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Abstract. A classical theorem by Poincaré gives conditions that a nonlinear
ordinary differential equation ¢

dx|dt = A(x),
with 4(0)=0 in » variables x=(x, ..., x,) can be reduced to a linear form

dx' 04 ,
v rilirs 0)x
by a change of variables x"=f(x). A generalization is given for a finite set of such

differential equations, which form a semisimple Lie algebra.

I. Introduction. Palais and Smale have posed the following problem: suppose
that G is a connected semisimple Lie group of transformations on a manifold M.
Let p be a fixed point for G. Is it possible to choose a coordinate system in the
neighbourhood of p such that the action of G is linear in these coordinates ? If G is
compact, this is well known, and this problem can be considered as a first step
towards a broad programme (suggested also by Palais and Smale) of investigating
the global properties of semisimple transformation groups by the methods of the
modern theory of dynamical systems and differential topology that have proved
successful in studying compact and Abelian transformation groups.

Since G is connected, the question can be reduced to the study of a semisimple
Lie algebra of vector fields in the neighbourhood of a zero point for all the vector
fields in the algebra. Now, in the case of a single vector field which is real analytic,
there is a well-known classical theory of linearization in the neighbourhood of a
singular point, starting with Poincaré’s work. Crudely, it has two aspects: finding
the linearizing diffeomorphism as a formal power series, then proving that it
converges. In this paper, we shall present the construction of the formal power
series for the semisimple case, where all the relevant cohomology groups are
automatically zero. The second and, of course, much more difficult part of the
problem, i.e., showing the actual existence of a linearizing change of coordinates,
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will not be considered in this paper, although we might remark that the methods
developed by Sternberg [2] for the classical case seem to be relevant.

I would like to thank Professor J. Prentki and the Theoretical Study Division at
CERN, for hospitality while this paper was written.

II. Lie series and one-parameter groups of diffeomorphisms. Let M be a mani-
fold, with V(M) its Lie algebra of (C*®) vector fields and F(M) its ring of (C®)
real-valued functions. Each X € V(M) is then a derivation f— X(f) of F(M). Let
t — ¢, be a one-parameter group of diffeomorphisms of M. Then the vector field
W defined as follows is the infinitesimal generator of the group

' w(f) = (a/at)‘ﬁf(f)lmo
for fe F(M).

Let X be another vector field on M, and let X, be the vector field obtained by
transforming X under the difftomorphism ¢,. Then

X(f) = ¢ X (f)

for fe F(M).
The Taylor series of ¢t — X, as a function of ¢ is then

X+1[W, X1+22)[W, [W, X]]+ - - - = exp (Ad tW)(X).

This is a Lie series. Its formal algebraic nature enables us to define exp (Ad tW)(X)
as a formal series if W is a formal series

Wi+ Wt -
Notice also that, inherent in the formalism, the correspondence
X — exp (Ad W)(X)

preserves Jacobi brackets even if the series do not converge.

Finally, note that, even if W is a formal power series, exp (Ad W)(X) can be
considered as obtained from X in local coordinates by a formal power series type
of change of coordinates, such as considered by Poincaré and Birkhoff in their
classical work on normal forms of differential equations.

ITI. Normal forms of Lie algebras of vector fields under formal power series
change of coordinates. Suppose G is a Lie algebra of vector fields on M that
vanish at the point p. We say that G can be formally linearized in a neighbourhood
of p if there exists a formal series W= W, + W,+ - - - of vector fields such that:

(a) W, W,,... vanish at p;

(b) there is a coordinate system in a neighbourhood of p such that, for each
X € G, exp (Ad W)(X) is a linear vector field in these coordinates.

Let us proceed to the algorithm for constructing W. Let (x,), i=1, ..., n be any
coordinate system valid in a neighbourhood of p, such that x,(p)=0, i=1,...,n.
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For each integer j, let ¥/ be the set of vector fields whose coefficients are poly-
nomials of degree j in these coordinates. Then,

(I1L.1) [V, VE]c pitk-1,

For X e @G, let
> X, Xev
i=1

be the Taylor expansion of the coefficients of X in these coordinates. Then
(X%, Y] =[x, YT

for X, Ye G, ie., the {X': X e G}=G" forms a Lie algebra of linear vector fields
which is a homomorphic image of G. (This is just the linear isotropy algebra, of
course.) Also,

(G4 V)=V’

for j=2,3,... i.e., the Jacobi bracket defines a linear representation of G in the
fin'te-dimensional vector space V7, j=1,2, ..., which we shall denote by 4,. Put:

w(X) = X’
for each X e G.
Then, each w;, is a 1-cochain of G, with coefficients in the representation ¢, of G
(see [1] for the details about Lie algebra cohomology).
Now we have two possible ways of defining W: we can look for it in the form
W=W,+Ws+---, W;e V7, or we can look for W;e V/, j=2,3,..., such that:

(II1.2) exp (Ad W) is written as a formal product ...exp Ad W,-exp Ad W,.

