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Abstract 

In Quantum Cosmology, universe states are treated as wave function solu­
tions to a zero-energy Schroedinger equation that is hyperbolic in its second 
derivatives of spatial geometries and matter-fields. In order to select one 
wave function (that would in principle correspond to our Universe) out of 
infinitely many, requires an appropriate boundary condition. The Hartle­
Hawking No Boundary and the Vilenkin Tunneling proposals are examples 
of such boundary conditions. We review their applications and shortcomings 
in the context of the Inflationary Scenario. 

Another boundary condition is that of S.W. Hawing and D.N. Page (1990) 
in the context of wormholes. Wormholes are generally considered to play a 
major role in setting the cosmological constant to zero and to provide a 
mechanism for black hole evaporation. It is significant that we are able to 
show that even the class. of bulk matter wormhole instantons found by Carlini 
and Mijic (1990) are predicted in the quantum theory. However, unresolved 
issues and newfound problems seem to threaten the wormhole theory. 

Furthermore, since there are no a priori notions of time (and space) 
present in the quantum theory, it is important to show exactly how the 
notion of time is recovered over distances much larger than the Planck scale. 
A good notfon of time is also essential for any quantum theory to predict 
the correct classical behaviour for the Universe today. The issue of time 
inevitably re-emerges throughout our work. 
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Chapter 1 

lntrod.uction 

Thus far, numerous efforts to unify the four fundamental interactions of Na­

ture into a single "Theory Of Everything" are still inadequate i~ more ways 

than one, and we are offered only rare glimpses of what ultimately makes the 

world tick. Predicti.ons from Superstrings, Supergravity and Higher dimen­

sional Kaluza-Klein Theories are largely well beyond the reach of our particle 

accelerators, and will probably remain so for the forseeable future. Whether 

these efforts are true milestones or merely conspicuous cults corrupting a 

generation of new scientists still remains to be seen. 

Of late there appear to be'indirect' tests of such theories, for instance, low 

energy stringy actions also predict the existence of cosmological and black 

hole solutions [41, 29, 87, 123]. 

Nevertheless, we know that General Relativity and Modern Quantum 

Mechanics are but stepping stones in our effort to construct a (generally 

covariant) theory of quantum gravity. Such a theory will have significant 

consequences wherever gravitational fluctuations are large and of the order of 

the Planck curvature m;, and effects are nowhere else more noticeable than 

in the early stages of cosmic evolution. Since any change in the topology 
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should effectively interact with mo~t forms of matter-fields then present, the 

early Universe provides an ideal laboratory for testing predictions from such 

theories. An understanding of the quantum nature of gravitation is essential 

in order to explore the emergence of classical spacetime and the origin of the 

Universe as we know it. 

Although the Universe is at present far from equilibrium, it had to be 

smooth to a very high degree in the very distant past. Yet it must have 

allowed sufficiently large density fluctuations required for galaxy formation 

to take place. These problems, amongst others have been addressed in the 

so-called Inflationary Scenario first suggested by Alan Guth (1981) [52]. 

However, what inflation does not resolve is the question of the initial 

conditions necessary for the field equations of General Relativity to predict a 

very large, isotropic and homogeneous Universe that contains very little trace 

of any cosmological constant. Hence the question of selec,:ting our Universe 

from an infinite set of possible universes that could equally well have evolved 

from some initial state after the Big Bang, lies beyond the scope of General 

Relativity. In recent years, this issue has been tackled in a branch of quantum 

gravity known as called Quantum Cosmology. 

1.1 Quantum Cosmology 

The arena of Quantum Cosmology is an infinite dimensional Superspace of all 

possible three-geometries and matter-field configuration on a given constant 

three-surface. Dynamical laws are constrained by a second quantized, second 

order hyperbolic differential equation on Superspace, known as the Wheeler­

De Witt equation. It has infinitely many solutions, and requires an associated 

boundary condition to pick out a unique wave function for the Universe. 

Apparently, a boundary condition alone does not suffice to select a unique 
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steepest descent contour in the so-called Euclidean Path Integral Formulation 

[58] (see Chapter 4). 

After the pioneering work of De Witt (22] many attempts have been 

made (Wheeler [142],Misner [110], Vilenkin [133], Hartle and Hawking [65)), 

to interpret various facets of the theory: 

1) There are no a priori notions of time and space present in the theory. 

