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Abstract

General Relativity (GR) is one of the wonders of the modern era. It beautifully pre-
dicts the nature of a strong gravitational field, and there are many exact analytical
solutions that describe the world around us using GR. However there are many more
scenarios that cannot be solved analytically, and furthermore, there are scenarios in
which GR no longer makes sense.

This thesis concerns itself with investigating these scenarios numerically using
Numerical General Relativity (NR), as well as numerically probing what lies beyond
GR, by studying a form of Lorentz-Violating gravity known as Khronometric Theory.
The NR simulations were carried out using GRCHOMBO, which is a new open source
code C++ 14, hybrid MPI/OpenMP code that utilises adaptive mesh refinement.

Using GRCHOMBO, we study the formation of compact axion stars and black
holes (BH) with aspherical initial conditions that could represent the final stages of
axion dark matter structure formation. We show that the final states of such collapse
closely follow the known relationship of initial mass and axion decay constant f,.
We demonstrate with a toy model how this information can be used to scan a model
density field to predict the number densities and masses of axion stars and BH. In
addition to being detectable by the LIGO/VIRGO gravitational wave interferometer
network for axion mass of 10° < m, < 10! eV, we show using peak statistics that
for f, < 0.2M,, there exists a “mass gap” between the masses of axion stars and
BH formed from collapse.

We investigate the physics of black hole formation from the head-on collisions of
boosted equal mass oscillotons (OS) in NR, for both the cases where the OS have
equal phases or are maximally off-phase (anti-phase). While unboosted OS collisions
will form a BH as long as their initial compactness C = GM /R is above a numerically
determined critical value C > 0.035, we find that imparting a small initial boost
counter-intuitively prevents the formation of black holes even if C > 0.035. If the
boost is further increased, at very high boosts v > 1/12C, BH formation occurs
as predicted by the hoop conjecture, leading to a “stability band” where collisions
result in either the OS “passing through” (equal phase) or “bouncing back” (anti-
phase), with a “critical point” occurring around C ~ 0.07. We argue that the

existence of this stability band can be explained by the competition between the

v



free fall and the interaction timescales of the collision. Furthermore we provide an
in-depth explanation of the construction of initial data for a pair of boosted OS as
well as the modifications needed during evolution, and comment on the potential
for further study.

In the final part of this thesis, we investigate spherically symmetric gravitational
collapse in Khronometric Theory. The system of equations is solved numerically
using code written in C utilising the PETSc tool kit. We comment on a number
of instabilities within the system and attempt to demonstrate why these exist. We
attempt to regularise the system using a method from 141D spherically symmetric
GR, however even after this regularisation the system does not appear to be stable.
Finally, we comment on some ideas that could be used to stabilise the system both

numerically and analytically, as well as discussing recent work by others in the field.
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Chapter 1

Introduction

“Computers make excellent and
efficient servants, but I have no

wish to serve under them.”

Mr Spock
Star Trek: The Original Series

We are in a new golden era of astronomy thanks to the historic measurements
of gravitational waves (GW) from the binary coalescence of black holes (BH) [7-12]
(see Fig. and neutron stars [13]. The detection of GW170817 further pushed our
understanding with the first multi-messenger detection of GWs and electromagnetic
signals [14.[15]. Tt would seem that we are standing on the edge of unravelling some
of the mysteries of our universe.

But what are the mysteries of the universe that could be unravelled with GWs?
Simply put, our whole universe is a mystery. We only understand 5% of the matter
content of the universe, with the rest being comprised mostly of dark matter and
dark energy{'] If one was to detect an unknown GW signal, it could tell us about
these unknown components of the universe, or more specifically, it could tell us about
exotic compact objects (ECOs) that could be comprised of these components.

Our question, and thus the mission of this thesis can now be defined. We want to
understand the ECOs that could give rise to potentially unknown GWs. Specifically,
we select that the ECOs will be comprised of axions, a theoretical type of dark
matter, and hence, these objects are studied in Chap. [2, Chap. [3| and Chap.[d We
study the ECOs by numerically simulating them in full Numerical General Relativity
(NR) using GRCHOMBO [1]. Within this thesis, we also study a form of modified
gravity known as Khronometric Theory in Chap. [5] Since this topic represents a

new direction of which is independent of other work presented in this thesis, the

"We will revisit this point in more detail in Sec.



Chapter 1. Introduction 2

Hanfard, Washington (H1)

Livingston, Louisiana (L1)

T T
2~ -1.0tk 4 WWWW‘-
o [— i1 ckuerved| H1 abserved (shifted, ineerted)
= T : : : . , ; :
=z ' |||
E 05F .'|| db | | i
5 oo |~ ||Lﬁ.-«v»w
-1.0 Henacical rulativity u i - Rumarcal nelativity i .
Recorstrucied (wavelet) Reconstructed |saveet)
| Recaadtructed Lemplate] l |  Reconsirucied {Lerplala) ]
05F T T T =
0.0 WMMM\WWM
03 ([= Fesiduai] i
L . . .
_ 512 8 K
] -—
L 258 =
z 65
§ 128 43
3 N
g 64 271
@ 0 £
0.30 0.35 0.40 0.45 0.30 0.35 0.40 0.45 z

Time (s) Time (s}

Figure 1.1: The GW event of GW150914, which was the first binary black hole
coalescence GW signal to be detected in human history. The panels show the event
at two detectors, both of which belong to the LIGO collaboration, and can be seen
to be in agreement with each other, as well as with a NR waveform. Since this signal
was detected, many more GW events have been observed. Image from .

introductory material for that research is confined to that chapter to preserve a
logical flow.

Over the course of this chapter, we will provide the background material neces-
sary for this thesis. We will provide some details on General Relativityﬂ (GR), and
then introduce, in detail, NR. We continue the chapter by exploring Cosmology and
Dark Matter (DM), where we provide more details on axions, and “axion stars”; an
ECO that is comprised of axions. The chapter ends with an overview of the code
we used to conduct the research presented hereﬂ

Throughout this thesis we will be using Einstein Summation Convention, with
Greek indices, (a, 8, i, v, ...), referring to four dimensional spacetime, and running
from 0 to 3, and Latin indices, (i,j,k,I,...) referring 3 dimensional space and
taking the values 1 to 3. The signature of the spacetime metric is taken to be
(—=1,+1,41,+1), and unless otherwise specified we use the units that A = ¢ = 1
and, we use the reduced Planck mass M, = 1/ V8rG. Other conventions will be
described within text of the appropriate chapter.

2Tt should be noted that this section is not intended to be a detailed introduction to the
subject, and instead we refer the reader to any other standard textbook, for example Schutz [16]
or Carroll .

3 As previously stated, all background information necessary for the understanding of Khrono-
metric Theory is presented within the research chapter itself.
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1.1 General Relativity

When Einstein introduced the theory of Special Relativity (SR) [18,|19] in 1905,
it became clear that Newton’s theory of gravity would need to be modified. This
is due to the fact that Newtonian gravity implies that gravitational interaction is
transmitted between bodies at infinite speed, in sheer contrast to SR; which states
that no physical interaction can travel faster then the speed of light |20} p.1]. Thus,
at the end of 1915, Einstein postulated General Relativity (GR) [21]; which is what
we now consider to be the modern theory of gravitation.

Simply put, GR considers that gravity is not a force, and instead it is a mani-
festation of the curvature of spacetime. A massive object will cause a “bending” in
spacetime, and subsequently that “bending” then controls the movement of phys-
ical objects. This can be summarised more beautifully, by the words of John A.
Wheeler [22] as:

“Matter tells spacetime how to curve, and spacetime tells matter how to move.”

Although these words are beautiful, a far more informativelﬂ description of GR, is
presented in it’s mathematical form via the Einstein Field Equations (EFEs). These
are defined as

G = My Ty, (1.1)

where M, is the reduced Planck mass, 7, is the energy-momentum (EM) tensor,

and G, is the Einstein tensor defined as
1
ij = Rl“’ — éng,, (12)

where R, is the Ricci tensor, R is the Ricci scalar, and g, is the metric tensor.
The components of this equation shall be discussed later in the section, but for now
it’s sufficient to say that the Einstein tensor encodes the curvature of spacetime,
whereas the EM tensor encodes the matter source. One can see that the EFEs are
written using tensors that are invariant under coordinate transform, and hence, are
a direct consequence of The Principle of General Covariance; that states the laws
of physics must be invariant under coordinate transform, and hence, the same for
all observers.

GR is in-fact based on two key principles; The Principle of General Covariance,
as stated before, and the Finstein Equivalence Principle (EEP). The EEP states in
a free-falling reference frame gravitational force effectively vanishes, and the laws

of physics apply just like they do in SR. In other words, the EEP implies that

4Some may consider the mathematical form of GR far more beautiful then any combination of
words used to describe it.
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there exists local inertial frames. However, it should be noted that in a non-uniform
gravitational field, these local inertial frames cannot be “glued” together to form a
global inertial frame.

Geometrically, we can describe the EEP by saying that locally we can have a
spacetime metric that is that of Minkowski. The fact that there is no global inertial
frame corresponds to saying that there is no set of coordinates in which the spacetime
metric has this form everywhere. This is an equivalent statement to the description
of a curved manifold, which is the fundamental basis that GR is built on |20, p.28].

The mathematical basis for GR is complex, and one could write many chapters
describing it. Instead here, using the notation of [20], we will briefly describe some
key things that are helpful to the reader.

Extending the concept of the spacetime interval, ds* = 1, dxz"dz", between two
points in SR, we can “promote” the flat space metric (also known as the Minkowski

interval), 7),,, to the metric tensor, g,,, such that
ds* = g, datdz” . (1.3)

The metric tensor can also be defined to as a one-to-one mapping between one forms

and vectors, and as such can be used to raise and lower indices, e.g
v =g"v,, U= g, Ly = guagusl® (1.4)

where ¢g"” is the inverse of g,,, and we have shown how this notion raising and
lowering indices can be generalised to the notion of a tensor, L,,. When taking
the derivative of a tensor, one must also consider how the basis vectors change from
one place on the manifold to another. We can signify this by replacing the partial
derivatives, d,, that would be taken in flat space, with a covariant derivative, such
that

Vap” = 0ap” + 0TS, Vaps = 0aps — pul's, (1.5)

where V, is the covariant derivativeﬂ, and we define the metric compatible Christoffel

symbol, I'7,3, to be

1
F’YQB = ég’yg(aagdﬂ + aﬁgaa - aogaﬁ) . (16)

5Tt should be noted that other notation can sometimes be used to define the covariant derivative,
such as V,v, = v,,, = D,v,. In this chapter we will use V,, to symbolise the covariant derivative,
and where other versions are used, it will clearly be written in the text.
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For completeness, we define the covariant derivative of a 2 rank tensor is

Vol = 0oLM +Th, L% +TV,L"
vaLuu = aaL,ul/ - ngLﬁl/ - FguLﬂﬂ )
Volt, = 5L, +Th L%, —T%5 LFs. (1.7)

Using Eqn. , one can then calculate the covariant derivative of any tensor.
The map defined by the Christoffel symbols, defines the notion of parallel transport,
which allows us to drag a vector along a certain curve keeping it unchanged. Note
that we do not need the Christoffel symbols explicitly defined by the metric for this
definition, and hence, in this situation the Christoffel symbols are referred to as the
connection coefficients.

Using the concept of parallel transport, one can define a tensor associated with
the curvature of a manifold by considering the parallel transport of a vector, v,
along a closed circuit. We define this tensor as the Riemann tensor, R¢,,,, and can
equivalently (and more easily be defined) as the commutator of covariant derivative
acting on vector such that

[V, Voo = RS,00" (1.8)

with the Riemann tensor explicitly defined as
RE,[U/O’ = _aareuu + aureua + FaMOFEaV - Fauy]-—‘goaa . (19)

In flat space all components of the Riemann tensor vanish. The various symmetries
of the Riemann tensor imply that in 4 dimensions there are only 20 independent
components, and also imply that the trace over the first and last pairs of indices
vanish. The trace over the first and third index, does not vanish, and as such we

can define the Ricci tensor as
R =Ry (1.10)

The Ricci tensor is symmetric, and hence, in 4 dimensions has 10 independent
components. Therefore it should be noted, that even if the Ricci tensor vanishes,
components of the Riemann tensor may not. One can finally define the Ricci (or
Scalar) curvature, R,

R=R",. (1.11)

With these terms defined, one can see that the Einstein Tensor defined in Eqn. ([1.2)),

contains terms that define curvature. One can get intuition for the RHS of the EFEs



Chapter 1. Introduction 6

by considering the physical interpretations of the EM tensor

T% = energy density, (1.12)
T% = momentum density, (1.13)
T = flux of 4 in direction j . (1.14)

In general, the EM tensor is symmetric, and in GR, we refer to any source for
it as matter (for example a scalar field we would use the terminology of scalar
field matter). A black hole will have an EM tensor equal to 0. With the EM
tensor defined, one can then construct various scenarios to study many interesting
phenomena using GR.

GR has many observable consequences which have been used to validate the
theory from its inception. In 1916, Einstein [23] suggested 3 tests of GR to test
some of these consequences: 1) the perihelion precession of Mercury’s orbit, which
was immediately verified by work done by Levenier in 1845; 2) the deflection of light
by the Sun, which is predicted by GR and not Newtonian gravity, and observed by
Eddington in 1919 [24]; and 3) the gravitational redshift of light which was observed
in 1959 in the Pound-Rebka experiment [25]. Furthermore, GR is tested on a daily
basis by anyone who uses GPS!

Recently, one of the most popular consequences of GR has been the existence,
and subsequent detections [7H13] of GWs. Simply put, GWs are propagating waves
in spacetime emitted by the relative motion of masses. Thus far, GWs of the bi-
nary coalescence of both black holes and neutron stars have been detected by the
LIGO/Virgo collaboration. Within this theses, we approximate the GW signals that
could be emitted by the binary coalescence of a class of ECOs known as axion stars,
which is studied in Chap. [2l We will provide the reader with information as to what

an axion star is in Sec. [[L3.5

1.2 Numerical General Relativity

Einstein’s theory of General Relativity (GR) beautifully describes the nature of a
strong gravitational field, and mathematically can be written as the Einstein Field
equations (EFEs), Eqn. (L)), which describes the relationship between curvature
and matter. Their exists many exact analytical solutions to the EFEs, however,
their are many more scenarios in which the equations cannot be solved analytically.
For example, if one has a large amount of asymmetry in space and/or time NR is
usually required. We want to study these scenarios, but how can one do so when
there is no analytical solution? Simply put, we can reformulate the EFEs into a

form that can be solved numerically, such that we can study the dynamics of the
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chosen scenario, by providing initial data at some initial time, ¢y, and evolving it
numerically to some final time, ¢;. In the following section we will study how to

reformulate the EFEs to achieve this, and we will be using notation and formalism
from [1720}26/28]

1.2.1 341 split of spacetime

To describe scenarios which have no analytical solutions to the EFEs, we want to
initially provide data at some time, ¢y, evolving it numerically to some final time, ¢y,
and then interpret the corresponding dynamics of the system. The formulation of
such a system is known as an “initial value” or “Cauchy problem”: “Given adequate
initial (and boundary) conditions, the fundamental equations must predict the future
(or past) evolution of the system” 20} p.65].

The EFEs are written in such a way that space and time are treated equally, i.e
spacetime, and as such, one cannot easily describe the evolution of a system forwards
in time. Therefore, it would appear that to achieve our desired formulation, we
need to explicitly split spacetime into space and time. This is known as the “341
formalism”, and here we will be specifically describing the ADM (Arnowitt Deser
Misner) [29] decomposition of spacetime, that was later reformulated by York [30].

We consider a globally hyperbolic spacetime with the metric g,s. Any globally
hyperbolic spacetime can be completely foliated into non-intersecting spacelike hy-
persurfaces, ¥; (see Fig. . We can identify the foliation with a scalar function,
t, that can be interpreted as a global or universal time function.

Consider a specific foliation with two adjacent spacelike hypersurfaces, ¥;, and

Yirat- The geometry of the spacetime can then be determined with the following 3
definitions (see Fig. [1.3)):

e The 3D metric, v;;, that measures proper distance within the hypersurface -

di* = v;dx'da’ . (1.15)

e The lapse, a(t, z"), of proper time, d7, between both hypersurfaces measured

by an observer moving along the normal to those hypersurfaces -

dr = a(t,x")dt . (1.16)

e The relative velocity, 8°(¢, z7), between the observers and the lines of constant

6Tt should be noted that although the notation and formalism was used from throughout [17,
201/26-28], the ordering of the presentation reflects that of [20]
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Figure 1.2: A schematic of the foliation of a globally hyperbolic spacetime into
spacelike hypersurfaces, labelled ¥;. Image from [31].

spatial coordinates -

where we will define the relative velocity as the shift vector.

The choice in which one foliates the spacetime into spacelike hypersurfaces is not
unique, and neither is the way in which the spatial coordinates propagate from one
hypersurface to another, therefore it should be noted that the lapse, a(t, '), and
the shift vector, B3%(t,z7), are freely specifiable, and are known as gauge functions

(see Sec. for a full discussion).

Using the 3 definitions above, the metric takes the following form
ds® = (—a® + Bif")dt* + 2B;dtda’ + vijda'da’ (1.18)

where f3; = ;7. One can then define a unit normal vector, n*, to the hypersurfaces
such that
n* = (o', —8"/a), n,=(—a,0). (1.19)

The normal vector will be used in what follows, and it should be noted that we are
free to choose the sign of the normal vector, and as such, here we have chosen it in

a way to ensure it is future pointing.
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odt
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Figure 1.3: A schematic of two adjacent spacelike hypersurfaces, >, and 3, 4 with
the definitions of the lapse, a and the shift, 4°. ITmage from [31].

1.2.2 Extrinsic curvature

We have defined the foliation of spacetime via choosing spacelike hypersurfaces,
and as such, we must distinguish the difference between the intrinsic curvature (the
curvature coming from internal geometry), and the extrinsic curvature (curvature
coming from the way the hypersurfaces are immersed in 4D spacetime).

The intrinsic curvature is simply defined as the 3D Riemann tensor, ® Ry,
in terms of the spatial metric, v;;. The extrinsic curvature, K,g, is defined as the
change to the normal vector, as it is parallel transported from one point on the
hypersurface to another [20, p.69].

To mathematically define the extrinsic curvature, K,g, we must first define the

projector operator Pg onto the spatial hypersurfaces

Pg =465 +n"ng. (1.20)
Using the projection operator, P, the extrinsic curvature, K,p, is defined as

Kag = —ngung. (121)

K,z is a purely spatial tensor i.e K,3 — K;; and is symmetric. Using this knowledge,
as well as the definition of the projection operator, one finds that the extrinsic

curvature is defined as

—1
Kij = 5~ (=0vy; + D;fi + Diffy) , (1.22)
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where we define D; as the 3D covariant derivative associated the spatial metric, v;;,
and is nothing more then the projection of the 4D covariant derivative, Dg = PgV,.

Notice that one can rearrange the definition of the extrinsic curvature, K;;, such that
8t%j = —20&Kij + -DZB] + D]ﬁl . (123)

We have just defined the time evolution of the spatial metric, v;;, and as such have
obtained our first set of evolution equations. This was obtained only from geometric
principles, it is clear that to obtain the remaining evolution equations, one must use
the EFEs.

1.2.3 Constraint equations

As the dynamics of a gravitational field are contained within the EFEs, one must
consider them. This is done via a series of projections onto the spatial hypersurface,
and normal to it, of the Riemann tensor, and then substituting the EFEs into the
the results of the projections. The full projection of the Riemann tensor onto the

spatial hypersurfaces is known as the Gauss-Codazzi equationd’]
P)P5PYPI Rsonoe = ¥ Rappn + KapKpy — Kou Kgy (1.24)
Contracting both sides by ¢**¢®" we find that
2n'n* Gy = O R+ K? — K, K" (1.25)
Rearranging, and using the EFEs, the resultant is
H=R+K*— K;K7—167Gp=0, (1.26)

where we have defined p = n#*n*T),,, and used the fact that the extrinsic curvature is

s
a purely spatial tensor. This equation has no explicit time derivatives, and as such,
is not an evolution equation. Rather it is a constraint equation, and must be satisfied
at all times. We refer to this equation as the Hamiltonian constraint equation, H,
although in literature sometimes it is referred to as the energy constraint equation.

The projection of the Riemann tensor onto the spatial hypersurfaces contacted

once with the normal vector is known as the Codazzi-Mainardi equations

P&SPEP;”VR‘MAV = DﬁKa,u - DaKﬁu . (1‘27)

"We will omit the lengthy derivations from this section but the interested reader can find more
details in [26].
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Contracting both sides twice yields
pP*n*G,, = DK — D, K" . (1.28)
Rearranging, and using the EFEs we find that
M= Dj(KY —49K) - 87GS* =0, (1.29)

where we have defined S* = —P%n”T,,, and again we have used the fact that
the extrinsic curvature is a purely spatial tensor. As before with the Hamiltonian
constraint equation, these equations contain no time derivatives, and as such are
constraint equations. These are known as the momentum constraint equations, M°.

The Hamiltonian, Eqn. (1.26), and Momentum, Eqn. (1.29)), constraint equations
allow a 3 dimensional slice with data to be embedded in a 4 dimensional spacetime.
They are independent of all gauge functions, and imply that the initial data for the
EFEs cannot be freely prescribed. A discussion on providing initial data that satisfy
these equations is given in Sec. [1.2.5]

1.2.4 Evolution equations

As previously shown in Sec. we have obtained 6 evolution equations, Eqn. ({1.23]),
that relate to the dynamics of the variables from geometrical principles. Here we

shall obtain the remaining evolution equations that correspond to the evolution of
the gravitational field. To begin, we contract Eqn. ((1.24) by g** such that

P§P](Ryy + 10  Rygro) = @ Ry, + KKp, — Koy K§ - (1.30)

The projection of the Riemann tensor contracted twice by the normal vector can be

shown to be

1
P5PIn’n* Rsone = (n*DeKgy + KpcDyn® + Ko Dan®) + Ky K, + ~DsDya.
(1.31)

Next, using an alternative form of the EFEs

1
R, = 87G (TW -3 g,WT) , (1.32)

one can show that the time evolution of the extrinsic curvature, K;; is

8tKl'j = ﬁkaka + K]ma]ﬁk + Kkj&ﬁk - DiDjOé
+a (PR, + KK — 2K KF) + 4ma (7;;(S — p) — 25;) , (1.33)
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where S = 5% and S;; = 7;,7;, T . Together with Eqn. , these are the full 12
set of evolution equations that are known as the ADM equations [29,30], although
the ones presented here are the ones reformulated by York [30]. These equations,
together with the constraint equations, are completely equivalent to the EFEs, and
therefore allows us to write the EFEs as a Cauchy problem. It is possible to show
that using the Bianchi identities [32], that the evolution equations imply that if the
constraint equations are initially satisfied, then they will continue to be satisfied
throughout evolution. Therefore one only has to solve the constraint equations at
time, tg.

