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Abstract

In Quantum Cosmology, universe states are treated as wave function solu-
tions to a zero-energy Schroedinger equation that is hyperbolic in its second
derivatives of spatial geometries and matter-fields. In order to select one
wave function (that would in principle correspond to our Universe) out of
infinitely many, requires an appropriate boundary condition. The Hartle-
Hawking No Boundary and the Vilenkin Tunneling proposals are examples
of such boundary conditions. We review their applications and shortcomings
in the context of the Inflationary Scenario.

Another boundary condition is that of S.W. Hawing and D.N. Page (1990)
in the context of wormholes. Wormholes are generally considered to play a
major role in setting the cosmological constant to zero and to provide a
mechanism for black hole evaporation. It is significant that we are able to
show that even the class of bulk matter wormhole instantons found by Carlini
and Mijié (1990) are predicted in the quantum theory. However, unresolved
issues and newfound problems seem to threaten the wormhole theory.

Furthermore, since there -are no a priori notions of time (and space)
present in the quantum theory, it is important to show exactly how the
notion of time is recovered over distances much larger than the Planck scale.
A good notion of time is also essential for any quantum theory to predict
the correct classical behaviour for the Universe today. The issue of time
inevitably re-emerges throughout our work.
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Chapter 1

Introduction

Thus far, numerous efforts to unify the four fundamental interactions of Na-
ture into a single “Tfleory Of Everything” are still inadequate in more ways
than one, and we are offered only rare glimpses of what ultimately makes the
world tick. Predictions from Superstrings, Supergravity and Higher dimen-
sional Kaluza-Klein Theories are largely well beyond the reach of our particle
accelerators, and will probably remain so for the forseeable future. Whether
these efforts are true milestones or merely conspicuous cults corrupting a

generation of new scientists still remains to be seen.

Of late there appear to be‘indirect’ tests of such theories, for instance, low
energy stringy actions also predict the existence of cosmological and black
hole solutions [41, 29, 87, 123]. '

Nevertheless, we know that General Relativity and Modern Quantum
Mechanics are but stepping stones in our effort to construct a (generally
covariant) theory of quantum gravity. Such a theory will have significant
\consequences wherever gravitational fluctuations are large and of the order of
the Planck curvature mz, and effects are nowhere else more noticeable than

in the early stages of cosmic evolution. Since any change in the topology



should effectively interact with most forms of matter-fields then present, the
early Universe provides an ideal laboratory for testing predictions from such
theories. An understanding of the quantum nature of gravitation is essential
in order to explore the emergence of classical spacetime and the origin of the

Universe as we know it.

Although the Universe is at present far from equilibrium, it had to be
smooth to a very high degree in the very distant past. Yet it must have
allowed sufficiently Ia,rge density fluctuations required for galaxy formation
to take place. These problems, amongst others have been addressed in the
so-called Inflationary Scenario first suggested by Alan Guth (1981) [52].

However, what inflation does not resolve is the question of the initial
conditions necessary for the field equations of General Relativity to predict a
very large, isdtropic and homogeneous Universe that contains very little trace
of any cosmological constant. Hence the question of selecting our Universe
from an infinite set of possible universes that could equally well have evolved
from some initial state after the Big Bang, lies beyond the scope of General
Relativity. In recent years, this issue has been tackled in a branch of quantum

gravity known as called Quantum Cosmology.

1.1 Quantum Cosmology

The arena of Quantum Cosmology is an infinite dimensional Superspace of all
possible three-geometries and matter-field configuration on a given constant
three-surface. Dynamical laws are constrained by a second quantized, second
order hyperbolic differential equation on Superspace, known as the Wheeler-
De Witt equation. It has infinitely many solutions, and requires an associated
boundary condition to pick out a unique wave function for the Universe.

Apparently, a boundary condition alone does not suffice to select a unique



steepest descent contour in the so-called Euclidean Path Integral Formulation
[58] (see Chapter 4).

After the pioneering work of De Witt [22] many attempts have been
made (Wheeler [142],Misner [110], Vilenkin [133], Hartle and Hawking [65]),
to interpret various facets of the theory: |

1) There are no a priori notions of time and space present in the theory.

2) The Wheeler -De Witt equation is second- order in its various func-

tional derivatives. Hence there is no direct way of defining a good, i.e.
positive definite probability density.

3) Problems such as the horizon, flatness and monopole problems are
explained via an inflationary phase early in the cosmic evolution. One there-
fore requires appropriate boundary conditions for an inflationary phase to
take place. In order to reach its current entropy, the universe had to be very
smooth in the past. Yet one requires sufficiently large density fluctuations
and gravitational waves consistent with the observed 1sotropic CMBR, to al-
low galaxy - formation. Again, appropriate boundary conditions are needed

to predict this behaviour.

1.2 Mini-Superspace

The quantum state W(h;;(X), #(X), S), of a closed universe contains a three-
surface S on which the three-metric is h;; and matter-field configuration
¢(X). This wave functional satisfies the Wheeler -De Witt equation and
momentum constraints, obtained by quantization of the Hamiltonian for the
Einstein scalar action for gravity and matter-fields. It provides an amplitude
from which predictions concerning the outcome of large scale. observations

are extracted.

The space of all three-metrics A;;(X) and matter-field configurations

3



#(X)) at a point X on a three-surface S, is called Superspace. It is an infinite-
dimensional space with the so-called Wheeler-De Witt metric G;; that has
hyperbolic signature at every point X on the three-surface S. This signature
is independent of the four-dimensional spacetime metric g, signature.
Since the real universe appears to be homogeneous and isotropic on very
large scales, we restrict ourselves to Friedmann-Robertson-Walker metrics
only. All but a finite number of degrees of freedom of the metric and matter-
fields in Superspace are “frozen”: We therefore approximate the problem of
defining a wave functional for the universe to a problem in quantum mechan-
ics. We now deal with a finite-dimensional Min:-Superspace whose intrinsic

quantities exclude an explicit time-parameter.

1.3 Boundary Conditions

The quantum theory of boundary conditions essentially involves selecting
one solution of an infinite set of solutions to the Wheeler- De Witt equa-
tion. Numerous proposals have been encountered since De Witt (1967) [22].
The most studied proposals of recent years are the No Boundary proposal of
S.W.Hawking and J.B.Hartle [74, 77, 65] and the Tunneling boundary con-
dition of A.Vilenkin and A. Linde (133, 134, 135, 136, 137, 138, 139, 57, 109,
124].

The Hartle-Hawking proposal regards the three-surface B as the only -
boundary of a compact four-manifold M, on which the spacetime metric g,
induces a three-metric k;; and a matter-field ¢ on B. The path integral over
all such g,, and ¢, and all M in principle leads to the No Boﬁndary wave

function, depending on the choice of contour.

The Tunneling boundary condition of Vilenkin and Linde attempts to

draw a parallel between quantum creation of the universe from nothing and

4



tunneling in ordinary quantum mechanics. The “outgoing mode” formulation
of this proposal due to A.Vilenkin [139] states that one selects the solution to
the WDW equation that is everywhere bounded and consists of only outgoing
modes at singular boundaries of (Mini) Superspace. This proposal has been

more successful in defining a unique solution to the WDW equation.

The first difference between the two proposals is that the Hartle-Hawking
‘wave function is real, consisting of a sum of “expanding” and“contracting”
solutions, while the Vilenkin proposal corresponds to only one of these two.
The wave functions also predict different amount of inflation, depending on

the initial value of ¢ most favoured by each proposal [77, 115].

1.4 Probability Measure

Like the Klein-Gordon equation, the WDW equation has an associated con-
served probability current that allows negative probabilities. Authors Caves
(11, 12], Hartle [69] and Page {116] have suggested a measure that is the
square modulus |¥|2dV over a volume element dV of Mini-Superspace. Since
this definition is analogous to the probability measure of Quantum Mechan-
ics, a further elucidation on the role of a clock (i.e. time in ordinary Quantum

Mechanics) is required.

Naively, one looks for strong peaks in the wave function, and hence makes
predictions. For example, classical behaviour is predicted if the wave func-
tion is strongly peaked about one or more classical configurations, while

interference between distinct configurations should be negligible.



1.5 Predicting inflation

We briefly reconsider the Hartle-Hawking No Boundary and Vilenkin Tun-
neling proposals to illustrate the problem of defining a good probability mea-
sure, and in the same breath highlight a major difference in the two proposals

when applied to a massive scalar field potential:

(a) Both proposals have a wave function that is peaked about the same
set of inflationary solutions to the classical Einstein field equations. However, |
their respective conditional probability measure differs. In particular, for the
HH wave function to be bounded it is peaked about some minimum value of
the scalar field ¢,,;n, and since this is small, the major contribution to the
probability density comes from the region close to @min. It would therefore
appear that the HH wave function predicts insufficient inflation. (Hawking
and Page (1986) [79] geté-around this by saying that the contribution from
regions away from ¢,,;, outweighs the contribution from the peak at ¢nin,
thus predicting sufficient inflation. For values of the scalar field potential
comparable to the Planck mass my, it may also be necessary to include

higher order corrections to the Einstein- Hilbert action [139]).

(b) On the other hand, the Vilenkin wave function has a probability
density that is small for small ¢ = @min. This means that the largest contri-
bution to its probablhty density comes from regions away from @min- This

straightforward prediction of sufficient inflation seems more appealing.

1.6 Wave packets

A coherent state in Mini-Superspace corresponds to a wave packet sharply
peaked along a single classical trajectory. Besides a Hamilton-Jacobi equa-

tion, we also need the principle of constructive interference for canonical



.
rd ————————— ey

T~

—_———

————— =
=,/\>_/ =
=——ud =
[ S——

——l =
P

Figure 1.1: A schematic illustration of the behaviour of a typical wave func-
tion. In certain regions the wave function indicates that the notion of classical
spacetime is an appropriate one, denoted by bold lines in the figure. Those
regions of Superspace describable by quantum laws of physics are denoted
by the shaded region in the figure.

variables to be correlated according to classical laws. Mini-Superspace does
not have a natural time-label. However, one may define an affine parame-
ter along the history of the classical path along which the wave function is
peaked. Essentially, classical spacetime is a concept appropriate to certain

regions of configuration space (fig. 1.1).

The absence of an external observer deprives one the usual quantum me-
chanical interpretation : for this one might have to resort to the “relative-
state formalism” of Everett {67, 91]. To facilitate a good probability interpre-
tation, Kazama and Nakayama [91] introduces a massless scalar field weakly

coupled to matter fields and a large scale factor. It serves as a “desirable”



clock, since the probability density is positive-definite.

1.7 Wormbholes

Wormbholes are topological fluctuations in a semi-classical or quantum the-
ory of gravity. In the context of Hawking [72] and Wheeler [143], quantum
fluctuations occur at the Planck length 10~33¢m where the spatial geometry
has a foam-like structure, with “ripples”, “bubbles” and“handles™ appearing
and disappearing. The feature of the wormhole was first introduced in three
dimensions by Wheeler to resolve the problem of charge-singularity in the

Maxwell field equations.

We know from a Geroch no-go theorem [33, 73] that a globally hyper-
bolic manifold cannot undergo topological fluctuations, since it is R ® S,
with S constant time three-surface; such fluctuations require singularities in

Lorentzian spacetime.

Euclidean spacetime provides the perfect framework: A wormhole is a
four- dimensional instanton, i.e. a solution to the classical Euclidean Einstein
field equations with a finite action. One may picture it as a tube or small
closed spatial geometry (known as a baby universe) that splits off and rejoins
a unique large Lorentzian parent universe, or merely a link between two
parent universes. In quantum gravity, it is a topological fluctuation in the
ground state, and appears as a saddle point in the path integral in quantum

gravity (although not always in the semi-classical limit).

More recently, Hawking and Page (1990) [85] have suggested wormholes
to be solutions of the WDW equation for arbitrary matter content, or no
matter content but just pure gravity. For such wave functions to be wormhole

solutions, they need to satisfy the “Hawking-Page” boundary conditions:



(1) The wave functions are regular as the three-geometry collapses to
zero,
(2) The wave functions are exponentially damped at large three- geome-

tries.

The advantage of this definition is that wormholes might become the
mechanism for black hole evaporation Hawking [71, 81]. It also supports the
theses
v (a) that wormholes are the reason why the cosmological constant is zero

(Baum (3], Hawking [77], Coleman [13]),and '

(b) the “big fix”: Wormbholes are considered to form a dilute gas (in-
teractions between end-points of wormholes are negligible) linking otherwise
disconnected large smooth universes. Each universe model is governed by
dynamics with a set of coupling constants {a;}. In the third quantized the-
ory describing such dynamics, the probability distribution over different sets
is sharply peaked at of1/e fixed set of constants, thus randomly selecting our

universe from an ensemble of possible universes.

1.8 Summary of Chapters’ contents

We now take a cursory glance at what lies ahead. In Chapter Two we de-
rive the Wheeler-De Witt equation in its most general form, using canonical
quantization. The problem of finding the wave function of the Universe is
then narrowed down to the arena of Mini-Superspace, in which most of the
degrees of freedom have been “frozen” out. In particular, we write down the
Wheeler-De Witt equation in two dimensions, and look at ways of recovering

classical spacetime, using for instance the WKB approximation.

In order to make ﬁredictions in Quantum Cosmology, we need a good

definition of the Probability Measure. We are able to arrive at the notion of



Conditional Probability only after considering an alternative to the Copen-
hagen Interpretation - the post-Everret Relative State Formalism of Quantum

Mechanics. This we briefly outline in Chapter Three.

The Fourth Chapter deals with the problem of proposing Boundary Con-
ditions to select a wave function for the Universe in two-dimensional Mini-
Superspace. The Tunneling proposal of A.Vilenkin and the No Boundary
proposal of J.B. Hartle and S.W. Hawking are discussed and compared in
some detail. _

Chapter Five describes the essential features of inflationary models, start-
ing with the problem that inflation could mean that the Universe is infinitely
old. Notwithstanding this, we outline the basic features of the power-law
scalar field potential in Mini-Superspace and its prediction of an era with
sufficient inflation. Follow'ing this, we investigate the existence of a unique
measure for sufficient inflation, on the space of wave functions, to answer the
question “How probablé,is Inflation ?” In this régard, we find that the original
approach of Gibbons and Grishchuk [38] is applicable to a Mini-Superspace
model containing an arbitrary power-law potential, i.e. slightly more general

than the massive scalar field model used previously.

The Issue of Time has been debated since its inception by our ancestors,
and in Chapter Six we relate to it in the context of quantum gravity. The
so-called “Arrow of time” is discussed in some detail, and we use the Deco-
herence Functional as a criterion for the emergence of classical spacetime in
a region of Superspace where the usual notion of the Hamiltonian acquires
meaning. We postulate the need for a wave paéket in such a region, and
reflect on ways to introduce a judicious clock into the formalism. This we
shall exploit to its full in our new, and original, treatment of bulk matter

wormbholes in the wave packet context in Chapter Nine.
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Topological fluctuations in qliantum gravity known as wormholes have
been a subject of great scrutiny in recent years. We look at wormholes as
they first made their appearance in Modern Literature - i.e. as Euclidean so--
lutions to the Einstein field equations, known as instantons. We discuss the
Hawking-Tolman and Giddings-Strominger wormholes for their generality :
many authors have been able to find instantons either identical or very simi-
lar to these two. So in Chapter Seven we disclose the need for a more general
class of wormholes, other than instantons, to explain for instance the evap-
oration of black holes and provide a mechanism for setting the cosmological

constant to zero.

Chapter Eight explores the Hawking-Page proposal that wormholes are
solutions of the Wheeler-De Witt equation in Superspace, satisfyihg asymp-
totic boundary conditions. We also illustrate how free massive scalar field
wormhole-states are derived in a fairly straightforward fashion compared to
the approximate results obtained by other authors. In addition, we formulate
a new and approach, other than that of [85, 95, 96], to finding wormholes
as solutions of the Wheeler-De Witt equation for a power-law potential in

general.

With the advent of Wave Functions in Superspace, the Machian idea that
only intrinsic quantities should appear in the formulation of a physical theory
reaches near-perfection. We are able to construct wormhole states containing
bulk matter satisfying the strong-energy condition v > 2/3. There is no
explicit time-parameter present in the theory. However, to obtain correlations
between canonical variables, we construct a wave packet, and this in turn
yields a material clock in the guise of a “bulk matter field £”. Thus, we
improve on previous literature by shedding new light on the possibility of
having a larger class of quantum wormbhole solutions. This is essentially what

we achieve in Chapter Nine. We also postulate the existence of a relation

11



between the Lorentzian perfect fluid index v and its Euclidean counterpart

Ye. This we show explicitly in the Appendix.

In Chapter Ten we address some of the controversies that surround Worm-
hole Theory. The Coleman Mechanism for setting A = 0 is ouﬂined, while
the issue of the “big fix” of the coupling constants is summarized. Finally,
we mention the main features of the Third Quantization of Gravity in the
context of Parent and Baby Universes, and review the third quantized Uncer-
tainty Principle. Unfortunately, in the elementary case of a massless scalar
field, the third quantized Mini-Superspace theory makes a prediction that is

almost certainly wrong.

Finally, Chapter Eleven outlines our conclusions and insights. We dis-
cuss the difficulties that surface in the process of extracting predictions from
solutions to the Wheeler-De Witt equation. Open questions and obstacles

that threaten the foundations of the Wormhole Theory are laid bare.

12



Chapter 2

The Wheeler-De Witt
Equation

2.1 The Hamiltonian formulation

The general formalism of Quantum Cosmology starts with the Hamiltonian
formulation of General Relativity. We look at a model with a homogeneous

scalar field #(X) = ¢ that represents the matter fields and has Lagrangian

m2 Ay o1,
L=1-(R=25)~5[9"0.40.6 + V(¢)] (21)

R is the Ricci scalar curvature, A the cosmological constant and the Planck
length = /167 /m?2, where m2 = G, and G is Newton’s constant. We
have adopted units in which A = ¢ = 1. The metric g,, is that of a four-

dimensional manifold M and has a standard form:
ds® = 9uwdX*dX" (2.2)

Embedded in the four-manifold M is the three-surface S on which the
three-metric is hy;, (ij =1, 2, 3 ; g, v = 0,1,2,3). If we decompose the

metric-element (2.2) we arrive at the Lorentzian (3 + 1)-form
ds® = —( N* — N;N*)dt* + 2N;dX'dt + h;;d X dX?

13




where N and V; are the lapse and shift functions respectively:

They are arbitrary in that they describe the way in which the choice
of coordinates on one three-surface is related to tha_t. on an adjacent three-
surface. Once the “thin sandwich problem of Wheeler” has been solved, i.e.
once the horizontal stacking for the shift N; is resolved, we can address the
problem of vertical stacking for the lapse N.

. In the formulation of the Einstein-Hilbert aétion the matter term
Imatter = / d4XV —g ‘C(¢)

is the integral over the ¢-dependent part of the Lagrangian £ = L(grav) +
L(¢) weighted by the determinant of the four-metric g,,. The gravitational

part of the action is just

2 m2
Igra‘uityz % - d4XV—g(R—.2A)+—8?p\/6M dSX\/—’;I(

e

The second part of ‘the gravitational action is the integral over the trace
K of the extrinsic curvature K;; at the boundary 0M of the four-manifold
M. It reads

1 —Bh,-j
K;; = ._?.—N— ( En -+ 2D(,NJ) >

with D; the covariant derivativein the three-surface. The gravitational action
in terms of the (3 + 1) variables now becomes
.

" / CEPX At NVR[ K K9 - K+ ®R-24A].
M

Igrauity = ET-

If we include the matter-part, the Hamiltonian form of the action takes

the form

Liotal = / X dt [ hijm + ¢my — NH — N'H; ] (2.3)
M
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Here, 7 and 7, are the momenta conjugate to the three- metric hi; and
scalar field ¢ respectively. The Hamiltonian is a sum of constraints, with the
lapse N and shift N* playing the role of Lagrange multipliers. The momentum
constraint is

m2

H;’ - _E_TEDJWZ + H;na.tter =0 , (24_)

where H****¢" is the Hamiltonian for the matter-field contribution to mo-

mentum. There is the more important Hamiltonian constraint

167
| ™
where Giji is the De Witt metric on Superspace, the space of all three-

, |
H = —Gijurz* - %\/ﬁ( GR—2A0 )+ H™Hr =0  (2.5)

metrics and matter field configurations (h;;(X), $(X)) on a three-surface S.
The signature of the De Witt metric is hyperbolic at every point X in the

three-surface S, independent of the signature of spacetime. It is given by

L
Giju = 3 h=Y (hihji + hithjx — hijhi ) . (2.6)

Also, H™eT is the matter-field contribution to the Hamiltonian constraint
(2.5), and is explicitly defined in the next section. From the Lagrangian in

(2.3) we may express the momenta m;; conjugate to h;; as
mi; = —Vh(Ki; — hi;K) .

In a similar fashion the energy of the matter-field can be expressed in terms

of the momentum conjugate to the field 74 and the field itself [65].

2.2 Canonical Quantization

The wave functional ¥(k;;,#) on the infinite dimensional manifold called
Superspace, describes the quantum state of our system of interacting three-

metrics h;; and matter-fields ¢. The Dirac quantization procedure means
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that such a wave functional is annihilated by the operator versions of the

classical constraints (2.4) and (2.5). We therefore introduce the conjugate

momenta
A _2_6__ (2.7)
-~ bhyj
Ty — —z% (2.8)
The momentum- constraint is
HY = (m—zzD i + 'H’-"““er> U =0 (2.9)
' 8 7 6hi; : -

‘This implies that the wave functional is invariant under three- dimensional
diffeomorphisms, i.e. configurations (h;j, ) that are related by coordinate
transformations (

Xio X - ¢ |
in the three-surface S (Halliwell [61]). To show this, we restrict attention to
t}}e case of no matter, and assume that the three-manifold is compact. Then

we may write
» 5 o, 60
\I‘[h,'j + D(,'fj)] = \P[h,‘j] + d zD(i{j):ﬁl—'—' ,
. M ij
and integrating by parts in the last term, the boundary term vanishes since

the three-manifold is assumed to be compact. Therefore the change in ¥ is

§U = — / da¢; D; ( 6}%)—— / Bt M

This shows that the wave functions satisfying 2.9 are unchanged.

The Hamiltonian constraint (2.5) becomes the so-called Wheeler-De Witt

~

equation

167 § &§ 16 & md
- ] 5 — h B)p _ matter —
( GJkl&hgj&hk1+ m;29715hij 167:'\/_[ . R 2A]+H )\IJ 0
(2.10)
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This equation describes the dynamical evolution of the wave functional
in Superspace. It has infinitely many solutions and requires a boundary con-
dition to pick out just one solution. Explicitly, the matter-field contribution
to the Wheeler-De Witt equation reads

1 62
Hmatter —_ h I 1%
Vh( 573 7 TV(@
The coefficients ;; in the Wheeler-De Witt equation depend on the choice
of operator-ordering in the quantization procedure, and becomes important

only at or above the Planck curvature

’ R >‘ my
= 167
There is a good reason for this. We have to bear in mind that the curvature
scalar R is a function of the momenta m;; conjugate to the three-metric
hi;, and therefore depends crucially on the operator- ordering in the Dirac
quantization proceduré. It also contributes to the action I;oqr of (2.3), and

hence the Hamiltonian constraint (2.5).

Now for three-geometries that are much larger than the Planck size (i.e:
h/3 > 16m/m?), the wave functional U (h;;, ¢) is predominantly described
by contributions from the intrinsic curvature scalar ®R (and possibly A)
and any matter-fields present. In that case, anyhow, the curvature scalar
R is small (< 167/m2), so that predictions made from ¥ are largely in-
sensitive to the choice of operator-ordering. But for three-geometries of the
order of the Planck size or smaller, R may reach scales of m2/167 or bigger,
and make a large contribution to the Hamiltonian. Consequently, solutions
of the Wheeler-De Witt equation (2.10) will then depend crucially on the

coefficients 7;;.
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2.3 The problem of operator-ordering

Predictions in quantum cosmology depend on how we resolve the operator-
ordering problem. That would be equivalent to defining a differential opera-
tor on Superspace. Hawking and Page (1986) [79] proposed that the correct
choice should be the Laplacian in a natural metric defined on Superspace.