2) The Wheeler -De Witt equation is second- order in its various func­

tional derivatives. Hence there is no direct way of defining a good, i.e. 

positive definite probability density. 

3) Problems such as the horizon, flatness and monopole problems are 

explained via an inflationary phase early in the cosmic evolution. One there­

fore requires appropriate boundary conditions for an inflationary phase to 

take place. In order to reach its current entropy, the universe had to be very 

smooth in the past. Yet one requires sufficiently large density fluctuations 
/ 

and gravitational waves consistent with the observed isotropic CMBR, to al­

low galaxy - formation. Again, appropriate boundary conditions are needed 

to predict this behaviour. 

1.2 Mini-Superspace 

The quantum state \ll(hii(X), ef>(X), S), of a closed universe contains a three­

surface S on which the three-metric is hii and matter-field configuration 

ef>(X). This wave functional satisfies the Wheeler -De Witt equation and 

momentum constraints, obtained by quantization of the Hamiltonian for the 

Einstein scalar action for gravity and matter-fields. It provides an amplitude 

from which predictions concerning the outcome of large scale, observations 

are extracted. 

The space of all three-metrics hij{X) and matter-field configurations 
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qS(X)) at a point X on a three-surface S, is called Superspace. It is an infinite­

dimensional space with the so-called Wheeler-De Witt metric Gii that has 

hyperbolic signature at every point X on the three-surface S. This signature 

is independent of the four-dimensional spacetime metric g1w signature. 

Since the real universe appears to be homogeneous· and isotropic on very 

large scales, we restrict ourselves to Friedmann-Robertson-Walker metrics 

only. All but a finite number of degrees of freedom of the metric and matter­

fields in Superspace are "frozen": We therefore approximate the problem of 

defining a wave functional for the universe to a problem in quantum mechan­

ics. We now deal with a finite-dimensional Mini-Superspace whose intrinsic 

quantities exclude an explicit time-parameter. 

1.3 Boundary .Conditions 

The quantum theory of boundary conditions essentially involves selecting 

one solution of an infi~,ite set of solutions to the Wheeler- De Witt equa­

tion. Numerous proposals have been encountered since De Witt (1967) [22]. 

The most studied proposals of recent years are the No Boundary proposal of 

S.W.Hawking and J.B.Hartle [74, 77, 65] and the Tunneling boundary con­

dition of A.Vilenkin and A. Linde [133, 134, 135, 136, 137, 138, 139, 57, 109, 

124]. 

The Hartle-Hawking proposal regards the three-surface B as the only 

boundary of a compact four-manifold M, on which the spacetime metric gµv 

induces a three-metric hii and a matter-field ¢ on B. The path integral over 

all such gµv and qS, and all M in principle leads to the No Boundary wave 

function, depending on the choice of contour. 

The Tunneling boundary condition of Vilenkin and Linde attempts to 

draw a parallel between quantum creation of the universe from nothing and 
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tunneling in ordinary quantum mechanics. The "outgoing mode" formulation 

of this proposal due to A.Vilenkin [139] states that one selects the solution to 

the WDW equation that is everywhere bounded and consists of only outgoing 

modes at singular boundaries of (Mini) Superspace. This proposal has been 

more successful in defining a unique solution to the WDW equation. 

The first difference between the two proposals is that the Hartle-Hawki_ng 

. wave function is real, consisting of a sum of "expanding" and "contracting" 

solutions, while the Vilenkin proposal corresponds to only one of these two. 

The wave functions also predict different amount of inflation, depending on 

the initial value of</> most favoured by each proposal [77, 115]. 

1.4 Probability Measure 

Like the Klein-Gordon equation, the WDW equation has an associated con­

served probability current that allows negative p!obabilities. Authors Caves 

[11, 12], Hartle [69] and Page [116] have suggested a measure that is the 

square modulus l'111 2dV over a volume element dV of Mini-Superspace. Since 

this definition is analogous to the probability measure of Quantum Mechan­

ics, a further elucidation on the role of a clock (i.e. time in ordinary Quantum 

Mechanics) is required. 