It should be noted that we do not have evolution equations for the gauge quan-
tities, and we can choose these freely. The following section, Sec. will discuss

this in more depth, as well as how to construct initial data.

1.2.5 Initial data and lapse condition

The existence of the Hamiltonian, Eqn. , and Momentum, Eqn. , con-
straint equations implies that we are not free to arbitrarily choose initial data for
all 12 dynamical quantities {7;;, /(;;}. Instead, the initial data must be chosen in
a way that satisfies these constraints, as well as to represent physical values of the
scenario in which one wishes to simulate.

The constraint equations remove 4 of the 12 degrees of freedom for the initial
data. They are partial differential equations of the elliptical type, and in general
are difficult to solve. There exists two common methods to solve the constraint
equations in specific scenarios; which are the conformal decomposition of York and
Lichnerowicz [33/135], and the thin-sandwich technique [36]. Neither of these meth-
ods are used in the research in this thesis, however we encourage the interested
reader to refer to the original sources, or [20], for a review. Instead, throughout this

thesis two simple techniques are used:

1. We can consider the metric to be conformally flat, which removes 5 of the 8
remaining degrees of freedom, and then we are left to impose some condition
for the extrinsic curvature to remove the remaining 3. This technique was
used in Chap. 2] and the specifics of the conditions that were imposed for the
extrinsic curvature are given in Sec. [2.3.3

2. One can consider specific symmetries with the initial data, e.g spherical sym-
metry, which greatly simplifies initial data generation. This was done for the
research presented in Chap. [3] and Chap. [4]

After initial data has been set for the 12 dynamical variables, {7;;, K;;}, one can ask

what values to assign initially to the 4 gauge conditions, {a, 3;}, and furthermore
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Figure 1.4: A schematic view of the collapse of the lapse when approaching a sin-
gularity. Image from [20].

how these gauge conditions evolve. These can be freely set, however, there are
choices that will aid numerical stability.

In order to prescribe the foliation of the spacelike hypersurfaces, we need to
calculate the lapse function, a(t,z'). The most obvious choice, and used in early
work in the 1960s [37], is to set a(t,z’) = 1, and is known as geodesic slicing.
However, this is a very poor coordinate choice, as if one thinks about observers in
freefall in a non-uniform gravitational field, different observers will fall in different
directions, and there is nothing stopping them from eventually colliding. When
this happens the coordinate system stops being one to one and is singular i.e the
observers have become “focused” by the gravitational field [20, p.123].

To consider a solution to the “focusing” effect, one can first consider the evolution

of the trace of the extrinsic curvature, K,
WK = 'O, K — D*a+ o [KyyK” +4n(p+ S)] | (1.34)

where the Hamiltonian constraint equation has been used to eliminate the Ricci

scalar. With geodesic slicing, this becomes

OK — B'OK = [KyK7 +4m(p+ 9)] . (1.35)
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The right hand side of above equation is positive if the strong energy condition holds.
Hence the extrinsic curvature will grow without bound, and using the relation that
V" = —K, it implies that volume elements will collapse to zero. A solution to
this is to ask that

OK =K =0. (1.36)
Thus, Eqn. (1.34]) becomes
D’a =« [K;;K7 +4x(p+ 9)] . (1.37)

This is known as maximal slicing [33], and has a key advantage of singularity avoid-
ance. This means that the condition does not allow the spatial hypersurfaces to
come into contact with the physical singularity, as illustrated in Fig. [I.4. However,
this slicing condition is not used due to two factors: 1) it is very numerically ex-
pensive in 3D due to it being an elliptical equation; and 2) to avoid collision with
the singularity, the spatial slices become distorted and, as time progresses, this can
result in a rapid growth of gradients around the singularity, which causes numerical
codes to failfl

In the research that follows we use the Bono-Masso type slicing condition [39],
which is designed to be “singularity avoiding”. This is achieved via reducing the

lapse in areas of high curvature and has the form
oov = — a2 K + 3o, (1.38)

where 71, po and p3 are constants, of which the specifics that are used in this thesis
will be described in Sec. [I.4] Much like maximal slicing, this condition leads to slice
stretching, and as such an appropriate shift condition is needed to counteract this.

For many scenarios, setting the shift, 5;(¢,2") = 0 simply works. For other
scenarios, setting the shift equal to 0 is a very poor coordinate choice. How to evolve
the shift is far less understood then that of the lapse, however, slice stretching can
give us some intuition as to how one can set the shift.

Slice stretching causes failure due to large gradients forming around the singu-
larity. One way to counter this is to relabel spatial points such that they shift away
from the singularity, and thus reduces the slice stretching effect. An effective way
to achieve this is written in the BSSN formulation, and as such, shall be specified

in the next section.

8This effect is actually a combination of two effects, slice sucking and slice wrapping. We direct
the reader to [38] for more information.
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1.2.6 BSSN formulation and shift condition

The ADM evolution equations are not unique as one can add arbitrary combinations
of the Hamiltonian and Momentum constraint equations to them to obtain new
evolution equations. Since the early 1990’s, as researchers started to work with
full 3D evolution codes, it was found that that ADM lacked the necessary stability
properties for long-term numerical simulationsﬂ [20, p.82], and as such the ADM
equations needed to be reformulated. In this section we will discuss a commonly
used formulation known as BSSN [40-42], which is used for the numerical simulations
conducted in this thesis.

We can first consider a conformal rescaling of the metric, such that
Yij = ¢4’~Yz’j ; (1.39)

where v is the conformal factor and 7;; is the conformal metric. As per [43], we
choose that 1* = 1/x, as when considering black hole spacetimes, x goes to zero
at the black hole singularity, whereas ¢ has a 1/r singularity. We choose that
det7,;; = 1, and that

wl—

X = (det ;)% , (1.40)

We demand that this relation remains satisfied throughout evolution. Using Eqn. (|1.23)),

we find that the evolution equation for y is

2 2

The extrinsic curvature is decomposed into its trace, K, and its tracefree part, A
such that

17
1
Aij = Kij — 3v K (1.42)

The tracefree part of the extrinsic curvature is conformally rescaled of the form

A —

/N

1 -
~ A 1.43
o (1.43)

Using the decomposition for the extrinsic curvature, and its conformal scaling, one

9This is related to the fact that the ADM evolution equations are only weakly hyperbolic.
See |20] for an analysis of this.
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can then find the evolution equations to be

- ~ . - 2 .
Oi; = —2aAy; + 7 0; 8" + 708" — g%’jakﬁk + B"0Aij (1.44)
. P 1 .
8tK = —f)/Z]DiDjOé + « <AUA’LJ + §K2) + ﬁ’@lK + 47TGOé(p + S) s (145)

8,5/1,‘]‘ = [—DiDjO./ + xa (R” - 87TGOZSU)]TF + CM(K/L]' - Q/IilAlj)
3 3 9 3
+ A0, 85 + A0t — gAijakBk + BF0p Aij (1.46)

where in the evolution equation for K, the Hamiltonian constraint equation has
been used to eliminate the Ricci Scalar, D; is the covariant derivative with respect
to the physical metric, v;;, and [...]7F denotes the tracefree part of the expression
within the brackets.

We introduce the conformal connections I'' = 7% I where I'?, are the Christof-
fel symbols associated with the conformal metric 4;;. As I'* is considered an inde-

pendent variable, we can then calculate the evolution equations for them as

o o~ 2 .. 3 -..0; -~ ~ .
oI = 2« ([‘;kAJk_ggymajK_ﬁAmJTX) —2A”6ja+ﬂk6k1”

. . 1 .. Q.. ~ . .
+ 00 + 70,08 + ST — OB — 167Gy S;,  (147)

where the divergence of the of /L-j has been replaced with the momentum constraint,
as, without this substitution the equations are violently unstable. In the evolution
equations for flij, we need to calculate the Ricci tensor associated with the physical
metric, which can be separated as

17 )

(1.48)

where fN{Z-j is the Ricci tensor associated with the conformal metric

1 Jitm g g B kT Jitm I B B I
Rij = =53 00 + a0y T + T+ 3 (206 pom + Tl )+ (149)

and Rsz denotes additional terms that depend on y. One should note that we now
use the derivative of the evolved I in the calculation of the Ricci tensor. The BSSN
formulation turns out to be far more stabld™¥] then ADM in all cases studied until
now [20, p.87], and it is the formulation which is used to conduct the numerical
simulations throughout this thesis.

With the BSSN formulation introduced, one can now specify a shift condition

10T his stability comes from the fact that the formulation is strongly hyperbolic, which was shown
by Sarbach et al [44].
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that reduces the slice stretching effect that was described in Sec.[1.2.5 Noting that,
I% = —0,49, a strict criteria known as minimal distortion can be adopted that
will minimise that change in volume elements during evolution. This was was first

suggested by Dirac [45],46], and is given by
0,77 = 0. (1.50)

In BSSN this is equivalent to —9,I" = I'" = 0 and is sometimes also referred to as
“Gamma freezing”. Enforcing this condition would lead to a set of coupled elliptical
partial differential equations that are difficult to solve in 3D. As such, an alternative
approach known as the Gamma driver condition [47] attempts to drive I to 0 is
given by

o8 =mB', 9B =na™I" — B, (1.51)

where 7),, are constants that are tuned to the scenario which you are trying to solve.
Combing this condition with Eqn. (1.38]), is known as the moving puncture gauge
[43,48], and allows one to achieve long term stability of black hole spacetimesE-I.

In the work that follows, the technical knowledge presented throughout this
section will be used, however the specific equations and gauge conditions used will
be presented in Sec. [1.4, However, before this, in the next section we will provide
some technical knowledge into cosmology, dark matter, and axions, which are the

subject of some of the simulations in this thesis.

1.3 Cosmology, dark matter and axion stars.

From as early as 100,000 years ago, when cosmology was considered to be any
daily experience outside of the normﬁ, a period known as “Magic Cosmology” [50],
through the rise of the awareness of the cosmological order in the Neolithic era [51],
and subsequent continuation of the study of cosmology into the modern day, the urge
to understand the world and universe around us has been a driving force of humanity.
In this section, we will give the reader an understanding of modern cosmology, which
naturally leads into a discussion on dark matter (DM). After commenting on different
DM candidates, we focus on talking about the axion; specifically on the strong CP
problem in which it is motivated, the origin of the axion, and how axions can be
produced cosmologically. We finish the section by talking about axion stars, which

if their corresponding GWs are detected, could provide direct evidence for dark

"' The evolution of a black hole in this gauge is sometimes referred to as the “trumpet” solution
[49].

2Examples of things considered to be outside of one’s daily experience include: extreme weather,
earthquakes and sharp changes in the environment.



Chapter 1. Introduction 18

9 e

—500 e— . 7 . C— 500 ,LLKCME

Figure 1.5: The Cosmic Microwave Background (CMB) as seen by the Planck mis-
sion. The CMB is radiation which accurately takes on the form of a black body
with temperature, Ty = 2.725 + 0.001 Kelvin [52, [p.75]. The CMB was produced
at the surface of last scattering and gives a good representation of the structure of
the universe at large scales. Small temperature fluctuations provide the seeds of
structure formation in the universe. Image from [53]

matter.

1.3.1 The standard Cosmological model

The cornerstone of modern cosmology is that at the largest length scales, the uni-
verse is isotropic and homogeneous [16, p.319]. This cornerstone is known as the
Cosmological Principle, and can be seen when one examines the cosmic microwave
background (CMB), see Fig. Our universe expanded from a dense hot beginning,
The Big Bang (BB), and today, the universe is still expanding, as observationally
confirmed by Lemaitre in 1927 [54] and Hubble in 1929 [55]. We call this model of
the universe the “Hot Big Bang” model, and as such, we write the metric of the

UNIVerse as

2

1 — kr?

ds® = —dt* + a*(t) ( + r2df® + r? sin? (0)d¢2> : (1.52)
where a(t) is the scale factor of the universe and k represents the curvature of

the universe. This ansatz of the universe is known as the Friedmann-Lemaitre-
Robertson-Walker (FLRW)E metric, and can be used to solve the EFEs. We can
modify the EFEs such that

Gy + Mgy = M*T,, (1.53)

13In the literature this is often referred to as both the Robertson-Walker (RW) and the
Friedmann-Robertson-Walker (FRW) metric, although here we will refer to it as the FLRW metric.
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where A is the cosmological constant. This term was originally introduced by Ein-
stein to model the universe as being static, although now it serves a different purpose,
which we will explain later. As the universe is isotropic and homogeneous, a rea-
sonable approximation for it’s energy-momentum (EM) tensor is that of a perfect
fluid, such that

" = (p+ P)U"U" + Pg"”, (1.54)

where P is the pressure and p is the energy density of the fluid, and U* is the 4-
velocity of the fluid with respect to the comoving frame. Using this EM tensor, as
well as FLRW metric, we can solve the modified EFEs, Eqn. (1.53), such that

N2

a 1 k 1

e Sy N 1.
<a> 5 P a2+3A, (1.55)
a d7G 1
2 3P —A 1.56

where @ = 0,a, and where we define Eqn. (1.55)) as the Friedmann equation and
Eqn. (1.56) as the acceleration equation. By considering energy conservation, i.e

V,T* =0, we can show that the continuity equation is

p=-3 (g) (p+P). (1.57)

Our universe contains many constituents components, and as such, we can obtain
the scaling of the energy density for different classes of matter, by using the equation
of state

P =uwpp, (1.58)

where w; is some constant that depends on the class of matter. Using the equation

of state, we can then solve the continuity equation, such that
p oc a 30w (1.59)

The cosmological constant is often referred to as dark energy@, and currently domi-
nates the universe, representing 69% of the total energy density. It can be described
as the energy density of empty space, and little is understood about it. One can

then rewrite the energy density, pa, of the cosmological constant as

A
&G
14 As this thesis does not concern dark energy, this description is sufficient such that the reader

can understand the methodology of solving the Friedmann equations and the motivation for dark
matter. The interested reader can refer to [56] for more information on dark energy.

pA (1.60)
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Figure 1.6: The constituent components of the universe. Notice that we only un-
derstand 5% of the known universe. Image generated from data provided in [57].

With the assumption that the cosmological constant, is indeed constant, and with
the knowledge that the universe is currently expanding; and as dark energy domi-
nates the universe, one can infer that dark energy has a negative equation of state;
and with the further assumption that the universe is flat (which it is very close to
being as per [57]), one can solve the Friedmann equations, and model the history of
the universe, provided we know w; for each other matter class.

As stated before, the universe contains several constituent components, that as
measured by the Planck collaboration |57, and in order of abundance are: dark
energy (69%), dark matter (26%), baryonic matter (5%), and radiation (negligible).
These abundances are illustrated in Fig.[1.6] We have already briefly described most
of these components, however this thesis concerns itself with modelling dark matter
in full GR, and as such, hopes to shed some light on the 26% of the universe that is
unknown.

Before commenting on dark matter, and hence moving onto the next section,
it should be noted that the BB model contains a number of problems, that one
can address by having a period of inflation at the beginning of the universe. We
refer the reader to [58] for a review of inflation. The BB model and this period of
inflation together are collectively known as the standard cosmological model. For

completeness, a diagram of the evolution of the universe is presented in Fig. [1.7]

1.3.2 Dark matter: evidence and candidates

There exists several pieces of evidence (see [60,61] for a review) which indicate the
existence of dark matter (DM). Often stated first, is that of Ford and Rubin’s [62]
discovery in the 1970’s, and later evidence by Bosma [63] and Rubin et al [64],
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Figure 1.7: Here, the evolution of the universe is described from the beginning of the
universe to today. It is thought that a big bang initiated the universe, with a period
of inflation afterwards. Afterwards the universe evolved at large scales according
to the Friedmann equations, with structure formation occurring at smaller scales.
Image from [59).

that the rotation curves of galaxies are flat, rather than decreasing as a function
of distance from the galactic centre as is expected. This implies that there must
exist far more mass than can be explained by counting bright stellar objects, and
that it could reside in massive dark halos around galaxies. One should note that
this evidence is also sometimes used to justify a modified gravity approach as well,
referred to as MOdified Newtonian Dynamics (MOND) [65], where DM does not
exist, however we shall not elaborate on this further.

Gravitational lensing provides further evidence for the existence of DM; by using
observations of bright, distant objects such as galaxies or quasars and by looking at
the light from these objects that is bent via the existence of mass between the source
and the observer, we can measure the amount of mass that cannot be seen aka, the
DM. This is seen as sometimes multiple images of the same source, or images that
are sheared or distorted. The Sloan Digital Sky Survey (SDSS) [66] provides one of
the most comprehensive surveys which can be used to look at this effect, and has
created 3-dimensional maps of more then 930,000 galaxies and 120,000 quasars.

Another piece of evidence is hot gas inside of clusters. Simply put, using x-ray
emissions of hot gas within galaxy clusters (see [67] for an X-ray temperature map
of the COMA cluster of galaxies which is often referred to when talking about this
piece of evidence), one can calculate the amount of matter needed to form a potential
well deep enough to stop the gas from escaping. The matter needed exceeds what
can be observed, and can be explained by large amounts of dark matter within the

galaxy.
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There exists other pieces of evidence for the existence of DM including the bullet
cluster [68], and the measurements from the CMB [57], however we hope that the
evidence given serves sufficient motivation for its existence. There exists a number

of potential candidates for DM:

e Primordial black holes (PBHs) - With the recent detections of gravitational
waves from a black hole binary, there has been renewed interest in PBH@
[70-73] due to LIGO and Virgo being sensitive to ultra-compact black hole
binaries. However, their are tight bounds on such objects [69,74-78], and
over the next several years, constraints from Advanced LIGO and Advanced
Virgo are expected to improve by more then 2 orders of magnitude. Many of

these bounds also place constraints of the abundance of massive compact halo
objects (MACHOs) and ECOs.

e Weakly interacting massive particles (WIMPS) - Usually proposed as an ex-
tension to the standard model, and mediated by one of the Standard Model
gauge interactions, these particles are experimentally favourable due to the
scale of their interactions, and as such, one can probe them through a num-
ber of experiments including direct detection. See [79] for a review and for a

summary of current constraints.

e Axions - Axions [80-93] where originally defined as the particle generated from
the Peccei-Quinn (PQ) symmetry as a solution to the strong-CP problem in
QCD, but now the concept has been extended to a class of objects known as

axion-like particles (ALPs) with ultra-light masses [94]. See [95] for a review.

Although several models of dark matter are currently a possibility, within this thesis
we choose the axion as the dark matter candidate for further investigation. In the
following sections, we shall provide more details about axions, including further
information about the motivation for them from QCD, the way in which they are

produced cosmologically, and how we would model them in numerical relativity.

1.3.3 The strong CP problem and the axion

As stated in Sec. [1.3.2] axions where originally defined as the particle generated from
the Peccei-Quinn (PQ) symmetry as a solution to the strong-CP problem in QCD.
In the following we shall explain what the strong-CP problem is, and how the axion
solves this. We will be following the presentation of the problem as per [95-98|, and

in particular, using the notation as per [95].

15See [69] for a review.



Chapter 1. Introduction 23

The strong-CP problem is due to the following term in the QCD Lagrangian:

1 .
= 0ocp——GG 1.61
Lyqep = Oqep 39200 (1.61)
where G is the trace of the gluon field strength tensor, and G is its dual. This term
of the Lagrangian arises due to the §—vacua of QCD [9599]. The phase term, Oqcp,

is CP violating, and gives rise to an electric dipole moment of the neutron (EDMN)
dp = 3.6 x 107 %0gcp e cm, (1.62)

where e is the charge of an electron. The EDMN is constrained to |d,| < 2.9 X
10726 e cm [100] implying that 6gcp < 10719, The problem of why fqcp is extremely
small is known as the strong-CP problem, especially since fgcp could obtain an
O(1) [101] contribution from the observed CP-violation in the electroweak sector.

The QCD axion is the dynamical pseudoscalar field coupling to GG, proposed
by Peccei and Quinn (PQ) [102], which dynamically sets Ogcp = 0 via QCD non-
perturbative effects [103], and hence solves the strong-CP problem. Since there
are several QCD axion models, including, but not limited to, the Peccei-Quinn-
Weinberg-Welczeck (PQWW) [102,/104,105], Kim-Shifman-Vainshtein-Zakharov (KSVZ)
[106,/107] and the Dine-Fischler-Srednicki-Zhitnitksy (DFSZ) [108}[109], we will only
sketch out how the problem is solved as per the description in [95].

The idea is that there exists an axion field, ¢, that has some shift symmetry with
only the derivatives of ¢ appearing in the action. One can take 8gcp = C¢/ fo, where
fa is the axion decay constant, and C is the colour anomaly. The colour anomaly
is due to quantum effects violating classical symmetries, is an integer, and is often
referred to as the domain wall number [95]. Within this thesis, we do not consider
values which are not 1, and hence moving forwards we shall remove the term. There
is a shift symmetry under ¢ — ¢ + ¢, and as long as the shift symmetry violation
is induced only by quantum effects, any contribution to fgcp can be absorbed in a
shift of ¢. The action only then depends on the field multiplying GG, then if the
potential for the shifted field is minimised at ¢/ f, = 0, then the strong CP problem
is solved.

The solving of the strong-CP problem is one of several motivations for the axion.
As previously stated, the concept has been extended to a class of objects known as
axion-like particles (ALPs) with ultra-light masses [94], and can be also be motivated
in field theory and string theory. See [110,[111] for reviews. Within this thesis, we
do not make any assumptions about the origin of the axion, and hence, we remain
indifferent to the specific choice of theoretical motivation. Hence, we shall now

discuss how the axion can be described in a model independent way, and how it is
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produced cosmologically.

1.3.4 Axion cosmological production and scalar field dy-

namics

In what follows, we shall discuss the cosmological production mechanisms for the
axion in a model independent way, and the relevant scalar field dynamics of the
axion using the ADM metric that is used within this thesis.

Two important scales govern the production of the axion; a symmetry breaking
scale, f,, that we will refer to as the axion decay constant, which is a fundamental
scale at which the PQ symmetry is broken; and Tss << f,, which is some temper-
ature at which non-perturbative physics becomes relevant and provides a potential
for the axion. The production mechanism is as follows:

We begin by considering the complex PQ-field, v/, which has the potential

v = (- ), (163

After PQ symmetry breaking, and writing the PQ field as 1 = (£/y/2)e®/fe the
radial field, £, acquires a vacuum expectation value such that (1) = (f,/v/2)e?®/fa.
The angular degree of freedom, the axion, ¢, is a Goldstone boson of the broken
symmetry. The axion has a shift symmetry, ¢ — ¢ + ¢, as motivated in Sec. [I.3.3]
however at some temperature, Tsg << f,, and hence scale A,, the shift symmetry

is broken, and a potential for the axion is induced. This potential'is given by

Vo) =t f1-cos (F)| sz 1-eos (F)] 0 e

where m, = A2/f, is axion mass which is defined as the minimum of the potential
when ¢ = 0. Assuming that the symmetry breaking scale is small, the axion mass
will also remain small, and due to the hierarchy of scales, the axion will be lighter
than the radial field. This means that one can simulate the axion as a real valued
scalar field with the axion potential just defined. Note that this potential has a
discrete shift symmetry, ¢ — ¢ + 27n/ f,, where n is some integer.

