific data
sets. We then analyse the cosmological behaviour and dis-
cuss its features in Sect. 7, followed by a brief outlook on
linear perturbation and growth function in Sect. 8. Finally,
we summarise our findings in Sect. 9.

2 UV/IR see-saw to holographic dark energy

The vacuum energy is the immediate candidate for a cos-
mological constant. However, addressing the UV and IR
divergences of vacuum energy independent of each other
does not resolve the cosmological constant problems [37].
Although accounting for the background spacetime geometry
improves the rigour of calculations, more is needed to elimi-
nate the original problems [38,39]. At this juncture, drawing
inspiration from black hole mechanics, a crucial insight is
to tackle UV and IR divergences simultaneously. The cor-
relation between the area of a black hole’s event horizon
with its total energy, along with the Bekenstein–Hawking
entropy conjecture, establishes a UV-IR connection [40–44].

The implications of this connection are visible in several
milestone works [45–48] and recently in addressing gravita-
tional entropy [49].

The existence of a UV-IR see-saw led to the construction
of the holographic dark energy density (ρ�), and is given as
[13],

ρ� = 3C2M2
P L

−2. (2)

Here, L denotes the IR cut-off,C is a constant, and MP repre-
sents the reduced Planck mass. The Planck mass comes into
the picture because of the choice of units with h̄ = c = 1,

where 8πG = 1/M2
P . This relation originates from the CKN

bound [12], which for a dark energy-dominated universe
establishes a correlation between the UV cut-off (ρ�) and
the IR cut-off (L) via the constrains imposed by the horizon
entropy (S), given by ρ�L4 � S.

Given the dark energy density, the conventional approach
utilises the standard Friedmann equations to study the uni-
verse. For a homogeneous and isotropic universe, we begin
with the standard Friedmann–Lemaître–Robertson–Walker
(FLRW) metric,

ds2 = c2dt2 − a2
(

dr2

1 − kr2 + r2dθ2 + r2 sin2 θdφ2
)

.

(3)

Here, a ≡ a(t) represents the scale factor, k signifies the spa-
tial curvature, and (r, θ, φ) denotes the conventional spher-
ical polar coordinates with t as the cosmic time. Now, the
Friedmann equations and the continuity equation for a 3+1
dimensional spacetime reads,

H2 = 8πG

3
ρ, (4)

Ḣ + H2 = −4πG

3
(ρ + 3p) , (5)

ρ̇ = −3H (ρ + p) . (6)

In the above expressions, ρ represents the total energy den-
sity, which consists of different components, including mat-
ter (ρm), radiation (ρr ), dark energy (ρ�), and other cosmic
members if any. Meanwhile, p represents pressure, and H
denotes the Hubble parameter.

Here, we will maintain the behaviour of energy densi-
ties such as matter or radiation unchanged. In other words,
the characteristics of every cosmic component, except dark
energy, are determined by established physics. Notably,
the behaviour of matter or radiation components is con-
tingent upon the knowledge or assumption of their respec-
tive barotropic pressure. Strikingly, this vital information is
absent in the construction of standard HDE [25].
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3 Granda–Oliveros IR cut-off

There are two primary elements when formulating an HDE
model using Eq. (2). The first is the boundary entropy, and
the second is the infrared (IR) cut-off. Various options exist
for boundary entropy, ranging from the Bekenstein–Hawking
entropy to several others [50]. One can employ the Hubble
scale as an IR cut-off and account for late-time acceleration,
albeit at the expense of relying on generalized entropies [51].

However, there isn’t a universally accepted golden rule
for the IR cut-off. The CKN’s original motivation presumed a
cosmological “constant” with an equation of state ‘−1’ when
they employed the Hubble scale, a detail overlooked in [23].
The sole deduction from [12] is that a universe with a large IR
cut-off may have a small cosmological constant [52]. In [12]
the bound is applied specifically to the universe solely dom-
inated by dark energy, neglecting other forms of energies.
Thus the bound recovers the first Friedmann equation of a de
Sitter universe through the lens of horizon thermodynamics.

While the Hubble, particle, and future event horizons can-
not faithfully construct a dynamic HDE, one way to save the
formalism is to include derivatives of the Hubble parameter
to define the length scale. The most apparent choice in this
context is the Ricci curvature, as demonstrated in [27,28] or
curvature invariants [53,54]. In pursuit of a more comprehen-
sive approach, Granda and Oliveros introduced a generalized
IR cut-off, expressed as [26],

LGO =
(
αH2 + β Ḣ

)−1/2
. (7)

With this IR cut-off in place, we can define the HDE density
using Eq. (2) as,

ρ� = 3M2
P

(
αH2 + β Ḣ

)
. (8)

Here, we’ve absorbed the constant C into the α and β. An
apparent assumption inherent in constructing HDE is the
choice of the entropy form. To obtain the HDE in the above
form, we assumed that S scales as L2. Any modification to
the entropy will alter this assumption. Thus, the Bekenstein–
Hawking area law is integrated into the construction of the
HDE using Eq. (2), and the only option is to play with dif-
ferent IR cut-offs. Using LGO to define energy density and
then assuming Hubble horizon to study thermodynamics is
not a self-consistent approach.

Now, in the standard HDE paradigm, one uses Eqs. (4)
and (5) to investigate cosmic evolution. When we substitute
Eq. (8) into the first Friedmann equation, we obtain a differ-
ential equation of the form,

H2 = 8πG

3

[
ρm + ρr − k

a2 + 3M2
P

(
αH2 + β Ḣ

)]
. (9)

Assuming that both ordinary matter and dark matter exhibit
the same gravitational behaviour, we can express the total

matter density as ρm = ρm0(a)−3. Similarly, the radiation
goes as ∼ a−4 and curvature scales like ∼ a−2. To sim-
plify further, we can normalize the expression by the present
value of the Hubble parameter, denoted as H0, and substitute
8πGρi0/(3H2

0 ) with 	i0. For convenience, we shall drop the
zero from the subscript. Thus, unless otherwise noted, all 	i

represents the current density parameter.
Choosing x = ln(a) we have Ḣ as H(dH/dx), and we

represent a in terms of z as a = 1/(1+z) when needed. With
these, we rewrite the previous equation as

h2 = 	r e
−4x + 	me

−3x + 	ke
−2x + αh2 + βh

dh

dx
. (10)

The above relation is a first-order non-linear differential
equation in h, for which finding an analytical solution might
be challenging. However, we could solve it as a first-order
ordinary differential equation in h2 with h2(x = 0) =
1+	k, which we can assume by construction. Thus, solving
for h2 we get,

h2 = 	r e−4x

−α + 2β + 1
+ 2	me−3x

−2α + 3β + 2
+ 	ke−2x

−α + β + 1

+ C1e
− 2(α−1)x

β , (11)

with

C1 = α + 	k

α − β − 1
− 2	m

−2α + 3β + 2
+ 	r

α − 2β − 1

+ β

−α + β + 1
+ 1

−α + β + 1
. (12)

We will call the cosmological model described by Eq. (11) the
Granda–Oliveros holographic dark energy (GOHDE) model.

Equation (11) has four terms with various scaling proper-
ties. For instance, in the first term, if we redefine 	r−α+2β+1

as 	̃r , it is exactly same as radiation. If we repeat the same
for all, one could argue that the GOHDE model is effec-
tively similar to w(z)CDM. However, instead of redefining
the terms, we will trace the known parameters and attribute
everything else as dark energy. Here, we get,

	�(x) = e−4x
{
e

2x(−α+2β+1)
β

[
(α − β)(	k + 1) − 1

α − β − 1

+ 	m

α − 3
2β − 1

+ 	r

α − 2β − 1

]

+ e2x	k

(
1

−α + β + 1
− 1

)

+ ex	m

(
2

−2α + 3β + 2
− 1

)

+	r

(
1

−α + 2β + 1
− 1

)}
. (13)
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Clearly, the 	�(x) depends on all the free parameters and
x, giving us a dynamic dark energy. The behaviour of dark
energy, scaling like different cosmic fluids across various
epochs, can be attributed to the shared foundation of the CKN
relation and the first Friedmann equation in the first law of
thermodynamics. To make this evident, we shall explore the
features of the dark energy equation of state parameter. Here,
the GOHDE density is a function of z. This aspect allows us
to parametrize the model in terms of an energy density with
a varying equation of state parameter. In general, for non-
interacting fluids, we can write,

	�(z) = 	�(z = 0) × exp

[
3
∫ z

0

1 + w(z′)
1 + z′

dz′
]

. (14)

The above expression holds for all forms of non-interacting
energy density. Based on our prior knowledge, we set the
equation of state parameters to 0 and 1/3 for matter and radi-
ation, respectively. From the above relation, we can deduce
that the dark energy equation of state parameter is a function
of redshift and is given as,

w(z) = −1 +
(

1 + z

3

)
∂z ln 	�(z). (15)

The equation of state of dark energy is contingent upon the
values of α, β, and 	is.

Here lies a vital decision point. Setting α, β, and 	i s as
free parameters fixes the behaviour of w(z). However, it’s
worth noting that w(z) carries more physical significance
than, for instance, α. To accommodate this, we find a free
parameter from w(z) at the expense of losing control over
α. A crucial aspect to consider is that α remains constant
throughout cosmic evolution, while w(z) does not. To recon-
cile this, we logically choose the present value of the equation
of state, denoted as w(z = 0) = wz0 , as the free parameter.
Consequently, instead of α, we introduce a new free param-
eter, wz0 , which serves as a free variable. It’s worth noting
that wz0 = −1 can be considered a consistency factor, as
pointed out in [25]. In the parameter estimation section of
this manuscript, we will refer to two distinct cases. One is
the GOHDE with wz0 = −1 and the other is wGOHDE,
where wz0 is a free parameter. Here we have,

wz0 = −2α(	k + 1)

3β(	m + 	r − 1)
+ 2	k + 	r + 3

3(	m + 	r − 1)
− 2

3β
.