Naively, one looks for strong peaks in the wave function, and hence makes 

predictions. For example, classical behaviour is predicted if the wave func­

tion is strongly peaked about one or more classical configurations, while 

interference between distinct configurations should be negligible. 
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1.5 Predicting inflation 

We briefly reconsider the Hartle-Hawking No Boundary and Vilenkin Tun­

neling proposals to illustrate the problem of defining a good probability mea­

sure, and in the same breath highlight a major difference in the two proposals 

when applied to a massive scalar field potential: 

(a) Both proposals have a wave function that is peaked about the same 

set of inflationary solutions to the classical Einstein :field equations. However, 

their respective conditional probability measure differs .. In particular, for the 

HH wave function to be bounded it is peaked about some minimum value of 

the scalar :field <Pmin, and since this is small, the major contribution to the 

probability density comes from the region close to <Pmin· It would therefore 

appear that the HH wave function predicts insufficient inflation. (Hawking 

and Page (1986) (79] gets around this by saying that the contribution from 

regions away from <Pmi~ outweighs the contribution from the peak at <Pmin, 
thus predicting sufficient inflation. For values of the scalar :field potential 

comparable to the Planck mass mp, it may also be necessary to include 

higher order corrections to the Einstein- Hilbert action [139]). 

(b) On the other hand, the Vilenkin wave function has a probability 

density that is small for small <P ~ <Pmin· This means that the largest contri­

bution to its probability density comes from regions away from <Pmin· This 

straightforward prediction of sufficient inflation seems more appealing. 

1.6 Wave packets 

A coherent state in Mini-Superspace corresponds to a wave packet sharply 

peaked along a single classical trajectory. Besides a Hamilton-Jacobi equa­

tion, we also need the principle of constructive interference for canonical 
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Figure 1.1: A schematic illustration of the behaviour of a typical wave func­
tion. In certain regions the wave function indicates that the notion of classical 
spacetime is an appropriate one, denoted by bold lines in the figure. Those 
regions of Superspace describable by quantum laws of physics are denoted 
by the shaded region in the figure. 

variables to be correlated according to classical laws. Mini-Superspace does 

not have a natural time-label. However, one may define an affine parame­

ter along the history of the classical path along which the wave function is 

peaked. Essentially, classical spacetime is a concept appropriate to certain 

regions of configuration space (fig. 1.1 ). 

The absence of an external observer deprives one the usual quantum me­

chanical interpretation : for this one might have to resort to the "relative­

state formalism" of Everett [67, 91]. To facilitate a good probability interpre­

tation, Kazama and Nakayama [91] introduces a massless scalar field weakly 

coupled to matter fields and a large scale factor. It serves as a "desirable" 
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clock, since the probability density is positive-definite. 

1.7 Wormholes 

Wormholes are topological fluctuations in a semi-classical or quantum the­

ory of gravity. In the context of Hawking [72] and Wheeler [143], quantum 

fluctuations occur at the Planck length 10-33cm where the spatial geometry 

has a foam-like structure, with "ripples", "bubbles" and "handles" appearing 

and disappearing. The feature of the wormhole was first introduced in three 

dimensions by Wheeler to resolve the problem of charge-singularity in the 

Maxwell field equations. 

We know from a Geroch no-go theorem [33, 73] that a globally hyper­

bolic manifold cannot undergo topological fluctuations, since it is R1 ® S, 

with S constant time three-surface; such fluctuations require singularities in 
/ 

Lorentzian spacetime .. · 

Euclidean spacetime provides the perfect framework: A wormhole is a 

four- dimensional instanton, i.e. a solution to the classical Euclidean Einstein 

field equations with a finite action. One may picture it as a tube or small 

closed spatial geometry (known as a baby universe) that splits off and rejoins 

a unique large Lorentzian parent universe, or merely a link between two 

parent universes. In quantum gravity, it is a topological fluctuation in the 

ground state, and appears as a saddle point in the path integral in quantum 

gravity (although not always in the semi-classical limit). 

More recently, Hawking and Page (1990) [85] have suggested wormholes 

to be solutions of the WDW equation for arbitrary matter content, or no 

matter content but just pure gravity. For such wave functions to be wormhole 

solutions, they need to satisfy the "Hawking-Page" boundary conditions: 
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(1) The wave functions are regular as the three-geometry collapses to 

zero, 

(2) The wave functions are exponentially damped at large three- geome­

tries. 