In the limit of small angles, we can expand the axion potential in orders of

(¢/f.), and as such, we can approximate the axion potential, as a massive scalar

16The potential given here is not unique, and it cannot be without detailed knowledge of higher
energy physics. However it is useful for studying axion self-interactions [95]. An example of another
form of the potential is given in [112] where they use a form of construction cos™ ¢/ f,.
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field. Hence the potential is given by

Vo(o) = 5m?¢”, (1.65)

where m is the scalar field mass, and we have omitted higher order terms. As within
this thesis, we use potential Vp as an approximation for an axion potential, we can
set m = my,.

When the temperature reduces further such that 7' < Tss and the Hubble scale,
H , is less than m,, the axion field begins to oscillate around its potential minimum,
and begins to behave like dark matter [113]. The dark matter then begins to cluster
and forms structure in the universe. What happens next is then determined by the
perturbations within the axion field, and that in turn depends on the scale at which
PQ symmetry breaking occurred. If symmetry breaking occurs during inflation,
then the axion field has small, almost scale-invariant isocurvature perturbations as
well as dominant adiabatic curvature perturbations. If symmetry breaking occurs
after inflation, then the adiabatic curvature perturbations are still present, but the
isocurvature perturbations become O(1) over scales of order of the horizon size of
symmetry breaking [114].

The two scales, f, and m,, can take a large range of values depending on what
the chosen theory for the axion is. For the QCD axion, Aj = Adcpm., with Adop =
200 MeV, with m, being the up quark mass and the axion decay constant lies in the
range 10° GeV < f, < 1017 GeV. This implies that m,, is in the range 4 x 1071%eV <
me < 4 x 1072eV. In string theory, f, can take values near the GUT scale, 10'¢ GeV,
as well as at lower scales 101712 GeV. In specific examples, one finds that f, < My,
where M, is the Planck mass. For more information about these constraints, see [95].

To model the evolution of the axion field, with either potential, in full GR, we

consider a single real minimally coupled scalar field, ¢, with the following action
1
Sy = /d4x\/—g (évyww +V (<z§)> , (1.66)

where g = det (g,,), and V (¢) is the potential of the scalar field. One can then

obtain the Klein-Gordon equation in curved space

dv
Q“VV,LVM = @ , (1.67)
where we remind the reader that V,¢ = 0,¢. As we wish to model the scalar
field numerically in full GR, using the ADM metric, Eqn. (1.18)), we can decompose
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Eqn. (1.67)) into two first order equations using the variables ¢ and II,;, such that

1 .
My =~ (O — B'0;9) . (1.68)
Using these variables, we define the evolution equations as

O = ally + 3'0:0, (1.69)
. . . ) dV
0tHM = BIGZHM + ozaiﬁng + 8@8@04 + o (KHM — ’)/Z]P?jakgb + %) ; (170)
where the Eqn. (1.69)) is just a rearrangement of the definition of II,;. We calculate
the EM tensor for the scalar field as

1
T =V, 0V, — 59 (VeoVeip+2V) . (1.71)

Combing the equations of motion, and the EM tensor, we now have all the informa-

tion we need to evolve an axion field in full NR.

1.3.5 Axion stars

The equations of motions of a scalar field, defined in Eqn. and Eqn.
whilst using the axion potential Eqn. , contain a solution for a quasi-stable,
localised oscillating solution known as an axion staf [| [116]. These are related to a
family of compact scalar field (pseudo)-solitons including Wheeler’s “geons”, boson
stars, and oscillotons (OS) [117-121]. Here, we also define an OS as a massive scalar
field with the potential defined in Eqn. (|1.65)). They provide a good approximation
of an axion star where the leading order ¢* interaction is negligible due to having a
large axion decay constant, f,, [114}|122}|123], as previously noted in Sec. . We
refer the reader to Chap. [3| and Chap. [ for more information about them, however
for now one can think of them as a tool to model axion stars.

Solutions for spherically symmetric axion stars were first calculated numerically
in |124], and where first studied using NR in [114]. It was found that three re-
gions could be mapped onto an “axion stability diagram” (see Fig. , which were
parametrised by the initial ADM mass of the star, M4py;, and the axion decay

constant f,. These regions where defined as

1. Long-lived oscillating axion star solutions, with base frequency m,, modulated

by self-interactions

2. Collapse to a black hole

17See [115] for a review.
'8In the literature these objects have also been referred to as Bose stars.
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Figure 1.8: The “axion stability diagram” which shows 3 regions parametrised by
the initial ADM mass of the star, Mpys, and the axion decay constant f,. These
regions are: R1 - stable star, R2 - black hole collapse, and R3 - dispersion region.
The dashed line indicates where the axion mass is negligible. Other symbols on
the graph indicate [114] choose to explain these simulations in more depth. Image
from [114].

3. Complete dispersal of the axion star via scalar radiation, sometimes referred

to as an “axion star supernovae”

These boundaries intersect at an approximate triple point of approximately (Mrp, frp) ~

(2.4 M} /mq,,0.3 My). This triple point was later verified by [125] where they per-
formed many numerical simulations in spherical symmetry, and commented that as
one approaches the boundaries between regions, the line no longer “remains clean”,
and that there could exist special extra final states. We do not comment on these
additional final states in this thesis due to the extreme cost of probing this region
in full 341 NR. A similar stability diagram exists for OS, first studied in [126].

We do not assume all of the axions in the universe are contained with axion stars
(see e.g. the compilations of PBH constraints in [69,76,77]). If these objects exist
in our universe, there existence could be confirmed by the detection of gravitational
waves from an axion star binary inspiral. This would be a smoking gun for the exis-
tence of axions, and would provide a clear direction for future research. Hence, with
such a detection a possibility, within this thesis we will investigate some fundamen-
tal properties of axion stars, as well as make estimates for their gravitational wave
emission. In [114], they also comment that for the case of ultralight axions, these
objects could act as super-massive black hole seeds. This was also commented on

in [127]. It is also thought that in axion stars could be the smallest DM structures
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that can exist.

In Chap. 2] we study the formation of axion stars with high compactness, and with
a toy model estimate the number densities and masses of axion stars. In Chap. |3| we
study the head-on collisions of boosted equal mass OS for both the cases where the
OS have equal phases or are maximally off-phase (anti-phase). In Chap. We provide
an in-depth explanation of the construction of initial data for a pair of boosted OS
as well as the modifications needed during evolution, and comment on the potential
for further study. All of these simulations were performed with GRCHOMBO, and

as such, in the following section we outline the code features of GRCHOMBO.

1.4 GRChombo

There exists many Numerical General Relativity (NR) codes that have a variety
of features. However, throughout this thesis, GRCHOMBO was used to conduct
numerical simulations. The aim of this section is to give the reader an overview
of the key features of GRCHOMBO, as well as specify the evolution and gauge
conditions used within the code. For a more full discussion see |1,128-130], and the
GRCHOMBO website at http://grchombo.org. The code is publicly available at
https://github.com/GRChombo.

1.4.1 Numerical implementation

GRCHOMBO is a multi-purpose NR code, which is built on top of the open source
Chombo framework. Chombo is a set of tools developed by Lawrence Berkeley National
Laboratory for implementing block-structured adaptive mesh refinement (AMR) in
order to solve partial differential equations [131].

The key features of GRCHOMBO are:

o (C++ class structure: The code is written in the C++ language, which allows
the use of the class structure to separate the various evolution and update

processes.

o Adaptive Mesh Refinement: Chombo provides Berger-Oliger style [132,(133]
AMR with Berger-Rigoutsos [134] block-structured grid generation. Chombo
supports full non-trivial mesh topology. The user is required to specify regrid-
ding criteria, which is based on setting a maximum threshold for the gradient

of a variable across a gridpoint. x, K, and p are typically used as the variables.

e MPI and OpenMP: The use of MPI [135] and OpenMP [136], gives GRCHOMBO

the ability to scale efficiently to several thousand CPU-cores per run. Chombo
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uses an inbuilt load-balancing algorithm, with Morton ordering to map grid re-
sponsibility to neighbouring processors in order to optimise processor number

scaling.

o Standardised Output and Visualisation: Chombo uses the HDF5 output format.
The output files can then be used to restart the code, and due to the filetype,
allow for easy analysis via both visualisation tools such as VisIt and post-

processing tools such as YT [4].

e BSSN formalism with moving puncture: The EFEs are evolved using the BSSN
formalism (see Sec. [1.2.6)) with a scalar field being used as the matter source.
The singularities of black holes are managed using the moving puncture gauge

conditions [43,48]. The evolution equations and gauge conditions are detailed

in Sec. [.4.2]

e 4th order discretisation in space and time: GRCHOMBO uses a Runge-Kutta
4th order (RK4) [137] time update and 4th order spatial stencils. In [1] it was
shown that the convergence is approximately 4th order without regridding,

but reduces to 3rd order convergence due to regridding effects.

o Kreiss-Oliger dissipation: Kreiss-Oliger dissipation [138] is used to control
errors and a 4th Order method was implemented to ensure stability of the

system.

e Boundary conditions: Both periodic and Sommerfeld boundary conditions [47]
are implemented in GRCHOMBO. Sommerfield boundary conditions allow
outgoing waves to exit the grid with minimal reflections, however for most
simulations, the AMR functionality allows one to set the boundaries far enough

away such that reflections do not affect the results during simulation time.

e [nitial Conditions: GRCHOMBO does not solve the constraint equations for
provided initial conditions, and thus as a user, one must provide appropriate
initial data. However, GRCHOMBO can be used to relax the Hamiltonian
constraint for the value of x where the other variables are assumed to solve

the momentum constraint.

e Diagnostics: GRCHOMBO permits the user to monitor the Hamiltonian and
momentum constraint violation, as well to extract a variety of useful quantities

such as gravitational waves.

GRCHOMBO is constantly being updated by a team of dedicated developers, and
as such, see https://github.com/GRChombo for the latest feature set.
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1.4.2 Evolution equations and gauge conditions

GRCHOMBO uses the BSSN formalism [40-42] to evolve the EFEs, with a scalar
field as the matter source. The BSSN evolution equations are outlined in Sec. [1.2.6]
and the scalar field matter evolution equations are outlined in Eqn. and
Eqn. (1.70]).

GRCHOMBO uses the puncture gauge [43,48], which is a combination of the
Bono-Masso type slicing condition [39] and the Gamma driver condition [47]. Hence,

the evolution equations for the gauge conditions are

oo = —paK + 0, (1.72)
0B = B, (1.73)
0B" = %atri —nB", (1.74)

where compared to Eqn. (1.38) and Eqn. (L.51)), p1 = p, m4 = n, pe = pg = n3 = 0,
m =1, and ny = %. The constants 7, of order 1/Mapys, and pu, of order 1, may be

varied by the user to improve stability.

With GRCHOMBO specified, this signals the end of the introductory chapter
of this thesis. With the information provided, it is hoped that the reader has an
understanding of the underlying technical details of the research described in this
thesis. Any further introductory material required to understand a specific piece of

research is provided at the beginning of the corresponding chapter.
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Formation of relativistic axion

stars

“That’s mo moon... it’s a space
station.” - In our case it’s an Axion
Star

Obi Wan Kenobi, Star Wars
Episode IV - A New Hope

This chapter is based on published work [2]. I would like to thank Thomas Helfer,
David J. E. Marsh and Eugene Lim for their contributions towards this publication,

and subsequently towards this chapter.

2.1 Introduction

The LIGO/Virgo collaboration has made historic measurements of gravitational
waves (GW) from the binary coalescence of black holes (BH) [7H12] and neutron
stars [13]. This paves the way for searches for signals from “exotic compact objects”
(ECO; see e.g. [126],]139-144]). Axions and axion-like particles [80-93] (which we
refer to collectively as simply “axions”) can form such ECO, known as axion stars.

To have a strong GW signal in the LIGO/Virgo, the ECO must have mass and

compactness,

G M,
R )

where M, is the mass of the object, in a particular range [139]. Simulations have

C (2.1)

shown that there are known environments in dark matter halos in which non-
relativistic axion stars form [145-149]. Any source of large (possibly primordial)
density perturbations, or rapid merging and accretion could potentially grow such

stars into the range of mass and compactness accessible to LIGO/Virgo, and even

31
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Figure 2.1: LIGO/Virgo frequency band for axion stars. The frequency is given
by the ISCO frequency, Eqn. (2.6)). The compactness C(M) is for non-interacting
oscillotons, which is a good description of stable axion stars. Assigning a luminosity
distance to binaries, the minimum compactness is found from the results of [139)].
Axion stars detectable by LIGO/Virgo must have C 2 0.02 and axion mass m, =~
10710 eV.

beyond as they collapse to BH or disperse as novae |114]. However, there have not
been simulations of the final stages of axion star formation in the full relativistic
regime and beyond spherical symmetry, which are required to determine the fate of
large axion densities.

In the following chapter we simulate the formation of compact axion stars and BH
from some pseudo-random initial conditions using full (341) dimensional numerical
relativity simulations with GRCHOMBO [1]. Our results can be used to assess
axion star formation given some input realisation of the axion density field. We
demonstrate this for a toy model density field, using peak statistics to label compact
axion stars and BH in the LIGO/Virgo frequency band.

We remain agnostic about the amount of dark matter (DM) that might be con-
tained in compact axion stars, noting only that it must be relatively small, of order
a few percent (see e.g. the compilations of primordial BH constraints in [69,/76,77]).
Given the theoretical uncertainties in formation mechanisms for compact axion stars
from axion dark matter, such bounds can easily be consistent with all the dark mat-

ter being axions.
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2.2 Gravitational waves from ECOs

In the following section, we review the description of GWs from ECOs given in [139).
An ECO is described by two parameters, the mass, M,, and the compactness, C,
which together determine the frequency and amplitude of GWs produced in a binary
inspiral (the merger and ringdown phase contain more information requiring direct
simulation). The orbital period, P, is related to the total binary mass, M, and

semi-major axis, [, by Kepler’s third law

B 423

P? = .
GMtot

(2.2)

The frequency, f, of gravitational wave emission is twicd!] the orbital frequency,

v = 1/P, and hence is given by

f _ GMtot (23)

w23

The innermost stable circular orbit, ISCO, determines the end of the inspiral phase,
and the beginning of the merger phase. For a black hole binary, the ISCO is given
by

REGC = 6G My, . (2.4)

For an ECO, the ISCO is modified by the variable compactness:

ECO — C . (2-5)

Hence the typical frequency, fE5S, of two merging ECO is

(NI

ISCO _ c

e o Sl 2.6
ECO 33 xG M., (2.6)

For black holes, the maximum frequency for gravitational wave emission at the
end of the inspiral is given by numerical simulations of the waveform of BH mergers,
and is defined as f = (1 + A)f5¢9. A is a correction term computed in post-
Newtonian approximation [150], and is dependant of the mass ratio and spins of
the black holes. In the parameter range where the post-Newtonian approximation is
valid, it was found that A = O(1), although we only expect this to hold for relatively
compact objects with C within a factor of a few of BH. With this knowledge, for
the discussion we deem it adequate to take Eqn. as the typical frequency of

gravitational wave emission.

LAs both frequency, f, and orbital frequency, v, contain factors of 2 we can cancel them for
ease
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The LIGO/Virgo noise-power spectral density is minimised between 50 Hz and
1000 Hz. Placing the frequency in Eqn. in the LIGO/Virgo band gives the
range of M and C. For BH we find the benchmark mass for LIGO/Virgo of M, =~
10M, stellar mass BH, while for LISA one finds sensitivity to supermassive BHs,
M, ~10% — 10" M. [139] considered the signal to noise for ECO binary mergers in
the LIGO/Virgo band, and found that for events within a given luminosity distance
Dy there is a minimum value of C at any given mass to given an event with large
signal to noise.

Fig. shows the results of [139] for the minimum compactness for different
luminosity distances together with the C(M) relation for axion stars determined
from spherically symmetric numerical GR [114,/151]. Axion stars detectable by
LIGO/Virgo must have C 2 0.02 and axion mass m, ~ 107'% eV, implying that the

axion stars are of approximately solar mass.

2.3 Axion star formation

Axion stars giving rise to potential GW inspiral signals in LIGO/Virgo have high
compactness, and are thus relativistic objects. If axion stars can reach such high
compactness, they could also surpass their maximum stable mass, entering the un-
stable region in the “phase diagram” [114,/122,/125], either collapsing to a BH or

dispersing in a nova, depending on the axion “decay constant”, faE].

2.3.1 Initial conditions

We consider an initial state of energy density in the axion field characterised by a

single momentum scale, k,, in a superposition of waves in (z,y, 2):
¢ = @ [coskyx + cos ky + cos k2] . (2.7)

The waves have initially zero velocity, ¢ = 0. Choosing k, = 27 / L, where L is the
size of the computational domain, and imposing periodic boundary conditions, the
superposition of waves results in 2 over-densities; one in the centre of the compu-
tational domain and one at each corner. Hence the initial condition is that of a
superposition of waves that is not spherically symmetric, but possesses a 6-fold dis-
crete permutation symmetry. This breaks spherical symmetry for the density peak,
allowing us to investigate the effects of anisotropy while keeping the parameter space

sufficiently small so that we can scan through them with available computational

2In general, we expect the value of f, < My, however this, and the related “weak gravity
conjecture” is hotly debated with relation to axion inflation [114] See [110}[152H157] for more
information
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Figure 2.2: Using Eqn. (2.10)) we calculate the total box mass, M, of our initial
conditions for a box size of L = 16 m; ' and f, = 0.5 M,,, as well as the contributions
to M of the gradient term, 1(9;¢)?, and the potential term, V(¢). For the f,
simulated it can be seen that our initial mass is dominated by contributions from
the potential term.

resources. This initial condition represents a locally overdense region dominated by
the axion energy density, and hence is decoupled from the Hubble flow.

According to the results of [114] we expect collapse to be governed by two pa-
rameters: the total mass, M, in a single overdensity (this is half the total box mass
due to there being two overdensities in the box), and the axion decay constant, f,,
defining a “phase diagram” | The total maximum mass in an overdensity is found
by integrating the initial potential energy inside the box, and dividing by two (as

we have two overdensities, and hence two objects will form due to symmetry):

1
5/ p\/det%jdV, (28)
|4

with

p =ntn"T, (2.9)

jnz

where n# is the normal to the hypersurface and +;; the 3-D spatial metric. Assuming

that the metric is conformally flat as our initial energy density has a small average

3This diagram has been explained by various arguments in Refs. [123,/158]. The phase bound-
aries have been accurately determined using spherically symmetric simulations by [125]. See also
the simulations of [122] who study the regime of low f, and low curvature leading to axion emission.
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density, then using Eqn. (2.22)

L/2 1

M = —/ dz dy dz (—(8@)2 + V(gb)) : (2.10)
2 7L/2 2

where L = 27/k, is the physical size of the periodic domain. The axion potential

energy is given by

V() = m2f? {1 ~ cos (fﬂ)] . (2.11)

By a choice of units, the axion mass m, can be scaled out of all our simulations;
units can be easily restored to set the physical mass of the compact objects formed.

To achieve this scaling, we chose
- (10719 eV
M = 0.27M <—e) M, (2.12)

where M, is the solar mass. Meanwhile, for small L < (¢/f,) the gradient term
dominates. Fig. shows the initial conditions for the smallest L we simulated
and for f, = 0.5 M. All of our numerical simulations had initial conditions where
potential energy dominated.

Finally, we can compute the average energy density of the simulation domain via

M

=13 (2.13)

and hence the “local” Hubble constant Hy ., = (1/3M})p which is Hygcal ~ mMq.
We emphasise that this is not related to the “global” Hubble constant, since we are
simulating a local overdense region.

Our simulations begin at an arbitrary dimensionless time, and we should ask
how this is related to the cosmic time. In our simulations, we are evolving an axion
dominated overdense local patch that is much smaller than the current Hubble
radius, thus it is assumed that the expansion of the Universe and the presence of
any fluctuation in energy density of non-axion components can be neglected. Thus,
a fluctuation of any amplitude in our simulations will collapse, and cosmologically
we cannot relate this to the collapse threshold for a given redshift.

A perturbation mode of co-moving wave number k with frequency w?(a) =
(k/a)* + m? will begin to evolve when w(a) > H(a). Consider a co-moving mode
ke which re-enters the horizon at time e, kem = @retH (aret). Furthermore,
if H(aw;) < mg, then the mode will collapse only at time aos. > are Where
H(aose) = myg, i.e. when the mode is subhorizon. In our simulations, our box
size is set to L = 27m, /k, where k, is a physical scale and related to the co-moving

wave vector k., by an arbitrary scale factor a.
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Figure 2.3: These plots are a summary of all numerical simulations performed. Black
circles indicate that black holes where formed from the initial conditions and yellow
circles indicate that axion stars were formed. We emphasise that the y-axis labels
the initial total mass of the simulation initial conditions, not the final mass of the
formed objects. No dispersion cases were obtained, and the reason for this is outlined
in Sec. . The results presented here mirror that of |114}/125], so when discussing
the likely structure formation we will use the “phase diagram” constructed there.

From our choice of dimensionless units, this means that the physical length
k7' = (L/2m)m;". As will be described in Sec. [2.3.2] we take L = O(16 ~ 128)
in our simulations, and hence k, < m,, which satisfies the condition above for

subhorizon collapse.

2.3.2 Numerical simulations

We simulated collapse of a massive scalar field, ¢, with an axion potential in numer-
ical relativity, using GRCHOMBO |[1]. Details of the numerical scheme can be found
in Sec. [I.4] with specific information to these simulations being provided in-situ. We
probed a three dimensional “phase diagram”, summarised in Fig. to investigate
how collapse differed whilst varying initial mass M, length scale of the axion waves
L, and decay constant f,. In the following sections we will explore the different
types of structure that can be formed according to the parameters of the “phase
diagram”, as well as commenting on the technical limitations that we faced.