(16)

Here, we get wz0 = −2/(3β) for a de Sitter universe with no
other components. Clearly, our universe is not de Sitter (yet),
but very close to one. Hence, a good guess for the β value
would be 2/3. If one is interested in deducing the value of
the original parameter α, we have,

α = β
[−3wz0(	m + 	r − 1) + 2	k + 	r + 3

]
2(	k + 1)

− (	m + 	r − 1)

(	k + 1)
. (17)

Given these background equations and their features, one
can compute and study the features of other cosmic variables
of interest for different values of free parameters. However,
we shall move to constrain the values of the free parameters
based on the observational data.

4 Data and methodology

In this section we will outline the data sets, methodologies,
and statistical quantifiers used to constrain the model’s free
parameters by leveraging publicly accessible observational
datasets. In the analysis, we will consider a flat universe with
	k = 0.

Data sets
a. Cosmic Chronometer (CC) data set: The dataset encom-
passes 31 distinct observations of the Hubble parameter
across redshifts up to 2, derived through the differential age
method [55–60]. This methodology relies on the expression
(1 + z)H(z) = −dz/dt, as elaborated in [61].
b. BAO galaxy clustering + Lyman-α-forest (BAO Gal
+ Lyα) data set: Contained within this dataset are 26
autonomous observations of Baryon Acoustic Oscillations
(BAO), extracted from the BAO peaks within the matter
power spectrum and analyses of galaxy clustering. This
compilation comprises four data points pertaining to the
BAO Lyman-α group including Lyα-forest of BOSS quasars,
SDSS DR12 Lyα-forest, Lyα-forests of BOSS DR11 quasars
[62–64], with the remainder attributed to the BAO galaxy
clustering set derived from SDSS-III BOSS DR12 galaxy
sample, WiggleZ Dark Energy Survey, SDSS DR7 LRG sam-
ple [65–71].

The combined contributions of both the Cosmic Chronome-
ters (CC) and Baryon Acoustic Oscillations Galaxy Clus-
tering plus Lyman-α (BAO Gal + Lyα) datasets yield the
observational Hubble data set comprising 57 data points.
This dataset will be used as a unified set called Observational
Hubble Data (OHD). The entirety of the data is sourced from
[72].
c. CMB Shift parameter (R): For a flat universe, the quantity
R is defined as the integral R = √

	m
∫ zr

0 h−1(z)dz, where
zr denotes the recombination redshift. The value of R pro-
vides stringent constraints on 	m based on the Hubble flow.
Here, we adopt R = 1.7502 ± 0.0046 with zr = 1089.92,

obtained from the Planck 18 analysis as detailed in [73]. It
is important to note that although the shift parameter and
the acoustic peak exhibit a linear relationship, they are not
degenerate and can complement each other. Similarly, the
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drag epoch (rs) also adheres to this relationship, as discussed
in [74]. Therefore, we will utilize the CMB shift parameter
alongside Baryon Acoustic Oscillation (BAO) and Quasi-
Stellar Object (QSO) datasets. By employing R in this man-
ner, we assume that our model’s recombination physics and
sound horizon remain unchanged, implying indifference to
the acoustic horizon at the time of last scattering [75].
d. Type Ia supernovae (SNe Ia) data: Supernovae type Ia
(SNe Ia) are recognized as valuable cosmic entities for inves-
tigating cosmic distances. They are commonly referred to
as standard candles in cosmology due to their consistent
luminosity, offering a dependable method for distance mea-
surement. Numerous datasets of SNe Ia have been com-
piled, beginning with significant projects such as the mile-
stone Supernova Project [1,2]. A comprehensive compilation
known as the Pantheon sample lists each survey along with
corresponding references [76]. The Pantheon sample, com-
prising 1048 SNe Ia within the redshift range 0.01 < z <

2.3, is one of the most extensive datasets in this field. A
subsequent compilation, Pantheon+, includes 1550 SNe Ia
with 1701 data points calibrated with and without SH0ES
prior is also available with full covariance matrix [77]. Both
Pantheon and Pantheon+ datasets (with and without SH0ES
prior) will be considered to extract the free parameters of our
model.

Supernova data, in general, cannot singularly determine
the value of H0 due to a degeneracy between H0 and
supernova absolute magnitude (M) in the fitting expression
for SNe Ia light curves, unless SH0ES prior is employed.
It necessitates a combination with other observations to
estimate H0. Reporting H0 by solely using Pantheon or
Pantheon+ (without SH0ES prior) is wrong [76,78], and in
its predecessor, the 580 Union2.1 dataset, H0 is presumed
[79]. All SNe Ia dataset comprises apparent magnitude (μ),

corresponding redshift (z), and the standard deviation in μ or
the covariance matrix. Thus, we aim to compute μ using the
relevant cosmological model for analysis. Here, the apparent
magnitude is,

μ(z) = 5 log10

[
dL(z)

Mpc

]
+ M + 25. (18)

Here, M denotes absolute magnitude, requiring calibration
using other datasets, and dL represents luminosity distance
given as,

dL(z) = c(1 + z)
∫ z

0

1

H(z′)
dz′. (19)

Utilizing the Hubble parameter H(z) at a specific redshift
z, we can estimate dL and calculate the apparent magnitude.
When employing the Dirac SH0ES prior, there are stringent
constraints on M, leading to a large value of H0 and con-
tributing to the Hubble tension.

e. Correlated (BAO) data set: The BAO data has become a
fundamental observational tool for constraining cosmologi-
cal models. These data predominantly stem from surveys of
the large-scale structure power spectrum, such as the SDSS-
III with DR12 galaxy sample [65], and are extensively docu-
mented in [80]. In our analysis, we focus on data points corre-
sponding to two specific parameters: the transverse comoving
distance DM (z), which coincides with Dc(z) in a flat uni-
verse, and the volume-averaged angular diameter distance
DV (z). It’s worth noting that all of these distance parameters
are scaled by the values of R and rs, enabling us to integrate
the CMB shift parameter mentioned earlier into our analysis.
This enhances our ability to achieve a more refined constraint
on the cosmological model. The relevant expressions are,

DM (z) = Dc(z) = c
∫ z

0

1

H(z′)
dz′, (20)

DV (z) =
[

cz

H(z)
D2

M (z)

]1/3

. (21)

Here, we use data points from [65,74,80]. Given that these
data points are correlated, we utilise the covariance matrix
provided in [65] for our analysis.
f. The (QSO) data set: This dataset encompasses 120 data
points, representing angular sizes and redshifts observed in
intermediate-luminosity quasars, spanning a redshift range
from 0.46 to 2.76, as elaborated in the work by [81]. These
quasars exhibit minimal dependence on redshift and intrin-
sic luminosity when observed at 2.29 GHz, establishing
a standardised ruler with a linear size of approximately
11.03 ± 0.25 parsecs. The relationship between the angu-
lar size (θ), linear length scale (lm), and angular diameter
distance (DA) for a given redshift is,

θ(z) = lm
DA(z)

. (22)

Here, we employ the angular diameter distance (DA), which
is defined as the luminosity distance divided by (1+ z)2, and
the luminosity distance is determined using Eq. (19). By the
methodology and dataset described in [81], we introduce an
additional 10% error to the angular size standard deviation.
Given that both the QSO and BAO datasets inherently incor-
porate the drag redshift, we anticipate synergising effectively
with the CMB Shift parameter, enhancing our ability to esti-
mate our free parameters.

Our analysis utilises a baseline data amalgamation, which
we call the D4 data set, encompassing four primary datasets:
OHD, CMBR, BAO, and QSO. The analysis strategy entails
estimating the model parameters using the D4 exclusively
and in tandem with Pantheon, Pantheon+ excluding the
SH0ES prior, and Pantheon+ including the SH0ES prior.
Parameter estimation with χ2
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The parameter estimation process hinges upon the model
function, which, in our particular case, represents the Hub-
ble parameter of each respective model. Specifically, we will
examine the �CDM, wCDM, GOHDE with a fixed wz0 value
of −1, and wGOHDE with wz0 treated as a free param-
eter. Consequently, the parameters 	m and H0 are shared
across all models, while wCDM introduces the parameter
w and GOHDE introduces β as additional free parameters.
Moreover, in the case of wGOHDE, both wz0 and β are
included alongside 	m and H0. In our analysis, we maintain
	r h2 ∼ 4.1×10−5, 	γ h2 ∼ 2.4×10−5, and 	bh2 ∼ 0.02
[82] to be consistent with early physics.

Once we have the Hubble parameter of the model, we pro-
ceed to derive the relevant observables. For instance, obser-
vational data on the Hubble parameter offers a tangible mea-
sure of its value at different redshifts. Similarly, in the con-
text of SNe Ia data, we regard the apparent magnitude as our
key observable, computed through the previously outlined
equations with respect to a given redshift and the Hubble
parameter. Consequently, we formulate expressions for our
observables (Atheory) across all datasets, each intimately tied
to the Hubble flow and contingent upon the model’s free
parameters.

The main objective is identifying the optimal free parame-
ters that collectively account for all observables. This simul-
taneous consideration is paramount since specific free param-
eters may not influence certain observables. For instance, in
the flat �CDM model, the CMB shift parameter R remains
independent of H0. Furthermore, when analyzing the CMB
shift parameter, we incorporate radiation density due to
its integral spanning from the recombination epoch to the
present. Conversely, radiation density plays a negligible role
in estimating the luminosity distance in SNe Ia data, thus
allowing for its omission to reduce computational expenses.
Additionally, some datasets may exhibit preferences for par-
ticular combinations of free parameters over others. For
instance, while the QSO data indicate a higher value for mat-
ter density 	m, other datasets lean towards relatively lower
values. Therefore, simultaneous fitting of the data remains
essential.