This Laplacian is then covariant in Superspace, and reads

167T - 17kl = 1£ 2
2 (DetG) G v —DetG 5hk1+ h- 55 ~ V5up -

This means that ;; is fixed for all values i,j = 1, 2, 3. But the omission of
first derivative terms means that the natural metric on Superspace does not
depend linearly on the lapse N; i.e. the Hamiltonian  is not a linear function
of N and so the lapse does not serve as a Lagrange multiplier. They [79] do
suggest that the nonlinear dependence on N would cancel out in theories like
Supergravity which contain equal numbers of fermionic and bosonic degrees
of freedom. .‘

The advantage of this choice of operator-ordering is that the Wheeler-
De Witt equation is invariant under arbitrary coordinate transformations on

Superspace.

2.4 Mini-Superspace

The full formalism of quantum cosmology on the infinite-dimensional Super-
space is too difficult to deal with in practice. We theréfore only deal with
“toy models” of the complete theory, in which all but a finite number of
degrees of freedom of the metric h;; and matter-fields ¢ are suspended: Such
models are finite dimensional Mini- Superspace models. It is until now not
yet clear if such models are indeed part of a systematic approximation to the
full theory. In fact, éetting most of the field modes and their momenta to

zero violates the uncertainty principle (J.Halliwell [61]).
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For instance, we construct a simple Mini-Superspace model with the met-
ric and matter-field homogeneous and isotropic. That is, if we supposedly

solve the problem of horizontal stacking for the shift, and gauge it to zero:

we proceed by taking a homogeneous lapse
N =N(1).

'Furt.herrn_ore', we restrict the three-metric h;; to be homogeneous, thus mak-
ing it dependent on a finite number of functions w™, r =1, 2, 3, ..n - 1, all

functions of the time-parameter t. The four-dimensional spacetime metric
ds® = —N2(t)dt? + hi;(t)d X dX7 (2.11)

is now 'homogeneous and ‘isotropic, and results in the dimensional reduction
of the full natural metric in Superspace to M,,(w), where r,s =0,1,2....,n
in Mini-Superspace. This reduced metric is now n-dimensional and has in-
definite signature (-,+,+,+...). with the nt* component of w™ representing

the matter-field ¢. The Mini-Superspace metric element reads
dS? = M, ,(w)dw" dw® .

The Lagrangian for this model may now be abbreviated as

1 s |
L= mMrs(w) W — N(t)W(w) (2.12)

with the Mini-Superspace potential W(w) containing the curvature scalar
" G)R intrinsic to the three-geometry h;j, the cosmological constant A, and the
matter-field potential V(9): |

W(w) = - (%:) VA @R~ A) + (1%) VAV(9),
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with the Planck mass m, = VG-I, For convenience we set m2 = 167, to

make further calculations more readible. The canonical momenta are then

defined as o )
ws
=50 - M

so that the canonical Hamiltonian reads

L

mw —L=NH.
The Hamiltonian form of the action is
I':/ dt( 7" — N H)

and indicates that the lapse N is a Lagrange multiplier, enforcing the Hamil-

tonian constraint

1
H(w 7, ) = -2—M”7r,7rs + W(w)=0. (2.13)
The canonical quantization
Ty — —1 9
i Jwr

leads to the non-trivial operator ordering issue discussed in Section 2.3, since
the metric M™ depends on w. The most general Wheeler-De Witt equation

in Mini-Superspace now reads
( -—-;—M”BT(?_., + 470, + ER + W(w) ) Y(w') =0 (2.14)

and is covariant under w” coordinate transformations. Here 470, and =Re
represent the vector and scalar part (in Superspace) of the operator-ordering
ambiguities. £ is an arbitrary constant and R is the curvature of the metric
M,;. If we now accept the Hawking and Pége {79] argument for choosing
the Laplacian in the metric M,; as a way of resolving the operator-ordering
ambiguity, we impose

7r=0a
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withr =1, ..., n-1. This choice of operator ordering has been made previously,
in particular by De Witt [22], and is true if one replaces M8, in equation
2.14 with v%,,. The coefficient £ may be taken to be zero as in [79}, or it
may be taken to be the conformal coupling
(n-2)

FTTR-D)
for n > 2, as in [55, 111]. This occurs if the metric part of the Hamilto-
nian constraint (2.13) is conformally covariant: the theory is invariant under
rescaling of the lapse function N — N = 02N, the potential W — QW
and the metric M,, — M,, = Q2M,,, where @ = Q(w) is an arbitrary

" conformal factor.

2.5 Two-dimensional Mini-Superspace

We consider a simple model for which the four-geometries g,,, are restricted
to be spatially homogeﬂeous and isotropic for a particular choice of lapse N,
and hence characterized by a single scale factor a(t) (after a global rescaling

of the metric by the factor o = ;2= ):
14
ds? = —N?(t)dt* + a*(£)d% (2.15)

with dQ2 the metric on a unit three-sphere for closed curvature (k = +1), a
three-torus or flat space (k = 0), or a hyperbolic (open) space (k = -1). The

spatial curvature scalar simplifies to _
3 — (L2 Ty __
@R = k(h? — hIR}) = =

The model now has a Friedmann-Robertson-Walker geometry. For the matter
degrees of freedom, we select a spatially homogeneous scalar field ¢ = ¢(¢).

The Einstein-scalar action for this system is

1 3 d2 p? -2
I= 5/ dtNa [—N2a2 +yz TR —A=V(9) (2.16)
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(including the contribution from the boundary to remove a-terms). The field

equations are derived in the usual fashion:

$ = —3¢H - %Z—Z (2.17)
-3- = —26° + A+ V() (2.18)
H +ka? = §+A+V(4) (2.19)

where H = a/a is the Hubble parameter, in the gauge N = 1. (In the gauge
N? = —1 the field equations are Euclidean.) In the canonical quantization
scheme described in the previous section, the conjugate momentum to the

scale factor is m, defined as

2__li P__a__
Ta = a? da aaa

where the operator-ordering ambiguity is reflected in the arbitrary constant
p, and becomes important only for very small values of the scale factor when
-~ m? .
the spacetime curvature R exceeds the Planck curvature 2. The conjugate -
momentum to the scalar field is given by the operator 74 and reads
2o 2
¢ — 6(,252 ’

The Wheeler-De Witt equation (2.14) takes the form

d? + p 0 1 92

Ja?  ada a?0¢?

where the superpotential
W(a,¢) = —ka® + Aa* + V(¢)a* .

Notice that this equation is independent of the lapse N. The Mini-Superspace
of this model is a two-dimensional manifold 0 < a < 0o, —00 < ¢ < oo with

metric M,;(w), appearing in the the action

1 1
— 0w — Viw)} .
1 5 /dt (NMTs(w)w w® — NV (w,)
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(including the contribution from the boundary to remove d-terms). The field

equations are derived in the usual fashion:

¢ = —3éH-%%% (2.17)
% = —2¢* + A+ V(¢) (2.18)
H? 4+ ka? = 4+ A+V(9) (2.19)

where H = a/a is the Hubble parameter, in the gauge N = 1. (In the gauge
N? = —1 the field equations are Euclidean.) In the canonical quantization
scheme described in the previous section, the conjugate momentum to the

scale factor is 7, defined as

2 _ ___l_i P_a_
Ta = a? da (a Oa

where the operator-ordering ambiguity is reflected in the arbitrary constant
p, and becomes important only for very small values of the scale factor when
the spacetime curvatur'é R exceeds the Planck curvature lin;%. The conjugate
momentum to the scalar field is given by the operator 74 and reads
52
55
The Wheeler-De Witt equation (2.14) takes the form
0 pd 1 9
(30 2w

where the superpotential

2—_
7!'4,-——

W(a,¢) = —ka® + Aa* + V(g)a* .

Notice that this equation is independent of the lapse N. The Mini-Superspace
of this model is a two-dimensional manifold 0 < a < co, —c0 < ¢ < co with

metric M,,(w), appearing in the the action

I:%/&(%MAMWW—NWWQ.
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If we compare this with the Einstein-scalar action 2.16, we are able to write

the Mini-Superspace metric element explicitly,
dS* = N7 —ada® + a®d¢? ), (2.21)

where the lapse N is constant on every surface of homogeneity. It has a
nonsingular boundary at a = 0 with ¢ finite. Singular boundaries occur when
at least one of the two variables is infinite. The solutions to the Wheeler-De
Witt equation are the wave functions ¥(a, ¢), functions of the two variables

(a,¢), and independent of the time ¢.

How many Einstein field equations are there in Mini-Superspace? Well,
if the reduced metric M,, is n-dimensional, we anticipate %n(n + 1) field
equations. The momentum constraints (2.9) constitute n of these equations,
and are trivially satisfied (we were able to prove this in the case of compact
three-manifolds with no matter content). So in principle we are left with
in(n — 1) remaining equations to solve. Symmetry considerations (such as

the Copernican principle) may reduce this number even further.

For example, we consider only Friedman-Robertson-Walker geometries, so

0 =a).

that there is only one gravitational variable, namely the scale factor (w
We also represent any form of matter by a single, spatially homogeneous
scalar field (w! = ¢). Therefore the whole of Mini-Superspace is further re-
duced to a two-dimensional system, with its metric element given by equation
2.21. So although there are maximally three (3 -2(2+ 1)) field equations, two
of these constitute momentum constraints (2.9). They are trivially satisfied,
and simply imply that the wave function ¥ is independent of the choice of
coordinates on the three-surface S [139]. We are therefore required to solve

only one equation: the so-called Wheeler-De Witt equation (2.20).
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Attempts to solve and interpret equation 2.20 for various scalar potentials
V(4) are encountered in much of the recent literature on inflation and related
issues. More recently, Hawking and Page [85] have proposed that quantum
wormholes are solutions to 2.20 provided they satisfy the appropriate bound-

ary conditions.

2.6 Classical Spacetime

Before we venture on a discussion of the various issues regarding the interpre-
tation of the wave functional, we briefly explain what prediction of classical

spacetime in the context of quantum cosmology constitutes:

It was mentioned earlier that a suitable wave functional should predict
that the canonical variables ( Section 2.4 ) are strongly correlated accord-
ing to classical laws. Any single or superposition of such wave functional(s)
should be strongly peaked about one or more classical phase- space configu-

rations.

Secondly, there should be negligible interference between distinct configu-
ration-paths. In principle one should be able to construct a coherent state,
so that on following its evolution through Superspace, we would find that
it follows one particular trajectory. In the Mini- Superspace formalism of

Section 2.4, the wave functional
\I’(IUT) — C(wr)eimg’so(wr)\i}(wr) ,

is such a solution to the Wheeler-De Witt equation 2.10. C(w") is a slowly
varying functional in Mini-Superspace coordinates w”. We expand w™ around
a classical trajectory as w” = wl; + dw", so that ¥ (w") is a functional of the

fluctuations §w". It also satisfies the Schroedinger equation along the classical
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trajectories w}; in Mini- Superspace, about which the wave function ¥(w")

is peaked. Here So(w") is a solution to the Hamilton-Jacobi equation
1
5( 5 P+Ww) =0 (2.22)

for Sp real. For instance, if we introduce the tangent vector to such classical
solutions (see D.N.Page [117])

3}
E - vSO VAR
then it can then be shown [54] that ¥ obeys the functional Schroedinger
equation 5
ov .
— = Ho ¥ .
oy =T

Generally, Schwinger-Tomonaga Hamiltonian H; acts as a perturbation
Hamiltonian to some fixed background Mini-Superspace. In the case of a
gravitational background consisting of a Friedmann-Robertson- Walker met-
ric 2.15, with purely inhomogeneous scalar firld perturbations for a potential
V(¢) = m?¢?, and after expansion of §¢ in the three-sphere harmonics Qnim,
the Hamiltonian reads
H, = Z la'3 [ —52:—- + (m*a®+ (n? = )a* ) f2. |,

faim
after expansion in the three-sphere harmonics Q. So in the semi-classical
limit, Quantum Cosmology reduces to quantum field theory on a fixed curved
spacetime background. At least in this sense, we may speak of a semi-classical
domain emerging from (Mini-)Superspace. The importaht advantage of such
a region is that for any quantum theory of gravity to make predictions, their
observation would be through correlation with the semi-classical domain [64].
Its meaning appears to be similar to the quasi-classical domain of Gell-Mann
and Hartle [31]. In fact, in [70] it is shown on more general grounds that if

|C|? (the density in Superspace) is conserved along the classical trajectories,
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then U satisfies a Schroedinger equation in the field representation for the
quantum matter field Swys in the classical background. It is also pointed out
in [70] that this classical correlation should be implemented by some sort of
coarse graining; as we point out in Section 6.3, one would probably need a

wave packet construction.

Since Sp(w"™) is a solution to the Hamilton-Jacobi equation, we can im-

mediately write down a first integral to the classical field equations:

050

T B

(2.23)

and define a set of solutions to the field equations. The wave functional ¥(w")
is an approximate solution to the Wheeler-De Witt equation and is therefore
peaked about such a set of solutions to the field equations. The slowly varying

function C(w") in fact corresponds to the usual WKB prefactor.

2.7 The WKB approximation

Since the Wheeler-De Witt equation is a Klein-Gordon type equation, we

instinctively associate with it the conserved current
J=%(\P'v¢—\lfv¢*) (2.24)
-Conserved by virtue of the fact that
v-J=0.

However, since (Mini)-Superspace has an indefinite metric signature, neg-
ative probabilities could occur if we define the probability measure in this
fashion. This fact, first pointed out by De Witt [22], has prompted alternate
approaches to arriving at the correct measure. For instance, the measure on

sets of inflationary solutions was studied in [79, 82]. A measure on the set of
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solutions to the Wheeler-De Witt equation was also introduced by Gibbons
and Crischuk [38]. An earlier attempt to make classical predictions in quan-
tum cosmology was made by Gibbons et al [39). We reflect more on these

proposals in Chapter 3, entitled Probability Measure.

Since the Mini-Superspace wave functional may be expanded to the first

2

order in the Planck mass m;

U(w) = Ce*S + Ces + O(m;z) (2.25)

for complex prefactors C and C, we insert these functionals into the Wheeler-

De Witt equation (2.14), after recovering Planck units :

2m?

P

1
——— U Sup +m§LV(w) } ¥(w)=0,

By equating powers of m? and splitting S into real and imaginary parts,
S = So(w)—1l,and provided Sp is a rapidly-varying function of w" compared
to I, then Sp is a solution to the Lorentzian Hamilton-Jacobi equation 2.22

while simultaneously satisfying

It is clear from the Wheeler-De Witt equation that the wave functional is
oscillatory in the region W (w") > 0; this loosely corresponds to regions of
Mini-Superspace for which the four-dimensional spacetime is classical. In
fact, this is precisely the type of wave functional the WKB approximation
(2.25) yields. (In general, the result will depend also on the possibility of
separating the Wheeler-De Witt equation, which will in turn depend on the
existence of eventual Killing-symmetries in Superspace.) Furthemore, equa-
tion 2.23 defines the first integral to the classical field equations, and for a

given (n - 1)- surface T at the beginning of classical evolution, effectively
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Chapter 3

Probability Measure

3.1 Predictions in Quantum Cosmology

An issue that is very much under scrutiny of late is a more satisfactory
and less heuristic scheme for the extraction of predictions from the wave
functional in accordance with the Copenhagen interpretation, as outlined in
Chapter 2. The best currently available approach (according to J.J. Hal-
liwell [64]) employs not the wave functional, but the so-called decoherence
functional as its central tool [62, 64, 31]. It has a number of features that
may be perfectly suited to quantum cosmology :

It applies to closed systems; the Copenhagen interpretation applies to
systems that interact with an external observer.

It assumes no a priori separation of quantum and classical domains as in
the Copenhagen interpretation.

It does not rely on notions of measurement or observations by an external
agency (fig. 31)

It focuses on histories rather than events at a single moment, a possible
remedy to the problem of time in Quantum Gravity. This also translates the
“Many Worlds” interpretation of Hugh Everett III (1957) [26] (the idea that

the Universe splits up into many copies of itself whenever a measurement is
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Figure 3.1: The difference between laboratory physics and cosmology: An
external observer studying the system may control the external conditions,
and use them as boundary conditions when determining what is going on
inside the system. In cosmology, the observer is inside the system, and there
is no outside world onto which the specification of boundary conditions can
be passed.
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performed) into a statement about the wave function of the entire system.
As formulated by Hartle (1986) [67]:

“If the wave function for the closed system is strongly peaked about a
particular region of configuration space, then we predict the correlations
associated with that region; if it is very small, we predict the lack of the
corresponding correlation; if it is neither strongly peaked, nor very small, we

make no prediction.”

Most attempts to interpret the wave functional have adopted this basic
idea. One may henceforth think of the wave functional (and hence in this
sense, Mini-Superspace models of quantum cosmology) as an approximation

to the decoherent histories approach [64].

3.2 Conditional Probabilities

Such an interpretational scheme suggests that it is necessary to determine
those quantities for which the theory gives probabilities close to one or zero.
Hartle [67, 54] argues that we may arrive at the usual statistical interpre-

tation of ordinary quantum mechanics through the Quantum Mechanics of
Individual Systems (QMIS) :

Consider a closed, individual system ¥, consisting of a large number of

identical subsystems

\Il(wl, ...wN) = ¢1(w1)¢2(w2)...¢w(w1\;) .

It is claimed [54] that in general we should not deal with probabilities for
VU, but only for subsystems .. Only if ¥ is an exact eigenstate of some
observable @ (with eigenvalue g) is there certainty of observing the vale g¢; if

VU is an approximate eigenstate, then one should look for peaks.
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Now since VU is the wave functional of an individual system, the proba-
bility of it being an eigenstate of some observable Q is either one or zero.
But its identical subsystems {¢)(w,)} may be eigenstates of some relative
frequency operator fVV, an operator defining the relative probability for the
N* to be peaked at a value w = a . Then it can be shown [47] that as
N — o0, the subsystem probabilities are given by the square modulus of its

wave functional, i.e.
f20 = |p(a)] 0.

In the limit of large N, ¥ becomes an eigenstate of f> with eigenvalue
[¥(a)|?. In this way the Everett formulation of quantum mechanics is de-
signed to deal with correlations internal to an isolated, individual system. In
particular, it is designed to describe correlations in an isolated system con-
sisting of an observer and an observed subsystem. Halliwell [54] deals with
correlations in the wave functionals of quantum mechanics and quantum cos-

mology for such closed systems.

Predictions are extracted from the wave functionals using the interpreta-
tion of quantum cosmology proposed by Geroch [34], Hartle [66] and Wada
(132]. One regards a strong peak as a definite prediction. A useful tool
for identifying correlations between coordinates and momenta is the Wigner
distribution function, important in the discussion of classical behaviour in
quantum mechanical systems. It serves a good purpose in the study of scalar

field fluctuations in inflationary universe models.

Furthermore, a weak form of the Anthropic Principle may be employed
to make predictions:
We the observers look out into a Universe with conditions suitable for our

own existence; hence we should restrict attention to those plausible histories
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of the Universe which exist long enough that make evolution of life possible.
That is, we restrict our attention to a certain subset of the possible histories
of the Universe, and make predictions within that subset. In this way we

study only Conditional Probabilities (see also A.Vilenkin (1988) [88] for its

application).
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Figure 3.2: The integral curves of the current .7 (bold lines) and some pos-
sible choices for the hypersurfaces £5 (dashed lines). X, is a bad choice
because the flow of J intersects ¥, more than once. ¥, is a good choice
because the flow intersects it once and only once.

3.3 Conserved Measure

The regions in which the wave functional is rapidly oscillating in w" we regard
as the semiclassical domain. It was also stated in the previous chapter that
certain contributions from a rapidly oscillating wave functional are peaked
about classical configurations. Therefore we deduced (equation 2.23) a strong
correlation between coordinates w™ and momenta =, which is a first integral
that may be solved to yield an n-parameter set of classical equations. Given
some (n - 1)- dimensional hypersurface ¥ in Mini-Superspace as the begin-
ning of classical evolution, we may solve the classical equations derived from

equation 2.23 to arrive at a pencil B of the congruence of paths with tangent
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vector 75%PSp. The conserved current (2.26) allows the construction of a

non-negative probability measure:

Suppose there is a family of hypersurfaces {¥3}, parameterized by 3, that
cut across the flow of 7. Then the conservation of current implies that for
each 3, a probability measure on the pencil B of the congruence of paths (i.e.
through the intersection of the hypersurface B N ¥g,for some 3) is just the
flux J across the surface:

dP =J-d% . (3.1)

This measure is conserved along the pencil B of flow, due to conservation
of the current [J. But (3.1) is not always positive; it vanishes for real ¥,
and becomes negative where the pencil B of flow intersects the same hyper-
surface ¥ more than once (see fig. 3.2) due to the possibility of expanding
and contracting universes. However, by suitable choice of the hypersurfaces
{Zs} in the semi-classical regime, one may construct a sensible Probability

measure.

We have seen that the Wheeler-De Witt equation is independent of time.
However, the parameter 3 labelling the family of hypersurfaces {£3} may be
chosen to be the same as the affine parameter along the integral of curves
V3% Sy - i.e. the time t. Thus, four-dimensional spacetime may emerge
over such regions of Mini- Superspace over which an appropriate family of

hypersurfaces {¥;} is defined.

The probability measure (3.1) on possible histories of the universe is com-
monly not normalizable over the entire hypersurface L. Given a pencil B of
trajectories of the current flow through hypersurface ¥;, one may calculate
the Conditional Probability P( 1|2 ) for that same pencil B to pass through

another hypersurface ; :
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— anEl "7 ) dz
fBﬂEz "7 ’ dz

where % is chosen in such a way that its intersection with B is a subset of

P(1]2) (3.2)

universes which possess features that resemble our universe.

Instead, Hawking and Page [79, 82] uses a more traditional probability

measure

dP = [W(w")|2 dV (3.3)

over a volume element dV of Mini-Superspace. This is indeed positive- defi-
nite, and some authors argue that it reduces to (3.1) in the limit in which the
volume element dV is taken to be a hypersurface of codimension one slightly
thickened (i.e. copies of the same hypersurface densely stacked) along the
direction of the flow of J. However, this measure fall short in other respects
(Kuchar (1992) [99]).
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Chapter 4

Boundary Conditions

The standard hot big bang model leaves many features of the Universe un-
explained. For instance, the observational fact that the Universe is spatially
very flat at present means that it must have started out flat to within one

0%, This is known as the “flatness problem”.

part in 1
The “horizon problem” arises out of the extreme uniformity of the Uni-
verse at very large scales, so that it consists of vast regions that could never

have been in causal contact throughout their entire classical history.

In order for galaxies to form, fluctuations in the matter density need
to have occurred in the very early Universe. How did these fluctuations
originate? To resolve some of these problems, Alan Guth [52] proposed the
so-called Inflationary Universe Scenario, in which the Universe experience a
brief ( ~ 10™*°seconds ) period of inflation from an initial size of ~ 10728

centimetres to ~ lmetre.
However, this Scenario cannot address the question of initial conditions

necessary for the Einstein field equations of General Relativity to predict the

correct classical behaviour of the Universe from an initial state of very high

37



curvature and density. The second order quantized version of GR known
as quantum cosmology, addresses this question in the context of boundary
conditions in Superspace. Halliwell [63] is more conservative, and points out
that quantum cosmology should be seen mainly as an“effective theory” until
a more detailed and satisfactory theory of Quantum Gravity emerges.

Modulo contour ambiguities in the Euclidean Path Integral (see later),
an appropriate boundary condition in Superspace selects one wave function
of the Universe out of an infinite set of solutions to the Wheeler-De Witt
equation. Initially, De Witt [22] suggested that mathematical consistency
alone should lead to a unique wave function. Numerous proposals motivated
by considerations of simplicity, naturalness, etc. have since been considered.
We concentrate on recent “Tunneling” boundary condition of Vilenkin [133]-
[139] and Linde [103, 104, 105] and the “No Boundary” proposal of Hartle
and Hawking (Hawking [74, 77] and Hartle and Hawking [65]).
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4.1 The Tunneling wave function

One particular proposal to determine the quantum state of the Universe is
based on the picture of spontaneous nucleation into a de Sitter spacetime
from nothing, after which it evolves along standard inflationary lines. The
nucleation process is a nonsingular event, often referred to as “quantum
tunneling from nothing”. That, however, does not exclude the possibility of
singular events such as black holes or a “big crunch” from occurring after

nucleation.