To explore the possible “phase diagram” of initial conditions for axion star
collapse, we choose three length scales of the axion waves L = 16, 64,128 mt
two decay constants f, = 5.0,0.5 M, and four initial total box masses M =
2.14,1.34,1.07,0.80 Mg (107%V m_'). These initial conditions were chosen so
that we can form a range of final structures; axion stars and black holes, like those

found in [114,125]. We fix our boundary conditions to be periodic.
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2.3.3 Constructing initial data

We construct our initial data in the same was as in [159], however the key details of
the method are reproduced here for convenience. We choose a = 1 and g; = 0 and

hence on the initial hypersurface the initial gradient energy is
1

pgrad = 57 al¢aj¢ (214)

We also introduce the notation for the kinetic term
1 k

n=- (89 — 8¥) (2.15)

Which is zero on our initial hypersurface. Hence initially
I

Our constraint equations become

72 S X K? 1 Tij
D™ = A" DixDix + =5 + — = 5AyAY = 8nGp, (2.17)
and 5 )
DA =5 AYDix = 53V DK = 8nGi 0y (2.18)
X

Next we want to specify the initial conditions for the metric «;; and the extrinsic
curvature K;;. We can make the simplifying assumption that the metric is confor-
mally flat and the traceless part of the extrinsic curvature K; is zero everywhere on
the initial hyperslice

Yij = 0ij 5 (2.19)

and

We now need to specify the values of K and x on the initial hyperslice. Eqn. (2.18)
is trivially satisfied for K = const, however, in order to satisfy Eqn. (2.17)), and the
periodic boundary conditions or x, K?2/24m needs to lie close to the average initial
energy density for the hypersurface. Therefore for simplicity we choose it equal to

the average initial energy density, approximating the metric to be Euclidean

K = —\/247G(p) , (2.21)

with
1

p =500 + V(@) (222
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where (X) = V7! [ X dV indicates the average over the spatial volume V of the
quantity X. Once K is chosen, the initial field profile and the Hamiltonian constraint
then fully determine the conformal factor x. The conformal factor, x, was calculated
using a relaxation procedure until we reached a relative Hamiltonian constraint

violation, H
Hcenter

— _ eenter 2.23
167TGpcenter ’ ( )

of O(O.l%)ﬁ. The larger the length scale of the axion waves, the more numerically
expensive the simulations were to perform due to an increase in the time scale of
collapse, and a need for more refinement layers to track formation and the evolution
of the resulting structure.

Black hole formation is identified using a spherical horizon finder and the forma-
tion of an axion star was identified using an “axion star location” script, detailed

next.

2.3.4 Axion star location

To confirm the that a resulting object was an axion star, and to track its subsequent
evolution, an “axion star finder” script was written, and ran in post-processing. The
finder would look at the central density in the simulation, and locate the value and
location of it’s maximum, p,,.,. The radius in which the value of p had dropped to
5% of pmas was calculated, and then the total mass was defined as the integrated
density within a sphere of that radius. The radius of the object was adjusted for
expansion.

In Fig. 2.6} there are some points that can be considered to be outliers. When
the script looks for the maximum value and location of p, if at that point in time
there are two maximum points in the central region, it causes the script to not return
the true radius of the object, and hence the calculated mass will also not be correct.

This was not a frequent occurrence, and the cause of it is easily confirmed.

2.3.5 AMR condition

All simulations shared a coarsest grid of 64%. Locally, the expansion of our spacetime
is roughly
a=—. (2.24)

Since the timescale of formation of objects varies, this means that the physical

length scales of the problem do not necessarily track the grid, and hence requires a

4During the relaxation routine the value of H and p at the centre of the simulation was also
the max value of those variables
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rescale regridding threshold. We set our threshold to be triggered by high gradients
in K and a scaled version of the gradients of p. These conditions track gravitational
collapse in our simulations. For L = 16 we scaled our regridding of the gradients of

p as
Vp
Pt—=

VX

where p; is a numerical regridding threshold set at the beginning of the simulation.

star
max

star
max)

It was set to a value of 20p where p is the maximum value of p that a star

of half total box mass would have. If half the total box mass was greater then the

star
mazx

most stable axion star, then p was set to be the for the highest stable axion
star. For L = 64 and L = 128 we found that this condition was not enough for
optimum regridding. Below an amount of layers (3 for 64, and 4 for 128), we added

an additional regrid condition
Vp

X
where p, is an additional regridding threshold. p, was chosen to be 10p

pa Y

Wl

box
max?

where

box

poow is the maximum value of p in the simulation at £ = 0. Once the correct thresh-

olds where chosen, these regrid conditions would effectively follow the gravitational

collapse in the simulations.

2.3.6 Convergence and stability

We use the following to measure the volume averaged Hamiltonian constraint vio-

L*(H) = ,/% /V |H2|dV, (2.25)

where V' is the box volume with the interior of the apparent horizon excised. As can

lation:

be seen in Fig. 2.4] we have good control over the constraint violation throughout
the simulation.

We test the convergence of our simulations with the formation of an Axion Star
with initial total mass of M = 1.34 M, 10"V m !, f, = 5.0 M, and L =16
m,*'. We use a fixed grid for the convergence test with resolutions of 0.25 m_*,
0.125 m_ ! and 0.0625 m_'. The results are shown in Fig. where we obtain an
order of convergence between 3rd and 4th order on average. The variation in the
convergence test is due to the methodology, where we extract values of ¢ at the
centre of the grid. ¢ passes through 0 during the evolution, that causes the spikes

present in the convergence test.
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Figure 2.4: The plot shows the L? norm Eqn. of the Hamiltonian constraint
violation over time for a simulation that forms an axion star, with an initial total
mass of M = 1.34 My 107%V m;', f, = 5.0 M, and L = 16 m;"'. The spikes in
the plot are due to the regridding in the simulation and are rapidly damped.
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Figure 2.5: Convergence test for ¢.cnser showing a convergence between 3rd and 4th
order. The convergence test is done with a fixed grid with three different resolutions
of 0.25 m !, 0.125 m,* and 0.0625 m_*'. Our evolution scheme is 4th order and the
variation in the convergence is due to ¢ passing through 0 during the evolution.
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2.3.7 Axion star formation and evolution

Our simulations with initial conditions M < 1.34 M 1071%V m_ ! resulted in axion
star formation (see Fig. . To compute the mass, M,, of the axion stars, we use
Eqn. (2-8), with the radius R computed to be such that p(R) = 0.05p,,q, — this is a
good approximation since we observed that the axion star sphericalises rapidly.

During the course of the evolution the axion stars were found to be stable (i.e.
they do not disperse nor collapse into a BH), sphericalising rapidly leaving only a
dominant radially perturbative modeE] (see Fig. . Fig. shows the variation of
the radius of axion stars over time generated from spherically symmetric initial data
[114,]151]. The in the spherically symmetric case is long lived, and the computational
cost of evolving the stars to their final end-state (presumably an unexcited star) is
prohibitive. For f, = 5.0 M,; the radial variation presented in Fig. is negligible
for both masses shown. When lowering f, to 0.5 M, it can be seen that the more
massive axion star collapses to a black hole, however for the less massive axion star
a radial variation with a period of 300m,! develops. The radial variation shown
here has a longer period compared to the most massive case for L = 16, and shorter
compared to L = 64. We conclude that the variation in radius of the stars from our
formation process comes dominantly from decaying radially perturbative modes.

As has been shown in [126], ground state axion stars span a family parameterised
by the compactness parameter C. When studying the compactness of axion stars
formed by our collapse process vs this family, it can be seen that these formed
stars oscillate around this family, hence represents stable stars. This can be seen in
Fig. 2.6

Finally, we compute the efficiency of the axion star formation process, which is

defined as
Total Initial Mass

Mass captured in AS "

Efficiency = (2.26)

This is measured to range from 0.5 for L = 128 to 0.8 for L = 16. In other words, a
large fraction of the initial mass forms the axion star. Since our simulation domain
is periodic, and hence “free scalar field energy” has no place to disperse, we might
worry that this may be due to a significant reabsorption. We observed that the
axion star formed in O(10) “box crossing” times and if reabsorption of the scalar
field was big, we should see a modulation in ¢ at 10 times that frequency, which
we do not. Hence we surmise that reabsorption is small and expect that while in a

dispersive environment the efficiency will be lower, it will not be significantly lower.

5The author wants to emphasise that we are referring to a radially perturbative mode of the
axion star.
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Figure 2.6: Evolution of the mass-radius relation of all simulations whose end state
was identified as an axion star. The reference line in the plots is the mass radius
relation for an unexcited axion star, and the points on top indicate the evolution
of the observed star forming. The evolution in time of the mass-radius relation is
indicated by the colour of the point, with the darkest points being the earliest in
the evolution and the lightest points being the end of the evolution. Additionally
the start point of the evolution is indicated by an ‘S’ and the end point with ‘F’.
The mass radius relation fluctuates significantly over time, varying in a decaying
way around the unexcited star value. This process is attributed to the formed stars
having radial perturbative modes. Outliers on these graphs are due to the axion
star finder, outlined in Sec. 2.3.4]
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Figure 2.7: Variation of the axion star radius over time for spherically symmetric
initial data [114,/151]. For f, = 5.0 M,, the radial variation is negligible for both
masses shown. When lowering f, to 0.5 M, it can be seen that the more massive
axion star collapses to a black hole, however for the less massive axion star a radial
variation with a period of 300m;! develops. The radial variation shown here has a
longer period compared to the most massive case for L = 16, and shorter compared
to L = 64.

2.3.8 Black hole formation

Meanwhile, our simulations show that initial conditions with M = 2.14 M, 107 1%V m*
resulted in black hole formation (see Fig. [2.3). This is consistent with the “phase
diagram” presented in [114][125]. Similar to the axion star formation process, we

found that the efficiency of black hole formation was O(1).

2.3.9 Dispersion regime

As shown in the phase diagram constructed in [114,/125], there exists “dispersal
regions” where the axion star is not stable and disperses into scalar radiation. This
occurs in regions with sufficiently low f, and M. Due to the periodic domain,
dispersed scalar fields will eventually fall back into a (possibly dispersing axion
star), and hence we cannot probe this possibility. Instead we use the phase diagram

constructed in [114,[125] for the analysis that follows.

2.4 Axion stars and gravitational waves

Relativistic axion stars with high compactness can emit sufficiently strong GW sig-

nals which makes them possible targets of gravitational wave detectors. In this



Chapter 2. Formation of relativistic axion stars 45

section, we will explore this possibility.

The phase diagram of [114] suggests that, for each value of f, below the “triple
point”, frp ~ 0.2M,, there are three phases of axion star: low mass stars are
stable; those above a first critical mass, Mgisp. are unstable to emission of relativistic
axion waves; those above a second critical mass, Mpy, collapse to BHs. Above the
triple point, the dispersal phase no longer exists, and compact objects form for all

masses. Our numerical simulations have verified that this same picture applies to
the “cosmological” initial conditions of Eqn. (2.7)).

2.4.1 Cosmological formation of axion stars

Axion stars are the (quasi-)stable end point of gravitational collapse of the axion
field, and in simulations of dark matter structure formation have been observed to
form in diverse conditions [147H149)

Non-relativistic axions stars are observed to form in simulations with coherent
initial conditions, where they condense via monolithic collapse as the first gener-
ation of axion DM halos, with a population expected to inhabit the centres of all
halos [127,/147,/148]. These axion stars form from the small (¢ ~ 107°) ampli-
tude adiabatic curvature fluctuations which dominate the Universe on large scales,
with the coherent initial conditions provided if Peccei-Quinn symmetry is broken
during inflation. Cosmological simulations of this formation mechanism have only
been performed for ultralight axions with m, ~ 10722 eV. The corresponding axion
stars in dwarf galaxies are too heavy to be relevant for LIGO/Virgo. The forma-
tion mechanism, however, is expected to be operative for all axion masses in all
dark matter halos [160], potentially leading to relativistic cores in some region of
parameter space.

Recently, axions stars were also shown to condense from highly incoherent initial
conditions [149]. This mechanism is expected to be active in axion “miniclusters”
[161-164], and indeed throughout any axion dark matter halo, potentially leading
to spontaneous axion star formation. [149] proposes a growth rate that could make
these axion stars reach relativistic masses if it does not quench. Mergers of such
axion stars could also lead to mass increase.

Non-relativistic simulations like these provide realisations of the axion field with
axion star locations. Dense peaks of this field will require individual relativistic
simulations, and the evolution should resemble the cases that we have studied in
the present work. In this model, the axion star population builds up over time in
an astrophysical way, just as ordinary stars and BH do.

It is also possible that relativistic axion stars could form directly in the early

Universe from large amplitude primordial fluctuations, a possibility we discuss in
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Figure 2.8: A toy model realisation of the axion density field that can be filtered to
locate candidate compact axion stars.

more detail in Sec. [3.4] In this case also, dense peaks of the axion field will evolve
to relativistic axion stars as studied above. In this model, the axion star population

resembles primordial BH.

2.4.2 Peak statistics

Simulating a cosmological volume of initial conditions for the axion field with nu-
merical relativity is not feasible. Instead we consider our simulations as representing
isolated peaks in the density field.

We consider a toy model for an axion density field containing large amplitude
peaks that can be described by our numerical simulations. A simple mechanism to
form massive, dense, primordial AS in the LIGO/Virgo band is to enhance the axion

power spectrum by a Gaussian bump on small scales:

2
Ps, = Aexp {%] : (2.27)
where A is the amplitude, k, the central mode, and o, < k, the width. The
amplitude has units M2m,?*. Fig.[2.8shows the toy model for the axion density field
with k1 roughly equal to the size of a peak described by our numerical simulations.
For any axion density field like this toy example (e.g. density field and axion star
location inside a DM halo), we can calculate the mass distribution of axion stars
and BH formed by the extreme peaks by analogy to the theory of critical collapse

for BHs, and to the Press-Schechter theory of cosmological structure formation.
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Figure 2.9: Left panel: Peaks of the toy model density field are assigned masses as
axion stars and black holes according to the location on the phase diagram with
fa = 0.5 M. Right panel: Using Eqn. and the C(M) relation for axion stars,
we calculate the gravitational wave frequencies for axion star and BH equal mass
binary mergers.
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Figure 2.10: Peaks of the toy model density as Fig. With fa = 0.5 M, (left panel)
and f, = 0.1 M, (right panel). Note that as f, dips below the triple point [114], a
dispersal gap appears between the formation of black holes and axion stars.
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The peak statistics are determined by thresholding the field, and are classified
using a two pass connected component clustering algorithm, see Sec. We par-
tition the distribution for M*( fa) according to the critical masses Mgy;sp. and Mpy
in the phase diagram [114]. In our numerical simulations, due to the construction
with periodic boundary conditions and an isolated fluctuation, fluctuations of all
amplitudes leading to axion stars with radius smaller than the box size will even-
tually collapse under self-gravity. Thus we cannot determine the critical threshold
for axion star collapse. However, we are only interested phenomenologically in the
densest, and thus most massive stars, and so we threshold our field for a mini-
mum compactness of the final axion star assuming that at least these most compact
objects successfully collapse.

Fig. and Fig. apply such a thresholding and labelling to a statistically
representative realisation of the toy model field of Fig. [2.8] taking only the one per-
cent densest peaks. The labelled peaks span from axion stars, to a mix of axion stars
and black holes, to primarily black holes depending on the field variance. Lowering
fa below frp results in the formation of a mass gap of objects. In particular, as f,
dips below the triple point at frp = 0.2M,;, a mass gap appears between the masses
of formed axion stars and black holes. This mass gap is a characteristic feature of
axion stars, hence the observation of a mass gap in the power spectrum of compact
objects is a potential method of alluding to the existence of axions in the universe.

We can also estimate the frequency of gravitational waves emitted by an ax-
ion star-axion star or BH-BH binary merger using Eq. (2.6). Assuming binary
mergers from the density field simply takes the field statistics as representative: no
merger rate is calculated. Fig. shows the frequencies with an axion mass of
me ~ 107%V. We observe that, for this distribution of peaks, axion star binary
coalescence, as well as BH-BH binary coalescence from collapsed axion stars fall in
the LIGO/Virgo band.

2.4.3 Two pass connected component labelling

The connected component labelling (CCL) procedure assigns a unique label to a set
of connected target pixels in a binary image |165]. We can construct a binary image
from an 2D array, in our case the energy density of the ¢ field generated by our toy
power spectrum, by assigning a 0 to all elements in the array that are below a cutoff
threshold, and a 1 to all those that are above. A subset of the binary image is called
connected if for any two points P and () of the subset there exists a sequence of
points P = Py, P, P5..., P,_1, P, = @ such that P; is a neighbour of P,_; [166]. The
definition of a connection relies on that of a pixel’s neighbourhood, if this includes

4 neighbours it is said to be 4-connected, and if it includes 8 neighbours it is said
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to be 8-connected [167].

We use a specific group of CCL, known as two-pass algorithms, to label peaks.
Two pass complete labelling in two scans: during the first scan they assign provi-
sional labels to pixels and record label equivalencies. Label equivalencies are the
resolved during or after the first scan. During the second scan, all equivalent labels
are replaced by their representative label [168,/169]. We use a two-pass algorithm

that use 4-connected to define a connection. Algorithmically, we did the following:

loop p
if p > 0 then

if p above !=0 and p left =0 then
pl = pl above

else if p above =0 and p left !=0 then
pl = pl left

else if p above !=0 and p left !=0 then
pl = min(pl above, pl left)
record pl dependancy

else

pl = new label

where p is a pixel, pl is a pixel label, and min is a function that chooses the minimum
of two values. The label equivalencies were then processed such that consecutive
labels where generated, and then a second pass would the replace all equivalent
labels. This algorithm provides a description of how the peaks where labelled. The
Numpy [5] CCL algorithm was used for the analysis presented in this paper.

2.5 Discussion

It is an intriguing possibility that even if only a small fraction of the DM den-
sity is contained in axion stars and primordial BH, some GW events detectable by
LIGO/Virgo might be due to primordial BH, and the distribution of GW events
could be used to confirm this [170], and similarly, GW events and their distribution
could confirm the existence of a fraction of DM in axion stars and BH formed from
their collapse [171}/172].

Recent work with scalar compact objects head on mergers [140}|142}|151}(173]
indicates distinctions in the gravitational wave signal with respect to black holes.
If these distinctions also exist in binary coalescence (see [174H176] for boson star
inspirals), a single GW event could be a smoking gun for the existence of axion
stars. The end state mass spectrum from a number of such events could be used to

determine the axion decay constant.
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One possible mechanism to form compact axions stars in the early Universe is to
enhance the axion power spectrum, (0¢(k)d¢p(k’)), on small scales, similarly to pro-
duction methods for primordial black holes (see |177] and references therein). Such
enhanced axion fluctuations on small scales arise generically in models of inflation
in which the radial mode of the Peccei-Quinn field evolves as a spectator, leading
to a strongly blue axion spectrum [178}179).

Unfortunately, under standard cosmological assumptions such a power spectrum
cannot form compact axion stars. A fluctuation in the axion field at early times is
isocurvature (since the axions are subdominant compared to the radiation). During
the radiation epoch, the linear transfer function of isocurvature overdensities is close
to unity [180]. This implies that, between the time the axion field becomes non-
relativistic, H(aesc) = m,, and matter-radiation equality, aeq, the field fluctuation
is redshifted as 0¢ ~ a~3/2. For the axion masses of interest, m, ~ 1070 eV =
ose/eq ~ 1071 giving huge redshift factors.

Collapse of primordial fluctuations could occur during a putative early matter
dominated phase [181],/182] (as expected in supersymmetric models, e.g. Refs. [183]
184]), or during reheating if the equation of state is in the correct regime. Study
of collapse of axion stars during such a period, or from primordial curvature per-
turbations in the radiation era, requires additional simulations that account for the
background fluid in addition to the axion scalar field. This interesting possibility,
incorporating fluids into GRCHOMBO, will be the subject of future study.

An axion star in the LIGO/Virgo band requires m, ~ 107!% eV. The QCD
axion with this mass has f, ~ 10'® GeV, which could possibly be detected directly
by ABRACADABRA [185] or CASPEr [186]. However, with this low value of f,
axion stars cannot reach the required high compactness before becoming unstable.
This leads to the interesting conclusion that any future observation of GWs from
axion stars would imply the existence of contributions to the axion spectrum beyond
QCD, and could thus lend support to the idea of a “String Axiverse” [94] or other

non-standard axion scenarios [187].



Chapter 3

Black hole formation in relativistic

oscllloton collisions

“Things are only impossible until

they’re not.”

Jean-Luc Picard,
Star Trek: The Next Generation

This chapter is based off published work [3]. Details of the construction of the
initial conditions, and modifications to the gauge conditions for the work that follows
are given in Chap. 4l I would like to thank Thomas Helfer and Eugene Lim for their

contributions towards this work.

3.1 Introduction

Self gravitating scalar field (pseudo)-solitons are known to have highly compact
cores [121],/188189] and provide a family of candidates that can be defined as ECOs
including Wheeler’s “geons” [190,/191], boson stars [117], and oscillatons [117-121].
As previously stated in Sec. these objects are closely related to a family of
objects known as axion stars [2,80-91}93,95,/114], in which further work has been
done to understand ECOs.

Recent work with scalar compact objects head on mergers [140}|142}[151}[151,
173] as well as mixed mergers |192-194], indicates distinctions in the gravitational
wave signal with respect to black holes. If these distinctions also exist in binary
coalescence (see [174H176] for boson star inspirals), a single GW event could be a
smoking gun for the existence of ECOs.

In this chapter, we study the relativistic head-on collisions of a class of real rela-

tivistic scalar fields solitons called oscillatons (OS) [121] using full (3+1) dimensional

o1
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numerical relativity simulations with GRCHOMBO [1]. OS are stable on cosmologi-
cal time scales [195] and could be realised as an axion star where the leading order ¢*
interaction are negligible due to having a high axion decay constant, f,. Formation
of such objects have been studied in both non-relativistic |[196,(197] and relativistic
cases [2] (see Chap. [2).

One of the key features of an OS is that it’s scalar field configuration is not static.
Instead it oscillates with the characteristic frequency w ~ m where m is the effective
mass of the field which is inversely related to the axion decay constant m o< 1/f,.
Thus the interactions of any pair of OS will depend not only on their respective
masses and the geometry of the interactions, but also on their relative phase A6.

In the case of relativistic OS where gravity is strong, the OS can exhibit very
high compactness on the order of tens of percent of the Schwarzschild radius. In this
regime, it is expected that the linear regime is no longer valid, as gravity back-reacts
strongly on the configuration of the scalar field. Indeed, at this regime, sufficiently
compact OS can interact to form black holes. In [151], it was showed that the head-
on collisions of such OS in this regime can produce gravitational wave signals that
are distinct and more energetic than equivalent equal mass black hole mergers.

In this chapter, we extend the work of [151] into two different regimes. First,
we consider the collisions of OS with different phases, in particular collisions in
which their relative phase is maximal A¢ = 7, dubbed “anti-phase” OS collisions.
We will show that anti-phase OS collisions experience a mutual repulsive force.
Secondly, we consider the collisions of boosted OS, with relativistic initial center
of mass frame velocities, for both equal phase and anti-phase pairs of OS. While
at high initial velocities, black holes formed as expected from the hoop conjecture
argument [173}/198,|199|, surprisingly and counter-intuitively, we show that at low
velocities, collisions are less likely to form black holes when compared to the equiv-
alent configuration with zero initial velocity. This effect is seen in both equal and

anti-phase cases, indicating the possible existence of a “critical point” (see Fig.|3.1]).