We utilize the chi-square (χ2) minimization approach to
determine the free parameters. This process entails construct-
ing the chi-square using specific equations tailored to each
dataset. For datasets such as BAO and Pantheon+, which
provide a covariance matrix instead of standard deviation,
we use

χ2 = (Aobserved − Atheory)
T
C

−1(Aobserved − Atheory). (23)

Here, Aobserved represents the observed data vector, Atheory

denotes the theoretical estimate derived from the model and
free parameter values, and C represents the corresponding
covariance matrix. An additional systematic error of 10%
is considered for the QSO data set [81]. The modified chi-

square formula for these datasets is as follows:

χ2 =
∑
i=1

(Aobservedi − Atheory)
2

(σi + 0.1Aobservedi )
2 . (24)

Here, the index (i) corresponds to the data point. Finally, we
use the conventional chi-square formula for datasets provid-
ing standard deviation, given as,

χ2 =
∑
i=1

(Aobservedi − Atheory)
2

σ 2
i

. (25)

After constructing the χ2
j for each dataset j, we compute the

combined χ2
total by summing up individual contributions as,

χ2
total =

∑
j

χ2
j . (26)

We then employ the Markov Chain Monte Carlo (MCMC)
technique to identify the parameter combination that mini-
mizes the χ2

total. This method iteratively samples parameters
and converges towards the parameter set that yields the lowest
chi-square value. The implementation of this process relies
on Python modules such as emcee [83] and lmfit [84].
Subsequently, upon obtaining the results from the analysis,
we generate chi-square distributions and confidence contours
from the processed chains.
χ2 degrees of freedom (DOF)

The χ2 statistic quantifies the disparity between the model
and observed data, accounting for the errors associated with
each datum in a dataset comprising N observations. In an
optimal scenario where the model perfectly accounts for
all data points, the χ2 value would register as zero. Con-
sequently, a lower χ2 denotes a superior model alignment
with the data. Given that our parameter estimation hinges
on minimising χ2, we can readily derive the χ2 distribution
from the converged Markov Chain Monte Carlo (MCMC)
chain.

However, it is essential to recognise that χ2 alone does not
address the trade-off in introducing additional parameters
to enhance the model fit. As an initial step towards model
comparison, given the minimum χ2

min, we use χ2 degrees of
freedom, expressed as

DOF ≡ χ2
dof := χ2

min

N − Np
, (27)

where Np is the count of independent parameters within the
model. Nevertheless, while χ2

dof penalises the inclusion of
extra parameters in the model, in situations where the number
of data points significantly exceeds the count of free param-
eters, the addition of an additional parameter may not sub-
stantially impact its value.
Information criterion

In response to the challenges of model selection, H.
Akaike introduced an information criterion in 1974, sub-
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Table 1 The Jeffreys’ scale of Bayesian evidence [87]

Bi j ln Bi j Evidence

0 ≤ Bi j < 1 Bi j < 0 Negative

1 ≤ Bi j < 3 0 ≤ Bi j < 1.1 Weak

3 ≤ Bi j < 20 1.1 ≤ Bi j < 3 Definite

20 ≤ Bi j < 150 3 ≤ Bi j < 5 Strong

150 ≤ Bi j 5 ≤ Bi j Very strong

sequently recognized as the Akaike Information Criterion
(AIC) [85], while G. Schwarz proposed the Bayesian Infor-
mation Criterion (BIC) in 1978 [86]. These methodologies
serve as valuable aids in selecting an appropriate model. AIC
primarily considers the number of free parameters, whereas
BIC is rooted in Bayesian principles. Though they share sim-
ilarities, BIC tends to favour models with fewer dimensions,
rendering it preferable for model selection over AIC. The
formulas for AIC and BIC are:

AIC = N log

(
χ2

min

N

)
+ 2Np, (28)

BIC = N log

(
χ2

min

N

)
+

[
1

2
log(N )

]
2Np. (29)

Both AIC and BIC exhibit qualitative similarities, albeit with
the distinctive feature of BIC incorporating a multiplica-
tive factor log(N )/2 applied to the count of free parameters,
affording BIC an advantage over AIC [86].
Bayes factor

The statistical measures under discussion have not fac-
tored in the prior range of analysis. Recognizing that intro-
ducing an explicit prior can significantly influence both the
optimal values and the significance of the model, we have
undertaken a Bayesian analysis between the models. This
approach relies on the Bayes theorem, which posits that the
posterior probability (P) is derived from the Likelihood (L)

multiplied by the Prior (π) and divided by the Evidence of
data (E). The Bayesian evidence (E) for the data (D) and
model (M) within a specified parameter space (p) takes the
form,

E(D|M) =
∫

dpL(D|p,M)π(p,M). (30)

The Bayes factor between models Mi and M j is defined as,

Bi j = E(D|Mi )

E(D|M j )
. (31)

This metric provides a quantitative estimate of the Evidence
supporting one model over another. To facilitate model com-
parison, we adopt the Jeffreys scale, named after Harold Jef-
freys, as outlined in the following Table 1.

Table 2 Prior values of all free parameters in the MCMC analysis

Parameter Model(s) Prior range

H0 All [50, 100]

	m All [0.01, 1]

M All [−25,−15]
w wCDM [−2, 0]
wz0 wGOHDE [−2, 0]
β wGOHDE and GOHDE [0.1, 2]

In this context, we will refrain from calculating the Bayes
factor with the Dirac SH0ES prior, as it would inherently
introduce significant bias as noted in [88] for [89].

Establishing the prior range is vital in MCMC data anal-
ysis. In this study, we’ve opted for uniform prior values, as
shown in the Table 2.

For β, we set a range above zero to avoid potential pole
at zero. The upper limit is three times that of the de Sitter
limit. The ranges for H0 and M are chosen to avoid bias
towards any reported values in the Hubble tension, falling
within [50, 100] and [−25,−15], respectively. Ranges for
w and wz0 include extreme values than those found in the
literature. Lastly, the range for present matter density is to
exclude zero.

5 Observational constraints

We’ll examine how each model’s χ2 distribution changes
with different data sets. Looking at histograms in Fig. 1, it’s
evident that both the GOHDE and wGOHDE models offer
consistent results and demonstrate a better fit than the �CDM
model. One notable aspect is that when we include all the
data from the Pantheon+ dataset, including its full covariance
matrix, it dramatically affects our analysis compared to using
just the Pantheon data. Additionally, the SH0ES prior shows a
clear difference between the models, with almost no overlap.
This suggests that the prior assumption strongly influences
the model outcomes. The sudden shift in the χ2 values is due
to the usage of Dirac SH0ES prior. However, the analysis
without the SH0ES prior is generally preferred, as shown by
the minimum values of the χ2 statistic. It’s also essential to
observe the behaviour of the GOHDE model.

Except for the case where the SH0ES prior is considered,
GOHDE is practically identical to the �CDM model. How-
ever, when we include the SH0ES prior, GOHDE also pro-
vides substantial evidence in favour of itself over the �CDM
model. This implies that the SH0ES prior is also preferred
by other datasets, particularly the BAO Ly-α observations.

The best-fit values are presented in Table 3. Evidently,
across all models, whether considering D4 alone, D4 com-
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Fig. 1 Histograms illustrating the χ2 distribution are derived from the
final burned MCMC chains for the �CDM, wCDM, GOHDE, and
wGOHDE models. Each plot corresponds to different combinations
of datasets. The top left diagram utilizes the OHD, BAO, CMB Shift

parameter, and QSO datasets (D4 data combination). All other dia-
grams involve various compilations of SNe Ia data known as Pantheon,
Pantheon+, and Pantheon+ + SH0ES prior, along with the baseline D4
combination. N f is the normalised frequency of occurrence

bined with Pantheon, or with Pantheon+, the results con-
sistently align with the values for H0 and 	m from Planck
[90] and TRGB [91] constraints. Upon including the SH0ES
prior, the estimated value for H0 aligns with those reported in
[77,78], whereas the 	m value for GOHDE and wGOHDE
models notably drops compared to existing literature [78].

This shows how 	m relates to β in both models. When
using the SH0ES prior, we also find that the best-fit value of
wz0 closely matches the GOHDE model. So, when we nar-
row down the equation of state, changes are largely affected
by how 	m and β are correlated. This is evident in the con-
fidence plots for 	m and β in the GOHDE model shown in
Fig. 2. Thus β adds additional correlation to 	m over H0.

This significantly improves the age estimation for GOHDE
and wGOHDE models, making it consistent with globular
cluster observations [92].