The advantage of this definition is that wormholes might become the 

mechanism for black hole evaporation Hawking [71, 81 ]. It also supports the 

theses 

(a) that wormholes are the reason why the c9smological constant is zero 

(Baum [3], Hawking [77], Coleman [13]),and 

(b) the "big fix": Wormholes are considered to form a dilute gas (in­

teractions between end-points of wormholes are negligible) linking otherwise 

disconnected large smooth universes. Each universe model is governed by 

dynamics with a set of coupling constants { ai}. In the third quantized the­

ory describing such dynamics, the probability distribution over different sets 
/ 

is sharply peaked at oi"ie fixed set of constants, thus randomly selecting our 

universe from an ensemble of possible universes. 

1.8 Summary of Chapters' contents 

We now take a cursory glance at what lies ahead. In Chapter Two we de­

rive the Wheeler-De Witt equation in its most general form, using canonical 

quantization. The. problem of finding the wave function of the Universe is 

then narrowed down to the arena of Mini-Superspace, in which most of the 

degrees of freedom have been "frozen" out. In particular, we write down the 

Wheeler-De Witt equation in two dimensions, and look at ways of recovering 

classical spacetime, using for instance the WKB approximation. 

In order to make predictions in Quantum Cosmology, we need a good 

definition of the Probability Measure. \Ve are able to arrive at the notion of 
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Conditional Probability only after considering an alternative to the Copen­

hagen Interpretation - the post-Everret Relative State Formalism of Quantum 

Mechanics. This we briefly outline in Chapter Three. 

The Fourth Chapter deals with the problem of proposing Boundary Con­

ditions to select a wave function for the Universe in two-dimensional Mini­

Superspace. The Tunneling proposal of A.Vilenkin and the No Boundary 

proposal of J.B. Hartle and S.W. Hawking are discussed and compared in 

some detail. 

Chapter Five describes the essential features of inflationary models, start­

ing with the problem that inflation could mean that the Universe is infinitely 

old. Notwithstanding this, we outline the basic features of the power-law 

scalar field potential in Mini-Superspace and its prediction of an era with 

sufficient inflation. Following this, we investigate the existence of a unique 

measure for sufficient inflation, on the space of wave functions, to answer the 
/ 

question "How probable is Inflation ?" In this regard, we find that the original 

approach of Gibbons and Grishchuk (38] is applicable to a Mini-Superspace 

model containing an arbitrary power-law potential, i.e. siightly more general 

than the massive scalar field model used previously. 

The Issue of Time has been debated since its inception by our ancestors, 

and in Chapter Six we relate to it in the context of quantum gravity. The 

so-called "Arrow of time" is discussed in some detail, and we use the Deco­

herence Functional as a criterion for the emergence of classical spacetime in 

a region of Superspace where the usual notion of the Hamiltonian acquires 

meaning. We postulate the need for a wave packet in such a region, and 

reflect on ways to introduce a judicious clock into the formalism. This we 

shall exploit to its full in our new, and original, treatment of bulk matter 

wormholes in the wave packet context in Chapter Nine. 
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Topological fluctuations in qli.antum gravity known as wormholes have 

been a subject of great scrutiny in recent years. We look at wormholes as 

they first made their appearance in Modern Literature - i.e. as Euclidean so­

lutions to the Einstein field equations, known as instantons. We discuss the 

Hawking-Tolman and Giddings-Strominger wormholes for their generality : 

many authors have been able to find instantons either identical or very simi­

lar to these two. So in Chapter Seven we disclose the need for a more general 

class of wormholes, other than instantons, to explain for instance the evap­

oration of black holes and provide a mechanism for setting the cosmological 

constant to zero. 

Chapter Eight explores the Hawking-Page proposal that wormholes are 

solutions of the Wheeler-De Witt equation in Superspace, satisfying asymp­

totic boundary conditions. We also illustrate how free massive scalar field 

wormhole-states are de:ived in a fairly straightforward fashion compared to 

the approximate results obtained by other authors. In addition, we formulate 

a new and approach, other than that of [85, 95, 96], to finding wormholes 

as solutions of the Wheeler-De Witt equation for a power-law potential in 

general. 