3.2 Oscillotons

Consider a massive scalar field minimally coupled to gravity with the action

R 1 1
S= [ d'oy/—g|——= — =0,00"p — —m?¢* 3.1
[t | g~ y0u00 0~ g (3.)
where g is the determinant of the metric, R is the Ricci scalar and m is the mass of the
real scalar field ¢. Self-gravitating quasi-stable equilibrium configurations are known
as oscillotons (OS) |121], and it has been shown in [126] that vacuum spherical

symmetric solutions span a one-parameter family most conveniently represented by
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Figure 3.1: Final states of equal mass head-on OS-OS mergers as a function of
compactness C and boost velocity v, for equal phase (left) and anti-phase cases
(right). Shown are approximate regions indicating the final states of the collisions
for the given initial conditions. The black line is the reduced hoop conjecture line
Eqn. (3.4), while the red (equal phase) and orange (anti-phase) lines are numerically
determined estimates where black holes do not form. In both cases, there exists a
“stability band” between the black lines and the red/orange lines, in which the OS
either disperse (equal phase) or bounce (anti-phase) post-collision. Comparing the
free fall time and interaction times of the collision yields the blue line (v ~ C'/?),
which converges with the reduced hoop conjecture line of v ~ /1 — 144C? at C ~
0.07.

its cornpactlrlessﬂ7 C, defined as
GM,

R

where M, is the total mass and R is the radius. Note that for a given C the radius

C= (3.2)

R(M,) of unexcited OS is completely determined by its mass M,. It has also been
shown in [126] that low compactness OS with C < 0.14 are stable and typically
migrate to other stable C < 0.14 when strongly radially perturbed. On the other
hand, high compactness OS with C > 0.14 are unstable, and under perturbations
may either migrate to a stable lower mass OS with C < 0.14 via scalar radiation or
collapse into a black hole (see Fig. |3.2).

A key property of OS is that it oscillates along a characteristic frequency w ~
m, and thus interactions of OS depend on their relative phase difference Af. In
particular, the field configuration ¢(z, t) of a head-on collision of equal phase Af = 0
(anti-phase Af = m) OS is symmetric (anti-symmetric) at the plane of collision
parallel to the axis of motion. In between these two limits 0 < Af# < 7, the
collisions are said to be “off-phase”. Fig. illustrates this further.

The special case for initially static, equal phase Af = 0 head-on collisions of OS

was investigated in [151]. There, it was showed that for equal phase Af = 0 OS

Note that this is the same definition given earlier in Eqn. (3.2)), but we repeat it here for
convenience.
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Figure 3.2: Spherically symmetric unperturbed OS solutions are spanned by a single
parameter, here chosen to be the compactness C = GM, /R, as found in [126]. OS
with C > 0.14 are unstable to perturbations, with perturbations either dissipating
leading to a final state of C < 0.14 or collapsing into a black hole.

collisions, the end state of any such collision depends on the compactness C. For
C < 0.035 (“subcritical” collisions), the collision results in an excited more massive
oscillaton, while for 0.035 < C < C, (“critical” collisions), the collision results in the
formation of a black hole. For C > C, (“degenerate” collisions), since the OS are in
the unstable branch (Fig. , mutual perturbations cause the OS to collapse into
individual black holes before merging as a standard head on black hole collision.
In this chapter, we will study both equal phase and anti-phase boosted head-on

OS collisions.

3.3 Boosted OS collisions

According to the hoop conjecture [200], a quantity of matter/energy E compressed
into a spherical region such that a hoop of proper circumference 2R completely
encloses the matter in all directions, will form a black hole if the corresponding
Schwarzschild radius, Ry = 2G'E is greater then R. The collisions of two solitons

with individual rest mass M, boosted to v = (1 — v?)~1/2

will result in a system
with an effective mass of EF = 2vM, in the center of mass frame. Applying the
conjecture, if R, > Ry where Ry is the rest frame radius of the soliton, then a black
hole will form. Using Eqn. , we obtain the following condition for black hole
formation
v 2 1 : (3.3)
4C

Such relativistic collisions of scalar solitons have been studied numerically before
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Figure 3.3: One dimensional plot of the ¢ profile along the axis of collision of two
OS for three different phases shown at fixed ¢ when the amplitude of ¢ for the left
OS is maximised, with x = 0 being the point of collision. The symmetry and anti-
symmetry of the equal phase pair of OS (A = 0) and an anti-phase pair of OS
(A0 = 7) respectively are constants of motion.

in the context of “boson stars’]’ of C = 0.025 [173] and fluid packets of C = 0.0125
[198]. In both cases, it was found that black hole formation occurs at the “reduced”

hoop conjecture condition
1
>y = — 3.4
which is roughly about 1/3 of what is predicted by the hoop conjecture. As we
will soon see, we find this to be consistent with our simulations of relativistic OS

collisions.

3.3.1 Numerical simulations

We simulated the collisions of two equal mass and hence equal C OS in numerical
general relativity, using GRCHOMBO [1] for both equal phase and anti-phase cases.
Their initial separation are set at d = 60m~!. We vary the initial velocities of the OS
from v = 0 to v = 0.8 relative to the rest frame, with corresponding Lorentz factors
v = 1to~y = 1.4 (see Chap. {d|for the details of the construction of initial data as well
as the modifications needed for evolution — we note that it is important to construct
the OS such that they are initially unezcited). In all cases except for v = 0, the
initial velocities are sufficiently high that the OS are not initially bounded.

We track the OS position following [2] (see Sec. for more details) by locating

2Boson stars are configurations of a complex scalar field with a U(1) potential. In contrast with
the real scalar field OS which are stabilized by field oscillations, boson stars are stabilized by their
charges. For a review please see [201].
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the value and location of maximum density py.x, which we identify as its center. The
velocity of the OS was calculated using OS position data across multiple timesteps.
While the OS started out initially spherical, during the collision process the OS
becomes an ellipsoid. The major and minor axes of the ellipsoid are then identified
by the distance from the center to the point where the density is 5% of peenter. Black
hole formation is identified with a horizon finder. The results of our simulations is
presented in Fig.

As before (see Eqn. ), we use the following to measure the volume averaged

Hamiltonian constraint violation:

L2(H) = ,/% /V 72|V, (3.5)

where V' is the box volume with the interior of the apparent horizon excised. The

volume averaged Momentum constraint violation is calculated in a similar manner:

L2(M) = ,/% /V M2V, (3.6)

We have good control over the constraint violation throughout our simulations,
with a bouncing unboosted antisymmetric OS collision achieving a maximum value
of O(107%) at the beginning of the simulation and then decaying throughout the
remainder of the simulation.

We test the convergence of our simulations by measuring the value of p along
the collision axis of an unboosted antisymmetric OS pair with initial compactness
of C = 0.028, that results in a bounce. The spatial coordinates for the value to
be measured at was chosen such that the OS passes through it before and after it
bounces. We used fixed grid for the convergence test with resolutions of 1.0 m=1, 0.5
m~! and 0.25 m~!. Fig. shows the value of p for this test, and when calculated
we obtain an order of convergence between 3rd and 4th order.

For the simulations presented we use a combination of fixed mesh and adaptive
mesh refinement (AMR). A cuboid of fixed mesh of resolution 0.5 m™! is constructed
along the collision axis. We use AMR for blackhole formation that is triggered by a
regridding threshold. We set our threshold, p;, K;, to be triggered by high gradients,
V,in K and p;

Vp+ K\ VK, (3.7)

where p; was set to be 20 times the maximum amplitude of the initial OS, p$g”,

and K; was set to a constant value.
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Figure 3.4: The value of p for a point along the collision axis of an antisymmetric OS
pair that bounces. The test was done with fixed grid with three different resolutions
of 1.0 m™t, 0.5 m~! and 0.25 m~!. We obtain an order of convergence between 3rd
and 4th order for this test.

3.3.2 Equal phase Af = 0 collisions

For equal phase Af = 0 case, at v = 0 we recover the result of [151] whereby black
hole formation occured when C > 0.035. At sufficiently high v, black holes form
due to the additional energy imparted by the boost, as we expected. We found that
they roughly obey the “reduced” hoop conjecture argument Eqn. (3.4)) (as opposed
to Eqn. (3.3))), providing another data point to add to those of [173][198][199].

However, at low v, intriguingly, black hole formation occurs only at higher com-
pactness. For example, for C = 0.04, black holes will form at v = 0 but will not
form at v > 0.2 (until it meets the hoop conjecture line). In other words, initial
non-zero velocities hinder the formation of black holes. The velocity required to pre-
vent black hole formation increases with increasing C, with the curve of transition
sloping upwards until it meets the line defined by the “reduced” hoop conjecture
argument Eqn. , at the “critical” point C ~ 0.068 and v ~ 0.55. Beyond this
point C > 0.068, black holes form regardless of velocities. In Fig. [3.5] we show the
black hole formation process of C = 0.065 OS collisions for the v = 0.7, 0.5, 0.3
cases.

The existence of this “stability band” for non-black hole end states can be
explained by the fact that higher collisional velocities imply a shorter collision
timescale. Since the boosted OS are not energetic enough to form black holes from
the hoop conjecture alone, they must interact during the collision to form a suffi-

ciently deep gravitational potential well to generate infall for a collapse into a black
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Figure 3.5: In-phase Af = 0 collisions :
p with C = 0.065 with v = 0.3 ;| 0.5, 0.7 from top to bottom. The slices for the (i)
infall, (ii) merger and (iii) post-merger. Black holes form in the v = 0.3 (top) and
v = 0.7 (bottom) cases, with black lines indicating curvature contours at x = 0.2
and xy = 0.4. In the v = 0.5 (middle) case, the OS “pass through” each other and
then dissipate. Link to movies| [202-204].

Three different slices of energy density
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hole — this defines an interaction/collapse timescale (see Eqn. and Eqn. (3.9)
for estimates). However, in a sufficiently relativistic collision, the collision timescale
may be shorter than the interaction/collapse timescale, resulting in the two OS
“passing through” (or bouncing off) albeit with large perturbations to their initial
configuration and at a slower velocity due to the inelastic nature of the collisions.

This collision timescale vs interaction timescale behaviour has been seen in non-
linear dynamics without gravity in the studies of relativistic collisions of non-linear
solitons [205-207], where the relative coherence of the solitons post-collisions can be
explained by the fact that the collision timescale is much shorter than the interaction
timescale. We will discuss this in greater detail in the following section [3.4]

We find that the initial formation of black holes is more efficient for the v = 0.3
case when compared to the v = 0.7 case [J| - the black hole mass grow more rapidly
for the v = 0.3 case during the collision. This could be due to the fact that the
collision is “messier” when collisions are more energetic, and hence it takes longer for
the excited debris to fall back into the nascent black hole. Unfortunately, our initial
conditions are not sufficiently precise to enable long term tracking of the apparent

horizon, leading to instabilities first seen in [208].

3.3.3 Anti-phase Af = 7 collisions

At high v, black hole formation again occurs beyond the reduced hoop conjecture
line Eqn. — reinforcing the point that in this regime “matter does not matter”
and it is the gravitational dynamics that dominate [173]. Similar to the equal phase
case above, at low v black hole formation is impeded, although the transition line
do not coincide, but is shifted slightly to the right (towards higher compactness).
This line meets the reduced hoop conjecture line at the “critical point” C = 0.071
and v = 0.5, indicating that there is an additional “repulsion” between the two OS
when compared to the equal phase case. This repulsion is particularly notable in
the v = 0 case, where the transition from no black hole formation to black hole
formation occurs at C ~ 0.05 (compared to C =~ 0.035 for equal phase collisions).
This repulsion can be explained as follows. Crucially, for anti-phase collisions,
the anti-symmetry of the ¢ configuration is a constant of motion, and hence at the
point of collision ¢(x,,t) = 0 at all times where z, is the plane of anti-symmetry.
This is in contrast with the equal phase pair where ¢(z,,t) is free to evolve as the
two OS approach each other — the symmetry of this case imposes the condition
O0p (4, t) = 0 instead. In particular, in [148,/197,212], it was shown that in the

weak gravity and non-relativistic limit, OS will “bounce back” instead of merging

3The mass extracted from the apparent horizon is a gauge-dependent measure, but since we are
using the same gauge-evolution (see Eqn. (4.38) and Eqn. (4.37)) we can make a fair comparison.
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Figure 3.6: Anti-phase Af = 7 collisions : Three different slices of energy density
p with C = 0.065 with v = 0.3 |/ 0.5 ; 0.7 from top to bottom. The slices for the (i)
infall, (ii) merger and (iii) post-merger. Black holes form in the v = 0.3 (top) and
v = 0.7 (bottom) cases, with black lines indicating curvature contours at x = 0.2
and x = 0.4. In the v = 0.5 (middle) case, the OS “bounces back” post-collision
(with black arrows indicating the direction of travel). Notice that in the v = 0.3
case, the OS collapse into black holes before merging. Link to movies [209-211].
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Figure 3.7: The central location of a OS/BH vs time for an anti-phase OS collision
with C = 0.068 and v = 0.4. The repulsiveness of the anti-phase OS rapidly slows
the initial velocity down to a full stop, before rebounding slightly at ¢ ~ 80m~! and
then collapsing into a BH. The location of the center of the OS is taken to be the
point of maximum density.

for A¢p < 7m/8 [148]. In this limit, [148] argues that the oscillaton equation of
motion is linear, and hence in equal phase (anti-phase) collisions, the OS tend to
constructively (destructively) interfere, at least at the collision plane z,.

In strong gravity, gravitational back-reaction is non-linear, muddling this pic-
ture somewhat. Nevertheless, the anti-symmetry of the field configuration is still
conserved, so @(z,,t) and its time derivative ¢(z,,t) both remain at zero for all
t. This means that the time averaged (over a period of oscillation) kinetic energy
density of the field configuration (Ex) ~ (1/2)¢* must vanish as z — z,. As the
OS approach each other, energy conservation forces the time averaged gradient en-
ergy (Eg) ~ (1/2)(V¢)? to absorb this energy, resulting in a rapid increase in the
gradient energy and thus a spiking of the scalar field spatial Conﬁgurationﬁ Note
that the metric and stress tensor remain symmetric in the diagonal components and
anti-symmetric in the off-diagonal components throughout for both equal phase and
anti-phase cases, which means that gravitational energy can still dominate near x,.

To check this dependence, we ran a series of collisions with C = 0.028 with zero

! For this compactness,

boost for both OS, and an initial separation of d = 40m™
it was previously shown in [151] that their mergers will lead to a highly excited OS
in the limit of Af = 0, and hence we do not expect any black hole formation.

Since these are initially bound states, we expect that due to loss to scalar and

4While it is natural to describe this repulsion as a force, its behaviour is not described by a 1/r
potential nor is it conservative. The anti-symmetric origin of the repulsion is reminiscence of the
degenerate pressure of the anti-symmetric wavefunctions of fermions.
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Figure 3.8: The time evolution of the profile of the energy density p measured along
the axis of collision for both equal phase (dotted line) and anti-phase (continuous
line) collisions of OS with C = 0.053. The time evolution is indicated by colour,
chronologically increasing from blue to deep red. Note that anti-phase collisions
experience a repulsion due to the anti-symmetry of the field configuration, and the
centers (i.e. maximum density point) of the OS remain distinct. As a result, the
OS experience a compression which may lead to individual formation of black holes
before final merger, or the OS “bouncing back”.

gravitational wave radiation, the final state of such collisions will be a merged oscil-
laton. The key question is whether this merger occurs in the first collision as in the
equal phase case, or will the off-phase repulsion generate pre-merger “bounces”. We
scan through Af = [0,7/8,7/4,37/8,7/2,57/8,3n /4,7 /8,157 /16, 7], and found
that only for the cases of Af > 7xn/8, the OS bounces once before merger — in
agreement with [148] that this repulsion is only dominant when the phase difference
is near maximal.

Fig. illustrates the comparison of the energy densities of equal phase and
anti-phase collisions. At large distances, the two cases evolve similarly as they do
not yet interact strongly. Their evolution begin to deviate around d ~ 15m~!, as
the OS begin to overlap and interact with each other. In the equal phase case, the
OS merge and form a large central density spike at d = 0. On the other hand, in the
anti-phase case, the OS repulse each other — note that the energy density drop at
d =0 — “compressing” to a smaller size but higher energy densities before bouncing
back.

This repulsion and subsequent compression leads to a dramatically different black
hole formation process when compared to the equal phase case. Instead of BH
forming from the collapse of scalar matter after merger, the repulsion stops the

motion of the OS and prevents the direct merger of the OS from occurring. The
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accompanying compression of both OS leads to a subsequent individual collapse of
the OS into separate black holes. These distinct black holes, shorn of the repulsive
scalar field, then gravitate towards each other and finally form a final black hole.
This general mechanism is seen in both the high velocity (i.e. above the reduced
hoop conjecture line) and low velocity BH formation processes (see Figs. and
53).

In between these two velocity limits, again as in the equal phase case, the collision
does not yield a final black hole. Instead, it results in the two OS bouncing back, and
then dispersal. While the OS experience compression during the bounce, the com-
pression is not sufficient to push the OS into an unstable regime that led to collapse
— instead it led to a dispersion of the OS into scalar waves. While oscillatons have
been shown to be stable under large spherically symmetric (and shell-like) perturba-
tions [126], the perturbations that OS here experience post-bounce are both highly
asymmetric and non-shell-like. Thus our results strongly suggests that there exist
unstable non-radial perturbation modes of OS even at low compactness, although

a more detailed study is needed to confirm this conjecture.

3.4 Discussion

The most striking result of our simulations is the existence of a “stability band” of
velocities whereby collisions of OS do not form black holes. We can gain a qualitative
understanding as follows. The free fall time scale is given by 75 ~ 1/1/Gp, and using
p ~ M/R?® combined with Eqn. gives

GM

T

Meanwhile the interaction timescale can be estimated by the time the two OS overlap
since the scalar field configuration of the OS drop off exponentially away from its
characteristic size R. If we assume that OS “pass through” (or bounce back after
contact), then roughly the interaction timescale is

2R 2GM

il (3.9)

Tint ™~

This a conservative (i.e. lower) bound on 7y, since interactions do slow down the
collision — as we saw especially in the anti-phase case the repulsion slows the collision
down significantly, saturating only in the high v limit.

To prevent black hole formation, as we argued in Section the interaction

timescale has to be shorter than the free-fall timescale 7,y > 7¢. At low v, v ~ 1,
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we obtained the following bound
v > 2017 (3.10)

Since Ty is an underestimate, we expect Eqn. (3.10) to be a lower bound on wv.
Combining this with the reduced hoop conjecture limit at high gamma Eqn. (3.4)),

we obtain the following bound when BHs will not form
202 < v < V1 — 144C2 . (3.11)

The two lines intersect at C ~ 0.07 or v ~ 0.5, which is what we found numerically
(see Fig. . On the other hand, the lower bound does not track the numerical
results accurately — this is not surprising since such timescales arguments do not
capture the full range of physics involved.

An interesting question is whether this point is a “critical point”, in the sense
that the two different regimes v > 2CY/2? and v < /1 — 144C? constitute different
phases and this point is where they meet as they transition into the final black hole
phase. We have already seen that these two regimes exhibit different post collision
behaviour, but are their end states the same or are they different? In other words,
is there a transition in the endstates between the high v BH formation and low v
BH formation in the black hole phase when C 2 0.077 The natural end state for
these collisions are spherical, non-rotating black holes, hence the no-hair theorem
implies that their end states are fully quantified by their final BH masses. To
obtain these values require running the simulations to sufficiently long timescales to
achieve these final states in addition to removing the unwanted reflection of scalar
and tensor waves from the boundary of the simulation domain. We are currently
exploring absorptive boundary conditions to overcome this problem. We will leave
this, and the computation of gravitational waves signal from such collisions to future

work.



Chapter 4

Boosting oscillotons

“If the warp drive fails to activate,

the results could be... unfortunate.”

Lieutenant Commander Data,
Star Trek: The Next Generation

This chapter comprises of the technical details for constructing initial data for a
boosted, equal mass, head on merger of two oscillotons (OS) as well on the modi-
fications needed during evolution. The initial conditions detailed were used as the
basis for published work, [3], and Chap. |3| which describes it within this thesis. I
would like to thank Thomas Helfer and Eugene Lim for their contributions towards
this work. These initial conditions are also currently being used for a second paper
in prep with Thomas Helfer, Eugene Lim, Marcos A.G. Garcia, and Mustafa A.
Amin. That work will be discussed in Sec. [£.5] T would also like to acknowledge the
contributions of Ricardo Becerril, who provided the code that generates the Fourier
coefficients used to generate a single, unboosted OS. The code that was provided is
detailed in [213].

4.1 Introduction and review of the construction

of a single oscilloton

We wish to study the boosted head-on collisions of a class of real scalar fields solitons
called oscillotons (OS) [121] using full (3+1) dimensional numerical relativity. The
knowledge of how to boost OS is vital if we wish to study OS-OS binary coalescence,
and hence study their corresponding GW signals. OS are stable on cosmological
time scales [195], and are an interesting type of “exotic compact object”, (ECO),
especially since they could be a good approximation of an axion star where the

leading order ¢* interaction is negligible due to having a large axion decay constant,
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fas [114,[122,[123]. These objects could therefore detected by LIGO/Virgd| and
provide some clue into what comprises the dark matter in our universe. We direct
the reader both to Sec. and Chap. |3| for more information on both OS and
axion stars.

To accomplish our goal of studying the boosted head-on collision, the construc-

tion of the initial data was split into 3 distinct phases:

1. Construct initial data for an equilibrium configuration of a single OS; some-
thing that has been accomplished before, notably in [121}126,214,215], and

will be reviewed in the remainder of this section

2. Lorentz Boost a single OS; theoretically simple to do but technically involved.
This will be explored in Sec.

3. Superimpose two OS; non-trivial and first done for a non-boosted case in |151].

This will be explored in Sec.

Once testing had begun, it was clear that additional steps would have to be under-
taken for the evolution to be successful. We talk about these additional steps in
Sec. [£.4l For what remains of this section, we shall now review how one generates
the initial data for a single OS.

We construct our initial data by solving for a single OS profile as outlined in
[121][126][214/216]. The key details of these methods] are reproduced here.

To obtain the radial OS profiles we use the ansatz for the spherically symmetric

line element:
ds* = —a(r,t)*dt* + a(r,t)*dr® + r*(d6* + sin*(0)d¢?), (4.1)

where a(r, t) is the lapse function, a(r,t) is the radial metric function and where we
use the polar areal gauge (i.e we force the line element to have the chosen form at all
times, so that the area of the sphere with r = R is always equal to 47 R?. Therefore
Oivee = Oryge = 0 [217,1218]).