It is important to observe that, without SH0ES prior, the
value of β ∼ 2/3 falls within one standard deviation of the

estimated best-fit values in the GOHDE model. However,
a notable inverse relationship between β and 	m emerges
prominently in GOHDE. Consequently, alternative data com-
binations yield relatively diminished values of β, and incor-
poration of the SH0ES prior results in an elevation of β and
a corresponding reduction in 	m . This correlation becomes
more intricate with thewGOHDE model. Whenwz0 is treated
as a variable parameter, as in the wGOHDE model, an addi-
tional positive correlation between β and wz0 emerges, con-
tributing to the reduction of 	m . Nevertheless, these corre-
lations are notably less pronounced within the framework
of wGOHDE. The marginal confidence plots illustrating
relationships between different parameters are presented in
Figs. 3, 4, 5, and 6. Additionally, Table 3 includes an addi-
tional estimation, denoted as z†, which corresponds to the
singularity in the dark energy equation of state parameter.
The implications of this term will be discussed in detail after
examining the statistical evidence.
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Table 3 Constraints (best-fit ± 1σ) on the free parameters of the models (�CDM, wCDM, GOHDE, and wGOHDE) using various combinations
of data sets along with the best fit estimate of the negative energy transition redshift z† and age

Model Data set 	m H0 w for wCDM β M z† Age
(×10−3) wz0 for wGOHDE (Gyr)

�CDM D4 297.1 ± 8.2 68.33+0.54
−0.55 – – – – 13.841

D4 + Pantheon 294.3+6.7
−7.0 68.49+0.50

−0.52 – – −19.400 ± 0.015 – 13.845

D4 + Pantheon+ 306.3+8.0
−7.4 67.89+0.53

−0.52 – – −19.425+0.016
−0.015 – 13.813

”a + SH0ES prior 267.5+5.6
−5.3 73.21+0.16

−0.15 – – – – 13.299

wCDM D4 299 ± 15 68.1+1.5
−1.4 −0.992 ± 0.057 – – – 13.846

D4 + Pantheon 292.2+7.2
−7.0 68.87+0.69

−0.67 −1.024 ± 0.026 – −19.393+0.018
−0.017 – 13.848

D4 + Pantheon+ 317.6+8.8
−8.6 66.35+0.72

−0.77 −0.919+0.029
−0.027 – −19.459+0.019

−0.020 – 13.817

” + SH0ES prior 266.1+5.7
−5.6 73.79+0.23

−0.22 −1.080 ± 0.022 – – – 13.387

GOHDE D4 285+14
−13 68.94+0.88

−0.83 – 0.680+0.013
−0.014 – 4.69 13.920

D4 + Pantheon 286.3+9.1
−9.3 68.92+0.66

−0.62 – 0.679+0.011
−0.010 −19.390+0.018

−0.017 4.82 13.904

D4 + Pantheon+ 312 ± 11 67.56+0.71
−0.69 – 0.658+0.012

−0.011 −19.433 ± 0.020 231.69 13.782

” + SH0ES prior 247.0+6.8
−6.7 73.61+0.18

−0.16 – 0.716+0.009
−0.010 – 2.98 13.673

wGOHDE D4 293+14
−15 66.1+1.7

−1.6 −0.819+0.098
−0.093 0.87+0.17

−0.14 – 4.19 14.028

D4 + Pantheon 285 ± 11 68.87+0.67
−0.70 −0.989+0.047

−0.044 0.688+0.051
−0.047 −19.390+0.017

−0.018 4.47 13.911

D4 + Pantheon+ 291 ± 13 66.17+0.77
−0.73 −0.816+0.045

−0.044 0.891+0.086
−0.076 −19.455 ± 0.020 3.75 14.064

” + SH0ES prior 238.3+8.6
−9.1 73.34+0.24

−0.23 −0.941 ± 0.035 0.786+0.052
−0.048 – 2.9 13.760

aThe ” denotes D4 + Pantheon+

Fig. 2 Confidence contour (1σ and 2σ) of 	m and β for GOHDE
model, using various combinations of data sets. The Planck 2018 and
Pantheon++SH0ES estimates of 	m ± 1σ is given in the red and grey
shaded portion. The dashed line denotes β = 2/3

Regarding the age estimation, we have

Age =
∫ a=1

0

1

a′H(a′)
da′. (32)

Fig. 3 Confidence contour (1σ and 2σ) of wz0 and β for
wGOHDE model, using various combinations of data sets. The
Pantheon+ + SH0ES estimates of w0 is given in the grey shaded portion.
The dashed line denotes β = 2/3 and wz0 = −1 for their respective
axis

By substituting the best-fit parameter values, one can cal-
culate the age of the relevant model as detailed in the final
column of Table 3. Notably, GOHDE and wGOHDE mod-
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Fig. 4 Confidence contour (1σ and 2σ) of H0 and β for GOHDE
model, with wz0 = −1, using various combinations of data sets. The
Planck 2018 and Pantheon+ + SH0ES estimates of H0 are given in red
and grey shaded portion. The dashed line denotes β = 2/3

Fig. 5 Confidence contour (1σ and 2σ) of H0 and β for wGOHDE
model, using various combinations of data sets. The Planck 2018 and
Pantheon+ + SH0ES estimates of H0 are given in red and grey shaded
portion. The dashed line denotes β = 2/3

els yield higher age estimates than �CDM, and the varia-
tion across datasets is minimal. With the inclusion of the
SH0ES prior, the age estimate for �CDM decreases signifi-
cantly compared to estimates without this prior. Conversely,
the deviation observed for GOHDE and wGOHDE mod-

Fig. 6 Confidence contour (1σ and 2σ) of H0 and wz0 for
wGOHDE model, using various combinations of data sets. The
Pantheon+ + SH0ES estimates of w0 is given in the grey shaded portion.
The Planck 2018 and Pantheon+ + SH0ES estimates of H0 are given in
red and grey shaded portion. The dashed line denotes wz0 = −1

els is minor when incorporating the SH0ES prior. A sig-
nificant observation is that when using SH0ES prior, while
�CDM and wCDM models exhibit considerable tension
with the Planck 2018 age estimate of 13.8 billion years
[90], GOHDE and wGOHDE models demonstrate improved
alignment with this benchmark. The lower value of matter
density while using the SH0ES prior improves the age esti-
mation of GOHDE and wGOHDE significantly, thus mak-
ing the model agree with the estimates from globular clusters
[92].

Finally, the statistical metrics are enumerated and pre-
sented in Table 4. In the absence of SNe Ia data, it is evi-
dent that the �CDM model emerges as the most favoured.
The elevated χ2 degrees of freedom can be attributed to the
covariance matrix utilised for the BAO data set. If we relied
solely on statistical uncertainties across all data sets, this
value would decrease markedly. Specifically regarding the
D4 data set, �CDM exhibits superior performance compared
to wCDM and GOHDE, while wGOHDE demonstrates the
lowest value, primarily due to its increased parameterisation.
Despite penalising additional parameters by theχ2 degrees of
freedom, this metric may not accurately reflect model pref-
erence if the number of data points outweighs the surplus
parameters. Hence, although the degrees of freedom suggest
wGOHDE as the best fit, this may not necessarily hold. To
delve further into this matter, we calculate the AIC and BIC
values and compare them with those of �CDM. The model
with the lowest IC value is deemed optimal.
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Table 4 Statistical quantifiers (DOF, AIC, BIC and Bayes factor) of the models (�CDM, wCDM, GOHDE, and wGOHDE) using the complete
data set without SH0ES prior

Data set Model DOF AIC BIC Bi j

D4 �CDM 2.1549 142.49 148.91 1

wCDM 2.1667 144.48 154.10 0.075

GOHDE 2.1598 143.89 153.52 0.1

wGOHDE 2.1516 144.17 157.01 0.017

D4 + Pantheon �CDM 1.1410 165.42 180.77 1

wCDM 1.1412 166.55 187.01 0.044

GOHDE 1.1404 165.77 186.23 0.065

wGOHDE 1.1414 167.81 193.39 0.002

D4 + Pantheon+ �CDM 1.1449 257.89 274.51 1

wCDM 1.1400 250.87 273.04 2.085

GOHDE 1.1452 259.35 281.51 0.05

wGOHDE 1.1358 244.87 272.57 2.64

Coming to the Bayes factor, all models exhibit negative
evidence against �CDM under D4 and Pantheon data sets.
Both wCDM and GOHDE yield comparable results, given
their equivalent degrees of freedom, performing similarly in
statistical analyses. When considering the Pantheon+ data,
both wCDM and wGOHDE yield the lowest AIC and BIC
values, accompanied by Bayes factors ranging between 1 and
3, indicating weak evidence against �CDM. Hence, thus far,
�CDM emerges as the optimal model based on statistical
metrics. However, when factoring in the SH0ES prior, the
model’s Bayes factor will be exceedingly high due to the
stringent nature of the Dirac SH0ES prior. Consequently,
testing and reporting such values, as done in [89], may not be
appropriate. In the analysis presented in [89], they employed
sharp one and two-sigma priors, yielding exceptionally high
values favouring their model over �CDM. Nonetheless, as
reported in [88], their model proves to be less effective under
scrutiny.

6 Remarks on data analysis

A key aspect we can observe in GOHDE and wGOHDE is
the potential presence of negative dark energy in the recent
past. The idea of negative dark energy in a model has caught
attention because it could help resolve cosmological ten-
sions. These issues often lead to unconventional features. For
example, one way to address the Hubble tension is by con-
sidering w� < −1, which means the possibility of phantom
dark energy remains open. Similarly, studies suggest that the
BAO Lyα Anomaly could be explained by the existence of
negative dark energy in the past [93–97]. Models with nega-
tive dark energy often exhibit a non-monotonic evolution of
the Hubble parameter, although confirming this behaviour is

challenging [93]. An analysis not tied to a specific model but
aimed at resolving cosmological tensions exhibits poles in
the dark energy equation of state parameter indicating neg-
ative dark energy [98]. We will explore these traits shortly.
Before that, let’s clarify certain aspects of data analysis a bit
further.

We showed how cosmological data could constrain a spe-
cific model. However, using various datasets itself is an
active area of research. Here, we discuss the outlook of
employing different datasets. Firstly, we examine a unique
feature observed when using high redshift Pantheon+ data,
as reported in [99]. Then, we explore the implications of
combining CC, BAO, and CMB datasets with complete
covariance matrices, as studied in [56,59,100] for cosmic
chronometer data, [73] for CMB distance priors, and BAO
analyses in [65,74,80,101]. These additional examples high-
light the complexities that need to be considered when con-
ducting the analysis.

6.1 Using Pantheon+ with z > 1

Recently, supernova data has also suggested negative dark
energy, with reports indicating a significant shift in cosmo-
logical parameters [99,102]. Moreover, even in the analysis
of the �CDM model, it has been reported that 	m > 1 cannot
be ruled out [103,104].