In the semi-classical framework, evolution under the potential barrier cor-
responds to evolution in imaginary time, so that the tunneling process is an
instanton. This regular Euclidean solution may be matched to a Lorentzian

solution at the nucleation point.

The so-called Tunneling Boundary condition for the wave function ¥ as
formulated by Vilenkin (1988) [139] is that
“At singular boundaries of Superspace, the wave function includes only

»
.

outgoing modes (carrying flux out of Superspace)

The definition of ingoing and outgoing modes is similar to that of positive-
and negative-frequency modes, with the direction toward the boundary play-
ing the role of “time” direction. We briefly summarize what is meant by a
boundary in Superspace [110]. It consists of singular configurations which
have points or regions with infinite three-curvature (3R, or where the scalar
field is infinite, or its gradient (9;¢)? diverges, including configurations of

infinite three- volume.

It is important to note that for a three-metric h;; = Q2h;;, where hj

has a unit determinant, then the configurations with 2 — 0 but 7z,~j and ¢
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nonsingular do not necessarily correspond to four-dimensional singularities.

It is assumed that we can divide the boundary of Superspace into two parts:

‘1) The nonsingular boundary of Superspace, that includes three-
geometries h;; which can be attributed to the slicing of only regular four-

geometries g, .

2) The singular boundary of Superspace, which includes the rest of the
boundary.

We express the semi-classical wave function as
7= ¢ (4.1)

which is necessarily complex, and where the phase S, satisfies the

Hamilton-Jacobi equation in Superspace (see Chapter 2, Section 2.6)
1
;(VS")2+W:0a

and the current for the n* term of (4.2)

jn = —I Cn I2 \V4 Sn- (42)

The tunneling boundary condition essentially means that any congruence of
classical paths defined by S, are allowed to end at the singular boundary of
Superspace, but none are allowed to begin there. That is, the vectors — 7 S,
should point out of Superspace at the boundaries. In addition, a supplement

to the boundary condition is that
|| <oo. (4.3)

For a Mini-Superspace model with a homogeneous and isotropic scalar
field ¢, and FRW metric (see eqn 2.15, Chapter 2) for a closed universe, the
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Wheeler-De Witt equation 2.20 without a cosmological constant (A=0)

has a superpotential

W(a,¢) = —a*[1-a’V(g)] (4.4)

where the potential is assumed to be a slowly varying function of ¢ and far

from the barrier V(¢) = 1/a? :

av(¢)
dé

’ < maz{ | V() |, 1/a?}. (4.5)

(There is also the condition V' < 1 for the classical approximation to remain
valid.) This justifies omitting the ¢-derivative term in the Wheeler-De Witt

equation (2.20), which now reads

Lot 0
[ Lt 0l Wia,0) ] U(a,$) = 0. (4.6)

Since the factor-ordering p does not affect semi-classical probabilities we

may choose p = —1 and introduce a new variable
n=—-02V)"(1-a’V),
so that ¥(n) satisfies ,
[ 88—772 +7 ] y=0.
With hindsight [139, 140] we choose Airy function solutions with-appropriate

asymptotic forms

1
Ai(n) m gomaT eI, (4.7)
1 /2
Ai(—n) =~ ﬁn—l/“ sin ( §n3/2 + -Z— ) (4.8)

in the limit » — co. Now the Tunneling wave function ¥t has to satisfy the

requirement that only the outgoing wave should be present in the classically
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allowed region (1¥'9¥/da > 0 for V > a~?). Hence for V(¢) < 0

_ Ai([n])
A7)

where 79 = n(a = 0). In the classically allowed region far from the barrier,

b

Ur (4.9)

n is large and positive while 74 is large and negative, so that the asymptotic
forms apply. We therefore write the approximation for a2V () > 1

144( a2V — 1 )32
3V,

Ur ~ e (a?V — 1) exp [ - (4.10)

and in the classically forbidden region a*V(¢) < 1 for both positive and
negative values of V(¢),

(4.11)

1 — a2 3/2 _
Ur=(1-dV )"1/4exp[( a3VV) 1] .

It is possible to obtain the Hartle-Hawking wave function ¥y by the

transformation
Uy=Up(V eV, a—e).

For a general three-metric h;; — €'"h;; and the corresponding transformation
of the potential V(¢), the Superspace Wheeler-De Witt equation remains in-
variant [139]. Equation 4.11 is interpreted to describe an ensemble of classical
universes after nucleation. We proceed to determine the probability distri-
bution for the initial states of the Universe, characterized by the scalar field
¢ at the barrier V(¢) = a? and the initial conditions & = 0,¢ = 0. The
conserved current (2.24 in Chapter 2) has components

o= %a”( 0*9,¥ — ¥9,7") (4.12)

= —%a”—2( 9,0 — U, T" ) (4.13)

and continuity equation

0.7 4+ 0,5 = 0.
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Since the classical configurations represented by the wave function 4.11 in-

clude only expanding de Sitter spacetimes
ax V" 2cosh( VY2 | ¢ = const.

problems with negative probabilities do not arise. Hence the scale factor
is a good “time variable”, so that at every “instant” of scale factor a, the
component 7% can be interpreted as the probability density for ¢, provided it
is properly normalized. We formally the probability density from equations
4.11-4.12, with p = 1:

Pr(a,¢) = Crexp [ _3_172(_¢5 ] , (4.14)
e Crl = / d¢exp [——2———] . (4.15)
T [V(8)>0] 3V(¢)

has been defined so that Pr(a,¢)d¢ is the probability for the scalar field to
be between ¢ and ¢ + d¢ at the “instant” when the scale factor has value
a. Since the probability is obviously independent of a ( since ¢ is approxi-
mately constant along pencils of classical trajectories ), the conservation of

probability is trivially satisfied:

O, /j“d¢=0.

Proper normalization requires that the integral 4.15 converges; this oc-
curs if ’

1) V(¢) <0 as ¢ — +o0, or

2) V(¢) — 0 faster than 2/31In| ¢ |, or if

3) ¢ is a cyclic variable in a finite range 0 < ¢ < ¢o where the points
¢ =0 and ¢g are identified.

For sufficiently slow growth of the potential at large ¢, the initial state
leads to the “chaotic” inflation of Linde (1984) [103, 104, 105]. The largest
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nucleation probability is at the highest maximum of V/(¢), corresponding to
the initial condition required in the New Inflationary Scenario. Hence the

Tunneling wave function naturally predicts inflation.

On the contrary, if the maximum of V() is very close to zero, the initial
density of the Universe is much lower than Planck density m3, so that the

whole history of the Universe is semi-classical.
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4.2 The Hartle-Hawking wave function

4.2.1 The Path Integral Formulation

The alternative to the canonical quantization procedure discussed in the
previous sections is the path integral method: The wave functional is an
Euclidean functional integral over a certain class of four-metrics [g,,] and
matter-fields [®], weighted by e~/2, where I is the Euclidean action of the

gravity plus matter system. The wave functional
V[ ki, B]=)_ / Dyg,, D e~ & (4.16)
M

is the sum taken over the class of manifolds M for which the three-surface B
is part of their boundary, and over the class of four- metrics [g,,] and matter-
fields [®] which induce the three-metric h;; and the matter-field configuration
® on B. The path integral (4.16) is weighted by the Euclidean action (and
not the Lorentzian action) in order to pick out ¥ as the ground state wave
functional, and possibly to more easily deal with topology, avoiding the ob-
structions due to singularities in the Lorentzian theory. The measure Dg,,
includes the product of the differentials dggo - - - dgs3 for each member of the

class [g,.], and similarly for the measure D®.

A particular problem with this formulation is that the gravitational action
is not bounded from below, so the path integral diverges if we integrate over
real Euclidean metrics. Only by integrating along a complex contour in the
space of complex four-metrics does the integral converge. Nor is there any
unique contour, or for that matter, an exact and explicit prescription for the
scale (or conformal) factor contour. So the wave functional depends crucially
on which contour one chooses. Although there is no precise relationship, this
problem 1is closely related to that of choosing boundary conditions on the

wave functional. (More on these matters later.)
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Provided that the action Ig, measure, and class of paths summed over
respect an invariance generated by the Hamiltonian constraints, Halliwell and
Hartle (1990) [62] have formally shown that the wave functionals generated
by the path integral (2.15) indeed satisfy the Wheeler-De Witt equation
(2.10) and the momentum constraints (2.9). This formulation of the wave
functionals is essential for a discussion of the so-called Hartle-Hawking wave

function of the Universe.

4.2.2 The No Boundary proposal

This proposal made by Hartle and Hawking [65] is essentially a topologi-
cal statement about the class of histories summed over. The No Bound-
ary proposal says that the three-surface B is the only surface of a compact
four-manifold M, on which the four-metric g,, induces 71,-1- on B, and the
matter-field configuration ¢ matches ¢ on B. (See fig. 4.1.)

For a manifold M of the form R ® B, with closed four-geometries that
have vanishing shift N* = 0 and constant lapse N = 0, the path integral

reduces to
Uns[ hijy 4, B]=/dN /th¢ o-Tslh 8 N 1)

In two-dimensional Mini-Superspace, such a path integral will have an
Euclidean action Ig, for the homogeneous and isotropic scalar field ¢ and

Friedmann-Robertson-Walker metric. (This is obtained by the substitution
t— —r

in the Einstein scalar action 2.16 in Chapter 2.) If we represent the final
surface B by 7 = 1 in terms of time-parameter 7, and label the initial point

by 7 = 0, then for the four-geometry to close in a regular way as the scale
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B2

g/}.y, ¢

Figure 4.1: A pictorial representation of the class of histories summed over
in the calculation of the No Boundary wave functional ¥{k;;, ¢, B].

factor tends to zero we have to impose the initial condition

1 da
a(0) =0 or —N—d—T(O) =1, (4.17)
but not necessarily both [58]. Since the Euclidean action Ig leads to the
Euclidean field equations (i.e. the Euclidean analogue of the Lorentzian field
equations 2.17 - 2.19) it is easy to verify that this condition compels the

scalar field to satisfy the initial condition
dé
E(O) =0 (4.18)

Hence, we conclude that the No Boundary proposal applied to Mini-
Superspace is equivalent to specifying initial conditions (4.17 and 4.18) for
solutions to the field equations. Furthermore, the fact that the four-metrics

induce l~z,-j and ¢ matches q~$ on B, is translated into the final condition that

a(l)=a, and (1) = ¢ (4.19)
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in Mini-Superspace. However, these boundary conditions still fall short in
giving unique solutions to the field equations (for an example, see [64] ). But
now the path integral has a number of saddle-points (i.e. where %115 = 0),
each of which contribute to the integral by an amount ~ e‘Ifz, with I§ the

action of the solution corresponding to saddle-point k.

Nor do the boundary conditions (4.2 - 4.4) restrict the complex contour
along which the lapse N is integrated. In fact, for every contour there exists

a different path integral wave function solution ¥ yp.

In an attempt to determine which saddle-point makes the dominant con-
tribution to the path integral, Halliwell and Louka (1989) [58] found that
there are a number of inequivalent contours along which the path integral
converges, each dominated by different saddle-points, again leading to differ-
ent forms of the wave function. Indeed, the No Boundary wave function of
Hartle and Hawking is uniquely determined only after supplementing extra
information to fix the contour. For instance, Hartle and Halliwell (1989) [56]
suggested restricting the possible contours on the grounds of mathematical

consistency and physical prediction.

Hartle and Hawking [65] gave heuristic arguments to support their thesis
that a saddle-point will provide the dominant contribution only if the chosen
contour in the path integral may be distorted into a steepest-descent contour
along which the saddle-point is a global maximum. This allows them to
derive a semiclassical form for the No Boundary wave function:

a) the wave function should be exponentially growing in the scale factor

a in the classically forbidden region a?V(¢) < 1

1—-(1-—a%V )32
3V ’

Uyp =(1—a®V ) Vexp (4.20)
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b) and contains equal contributions from contracting and re-expanding

modes for the classically allowed region a?V > 1 :

217 _13/2
\IINB=2(a2V—1)“1/4exp[3iv}cos[ul—v-3—vl—)—§- . (4.2))

This wave function represents an ensemble of both expanding universes and
contracting universes. Since the total wave function is real, the current J is
identically zero. Anyway, the probability distribution for expanding universes

is readily given by equations 4.14 and 4.15 of Section 4.1, and reads

Pnp(a,4) = Cnpexp [ 5%(5 ] (4.22)

where )
o= doe — . .23
“ns /{vw»o] pexp [ 3V(¢)} (4.23)

Clearly the integral diverges when V(¢) = 0 for certain values of ¢. The
probability distribution appears to be normalizable only if

1) V(¢) is strictly positive, and

2) ¢ has a finite range.

Since the maximum nucleation probability now corresponds to the true

minimum of V(¢), it is not so clear how inflation will be predicted.
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4.3 No-Boundary vs Tunneling proposal

We have seen that both the Tunneling and the No Boundary wave functions
are peaked at about the same set of solutions to the field equations, whose
first integral is equation 2.23 of Chapter 2. These solutions are inflationary for
a slowly varying scalar field ¢ = ¢o = constant along pencils of trajectories.
To determine which pencils lead to sufficient inflation in order to resolve
outstanding problems in the standard model of the Hot Big Bang therefore
depends directly on ¢o.

It is therefore interesting to see which of the two proposals is more rea-
sonable in its predictions. It is clear from 4.14 and 4.23 that the respective
probability distributions differ by a sign:

2
dPNB/T ~ exp [ iw ] dé (424)

(+) for the No Boundary, (-) for the Tunneling proposal. Hawking and
Page (1986) [79] argue that values of ¢ for which the initial density is too
small should be excluded, and suggest that we should calculate conditional
probabilities with the condition the density of the Universe is over a given
range. We therefore assume that for a chaotic potential, the initial value of

¢ lies in a certain range
¢min < ¢ < ¢ma:c .

As outlined by Vilenkin [141}, sufficient inflation is achieved if ¢o > Pmin,
and is not achieved if ¢o < @mez. Given the range (Pmin, Pmaz), Suppose that
® = ¢sus is the value of the scalar field within this range when sufficient
inflation has occurred. Then the probability for sufficient inflation is the

conditional probability (see equation 3.2 in Chapter 3)
¢mdl
f«é..u; de el *2/3V)
fjmar d¢ e(£2/3V) '

min

50



NB (+)

T()

pe o> ms e e wn - > o= -

]
s

¢imin ;suf ¢

Figure 4.2: A plot of |¥|? against ¢ on a hypersurface of constant scale factor,
for the Tunneling wave function and one component of the No Boundary wave

function.
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The Tunneling proposal (-) has by far its largest contribution from the
region ¢ > ¢gy, so that the conditional probability for inflation is of the
order unity (fig. 4.2).

The No Boundary proposal (+) receives its largest contribution from the
region very close to @min, a very small cut-off. The conditional probability is
therefore very close to zero, so that sufficient inflation is not predicted. On
the other hand, Hawking and Page [79] assumes that ¢.; — oo, and argue
that despite the peak close to @min, the contribution to the integral from this

region is overwhelmingly outweighed by that from very large values of ¢.



Chapter 5

A Measure of Inflation

5.1 An infinite period of inflation?

D.N. Page [117] claims that the No Boundary proposal applied to FRW
Mini- Superspace suggests that the Universe may have had an infinite period

of inflation.

If the scalar potential V(4) rises monotonically well past unity for large

|¢|, so that

Vig) » 1 (5.1)

dInV(¢)
7 ‘ <6 (5.2)

for all larger values of |¢|, then the wave function of the Universe is a solution

of equation 2.20 with p =1 and A = 0:

and 0 < l

with z = %as V(¢), (5.4)



1.e. a zero order Bessel function Jy. For large z the wave function oscillates
rapidly with the WKB form 2.25

U=U,+0_=CeS4 e,
where the prefactor is just C' = (272)~'/2, and the phase

S=Z—Z

obeys the Hamilton-Jacobi equation 2.22, i.e.
(VS)* +a°V () — ka = 0

for curvature £ = —1,0,+1, in the Mini-Superspace metric 2.21 with the

lapse constant N = 1:
ds® = —ada® + a® d¢* . (5.5)

The integral curves of 7S represent the trajectories 2.23 of the semi-
classical wave packets of which U is a superposition, and along each of these
trajectories there exists an affine time parameter ¢, satisfying

d
;ﬁ_vS-v.

So the No Boundary wave function gives a superposition of a subset of all
allowed semi-classical wave packets. For instance, the wave function (3) gives
classical solutions for which |@|, V and z are all large have the inflationary

form

%¢
<
—~
©-
~—
—~
ot
(2]
~—

1 dV(¢)

C6/V(g) dé

o4

.. 28
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where the derivatives are with respect to the conformal time ¢. The solutions
are then labelled by one parameter ¢, say at the first root Jo of the Bessel
function Jo(z). A quantum regime exists for z < jo, where there is no good
classical notion of time. The classical regime occurs for z > jg 1, since ¥ has
an oscillatory WKB form there. The probability per unit time ¢ contributed
by W, along a pencil of trajectories is proportional to the flux F of the
conserved current J of W, so that the flux per range of ¢, is asymptotically

constant for large ¢y, i.e.
dFF 3
— = — 4+ 0(¢5?).
d(ﬁo 27 t (¢0 )
This leads to a divergence of the total flux at |#o| = oo, hence the proba-
bility per unit time is dominated by contributions from arbitrarily large |@o],

where the potential energies diverge.

Page [117] now tries to assess the amount of time the classical solution
spends in the inflationary regime described by equations 5.6 and 5.7. It is
clear from equation 7 that the time taken for ¢ to drop from ¢¢ to some
fixed value where inflation ends, will diverge as ¢, becomes large and if the
potential V(¢) does not increase faster than quadratic in ¢. The power-law

scalar field potential

2
— 4
V(¢) = % ¢ (5.8)
is that of a free massive scalar field for p = 1, and chaotic if p = 2. For
0 < p £2, equation 7 yields

2-p _ |p|2-P

t_ by 3(] ol [977) p=2 3 | <;¢g) , (5.9)
m(2 —p)\/p/2 m\ ¢

which diverges as ¢9 — oo.
Since the largest contribution of the trajectories come from large ¢y, al-

most all have an arbitrarily long period of inflation. For large values of the
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potential, the spatial curvature becomes negligible in the classical field equa-

tions 2.17 - 2.19, so we may put k = 0. They integrate to give for ¢ > p/3,

A 2 -3
s=ao() " exn (56— )+ T 6~ 4+ 0674 459

with

3j0,1 -
ag = m V2p¢op,

and
3 —¢¥ P 2—p __ pt—12p% 4 24p?
¢ = $ 2By 140 )
+ const.
Inflation requires that
H/H* <1,

i.e. equation 2.18 gives

H/H? = fgqs'?[l +0(¢7)]

for the Hubble parameter H, so that we restrict

gl > p. (5.10)

This leads to a duration of inflation of the order

At ~ 3(|¢of*>P — p?77)
m(2 — p)\/p/2

which diverges as |¢o| — o0, for 0 < p < 2.

, (5.11)

Since |¢| decreases monotonically from infinity during inflation, we may
use it as a time coordinate. For arbitrarily large |@o|, it would appear that

the scale factor a diverges, but since this gives effectively a £ = 0 model, we
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rescale the comoving coordinates to have a finite range and make the rescaled

a finite: An explicit choice could be

_ 3
Unew = ¢~V exp (—Etﬁz + 0((,25_2)) (5.12)
during inflation. The spacetime four-metric now approximates to
18
— A+ T T A by 4 42, (513)

which gives a Universe that has an infinite classical history, yet the spacetime
is still singular in the sense of being geodesically incomplete [73]. The proper

time to go from a = 0 to some finite a = a; is just

/“’ H-lda
o (P?+a2)l/2’

which is finite for positve H and positive spatial momentum P? =
D oens a*(dz'/dr)*. The null and spacelike geodesics are also incomplete:

For a null geodesic with affine parameter A,

41 da
Al = —
N2

while the spacelike geodesic with proper length s has

1 H 'da
As 2/0 (P2 —a2)i/2’

which are both finite. Hence the age of the Universe may be infinite , even
though its size is finite. This is a counter-example to the common notion
that the Universe must have a finite age and that its classical evolution
could not have started at curvatures above the Planck value. We believe
it more likely that these results highlight the shortcomings associated with
models constructed from quantum Mini-Superspace. This is due to the many
strong assumptions made when “freezing” out extra degrees of freedom. It
may also be because Einstein-Hilbert gravity and quantum cosmology is just
an effective theory at large scales which is missing higher order corrections

comming, for instance, from string theory.
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5.2 Higher order corrections

Given the appropriate action 2.16 that result in the field equations 2.17 -
2.19 with vanishing cosmological constant and power-law potential 5.8, we
now discuss in greater detail how the Hartle-Hawking No Boundary proposal
enables us to impose initial conditions to these equations. In addition, the
phase S of the WKB approximation is obtained by analytical continuation of
the Euclidean action for compact metrics and regular matter-fields. Similar
to the previous section, we are able to solve the Lorentzian field equations in
terms of an affine time variable ¢, but now more accurately [25]. We see that
such solutions exhibit a period of exponential inflation, as anticipated. The

requirements for sufficient inflation are then outlined.

5.2.1 Lorentzian initial conditions

In the Euclidean regime the No Boundary proposal is equivalent to the initial
conditions 4.17 and 4.18. The potential V of the scalar field ¢ acts as an
effective cosmological constant when ¢ is large and roughly constant ¢ =~ ¢,.
Since inflation does not last forever (the present Universe is not expanding
exponentially), the effective cosmological constant must eventually vanish as
time passes. Thus, the full set of initial conditions are conditions 4.17 and
4.18 with the addenda

$(r=10)=do. (5.14)
The corresponding value for the potential is HZ = m2¢§” /2p, in terms of the
Hubble constant at 7 = 0. Since the Euclidean Path Integral (EPI) is taken
over compact four-metrics, the scale factor a(r) has to vanish for some value

of 7 we can choose to be zero [25]. Thus, for large @o, we have
a(t) = Hy'sin (Hor) ,

consistent with the initial conditions 4.17, 4.18 and 5.14. Now we perform

the analytic continuation to Lorentzian spacetime:
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In the WKB ansatz 2.25 for the wave function, the phase S is chosen
to satisfy the Hamilton-Jacobi equation 2.22 while the No Boundary pro-
posal picks out a solution to this equation that corresponds to the analytic

continuation of the Euclidean action

2
Ig = - (3‘#) (1= (1-d’m?¢™/2p)*?) . (5.15)

This corresponds to the action of the smaller part of a four-sphere of radius
v2p/m¢?, bounded by a three-sphere of radius a, and it generalizes what
has been done in the case of the massive scalar field [75]. The solution to the
Hamilton-Jacobi equation 2.22 is therefore the analytic continuation of I,

and at large ¢ it is given by the phase

2
S~ —3mf¢2p(a2m2¢2”/2p —1)%2. (5.16)

The application of this method yields, for 7 = 7 /2H, + it, see [100] :
a(t) = Hy' cosh (Hot)

at very small times ¢, for large and constant ¢(¢) = ¢¢. So the minimum
value of @ in the Lorentzian regime is equal to the maximum value of a in

the Euclidean regime, while the initial conditions for a differ vastly :

a(t=0) = m£¢€=a0 (5.17)

at=0) = 0. (5.18)
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The phase S defines the first integrals 2.23 of the system,
a = (a*m?¢*/2p —1)1/? (5.21)
é By _ 4 (&Y’ 5.92
T ga  Im2pti\g/) (5:22)

besides the Friedmann constraint

a’¢? — a* + a’m?¢¥*/2p—1=0. (5.23)

The phase itself, up to the first order correction to that of Section 1, reads

I ST R 2
3\/%a é (1 m2a2¢21’) . (5.24)

which is an approximation of equation 5.16 for large a, such that a ~ eft/2H

~

(i.e. equation 5.24 holds in the range [t1,t]. The Lorentzian Hartle-Hawking
trajectories [106] then explicitly have

¢2=

3¢— mg”

and

= =me?/ /2.