The complete evolution of the scalar field and the spacetime is described by the
Klein-Gordon equation, Eqn. , the Hamiltonian constraint Eqn. and
Momentum constraint equations Eqn. (1.29).

To solve the Klein-Gordon equation, Eqn. , it is useful to introduce the
auxiliary scalar field variables ¢ = 0,¢ and II = a0,(¢)/ QE| It is also useful to intro-

duce the following dimensionless quantities, » = A/m (here we change convention

!See Chap. [2, and more specifically Fig. l?_1| for the LIGO/Virgo frequency band for axion stars.

2Although all methods in [121,/126}[214-216] are valid, the notation presented throughout this
chapter is specifically from [126]

3Tt useful to remind ourselves that although we define II here, when solving in 341 II is defined

as in Eqn. (1.68)
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from [126] to avoid confusion later), t — t/m, and ¢ — ¢/m. The Klein-Gordon

equation become

1 A2
oIl = ﬁ(‘%\ ( :w) — ao), (4.3)

Eqn. has a form that can cause our entire numerical scheme to become unstable,
due to the error introduced from the finite differencing method (see [20] for an
in-depth description of this problem). Using a simple trick, 9y\/A?> = 30,3, first
introduced in [219], we can transform Eqn. into the following form

o — 3L (AQS‘d’) — aa). (4.5)

dA3

This form of Eqn. (4.3)) is now numerically stable and is said to be regularised. The

Hamiltonian constraint equation becomes

N e
T = 3\ +Z(¢ + 11 +agb), (4.6)

and thanks to the polar areal slicing condition, the momentum constraint equations
take the form
e oha a®—1

7 = a + )\ —)\a2¢2. (47)

In order to construct the initial data for a single OS, it is useful to define A = a?

2 .
and C' = %;. Our equations become

A = (007 + (0n0) + A6?) + 2 (1- ). (45)
2C 1
1 2 oC
Cot = —20.006+ B0+ 0ro (X - @) ~ Ao, (4.10)
DA = AADGOLG. (4.11)

Eqn. 1} has a non-linearity, %, which is difficult to deal with. However as
we redefined our variables, we can now combine Eqn. (4.10), and Eqn. (4.9) to
remove this, and hence the instability present in our system of equations is removed

[126,1216]. Solutions are then obtained by expanding the metric functions and the
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scalar field in their Fourier components:

]mdx

Z ®j () cos (jwt) , (4.12)

Jmax

Z A;(N) cos (jwt), (4.13)

Jmax

Z Cj(X) cos (jwt), (4.14)

where w is a coherently oscillating base frequency and j.x is the maximum order
in the Fourier expansion to which the solution is obtained. Using the boundary
conditions of asymptotic flatness, and regularity, the Fourier coefficients, and w, can
be found numerically, provided the initial values ¢;(0) and C;(0).

In the sections that follow, we used the code of [213] to generate solutions for
large jmax using a shooting technique. As the numerical domain of the shooting
technique is small, we truncate the field at a finite radius, and set ¢ = 0, and match
the solution to Schwarzchild solution. It was this initial data that was Lorentz

boosted and superimposed.

4.2 Lorentz boosting a single oscilloton

The initial data generated using the methodology outlined in Sec. is described
in the 141 dimensional, spherically symmetric coordinates, (¢,\). To transform
between the 141 dimensional spherically symmetric coordinates, and a 341 Carte-
sian coordinate system, we can use the standard definition that A = \/m .
A(t,\), C(\t) and ¢(A,t) have no 6, dependence due to being spherically sym-
metric, and hence our definition of A in Cartesian coordinates is sufficient for now.
When calculating boosted metric variables in Sec. the full coordinate system
will be defined. Here we want to emphasise that we are talking about an unboosted
system still, and that as we will be constructing data for 3+1, we will be using the
scalar field evolution equations defined in Sec. [1.3.2]

The objective of this section is to how to apply a boost in the x direction for
a single OS. We denote (¢, z,y, z) as the “lab” frame coordinates (the coordinates
that relate to the Cartesian coordinates in GRCHOMBO, and ultimately what we
construct our initial conditions in), and (¢, 2,1/, 2’) as the coordinates in the OS
“rest” frame.

To apply a boost in the positive x-direction, with some velocity, v, we can define
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a Lorentz transformation of

(4.15)

where 7 is the Lorentz factor of defined as v = (1 — 02)_%. As y and z are unaffected
by the transformation we shall drop the prime notation for them when referring to

them in the OS frame. The inverse Lorentz transformation is

t/

ot —va), (4.16)
o —

' = y(z — vt).

Due to the technicalities of boosting an OS, we will describe the boosting procedure
systematically, firstly how to boost the static profile Sec. and then how to
construct the metric and the ADM decomposition required Sec.

4.2.1 Boosting the OS profile

In this section we will discuss how to boost the scalar field profile. We begin by

considering the boosted OS, in the OS frame, where we are using the shorthand that

)\/ — ’x’2+y2+22

Jmax

¢t N) = ¢(N)cos (jwt') . (4.17)

j=1

Scalar fields are invariant under a Lorentz transformation, which implies that

&t N) = (vt —vx), \) = o, (4.18)

where we are using A as shorthand for \/ v2(x — vt)? + y% + 22 and shortened the
expression again to use ¢. As the OS will have a non-zero initial velocity, and
potentially a non-zero initial time, we need to calculate I3, 1, defined in Eqn. ,
which will be used in the 3+1 scalar field evolution equations. I want to emphasise
that this is different from the auxiliary variable defined for the 1D case, however for
compactness reasons, from this point onwards we will drop the 3 + 1 subscript on 11
and not refer to the old definition.

The definition of II contains spatial and time derivatives of ¢ in the lab frame.

It also contains metric components, that we will demonstrate how to calculate in
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Sec. [£.2.2] We calculate the derivatives in the lab frame as

Jmax

0.6 = (90,(3) cos (jun(t = ve)) = &;(A)jeoy sin (jur(t = vx))) . (4.19)

0:6 = > (8:65(3) cos (e (t = va)) + 5 (Mjwwvy sin (jeoy (¢ = va) ) (4:20)

ﬁng = Zﬁygb] cos (jwy(t —vx)), (4.21)

]max

d.0 = Zang] cos (Jwy(t —vx)) . (4.22)

All of the derivatives of gzﬁj(j\) can be calculated using a radial derivative of the initial
data generated for a static solution via both the invariance of a scalar field under

coordinate transformation, and the chain rule. For example

0¢;(N') OX
N Ot

0i9;(\) = 0ip;(\) = (4.23)
In the implementation of the code for GRCHOMBO second order finite differencing
was used to calculate the radial derivatives as the spatial resolution of the input
data was far higher then that of any simulation that could be feasibly run with

GRCHOMBO. The derivatives of X are as follows

~yox'

Lo 0N = ogN=2 axN= (4.24)

at)‘/ = Ny )\/’ )\/

Using Eqn. and the chain rule, one can then calculate the derivatives of ¢
needed in the lab frame. With the metric components calculated in the next section,
these derivatives allow us to fully calculate II.

Beyond the numerical domain that can be obtained for the static solution, we
set <Z~> = 0 as before, as well as setting the time and spatial derivatives equal to 0.
This implies that outside of the numerical domain, II is also defined as being equal
to 0.

4.2.2 Calculating the metric and the ADM decomposition

In order to fully determine the initial data, we must determine the effect of the
Lorentz boost on the metric, and subsequently calculate the ADM decomposition.

To achieve this, their are 3 steps that need to be considered

1. Transform the metric, Eqn. (4.1]), into Cartesian coordinates
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2. Boost the metric that is now in Cartesian coordinates in the x-direction, using
a Lorentz boost, defined in Eqn. (4.15))

3. Calculate the ADM decomposition

Before we describe each of these steps systematically, it is very useful to remind
ourselves that to transform the coordinates of a metric, as well as to boost a metric
(which is a transformation again), we can use the following

o™ oz ,
gAé(xT) = W o0 g,uu(x ) (425)

where the primed coordinates are the coordinate system that you are changing into.
With this reminder, we can now proceed to generate our initial data.
To transform from spherical to Cartesian coordinates, we can define the following

spherical coordinate system

t=t,
x = Acos (D) sin (0),
y = Asin (@) sin (6),
z = Acos (0),

(4.26)

where @ is the inclination, € is the azimuthal angle and A = (/2% +y? + 22 (as

before). For technical reasons, we used a modified line element
ds® = —a(r,t)%dt* + A(r, t)dr* + r*(d6* + sin®(0)d¢?), (4.27)

where compared to Eqn. , we have used A(r,t) = a®(r,t). This is to simplify our
calculations later on. As before, in what follows we will use the dimensionless units
r = A/m, and t — t/m. Using Eqn. (4.25)), we now proceed with our coordinate
transform form into Cartesian coordinates. We omit %, also referred to as the

Jacobian for compactness reasons. Under the coordinate transformation, our metric

becomes
—a? 0 0 0
0 Ax?y?+22 (A-1)zy (A—1D)zz
_ A2 A2 A2
Juv = 0 (A—1)xy 224 Ay +22 (A-1)yz ) (428)

A2 A2 A2

0 (A-1)zz (A-1)yz 22 4y?+A22
A2 A2 A2

where for compactness reasons, we are using the short-hands of A = \/x2? + y? + 22
by definition, o = (A, t) and A = A(\, t).

Following our coordinate transform, we can apply a Lorentz boost in the x-
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direction, defined in Eqn. (4.15)). For completeness, we can define 2 o 9l as

v —vy 0 0

ox't vy v 00

o =M= 0 0 10| (4:29)
0 0 01

where A¥) is the Lorentz group. Again, using Eqn. (4.25)), Eqn. (4.28) is transformed
into the OS boosted frame, accomplishing step 2 of our list to successfully construct

our initial data. We do not show the full boosted metric here, but instead present

the metric in the ADM decomposition. Starting with the spatial metric, 7;;,

,)/2 (y2+z2+ﬁx’2 . ’U20_62> yw(A—l)z’ 27<A_1)$/
22

N2 /2
Hij = W(i;l)x’ Aszr;’;+$/2 yz(ﬁgl) , (4.30)
Z'y(il\;l)x’ yz(ﬁ;l) y2+z§2+z2.§

where we are using the shorthand of A previously defined. We are also using a =

VA/C defined as

Jmax
A=A, N) = ZA ) cos (jwt') (4.31)
_ Jmax
C=C{,\N)= Z C;(N) cos (jwt'), (4.32)

which are the initial conditions generated from the 1D unboosted case, however with

the coordinates now in the OS frame. The boosted shift vector, 3, is

5 o Ax? 4y 2P
oo AL

)\/2
/82 - AIQ I
~ vz ([l — 1) x’
B3 = - 2 ’
A
and boosted lapse, a,
2 (12 _ 2 A\2
G- r-1)jard) . (4.34)
v2a2z? — A (N2 — 0262 (12 + 22))

To finish our constructing our initial data, we can calculate K;; as per Eqn. (1.23]).

As this calculation is simple, rather lengthy, and hence uninstructive, the resultant
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form of K;; has been omitted. It should be noted that our derivatives are taken in
the lab frame, and as such we get derivatives of A and C. These can be calculated
using the chain rule much like we did before for ¢.

Finally, we should note that much as before, we must prescribe the initial data
for o and A that lie beyond the numerical domain of the shooting used to calculate
the unboosted 1D OS. This can simply be done by matching to Schwarzchild, and
boosting appropriately.

4.3 Superimposing two oscillotons

We have demonstrated how to construct the initial data for a boosted OS. In this
section, we will explain how to superimpose two OS such that one can construct
the initial conditions for a variety of potential simulations. The technique that will
demonstrated is based on [151], but has been modified for boosted OS.

Given a single boosted OS, we can generate OS-OS initial data by superimposing

two single boosted OS:

Prot = ¢|xuzg + ¢|z'+x6
oy = H\xur% + H|x’—$6
ot = Qllray + Olyr—ay
Bior = Bilarray + Biler—a
Viiot = Viglarraty + Viglar—ay, — hi

Kij,tot = Kij';v’+ac6 + Kij|;t’—ac6

: (4.35)

where £z{ are the locations of the centres of the two OS, and h;; is a constant
metric. Note that we have dropped the tilde notation on «, 3; and ~;;.

Naively one would define h;; = 5ijﬂ, which would make the asymptotic values
the same for a single OS. However, at the centre of each OS the volume element is
distorted by its companion with respect to a single OS, and as commented on in [151],
this induces significant excitations in each OS, which can lead to premature collapse
of the OS, and changes in the gravitational wave energy of a head on collision. The
distortion of the volume element can easily be seen in Fig. [1.1]

Thus the solution to this problem prescribe h;; such that the change in the

volume element at the centre of each star due to its companion is minimised. This

“We remind the reader that &;; is the Kronecker delta and for 3D is defined as 6;; = diag(1,1,1)
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Figure 4.1: We present three scenarios for dety, H; hi; = d;;, and h;; = %J|2f’36 ie
the “unfixed” and “fixed” cases, for two equal compactness, C = 0.049, symmetric
unboosted OS, where one of the stars in centred on x = 84, as well as a single OS.
It can be seen that as we use the “fixed” version of h;;, the volume element of the
star mirrors that of a single star.

can be done in practise by defining

2 12 A A ’
Y a2 Aly, _ yw(A|2z/ —1)z
2 (—0 — vza2|2% —9 - 0

p/2 p/2
hij = Yijlaay = vy (Alyy 1) Y2 Al o , (4.36)
0 0 1

where we have set z = 0 as we are assuming that the OS will be positioned on a x —y
plane taken at z = 0, p/ = /22 + y2, and a?|gq; and fllg%, are the initial values of
& and A with z = 0 from Eqn. and Eqn. chosen at 2xj,, where 2z, is the
separation between the OS. Defining h;; in this way can be seen in the reduction of
the distortion in Fig. [4.1], which results in a reduction in the Hamiltonian constraint
violation, Fig. [.2] by an order of magnitude. The Momentum constraint violation
is also similarly reduced when a boost is applied to the system. The prescribed
method for reducing the distortion, eliminates the excitations in each OS.

One can now also prescribe the relative “phase”, A#, between the stars by mod-
ifying Eqn. . A full definition of the phase of an OS can be found in Chap. ,
however here it is sufficient to say that the phase is defined due to the symme-
try of the ¢ profiles of the OS, with a symmetric, A0 = 0, set-up corresponding
to gz5|m/_w6 = ¢|x’+ﬂf6 and an antisymmetric, A¢ = w, configuration correspond-

ing to gb|$/_m6 = —¢|xl+$6 . “Mixed phase”, sometimes referred to as “off-phase”,
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le—4

hij = il ax,
hj'j = GJ,T
— 105

75.0 77.5 80.0 82.5 85.0 87.5 90.0 92.5
x[1/m]

Figure 4.2: We present three scenarios for the Hamiltonian constraint violation,
H; hij = 0;j, and h;; = %J"Qzé i.e the “unfixed” and “fixed” cases, for two equal
compactness, C = 0.049, symmetric unboosted OS, where one of the stars in centred
on x = 84, as well as a single OS. It can be seen when we modify h;; such that we
reduce the distortion of the volume element at the centre of an OS, H is dramatically
reduced. A similar picture can also be constructed for the Momentum constraint
violation, M;.

0 < A6 < 7, correspond to ¢; = Agpy, where A is some constant between —1, 1. It is
important to note that we are talking about equal compactness, C, in this definition,
and that, if ¢ is chosen on the initial hypersurface is equal to 0, then the OS pair
constructed will have a symmetric configuration.

Equal C, antisymmetric boosted OS, can be constructed by modifying Eqn. (4.35))
such that @[y 4oy — —@lurgay, and Uy, — —I[wy,y with ¢ being chosen as 0 on
the initial hypersurface. Equal C, unboosted, “mixed phase” OS can be constructed
by not modifying Eqn. , but instead choosing a different ¢ for each OS that is
constructed before superposition such that for OS 1, t = 0 and for OS 2, t = %. In
this work we do not discuss how to construct equal C, “mixed phase” boosted OS.

One final comment about constructing initial data; for low v boosts our ini-
tial data produces low relative Hamiltonian constraint violation and momentum
constraint violation (O(0.8)% for a boost of v = 0.6). When boosting to higher
velocities, we use a relaxation scheme to lower both of these relative constraint

violations.
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4.4 Evolution

Following the prescription laid about above, one can fully construct initial data for
a pair of boosted OS. For low velocity boosts it was sufficient to use the evolution
scheme, and gauge conditions outlined in Sec. [I.4] however for higher velocity boosts,
without modification, gauge artefacts are present. The gauge artefacts manifested

themselves in two effects:

1. x “bumps” - In the region where each OS was initially set-up, the value of y
would grow slowly after the OS has moved from this region. This effect did

not effect evolution, or gravitational wave extracted as per [151].

2. K “waves” - Thin bands of O(1) values of K would propagate in the direction
of the boost from each OS. This effect caused unwanted AMR, and needed to

be removed.

Fig. shows the K “wave” effect for a single boosted OS. We will now comment
on each effect and explain how to modify the gauge conditions to remove them. The
x “bumps ” do not effect the evolution of a pair of OS for head on collisions, or
their gravitational wave signatures due to them being purely gauge effects. This was
verified in [151] by comparing degenerate OS-OS head on collisions, which collapse to
BH before collision, with BH-BH head on collisions. Due to these initial conditions
potentially being used for OS-OS inspirals (which we will comment on in Sec. {4.5)),

as a precaution we removed the x “bumps ” by modifying the shift gauge conditions,

presented in Eqn. (1.73]) and Eqn. (1.74)) to

B = zri —np". (4.37)
Mirroring an idea presented in [220,221], we have integrated Eqn. with respect
to time and set the integration constants, I'(t = 0) and (¢ = 0), to zero. This has
been done, as I''(t = 0) and B%(t = 0), contain an impression of the original location
of each OS, and if not set to zero, the original impression would “freeze” in (using
the terminology of [220}221]). Thus once the integration constants has been set to
zero, the impression will also be removed.

To avoid having undesirable gauge effects, i.e, K “waves” we can introduce fric-
tion terms into Eqn. ([1.72), such that it becomes

. Ala — Aanalytica t t < tmer er
Ov = —pa K + B'0jo0 — ( ticat (1)) 2 L (438)
~ ~ v _ [ t=tmerger
as in Eqn. (1.72] B(Oé - aconstant)e ( fdecay ) t > tmerger

where A and B are constants, Qunaiytical(t) is the analytical version of & generated
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Figure 4.3: An OS with initial boost v = 0.5 and compactness, C = 0.137. Top
panel) The energy density, p, for the OS at ¢t = 0, (left), and ¢ = 33, (right). Bottom
panel) The trace of the extrinsic curvature, K, for the OS at t = 0, (left), and
t = 33, (right). It can be seen that the value of K grows from O(0.1) to O(1) as
simulation progresses. This is realised as a K “wave” propagating along the axis in
which the OS was boosted, and is a gauge effect.
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in the initial conditions for a boosted star, Eqn. , but evaluated at current
time ¢, Qconstant 18 @ constant, t,erger 1S the time in which the OS take to merge, and
tdecay 18 another constant. aupaiyticar(t) provides a good approximation for the OS as
they begin to collide, and hence, when the OS collide at #,,erger, it’s n0 longer valid
as a good approximation. In the work done in Chap. 3, A = B = aconstant = 1 and
tdecay = 7.

The addition of the terms in Eqn. (4.38) cause two different effect depending on
t. If t < tmerger, the friction term pulls a towards the analytic gauge calculated in
Eqn. (4.34), and thus will eliminate the K “waves”. If ¢ > tyerger, and importantly
a black hole would form, we allow our friction term to decay as it no longer provides
a good approximation for the system. However, after a black hole has formed,
sometimes K “waves” can form[, so the decay of the friction term is tuned with
tdecay Such that we can still remove the K “waves” , but that it decays fast enough
such that it allows the puncture gauge, Eqn. (1.72), to be used, and our evolution

to remain stable.

4.5 Discussion and future work

In this chapter, we have demonstrated how the initial conditions for a pair of boosted
OS can be constructed, with variable phase, and explained how to modify the gauge
conditions such that there are no gauge artefacts during evolution. These initial
conditions have already been used in the study of head-on boosted equal mass
oscillotons (OS) collisions for both the cases where the OS have equal phases or
are maximally off-phase (anti-phase) (see Chap. [3| and [3]), and currently are be-
ing used in a paper in preparation with Thomas Helfer, Eugene Lim, Marcos A.G.
Garcia, and Mustafa A. Amin about colliding equal C OS with an impact parameter.

The work involving colliding OS with an impact parameter aims to study two
effect: 1) Is it possible to create OS as the result of a collision that have a defined
angular momentum, similar to those constructed in [222], and 2) when colliding
two OS such that there resulting product is a spinning black hole, if one increases
the initial boost of each OS, what happens to the formation of the black hole?
Without the boost code presented in the above chapter, these questions could not
be answered.

Another useful question that can be asked, is what is the gravitational wave
signature that is expected from an OS-OS inspiral? The initial conditions presented
here allow this question to be answered, and simulations to answer this question

have been performed. However, due to the large amount of orbits required, and the

5This was seen for equal C OS collisions with an impact parameter.
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high resolution required to study the gravitational wave output from the resulting
collision, we did not pursue this avenue of research due to computational and time
limitations. It is hoped that, in the future someone will be able to perform these
simulations, especially with the sensitivity in LIGO expected to increase in the
coming years [223]. A GW from an OS-OS signal would be a smoking gun for new
physics.



Chapter 5

Spherically symmetric collapse in

Khronometric theory

“Like they say in the Temporal
Mechanics Department, there is no

time like the present.”

Future Admiral Kathryn Janeway,
Star Trek: Voyager

This chapter comprises of the research done on spherically symmetric collapse in
Khronometric theory, which is based on unpublished work with Eugene Lim, Diego
Blas and Enrico Barausse. This work proved extremely challenging, and we were
not able to derive any firm results. However, a number of avenues were explored and
we obtained a greater understanding of their respective problems. We will describe
the various approaches taken, and suggest directions for future research. As noted
in the introduction, due to the topic of this research, this chapter is self contained

and includes all relevant introductory material.

5.1 Introduction

General Relativity (GR) is beautiful. From the very first tests of GR, like the
perihelion precession of Mercury’s orbit, to the recent detections of gravitational
waves from from the binary coalescence of black holes (BH) [7H12] and neutron
stars [13], GR presents itself to be the theory governing gravity. One may ask why
we should continue studying “alternative” or “modified” theories of gravity] when

no evidence for violations of general relativity in the genuinely strong-field regime of

1See [224] for a comprehensive pre-LIGO review of modified theories of gravity
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gravity have been found [225,226]. What could motivate this seemingly misguided
study?