So far, the negative energy density has been considered
a model feature, hinted mostly by the BAO data. However,
[99] has shown that is not the case and even within Pantheon+
sample, the prior values and redshift selection may also lead
to similar effects. In this section we reproduce the results
obtained in [99] in a slightly different approach and repeat
the same analysis with the wGOHDE model.
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Fig. 7 Diagrams illustrating the posterior distribution of 	m and H0
for Pantheon+ sample with z > 1 for �CDM model

Here, we analyze the Pantheon+ sample at a redshift of
z = 1 and focus on data points beyond z > 1. In their study
[99], they categorized the data into three sets. The first set
comprises 77 data points calibrated with Cepheid hosts in
galaxies, while the remaining data is sorted based on var-
ious redshifts. The set calibrated with Cepheids is crucial
for determining the absolute magnitude M and establishes a
prior for M. Since our interest lies in high redshift data, we
employ a Gaussian prior for M and include only data points
at z > 1 for our analysis. We replicate the study by exploring
different prior ranges for H0 and 	m, thus effectively repro-
ducing the findings reported in [99]. The results are shown
in Fig. 7. Subsequently, we conduct the same analysis for
our wGOHDE model, considering different prior ranges for
additional free parameters. The posteriors are illustrated in
Fig. 8.

The Pantheon+ supernova data alone cannot tightly con-
strain the present value of the Hubble parameter (H0) due to a
degeneracy with the absolute magnitude (M). By employing
a Gaussian prior for M, one can anticipate some constraint
on H0. However, there exists a negative correlation between

Fig. 8 Diagrams illustrating the posterior distribution of 	m and H0
for Pantheon+ sample with z > 1 for wGOHDE model. Here �CDM
line in the bottom panel corresponds to the posterior with prior 	m ∈
[0.01, 8], H0 ∈ [10, 100]

H0 and the matter density parameter (	m). When setting the
prior value of 	m below 1, a higher H0 is obtained, as noted
in [77]. In our analysis with the �CDM model, focusing on
data with redshifts z > 1 and varying prior values, devia-
tions from the standard Gaussian posterior are observed. For
	m ∈ [0.01, 5] and H0 ∈ [50, 100], the best-fit value of H0

is approximately 50, with 	m tending towards unity despite
having a Gaussian posterior. Extending the prior range for
	m and H0 ∈ [10, 100] results in an unconstrained 	m,

allowing for 	m > 1. Further extension of the prior range
for 	m suggests a potential negative dark energy density.

We proceed to analyze the wGOHDE model with 	m ∈
[0.01, 8] and H0 ∈ [10, 100], alongside varying prior ranges
for additional free parameters β and wz0 . As we expand the
prior range, lower H0 values and higher 	m values gain non-
zero evidence. An interesting observation is the emergence
of bimodal posteriors, indicating similar evidence for higher
and lower H0 values as parameter priors are extended. This
behaviour also differs from conventional HDE and other dark

123



Eur. Phys. J. C           (2024) 84:552 Page 13 of 24   552 

energy models. Unlike�CDM, thewGOHDE model tends to
favor 	m < 1, while 	m > 1 is not fully rejected. Although
kernel density plots appear smooth around 	m = 1, the pos-
terior distribution reveals a sharp jump, suggesting a pref-
erence for 	m < 1. Thus, high redshift Pantheon+ data do
not predominantly influence the negative dark energy den-
sity observed in wGOHDE, while its contribution cannot be
disregarded. Here, we restrict the prior range for wGOHDE
to 	m ∈ [0.01, 8] and H0 ∈ [10, 100]. Exploring additional
features of Pantheon+ data under the wGOHDE model and
replicating the full analysis outlined in [99] are prospects for
future research. All discussed features are presented in Figs. 7
and 8. Throughout our analysis, we employ a Gaussian prior
for M with a mean of −19.249 and a standard deviation of
0.030. The y-axis in all diagrams represents normalized num-
ber density, with solid/dotted lines denoting kernel density
estimates.

6.2 Using cosmic chronometers, BAO and CMB distance
prior data with covariance matrix

By incorporating additional systematic uncertainties,
regardless of the model used, the constraints are expected to
change. While the best-fit values may remain similar, the con-
fidence interval will become broader. A crucial tool for com-
prehending the universe’s evolution is estimating the Hubble
parameter at various redshifts. The technique of estimating
the Hubble parameter through the differential age of galax-
ies is widely employed and offers the advantage of being
independent of cosmological models. Previously, we utilized
the data derived from this method, known as the Cosmic
Chronometer (CC) dataset [56,59,100]. However, our study
only considered the standard deviation of each data point for
the analysis, which is a common practice in the literature and
serves as an initial estimation step.

Although the CC method is independent of background
cosmology, it relies on factors such as the initial mass func-
tion, stellar library, etc. Consequently, stellar population syn-
thesis models introduce systematic uncertainties to the entire
dataset. In [105], it was found that the stellar population syn-
thesis model predominantly contributes to the overall error
on H(z). Specifically, the initial mass function contributes
less than 0.5%, while the stellar library contributes approxi-
mately 6.6%”, among other factors. Therefore, accounting
for these additional uncertainties, the study conducted in
[105] laid the groundwork for utilizing CC with a compre-
hensive covariance matrix construction protocol. In essence,
the covariance matrix associated with the CC method is,

Covi j = Covstat
i j + Covyoung

i j + Covmodel
i j + Covmet

i j . (33)

Here, the sources contributing to the covariance are repre-
sented by “stat,” “young,” “model,” and “met”: statistical
errors, contamination from residual young components in

Fig. 9 Posterior distribution of H0 with and without considering sys-
tematics due to SPS models [105] using Cosmic Chronometer data alone
for GOHDE and wGOHDE models. The black dashed line indicates the
value from Planck 2018

galaxy spectra, reliance on chosen models, and stellar metal-
licity, respectively. Specifically, the selected models encom-
pass further decomposition as,

Covmodel
i j = CovSFH

i j + CovIMF
i j + Covst.lib

i j + CovSPS
i j . (34)

Here, “SFH” represents star formation history, “IMF” corre-
sponds to the initial mass function used, “st.lib” denotes the
adopted stellar library, and “SPS” signifies the dependency
on the stellar population synthesis model. Metallicity and
young components are uncorrelated and only have diagonal
elements, while the model accounts for the main correlated
components. References [105,106] provide a comprehensive
illustration of these procedures.

The main question we aim to address in this section is
how much this affects our analysis. Utilizing the full covari-
ance matrix alters the confidence limits, although the mean
value stays relatively consistent. When integrated with other
datasets, the impact becomes much less significant, yielding
no noticeable difference.

Figure 9 displays the posteriors of the Hubble parameter
with (w/) and without (w/o) the additional systematic uncer-
tainties. Both our GOHDE and wGOHDE models align with
the conclusions drawn in [105], indicating larger error bars
for H0. Furthermore, the analysis suggests a higher value for
	m with errors of approximatelyO(1). Thus, consistent with
the findings of [105], the estimation of matter density is min-
imally impacted by the utilization of the covariance matrix.
Moreover, the CC data alone inadequately constrains 	m in
general, and additional free parameters remain unconstrained
when using CC data alone. The best-fit values using CC data
are tabulated in Table 5. Incorporating additional datasets is
crucial to enhance the constraint on our model.

An additional consideration pertains to utilizing BAO
datasets. BAO signatures provide highly precise spectro-
scopic measurements, facilitating comprehensive evalua-
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Table 5 Constraints (best-fit ± 1σ) on the free parameters of the GOHDE, and wGOHDE models using various combinations of data sets

Model Data sets 	m H0 β wz0

GOHDE CC w/o syst 0.42+0.13
−0.16 66.6+4.0

−3.9 0.89+0.71
−0.44 –

CC w/ syst 0.43+0.13
−0.16 65.8+6.4

−6.2 0.86+0.74
−0.42 –

CC w/o syst + BAO 0.305+0.041
−0.043 69.40+0.82

−0.79 0.81+0.21
−0.20 –

CC w/ syst + BAO 0.303+0.043
−0.042 69.40+0.83

−0.79 0.79+0.22
−0.18 –

CC w/ syst + BAO + CMB R 0.275 ± 0.010 69.76+0.63
−0.64 0.690 ± 0.011 –

CC w/ syst + BAO + CMB DP 0.187 ± 0.009 66.49+0.64
−0.65 0.754 ± 0.015 –

wGOHDE CC w/o syst 0.48+0.16
−0.24 66.6+5.7

−4.9 0.92+0.68
−0.45 −1.42+0.61

−0.39

CC w/ syst 0.47+0.17
−0.23 66.2+7.3

−7.1 0.82+0.75
−0.39 −1.36+0.56

−0.45

CC w/o syst + BAO 0.55+0.11
−0.17 69.47 ± 0.81 1.42+0.38

−0.48 −1.37+0.33
−0.43

CC w/ syst + BAO 0.55+0.11
−0.18 69.49+0.81

−0.85 1.40+0.39
−0.49 −1.38+0.35

−0.41

CC w/ syst + BAO + CMB R 0.272 ± 0.011 69.47 ± 0.80 0.722+0.072
−0.068 −0.963+0.060

−0.064

CC w/ syst + BAO + CMB DP 0.270 ± 0.008 72.71+1.02
−0.96 0.332 ± 0.023 −1.742+0.093

−0.108

tions of cosmological models. Various approaches have been
employed in the literature to incorporate BAO data, and in
our analysis, we utilized data providing the Hubble param-
eter and the correlated transverse co-moving distance sep-
arately. A more effective approach involves incorporating
BAO data along with the covariance matrix. By utilizing BAO
data sourced from publications such as [65,74,80,101], along
with their respective covariances, we analyzed our models.
The best-fit estimates from this joint analysis are presented
in Table 5. Incorporating CC data along with BAO measure-
ments significantly enhances the confidence interval, reduc-
ing the influence of the stellar population synthesis (SPS)
model present in the systematic errors of CC.