Integrate over the time interval [ ¢; , ¢ ], we find

1/(2-p)
o) = (87— pgemi—1)

B - p / p/(2-p) /
a(t) = Qa2€xp |:\/— " <¢1 ( _p)ﬁm(t —tl)) dt )

for every p # 2, with a; = H; ! cosh (Hot,).
For the case of the chaotic potential p = 2 [105], the integrals yield

¢ = ¢16—5%(t_t1)
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and

o= sre {2 [ty (20|}

For very early times when ¢ — t; is very small, the inflationary formula

for any p is approximately

a(t) ~ ayexp [mel(t — t1)/\/2p] =~ :?l—ao exp (%qﬁ’l’t) , (5.25)

where the scale factor at the end of inflation is ~ a; exp (34%/2p) and assum-
ing that ¢; ~ ¢,.
5.2.2 Minimal conditions for sufficient inflation

In order to solve the horizon and flatness problems [52, 105] the inflationary

formula has to satisfy the condition
a(t) > 10%ag ~ agexp (65) .

If we put t = Bty where t; denotes the time at the end of inflation, and for

B in the interval (0,1], we find the constraint

m

3
\/2—p¢ft1 + §¢f In(¢1/¢5) 2
for the chaotic potential, where
3
50 (d1/8s) = m(ty —t1)/v/2p -

Generally, for p > 2, we have the constraint

m o, 3 41\ o (65+1n2)
AL Py (¢f) N

In this case, we have the duration of the inflationary era

W 1/2 P 1/2
o= (2) - (3)"]
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(5.27)




These are minimal requirements since a thorough inflationary model also
has to solve other problems, e.g. the origin of the energy density fluctuations

to account for galaxy-formation.

5.3 How probable is Inflation ?

5.3.1 Towards a representative model

So far we have seen how the No Boundary proposal leads to a wave function
that possess, amongst others, the feature of sufficient inflation. However,
this is not the only possible choice of boundary condition for a wave function
defined in Superspace, so the question arises whether a sufficiently long period

of inflation is a property of a “typical” wave function.

Gibbons and Grishchuk [38] attempted to clarify this issue using a model
of a two dimensional Mini-Superspace describing a free massive scalar field ¢
in a closed FRW universe with scale factor a. Various aspects of this model
have been studied at both classical [42, 39] and quantum (77, 79, 51] level.
We broaden the scope of their [38] arguments somewhat by applying it to a
scalar field with the power-law potential 5.8 already encountered . Of course,
we can instead of m?/2p, simply read A/2p, the self-interaction constant used
in [25, 75, 85, 103, 104, 105, 106, 117], for p # 1.

The Wheeler-De Witt equation 2.20 has the form

1 3 qa 1 62 2 m2 2p 4 —_—
(Gae's — dg — @+ 3ot7a) Ba ) =0, (529

where ¢q reflects the factor-ordering ambiguity. In the inflationary regime as

outlined in Section 2, we define

2
m

H? = —2-—q5gp = const.
p
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Figure 5.1: The potential W(a) = a* — H2a* for H? = 1.0.

One neglects the term —(1/a?)(0?/8¢?) in this regime, so that the model
exhibits the features of a closed universe with a cosmological constant H?.

The case ¢ = —1 [38] has equation

d
(ail— —-a*+ H2a4) U(a)=0. (5.29)

The solutions to this equation are Infeld, Macdonald and Hankel special
functions with argument +(H?%a? —1) [38, 51]. Equation 5.29 has the form of
the Schroedinger equation for a one-dimensional problem with superpotential
W (a) = a® — H%a*. The turning point is at a = H™! (see fig. 5.1).

The ordinary semiclassical probability for the system to tunnel from one
classically allowed region to another, has the value
U(ay) |?
U(ay)

D=

3
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always less than unity for quantum tunneling. We define a similar quantity
D in quantum cosmology, except that its physical interpretation is not so

clear:
2

T(H)
¥(0)

Provisionally, we define D as the probability coefficient describing the cre-

D= l (5.30)

ation of the Universe from “nothing”. It is then likely that the wave functions
predicting D < 1 describe quantum tunneling. It is possible to show [51] that
provided H >> 1, the Hartle-Hawking wave function gives

3
D:exp(G;n)»l.

To answer the question of how many such wave functions there are, we con-

sider the space of all possible wave functions and introduce a suitable measure

on this space.

Since the system has only two linearly independent states, we introduce
an arbitrarily chosen, suitably normalized basis of states |1 > and |2 >. A

general state can be expanded as
|\IJ >= lel > +Zg|2 > )

where Z; and Z, are complex constants. Then D can only depend on the
ratio ( = Z1/Z, = zexp (ib), parameterizing the points on a two-sphere. In
fact, it was shown [51] that in the approximation H < 1,

6m
—2/3_-2
D ~ H 3 exp(——GH2>.

The set of possible wave functions is in 1-1 correspondence with the points
on the two-sphere. The effective physical (unitary) transformations acting

on the space of quantum states is the rotation group SO(3) = SU(2)/Cq,
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where () is the group consisting of +1 and -1. This acts on the two-sphere in
the usual way provided b is the longitudinal angle and = = cotan(36), where
6 is the co-latitude.

In terms of the ratio (, the line-element on the two-sphere is
4(1 +¢¢)7d¢ A d,
and the volume element

dV = 4(1 + ({)7%d¢ A d(. (5.31)

The quantum analogue of the principle of general covariance is that the
measure is invariant on the space of quantum states, which will be the volume

element of the two-sphere:
dV = sin 0d0db . (5.32)

If we define a new variable [51] y = arctanz = (7 — 0)/2, then dV =
2sin 2ydydb, with 0 < y < 7/2 and 0 < b < 27, and the surface area

corresponding with the wave functions D > 1 :

3r
= e _ < php<
¥y <Y exp( GH"’) 0<b<2r

is very small compared to the surface area of the two-sphere. So the ratio of
wave functions that predict D > 1 (among them the Hartle-Hawking wave

function) at the point § = 7 and those that predict D <1 is just
Yo < 1,

i.e. very small indeed. Hence the probability of finding a wave function with

D > 1 is minute.
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5.3.2 Asymptotically flat curvature

In the limit that the curvature term —a? becomes negligible [38, 117] (see
Section 1), the Wheeler-De Witt equation reduces to

19 8 1o . -
oo sm + b)) Vad) =0 (53)

In the WKB approximation 2.25, the phase S satisfies the Hamilton-Jacobi
equation 2.22 and has the form [38]

S(a,$) = —a*F(¢) (5.34)

and F satisfies the equations

. dF
¢ = " (5.35)
- = 3F. (5.36)

Different solutions to F' correspond to different trajectories in the ¢ — é
plane of fig. 5.2 starting from the Big Bang, the repulsive knots K; and K.
All trajectories are woven around the stable focus P that corresponds to the
final stages of inflationary expansion with k£ = 0. The boundary of the circle
correspond to infinity, ¢? + m?¢?/2p = oo. The two attractive separatrices

S; and S; correspond to the solutions [25]

m
j: P
3\/2;)(;S

and represent the Hartle-Hawking wave function -

U~ [exp( 5 ) + exp (+i\;;;a3¢”>] :

F(¢) = (5.37)
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Figure 5.2: The compactified ¢ — ¢ phase plane.

Now for different solutions F), denoted by the discrete index n, there are

different wave functions ¥,, that may sum to an arbitrary wave function of

\I/:Z\Il,,.

It is possible to show that to every trajectory in the ¢ — ¢ plane one can

the form

assign a conserved quantity @,, corresponding to different F,,. Some of these
solutions will be “unfavourable” as opposed to “favourable” with regards to
having sufficient inflation. That is, for N different wave functions ¥, form-
ing a linear superposition, with n’ denoting those peaked around favourable
trajectories, and n” those not, such that their totals N’, N” add linearly
N'+ N" = N, then the wave function

NII

o
V=D Tt T

nII
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can be characterized by the number P reflecting the amount of inflation,

N’ N -1
P=Y Qu (Z Q,,) :
So what is the mean value of P 7 Well, as in the case of the cosmological

constant model, the state |[¥ > can be expressed as a sum of the basis states
In >,

N
¥ >=>"Z,|n>
n=1

where the coefficients |Z,|* = @Q,, each n. We assume such bases |n > are
normalized. Then the space of physical states may be parameterized by N —1
complex ratios {(,}, with (, = Z,/Zny, n =1,2,...,N — L.

They form coordinates to an (n—1)-dimensional complex manifold, known
as “complex projective space” CPN~1. There is an effective symmetry
SU(N)/Cn, where Cy is the cyclic group generated by multiplication by
exp (27i/N). The C PN~ space is homogeneous with respect to this group,
so there is a unique invariant measure in terms of coordinates {(,}, given
by the Riemannian volume measure with respect to the invariant metric on
CPN-! (known as the “Fubini- Study” metric). It is given by

N-1 -N
dV = (1 +y |<‘|2> Y 'de A de. (5.38)

The “amount of inflation™ P over the C PN-1 space endowed with this

measure has an average value

. / P(Q1, Q2 .Q)dV = ivﬁ . (5.39)

A reasonable choice of states |n > can be obtained by dividing the “quantum

boundary” where the energy density ¢? + m2¢??/2p reaches its Planck value

68



m;, which constitutes a Cauchy surface for all trajectories in ¢—q.b space, into
N equal intervals. One of the trajectories in a given interval can play the role
of a representative. It is then possible to show that N'/N =1 - m/+/2pm,,
where 8 = O(1). Thus, inflation indeed seems to be a property of a typical

wave function provided m <« m, and the power p = O(1).
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Chapter 6

Time in Quantum Cosmology

“The physical space I have in mind (which already includes time) is therefore
nothing but the dependence of the phenomena on one another. A completed
physics that knew this would have no need of separate concepts of space and

time because these would already have been encompassed.”

-Ernest Mach (1866)
“By an old sundial motto, the time thou killest will in time kill thee.”

-Karel Kuchar (1992)

6.1 The problem of Time

A fundamental problem in quantum cosmology is the lack of a natural proba-
bilistic interpretation of the wave function [91], as outlined in previous chap-
ters. Closely related to this is the “problem of time” in any generally co-

variant theory. (The concept of general covariance applies to a theory like
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General Relativity, for instance, in which gravitational phenomena are de-
scribed by the spacetime metric alone; no one family of spacelike surfaces is
preferred over any other [70].) We also learnt that the concept of probability
1s tenable only when one can specify with respect to which time variable it

is conserved (see for instance Section 2.6, Chapter 2).

Due to the peculiar role that time plays in the usual framework of Hamil-
tonian quantum mechanics, the latter is insufficiently general for quantum
cosmology. The observable Universe seems to have a fixed classical geometry
that yields the notion of “preferred time” in quantum mechanics. Despite
the presence of many foliating families of spacelike surfaces in the spacetimes
of special relativity, different choices of such families to define a preferred
time of quantum mechanics all give equivalent results. Similarly, General

Relativity is generally covariant.

However, since we expect quantum fluctuations of spacetime in the very
early Universe, there is no fixed background to define a notion of causality.
So quantum mechanics constructed from two different choices of preferred
spacelike surfaces may not be unitarily equivalent [99, 89]. The fact that
spacetime is treated as a dynamical quantum variable may compel us to
formulate a Hamiltonian quantum mechanics with time variable other than
a family of spacelike surfaces in spacetime. This would be a generalization of
familiar quantum mechanics provided the usual formulation with a preferred
time variable emerges in the appropriate limit [70]. The generalization of
quantum mechanics with the spacelike hypersurface as preferred time variable

is just one such possibility.
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6.2 The Arrow of Time

We briefly concentrate on the intriguing disparity observed in the time sym-
metry of the fundamental laws of physics and the time symmetries we en-

counter in the real Universe. To mention those peculiar to cosmology [32,
118, 146):

(a) The thermodynamic arrow of time - approximately isolated systems

almost all evolve towards equilibrium in the same direction of time.

(b) The arrow of time of the approximately uniform expansion of the

Universe.

(c) The arrow of time supplied by the growth of inhomogeneity in the

expanding Universe.!

Such time asymmetries could arise from time-symmetric dynamical laws
solved with time-asymmetric boundary conditions [32]. For example, (a) is
implied by an initial condition that would make conditions in the very early
Universe far from equilibrium. Asymmetries (b) and (c) may follow from
an initial Big Bang of sufficient spatial homogeneity and isotropy, given the

attractive nature of gravity.

Since Quantum Cosmology is primarily a theory of the boundary con-
dition(s) for our Universe, it is the perfect environment to address the ori-
gin of time asymmetries. Hawking [78], Page [114] and others [63, 100] in-

vestigate the emergence of the thermodynamic arrow of time from the No

!0Other asymmetries are the Psychological arrow of time - we remember the past but
not the future, the time-direction inherent in Retarded Electromagnetic Radiation, and
the arrow of time supplied by the C'P non- invariance of the weak interactions and the
CPT invariance of field theory.

72



Boundary proposal. In the classical framework, Penrose [118] and others
[82, 78, 114, 53, 80] have imposed time-asymmetric initial and final condi-

tions on the Einstein field equations.

In the Copenhagen interpretation, the laws of quantum mechanics nor-
mally incorporate an arrow of time in the sense that for exhaustive sets of
alternative histories {a;} at instants ¢, < ¢, < ... < t,, the probability for a

particular history in the exhaustive set of histories is given by

P(@n, ... ar) = Tr [ Pl (t)...PL(81)pP) (t1).. PR (ta) ] (6.1)

where {P} (tx)} is the set of projection operators in the Heisenberg pic-
ture representing an exhaustive set of alternatives {ax} at time t;, and the
density matrix p describes the initial state of the system, and with usual
time-ordering from the density matrix to the trace [70]. This formula there-
fore exhibits an asymmetry between ‘future’ and ‘past’, defining the arrow of
time in ordinary quantum mechanics that in turn implies the familiar notion

of causality. The conditional probabilities for future are

p(an, ... ay) (6.2)
plak,...,a1)
The present time t lies between the instants ¢, and tx4+;. These probabil-

P(Any ooy Qkg1|ar, ... a1) =

ities can be expressed in terms of an effective density matriz p.ss(ti) at the

instant ¢;, and reads

Tr [ P2 (1) P (e )pegs (8 PEEL (1)
where the effective density matrix is

P (t4).--PL ()PPl (0. Ph (t6)

pak, ...a;)
Given the history (a,...,ax), then the effective state of the Universe at the

pess(te) = (6.3)

time ¢, is given by the density matrix p.ss(tx), as seen in the Copenhagen
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quantum mechanics of measured subsystems. Projection operators { P¥ (1)}

describe alternative outcomes of measurements on subsystems.

For a closed system such as the Universe described by a spacetime with
negligible gross fluctuations, the density matrix p can be seen as describing its
initial condition. But consistent probabilities p are predicted only for those
sets of histories for which there is negligible interference between individual
members of the set as a consequence of the particular initial p. This is known

as decoherence between sets of histories.

Hartle {70], Griffiths [49] and Aharonov et al [2] formulated a “neutral-
time” quantum mechanics for cosmology, that is devoid of the effective den-
sity matrix p.;;(t) that enables one to compute future probabilities from
past histories. In fact in this new formulation, probabilities for the indi-
vidual members of a set of alternative histories {ax} depend on Heisenberg
operators (Hermitian and positive) p; and py that represent initial and fi-
nal conditions for the Universe respectively. That is, this formulation of
quantum mechanics need not have a fundamental arrow of time. Here, the

probabilities are defined as

p(@n, -yay) = NTr | ps P} (t)...PL (t1)pi P, (1) Py (tn) ] (6.4)

where

N~ =Tr[pspi] -

In the case of p; o I, the identity matrix, we arrive back at the Copen-
hagen formulation 6.3. This generalized quantum framework allows for the

possibility of violation of causality, with advanced and retarded effects.

For instance, the imposition of time-symmetric (statistical) boundary

conditions on a classical cosmology means that the entropy must behave

74



time- symmetrically provided the coarse-graining is itself time-symmetric.
The thermodynamic arrow of time will run backwards on one side of the mo-
ment of time symmetry as compared to the other side. This does not mean

that individual histories (fine-graining) need necessarily be time-symmetric.

Penrose [118] estimated values of the initial low entropy for our Universe
at the Big Bang, so we basically know its initial condition with respect to
coarse-grainings defining the classical domain of familiar experience [32]. The

problem of finding the final condition is somewhat more intricate:

a) If the Universe is closed and has a lifespan of the order of its present
age since the Big Bang, then there are ample examples of models within
our Universe with relaxation times comparable to (or even longer than) the
timespan between the Big Bang and the final Big Crunch. This will enable
us to detect (or infer) the existence of a time-symmetric final condition of
our Universe from experiments on phenomena that remain out of equilibrium
long enough for them to be affected by such a final condition. For example,
radioactive material with very long half-lives, singularities contained within
black holes, or black holes with life-time to decay by the Hawking radiation
longer than the Hubble time.

b) However, if the lifespan of the Universe is much longer than its present
age, such systems might be difficult to find. This would mean that we will

never be able to detect the existence of a time-symmetric final condition.

We can expect that the wave function for the Universe gives an ensemble
of classical solutions very much like that obtained from the WKB approxi-
mation, with different probabilities. For instance, closed geometries will be
a probability distribution over possible lifespans of the Universe. Both the
No Boundary and the Tunneling proposal predict very long lifespans for the
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Universe (see [82, 139]).

6.2.1 Decoherence

We stated earlier that the quantum mechanics of a closed system such as
the Universe as a whole predicts probabilities only for sets of alternative
histories that decohere. So the minimal requirement on any theory of bound-
ary conditions is that the universe exhibit a decoherent set of histories that

corresponds to the semi-classical domain of everyday experience.

The coherence between individual histories in an exhaustive set of coarse
grained histories {a} is measured by the decoherence functional, a complex-

valued functional on each pair of histories {a, a’),

D(a,a') = NTr [p;Cup:Cl] . (6.5)

Here we have abbreviated the strings of projective operators in equation
6.4 by C,. Decoherence occurs when the real parts of the off-diagonal el-
ements of the functional (those between two histories with any a; # aj)
vanish with sufficient accuracy. (More generally, it should occur when the
off-diagonal elements of D are sufficiently small for any ax # a}.) Under
these conditions the probabilities p in equation 6.4 satisfy the usual sum

rules of probability, and are in fact just the diagonal elements of D.

An extreme example of boundary conditions that are inconsistent with
the existence of a semi-classical regime is when the final density matrix equals
the initial density matrix

Pf=pi=p. .

It is possible to show [32] that the probabilities of the different projections

P remain constant in time, so that there is no dynamics nor any second law

of thermodynamics. This is in contradiction with experience.
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Figure 6.1: The sum-over-histories construction of the decoherence functional

Finally, besides predicting a semi-classical domain of familiar experience,
the boundary conditions must also lead to probabilities that are strongly
peaked at histories that are correlated by classical dynamics. I.e. we must

still be able to derive the classical equations of motion.

So for the sum-over-histories quantum mechanics [70} the decoherence
functional (fig. 6.1) is naturally defined on a set of coarse-grained histories
{h,} as

D(hi, h;) = /h dgbg [ bg/agle AU, (6.6)

Here S is the action for gravity and matter-fields. The integral is over four-
metrics ¢ and matter-field configurations ¢ that lie in the partition A;. Simi-
larly for the integral over g’ and ¢’ over k. It is assumed that the initial and
final conditions on the histories are incorporated in the sum over histories as

conditions C on the fine-grained histories.
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FINAL CONDITION

SUPERSPACE

INITIAL CONDITION

Figure 6.2: Recovery of Hamiltonian physics in the late Universe. Here
is a schematic representation of the Superspace of all three-geometries and
matter-field configurations. The region surrounded by the dotted line con-
tains the large three-geometries of the late Universe.

In this formulation, there is no purely geometric quantity that uniquely
labels a spacelike hypersurface. A Hamiltonian formulation may, however be
approximated in a restricted domain of Superspace (see fig. 6.2), for special

coarse-grainings and for particular initial conditions.

Suppose that the initial conditions were such that for coarse-grainings de-
fined by sufficiently unrestricted regions of Superspace, in a regime of three-
geometries much larger than the Planck scale, only a single spacetime ge-
ometry § contributed to the sum defining the decoherence functional. Then
the remaining sum over ¢ in the functional integral defines a Quantum Field

Theory (QFT) on the background spacetime §, with the approximation
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D(hi, hj) =~ / §¢ | 64 Slael=StaeN/R (6.7)
hi,C h; C

This is true if the action can be decomposed as S = S(g) + Sm(§, ¢).
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6.3 The need for a Wave Packet

Despite other desirable features (like inflation), the Hartle-Hawking (1983)
“no boundary” proposal fails to address the issue of time and probability
interpretation in a satisfactory manner. Any viable theory of quantum cos-
mology should be capable of naturally describing the emergence of classical
spacetime. Kazama and Nakayama (1985) [91] argue that since the “no
boundary” proposal does not exhibit a localized wave- packet structure, the
argument of how classical behaviour can emerge out of the wave function is

not convincing.

On the other hand, Vilenkin’s prescription is of no use in models where
there are no modes with outgoing flux only through the singular boundaries
of Superspace, or where the flux turns around within Superspace and crosses
only the nonsingular boundary [10]. If Vilenkin’s condition is modified by
choosing the phase S, and pre-factor in such a way that the superposition
¥ =35 C,e'™ is a wave packet, then (at least in the case of the confor-
mally coupled scalar field considered in [10}) there are several possible wave
functions for the Universe. It therefore seems that this proposal also needs

to be improved.

The Wave Packet proposal for the wave function of the Universe [94, 10,

93] corresponds to a so called “final condition”:

The quantum evolution must lead to the present classical Universe, i.e.
the wave function of the Universe must approach a Wave Packet characteriz-
ing the presently observed cosmological data [10]. Also, the wave packet
must go to zero as the scale factor grows to infinity (which means that
the‘returning’ packets should be present‘ab initio’). The wave packet then

plays the role of a final condition from which we will retrodict the evolution
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of the Universe backwards in time.

Only if the wave function permits a probabilistic interpretation, and a
wave packet can be constructed, can the gradient 7S, of the classical action
determine the classical trajectories (equation 2.23). This makes the prin-
ciple of constructive interference indispensable. Consider superpositions of
WKB solutions of the Wheeler-De Witt equation 2.20 which are of the form
(compare with 2.25)

Un(a,6) = Cala, 8)e™ ) 1 Cy(a, 8)e509),

the pre-factors C,, and C,, being slowly varying amplitudes. These wave func-
tions are extended all over configuration space. They interfere destructively
everywhere except where the phase S,(a, ¢) has a saddle point with respect

to the wave number n:

[ aai" ]n:ﬁ =0. (6.8)

Sa(a, @) is a solution to the Hamilton -Jacobi equation 2.22 and yields
classical trajectories in configuration space. Together with the principle of
constructive interference, the general Hamilton-Jacobi equation correspond-
ing to the Superspace Wheeler-De Witt equation 2.10 is equivalent to all 10
Einstein field equations [35]. The second derivatives 3%S,,/0n? are a measure

of the dispersion of the wave packet around the classical trajectories [93].

Since the Universe may be viewed as an isolated, individual system (in
the sense described by Hartle [67, 54], see Chapter 3) there is a characteristic
absence of an external observer. The so-called relative state formalism of
Everett [26] was designed to deal with exactly this situation. If we regard the

total system as composed of two subsystems, one the observing apparatus,
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the other the observed system, then the total wave function is just a super-
position of eigenstates of the respective systems. All the possible results of

measurement are contained in such a superposition.

It then becomes possible for a probability interpretation to emerge in a
purely natural fashion; i.e. it is not something given a priori to the wave
function. Kazama and Nakayama [58] then illustrates using a simple model
due to von Neumann, that in the absence of an external observer, the emer-
gence of classical spacetime requires the total wave function representing all

the possible outcomes of measurement itself must be localized.