With the advent of Wave Functions in Superspace, the Machian idea that 

only intrinsic quantities should appear in the formulation of a physical theory 

reaches near-perfection. We are able to construct wormhole states containing 

bulk matter satisfying the strong-energy condition I > 2/3. There is no 

explicit time-parameter present in the theory. However, to obtain correlations 

between canonical variables, we construct a wave packet, and this in turn 

yields a material clock in the guise of a "bulk matter field C. Thus, we 

improve on previous literature by shedding new light on the possibility of 

having a larger class of quantum wormhole solutions. This is essentially what 

we achieve in Chapter Nine. We also postulate the existence of a relation 
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between the Lorentzian perfect fluid index / and its Euclidean counterpart 

le· This we show explicitly in the Appendix. 

In Chapter Ten we address some of the controversies that surround Worm­

hole Theory. The Coleman Mechanism for setting A = 0 is outlined, while 

the issue of the "big fix" of the coupling constants is summarized. Finally, 

we mention the main features of the Third Quantization of Gravity in the 

context of Parent and Baby Universes, and review the third quantized Uncer­

tainty Principle. Unfortunately, in the elementary case of a massless scalar 

field, the third quantized Mini-Superspace theory makes a prediction that is 

almost certainly wrong. 

Finally, Chapter Eleven outlines our conclusions and insights. We dis­

cuss the difficulties that surface in the process of extracting predictions from 

solutions to the Wheeler~De Witt equation. Open questions and obstacles 

that threaten the foundations of the Wormhole Theory are laid bare. 
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Chapter 2 

The Wheeler-De Witt 
Equation 

2.1 The Hamiltonian formulation 

The general formalism of Quantum Cosmology starts with the Hamiltonian 

formulation of General Relativity. We look at a model' with a homogeneous 

scalar field </>( X) = </> that represents the matter fields and has Lagrangian 

£ = ~~ ( R- ~ ) - ~( gµv8µ</>8v</> + V(</>) ]. (2.1) 

R is the Ricci scalar curvature, A the cosmological constant and the Planck 

length = J167r /m~, where m; = a-1, and G is Newton's constant. We 

have adopted units in which 1i = c = 1. The metric 9µv is that of a four­

dimensional manifold M and has a standard form: 

(2.2) 

Embedded in the four-manifold M is the three-surface S on which the 

three-metric is hij, (i,j = 1, 2, 3 ; µ, v = 0,1,2,3). If we decompose the 

metric-element (2.2) we arrive at the Lorentzian (3 + 1 )-form 
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where N and Ni are the lapse and shift functions respectively: 

They are arbitrary in that they describe the way in which the choice 

of coordinates on one three-surface is related to that on an adjacent three­

surface. Once the "thin sandwich problem of Wheeler" has been solved, i.e. 

once the horizontal stacking for the shift Ni is resolved, we can address the 

problem of vertical stacking for the lapse N . 

. In the formulation of the Einstein-Hilbert action the matter term 

is the integral over the ¢>-dependent part of the Lagrangian .C = .C(grav) + 
.C( ¢>) weighted by the determinant of the four-metric gµv· The gravitational 

part of the action is just 

!gravity=~~ JM d
4
Xvf=g ( R- 2A) + ;; iM d

3 XVh ](. 
/ 

The second part of the gravitational action is the integral over the trace 

K of the extrinsic curvature ](ii at the boundary olv! of the four-manifold 

M. It reads 

1 (-oh·· ) K· · = - --'3 + 2D(·N·> 
'
1 2N at ' 1 

with Di the covariant derivative in the three-surface. The gravitational action 

in terms of the (3 + 1) variables now becomes 

!gravity = m; { d3 X dt N Vh [ ](ii ](ii - K 2 + (3) R - 2A ] . 
167r JM 

If we include the matter-part, the Hamiltonian form of the action takes 
' 

the form 
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Here, 7rij and 7r ¢i are the momenta conjugate to the three- metric hij and 

scalar field </> respectively. The Hamiltonian is a sum of constraints, with the 

lapse N and shift Ni playing the role of Lagrange multipliers. The momentum 

constraint is 

m2 . 
'Hi = _ _E. DJ·7r~ + 1{"'!1-atter :::::: 0 

87r i i 
(2.4) 

where '}-{'!'tatter 
i is the Hamiltonian for the matter-field contribution to mo-

mentum. There is the more important Hamiltonian constraint 

1i = l67r Gi ·k17rii7rkl - m; Vh( (3) R - 2A ) + 'Hrriatter = 0 (2.5) 
m 2 3 l67r p 

where Gijkl is the De Witt metric on Superspace, the space of all three-

metrics and matter field configurations (hiJ(X), </>(X)) on a three-surface S. 