For the GOHDE model, the inclusion of BAO data
improves the constraints on the free parameters β and 	m,

yielding estimates similar to those presented in Table 3.
Hence, CC data, with or without systematics, combined with
BAO data, can effectively constrain the GOHDE model. In
the case of the wGOHDE model, constraints on the Hubble
parameter are enhanced by including BAO data. However,
due to correlations betweenβ,wz0 , and	m,other constraints
tend to worsen. To address this, a stronger constraint on wz0

could improve constraints on the wGOHDE model. For this
purpose, we incorporate the CMB shift parameter R and the
full CMB distance prior, which includes covariance between
the shift parameter, acoustic peak, and baryon density.

Another significant consideration is using the CMB shift
parameter, which assumes the �CDM model for result esti-
mation. However, the choice of cosmology is not a serious
concern given that R and the acoustic scale (lA) are effec-
tive observables. Additionally, the model-independent con-
straints on 	bh2 from BBN make it reasonable to consider
R, lA, and 	bh2 as effective observables [73]. Hence, they
are suitable for analysing alternative cosmologies [107].

We now examine the effects of incorporating the CMB dis-
tance prior, based on the method outlined in [73]. In our pre-
vious analysis, we only considered the shift parameter; how-
ever, incorporating it alongside other measurements, such as
QSO data, makes is appropriate [75]. Here, we intend to use
the shift parameter alongside CC and BAO data as one set
and then utilize the CMB distance prior with its respective
covariance matrix as the second set.

The best-fit values are provided in Table 5. Clearly, in
the GOHDE model, using the shift parameter alone yields a
result very close to �CDM, while the utilization of the CMB
distance prior results in a very low value of matter density.
In the case of the wGOHDE model, the matter density aligns
closely with other major observations, but we obtain a very
low value for β and an extremely low value for wz0 . Conse-
quently, even without utilizing the SH0ES prior, we obtain a
Hubble parameter close to local observations. However, this
comes at the expense of a very low wz0 value. The baryon
density, however, remains close to the Planck results, with
wGOHDE providing a similar value. The best fit values of
are 0.02295±0.00015 and 0.02340±0.00015 for wGOHDE
and GOHDE respectively.

It would be interesting to explore various combinations of
datasets and assess these models further. Additionally, one
could employ the complete CMB data and fit the model to
the CMB power spectrum. Nevertheless, this endeavour is
computationally intensive and falls beyond the scope of the
present study.

7 Implications of negative dark energy

Given the parameter values derived from fitting our model
to various data combinations, it is crucial to explore the
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empirical implications. An essential factor in understanding a
barotropic fluid’s behaviour is its equation of state parameter.
By employing the density parameter described in Eq. (13),
we can deduce the equation of state for our dark energy using
Eq. (15), and is given as,

w� = −1 +

[
(2α−2)

β

(
1

z+1

) 2−2α
β G + (z + 1)∂zF

]

3

[(
1

z+1

) 2−2α
β G + F

] , (35)

with

F := 	k

[
(z + 1)2

−α + β + 1
− 1

]
+ 	m

[
2(z + 1)3

−2α + 3β + 2
− 1

]

+ 	r

[
(z + 1)4

−α + 2β + 1
− 1

]
,

G := (α − β)(	k + 1) − 1

α − β − 1
+ 	m

α − 3
2 β − 1

+ 	r

α − 2β − 1
.

To establish the �CDM model from the expression above,
we need to satisfy the following condition:

(2α − 2)

β

(
1

z + 1

) 2−2α+β
β

G = −∂zF . (36)

This condition relies on the specific values of the param-
eters and poses a challenging task. However, there is a
straightforward solution that emerges asymptotically. When
α = 1, the condition simplifies to ∂zF = 0. Solving for
z, we find two solutions: z = −1 and z = (−	m −
2	r ± √

	2
m − 4	k	r )/(2	r ). Importantly, the latter solu-

tion reduces to −1 for a universe with zero curvature. There-
fore, when α = 1, we obtain an asymptotic de Sitter universe
for 	k = 0. Another straightforward scenario arises when
there is initially no fluid other than dark energy, which does
not accurately depict our universe. Thus, �CDM can only
be an approximation in the GOHDE framework.

Two significant observations are derived from the analysis
of the dark energy equation of state parameter. Firstly, its
dynamic nature exhibits considerable variation from the early
to late phases. Secondly, the presence of singularities within
the dark energy equation of state parameter is notable. Of
these, the latter observation holds particular importance for
us, as it suggests the potential existence of negative energy
density. Let us look into each observation individually.

The term “dark energy” denotes the force driving the
accelerated expansion of the universe in its later stages. This
characteristic does not inherently entail any distinct proper-
ties during the early phase, as its density is expected to dimin-
ish rapidly according to conventional understanding. Thus,
regardless of its behaviour in the past, it seems irrelevant to
explain the present and future in most dark energy models.

However, within the framework of HDE models, matters take
on a more intriguing complexion. In our analysis, while our
focus primarily lies in modelling dark energy akin to a cos-
mological constant, we discover that our approach permits
it to exhibit behaviours akin to other fluid types. This phe-
nomenon significantly enhances the concept of holography.
Consequently, the driving force behind late-time accelera-
tion becomes the integration constant due the presence of
∼ β Ḣ in the formulation. Without this term, we are left with
a standard HDE model, which cannot explain late-time accel-
eration unless we fine-tune the infrared cut-off or redefine the
entropy.

Furthermore, there exists a notion that often goes unno-
ticed. The original concept driving the development of HDE
aimed to encompass the entire energy density [12]. How-
ever, this aspect is frequently overlooked in the formulation
of most HDE models. Consequently, rather than being inher-
ently fundamental, most of these models should be viewed
as phenomenological. It is plausible that a more fundamental
underpinning for dark energy and holography exists, wherein
these models emerge as specific instances. The observation
that our GOHDE model mimics other energy components
underscores the universality of the holographic principle and
the effectiveness of employing infrared cutoffs with deriva-
tives of the Hubble parameter. These insights can be traced
back to the shared origin of the CKN bound and the Fried-
mann equation, stemming from the first law of horizon ther-
modynamics.

In the context of GOHDE, upon examining the character-
istics given by Eq. (13), it becomes apparent that dark energy
exhibits scaling properties similar to the dominant energy
conditions during respective epochs. This outcome stems
from our deliberate approach of formulating dark energy
by systematically eliminating terms such as 	ma−3, 	r a4,

and 	ka−2 from the Hubble flow. Were we to opt for alter-
native formulations involving the redefinition of other fluid
components, we might arrive at a scenario closely resem-
bling the w(z)CDM model, where w(z) denotes a function
dependent on redshift and other parameters within the model.
However, such redefinitions may not represent the most opti-
mal initial hypothesis. We intended to preserve these com-
ponents in their original state, leading to the emergence of
an energy component exhibiting behaviour reminiscent of
radiation during early epochs, transitioning to a matter-like
scaling during epochs dominated by matter, and eventually
resembling dark energy in the present epoch. Consequently,
our approach encapsulates a hitherto unexplored aspect of
HDE, showing its universality.

In Ricci dark energy, noteworthy instances arise where
β is defined as α/2, resulting in a dark energy that never
scales like radiation in any epochs [27,28]. Within the frame-
work outlined in this manuscript, such observations can be
directly inferred from the Hubble flow equation, as detailed
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Fig. 10 Dark energy equation state (w�) as a function of redshift (z)
for the best fit estimates of GOHDE and wGOHDE models with differ-
ent data combinations. The Phantom divide (−1), pressure less matter
(zero) and radiation states (1/3) are denoted with dashed horizontal
lines

in Eq. (11). Specifically, when β = α/2, the term scaling
as 	r e−4x/(−α + 2β + 1) simplifies to 	r e−4x , eliminat-
ing any radiation-like scaling when isolating dark energy
by removing other parameters from consideration. Similarly,
when β = 2α/3, the manifestation of matter-like behaviour
is precluded, and setting β = α obviates curvature-like
scaling. Should we adopt β and α as constants, it becomes
apparent that fulfilling the conditions above simultaneously
is unattainable. This implies that our dark energy fluid pos-
sesses a highly dynamic equation of state parameter, capable
of transitioning from 1/3 to zero to less than −1/3 within our
universe. Such transitions may occur smoothly or exhibit sin-
gular characteristics. The presence of singular points signifies
a shift from negative to positive energy density, suggesting
the existence of negative energy density in the universe’s past.

In Fig. 10, we present the dark energy equation of state
(w�) plotted against redshift (z) for the best-fit estimates
of the GOHDE and wGOHDE models utilizing various data
combinations (Fig. 11).

Fig. 11 Dark energy equation state (w�) as a function of redshift (z)
for the best fit estimates of wGOHDE with “D4 + Pantheon+ + SH0ES”.
The grey line indicates the 1σ deviation. �sCDM is the signswitching
�CDM, and the dark and light red band corresponds to 1 and 2 σ regions

It is evident that both the GOHDE and wGOHDE models’
best-fit values indicate a transition of our HDE fluid from an
early radiation-like behaviour to that of matter and subse-
quently from matter to quintessence, phantom, or de Sitter-
like fluid. Notably, the best-fit values do not precisely corre-
spond to β being equal to 1, 1/2, or 2/3, although the possi-
bility of 2/3 cannot be entirely dismissed. Furthermore, the
presence of singular points in the equation of state signifies
a transition from early negative energy to a present positive
value. Thus, while the fluid behaves like matter or radiation in
the earlier epoch, it does not necessarily correspond to ordi-
nary matter or radiation that conforms to the weak energy
condition, suggesting the potential existence of something
novel [108]. Negative energies are plausible within the cos-
mological context, and diverse perspectives exist regarding
their existence [109–116].