6.4 In search of a desirable time variable

In order to arrive at a good probability interpretation for wave packets in
simple Mini-Superspace models, we need to specify a desirable time variable
that will lead to conserved probability current. For instance, a bad choice
would be the scale factor a in closed FRW models, since the wave function
will be multi-valued with respect to ¢, and the semi-classical treatment will
fail around the turning points. Matter-fields that are essential in driving the
evolution of the scale factor a (such as scalar fields with chaotic potentials)

do not qualify either:

To give a good probability interpretation for the wave packet, a good clock
should not disturb or be disturbed by the system being observed in regions
where the scale factor is large, i.e. it should decouple from the rest of the
system. In addition, it should be monotonic with respect to the time ¢ of the
comoving frame. These features will guarantee that the square modulus of
the wave packet is approximately conserved with respect to the desired time
variable. An example of such a material clock is the homogeneous, isotropic

and massless scalar field [91]. We shall see that this concept of a material
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clock is useful in the construction of wave packets for bulk matter wormholes

(Chapter 9).
There are many other proposals about the problem of time in Quan-

tum Gravity, the emergence of semiclassical spacetime and the question of

the‘arrow’ of time ([90] and for a most recent and interesting approach [47]).
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Chapter 7

Spacetime Wormbholes

7.1 A survey on known solutions

Overview

We now turn our attention to one of the most interesting features in quantum
gravity: the so- called Wormhole. These are gravitational instantons, i.e.
exact solutions of the classical Euclidean Einstein field equations with finite
action. Giddings and Strominger [43] and Hawking (81] were the first to

introduce wormhole solutions in “canonical” Einstein gravity.

Semiclassical gravitational instantons joining two asymptotically flat
manifolds in Mini-Superspace appear in [43, 1, 92, 102]; asymptotically flat
space with a closed FRW universe [9, 101, 126], and a de Sitter space with
a closed FRW or another de Sitter space (4, 17, 45, 57, 109, 124] have pre-
viously been found. Wormhole solutions have been discussed extensively in
[7, 14, 95, 96, 48, 28, 18, 5, 6, 20, 21, 36] and [46, 108, 112, 37, 113, 131, 144,
60, 145]. Hawking and Page [85] and Campbell and Garay [88] have initiated
investigations into the existence of quantum wormholes as solutions to the
Wheeler-De Witt equation which satisfy appropriate asymptotic boundary

conditions (Section 4).
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The Yang-Mills instanton

Hosoya and Ogura [88] discovered a spherically symmetric classical wormhole
solution of an SU(2) Yang Mills magnetic field coupled to gravity with a
cosmological constant. Rey [124] studied a version with time dependent
magnetic and electric fields. The wormhole solution is SO(4) symmetric,
and describes a particle moving in a double well potential. The explicit
analytic solutions are elliptic integrals, but a discrete set of wormholes exist
for appropriate boundary conditions. The existence of a conserved energy
density makes the spectrum of solutions similar to that of Giddings and
Strominger [43] and Coleman and Lee [14]. See Section 3 for an outline of

the Giddings-Strominger axionic wormhole.

The massive charged scalar field instanton

A minimally coupled charged scalar field was studied by Abbott and Wise
[1], Coleman and Lee [14] and Lee [102]. Due to U(1) symmetry, the theory
has a conserved current J#, that yields an associated conserved charge @ =

[ d,J*, integrated over a three-sphere containing the wormbhole mouth.

If we restrict the model to be that of a massless Goldstone boson, an
equivalence with the Giddings- Strominger [43] wormhole emerges. This is
because the current is a vector density that is equivalent to a three-form in
axionic theory: J, = %7 H,g,. The time-time component of the Einstein
field equations essentially describes the motion of a particle in a repulsive a?
potential, where a is. It comes from infinity and bounces off the barrier at
the turning point (the minimum radius of the wormhole throat) and returns

to infinity.

It appears that such wormholes may be able to simulate the formation and

decay of blackholes: the size of the black hole collapsing under the collective
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Figure 7.1: (a) Wormhole charge Q as a function of the wormhole size. The
dotted curves show large-wormhole and small-wormhole limits. (b) An illus-
tration of black hole evaporation.

mass m of () mesons, is proportional to the charge @ (fig. 7.1). For large Q,
the wormhole size grows to that of a black hole. The action corresponding

to the insertion of a wormhole mouth into a region of constant background
field f is found to be
1/2
I=—an[4f<%> ] .

Double periodic wormhole solutions

Massive charged scalar field wormholes similar to the above were numerically
analyzed by Midorikawa [109]. New boundary conditions to the same Ein-
stein field equations yield single period instantons connecting two universes
of the same size. The potential is restricted to have a local maximum at a

finite value of the scalar field.

For a different potential (see fig. 7.2), a wormhole of double period con-

nects two universes of different sizes. Such a double periodic solution implies
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Figure 7.2: The potential V for double period instanton.

the creation of hot universe with a large cosmological constant from a cold
universe with a small constant. The existence of universes with different A’s
may be useful for a large universe to evolve. Even if wormholes set small
A to zero (the Coleman mechanism) in our Universe, the large A may stay
finite.

Theories with axion and scalar fields

Lavrelashvili, Rubakov and Tinyakov [101] and Rubakov and Tinyakov [126]
explored a theory containing a scalar field and an axionic field. They found
a gravitational instanton whose analytic continuation is a closed expanding
universe born at minimal radius and then undergoing inflation. There is
a conserved axion charge present that lead to wormhole solutions for small
radii. However, its contribution to the energy-momentum tensor decrease as
a~* (as in Giddings and Strominger [43]), so the universe quickly enters an

inflationary phase as the scalar field undergoes damped oscillations.
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Figure 7.3: (a) A wormhole that connects two asymptotically flat Euclidean
regions. Two dimensions are suppressed; each circle around the throat rep-
resents a three-sphere. (b) A wormhole connecting two de Sitter spacetimes.

Non-linear gravity coupled to axionic and scalar matter

Non-linear gravity wormhole instantons in the context of a theory containing
additional scalar and axion fields were found by Coule and Maeda [17]. An
antisymmetric tensor axionic field H is coupled to a scalar field with an
arbitrary potential. Again the axion current H* is conserved, defining a

quantized charge.

For an approximately flat, non-zero scalar potential there exists a worm-
hole with throat- radius ao which connects two asymptotically de Sitter
spaces with radius apg, provided ap < aps. (see fig. 7.3). For zero scalar

potential, the wormhole connects two flat regions a =t as | ¢ | — oo.
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This theory is shown to be equivalent to a theory for a conformally coupled
scalar field. Similar solutions exist for some generalized Einstein theories of

gravity, e.g. a higher derivative gravity minimally coupled to an axion.

Wormbhole solutions are also found for the case of a non-minimally coupled

scalar in an effective theory derived from string theory.

7.2 The Hawking-Tolman wormbhole

This is an asymptotically flat solution to a metric that does not satisfy the
Einstein field equations. However, subsequent work [7,34] has shown that
this wormhole is indeed a solution to the Einstein field equations. Gonzalez-
Diaz considers pure gravity with a cut-off in the scale factor a. The same
model has also been reproduced from a perfect fluid equation of state p = p/3
in [8, 9], and its quantum version occurs in Chapter 9 if v = 4/3. We give a

brief outline of the Hawking-Tolman wormbhole:

It has a conformally flat metric

b2

|z — zo|?

2

ds* = [ 1+ } dzdz, (7.1)
which is an asymptotic Euclidean metric that looks like it has a singularity
at the point zo. However, this is a mere coordinate singularity, with the
regions z2 < b? and z? > b? haviﬁg similar geometry. The metric describes
two asymptotically flat regions connected by a throat with radius 2b at the
three-sphere (see fig. 7.4), also known as a baby universe. Typically, b will
be of the order of the Planck length, so when the separation of the two ends

is much greater than the Planck length, we may neglect their interaction.
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Figure 7.4: The Tolman-Hawking wormhole with throat-radius 2b connects
two asymptotically flat Euclidean regions.

The metric is not a solution of the Einstein equations since R,, # 0
although the Ricci scalar R = 0. The total gravitational action has its only

contribution from the boundary term

3rb?
G

1
S=—g—= Prvh( K - Ko ) =

where K is the trace of the extrinsic curvature of the boundary, and Ky that

of the boundary embedded in flat space.

It was shown by Gonzalez-Diaz [45] that the above wormhole solution
can be obtained in a pure gravity Mini-Superspace model with a positive
cosmological constant, provided a cut-off in the scale factor is introduced.

For the Euclidean metric
ds? = N2dr? + a®(7)dQ}
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the action reads

Ie_—IGWG/dTNea[1+N;_aA]' (7.2)

For a constant m, the transformation

a? — o —m?

is equivalent to having a minimum radius m for the Euclidean three- sphere.

m2

The new time-coordinate is d¢ = ( 1 — 2 )/2 dr. For conformal time

dn = 4“1, and defining o’ = %‘7-, the equations of motion have

%a” +W(e,m) = 0 (7.3)
w 0w
o = -5 (7.4)
with
W(a,m) = % [m?(1+ m?A ) — (142m?A)a® + Ad*] . (7.5)

This may be viewed as describing the motion of a particle of zero energy in
the potential W. With A = 0 we have

a=(m2+7'2)%

representing two asymptotically flat regions connected by a Tolman-Hawking

wormbhole of radius m. For A > 0, periodic wormhole solutions

(N1l

a=A"? [mzA + cos®( ATT) (7.6)
occur in the region
m<a<(mi+Al)E.
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In the Lorentzian framework (7 — +i7), this represents a Tolman uni-
verse with maximum radius m and a de Sitter universe with minimum radius
vm? + A-1. The instanton describes the tunneling between these two clas-

sical regions.

Numerical calculations have revealed that a conformal scalar field (see
Halliwell and Laflamme [57]) in Mini-Superspace may have less physical sig-
nificance due to a negative effective gravitational constant G=(1-¢?)"1G,
where ¢ is restricted to values greater than one. Starobinsky [129] has sug-
gested that there may exist bounded regions where G = const. > 0 in a more

detailed analysis that includes anisotropies.

7.3 The Giddings-Strominger axionic worm-
hole

An axionic field minimally coupled to gravity has Euclidean action

S = _1-61—G d*z\/g( —R+ H?) + (topological and boundary terms).
T
(7.7)

The 3-form H = dB is the axion strength such that dH = 0. One may now

derive the Einstein field equations

Gu = 3HuagHS® = S0 Hop HP, (7.8
ViwHogy = 0. (7.9)
Giddings and Strominger [43] make the spherically symmetric ansatz
ds? = dt* 4+ a%d03, (7.10)
Hie = bler (7.11)

with Euclidean FRW-metric scale factor a, while €;;x is the volume element

normalized to integrate to 272 on surfaces of constant a. All other compo-
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nents of H vanish. The axion current H* is now conserved, allowing one to
define an axionic charge flow down the wormhole,

1 2m2bh?
~ [ HdQ= T
G Jrp G

if the three-surface ¥, of radius b encloses the origin ¢ = 0. The time-time

Q=

(7.12)

component of the equations of motion (1.8) depends crucially on the charge.

The equation is

Al —1l=—-—. (7.13)

Its solution in parameterized form reads

a® = b* cosh 27 (7.14)

where
t=b / \/cosh2n dn . (7.15)

The Euclidean metric is invariant under the transformation a — —a, so
it represents two asymptotically flat regions as | @ | — oo that are connected
by a throat with minimum radius b and three-sphere cross-sections. The
extrinsic curvature K of the boundary at minimum throat-size b is zero. The
wormhole instanton describes tunneling between an initial three-surface ¥;

of topology R®, and a final surface I; of topology R® @ S° (see fig. 7.5).

The instanton action reads

_3lQ]
§ ===, (7.16)

so that nucleation of closed baby FRW universes are suppressed for large
maximum radii b = 4/ %%l large relative to the Planck size. The fields and
their first derivatives on ¥; and ¥; are real when analytically continued back

to the Lorentzian regime. This is obvious for R®, but on S this is ensured by
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Figure 7.5: Tunneling from a topology R® initial geometry X; to a topology
R® @ S? final geometry Xy.

the ansatz that the time components of H vanish, while the time derivative

of the metric vanishes because it is a minimal surface.

7.4 The Wheeler-De Witt equation

In an effort to find a more general class of wormholes, Hawking and Page [85]
and Campbell and Garay [7] regarded wormholes as full quantum solutions of
the 2" quantized Wheeler-De Witt equation. This is crucial to finally provide
a mechanism for black hole evaporation suggested by Hawking [81], due to
a lack of macroscopic wormhole instantons with arbitrary matter content.
It should also facilitate the construction of a more fundamental theory of

topological fluctuations in gravity.
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The boundary conditions required for the wave function solution to rep-
resent an asymptotically flat wormhole will be reviewed in Chapter 8. We

also derive exact wave functions for wormholes for the free massive scalar

field.

In Chapter 9 we proceed in this new programmme by finding the quantum
analogue of the FRW bulk matter instantons found by Carlini [8] and Carlini
and Mijié [9].

7.4.1 Wormhole wave functions

Hawking-Page

In the ansatz ds®> = N2dt? + a2dQ}, Hawking and Page [85] solve the WDW

equation for a minimally coupled massless scalar field ¢ by means of the

separation
¥ = c(a)e*®
where c(a) satisfies
& 1d kK,
[%5+Z%+<;—a>]c(a)—0. (7.17)
This has two independent solutions Ji%k( ’—‘;—2 ). These are eigenstates of the
operator —i% with eigenvalue k, and carry a conserved charge Q = 27°k.

This continuous set of solutions oscillates for 0 < a < k%, and correspond to
classical Lorentzian FRW solutions with scalar flux Q, bouncing between a

singularity and a sphere of maximum radius k3.

For a > k%, ¥ decreases like e=#*/2. There appears to be an irregularity

as a — 0, but by a coordinate transformation z = asinh ¢ and y = acosh ¢,
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one can derive a discrete spectrum
V=3 U(z)¥a(y)

with W, (z) = H,(z)e *'/* (H, are Hermite polynomials). Then each mem-
ber of the spectrum is just a product of harmonic oscillator wave functions

with the same energy, and therefore regular at the origin.
The Killing vector to the WDW equation, 9, = yd:+z0, can be expressed
in terms of harmonic creation and annihilation operators a,af, as
O0p = agay — alaz

so that the J4 eigenstates |k > is a sum of harmonic eigenstates |n > :

k>=>" ca(k)ln >,

n

with c, satisfying the recursive relation
tke, = (n 4+ 1)cpg1 — neaa

which can be solved iteratively in terms of hypergeometric functions. So the
eigenstates |k > are superpositions of regular harmonic oscillators that are
regular everywhere and damped at infinity. A similar result is found for the
case of a conformally invariant scalar field in [85, 94, 96].
Kantowski-Sachs

Campbell and Garay [7] study a spacetime that has the same metric

ds? = N2dr? + a*dr? 4 b%dQ3 A

as that of the interior of a Schwarzschild black hole. A more general form

for the operator-ordering is considered. Two kinds of wormhole solutions are
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studied, one with the asymptotic behaviour R®* ® S! (a — ag, b — 7) and
asymptotic ground state ¥ & e~* and the other R2®S? (a — 7,b — by) and
ground state ¥ = e~%"/4, Regular solutions are found by a Fourier transform

of the explicit continuous ones, and reads

To

Wio6, = €XP ( —abcosh (cosﬂologi + ¢sinfo + o) > ,

with constants o, and excitations Ao of the wormhole state. For R* ® S?
solutions, A¢ = 0 gives a continuous set of degenerate ground states, while
do # 0 gives excited states. However, in the case of R* ® 5% solutions,

Xo = 0y = 0 is the only (ground) state and it corresponds to pure gravity.
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Chapter 8

Wormbholes in Superspace

8.1 Exact HP wormbhole states

Hawking and Page (1990) [85] argue that wormholes are to be regarded
as solutions of the quantum-mechanical Wheeler-De Witt Equation. The
boundary conditions that these wave functions have to obey are that they
be exponentially damped for large three-geometries, and regular when the

three-geometries collapse to zero.

They found a continuous family of solutions with a massless scalar field,
and of a conformal field, that correspond to instanton solutions found by
Giddings and Strominger (1988) [42] . These wave functions are damped at
infinity, but they oscillate infinitely near zero radius. The trick is to express
such solutions as an infinite sum of a discrete family of solutions that are

well-behaved both at infinity and zero radius.
Furthermore, well-behaved solutions were constructed only approximately

for a massive scalar field. Explicit formulas for their asymptotic form were

given.
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As pointed out by C.Kiefer (1988) [93], the WKB approximation for the
(Hawking-Page Wormhole) wave function breaks down near the turning point
of the potential, i.e. as we approach the wormhole throat, thus making it
difficult to construct wave packets following classical trajectories in such re-
gions. Classical trajectories are shown to be represented by non- overlapping
wave packets only for discrete values of the mass of the scalar field, and only

in regions which are not too close to the turning point.

Kiefer [93] investigates the correspondence of Mini-Superspace quantum
gravity with classical cosmology. He uses a Born-Oppenheimer type approx-
imation to explicitly construct generalized coherent states in the case of a
massive scalar field. Coherent states are known to be important to relate

quantum theory to classical physics.

In this chapter (Section 3), we derive the exact solutions to the WDW
equation for the massive scalar field. We also observe that they are regular
everywhere, and are damped at infinity. This confirms Hawking and Page
[85]. It shows that such solutions exist only for discrete values of the mass
of the scalar field, consistent with Kiefer [93].1

! Also see Page and Kim (1992) [95].
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8.2 Wormbhole Representation

We consider the possibility of wormholes as solutions to the Wheeler-De Witt
equation

HV =0 (8.1)

obeying certain boundary conditions.

If we regard S as a cross-sectional three-surface of a wormhole that sep-
arates two asymptotically Euclidean regions, then the quantum states of a
wormhole can be represented by the wave functions ¥, (h;;, ) where h;; is the
three-metric and ¢ the matter-fields on S. The wave functions obey equation

8.1 at all finite non-zero three-metrics h;;.

If the wave functions W,(h;;,4) are to correspond to wormholes they
should obey certain boundary conditions :

a) The boundary condition when &;; is large should express that the four-
metric is asymptotically Euclidean. Unlike the case of the No Boundary wave
function which grows with the size of the three-surface, the wormhole wave
function will be damped at a large three-surface.

b) The boundary condition when h;; is small should indicate that the
four-metric is non-singular. In Mini-Superspace models it means that the
wave function should be regular, or go as a power of the scale factor a as a

approaches zero.

Specifically, in the case of the Mini-Superspace model with the usual FRW
four-metric (2.15)
ds® = [ =N?*(t)dt* + a*(t)dQ2 (8.2)

here d2? is the metric of a three-sphere of unit radius, real N is the lapse of
a Lorentzian metric for a Friedmann universe. If N is imaginary, the metric

is that of an Euclidean wormbhole (i.e. an instanton).
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The No Boundary wave function (4.16) of Hartle and Hawking,

U(hij, 6) = / [ g, 1d] & Je~110#) (8.3)

is a path integral over all compact metrics and matter fields with the appro-

priate boundary values.

It increases as e7®’ where a is the radius of the three-surface S. The
wormhole wave function decreases like e~7%" for large a. The latter case
indicates that such solutions are asymptotically Euclidean, and the ground

state wormhole corresponds to a vacuum state.

In the path integral formulation, the wormhole ground state is therefore a
path integral over all asymptotically Euclidean metrics and all asymptotically
zero matter fields that have the given values on the surface S. Excited states
of the wormhole are other solutions to the WDW equation that are damped
at large radius and regular at ¢ = 0. Regularity at the origin indicates that

these solutions are nonsingular.

8.3 Quantum Wormbholes

8.3.1 The minimally coupled massive scalar field

In the case of a closed Friedmann universe with scale factor a and metric
(8.2) containing a homogeneous massive scalar field ¢ the WDW equation
(8.1) reads
2 92
(az'—” 0 ,0 my 0 m

2
b P 2428
s

9a” 9 167 0¢% ' 16

2

(F2hat) Wad) =0 (54)

where the matter field potential is m2@? and the curvature of the space-time
closed (k = +1), flat (k = 0) or open (k = —1). We for the time being write
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1—";2% =1 and recover it later on.

Kiefer [93] obtains approximate wave function solutions by means of an
adiabatic approximation in the Born-Oppenheimer ansatz for Ina, a tech-
nique used in Molecular Physics and also previously in Quantum Gravity.
In Kim[96] and Kim and Page[95] we see that the wave functions can be
expanded by a basis of eigenfunctions. However, the Symanzik scaling law

allows for a suitable choice of coordinates (a,7n) where

_ 123
n=5¢a (8.5)

by which the wave function ¥ becomes separable:

Ua(a, ¢) = ¥a(n)@a(n) (8.6)
with separation constant A, while the WDW equation separates into
d? d )
(27]&?-}- -JT;—}-/\——Zm n) di\(n) = 0 (8.7)
1 & p d
(Gamt B+~ "“) ¥ae) = 0 (8:8)

We solve for ®.(n) by writing

®r(n) = e ya(n) (8.9)

so that yx(z), where z = 2m7, satisfies

d? 1 d X—m

The general solution is a combination of Kummer functions

®(n) = e "U[(m = A)/4m,1/2;2mn ]
+ & e ™ M| (m + A)/4m,1/2; —2my ]
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The “final” boundary condition for wormholes Kiefer (1990) [94] is that
the wave function decays to zero exponentially as the scale factor, hence 7,
goes to infinity. This compels the constraint ®; = 0 in the complete solution.
Since the second term is exponentially increasing it is more appropriate to

the Hartle-Hawking No Boundary proposal.

This is just another form of the Hermite equation, so that for appropriate
normalization N, = (2"N!)’%, the solutions y(7) are normalized Hermite

polynomials

Yn(n) = NoHn[ 2\/m ] (8.11)
provided A = (2n + 1)m for n = 0,1,2,... Therefore

®,(n) = e ™ N, H,[2,/m7]. (8.12)

This is an exact eigenfunction that is equivalent [modulo prefactor (ma®)'/4]
to the adiabatic solutions obtained in the Born- Oppenheimer ansatz [93] and
the Symanzik scaling law (see Kim [96]). In addition, differential equation 8.8
in the scale factor a is the zero-energy Schroedinger equation for the wave
function 1x(a) with potential ka* — Xa®. In the WKB approximation [93]

with factor-ordering p = +1,
211/2 A? .
cos [ (5 - Z)[z\a —a’]'* — —8—[a.rcs1n(1 — —/\—) + 5] - :1—] . (8.13)

However, these solutions break down near the turning point a, = Ap =

Pu(@) ~ [Aa® — ka']"V/* .

a A 2a s s

(2n 4+ 1)m for closed universe models with maximum radius an. That is,
the wave functions do not appear to be regular there. So do they represent

wormbholes?
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The answer is yes, and we prove this by first showing that the gravitational

contribution to the wave function is regular everywhere:

a) First of all, as we approach the origin for small values of the scale factor
a, the factor-ordering p becomes important since the Ricci scalar curvature R
grows bigger than the Planck curvature m2/16w. We may then approximate
equation 8.8 by neglecting the curvature term. It is then convenient to

redefine the wave function
Pa(a) = a2 9, (a)

so that 2 .
az—a—+a-—+/\a ——(l—p)z} 0x(a)=0. (8.14)
We may then express the solutions in terms of a sum of Bessel and mod-

ified Bessel functions, in the process substituting A, = (2n + 1 )m:

1-p

2
Aja 2 Ji“—;ﬂ[g (2n+l)ma3}

X

¥n(a)

(1-p) 2
+ Aza 3 Y, a-p [ 3 (2n +1) ma3} .
3
We now see that for fixed n and p, and for the plus sign in this solution, the

wave function has limiting form

a(1-p) 20-P)BP[ (1 = p)/3 ]
A3 - A4
20371+ (1 —p)/3 ] s

(A1, Az, Asand A4 are constants in p, n and mass m) which is regular as the
scale factor @ — 0 for any value of the factor-ordering p < 1. The specific
case of p = +1 is trivial provided A, = 0, since the modified Bessel function

Y, scales like 3lna/7 in this limit.
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b) Secondly, as the scale factor a increases away from the origin, the
factor-ordering ambiguity becomes less significant. The WKB approximation
wave packet ( 8.13) is generic only for closed universe models with turning
points a, much larger that the Planck radius {,. Apart from the multiple
integral formulation (Kim [96]), equation 8.8 lacks an explicit closed-form
solution for arbitrary factor-ordering. We are able to construct an exact
spectrum of states that is regular everywhere, by simply choosing the factor-
ordering p = 0 with positive curvature £ = 1. Now the equation for %, (a)

reads

da?