The signature of the De Witt metric is hyperbolic at every point X in the 

three-surface S, independent of the signature of spacetime. It is given by 

Also, nmatter is the matter-field contribution to the Hamiltonian constraint 

(2.5), and is explicitly defined in the next section. From the Lagrangian in 

(2.3) we may express the momenta 'lrij conjugate to hij as 

In a similar fashion the energy of the matter-field can be expressed in terms 

of the momentum conjugate to the field 7r¢i and the field itself [65]. 

2.2 Canonical Quantization 
' 

The wave functional 'I!(hij, </>) on the infinite dimensional manifold called 

Superspace, describes the quantum state of our system of interacting three­

metrics hij and matter-fields ¢>. The Dirac quantization procedure means 
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that such a wave functional is annihilated by the operator versions of the 

classical constraints (2.4) and (2.5). We therefore introduce the conjugate 

momenta 

7rij b 
-+ -z--

bhij 
(2.7) 

.b 
7r"' -+ -z b</> . (2.8) 

The momentum constraint is 

r( \II = ( m; i D . _b_ + 1{1!1.atter) \II = O 
I 87f' J bhij I 

(2.9) 

This implies that the wave functional is invariant under three- dimensional 

diffeomorphisms, i.e. configurations ( hii, </>) that are related by coordinate 

transformations 
xi-+ xi -ei 

in the three-surface S (~alliwell (61]). To show this, we restrict attention to 

the case of no matter, and assume that the three-manifold is compact. 'J;'hen 

we may write 

. 1 s b\II \Il[hii + D(iei)] = \Il[hii] + Md xD(iei) bhii , 

and integrating by parts in the last term, the boundary term vanishes since 

the three-manifold is assumed to _be compact. Therefore the change in \II is 

1 3 ( b\II ) 1 1 3 i bW = - Md xejDi bhij. = 2i Md xei1i \II . 

This shows that the wave functions satisfying 2.9 are unchanged. 

The Hamiltonian constraint (2.5) becomes the so-called Wheeler-De Witt 

equation 

(
- l67r G·. _h __ h_ l67r .. _!_ _ m; Vh,[ (s) R _ 2A] 1imatter) \II = O 

2 iJkl ch .. ch + 2 /1J ch.. 16 . + mp u ,3 u kl mp u 'J 7r 
(2.10) 
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This equation describes the dynamical evolution of the wave functional 

in Superspace. It has infinitely many solutions and requires a boundary con­

dition to pick out just one solution. Explicitly, the matter-field contribution 

to the Wheeler-De Witt equation reads 

'}{matter= .Jh ( ~£_ + V(q))) 
2h 8q)2 

The coefficients /ii in the Wheeler-De Witt equation depend on the choice 

of operator-ordering in the quantization procedure, and becomes important 

only at or above the Planck curvature 

. 2 
. mp 
R>-. 

- 167r 

There is a good reason for this. We have to bear in mind that the curvature 

scalar R is a function of the momenta 1rij conjugate to the three-metric 

hij, and therefore depe.nds crucially on the operator- ordering in the Dirac 

quantization procedure. It also contributes to the action ltotal of (2.3), and 

hence the Hamiltonian constraint (2.5). 

Now for three-geometries that are much larger than the Planck size (i.e, 

h113 ~ l67r/m;), the wave functional 'iJ!(hij, q)) is predominantly described 

by contributions from the intrinsic curvature scalar (3) R (and possibly A) 

and any matter-fields present. In that case, anyhow, the curvature scalar 

R is small ( ~ l67r /m;), so that predictions made from 'iJ! are largely in­

sensitive to the choice of operator-ordering. But for three-geometries of the 

order of the Planck size or smaller, R may reach scales of m;/167r or bigger, 

and make a large contribution to the Hamiltonian. Consequently, solutions 

of the Wheeler-De 'Witt equation (2.10) will then depend crucially on the 

coefficients /ii. 
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2.3 The problem of operator-ordering 

Predictions in quantum cosmology depend on how we resolve the operator­

ordering problem. That would be equivalent to defining a differential opera­

tor on Superspace. Hawking and Page (1986) [79] proposed that the correct 

choice should be the Laplacian in a natural metric defined on Superspace. 