Quantum. In the earliest moments of our universe, in the singularities of black
holes and at high energies GR breaks down. Indeed, even Einstein himself argued
that gravity would needed to be modified for quantum effects to be taken into
account [227,228]. We can try to treat this problem by unifying GR and Quantum
Field Theory (QFT) in the hope that where GR breaks down, this new “Quantum
Gravity” will take over.

How would one construct such a theory? A simple idea would be to reconsider
some of the fundamental ideas that knit together GR. In this chapter we will consider
the violation of one of these key ideas, local Lorentz Invariance. Much work has been
carried out in this field, however we will consider Khronometric Theory (sometimes
referred to as T-Theory), the low energy limit of the Horava Gravity. Horava Gravity
is power counting renormalisable [229], so one expects it to be a viable candidate
for Quantum Gravity.

Black holes exist in nature. A fundamental test of any theory of modified gravity
is whether it can produce black holes such that they look like the ones we observe.
Spherically symmetric static black hole solutions have been found in Khronometric
Theory [230], however the formation mechanism for them has not yet been tested.

In this chapter, we will present the research undertaken to model spherically
symmetric collapse in Khronometric Theory, and document the various approaches
we undertook. In Sec. [5.2] we discuss Lorentz-Violating gravity, and more specifically
Khronometric Theory. We also comment on the connection between Khronometric
Theory and Einstein-Aether Theory, the latter already having successful spherical
collapse simulations [231}232]. In Sec. and Sec. we explore our work of
Gravitational Collapse in Khronometric theory, where we discuss our theoretical and
numerical set-up. Sec. concerns itself with the results from the initial approach,
and details some methodology that can be used to explain the outcome of the
simulations. Sec. describes an attempt at regularising our system of equations,
and shows results from an in-depth testing of the regularisation. Lastly, in Sec.

we discuss our findings, and its implications for future work in this field.

5.2 Lorentz-Violating gravity and Khronometric

theory

In this section we introduce Lorentz-violating gravity and, in particular, Khrono-

metric theory. We consider the Arnowitt-Deser-Misner (ADM) decomposition for
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the metric
ds® = (=N? 4+ N;N")dt? + 2N;dz'dt + ~;;dx'da’ | (5.1)

where we foliate spacetime into spacelike hypersurfaces of constant time coordinate.
We define N as the lapse, IN; as the shift vector and v;; as the spatial metric. It
should be noted that this is the same decomposition as in Eqn. , however with
the lapse relabelled from o — N and the shift relabelled 5; — N;. Khronometric
Theory violates Lorentz symmetry by introducing a vector field (Aether field), u

of everywhere unit magnitude that introduces a “preferred direction” [233]. We
require the vector field to be orthogonal to hypersurfaces of constant time, T [230]E|.

With this requirement, the vector field becomes

9,7
Uy = ——2 = N§". (5.2)

\/ 90,10, T
T is a scalar field, and is known as the Khronon [235]. It should be emphasised,
that unlike in GR, the lapse is no longer a gauge choice, and is a spin 0 mode that
is an excitation of the foliation structure of spacetime [236], which in turn, sets the
global time. The action of Khronometric theory [229,[237] is

1-5
167G

14 A 1 .
Sy = de?’xN\/_( KK — gy ®R4+ 2 aiaz> , (5.3)

1-p 1-p 1-p
where )R is the Ricci Scalar associated with the spatial metric Yij» @; = O; In N is
the acceleration of the lapse, a, § and A are dimensionless coupling constants, and
the extrinsic curvature K; is defined as
1

Kij = 2N (6]5%] DZN] — DJNZ) (54)
where D; is the three dimensional covariant derivative associated with the spatial
metric, ;5. G is defined as the “bare” gravitational constant, related to the Newto-

nian gravitational constant

2G

Gy = .
N 2 —«

(5.5)

Eqn. (5.3)) is also the low-energy limit of Horava gravity, which is a proposed ultra-
violet (UV) complete theory for gravitational interaction [229}237], with the action

1-p

5= 16G

1
dTd*xN\/y <£2 + WE‘* + M4£ ) : (5.6)

In the literature this is also known as the Stiickelberg formalism, and where the Stiickelberg
field, ¢ = const and is written in the gauge where the field coincides with ¢ = T'. This choice of
the formalism is referred to as the “unitary” gauge [234).
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where

1+X 1 Q »
— —(3) . Z' .
1 BK + =5 R+ 1 Baza (5.7)

L4 and Lg contain terms that are that are fourth and sixth order in the spatial

£2 - KZ‘J’KU —

derivatives respectively. M, is some new mass scale, and suppresses £, and Lg at
low energies, but allows these terms to dominate in the UV. The presence of sixth
order terms in the spatial derivatives is crucial for power counting renormalisability
[229,1238]. M, is bounded from below to be greater than 10'° GeV by looking at
the matter sector, and is bounded from above to be less than 10'® GeV to allow the
theory to remain perturbative on all scales [236],239]. In what follows, the form of
L4 and Lg will not be considered as we will be working exclusively in Khronometric
Theory.

The allowed parameter space for Khronometric theory is small, and is constrained
by a number of theoretical and observational constraints, which have been collected
in [24011241], and reproduced here. Theoretical constraints require that the scalar

mode of our theory is neither a ghost or a tachyonic field [236.[237]. This yields
0<a<2, >0 (5.8)

Observationally a number of constraints bind our parameter space, including current
constraints from parameterized post-Newtonian (PPN) parameters, Big Bang nucle-
osynthesis (BBN), binary pulsar, binary black hole observations and gravitational
waves [235,239-245]. This results in

0<a<10® 0<pB<I107® A<107'. (5.9)

Further constraints will come from extreme mass inspirals gravitational wave emis-
sion [239], as well as further gravitational wave observations. Before continuing, it
should be noted that the parameter space was larger when this research was under-
taken in 2016, and hence, parameters will be used that do not meet observational
constraints.

Khronometric theory has many similarities to a theory known as Einstein-Aether
Theory in which spherical collapse simulations have been achieved [231},232] (see
[246] for a comparison of collapse in both theories). We can define Einstein-Aether
theory by introducing a vector field u* (dubbed the Aether field as before), of
everywhere unit norm. However we do not make the requirement that the Aether
field is hypersurface orthogonal unlike in Khronometric Theory. Up to quadratic

terms in first derivatives of the field, the most generic action is [23§]

1
5= 167G

/d4x\/—g (R+ M;fgv(;u“vau”) : (5.10)
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where G is the bare gravitational constant in Einstein-Aether Theory, R is the Ricci

Scalar, g is the determinant of the metric and
M,fg = clg‘s"gﬂu + 02(52(55 + 03(525; + c4u‘5u"g,w , (5.11)

where ¢; are the four coupling constants of the theory. A spherically symmetric
static Aether field is always surface orthogonal [238], and as hypersurface orthogonal
solutions of Einstein-Aether Theory are solutions of Khronometric Theory [247], we
expect the solutions of spherically symmetric static black holes in Einstein-Aether
Theory to be solutions in Horava gravity. However it is not known if non-static
spherically symmetric solutions match in the two theories, which implies that we do
not know if spherical collapse in the two theories are identical or lead to the same
end state [246].

To finish this section, we will present the field equations for Khronometric Theory

as per [248249]. The variation of Eqn. (5.3)) with respect to the lapse N results in

®R I+ A aa;al 2 9 2

— KYK;; K? — — ——Dj(aa’) =0 5.12

15 ]+1—ﬁ +1—5 1_ﬁaa 5 (va®) . (5.12)
the variation with respect to the shift V; yields
I R

-D] <K” — ]__E—B’YWK) == 0, (513)

and finally, the variation with respect to the spatial metric v;; gives

1 ((3>Rij _ %(3)37721') + iDt (Kij _ ﬂyin>

1-8 N 1-8
+ %Dk (N(i(Kj)’“ - Ki i 27”’“)) + 2K K]

- Hlﬁ_—;%KUK — %W‘ (K’“Kkl + %KQ)

) ﬁ (D'DN =7 DuD*N) + = ad'e’ - 2(0{—aiaiﬁ)vi" =0, (5.14)

where D; denotes the covariant derivative compatible with v;;, and D, = 0, — N, D*.
Comparing these equations to GR, Eqn. is a modified evolution equation,
Eqn. is a modified Hamiltonian constraint, and Eqn. is a modified
momentum constraint. Unlike in GR, Eqn. needs to be solved on every time

step as the lapse is not a gauge choice [248].
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5.3 Black holes and collapse in Khronometric the-
ory

In this section we will give an overview of black holes in Khronometric theory, and
then show the equations of motion, boundary conditions, and initial conditions for
gravitational collapse.

One of the defining characteristics of a black hole is the presence of an event
horizon®} Classically we can define an event horizon to be a surface in which particles
can never escape to infinity [17, p.222], or alternatively, as per a more beautiful
definition in [20]:

“Once an object has crossed r =horizon, the advance of time becomes equivalent to
a decrease in r, that is, the object must continue towards smaller values of r for
the same reason that time must flow to the future. As nothing can stop the flow of
time, there is not force in the Universe capable of preventing the object from

reaching the singularity.”

This definition uses radial coordinates, and places the singularity at » = 0. For all
its beauty of the definition provided by [20], an alternative wording that will serve
us better is that an event horizon is a causal boundary that separates the interior
and exterior of the black hole [238]. As you will see in the upcoming section, the
definition of a horizon will become blurred when talking about Lorentz-Violating
gravity.

In Horava gravity, massive particles contain higher-order momentum terms

4
2 92 2 anp bnp
FE =cC,p +W+ e

6

(5.15)

where F and p are the energy of the particle and its spatial momentum, and c,,
a, and b, are coefficients of order one depending on the particle species n [252].
As p — oo the group and phase velocities become unbounded [253], and hence the
theory can have excitations whose velocity exceeds that of light, and thus escape
from inside GR horizons. These modes could even probe the immediate vicinity of
the singularity [252]. So what does this mean for the existence of black holes?

In Khronometric Theory we can still define a black hole as there still exists causal
boundaries in which particles with infinitely large velocities cannot escape [253]. The

boundary of the causally connected region is known as the “universal horizon”, and

3 Although this definition lacks precision, it provides us with a good viewpoint moving forwards.
An object without a horizon, is sometimes referred to as naked singularity, or a “massless” black
hole and this type of object is expected to not exist in nature due to the cosmic censorship
hypothesis [250]. However in [251], via “extreme” fine tuning, it was found that these could be
formed in scalar field collapse, dubbed Choptuik collapse.
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in terms of foliation this horizon corresponds to a leaf which is disconnected from
spatial infinity [230,[246}252,254].

Static spherically symmetric black holes in Khronometric Theory have been
studied in [230}[238,252] and solutions calculated numerically. In terms of col-
lapse processes, none have been studied so far, except for in Einstein-Aether Theory
where [246] argues that in the collapse simulation of [231], a universal horizon was
formed, however it is again prudent to emphasise that even though the end-states
of the theory coincide, it is not known if the collapse process is the same. It seems
that our task is to perform gravitational collapse in Khronometric theory, and to
hopefully reach an end-state where we have formed a universal horizon. It should
be emphasised that we will not be considering any matter as in [231], but instead
the collapse of the Khronon field.

As a first step to study gravitational collapse in spherical symmetry, we consider

a purely vacuum spacetime. Choosing a gauge such that N; = 0, we can write

N = A(t,r)?, (5.16)
Yijda'de? = F(t,r)*dr® + B(t,r)*r*dQ*. (5.17)

N; = 0 ensures that once a set of spatial coordinates is chosen on some initial 7' =
constant hypersurface, then spatial coordinates are fixed in the whole spacetime.
However you are free to choose any set of coordinates on the initial hypersurface.
One way to get rid of the residual gauge freedom is to impose that » matches the
areal radius at ¢ = 0, such that B(t =0,7) = 1.

Using the constraint equations, Eqn. and Eqn. , and by introducing
the variables X = 0,F/A?, Y = 0,B/A* F, = 0,F and B, = 0, B, the evolution
equations, Eqn. ([5.14)), can be put in the form

ou+M-Ou=S8, (5.18)
OP?A=R, (5.19)

where u = (X, Y, B,, F,.), M is the characteristic matrix

2(a—2)(A+1) A2
(B4 NAB2Fk; 20\ + 1)ABF2k, W(_l)(ﬁ)(ﬁm)BF

(a-2) (81 A2
(B+NAB?Fky 2(A+1)ABF?k, T a(B—1) (B33 12)F?
0 —A? 0

—A? 0 0

M = , (5.20)

o O o O
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and the sources, S, are

§_ (_ (BH22+1)(a(B—1) —2(A+1))FY24%2  (Ba+a+2(a+1)A+2) (F? —r’B,?%) A?
- (B —1)(8+ 3\ +2)B? r2a(f —1)(6 43X+ 2)B2F
(F(=r*(B+ M) (a(B-1) —2(A+1))X% = 2(Ba+ a+ 2(a+ 1)A +2)) — 4r(a — 2)(A + 1) F}) A2
2r2a(B —1)(B + 3A +2)F?
2B, ((a(B—1) +6(A+ 1))F +r(a—2)(A+1)F,) A2 N 2(8—-1)B*Fk; X A
ra(f —1)(8+ 3\ +2)BF? T

+

2B - 1)BFk (:XBT —~FY)A (54 NBlXFA (;B:al,.)éé
2(r(B=1)(B+NkY B3 +20,A) A 2(a(B +4) +3) — 2(\ + 1))(9,4)?
r(B—1)F B-1(B+3X+2)F ’
C((BHNB+22A+1) —a(B—1)(A+1)) Y242 N (B+N(a(B—1)—2(A+1))XY A2
a(f-1)(6+3)2+2)B a(f—=1)(B+3A+2)F
A +a+ B+ (r?B.2—F?) A% 2(—B— A+ a(B+2\+1))B(8,A)? 9
( 2a(A BI)(BL( It 2)BFg = G- 1)%2 T 2%2( E 5+ VB XF A

B(F (r2(B+M(a(B—1)+B+NX2—2Ma+a+B+\) —2r(a —2)(8+ \)F,) A
- 2r2a(8 — 1)(B + 3\ +2) F3
B, (2(—Ba+a+3(8+MN)F +7r(a—2)(3+\FEF,) A2 N 2(8 —1)B?Fky X A N 2BAd, A
ra(f—1)(8+3X+2)F3 r r(B—1)F2
+2(5 —1)BFky (rXB, — FY) A N 2B, (0,A— (B —1)(B+ N F*k;Y) A
r (B—1)F?

_|_

 —2AY 9, A, —2AX8TA> .
(5.21)

The source of the equation of A reads
- W {4047"8TAB (B(rF, — 2F) — 2B, F)
—4aksr? A*B*F [B* (F (r(B+ X0, X +2(8 — 1)X) — (B + \)F,X)
+2BF (8 — V)rB.X + F (A + 1)rd,Y — (8 — 1)Y)) — 2r(8 + \) B, F*Y]
+A[B? (F (r*(B+NX? =2) +4rF,) + 2 (F° (r*(B+2X+ 1)Y? + 1) — 1’ B,*F)
+4rB (rF (A +1)FXY — 8,B,) + B, (rF, — 3F))] } , (5.22)

where k1, ko and k3 are three arbitrary functions of ¢ and r, which can be chosen at

will. The characteristic matrix has four eigenvalues

i =0, (5.23)
7= ABF (ki(B+ A\)B + 2(A + 1)ko F') | (5.24)
A2
= s (5.25)
where
PG RSN 526

a(f-1)(B+32+2)’

is the propagation speed squared for the spin-0 modes in Minkowski space. This
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means that the sub-system X, Y, B,., F;. is strongly hyperbolic provided k; = ko # 0,

i.e has 4 unique eigenvectors [20, p158-164]. Finally, the constraint equation reads

A [QBF (F(\ + 1)r8,0,B + (8 — 1)(8,B8,Fr — 8,BF))
+BA(Fr(8+ NAO,F + OF (2 ~ 1)F = 9,Fr(8 + \))) - 20.BOBFr(5+ )|
—20,ABFr(BO,F( + \) + 20,BF(A 4+ 1)) = 0 (5.27)

To specify our initial data, we can first remind ourselves that we can set B(t =
0,7) = 1 by tweaking our gauge, hence B,.(t = 0,7) = 0. That leaves us with
initial data for X,Y, F,., subject to the constraint equation given by Eqn. (5.27]).
Therefore we are left with two pieces of independent initial data. We can choose
time-symmetric initial data with X = Y = 0, then Eqn. is automatically
satisfied, and we are only left with the choice of F,.. We also need two boundary
conditions for the equation for A, Eq. .

To attempt to figure out the remaining initial conditions and boundary con-
ditions, we can examine work carried out in [230,238,[255]. We can consider a
general static, spherically symmetric vacuum solution in Schwarzschild coordinates
(t',7',0,¢). This is relevant because if the boundary of our computational grid is
sufficiently far it is reasonable to assume the boundary to be static. In more detail,

the metric and aether for a static, spherically symmetric vacuum solution reads

ds? = — f(r')dt"” + Z}(r—;/;drﬂ +2d0?, (5.28)
w _1 + f(r’)a(r’)2 / b(T/) 1 / /
wypdrt = 200) 200 {f(?”’) —af(r )2] dr'. (5.29)

Near spatial infinity, we can imposes asymptotic flatness such that f,a,b takes the

series expanded form [230]

fi Q f13
N = 1+ 24 .

f(?”) + r! + 487’/3 + ’ (5 30)
a fz a f3

b(r) = 14+ —<L - —J1 4 . 5.31

(T) + 167”/2 12,,43 + ’ ( )
].f1 a9y 1 3 [0 3 1

a(r'y = 1-— §7+T7+ (Efl - %fl — fia m‘i‘ 5 (5.32)

where the constants f; and ay specify the solution. In more detail, f; is the so-
lution’s “characteristic size” as measured at spatial infinity, i.e. we can define a
“gravitational radius”, r, = —fi, which is in turn related to the solution’s total
mass Mo (as measured by an observer at spatial infinity) by r, = 2G N Miot.

The coordinate transformation from Schwarzschild coordinates and our coordi-
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nates (¢,r,0,¢) are defined by

r'=rB(t,r), (5.33)
ar/g; ) - () (7”/)5(55;)2 = —uy(r)u” ("), (5.34)
t =t+ R(r), (5.35)

where uy (r'), u (") and u” (') are given by Eq. (5.29). Under this coordinate

transformation, Eqs. (5.28) and (5.29)) become

[b(r')0,r'}?
uy (17)?

uudrt = uy (r')dt . (5.37)

ds® = —uy(r')2dt* + dr® + 12 B(t, )0, (5.36)

We can observe that N(r,t) = A(r,t) = up(r') = up(rB(t,r)) = 1+ f1/(2r) =
1+ f1/[2rB(t,r)]+..., which provides boundary conditions for A(r,t) and dA(r,t)/Or
as 1 — o] When choosing the initial data for F' (and thus for F,) at t = 0,
we want to make sure they are static near spatial infinity. Now, Eq. gives
F(t,r) = b(r")0.r" Juy(r"), but at t = 0, " = r, hence F(t = 0,r) = b(r)/up(r) =
1 — f1/(2r) + .... Therefore we can choose our initial condition for F' to be

F=1- % (14 tanh (r —r.)) , (5.38)

where we can define r. to be some point where we want to centre our bump. This
would correspond to a shell of the Khronon field. We impose regularity at the centre
of the grid as in [246]. Our evolution variables are (X,Y, F,., B,), but the source of
the evolution equations depends on F' and B. To obtain these variables we integrate
0,B = B, and 0,F = F, on each slice.

5.4 Numerical simulations

To study the described system, and to ultimately simulate gravitational collapse of
the Khronon field, code was written in C utilising the PETSc toolkit. PETSc is a
suite of data structure and routines for the scalable solutions of systems modelled by
partial differential equations [256]. This code can be easily adapted to solve other 1

dimensional problems, and has the following key features:

o MPI scalability: PETSc contains features that allows the user to program using

4Alternatively, one can impose that 9,4 = 0 at » = 0 via regularity. In the work that follows,
both variations of the boundary condition where implemented, with the regularity condition being
used for results presented in this thesis.
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MPT [135], and are implemented in the code. MPI allows the code to scale
efficiently to several thousand CPU-cores per run, and hence, allows highly

resolved simulations to take place.

o [Fized grid mesh refinement: The code features fixed mesh refinement around
r = 0, which allows the user to run highly resolved simulations near where
the universal horizon would form, but maintain an outer boundary at »r = R
which is far enough away from the » = 0 to be considered static. The code

uses 2nd order stencils at the boundaries between meshes.

e th order discretisation in time, and up to 4th order discretisation in space:
PETSc features solvers in time that allow upto 6th order discretisation, how-
ever for this implementation we use Runge-Kutta 4th order (RK4) [137]. The
code allows a user to take upto 4th order spatial derivatives, but 2nd order

are used due to the 2nd order stencils at the fixed mesh boundaries.

e FElliptical equation solver: An elliptical solver is implemented using RK2, but
simple trapezium and Euler methods are optional within the code. The ellip-
tical solver can also be initialised before evolution takes place to solve initial

conditions, and runs until the values converge.

e Kreiss-Oliger dissipation: Kreiss-Oliger dissipation [138] is used to control
errors and a 3rd Order method was implemented to ensure stability of the

system.

e Common output and restart: PETSc allows the easy use of MPI Read/Write,
which allows the code to output the values of any chosen variable upto every
time step in .dat format. These files can then be used to restart the code, and

due to the filetype, allow for easy analysis.

e FError monitoring: The code monitors and outputs the value of the constraint

equation. The code will automatically stop if the value gets too high.

Using the described code, we solved for gravitational collapse of the Khronon field
as follows: We set up our initial conditions, and then calculate A by solving the
initial conditions of Eqn. (5.19)) using the codes elliptical solver until a solution for
A converged. We choose the RK2 method of the elliptical equation solver. Next, as
mentioned above, we time evolve using RK4, hence solving Eqn. (5.18)). After a time
step has taken place, we solve Eqn. for that time step, and then recover B and
F by integrating 0,8 and 0,F using RK2. Once this process has been completed
we take another time step, and repeat until some predefined end time, or the code

automatically stops due to a crash. As A, B and F' are of order 1 plus small and
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our other variables are order small, a cut off £107!® was introduced due to machine
precision. This is an optional feature in the code, and can easily be disabled.

Data was analysed using a set of parallelised Python scripts. As well as analysing
the data, the scripts would perform unit tests on the code, as well as provide visu-
alisation of the variables. The initial conditions where also verified using a Mathe-
matica script to ensure that A was calculated correctly.

A number of simulations were using values for the dimensionless coupling con-
stants, «, 3, A that are currentlyﬂ permitted by observation. We also ran simulations
with values that were larger (but still allowed under general theoretical considera-
tions) such that a broad range of parameters could can be tested.