If we now put z = a — (n + 3)m, the wave functions t,(a) are found to be

<—di + (2n + 1)ma — a2> Yn(a) =0 (8.15)

(confluent hypergeometric) Kummer functions
1 1
1P < Z[ 1—(n+1/2)?%m?], 35 P ) e~/
1 2,2 3 2 -22/2
+As 1 F} 1[3—(7"’*'1/2)7”],5;2 e z,
which are infinite series in 521, but may be expressed as Hermite polynomials,
provided that the mass is discrete. That is,
m? = 4r (8.16)

2
. . . m .
for odd integers r (on recovering Planck-units m? = Z2r). We arrive at a

spectrum of harmonic oscillator wave functions

1
¢n(a) = 6—%[“_("+l§)m]2Nl[(n+1_)2m2_1]H1_[(n+l)2m2_1][ a — (Tl + —)m ] (817)
2 2 2 2 2

So for each non-negative integer n, there exists a regular and exponentially

damped wormbhole state

—Lia—(n+Llym]? 1
Un(a,9) = e DNy Hins el @ = (0 + 5)m]

2
. e_%md’z“anHn[ V2m¢2a® |
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The wormhole wave function is a discrete spectrum of such states :

=Y Cala(a,9) (8.18)

n=0
for constant coefficients C,. Another such spectrum exists if the factor-
ordering p = 2, when we simply replace C;, by %‘1 But this could mean that

¥ and its derivatives blow up as a — 0.

8.4 The power-law potential _2%¢2q :

If we consider two-dimensional Mini-Superspace containing a homogeneous
scalar field ¢ with a power-law potential 5";(}52‘7, the Wheeler-De Witt equa-
tion 2.20 takes the form

(az_p—ap—— - —+ _c;¢2qa6 - ka“) U(a,¢)=0. (8.19)

Once again, we do not expand ¥ by a basis of eigenfunctions ([95, 96]), but
in principle there exists a transformation between the class of solutions found
by Kim [96] and our derivation. In general we define a new variable by means

of the Symanzik scaling law as
n = galte

for q positive (see [95, 96]). Equation 8.19 then transforms as

2 L e (e 2 - )| wem =0, G20
For separation constant A, we may split this into
0? 2
[a A= o q] () =0, (5.21)
and # o
(2422 e (a0 ) |vw=0. 2
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In principle these equations can be solved simultaneously. We were able to
solve these two equations exactly for ¢ = +1 and factor-ordering p = 0 in
the previous section. But in general, (i.e. for ¢ = 2,3,4,...) this is rather
intricate. The multiple integral formulation of Kim[96] solves equation 8.19
exactly by writing it as a system of infinitely many linear differential equa-

tions.

8.5 Conclusion

Lorentzian WKB wave packets were constructed for large n in Kiefer [93] by
applying an appropriate boundary condition to approximate wave functions
solutions of equation 8.4. However, these wave packets are badly behaved at
the turning-points. Hawking and Page [85] used an asymptotic formulation to
show that the wave functions ¥,(a, $) are indeed well-behaved everywhere,
while Kim [96] used a multiple integral formulation to derive the general

solutions.

By means of a relatively simple coordinate transformation similar to Kim
[96] and Page and Kim [95] we are able to obtain an exact spectrum of worm-
holes. This occurs under condition that the mass is a discrete multiple of the
Planck mass, consistent with Kiefer’s [93] approximate result. It therefore
appears that the quantization of mass is a necessary requirement to construct
quantum states for microscopic closed universes in the case of a free massive

scalar field.

We also observe the significant role that the factor-ordering ambiguity
plays for small radii. Since the Hawking-Page boundary condition requires
either regularity in the limit of zero radius, or that the wave function go as
a power of a, depending on the factor-ordering p, then at least in this sense

our results are validated.
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Chapter 9

Quantum Carlini-Miji¢
Wormbholes

9.1 Closed bulk matter universes

Carlini (1992) [9] explored the fact that spacetime wormholes may be un-
derstood as analytic continuation of closed expanding universes. For every
classical solution in standard cosmology with closed spatial geometry (k =
+1) and a real scalar field ¢ that obeys the strong energy condition p+3p > 0,

there is a wormhole instanton.

This was achieved by means of the Ellis and Madsen (1990) [107] pro-
cedure for solving the Einstein field equations, after which both the lapse
N and the scalar field ¢ are Wick rotated to the Euclidean sector. This
is perfectly consistent with the reality of the path integral at one loop, al-
though the asymmetric rotation for the lapse in the gravitational and matter
part of the action (Carlini and Mijié (1990) [9]) seems rather ad hoc. They

find an infinite class of new instantons which also includes the Hawking and

Giddings-Strominger wormholes as specific cases.

In order for wormholes to solve the problem of the cosmological constant
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and provide the mechanism for black hole evaporation, Hawking and Page [85]
have proposed that wormholes are solutions to the Wheeler De Witt equation
(see Chapter 7 and 8). For this reason it is essential that the class of bulk
matter wormholes found by Carlini and Mijié [9] are predicted by quantum
cosmology. We show that this is in fact the case under the condition that the
wave function for wormholes satisfy the “final condition” for wave packets

(see Kiefer [94, 93}).

Since the Wheeler-De Witt equation is independent of the lapse N, we
are able to find wormbhole solutions without having to invoke the asymmetric
analytic continuation described in Carlini [8] and Carlini-Mijié [9]. It also
becomes clear that the matter- field representation of the perfect fluid bulk-
matter source outlined in Madsen and Ellis [107], in terms of a scalar field ¢
does not immediately yield a desirable time variable for a good probability
interpretation. Instead we have to introduce a new “bulk matter field” £ to
serve as a material clock. We are able to construct wave packets that are
strongly peaked along pencils of configuration space paths corresponding to

the closed bulk matter universes of Carlini-Mijié [9].

The Lorentzian metric with the so-called Carlini-Mijié lapse N - a{4=37)/2

reads

ds* = —N%a*"¥dr? + a*(1)dQ2 . (9.1)

We have put %Sf— = 1. The lapse constant N? is fixed with respect to the
time 7, normally gauge equivalent to unity in the Lorentzian framework; in
their analytic continuation scheme, CM [9] defines a Euclidean lapse constant
N? = — N2, The line-element d§}3 is defined on a three-sphere (k = +1).

Our interest lies in classical closed models, for which we will derive the

corresponding WDW equation. Consider a bulk matter source with perfect
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fluid equation of state
p=(-1)p (9.2)

with pressure p and energy density p. The Ellis-Madsen [107] procedure for
solving the Einstein field-equations for the scale factor and scalar field via

such a source requires solutions to
H*=p—ka™?, (9.3)

where H is the Hubble parameter and p the energy density for a perfect fluid
source
p=pmal a®. (9.4)

The strong-energy condition requires ¥ > 2/3. For closed models k = +1.
By the Ellis-Madsen [107] procedure, we may define a scalar field ¢ such that

the energy density is the sum of kinetic and potential energy :

3v—4 d
o=t (B2 +V(9). (9

The conservation of energy requires

1 a3‘y—4 @

N2 (dT

)? = 4 = constant. (9.6)
This leads to the scalar field evolution

d¢ — \/—_Tv 2-3y
7= + N/ vpmam a , (9.7)

where a,, represents the maximum radius for a particular closed universe.
In the gauge N = 1 we can now solve the Friedmann equation for the scale

factor from equations 9.3 and 9.4:

ofr) = [af1 = (1= )P 17 (0:5)
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This in turn allows us to evaluate the scalar field ¢ in terms of the time

variable 7 (we set the integration constant ¢o = 0)

___\/?Y_ tanh ™! I:——(:h ~2) ] .

= 3
3y -2 2a,,_€1_1

| ¢(7) | (9.9)

From the energy density 9.4 we proceed to define a bulk matter potential

V(a) = Vya™ (9.10)
where the constant
Vi = (1— %)af,j-2 . (9.11)

These results reflect the fact that the perfect fluid representation in terms
of an equation of state 9.2 with constant 4 and equation 9.6 allows us to
impose the kind of behaviour we want the model universe to exhibit. In
principle, the general form of the scalar field potential that will lead to our
choice of solutions to the field equations, can also be determined. This is
precisely the point that Madsen and Ellis [107] demonstrates. To fix « is
equivalent to selecting one feature of the complete quantum theory such as,
for instance, a massive scalar field where 4 varies between 0 and 2. Since
we are already aware of the nature of the classical solutions, we say that
the wormhole is “on shell”. We therefore anticipate that solutions to the
corresponding Wheeler-De Witt equation exist only in the dilute-wormhole

approximation.!

1A. Carlini has indeed pointed out to me that it could be dangerous to adopt this
procedure for the potential at the quantum level. Instead, it should be interesting to
construct the action 9.12, without a prior relation between the scalar field ¢ and the
potential V(a). Le. we abandon any identification with the classical CM wormholes. This
means that we work in some sort of ‘mean field’ approximation, with the behaviour of p
and ¢ separated by some kind of adiabatic mechanism.
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9.2 The Wheeler-De Witt Equation

We focus on the quantum behaviour for the potential V(a) in equation 9.10.

The Lorentzian action that includes a cosmological constant A, here reads

1 2 D41 s
5= [ var [-a (B (g2 4 5 F (ke A~ V(a))

N? tdr! TUN? Ndr
(9.12)
and the conjugate momenta (74, 7,) are defined as
. oc a7zt
Mg = -5—5 = — N a (913)
oL aTH
Ty = — = 9.14
¢ %= N ¢ (9-14)

for lapse constant N, cosmological constant A and Lagrangian £. We can

now write down the Hamiltonian

H = ma+m4¢p—L (9.15)
= %al“s_} [—m2+axl+(A+V(a))a* —ka®]  (9.16)

The Hamiltonian constraint H = 0 is quantized, leading to a zero- en-

ergy Schroedinger equation satisfied by a wave functional ¥(a,¢) in Mini-

Superspace :
H U(a,¢)=0, (9.17)
with quantized conjugate momenta
a ,0
2 —aP—ad’— 1
Ta — —a oo (9.18)
2 o



with factor-ordering p. The Wheeler-De Witt equation thus reads, for closed
curvature (k = +1) and potential V(a) = V,,a™ with factor-ordering
p=+l

”# 10 16 4 4=3y 2
[ a—a2‘+ P §W+Aa + Vima —a’|¥(a,4)=0 (9.20)
The separation of variables ¥(a, ¢) = 1(a) ®(¢) leads to separate equations
for the matter-field

¥
[ s + ] ®(¢) =0 (9.21)
and for the scale factor
&2 1d 4 43y 2 s?
-da—z-f-za-f-Aa + Vna"™ —a +;l—2-] P(a) =0 (9.22)

where s is the separation constant. Unfortunately the equation for the scale
factor 9.22 is difficult to solve even without the cosmological constant term.
The WKB approximation can be found in principle, but the integrals are
rather complicated to evaluate. We therefore resort to different means: sim-
ply introduce better coordinates. With a good choice of coordinates we are
able to perform the WKB approximation far from the turning points, and

consequently construct a wave packet solution.
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9.3 Quantum bulk matter states

With a transformation of coordinates

2 = ¢M? (9.23)

&€ = & a0, (9.24)
with constant factor £,, as yet undetermined, the WDW equation becomes :

2—
@ 9 4w o2 e
2 e [ = 4V, + Az — 22 )| U =0.
527 8x+(3'y—2)2( mags T /m T AT — T 0
(9.25)
Suppose that the bare cosmological constant A is zero. Now introduce the

-separation ansatz

¥(z,§) = X(2)=(£), (9.26)
then the functions X(x) and Z(¢) respectively satisfy

[ Edg? + ¢ ] Z() =0 (9.27)

with separation constant €, and

2
z2£+$i+< 2 ) 2GR — 2% X(z)=0. (9.28)

dz? dz 3v—2

Here w? = €2 + V,, , the separation constant € having absorbed the factor

¢! temporarily. Also abbreviate the exponent in equation 9.28

2—7
2
(7 —-2/3
for n real and positive and 2/3 < v, < 2. The upper limit (2) comes from the

)=2(n+1) (9.29)

requirement that the sound wave velocity of the bulk matter should not be
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greater than the speed of light. (In the perspective outlined in the previous

footnote, no lower limit besides v > 0 related to the CM classical wormholes

should be introduced now.) The Wheeler-De Witt equation has solutions

( a, §) = exp (—ie) X(z ).

(9.30)

The WKB approximation in X(x) in the Lorentzian region with the associ-

ated phase S(x) and Wheeler-De Witt potential W(x) is

1 )
X(.’II) = W)— exp[:i:zS(:z:) ]

where .

=/ VvV W(z") dz'
and 0

W(e) = (o) 2w —at ],
with
n= 2= -1
Cy-2/3

This results in the phase

S(z,w) = n+2 "V w?—2? dz

n+1

+cosh1 -z w? —z2
z

= ———[wa:
+(n+ 1)/ wz" cosh™ % dr].

With the restriction £ < w, we can approximate the integral

X (n+ Dw

w
L w w w
z"cosh™! = dz = —2"*! cosh™ — ,
2 z z 2 z

so that for w = @ and z < w the phase approximates to
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xn+1

2

[\/11')2—332—n+1]. (9.35)

An interesting correlation with classical theory emerges by constructing

S(z,w) = —wz"t cosh™! L +
x

a wave-packet solution by a superposition of WKB states. We also introduce

Gaussian amplitudes of width b and centre () = [(@)? — Vi]'/?,

Cle,d = (xb*) M/ exp[ —1/2b* (e — )*]. (9.36)
We now integrate over all real values of the separation constant e:

Uy(z,f) = —°° de\/Cx—[ew’—f]Ti exp[ —ief £1S(x,w)] . (9.37)

On evaluating this integral, we find the wave packet

W (2,) = c(d) - exp [~(0*/2)[ € F (3)™ cosh™ 27 ]
W, o z"H -

where the constants are related as:

(%) = \/1+%’", (9.38)

(@ = (i—b> (WL)Y exp[—er] (9.39)

The wave function is therefore localized, with the gradient of the total

phase yielding pencils of classical trajectories in configuration space. The
probability current is conserved through surfaces of constant “time” ¢ (see

[91]), so that the probability density is normalizable and proportional to
exp |=b*[ ¢ F 1—f— z™+! cosh™! = 2. (9.40)
€ z
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It is now clear that the wave function is peaked about the configuration

-space paths

+1cosh™! % . (9.41)

xn

and
62 — 62 ¢2a6-—3'y
We recover the constant

-1

E—E-E .

Substitute for w in the configuration-space paths, and we instantly iden-
tify this configuration as the expression arrived at in the classical theory by
eliminating the classical time-coordinate 7 from the solutions for a(7) ( 9.8)

and ¢(7) ( 9.9):

3y —2
=(31-2) = =372 osh? (L2 | ¢ 9.42
a a,, cos , .

provided the constants take on values

@ = a7 (9.43)
& = w a21? (9.44)
£ = 37\/_72 (9.45)
with 9+
n+1=7_2/3. (9.46)

By integrating over the continuous family of wormhole states {¥,(z(a),¢)},

with Gaussian amplitudes 9.36, we obtain a wave packet that is peaked about
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configuration-space paths 9.42, where the latter satisfies the classical equa-
tions of motion (2.17 - 2.19).

9.4 Wormbhole states

The effect of the coordinate transformation on the super-potential is that the
“kinetic energy” term —s? is now, in effect, stored in the potential term V (a).
The coefficient V,, is modified, V,, — V,, + €2. That is, the superpotential
E, — E, (see figs. 9.1 and 9.2), where

E,=a*—(Vp +¢€)a®*™. (9.47)

This is similar to the Ellis-Madsen procedure for representing bulk matter
in terms of a scalar field ¢: For constant 7, the kinetic energy T can be

expressed in terms of the potential V, T' = ;—Z—ZV.Z

Unfortunately, the scalar field ¢ does not facilitate solving the quantum
mechanical WDW equation; it is a bad choice of coordinate. We therefore
introduced the “bulk matter field”

-2
£ = ?’-777—- a1 ¢ (9.48)

and obtained the superpotential £, and an accurate wave packet solution.
Furthermore, the family of states {¥,} behave similar to the massless
minimally coupled scalar field states described in Hawking {84] and Hawking
and Page [85] (see Chapter 7, Section 4.1 for an outline of their results). In
our case, the wave functions ¥,, fall off exponentially for a > a,, , (where
am = w?/®7=2) and correspond to asymptotically Euclidean four geome-
tries. As in the above-mentioned example (for which 4 = 2), these geome-

tries cannot pinch off to non singular compact metrics (like those of the No

2In the perspective that A. Carlini proposes, this connection does not exist.
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E,(a) seale ladtor o

) 01 02 03 04 a5 06

Figure 9.1: The potential E,(a) = —s? + a* — V,a%"37. Here s? = 2.0,
Vm = 0.5, and v = 5/3.

Boundary proposal), due to a conserved flux 27%w of bulk matter particles
passing through it. Such geometries correspond to that of wormholes, with
a minimum throat-radius of order w?/(7=2),

The solutions {¥,,} oscillate for ¢ < w?(7~? and in this region cor-
respond to classical Lorentzian Friedmann universes with bulk matter flux
272w. These solutions (like their massless scalar counterparts) expand from
a = 0 to a maximum radius of w*®7=? and then recollapse to a = 0.

We used the principle of constructive interference to arrive at an “on shell”
wave packet solution (9.39) that is indeed regular near the origin a = 0. It

—a2?/2

is easy to show that the wave packet decays like e as a — oo, thus

satisfying the Hawking-Page boudary conditions for wormholes to occur.
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Figure 9.2: The potential E,(a) = a* — w?a®"%", for w? = 1.0, 7y = 5/3 and
the turning point a,, = 1.0.

For a non-zero bare cosmological constant A the superpotential (fig. 9.3)
reads

E® = —Ad® + a* — w?a®%, (9.49)

w

which leads to a second Lorentzian region for a > a,, a second turning
point. A quantum FRW universe tunnels through the potential barrier at
am < a < a, to a large size de-Sitter spacetime. The Coleman mechanism
for setting A — 0 (see Coleman (1988) [13]), means that the second turning

point a; — oo.
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-0.5

Figure 9.3: The potential EA(a) = a* — w2a® > — Aa®. We have chosen
w? = 1.0, with v = 4/3 and A = 3/16.

9.4.1 Conditional Probability

We now compare our results with that of Kiefer [94]. The probability to
tunnel from a Friedmann closed universe to the forbidden region a,, < a K a,

is given by the tunneling amplitude

Pla< a,) = exp[-2S(a < a,)] (9.50)
Slaka,) = V|Ew| da (9.51)
~ 123 (9.52)
2—7 '
Ie.: Plaka,) = exp [_2’7 = 2/3 aZ ] (9.53)

The probability for a universe from a large size de-Sitter spacetime to

emerge from the forbidden region an, < a < a, from the right is outlined in
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Rubakov (1988) [125] for a conformal scalar field. A similar argument applies
in our case. The wave packet ¥ is turned into an operator obeying the WDW
equation in a third quantized version of our theory. It acts on states |t >F
and |j >4s for Friedmann and de Sitter universes. If there are no universes
present initially ( i.e. a,, = 0 ) we choose the vacuum state |0 >z. Then the

probability to obtain a large size de Sitter spacetime is

~ exp ( % ) (9.54)

peaked at A = 0. So for a spectrum of baby-universe states [¢ >F with “bulk
matter field” (), the conditional probability to tunnel from Friedmann

universe via wormhole into de Sitter spacetime is

P(lj>d$)_P(a>>a’):exp(2 ﬂaz), (9.55)

, _ L)
P(li>r) Pla<ays) A+ 2—y ™

This result is similar to Kiefer [94] modulo a coefficient in constant +.

9.4.2 Conclusion

Carlini and Mijié [9] demonstrated how specific values of v may represent
wormbhole instantons. We now see that for 2/3 < v < 2 there exist coher-
ent states to the WDW equation representing Lorentzian closed universes
with bulk matter sources. The condition that v > 2/3 ensures that, as

a — o0, B, — 400 (equation 9.47), and thus we recover an asymptotically

Euclidean region. In addition, the coordinate transformation z? = 3772
£ = (i'—’fz)2¢2a6'37 is useful in that the parameter £(a, @) serves as a judi-

cious clock :

It easily decouples from the scale factor in the separation of variables,

and more importantly, it is a suitable “time - variable” in the construction of
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a probability current density. The latter is conserved in “time {” and makes

proper interpretation of the probability density effective.

On a more general note, it is clear that our choice of Gaussians are quite
specific, since our WKB wave function is either expanding or contracting
with respect to “time” £. We could equally well have chosen symmetric
Guassians if we took the sum of equal amounts. Similarly, we could have
introduced antisymmetric Guassians if we wanted correspondence with the

Hartle-Hawking boundary proposal (see Kiefer [94, 93]).
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Chapter 10

Issues in Wormbhole theory

Initial excitement around the study of topological features known as worm-
holes and baby universes resided in the hope that they play a crucial role
not just in setting the cosmological constant to zero (Hawking [76], Baum

[3]) but also fixing the low energy interaction couplings of nature (Coleman

[16]).

Integrating out wormhole fluctuations in the Euclidean Path Integral
(EPI) gives an effective theory for gravity and matter-fields where the cou-
pling constants become dynamical variables, sampled from a probability dis-
tribution. A saddle point analysis of the action functional in the EPI around
large, smooth geometries shows that this distribution should be exponentially
peaked at A = 0. This seemed to solve a crucial problem of both standard
cosmology and particle physics. In his seminal work, Coleman [16] suggested
a similar mechanism to fix the other coupling constants of nature, such as

the gravitational constant.
In this chapter we briefly discuss the main features of the cosmological

constant theory and the so-called big fix. There are, however, a lot of difhi-

culties that threaten the wormhole theory. For instance, we saw in Chapter
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4 that a well-defined formulation of Quantum Gravity in terms of the EPI is
still lacking. The Euclidean action for gravity is unbounded from below, so

we must choose a contour of integration for which the EPI will converge.

The proposal by Halliwell and Louka [58] for the use of “steepest- descent”
methods in the space of complex four-geometries have been considered. Gib-
bons et al [40] initially proposed the rotation of the conformal degrees of
freedom of the metric. This has not yet been implemented for more general
and complicated cases, although it has been tried by Hartle and Schleich [68]
in linear gravity. There is also the embarrassment that the choice of contour
for the EPI may turn the peak at A = 0 into a broad distribution. A one
loop estimate was performed by Polchinski [121].

The use of smooth geometries, and the distinction between large universes
and wormholes in the derivation of Coleman’s theory is still not fully justi-
fied. The issue of suppressing the amplitudes of “giant” wormbholes, and the
question of regulating the infrared divergence of the probability measure, still
need attention. In addition, the meaning of the probability W(A) constructed
from the EPI is not yet clear.

We also explore the idea of a “multi-universe” quantum field theory on
Superspace, where 3"¢ quantized operators create 2"¢ quantized states in the
field theory of a single universe. The field equation in the 3" quantized theory
is non-linear, and represents a dynamical equation for the 2™ quantized

couplings. These couplings satisfy a 3"¢ quantized Uncertainty Principle.

Euclidean 3¢ quantization theories agree with the main predictions of the
Coleman mechanism. The Lorentzian version, on the other hand, predict that
a peak at A = 0 should not occur. Different versions of a 3" guantization

theory differ in their predictions, and are still to be implemented in a more
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realistic cosmological context.

Scepticism over wormbhole theory seems to have grown, since progress to

overcome these difficulties has been rather slow.

10.1 A theory of the cosmological constant

In a misguided effort to model a static Universe, Einstein [23] was obliged to
introduce a free parameter A into the equation of motion

1
R, — é-gm,R =8rG( T, +Agu ) - (10.1)

Even after Hubble’s discovery that the Universe is expanding, the need for
A persisted due to possibly non-zero vacuum mass density < p > contribution

to equation 1. We therefore write, for an effective cosmological constant A.yy,
Aesr=A+<p> .