This Laplacian is then covariant in Superspace, and reads 

1611" _ I b ; -k1v' b 1 r;-:;- b2 
2 --y (-DetG)- 1-G 3 -DetG- + -vh-1 -,...., 'Vsu . 

m~ bh;i bhk1 2 b</>2 P 

This means that /ii is fixed for all values i,j = 1, 2, 3. But th_e omission of 

first derivative terms means that the natural metric on Superspace does not 

depend linearly on the lapse N; i.e. the Hamiltonian 1{ is not a linear function 

of N and so the lapse does not serve as a Lagrange multiplier. They [79] do 

suggest that the nonlinear dependence on N would cancel out in theories like 

Supergravity which contain equal numbers of fermionic and bosonic degrees 
/ 

of freedom. 

The advantage of this choice of operator-ordering is that the Wheeler­

De Witt equation is invariant under arbitrary coordinate transformations on 

Superspace. 

2.4 Mini-Superspace 

The full formalism of quantum cosmology on the infinite~dimensional Super­

space is too difficult to deal with in practice. We therefore only deal with 

"toy models" of the complete theory, in which all but a finite number of 

degrees of freedom of the metric h;i and matter-fields </>are suspended: Such 

models are finite dimensional Mini- Superspace models. It is until now not 

yet clear if such models are indeed part of a systematic approximation to the 

full theory. In fact, setting most of the field modes and their momenta to 

zero violates the uncertainty principle (J.Halliwell [61]). 
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For instance, we construct a simple Mini-Superspace model with the met­

ric and matter-field homogeneous and isotropic. That is, if we supposedly 

solve the problem of horizontal stacking for the shift, and gauge it to zero: 

N i -0 
- ' 

we proceed by taking a homogeneous lapse 

N = N(t). 

Furthermore, we restrict the three-metric hij to be homogeneous, thus mak­

ing it dependent on a finite number of functions wT, r = 1, 2, 3, ... n - 1, all 

functions of the time-parameter t. The four-dimensional spacetime metric 

(2.11) 

is now homogeneous an,d 'isotropic, and results in the dimensional reduction 

of the full natural metric in Superspace to MTs(w), where r,s = 0,1,2 .... ,n 

in Mini-Superspace. This reduced metric is now n-dimensional and has in­

definite signature (-,+,+,+ ... ). with the nth component of wT representing 

the matter-field <f>. The Mini-Superspace metric element reads 

The Lagrangian for this model may now be abbreviated as 

.C = 
2
;(t) MTs(w) u/ws - N(t)W(w) (2.12) 

with the Mini-Superspace potential W(w) containing the curvature scalar 

· (3)R intrinsic to the three-geometry hij, the cosmological constant A, and the 

matter-field potential V( </> ): 

lV(w) = - ( m; )
2 

v'h(~ (3lR ~A)+ ( m;) v'hV(</>), 
l67r 2 l67r 
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with the Planck mass mp = ~- For convenience we set m2 = l67r to 
p ' 

make further calculations more readible. The canonical momenta are then 

defined as ac -ws 
7r r = ouf = Mrs N ' 

so that the canonical Hamiltonian reads 

7r r wr - C = N 1-i . 

The Hamiltonian form of the action is 

I= J dt( 1rrWr - N 1-i) 

and indicates that the lapse N is a Lagrange multiplier, enforcing the Hamil­

tonian constraint 

1-i( Wr, 7rr) = ~Mrs7rr1rs + W(w) = 0 · 

The canonical quantization 

. a 
7r --+ -z--

r fJwr 

(2.13) 

leads to the non-trivial operator ordering issue discussed in Section 2.3, since 

the metric Mrs depends on w. The most general Wheeler-De Witt equation 

in Mini-Superspace now reads 

(2.14) 

and is covariant under wr coordinate transformations. Here "'(Or and =.Re 

represent the vector and scalar part (in Superspace) of the operator-ordering 

ambiguities. e is an arbitrary constant and ~ is the curvature of the metric 

Mrs· If we now accept the Hawking and Page i79] argument for choosing 

the Laplacian in the metric Mrs as a way of resolving the operator-ordering 

ambiguity, we impose 

Ir= 0, 
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with r = 1, ... , n-1. This choice of operator ordering has been made previously, 

in particular by De Witt [22], and is true if one replaces Mrs Or Os in equation 

2.14 with V1up· The coefficient e may be taken to be zero as in [79], or it 

may be taken to be the con/ ormal coupling 

e=-(n-2) 
8( n - 1 ) 

for n ~ 2, as in [55, 111]. This occurs if the metric part of the Hamilto­

nian constraint (2.13) is conformally covariant: the theory is invariant under 

rescaling of the lapse function N -t N = !12 N, the potential w -t n-2w 
and the metric Mrs -t Mrs = n2 A1rs, where n = n( w) is an arbitrary 

conformal factor. 