Returning to the analyses in Fig. 10, the pole in the dark
energy equation of state parameter resides in the past. Except
for the GOHDE model combined with the Pantheon+ dataset,
all optimal parameter estimates indicate a transition within
the redshift range of 2 < z < 5. Regardless of the specific
model or dataset utilized, this transition redshift, denoted as
z†, occurs during the matter domination. Remarkably, this
transition alleviates the tension observed in BAO Lyman-α
measurements.

Among the prominent issues in contemporary cosmology,
the Hubble tension stands out, representing an approximately
5σ disparity between the observed Hubble parameter value
and the one derived from the CMB using the best-fit �CDM
model [77]. Any attempt to address this tension necessi-
tates comprehensive fitting of the entire CMB dataset using
the respective model and subsequently predicting a higher
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value than that obtained from the �CDM best-fit. Notably,
a plethora of literature is discussing this topic, with [117]
offering a comprehensive review.

In addition to the Hubble tension, there is a noticeable ten-
sion in observations related to the BAO within the Lyman-α
forest [96]. While this tension falls around the 2σ threshold
when considering the �CDM model, it is apparent that con-
ventional approaches, such as the parameterization of dark
energy through the CPL model, struggle to resolve it ade-
quately [118]. The discrepancy observed in the BAO Ly-α
manifests as differences in the measured values of the Hub-
ble parameter at redshifts � 2.3 when compared to predic-
tions from the �CDM or wCDM models. Regrettably, con-
ventional strategies addressing the original Hubble parame-
ter tension do not inherently rectify the BAO tension [119].
Consequently, there is a compelling motive for investigat-
ing a new class of dark energy models that can potentially
mitigate both sources of tension simultaneously.

Recently, two noteworthy studies have emerged, each
proposing early negative dark energy densities as poten-
tial solutions to these tensions. In one such study [120],
the authors advocate for dark energy within the framework
of Horndeski gravity, which incorporates self-interactions
and nonminimal coupling of a dynamical scalar field. Their
model addresses cosmological tensions by introducing neg-
ative dark energy densities at high redshifts. While their
primary focus was alleviating the Hubble tension, their
approach inadvertently relieves the BAO Ly-α tension. A
more promising model was introduced in another study
[121], featuring a spontaneous sign-switching cosmologi-
cal constant designed to address these tensions. Remarkably,
both [120,121] demonstrate evidence of negative dark energy
at redshifts exceeding 2, despite differing origins and con-
structions of their respective models. The first stringent con-
straint on the switching redshift was reported around z ∼ 2.5
[122], later refined to z ∼ 2 [123]. Notably, when incorporat-
ing the absolute magnitude prior from the SH0ES team [77],
the sign-switching cosmological constant significantly out-
performed the �CDM model in addressing these tensions.
Dynamical analysis of similar models advocating negative
energy can be found in [124]. Consequently, early negative
energy densities are emerging as compelling solutions for
tensions in cosmology [125].

In Fig. 12, we see the behaviour of the comoving Hubble
flow, using the best-fit parameters derived from our MCMC
chains. The curves are complemented by data points sourced
from [72], referencing [62–64] for the BAO Ly-α dataset, and
[65–71] for the BAO galaxy clustering dataset. Undoubtedly,
the GOHDE and wGOHDE models exhibit enhanced capa-
bility in resolving the BAO Ly-α tension even without using
the SH0ES prior.

The projections derived from the best-fit parameters
notably fall within the 1σ confidence interval. Particularly

Fig. 12 The comoving Hubble flow for �CDM, wCDM, GOHDE, and
wGOHDE models with various data combinations using different best
fit estimates. The data points are taken from [72] with reference to [62–
64] for the BAO Ly-α set and [65–71] for the BAO galaxy clustering
set. The colour band corresponds to 1σ confidence region
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Table 6 Deviation between prediction and observations of BAO Ly-α
in terms of respective σ based on the best-fit values

Model BAO Lyα z D4 Aa Bb

GOHDE 2.3 0.34 0.40 1.165

2.33 0.73 0.79 1.62

2.34 1.04 1.10 1.88

2.36 0.72 0.78 1.51

wGOHDE 2.3 0.02 0.35 0.14

2.33 0.37 0.73 0.19

2.34 0.69 1.04 0.52

2.36 0.40 0.73 0.24

aD4 + Pantheon
bD4 + Pantheon+

noteworthy is the substantial mitigation of tension observed
with the inclusion of the SH0ES prior, rendering it practi-
cally negligible. The analysis incorporates the SH0ES prior,
utilizing the Tripp-1998 corrected distance modulus [126],
where the fiducial SNe Ia magnitude (M) is derived from
the Cepheid host distances [77,127]. The disparity between
the predicted and observed values of BAO Ly-α, expressed
in terms of standard deviations (σ ), is detailed in Table 6.
Notably, employing the wGOHDE model, tension is essen-
tially absent regardless of the combination of data utilized.
Consequently, models featuring a negative energy density
exhibit a notable capacity to alleviate the BAO Ly-α tension.
Whether yielding a higher H0 value or not, the wGOHDE
model accounts for the BAO dataset.

The use of the SH0ES prior, particularly as the Dirac prior,
may raise questions. Initially, the model may not appear to
address the Hubble tension. However, it exhibits a charac-
teristic observed in models capable of resolving the Hubble
tension, namely the presence of early negative dark energy
density. Without the SH0ES prior, the transition from nega-
tive to positive dark energy density occurs around a redshift
close to 5. In existing literature, models that resolve the Hub-
ble tension display similar transitions at redshifts just above
2. When employing the SH0ES Dirac prior, we also observe
this transition around redshift 2.9. Therefore, the use of the
Dirac SH0ES prior serves to highlight this feature.

Further insights regarding the transition redshift (z†) can
be seen from Tables 3 and 6. In the case of the GOHDE
model, when utilizing the D4 + Pantheon+ dataset combi-
nation, a value of z† ∼ 232 was identified, with the BAO
Ly-α tension closely resembling that of �CDM or wCDM
models. This suggests that in order to alleviate tension, the
transition from negative to positive energy density must have
occurred relatively recently. Thus, our analysis for the first
time establishes upper and lower bounds for the value of z†.

2.9 � z† � 232 with GOHDE model,

2.9 � z† � 5 with wGOHDE model.

The values presented in [120,122,123] exhibit a notable
convergence with our findings. Although our methodology
diverges significantly from that employed in [120,122,123],
it is noteworthy that the observed transition aligns closely
with their reported best-fit parameters. The refinement of
constraints is anticipated with the incorporation of complete
CMB data, which is a promising avenue for future investiga-
tion.

7.1 Recent progresses on the transition from AdS to dS
vacua

In discussions involving negative dark energy density, recent
advancements in the field are noteworthy. A significant devel-
opment is the concept of a sign-switching cosmological con-
stant with CDM, denoted as �sCDM. In this model, the
cosmological constant changes sign around a specific red-
shift, denoted as z†. Here, z† represents an extra parameter
of the model (although not physical), and �s is defined as
�s ≡ �s0sgn[z† − z]. This approach has been explored in
various studies [122,123,128]. A notable aspect of �sCDM
is its ability to address multiple cosmological tensions simul-
taneously. Sequential research has demonstrated its potential
in resolving tensions related to H0, S8, and the BAO Lyα dis-
parity.

In �sCDM, despite the dark energy becoming negative,
it remains constant. Recent studies have introduced string-
motivated cosmologies and constructions to motivate the
physical processes underlying these transitions. For exam-
ple, [129] propose a motivation for �sCDM using type-II
minimally modified gravity, which preserves spatial diffeo-
morphism invariance while disrupting 3+1 diffeomorphism
invariance on cosmological scales [130]. Type-II minimally
modified gravity shows promise in resolving the Hubble ten-
sion, aligning well with �sCDM. However, implementing
�sCDM within this framework often results in a pole in
Ḣ , posing challenges for perturbation theories. Strategies
to overcome this issue are discussed in [129]. Additionally,
studies propose that Casimir forces can account for these
transitions, albeit with implications for the number of rel-
ativistic neutrino-like species (Nef f ) and dark dimensions
[131,132].

Here, our manuscript illustrates how negative energy
density can intrinsically address the BAO Lyα inconsis-
tency. While the model outlined in [122,123] adopts a sign-
switching mechanism, ours and the approach in [120] demon-
strate substantial similarities. Both our framework and that of
[120] describe a fluid exhibiting characteristics of pressure-
less negative energy matter in the recent past, transitioning
to supercritical positive energy matter. The similarity in this
transition redshift will have profound significance in con-
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necting �sCDM with our wGOHDE or other HDE variants
and thus bringing the ideas of AdS space into HDE settings,
which appears to be interesting. Another explanation for this
situation could arise from the geometry of the universe [133],
which warrants further exploration.

8 Linear perturbation and growth function

Analysing a cosmological model involves testing its capac-
ity to explain the evolution of cosmological structures. This
necessitates an understanding of cosmic fluids and their
dynamics. In the standard �CDM model, the growth of per-
turbations is governed by a straightforward second-order dif-
ferential equation solely involving matter density perturba-
tions. However, when considering dynamical dark energy
with an equation of state different from −1, its perturba-
tions have a non-negligible impact on the growth function,
requiring a study of the coupled system. Even in the simplest
case of the wCDM model, we can neglect these perturbations
when the dark energy equation of state is very close to −1,

as the dark energy density is significantly lower than that of
matter density. However, when it exhibits a significant devi-
ation from �CDM, it becomes appropriate to consider dark
energy perturbations.