In a homogeneous and isotropic Universe like our own, with the expansion
rate Ho = 75 km.sec™! Mpc™! smoothing out any gross effects of the spatial
curvature, and a near-critical value of the total mass density < 3HZ/87G,

there is an upper bound to the effective cosmological constant:

2

H,
Aejs| € =% ~ 107YGeV*, 10.2)
1 8 G

This contradicts the predictions of Quantum Field Theory (QFT), e.g. for a
free massive scalar field. The zero point energy summed over all modes, with
a wave number cut-off m,, is of the order of < p > m}/167% ~ 107*GeV*.
This means that the bare A should be fine tuned to at least 121 significant
places for the Universe to be large and flat with A.sy ~ 0.
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Hawking [76] studied a saddle point approximation dominated by large
four-spheres in the EPI for gravity, in which A > 0 is treated as a dynam-
ical variable. He then showed that probability of a given configuration is

exponentially peaked at A = 0:

) ~ess (25

Baum [3] found a slightly different way out of the problem by considering a
minimally coupled scalar field to make A dynamical without invoking topo-

logical fluctuations of gravity. He found the same peak at A = 0.

10.1.1 The Coleman mechanism

It was Coleman [40] who first gave a detailed mechanism for setting A — 0, by
giving a semiclassical analysis, based on a few debatable hypotheses, about

the effects that wormholes have on A and other coupling constants.

The first assumption is that the EPI for Quantum Gravity is given by the
Hartle-Hawking wave function, which is determined by a contour integration
over all compact topologies approximated by large four-spheres, and even-
tually connected by microscopic wormholes. In the “dilute approximation”
for wormholes, end-point interaction between wormholes are neglected, and
they only interact with low energy physics. It also neglects the possibility
that wormholes can divide into two or more, and have sizes far above the

Planck scale ~ m;l.

We present an outline of an argument due to Hawking in [84], as a sum-
mary of Coleman’s original approach [16]. It considers an effective interaction
0:(z,), between a wormhole state i and low energy quantum fields ¢, at a
point zo on an asymptotically Euclidean region of spacetime. The other end

of the wormhole z will join onto the same, or a different asymptotic region, at
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a point yo. The effect between points z¢ and yg is equivalent to the insertion
of the factor

% / / V 9(z0)0i(z0) v/ 9(y0)0:(yo)dzadyo .

In the dilute wormhole approximation described earlier, the effect of n worm-

holes joining onto the asymptotic regions is given by a factor

2(3 [ ] vi@ineatindsdy )

Here n! compensates for overcounting identical wormholes. For an arbitrary

wormbhole configuration we have to sum over n, obtaining a factor of

exp (% / / \/ﬁo.'(a«')\/g(y_)&(y)dzdy> :

This exponential is now regarded as a bi-local addition to the action. The

%Z / / 0:(x)6:(y) -

The bi-local action can be transformed into a sum of local terms, as

bi-local action is

performed by Klebanov, Susskind and Banks [97]. At this stage, position

independent parameters, a are introduced in the identity

e (5 [ deva@oe) [ d/aee )

- \/%T / doe™ 5" exp(—% d“z\/@ﬂz)) :

The path integral now becomes
Z = / doz,-P(oz,-)Z(a,—) (103)

where

P(o;) = exp < —%a? ) (10.4)



and

Z(a;) = /d[¢]exp ( - /d“xﬁ( L+ Z a;b;) ) . (10.5)

This is the formula for an ensemble of worlds with a statistical distribution
of coupling constants, a;. An observer in one of the members of the ensemble
would have no way to deduce the existence of others. The quantum state of
the universe is divided into non-interacting “superselection” sectors. Each
sector is labelled by the coupling constants ¢;, and an effective Lagrangian

is the ordinary Lagrangian L plus an a-dependent term, af.

The integration variables are independent of position, so the effects of
wormbholes are to equalize the couplings in all the regions of spacetime.
There is a spread of possible couplings, and different sectors are weighted
by the probability distribution P(e;). If one measures the strength of one
of the effective interactions, the probability distribution collapses to the cor-
responding value of the coupling constants o;. Any further measurement of

that effective interaction will give the same strength.

The probability distribution P(e;) for the couplings ¢; is multiplied by
the factor Z(a;) given by equation 5, a path integral over all low energy fields
¢, with effective interactions «;6;. The path integral does not converge since
the action is not bounded from below. We estimate Z(«a;) by looking for
the saddle point with the greatest contribution to the path integral. Such a
saddle point will be the that of a 4-sphere, with the lowest action

3
T T8GA
For a single sphere (see Hawking [76]) we may write Z = exp (-T'), but for

an arbitrary amount of spheres connected by wormholes (see fig. 10.1) there
is the distribution
Z=exp(exp(-T)). (10.6)
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Figure 10.1: The large spheres represent parent universes, and the thin tubes
baby universes. In the dilute approximation, these baby universes interact
only via coupling to the parent universes.

Both the single and the double exponentials blow up rapidly as A ap-
proaches zero from above. This means that the probability distribution is
peaked at those «; for which A = 0.

In conclusion, our Universe is in contact with other large cool universes,
through microscopic wormholes that set A — 0. Even as our Universe un-
dergoeé inflation as a small hot Universe, the other large four-spheres still
see A =0 (fig. 10.2).

The approach of Klebanov et al [97] improves on that of Coleman (16}

since it depends very little on the scale of the wormhole since it avoids the
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Figure 10.2: Small hot and large cool universes

controversy surrounding the behaviour of metrics and manifolds at the Planck
scale. Nor does [97] assume any semi-classical approximations, since it is

based on a bilocal effective interaction.

10.1.2 The “big fix”

The fundamental idea that wormholes might fix most, if not all of the con-
stants of nature present in an effective Lagrangian theory was first suggested
by Coleman [16]. A better mechanism was proposed by Preskill [122] and
Grinstein and Wise [50]. Since the dominant term in the action is —g,
the probability distribution would be peaked at either G = 0 or A = 0. Since
we observe G(¢;) to be non-zero, it has to have some minimum value, about
which the probability distribution would be concentrated. We hope that this
minimum would occur at a single value of the éouplings a;. There is as yet
little agreement about the effective values of other couplings such as masses,

Ogcp etc.
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A flaw in this argument has been pointed out by Hawking [84]. The
probability measure P(e;)Z(c;) diverges strongly on the surface G?A = 0
This means that the total measure of ;- space is infinite. The only way
to avoid such a divergence is for pu(a;) = PZ to be finite and positive, to
predict a large concentration at an isolated point in ¢;-space. To do this
one needs an appropriate cut-off for the probability measure. But there is
no unique way of doing this, and different such cut-offs give different results.
The ambiguity in the choice of the cut-off is known as the regulator problem

for the measure.

Coleman [16] introduces such a cut-off in ¢;-space at A, so that the prob-
ability measure is finite yet highly peaked there. Preskill [122] proposes the
volume cut-off at G*A%. Another alternative is —f, leading to A = 0 and a

P(¢;) distribution of the other couplings.

The fact of the matter is that the probability measure diverges since the
Einstein Hilbert action is not bounded below. An ad hoc way to make the
path integral converge is to integrate the conformal factor over a complex

contour. However, it is not yet clear if this will always work.

10.1.3 The contour problem

The idea of integrating along a complex contour was explored in Gibbons et
al [92], but it fails when the metric is coupled to non-conformally invariant

matter.

J.B. Hartle’s original idea that the EPI should be calculated along the
“steepest descent path” in the space of complex four-geometries was applied
by Halliwell and Louko {58, 59, 60, 30] to a de Sitter Mini-Superspace model.

Unfortunately there are many contours that make the path integral con-
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verge, and the question arises whether some “correct boundary condition”
will determine the contour uniquely.

A peculiar consequence of a complex contour is that some saddle points
in the path integral may have neither Euclidean nor Lorentzian signature.
It should be interesting to apply Hartle’s idea to more realistic cases which

also include matter-fields and maybe metrics that are anisotropic.

Also, higher derivative gravitational corrections to the stationary point
for large four-spheres in the effective action that include terms up to A?,
showed the surprising result that the peak at A = 0 disappears. Instead
the (normalized) Z(c;) becomes a uniform smooth distribution in A ( see

Elizalde and Gaztanaga [24]). This is somewhat disappointing.

10.1.4 The giant wormhole disaster

The dilute wormhole approximation excludes wormholes larger than the

Planck size ~ m;l.

great use as a mechanism to explain the “evaporation” of black holes as

Yet “giant” wormholes of sizes > m;' might be of

suggested by Hawking [83]. The problem is that low energy QFT may be
violated if macroscopic wormholes are free to join onto arbitrary regions of

spacetime. This is the so-called giant wormhole disaster.

Fischler and Susskind [27] showed that the main assumptions in the Cole-
man mechanism for A are mutually inconsistent and give rise to wormholes of
every size. Essentially, we assume that the path integral over small-wormhole
fluctuations (i.e. wormholes of scale b, say, at Planck value m; ! or less) has
been calculated resulting in an effective theory with probability distribution
Z(a) (equation 3) for a single Universe . This distribution may be expanded

as the sum

Z(a) = Z Cna® |
N
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where the N** term can be interpreted as representing N macroscopic worm-

holes inserted in the large (parent) Universe, with an average

1 adZ
< N >= 55— N N2
7= 7 2 NOyel' =552
For small A.;¢(b), the mean density of wormholes is the average < N >

divided by the volume, approximately
9Aes5(b)

a—-—

Ja

On dimensional grounds A.sy ~ (m2b%)7!, so that the maximum wormhole
2b2
257,

density is ~ the close packing density b~* provided a ~ m

Preskill [122] suggested that interactions between microscopic instantons
should “crowd out” large ones (see fig. 10.3a). This seems to violate the prin-
ciple that short distance physics is effectively decoupled from long distance

physics.

By dividing a large four-volume into k-cells that may (or may not) contain
an instanton of size 2571b, for some fixed unit b, Polchinski [120] argued for
“the return of the giant wormholes” : The EPI over all topologies on a k-cell
is then the sum over all the instantons of sizes 2F~1b, 2%=2b, 2k=3p .. (see
fig. 10.3b).

The presence (or absence) of arbitrary instantons in such k-cells shifts

the effective cosmological constant by an amount
Y 2D (1 -7y )
k

where 7, is the fraction of k-cells occupied by instantons of size 25=15. This

is well-defined under condition that 0 < 7 < 1, and in particular 7x can be
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Figure 10.3: (a) Large wormholes “crowd out” small ones from spacetime.
(b) A large instanton in a k-cell forbids any smaller instanton in that cell.

of order 1 for arbitrary large k, allowing the existence of giant wormholes.
Also, it now becomes clear that the probability for the existence of a 2k-1p.
size instanton at a given point depends on the probability that no larger
instanton is found at that point. This demonstrates that violation of the

decoupling principle is really just an illusion.

An “escape from the menace of the giant wormholes” was partly per-
formed by Coleman and Lee [14] for a peculiar type of wormhole carrying a
conserved global U(1) charge @ and of size 2¥=1b, occuring only at stationary
points of the EPI. Also assuming that wormhole induced terms in the effec-
tive Lagrangian are charge changing, the shift in the effective cosmological

constant arising at the second order in a is

-4 20—4(k-1) ,—2S
b Z Bk|ak| 2 ( )6 k s
k

for dimensionless constants B and wormhole action 2Sx. The fraction of the
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Figure 10.4: A large wormhole “bleeded” by small wormbholes attached to it.

four-volume occupied by wormhole ends of type k is then
Bklak|26—2sk .

It finally assumes that microscopic wormholes “bleed” the giants by in-
ducing charge nonconservation interactions (see fig. 10.4). As charge flows
into the throat of a large wormhole, it can be diverted into small wormholes,
until there is too little charge left to support the large one, therefore desta-
bilizing it. The giant wormhole becomes unstable when the mean square
charge carried by the microscopic wormbholes is greater than its own charge
@3%. That is, when the stability condition

Z Bk|akl22—4(k—K)e—2Sin S Q%{
k<K ‘

is violated.
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10.2 A multi-universe 3"%quantized theory

The theory of A thus far makes no clear distinction between the nature of a
single universe theory and effective interactions with other universes. This
has been pointed out by Coule and Solomons [19] where the Wheeler-De
Witt equation for a de Sitter spacetime is modified by the presence of bulk-
matter wormholes. Generally, the Hartle-Hawking path integral used in the
Coleman mechanism for A do not take such modifications into account. And

what about interactions among wormholes themselves ?

A more fundamental framework in which small closed “baby universes”
can interact with each other or with a macroscopic “parent universe” is
achieved through third quantization. It is essentially a “multi- universe”
system treated as a QFT on Superspace. Third quantized field operators act
on a third quantized state with no universes, the so-called void, and create
(and subsequently annihilate) quantized states in the field theory of a single
universe. These operators obey the Wheeler- De Witt equation. Interac-
tions then generalize this equation to a non-linear equation for spacetime

couplings.

It is a gauge theory, therefore third quantized gauge symmetries are im-
portant in the construction of the action [130, 128]. Since Superspace is
infinite dimensional, it is ill-defined because of non- renormalizability. An
advantage over the second quantized theory is that topology-changing inter-
actions are naturally described by a sum- over-smooth-four-geometries with
fixed boundaries. This amounts to the addition of non-linear terms in its

fundamental equation.

Strominger [130] postulates that a multi-universe system described by a
Schroedinger state W[®(X"), X°] of the third quantized Hilbert space obeys
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Figure 10.5: Iterating the basic joining-splitting interaction leads to arbitrar-
ily complicated many-universe processes.

the third quantized Schroedinger equation

0
a5l Y > (10.7)

where X? is a second quantized field operator that serve as a third quantized

HIY >=1

“time” coordinate, and H is the Hamiltonian of the third quantized action
1 A
Sg = 5/ dPX* /gl (v®)? + m*®* + §<I>3 1,

where ® is the second quantized wave function of the universe. Here the
arbitrary weighting A reflects the strength of multi- universe interactions like
those in fig. 10.5.

X* is the D dimensional field configuration in the universe. We may

define orthonormal eigenspaces |n > for the universe number operator N
Nin >=njn > (10.8)
and decompose the state |¥ > at some moment X°:

T >=)" T (XO)n > . (10.9)
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The probability amplitude for n universes at an instant X° is then ¥,(X?).

We now give an outline of the “single universe” approximation, that is
to some extent valid for an observer in our Universe. Consider two separate
classes of universes, the small (~ Planck scale) baby universes and large
(~ Hubble scale) parent universes. The second quantized actions are for

simplicity written in D =1, as

X2
SP,B = /dT N —Nm?,'B . (10.10)

The topology changing interactions are assumed to be (a) nucleation (or

annihilation) of a baby by a parent universe, or (b) bifurcation of a baby

universe (see fig. 10.6). The third quantized action reads

Sg[®] =

% dX <—(V<I>p)2 +mid% — (v®p)2 + mL®%L + k3L0p + %@%)
(10.11)
with ®pp acting as annihilation and creation operators for “babies” and
“parents”,and g¢? is a scaled out third quantization coupling. For very large
mp, pair production of parent universes is suppressed, and since the couplings
preserve parent universe number modulo 2 we may restrict ourselves to the
case of a single parent universe propagating in a plasma of baby universes.

See fig. 10.7.
Parent-baby interaction may be described by the “hybrid” action

SI=/ drN " Li(7)® (10.12)

for local second quantized operators L£; on the parent universe, and third
quantized baby field operator ®%. Replace the discrete index i by the con-

tinuous index k and introduce the Fourier transform ®p(k), then the action
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(a) (b)

Figure 10.6: A double line represents a parent universe, and a single line
a baby universe. (a) Nucleation (or annihilation) of a baby by a parent
universe. (b) Bifurcation of a baby universe.

is equivalent to
1
Sr= n/ dr®g[ X(7) ],
0

so that the third quantized functional integral for the parent propagator in

the bath becomes a second quantized path integral

Xy oo ] i
G(Xi, Xp) = —ig? / DX(r) / AN eiSr+iSilel (10.13)
0

Xi

where

Sp+ Sila] = /d‘r ()Ji; — Nm? —Nna(X)) .

This looks like an ordinary second quantized action for-a one dimensional -
universe. The effect of baby universes is summarized by the addition of an
ordinary potential a(X) into the field theory [42, 15]. In the semi-classical
limit of the third quantized theory, g> — 0 in equation 10.13, the field op-
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Figure 10.7: A parent universe propagating in a plasma of baby universes.

erators all commute and we can diagonalize ®p in terms of real time third

quantized baby universe eigenstates |a(X) > :
2p(X)le(X) > = o(X)|a(X) >
where the eigenvalues a(X) are constrained to obey the baby universe field
equation
A

(7*+m} )a(X) + 5a*(X) =0 (10.14)

in the absence of parent universe sources.

10.2.1 The Third Quantized Uncertainty Principle

Generally a baby universe is in a linear superposition of (orthogonal) eigen-

states
la, o' > = Bla>+8d > (10.15)

141



where [B]? + |8[* = 1. For a desirable clock in the parent universe, we may

calculate the correlation function of n-field operators at times 7y...7, :

< X(1)..X(Th) Do = <a,d| / DX(T)eiSP+iSIX(T1)...X(Tn)ICY, o >
= |B)? / DX(T)eiSP+iS’[a]X(T1)...X(Tn)
+|8'? / DX (r)e’PHIX (). X (1) .

This is a sum of ordinary correlation functions in universes with different cou-
plings a and o'. Second quantized operators corresponding to observables in
a single universe do not affect the baby universe state, so they cannot connect
the states & > and &’ >. Two observers measuring different eigenvalues can

never communicate.

We employ the Copenhagen interpretation to rephrase this result. Ini-
tially the coupling constants are not defined, but depend on a probability
distribution. Performing some measurements which indicate that the cou-
pling constants are a (a’), will collapse the wave function into the orthogonal
eigenstates with respective probabilities |3|2 and |8’|2. All future measure-
ments are then consistent with some definite coupling o (@’). When g2 — 0,
after fixing the values of the parent universe potential a(X) and its first
derivative 9%%2 at a given X, then 10.14 uniquely determines a(X) for each
other value of X.

However, for g2 # 0, the baby state is subject to quantum fluctuations

and the results of measurements are expressed as conditional probabilities.

Measurements at X; and X, give results a3, for the parent universe

potential a(X). So the conditional probability amplitude that the potential
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at an intermediate point X3 will have value o3 is given by
Alaz) =C / DO(X)e 52

Here Sp is the third quantized baby universe action, and the path integral is
over all paths obeying ai23 = ®(X123), respectively, and is normalized to

one. The Uncertainty Principle now reads as follow :

If X runs over an infinite range, A(as) is zero for all a3. Even if X has
finite range, there will be difficulties in measuring the first derivative of
at Xs: the “momentum” spread is very large immediately after a precise
measurement of “position”. As this would be the case in practice, we explore
it in greater detail.

Suppose that the potential has not been measured exactly at X and Xz,
but has been determined to within a Gaussian of width X around the values
oy and a;. Then the conditional probability amplitude for measuring the

first derivative of the potential at X3 to take the value
da
Z2(xX) = o
ax Ka) =<
is given by the Fourier transform of A(az). For X3 very near to Xa, it reads
A(d) = Varre 1P

Now as the difference between the two field values X; and X3 and the
uncertainty A of the measurement of the potential at X; go to zero, the
spread in o' goes to infinity. This is equivalent to the statement that the
momentum spread of a quantum mechanical particle is very large shortly
after a precise measurement of its position. This inability to obtain precise
measurements of coupling constants is known as the uncertainty principle for

spacetime couplings.

143



10.2.2 Third Quantized Coherent States

Suppose that FRW Mini-Superspace containing a massless scalar field ¢,
is third-quantized as recommended by Giddings and Strominger [44]. This
avoids difficulties with negative probabilities encountered in second quantized
Mini-Superspace. Coherent states can then be constructed in such a model,
and the Heisenberg uncertainty relation investigated. This suggestion was
taken up by H.J. Pohle [119], and they exposed a peculiarity in the sense that
quantum effects dominate in regions that are essentially classical in nature.
This strange prediction may forecast problems for the third-quantization of

gravity in general. Here we present a brief outline of their paper, Pohle {119].

A Friedmann-Robertson-Walker Mini-Superspace with its usual metric
and containing a massless scalar field, was quantized in the sense of third
quantization by Pohle [119]. The analogue of the Klein-Gordon equation for
Mini-Superspace is the Wheeler-De Witt equation

02 3} 02
2 — —a? =
(a a2 + o 97 a ) YP(a,8) =10, (10.16)
The Hamiltonian operator of the system is
1 L
H_E/d¢(—5¢(¢)2+6752+a¢), (10.17)

where the functional derivative % is performed with respect to the oper-
ator ¥(¢,a) taken to be the “time-independent” c-number field (#). The
amplitude to find an instantaneous field configuration ¥(¢) on a spacelike
hypersurface in Mini-Superspace is given by the wave functional ¥{y,a] of
the Schroedinger equation

3}
da

with time variable a. The third-quantized Lagrangian now reads

HY =ia -0, (10.18)
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2 2
L(3)=%[<a%’§> - (g—ﬁ) +a3¢2J : (10.19)

The inner product is defined in the usual way. Since we are interested
in classical behaviour for the Universe, we look for coherent state solutions
of the Schroedinger equation. An exact solution to this equation is given by

the ansatz

V[g,a] =
Cexp (—i/dqﬁd(ﬁ'[l) +iI] x [$(8) —n(¢,a)[[$(¢) - U(¢Iva)]>
exp ( [asp@,alue) - n(¢,a)}) ,

where C is the normalization. All the functions indicated are real, and can
in principle be determined from the Schroedinger equation. Due to transla-
tion invariance with respect to @, the functions D and I have the following

properties :

D(¢,¢',a) = D(¢—4¢0) (10.20)
I(¢,¢',a) = I(¢—¢'a). (10.21)

By taking Fourier transforms we find

D(6,8,0) = 5= [ dbexp[-ik(6 = $)ID(k,a).

and similarly for the function I. Substitute the ansatz into equation 18 and
define

~

2A(k,a) = D(k,a) +:I(k,a) .
Then the function A(k,a) satisfies the equation

ia%—;1 + A 4ot =K. (10.22)
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Re-define
A= ——— (10.23)

and it is now clear that we have been able to produce the Fourier transformed
second quantized Wheeler-De Witt equation 16:

a:’QQ——f—a—Q——f—k?—a4 (a,k) =0 (10.24)
0a? Ja e k) =9- '

The solutions are combinations of independent modified Bessel functions
Kik/g(§) (also called Macdonald functions) and L,‘k/g(%). The former is
zero at infinity and trigonometric at zero a, while the latter goes like %e“z as

a goes to infinity. The general solution of equation 22 for A(k,a) we write as

a O(riuy + rau,)

(riug + raug) Ja

A(k,a) = —i

with 7,7, complex functions of k. It is easy to show that the real part of A,

w

B | r1ur + roug |2

2D

(10.25)

for constant w. The left-hand side of Heisenberg’s uncertainty relation can

readily be calculated, and is found to be

(A@%Aﬂ2=i[l+<é)1.

The imaginary part of equation 22 leads to the result

a 0D
I=——
D Oa
and therefore [ 5
D aaaD '

Given the solution to D in equation 25 we arrive at the result
(A2 (AF)? — 0o fora — . (10.26)
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This means that quantum effects dominate the Universe at large radius.
Clearly we are contradicting the fact that spacetime is essentially classical
at present. This seem to raise questions about the true meaning of third

quantized gravity on Mini-Superspace and beyond.
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Chapter 11

Conclusion

We now review the contents of our work, emphasizing areas where there are

prospects for progress, and taking heed of the shortcomings.

Throughout, there has been a positive attempt to clarify the role that time
plays in quantum cosmology, yet a generally covariant theory of quantum
gravity should indicate a marked absence of time. Only in the ‘classical
limit’ (in this context, General Relativity and Quantum Mechanics) should

the notion of classical spacetime as we know it, enter the arena.

To start with, Chapter Two explores the general formulation of quantum
cosmology, by using the Hamiltonian formalism. The Dirac quantization
procedure results in an operator-ordering ambiguity that has received con-
siderable attention, but still remains unresolved. This we consider to be the
first indication that any predictions of quantum cosmology are to be taken
with a large grain of salt. The attempt to construct Mini- Superspace models
in which all except finitely many degrees of freedom are frozen violates the

uncertainty principle [61]. It also skips the regularization problems.