It was found that this system of equations was largely unstable for theoretically
allowed values for the parameters «, 5 and \, therefore no firm results were obtained.
In the following sections we will investigate what could have caused the instability
(Sec.[5.F)), as well as showing how to regularise the equations (Sec. [5.6). The results

of the regularisation will then be discussed.

5.5 Instability of gravitational collapse

When using the system of equations outlined in Sec. [5.3] and using theoretically
allowed values for the parameters o, 8 and ), it was found that we could not achieve
gravitational collapse of the Khronon field, due to values at small r exponentially
growing, and causing the simulations to crash. In the following section, we shall
explore what could be causing the instability at low r, and show some results to

help validate the cause of the instability.

5.5.1 Analysis of r << 1

To gain an understanding of what is causing our instability at small r, we focus on
terms in Eqn. (5.18)) of type 1/r", where n > 0. Analysing Eqn. (5.18]), we find

that they will be dominated by 2 of the 4 equations, X and Y as they contain 72

terms, whilst B, and F, do not. Looking at the =2 terms we see that we can reduce

Eqn. (5.18)) to

1 (aB+2(a+ DA+ a+2)A(t,r)* (B(t,r)? — F(t,7)%)
2 a(B —1)(6+ 3\ +2)B(t,r)2F(t,r)
—1(aX+a+ B+ NA(t,r)*(B(t,r)? — F(t,r)?)

72 a(B-1)(B+3N+2)B(t,r)F(t,r)?

X

+ ..., (5.39)

v - (5.40)

5The values tested were valid when the simulations were initially ran, however the latest con-
straints have currently ruled much of this parameter space out.
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where we emphasise that in the analysis that follows we will be ignoring B, and F,

equations. For simplicity, we will drop the +... notation, and combine the constants
in Eqn. (5.39)) and Eqn. (5.40]) into simpler terms

10 At (B(t,r)? = F(t,r)?)

X _ 52 B D) : (5.41)
L =1y A(t, )2 (B(t, 1) — F(t,7)?)
Y= LT BuF) ’ (5:42)

where

c=af+2(a+DA+a+2,
Yy=al+a+ 4+ A,
w=a(B-1)(B+3A+2). (5.43)

A simple observation one can make is that there could be other terms that could
contribute to the small r instability, and that the terms chosen here could easily be
neglected if the r terms in in the numerator and denominator cancel somehow. A
simple way to counter this argument is to perform a perturbation around Minkowski
to study the behaviour of Eqn. (5.41) and Eqn. at the r << 1 limit. The

perturbation is of the form

B(t,r) = 1+eB(t,r)+0(e), (5.44)
F(t,r) = 1+edF(t,r)+ O(?), (5.45)
A(t,r) = 1+ efA(t,7) + O(€), (5.46)

where € is small constant. Using the perturbation, we note that by definition

X(t,r) = T e?AZEt, ) + O(?) = e6F 4+ O(€?) (5.47)

Y(t,r) = T ;(fﬁt’ I +O(?) = 6B + O(e?) . (5.48)

Therefore, it is easy to see that X ~ edF and Y ~ edB. We can now compute the
perturbation around Minkowski of Eqn. (5.41]) and Eqn. (5.42). This results in the

following

5P = 712270(53(15,70) _SF(t,r) + 0(e), (5.49)
5B = L2 (5Bt r) — 6F(t 1) + O(e), (5.50)
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where we have divided through by € to simplify our equations, and dropped all terms

2 or higher orders. Using the transformation of Z = §B — 0 F,

Z = 6B — 6F, we can combine Eqn. (5.49) and Eqn. 1) into one equation

that are of order ¢

2(y+ o)

7 =—
2w

Z (5.51)

Simplifying the constants in Eqn. (5.51f), results in the final form of Eqn. (5.51))

. =2 a+1 7 —-2C
_TQa(B—l) r2

Z (5.52)

a+l
a(f-1)"
we described earlier, however now the stability no longer depends on the r terms,

where C = In this new formulation, we can easily answer the argument that
but instead is a result of considering what happens at r << 1 and only considering
%2 terms. When C is positive Eqn. ([5.52) will be stable, however when C is negative
Eqn. will be unstable. It is interesting to note that the stability has no relation
on the value of A\, and that for theoretically allowed values of o and /3 the value of C
could be positive. However, when considering observationally allowed values, C will

be negative, and we should have an instability at small 7.

5.5.2 Numerical results: value of C

To test the validity of hypothesis that C controls the stability of the system at low 7,
a series of simulations where ran in two regimes: 1.) Varying C via o and § and A to
broadly check the hypothesis, and; 2) Varying C with « = § and A = 0 to reduce our
parameter space. For all of the simulations that were undertaken in the regime of
1, we maintained a real propagation speed for the spin-0 modes, i.e Eqn. > 0,
whereas for simulations performed in the regime of 2 this condition was relaxed.

All simulations were run on a single processor with 4 cores and 12GB of ram{]
Fig. shows the results of all of the simulations ran in regime 1, with Fig.
highlighting a subset of these results. Fig. 5.3 shows the results of the simulations
ran in regime 2. We shall now discuss the results of the simulations with respect to
the regimes in turn.

Simulations that were run under the restrictions of regime 1, broadly corre-
sponded to validating our hypothesis i.e a positive C' will result in a stable simula-
tion, whereas a negative C' will result in an unstable simulation. Note, here we define
a stable simulation as one that does not fail, and not as one that successfully forms

a universal horizon, or with the Khronon shell dissipating. This shall be discussed

6 Although unrelated, it should be noted that the computational resources required to run a 1D
simulation for the gravitational collapse of the Khronon were vastly smaller then the computational
resources need to run a simulation, like the ones specified in Chap. (2-4), with GRCHOMBO.
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Figure 5.1: The results of a large quantity of simulations with the goal of checking
the stability of Eqn. while varying C via o and 8 and A. This corresponds to
regime 1 within the text and it should be noted that we maintained a real propaga-
tion speed for the spin-0 modes. It can be seen that for large positive values of C, we
would get stable simulations, however for large negative values of C, we would get
unstable simulations. There are also a number simulations with small positive values
of C that resulted in pseudo-unstable or unstable simulations. This indicates that C
does not dictate stability when it’s values are small, and other terms in Eqn.
must be dominating.

at the end of the section. There are a variety of interesting features that arise in
this regime.

Fig. |5.1] contains some simulations that would be initially stable to the extent
that the incoming Khronon shell would reach small r, before the simulation began
to fail. This is in stark contrast to a simulation that outright fails, as in that case
the small r instability would cause a failed simulation in a very short amount of time
i.e far before the Khronon shell would reach small . This behaviour was classified
as being pseudo-stable, and was not seen for very large or very small values of C.

One can attempt to explain the pseudo-stable behaviour, by simply saying that
it encompasses physics that is not described well by the stability according to C, and
that other terms in Eqn. dominate. A further hint at this, is that for small
positive values of C, the simulations would still be unstable, which implies that our
hypothesis is valid for large values of C only.

Fig. [5.2] contains subset of data from Fig. [5.1, where A = 0.1 and we vary C.
Here, it can be seen that as C transitions from negative to positive, the stability of
the system changes, however as previously stated, a small positive value of C is not

sufficient to get a stable simulation.
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Figure 5.2: A subset of the simulations ran while varying C via a and § but with
A = 0.1 i.e regime 1. Here the transition between unstable, pseudo-unstable and
stable can be seen as the value of C transitions from negative to positive.

The simulations performed under regime 1 would suggest that we have found
that large values of C can influence the apparent stability of the system. We will
now explore the parameter space of regime 2 such that we can look at a specific slice
of our parameter space. We remind the reader that in this regime of exploration,
we set « =  and A = 0. For reference Eqn. ([5.51)) is reduced to

- =2 a+1

7= Z, (5.53)

2 a2 —a
and the propagation speed squared for the spin-0 modes in Minkowski space becomes

24+

ratal (5:54)

2=
It is not possible to choose a such that we have positive C factor whilst maintaining a
real sound speed for the spin zero mode within the theoretical bounds that 0 < a <
2. However, inspired by the parameter choice used in [231][|, we found a parameter
space such that C is negative, however we have stable simulations. This parameter
space lies between 0.36 < a < 0.54 and Fig. [5.3|shows a summary of these results.

Although this stability region is in contradiction to the hypothesis that C dictates
the stability of the system, it should be noted that this region is where C is closest

to 0. We can then theorise that C is still having some influence on the stability of

"We would like to emphasise to the reader that the paper referenced was done for Einstein-
Aether Theory, however there exists a mapping between the parameters of both theories that
allowed us to interpret the parameter used in that paper.
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Figure 5.3: Simulations where performed under regime 2, i.e « = § and A = 0. The
grey panel in the region of 0.36 < o < 0.54 indicates an area where stable simulations
would happen, and curiously, where the value of C is closest to 0. Simulations outside
of this area are unstable.

the system, however there must be other physics not explained by it which become
dominant.

Throughout this section we have tried to give some explanation as to why the
simulations performed were unstable/unsuccessful. To complete this story we must
reiterate that a stable simulation is one that does not fail, and not one that success-
fully forms a universal horizon, or with the Khronon shell dissipating. To expand
on this, when the Khronon shell reaches small r, the simulation does not crash,
however the constraint violation, Eqn. , becomes large i.e our simulations are
no longer representative of our system of equations.

With this fact, one can ask why you would call these simulations stable at all?
Simply put, the constraint violation becoming large may be a symptom of another
problem, so for the purposes of this explanation, simulations running until after the
Khronon shell reaches small r are stable. Using the idea that the constraint violation
becoming large may be a symptom of another problem, the next section consists of
an attempt to regularise our system, and hence lower the constraint violation to

acceptable levels.

5.6 Regularisation

The objective of this section is to demonstrate how you can regularise the equations

that govern spherically symmetric collapse in Khronometric theory. This was done
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in an effort to increase the stability, and ultimately attempt to lower the constraint
violation in the simulations that were classified as stable in Sec. [5.5.2] to levels
that were acceptable. A number of simulations where conducted to explore if the

regularisation achieved this goal, and the results of these are presented later in the

section, Sec. [5.6.2]

5.6.1 Modified equations and auxiliary variables

In this section we will present a method to regularise the evolution equations,
Eqn. . We will be using the specific notation and terminology that is used
in [20].

We have seen that for r << 1, there is some numerical evidence that the sta-
bility of the system can be controlled be C. However, when first investigating this
phenomena, recall that we sorted Eqn. into powers of 1/r" (specifically for
the time derivatives of X and Y, and we excluded B, and F, as they did not contain
any 1/r? terms). Doing the same sorting exercise for the radial derivative of A, we
find that

2ar2 B2 r

DZA = A — B%) + O (1) + (5.55)

where it should be noted we are not truncating the equations as before, but we are
merely algebraically rearranging them. Note we have removed the (¢, ) notation for
compactness reasons. Regularity dictates that at r = 0, A(¢,0) = B(¢,0) = F(¢,0) =
1 and due to the symmetry of A, B and F, the radial derivatives must be equal to
0. When r = small, (), one can note that if we do not want the right hand side of
Eqn. to rapidly become large, one must impose that A(t,rs) = 1+ Al(t)r?,
B(t,rs) = 1+ B1(t)r? and F(t,r,) = 14+ F1(t)r?. However now we must additionally
impose that F'1(t) = B1(t), which would stop Eqn. rapidly becoming large.
This results in our system of differential equations now becoming over-determined.
The same problem is present in Eqn. (5.39) and Eqn. ﬂ

Analytically, consistency of our differential equations implies that if our equations
are initially satisfied then they will be satisfied for all time, i.e there should be
nothing troublesome with what we have described. However numerically because
of truncation error the “additional boundary condition” will not be enforced, and
hence the 1/7? terms will become large at small r, and cause a rapid numerical
instability.

An attempted solution to this problem is to introduce two auxiliary variables

8When referring to these equations we want to emphasise that we are referring to the untrun-
cated versions
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[257,258], J1(t,7) and J2(t,r), defined as

B? — F?
F2 o B2
(5.58)
such that the 1/r% terms in Eqn. (5.18)) become
A 1
0PA = 51+ 0 ;) + e (5.59)
) o A? 1
X = J1+0O|( - .
o F + (r + oy (5.60)
. v A2 1
Y = J2+0|( - .61
rwB - <r> * (5.61)

As we have added two new auxiliary variables, we must add their corresponding

evolution equations. Hence

 2F (B&,F — 0,BF)

8 J1 = - : (5.62)
_ 2B(BO,F — ,BF)
8,J2 = o . (5.63)

At first glance it would appear we have we have simply shifted our 1/r? problem

into two equations containing 1/r, however we can rearrange the constraint equation,

Eqn. (5.27)), such that

.
(BOF ~0BF) = p— | = 20,ABF (20,BF(1+ )) + BO,F (3 + ) )

+A< —20,BO,BF*(3 + \) + BX(F,0,F — 0,FO,F)(B + \)

Y2BF(9,BO,F(—1+ $)9,0,BF (1 + /\))ﬂ . (5.64)

It can be seen that the right hand side of Eqn. ((5.64]) contains a r term, that when
substituted into Eqn. and Eqn. (5.63), will remove the 1/r term from the
evolution equations for J1(¢,r) and J2(¢,r). The process of removing troublesome
parts of the evolution equations is known as regularisation, and should result in

increased stability during evolution.

5.6.2 Numerical results: regularised equations

A large number of simulations where conducted to test whether the regularisation
presented in Sec. had been successful at both increasing the stability of evo-
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Figure 5.4: The results of a 2D parameter scan of f1, and «, where « = § and A = 0,
for the regularised equations. Here it can be seen, as before, that there appears to
be a stable region of 0.36 < o < 0.54, although as before these simulations have an
unacceptably high constraint violation. It would appear that the regularisation has
been unsuccessful.

lution, and lowering the constraint violation in simulations that were previously
deemed stable. A 2-dimensional parameter space scan was undertaken in «, with
a = and A =0, and in f1, which we remind the reader is defined as the charac-
teristic size of the incoming Khronon shell. This parameter space should allow us to
probe regions in which the gravitational collapse should form a black hole, as well
as result in dissipation of the in-falling Khronon shell. The results of this scan are
shown in Fig. [5.4] with a subset being showed in Fig. 5.5

The regularisation scheme described above was unsuccessful due to the stable
simulations maintaining an unacceptably high constraint violation. However there
are two interesting, although related features of the simulation results, which is best
highlighted in Fig. [5.5]

When lowering f1, it can be seen that the range in which the values of « corre-
spond to stable simulations increases. A similar feature can be seen when increasing
f1, and the “stable(c, f1)” curve roughly traces out where C is closest to 0. One
could assign 2 potential explanations to this: 1.) C is managing the stability of our
simulations as per Fig. , or 2.) When f1 is small, the incoming khronon shell is

small, and via rearranging Eqn. (5.55)

A F?-B> A <1_(1—|—F1r2)2)

2002 B2 2ar? (1+ Blr2?)? (5.65)



Chapter 5. Spherically symmetric collapse in Khronometric theory 100

P & oOe® O e O e O e 0 (1] q
[ ] | on
NS B 2 2 2% 28 2 B
" e e® © ® ¢ ® o ee | T ]
)} o« 088 8 8 & 8 8 8%, O i
» e O0ee O e O e 0o ee o O i
o
b o 0Diee 0 e 0 e 0 ee 0 O i
e Stable
e Pseudo-stable
e Unstable
10—2 - a - an - P - P - ai - -

030 035 040 045 050 05 0.60  0.65

Figure 5.5: A subset of the results of a 2D parameter scan of f1, and «, where
a = f and A = 0, for the regularised equations, highlighting the region between
unstable and stable. There appears to be different maximum allowed values of f1
for a stable simulation for each value of «, although as before these simulations have
an unacceptably high constraint violation. The “stable(a, f1)” curve roughly traces
out where C is closest to 0, so could be a consequence of that.

) %, will be closer to

1, and hence numerically, the values generated by truncation error will be smaller,

it is easy to see that as F'1 and B1 will be small values

and the simulation is more likely to be deemed as stable. The terms in the second
argument have been removed via regularisation, however if there are terms that
contain %, and have a similar structure, this could explain the behaviour.
Ultimately though, the instability of the system could be fully contained within
the unconsidered % terms in our system, and hence, our regularisation could have

simply made instability “not as numerically bad”, and not entirely removed it.

5.7 Conclusion

In this chapter we have discussed Lorentz-Violating gravity, and specifically black
holes in the low-energy limit of Horava gravity known as Khronometric theory. We
have constructed a system of equations, initial conditions and boundary conditions
that would allow us to model to collapse of a Khronon shell, and showed that ulti-
mately, the simulations failed due to an apparent instability that occurred at small
r. We demonstrated a potential reason for this, with the value of C, Eqn. ,
and also attempted to regularise the equations to remove the instability. Regular-
isation proved ineffective, and we hypothesised that there could be more terms of

the structure % (1 — %) that could be causing an instability to occur.
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With that in mind, one can suggest another method for numerically stabilising
our system. If we were to introduce an additional damping term such that at small
r, if k # 9, we slowly realign the values to be equal, it could potentially stabilise our
system, providing this additional term condition did not cause a large constraint
violation. This would have to be tuned by hand, and we could encounter problems
at the small r cut-off where we impose this “brute force” condition.

Alternatively one can go back to the regularisation, and attempt to analyse all
1/r™ like terms to see if they can be removed. This has not yet been shown to be
possible.

Since this research was performed, the allowed parameter space for the 3 cou-
pling constants was shown to be significantly reduced as a result of the GWs from
the NS-NS binary coalescence [240-242]. The parameter space is expected to be
further reduced with the detection of GWs from extreme mass ratio BH-BH binary
coalescence events with LISA. However, in [242] it was shown that for slowly moving
BHs, for generic values of the coupling constants a curvature singularity appears at
the universal horizon. In contrast, if « = § = 0 and X\ # 0, slowly moving BHs be-
come regular everywhere, and coincide with BHs from GR. This subset of coupling
constants coincides with those selected by the recent constraints.

Due to the form of our system of equations, we cannot impose the subset of
coupling constants due to 1/« terms being present. Therefore to study the subset
of coupling constants we would need to rederive the equations themselves. This

presents an avenue of future research.
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Conclusion

“Live long and prosper.”

Mr Spock
Star Trek: The Original Series

Throughout this thesis we have examined two distinct topics; dark matter (DM),
and Khronometric theory. Although the topics are different, the examination of
them has shared a common approach; the use of numerical techniques to solve
problems that cannot be solved analytically. When studying DM physics in full
General Relativity (GR), we utilised the well known Arnowitt Deser Misner (ADM)
decomposition to split spacetime into space and time, before solving for a number of
scenarios using GRCHOMBO. In contrast, Khronometric theory contains a natural
foliation defined by the Khronon scalar field, and hence, we use a custom code
written using PETSc to study this topic. We shall now comment on both areas of
study.

When referring to the study of DM throughout the work presented here, we
specifically refer to axions as our chosen DM model. We simulated a quasi-stable,
localised oscillating solution to the equations of motion of a scalar field known as an
axion star, which is a type of exotic compact object (ECO). As these objects undergo
gravitational collapse, either they can remain stable, hence remaining as an axion
star, or form black holes, or, if the axion decay constant, f,, is low, disperse in a so
called “axion star supernovae”. In Chap. [2] we simulated the formation of compact
axion stars from aspherical initial conditions that could represent the final stages of
axion dark matter structure formation, and showed that this follows the well known
relationshipE] of initial mass and axion decay constant, f,, first studied in |114].
Within the same work, we used a toy model to demonstrate how this information
can be used to predict the number densities and masses of such compact objects,
and find that they could be detectable by the LIGO/Virgo collaboration for an axion

1See Fig.
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mass of 1072 < m, < 107! eV. Furthermore, we showed using peak statistics that
there exists a “mass gap” between the masses of axion stars and black holes formed
from collapse when studying f, < 0.2M,.

As our study of DM continued into Chap. [3] and Chap. 4 we considered oscil-
lotons (OS), which are a good approximation of an axion star where the leading
order ¢* interaction is negligible due to having a large axion decay constant, f,.
Specifically, in Chap. [3| we investigated the physics of black hole formation from the
head-on collisions of boosted equal mass OS, for both the cases where the OS have
equal phases or are maximally off-phase (anti-phase). While unboosted OS collisions
will form a BH as long as their initial compactness C = GM/R is above a numer-
ically determined critical value C > 0.035, we found that imparting a small initial
boost counter-intuitively prevents the formation of black holes even if C > 0.035. If
the boost is further increased, at very high boosts v > 1/12C, BH formation occurs
as predicted by the hoop conjecture, leading to a “stability band” where collisions
result in either the OS “passing through” (equal phase) or “bouncing back” (anti-
phase), with a “critical point” occurring around C = 0.07. We argued that the
existence of this stability band can be explained by the competition between the
free fall and the interaction timescales of the collision.

In Chap. 4| we presented in detail how to construct the initial data for a boosted
pair of OS as well as the modifications needed during evolution. We commented
on the further use of this initial data, focussing on two scenarios; OS-OS binary
coalescence and colliding OS with an impact parameter. If the first scenario is
simulated, it could provide gravitational wave (GW) templates, that could be used
by the LIGO/Virgo collaboration, or future LISA mission, to search for DM. If these
signals were detected, it would be a smoking gun for the existence of DM, and more
specifically, OS and/or axion stars. The latter scenario is currently being explored in
a paper in prep with Thomas Helfer, Eugene Lim, Marcos A.G. Garcia, and Mustafa
A. Amin.

Signalling the end of our exploration of DM, Chap. [5| detailed our study of a
form of Lorentz-Violating (LV) gravity known as Khronometric theory. Within this
chapter, we showed the equations and initial conditions for spherically symmetric
collapse of the Khronon field, and presented our numerical results. We were un-
successful in simulating the collapse, even after a reformulation of the equations of
motion using auxiliary variables to remove the 1/7? from them. We found that this
could be linked with a value of C, which is the combination of some of the model pa-
rameters. Since this work was undertaken, due to the neutron star (NS)-NS binary
coalesce detected by LIGO/Virgo, it was shown in 240,241 that the constraints
on the model parameters have increased by several orders of magnitudes. However,

in [242] it was shown that for slowly moving BHs, for generic values of the coupling
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constants a curvature singularity appears at the universal horizon. In contrast, if
a = =0and X # 0, slowly moving BHs become regular everywhere, and coincide
with BHs from GR. This reduced parameter space for the coupling constants is a
possible avenue of future research.

It is hoped that the work presented throughout this thesis will provide useful
insight and knowledge that will lead to the furthering of the field. On a personal
note, this thesis marks my departure from Physics, and the transition into the field
of deep learning. I direct the interested reader to my first paper within this new

field, [259], which is about the optimization of binarized neural networks.
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