In [134], the author has simplified the consideration of
dark energy perturbations by enabling the transformation of
the model of interest into models discussed therein. In our
scenario, we can express our wGOHDE model as an effec-
tive wmCDM model, where mCDM represents the modified
matter component. Following the approach outlined in [134],
the coupled matter-dark energy perturbation equations for a
constant w� are,

δ′′
m + 3

2a
(1 − w�	�(a)) δ′

m

= 3

2a2

[
	m(a)δm + 	�(a)δ�

(
1 + 3c2

eff

) ]
(37)

δ′′
� + 3

2a

[
1 − w�(2 + 	�(a))

]
δ′
�

+ 1

2a2

[
w� (3w�	�(a) − 1)

]
δ�

= 3

2a2 (1 + w�)

[
	m(a)δm + 	�(a)δ�

(
1 + 3c2

eff

) ]
.

(38)

Now the question is how to map our wGOHDE model to
wmCDM model. Form the expression for the Hubble param-
eter we have, ignoring radiation and curvature,

h2 = 2�me−3x

2 − 2α̃ + 3β̃
+

(
1 − 2�m

2 − 2α̃ + 3β̃

)
e
− 2(α̃−1)x

β̃ .

(39)

To map our wGOHDE model to the wmCDM model, we
introduce new parameters α̃ and β̃, representing the mod-
ified parameters in the transformed model. Previously, we
defined dark energy by removing the matter density term
	me−3x from the expression for the Hubble parameter and
introduced a new set of free parameters wz0 and β. This
formulation enabled the dark energy to exhibit behaviour
akin to matter in the matter-dominated era and radiation in
the radiation-dominated era. Consequently, the dark energy
density defined earlier possessed a dynamic equation of state
parameter transitioning from 1/3 to 0 and eventually to a
value < −1/3. This transition occasionally led to singular-
ities in the equation of state parameter, indicating negative
dark energy density.

In our formulation of dark energy, we imposed the condi-
tion that other fluids remain unaffected by the modelling of
dark energy. However, this condition resulted in dark energy
being influenced by other fluids. Nevertheless, to understand
the system’s dynamical characteristics, it is unnecessary to
distinguish between what constitutes our dark energy and
matter. Instead, the focus should be on scaling behaviour and
constructing an effective fluid description. Thus, by allowing
modification of our matter sector, we can avoid the occur-
rence of negative dark energy densities. The presence of
supercritical matter or radiation typically accompanies the
occurrence of negative dark energy density. Therefore, it was
apparent that a supercritical fluid with an identical equation
of state parameter offset the negative energy density of dark
energy. To elaborate further, when the dark energy density
becomes negative in a matter-dominated era, not only does
the density become negative, but the equation of state also
approaches zero, resembling some form of diffused dark mat-
ter. Consequently, this creates a negative overdensity in the
matter sector. However, the supercritical value of 	ma−3/H2

serves to cancel it out, ensuring compliance with the law of
conservation of energy.

Indeed, when we modify the matter sector, dark energy
and matter density exhibit unconventional features. In our
case, modifying the matter component results in an effective
model resembling wCDM. Consequently, the free parame-
ters behave differently, leading us to utilize α̃ and β̃ instead of
α and β. Furthermore, one can define the new matter density
as,

	̃m = 	m

(
2

2 − 2α̃ + 3β̃

)
, (40)

and the dark energy equation of state as,

w̃� = −1 + 2(α̃ − 1)

3β̃
. (41)

Thus, the Hubble parameter becomes

h2 = 	̃me
−3x +

(
1 − 	̃m

)
e−3(1+w̃�)x (42)
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Fig. 13 Evolution f (z) against z for different values of α̃ and β̃. The data points corresponds to compilation of 11 f (z) measurements taken from
TABLE (1) of [135] for illustration purpose alone

which is nothing but a wCDM model.
The difference in the free parameters α and β arises from

how we define the structure of dark energy. In the equa-
tion of state given by Eq. (15), we compute the derivative
of the logarithm of the dark energy density. In our earlier
parametrization, where the matter and other cosmic compo-
nents remained unchanged, the features of the dark energy
density influenced the equation of state. Consequently, the
equation of state became a function not only of α and β but
also depended on 	is, representing the densities of various
cosmic components. However, in the parametrization conve-
nient for studying perturbations, such dependencies are not
evident. As a result, the former free parameters and those
used in the current context are practically different.

Now that we have the Hubble parameter, we can readily
compute the density perturbations using Eqs. (37) and (38).
In these equations, we have,

	m(a) = 	̃m

h2 a−3 and 	�(a) =
(

1 − 	̃m

)
h2 a−3(1+w̃�).

(43)

Now, by employing various values of α̃ and β̃, we can com-
pute 	̃m and w̃ and numerically evaluate δm and δ�.

One of the most straightforward derived functions from δ

is the linear growth rate of matter perturbations, denoted as
f (z), defined as,

f (z) = d ln δm

d ln a
= − (1 + z)

δm

dδm

dz
. (44)

For illustration, we will plot f (z) against z for different val-
ues of α̃ and β̃. In this parametrization, when α̃ = 1 and
β̃ = 2/3, we recover the �CDM model. This holds true for
the previous parametrization as well. The numerical analy-
ses were conducted for both clustered (ceff � 0) and non-
clustered (ceff � 1) dark energy on the growth of matter per-
turbations. For the numerical analysis, we utilized the initial
conditions described in [134], which are,

ai = 10−3 (45)

δmi = 1.4 × 10−4, δ′
mi = δmi/ai (46)

δ�i = 1 + w̃�

1 − 3w̃�

δmi , δ′
�i = 1 + w̃�

1 − 3w̃�

δ′
mi . (47)

Here we consider three different possibilities of β̃ ∈
{1/2, 2/3, 1} and α̃ ∈ {0.75, 1.00, 1.25} and we took 	m =
0.3 for simplicity. The results are shown in Fig. 13. Clearly,
α̃ > 1 and β̃ < 2/3 deviate a lot from the �CDM estimate,
and all other combinations can reasonably account for the
data. The data points corresponds to compilation of 11 f (z)
measurements taken from TABLE (1) of [135] for illustra-
tion purpose alone. While the model diverges from wCDM
due to alterations in the matter sector, the matter equation
of state parameter remains fixed at zero. Consequently, the
modification essentially amounts to a multiplicative factor of
around one, unaffected by redshift (z). Further analysis tak-
ing the f σ8 data and the estimation of S8 are left for future
work.
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9 Conclusions

To summarise, we study Granda–Oliveros holographic dark
energy within a flat FLRW universe, aiming to provide obser-
vational constraints on model parameters and evidence for
early negative energy that alleviates the BAO Ly-α anomaly.
We define the GOHDE density and re-parameterise the
parameter α as wz0, representing the present value of the
dark energy equation of state parameter. Subsequently, we
employ χ2 minimisation with the MCMC method to estimate
the free parameters using various observational data sets.
Statistically, both GOHDE and wGOHDE models indicate
weak evidence against the standard �CDM model. Addition-
ally, we showcase specific characteristics of various datasets,
highlighting any distinctive aspects they reveal. Our focus
centres particularly on the Pantheon+, CC, BAO, and CMB
distance prior datasets. Furthermore, we explore the features
of linear perturbations and growth functions using an alter-
native parametrization.

Regarding cosmological implications, we report for the
first time the potential of an HDE model to alleviate the BAO
Ly-α anomaly. We emphasise the significance of the transi-
tion from early negative energy to positive energy as a crit-
ical indicator for easing various cosmological tensions, not-
ing that this transition must have occurred relatively recently
to be effective. Consequently, we establish upper and lower
bounds for this transition region, consistent with other mod-
els exhibiting similar properties.

Furthermore, we demonstrate that HDE models inherently
mimic dominant energy forms unless the free parameters
are rigorously calibrated. This observation underscores the
dependence between a model’s capability to explain late-time
acceleration and the integration constant, highlighting the
impossibility of arbitrarily setting this constant to zero. The
origins of HDE and the Friedmann equations from the first
law of horizon thermodynamics offer a natural explanation
for this behaviour, extending the holographic principle to all
energy components, diverging from prevalent notions.

It is crucial to acknowledge that plugging the expression
for any HDE density into the first Friedmann equation may
be one of many approaches for constructing holographic dark
energy models. As discussed in prior studies [136,137], the
choice of entropy can modify the form of the first law and,
consequently, the derived Friedmann equations, suggesting
that different entropy formulations lead to distinct cosmol-
ogy. Furthermore, this analysis did not consider any inter-
action between the dark sectors, which could significantly
impact the results and yield unforeseen outcomes. Previ-
ous research [138] has examined a generic interaction term
with the simplest IR cut-off, demonstrating its potential to
explain late-time acceleration while producing a CMB power
spectrum significantly different from that of �CDM. Future

inquiries may examine the impacts of modifying the entropy
definition and including various interaction terms.
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[141], Emcee [83], Lmfit [84], PyMC [142], Scienceplots
[143], Corner [144], Seaborn [145] and Matplotlib [146].
Sample codes showcasing the methodology utilizing the
emcee module can be accessed at https://emcee.readthedocs.
io/en/stable/tutorials/line/, while those utilizing the lmfit
module are available at https://lmfit.github.io/lmfit-py/fitting
.html. The datasets employed in this study have been iden-
tified beforehand, and the MCMC algorithms were run
on a moderately equipped workstation with 12 cores and
64 GB of RAM. The codes and datasets utilized in this
analysis are accessible upon reasonable request. The cos-
mological analyses’ chains are available for reference at
https://github.com/manoshmanoharan/GOHDE-Cosmology.
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