Futhermore, we observe the Universe to be homogeneous and isotropic.
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Any effective theory of quantum gravity should therefore predict the na-
ture of the spacetime metric; to impose an FRW-metric and a homogeneous,
isotropic matter-field onto two-dimensional Mini-Superspace merely begs the

question.

Nevertheless, we are able to make some interesting remarks concerning
the emergence of classical behaviour from the“quantum fuzz” that perme-
ate throughout most of Superspace (Section 2.6). The WKB approximation
leads to a conserved current that may have negative probability density. This
raises the question of the role of time and the issue of predictions in quan-
tum cosmology. First and foremost, the usual Copenhagen interpretation of
Quantum Mechanics falls short due to the absence of an external observer
[67, 26]. Instead, the (post)-Everett idea of splitting our single Universe (es-
sentially an isolated,“closed” system) into many identical subsystems, allows
us to retrodict its history using Conditional Probabilities (88, 34, 66, 132, 54],
in Chapter 3.

The issue of choosing initial conditions to the classical Einstein field equa-
tions is translated into proposing an appropriate boundary condition in Su-
perspace. The heuristic aim of such a proposal is to select a single wave
function for the Universe that predicts sufficient inflation to resolve among
others, the flatness-, horizon- and monopole problems of standard cosmology,
and provide the seeds for galaxy-formation. The No Boundary proposal of
Hartle and Hawking {74, 77, 65] seems to fall short in this regard, while the
Tunneling proposal of Vilenkin and Linde {133, 134, 135, 136, 137, 138, 139]
and [103, 104, 105] make predictions that appear more reasonable. However,
the Tunneling wave function is not well- defined, since there is no guarantee

that flux is carried out of Superspace at singular boundaries.

In practice, the WKB approximation results in an ensemble of possible
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wave functions to the Universe, that predict pencils of classical trajectories
in configuration space, instead of a single classical path. More-over, if we
require an initial inflationary phase along its classical evolution, it would
appear [117] that the Universe has an infinite classical history, despite the
spacetime being singular in the sense that it is geodesically incomplete. This
misleading result emphasizes the need for more realistic models that contain

a reliable time variable, and well- defined probability densities.

It would appear that the Hartle-Hawking wave function is not an example
of a“typical” wave function of the Universe [51]. On the other hand, for an
appropriate basis {|n >} defined on the space of all wave functions for a
Mini-Superspace model with a power-law potential, it seems plausible that

sufficient inflation is a property of a typical wave function (Chapter 5).

What we definitely learn from quantum cosmology is that the usual frame-
work of Hamiltonian quantum mechanics needs to be generalized - gravita-
tional fluctuations of spacetime deny us any definite notion of causality, since
spacetime itself becomes a dynamical variable [99, 89]. The“neutral-time ”
formalism [2, 49, 70] is devoid of a fundamental arrow of time, hence the prob-
abilities for the individual members of a set of alternative histories depend
on the initial and the final conditions of the Universe. The semi-classical
domain of everyday experience emerge only when such boundary conditions

lead to decoherence of alternative sets of histories in an appropriate fashion.

For quantum evolution to lead to the present classical Universe, the wave
function must approach a wave packet that describe observed cosmological
data [91, 10]. To obtain a good probability interpretation for the wave packet,

we need to specify a judicious clock.

This is ideally manifested in the description of bulk-matter wormholes in
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Mini-Superspace (Chapter 9). The wave function exhibits wave packet-like
structure with a“bulk matter-field” clock ¢. Since they satisfy the strong-
energy condition v > 2/3, and the Wheeler-De Witt equation, these solutions
are a substantial contribution to existing wormhole theory. In the Appendix
we attempt to construct a relation between the Lorentzian perfect fluid index
~ for bulk matter universes, and its analytic continuation 4, for an Euclidean

ezterior.

Previously, wormhole instantons [4, 17, 85, 42, 9, 45, 57, 88, 101, 102, 126,
109, 124] were obtained by analytic continuation of the Lorentzian Einstein
field equations to the Euclidean regime. Wormholes in Superspace were in-
troduced to provide mechanisms for black hole evaporation and setting the
cosmological constant to zero {85, 88]. We are able to improve on the Born-
Oppenheimer approximation [93], as well as the asymptotic expansions of
Hawking and Page [85] by producing exact quantum wormhole states for
the free massive scalar field, provided the mass m? takes on discrete integer

values.

The initial enthusiasm over wormholes and the Coleman mechanism [13]
for setting A to zero, has largely subsided, and is slowly being replaced by
cool realism:

There is no well-defined theory of quantum gravity to date.

The Euclidean action for gravity is not bounded from below.

Different choices for the contour of integration to make the EPI converge
lead to different results. The idea of integrating along a complex contour
[92] fails in the case of non-conformally invariant matter. A complex contour
results in saddle points in the EPI with neither Euclidean nor Lorentzian
signature.

The Coleman peak at A = 0 disappears and becomes a disappointingly

smooth distribution in A in higher derivative corrections to the stationary
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point for large four-spheres in the effective action.
In the giant wormbhole disaster, low energy QFT may be violated if macro-

scopic wormholes are free to join onto arbitrary regions of spacetime.

A multi-universe third quantized theory of interacting baby- and parent
universes was formulated as a QFT on Superspace. The third quantized
Uncertainty Principle states that there is some uncertainty in the prediction
for the relation among coupling constants of the Universe. Unfortunately, the
fact that a simple FRW-universe model containing a homogeneous, isotropic
matter-field in third quantized theory instead reveals marimum uncertainty

[119], merely adds to the existing doubts of the Mini-Superspace formalism.
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Appendix A

Relating v and ~e

The Ellis -Madsen procedure [8, 9, 107] defined the index 7 for bulk matter in
a perfect fluid model as a function of the kinetic energy T’ and the potential
energy V of a scalar field ¢:
2T
STV
In order to describe wormholes as analytic continuations of classical FRW

(A.1)

closed universes, we rotate the scalar field such that
¢ — 10 (A.2)

so that the Lorentzian index v has to be redefined as an Fuclidean index .
Since the kinetic energy is a square function of the time derivative in ¢, we
see that T, — —T, while dynamical consideration tells us that the potential

energy V, — V. Equation A.l now reads

-2T

Y= Ye = a:—m‘ ; (A3)

where « is a constant of proportionality. Simple manipulation of equa-
tions A.1 and A.3 lead to

RNR 2=

N DN
+

SIRSIRS
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which add up to

L Ad
Yoy (A-4)

We have found a relation between the indices v for the Lorentzian and Eu-
clidean regimes respectively, barring the unknown «. It is also possible to
formulate a tentative argument for evaluating this constant, which contains

two crucial stages:

a) We demonstrate that the potential energy V. of the scalar field ¢

approximates to a power-law potential
£y
2q¢
for small ¢, for a perfect fluid model with index «.. This will allow us to

separate the Wheeler-De Witt equation as in Section 8.4, provided that the

power ¢ is a function of ..

b) Secondly, for ¢ sufficiently small, and for high order modes, the power-
law potential model of Section 8.4 approximates to the closed bulk matter
universe model described by equations 9.27 and 9.28 of Section 9.3. This
implies that the power ¢ may in turn be expressed as a function of the

Lorentzian index 7.

The upshot of all this is firstly, that (a) results in

3.
— A.
1= 3.3 (A.5)
and secondly, (b) leads to
v
= A.
1= 55 (A.6)

Equating these two expressions for ¢ results in the relation
e+ =377, (A7)
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and finally,
1 1

=1. A.8
7 3% (4.8)

This crucial relation matches the closed FRW universe bulk matter index to

its analytic Euclidean continuation. It is easy to see that

a =

5 (A.9)

A.1 (a) The scalar field potential

We give an outline to the derivation of the sinh potential in the framework
used by CM(8, 9]. If this new potential is indeed the correct one, we are able
to derive the asymptotic wave functions for |¢| < 1 by means of the HP[85)
procedure. These expansions are functions of a and ¢, with coefficients that
contain terms in 34, — 2, so that 4, = 2/3 is a critical point.

With the Lorentzian metric 9.1

ds? = —a*dr? + a*(7)dQ} (A.10)
the scale factor is the same as that of CM[8, 9], namely 9.8

a(r)=[a¥?-(1 - 3v/2)2 722 (A.11)

m

Here a,, corresponds to the maximum size of the FRW Universe. The scale

factor ¢ satisfies the relation

a1
v =s, (A12)

where V(¢) is the scalar field potential that we are about to determine ex-
plicitely, and the p is the energy density of the perfect fluid bulk matter

source. We recall from 9.4 that it reads

p = pmal a™> (A.13)

)
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for an arbitrary constant p,,. The conservation of energy requires

p—l 3v-4 (d_¢

¢ dr

Substitute equation A.13 into equation A.14, to obtain the relation

d¢ /
= = 1/ pyadl a¥73. (A.15)

Now use equation A.11 to write

1
= 1/ pmvan /dt ST (13920 (A.16)

For convenience, we set the integration constant to zero. Depending on the

)2 = v = constant. (A.14)

sign =, we obtain two solutions to the integral. In CM[9], the + sign gives the
arctanh solution. This solution we call interior in the sense that the integral
is defined for a closed Lorentzian universe. The model starts off from zero
radius, evolves along classical lines to a maximum radius @, and recollapses.

On the other hand, the — sign leads to an arccoth solution:

V27 | 3e—2
376 —9 COth WT . (A17)

In this case we have continued the evolution analytically pass its classical

¢(1) =

maximum, into a forbidden Euclidean regime which we call the ezterior so-
lution. We have also introduced the Euclidean index <. into our formal-
ism. This will correspond to the index described for the instantons found by
CM[9], for which @ — oo as 7 — oo. We now use equation A.12 to derive

the scalar field potential, and find

V(¢)=(—1)s—33’--21—‘l/—2 inh#e7 [3% “¢}. (A.18)

V27

There appears to be some ambiguity in the sign of this potential. If we take

2
an

the scalar field to be imaginary, ¢ — i¢, and if we then correctly write sin

instead of sinh for the potential ( A.18), we are able to remove this ambiguity.
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Provided that |¢| < 1, the potential( A.18) approximates to
K
V(4) = —¢™

of HP[85], where we have abbreviated

37e
q= T2 (A.20)
and Cone
oo LT 2ef2 67 A3 21 (A.21)
a3y —2 27e ) )

The important result is of course the exterior relation A.20. It is then possible
to use the expansions of refs. [95, 96] to derive the appropriate wormhole
wave functions. Alternatively, we may use our own formalism of Section 8.4

for a qualitative discussion.

A.2 (b) The Lorentzian interior

For closed Lorentzian bulk matter universe models we derived the ordinary

differential equations 9.27 and 9.28, which we rewrite as

d’ 2
=(£) = .22
[d§2+e] & =0 (A.22)
with separation constant €, and
2L L @V —at| X(a) =0 (A.23)
da? da ™ | )

with the wave function

W(a,6) = X(a) E(¢) - (A
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We briefly compare these equations with that of the power-law potential of
Section 8.4. For very small ¢, and high order modes such that

/\22 —K—’:Vm .
e>>2q ; (A.25)

we may say that the equations for the power-law potential approximates to
equations A.22 and A.23, under condition that we compare the indices of the
scale factor in the energy terms:

2 —4q

6—3y=4+
7 1+q

and solving for g, we arrive at relation A.6. This completes our argument for

i =1
fixing a = 3.

158



Bibliography

[

3]
[4]
[5]

[6]
[7]
(8]
[9]

[10]

[11]

Abbott, L.F. and Wise, M.B. Nucl. Phys. B, 325, (1989), 687.

Aharanov, Y., Bergmann, P. and Lebovitz, J. Phys. Rev. B, 134,
(1964), 1410.

Baum, E. Phys. Lett. B, 133, (1983), 185.
Bertolami, O. Phys. Lett. B, 234, (1990), 258.

Brown, Burgess, Kshirsagar, Whitting and York Nucl. Phys. B, 328,
(1989), 213.

Burgess and Hagan Phys. Rev. D, 43, (1991), 1869.

Campbell, L.M. and Garay, L.J. Phys. Lett. B, 254, (1991), 49.
Carlini, A. SISSA preprint 65/92/A (1992).

Carlini, A. and Mijié, M. SISSA preprint 91A (1991).

Castagnino, M.A., Gunzig, E. and Nardone, P. in Quantum Me-
chanics in Curved Space-Time eds. J. Audretsch and V. de Sabbata
(Plenum Press, NY, 1990), 403 “On Quantum Gravity for Homoge-

neous Pure Radiation Universes.”

Caves, C.M. Phys. Rev. D, 33, (1986), 1643.

159



[12] Caves, C.M. Phys. Rev. D, 35, (1987), 1815.

[13] Coleman, S. Nucl. Phys. B, 214, (1988), 503.

(14  Coleman, S. and Lee, K. Nucl. Phys. B, 329, (1990), 387.

[15] Coleman, S. Nucl. phys. B, 307, (1988), 854.

(16)  Coleman, S. Phys. Lett. B, 310, (1988), 643.

[17] Coule, D.H. and Maeda, K. Class. Quantum Gav., 7, (1990), 387.
[18] Coule, D.H. University of Cape Town Preprint (91), (1991).

[19] Coule, D.H. and Solomons, D. “Do wormholes really set A — 0 97
preprint (1993).

[20] Das and Maharana Phys. Rev. D, 41, (1990), 699.

[21] D’eath, Dowker and Hughes DAMTP R 90-23, (1990).

[22] De Witt, B.S. Phys. Rev., 160, (1967), 1113.

[23] Einstein, A. in The principle of relativity, eds. Springer (1985).
[24] Elizalde, E. and Gaztanaga, E. Phys. Lett. B, 234, (1990), 265.

[25] Esposito, G. and Platania, G. Class. Quantum Grav., 5, (1988),
937.

[26] Everett, H.Rev. Mod. Phys., 29, (1957), 454.
[27] Fischler, W. and Susskind, L. Phys. Lett. B, 217, (1989), 48.
(28] Fukataka, Ghoroku and Tanaka Phys. Lett. B 222, (1989), 191.

[29] Garfinkle, Horowitz and Strominger, A. Phys. Rev. D, 43, (1991),
3140.

160



[30]

31]

[32]

[41]
[42]

[43]

Garay, L.J., Halliwell, J.J. and Mena Marugan Phys. Rev. D, 43,
(1991), 2572.

Gell-Mann, M and Hartle, J.B. Complezity, Entropy and the Physics
of Information Santa Fe Institute Studies in the Sciences of Com-
plexity, vol IX, ed W.H. Zurek (Addison Wesley), (1990).

Gell-Mann, M. and Hartle, J.B. in Proceedings of the 1st Interna-
tional A.D.Sakharov Conference on Physics, Moscow 1991 and in
Proceedings of the NATO Workshop on the Physical Origin of Time
Assymetry, Mazagon, Spain 1991 eds. J. Halliwell, et al (Cambridge
University Press, 1992).

Geroch, R.P. J. Math. Phys., 8, (1967), 782.

Geroch, R.P. Noiis, 18, (1984), 617.

Gerlach, UH Phys. Rev., 177, (1969), 1929.

Ghoroku and Tanaka Phys. Lett. B, 222, (1989), 191.

Ghoroku and Tanaka Phys. Rev. D, 43, (1991), 410.

Gibbons, G.W. and Grischuk, L.P.Nucl. Phys. B, 313, (1989), 736.

Gibbons, G.W., Hawking, S.W. and Stewart, J.M. Nucl. Phys. B,
281, (1987), 1164.

Gibbons, G.W., Hawking, S.W.and Perry, M.J. Nucl. Phys. B, 138,
(1978), 141.

Gibbons, G.W. and Maeda, K. Nucl. Phys. B, 298, (1988), 741.
Giddings, S. and Strominger, A. Nucl Phys B, 307, (1988), 854.

Giddings, S.B. and Strominger, A. Nucl. Phys. B, 306, (1988), 890.

161



[44]
[45]
[46]
[47]
[48]
[49]
(50]

[51]

[52]
(53]
[54]
[55]

[56]

[57]

[58]
[59]

[60]

Giddings, S.B. and Strominger, A. Nucl. Phys. B, 321, (1989), 481.
Gonza.lez;Diaz, P.F. Phs. Rev. D, 40, (1989), 4184.

Gonzalez-Diaz, P.F. Phs. Rev. D, 42, (1990), 3983.

Greensite gr-gc 9309010

Greensite Nucl. Phys. B, 342, (1990), 409.

Griffiths, R,B. J.Stat. Phys., 36, (1984), 319.

Grinstein, B. and Wise, M.B. Phys. Lett. B, 212, (1988), 407.

Grishchuk, L.P. and Sidorov, Yu.V. in Proc. {th Moscow seminaron
Quantum Gravity (World Scientific, Singapore 1988).

Guth, A.H. Phys. Rev. D, 28, (1981), 347.

Halliwell, J.J. and Hawking, S.W. Phys. Rev. D, 31, (1985), 1777.
Halliwell, J.J. Phys. Rev. D, 36, (1987), 3626.

Halliwell, J.J. Phys. Rev. D, 38, (1988), 2468.

Halliwell, J.J. and Hartle, J.B. ITP preprint NSF- ITP-89-147
(1989) “Integration contours for the no-boundary wave function of

the universe.”

Halliwell, J.J. and Laflamme, R. Class. Quantum Grav. 6, (1989),
1839.

Halliwell, J.J. and Louko, J. Phys. Rev. D, 39, (1989), 2206.
Halliwell, J.J. and Louko, J. Phys. Rev. D, 40, (1989), 1868.

Halliwell, J.J. and Louko, J. Phys. Rev. D, 42, (1990), 3997.

162



[61]

[62]

[63]
[64]
[65]
[66]

[67]

[68]

[69]

[70]

[71]
[72]

(73]

Halliwell, J.J. “Quantum Cosmology and Baby Universes” eds. S,
Coleman, et al (World Scientific, 1990), 159.

Halliwell, J.J. and Hartle, J.B. ITP Preprint (1990) “Wave functions

constructed from an invariant sum-over-histories.”

Halliwell, J.J. CTP preprint 2029, (1991).

Halliwell, J.J. CTP preprint #2130, July 1992.

Hartle, J.B. and Hawking, S.W. Phys.Rev. D, 28, (1983), 2960.
Hartle, J.B. Am.J.Phys., 36, (1968), 704.

Hartle, J.B. Gravitation in Astrophysics, Cargese (1986) eds. B.
Carter and J. Hartle (Plenum New York). “Prediction and observa-

tion in quantum cosmology.”

Hartle, J.B. and Schleich, K. in Quantum field theory and quantum
statistic eds. I.A. Batalin, G.A. Vilkovisky and C.J. Isham (Hilger,
Bristol, 1987).

Hartle, J.B. Phys. Rev. D, 38, (1988), 2985.

Hartle, J.B. Quantum Cosmology and Baby Universes 7eds. S. Cole-
man et al ( World Scientific 1990) “The Quantum Mechanics of
Cosmology.”

Hawking, S.W. Comm. Math. Phys., 43, (1975), 199.
Hawking, S.W. Nucl. Phys. B, 144, (1978), 349.

Hawking, S.W. and Ellis, G.F.R. “The large scale structure of space-
time” eds. Cambridge Univ. Press (1979).

163



[74]

[85]
(86]
[87]
[88]

[89]

Hawking, S.W. in Astrophysical Cosmology eds. H.A. Bruck, G.V.
Coyne and M.S. Longair (Pontifica Academia Scientarium, Vatican
City) (1982) “The boundary conditions of the universe.”

Hawking, S.W. Relaitivty, Groups and Topology II (1984) 336 eds.
B.S. De Witt and R. Stora (Amsterdam).

Hawking, S.W. Phys. Lett. B, 134, (1984), 403.

Hawking, S.W. Nucl. Phys. B, 239, (1984), 257.

Hawking, S.W. Phys. Rev. D,32, (1985), 2989.

Hawking, S.W. and Page, D.N. Nucl. Phys. B, 239, (1986), 185.
Hawking, S.W. New Scientist, 115, (1987), 46.

Hawking, S.W. Phys. Lett. B, 195, (1987), 337.

Hawking, S.W. and Page, D.N. Nucl. Phys. B, 298, (1988), 789.
Hawking, S.W. Mod. Phys. Lett. A, 5, (1990), 453.

Hawking, S.W. in “Quantum Cosmology and Baby Universes” eds.
S, Coleman, et al (World Scientific, 1990), 245.

Hawking, S.W. and D.N. Page Phys Rev D, 42, (1990), 2655.
Hawking, S.W., Laflamme, R. and Lyons hep-th 9301017
Holzhey and Wilczek Nucl. Phys. B, 380, (1992), 447.
Hosoya, A. and Ogura, W. Phys. Lett. B, 225, (1989), 117.

Isham, C. and Kucha#, K. Ann. Phys. (NY), 164, (1985), 316.

164



[100]

[101]

[102]
[103]
[104]
[105]

[106]

Isham, C. Imperial preprint TP 90-91/14, and Isham, C. Imperial
preprint TP 93-94/1

Kazama, Y. and Nakayama, R. Phys. Rev. D, 32, (1985), 2500.
Keay, B.J. and Laflamme, R. Phys. Rev. D, 40, (1989), 2118.
Kiefer, C. Phys. Rev. D, 38, (1988), 1761.

Kiefer, C. Nucl. Phys. B, 341, (1990), 273.

Kim, S. and Page, D.N. Phys Rev D, 45, (1992), R3296.

Kim, S. Phys Rev D, 46, (1992), 3403.

Klebanov, I, Susskind, L. and Banks, T. Nucl. Phys. B, 317, (1989),
665.

Kuchas, K. in Proceedings of the 4th Canadian Conference on Gen-
eral Relativity and Relativistic Astrophysics eds. G. Kunstatter, et
al (World Scientific, Singapore, 1992). “Time and interpretations of

quantum gravity.”
Laflamme, R. and Shellard, P.E. Phys. Rev. D, 35, (1987), 2315.

Lavrelashvili, G.V.,Rubakov, V.A. and Tinyakov, P.G. Loss of quan-

tum coherence due to topological changes: a toy model.
Lee, K. Phys. Rev. Lett., 61, (1988), 263.

Linde, A.D. Lett. Nuovo Cimento, 39, (1984), 401.
Linde, A.D. Sov.Phys.JETP, 60, (1984), 211.

Linde, A.D. Rep. Prog. Phys., 47, (1984), 925.

Louko, J. Phys. Rev. D, 35, (1987), 3760.

165



[107]
[108)
[109]
[110]

[111]

[112]

[113]

[114]
[115]

(116]

[117)

[118]

[119]
[120]
[121]

[122]

Madsen, M. and Ellis, G.F.R. SISSA preprint 354 (1990).
Mena Marugan Class. and Quantum Grav., 8, (1991), 935.
Midorikawa, S. Phys. Rev. D, 41, (1990), 2031.

Misner, C.W. Phys. Rev., 186, (1969), 186.

Misner, C.W. in Relativity eds. M. Carmeli, S. Fickler and L. Witten
(Plenum New York) (1970) “Classical and quantum dynamics of a

closed universe.”
Myers Phys. Rev. D, 38, (1988), 1327.

Mukherjee, Paul, Dadhich and Kshirsagar Phys. Rev. D, 45,(1992),
2772.

Page, D.N. Phys. Rev. D, 32, (1985), 2496.
Page, D.N. Phys. Rev. D, 34, (1986), 2267.

Page, D.N. ITP preprint NSF-ITP-89-18 (1989) “Time as an inac-

cessible observable.”
Page, D.N. Class. Quantum Grav., 7, (1990), 1841.

Penrose, R. in General Relativity: An Einstein Centenary Survey
eds. Hawking, S.W. and Israel, W. (Cambridge Press 1979).

Pohle, H.J. Phys. Lett. B, 261, (1991), 257.
Polchinski, J., Nucl. Phys. B, 325, (1989), 619.
Polchinski, J. Phys. Let. B, 219, (1989), 251.

Preskill, J. Nucl. Phys. B, 323, (1989), 141.

166