[Note that the Campbell-Baker-Hausdorff formula and the commutation relations
(II.1) show that any infinite product of the form (II1.2) can be written as exp Ad W,
for a well-defined formal power series W. The point is that the Lie algebra
V24 V34 ... is a sort of infinite-dimensional version of a nilpotent Lie algebra, in
the sense that commutators of a large number of elements have a large degree of
homogeneity.] We shall use the second method because it is algebraically simpler.
Presumably the first method is preferable for an actual convergence proof,
especially since it is closer to the one used by Poincaré.
Now, for X, Ye G,

[X, Y]=[X'"+ X2+ .-, Y 4+ Y24...]
= [X?, Y+ [XY, Y2]+[X3 Y]+
=[X, YI'+[X, Y)P+---
ie.,
wy([X, Y] = [X?, Y2]+[X? Y]
= ¢a(X)(ws(Y)) — $o( Y )(wa(X)).
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This expresses the fact that dw,=0, i.e., w, is a 2-cocycle. If H(G, ¢,)=0, then
there exists W2 e V2 such that

wy(X) = do™(X) = ¢o(X)(W?)
= [X, W?] forall Xe@G.

Thus,

exp (Ad W3)(X) = X+[W? X]+- -
X1+X2+._'+[W2’ X1]+[W2, X2]+”‘
XX, W2+ W2, X2+

= X'+ (terms in V34+ V44 ...),

Now the argument can be repeated with exp (Ad W?)(G) replacing G. Here w, is
zero, hence wj is a cocycle. Hence, if H'(G, ¢3)=0, W? can be defined in a similar
way. Continuing, we see that W, W3, ... can all be defined in this way, and W can
be chosen by (I11.2). Of course, if G is semisimple, it is a general theorem that all
these cohomology groups vanish. Summing up, we have proved

THEOREM I11.1. Suppose G is a semisimple Lie algebra of vector fields on a
manifold which have a common zero point. Then, all the vector fields in G can be
simultaneously linearized by a formal power series change of coordinates.

IV. Linearizations determined by linearization of a subalgebra. Palais and Smale
have also posed the following question: suppose G is a semisimple Lie algebra of
vector fields with a fixed point p. Suppose a coordinate system is given in which a
subalgebra H of G is already linear. What property must the subalgebra have to
guarantee that the rest of the vector fields in G are also linear in this same coordinate
system ?

Keeping the notation of the last section, H already linear means that w;,(H)=0,
j=2,3,....Start off with j=2. Suppose w,=dW?2, for W2 e V2 Then

¢ = wy(X) = [X?, W?]

for X € H. Suppose that ¢,(H) has no invariant vectors in V2. Then, W2=0, hence
also w,=0. The argument can be iterated with w;, which is now a cocycle, since w,
vanishes, etc. We have then proved

THEOREM IV.1. If ¢,(H) has no invariant vectors, and if G is semisimple (or if all
the relevant cohomology groups vanish) then, G is linear in the coordinates for which
H is linear.

For example, suppose H* contains a vector field of the form

0
Xt= D) x—
‘z i@x;

Suppose Y=73 fi(x)(9/0x,), where each f; is homogeneous of degree j, i.e., Y € V7.
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Then

X, Y1 = 3 XU) i e

- 2 U-Dfipm

i.e., if j=2, ¢,(H) has no invariant vectors.

As a final remark, we may notice that the classical linearization theorem of
Poincaré for a single vector field also falls into this pattern: if G is spanned by a
single vector field X, if

b/}
X - izgi a_.x"
then

og. 0
X! = =11 —_
{’Zk 3xk (O)xk 3x,

Poincaré’s condition is that the matrix
(98:/0x,)(0)
has eigenvalues with all positive real parts. However, this condition implies that

HY(G, $,)=0, j=2,3,....
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