2.5 Two-dimensional Mini-Superspace 

We consider a simple model for which the four-geometries gµ 11 are restricted 

to be spatially homogeileous and isotropic for a particular choice of lapse N, 

and hence characterized by a single scale factor a( t) (after a global rescaling 

of the metric by the factor a= -3 
2 

2 ): 
1rfflp 

ds 2 = -N2 (t)dt 2 + a2 (t)df!~ (2.15) 

with df!~ the metric on a unit three-sphere for closed curvature (k = +1), a 

three-torus or flat space (k = 0), or a hyperbolic (open) space (k = -1). The 

spatial curvature scalar simplifies to 

(
3)R = k(h 2 

- hth~) = 6~. 
a 

The model now has a Friedmann-Robertson-Walker geometry. For the matter 

degrees of freedom, we select a spatially homogeneous scalar field </> = </>( t). 

The Einstein-scalar action for this system is 

1 J 3 1 = °2 dtNa __ a_+ - + ka- 2 - A - V(</>) 
[ 

• 2 ~2 l 
N2a2 N2 

(2.16) 
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(including the contribution from the boundary to remove a-terms). The field 

equations are derived in the usual fashion: 

a 

a 
H2 + ka- 2 

. 1 av 
-3</>H - 2 8¢> 

-2~2 +A+ V(</>) 

~2 +A+ V(</>) 

(2.17) 

(2.18) 

(2.19) 

where H =a/a is the Hubble parameter, in the gauge N = 1. (In the gauge 

N 2 = -1 the field equations are Euclidean.) In the canonical quantization 

scheme described in the previous section, the conjugate momentum to the 

scale factor is 7r a defined as 

7r2 = _ _!_i_ (aPi_) 
a aP fJa 8a 

where the operator-ordering ambiguity is reflected in the arbitrary constant 

p, and becomes important only for very small values of the scale factor when 
/ ~ 

the spacetime curvature R exceeds the Planck curvature ~. The conjugate 

momentum to the scalar field is given by the operator 7r </> and reads 

2 a2 
'Tr</>= - 8¢>2 . 

The Wheeler-De Witt equation (2.14) takes the form 

( a2 
P a 1 a2 

) 
aa2 +-;_ 8a - a2 8¢>2 + W(a, </>) w(a, </>) = 0 (2.20) 

where the superpotential 

vV(a, </>) = -ka2 + Aa4 + V(¢>)a4
• 

Notice that this equation is independent of the lapse N. The Mini-Superspace 

of this model is a two-dimensional manifold 0 <a < oo, -oo < </> < oo with 

metric Mrs(w), appearing in the the action 

I=~ j dt (~·Mrs(w)ulw8 
- NvV(w)) 
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(including the contribution from the boundary to remove a-terms). The field 

equations are derived in the usual fashion: 

a 

. 1av 
-3</>H - --

2 8¢> 

-2¢2 +A+ V( </>) 

¢2 +A+ V(</>) 

(2.17) 

(2.18) 

(2.19) 

where H =a/a is the Hubble parameter, in the gauge N = 1. (In the gauge 

N 2 = -1 the field equations are Euclidean.) In the canonical quantization 

scheme described in the previous section, the conjugate momentum to the 

scale factor is 7r a defined as 

7r2 = -~~ (aP~) 
a aP 8a Oa 

where the operator-ordering ambiguity is reflected in the arbitrary constant 

p, and becomes important only for very small values of the scale factor when 
/ ~ 

the spacetime curvature R exceeds the Planck curvature ~· The conjugate 

momentum to the scalar field is given by the operator 7r <I> and reads 

2 a2 

'Tr<t> = - o<P. 

The Wheeler-De Witt equation (2.14) takes the form 

( 
a2 

P a 1 a2 
) 

aa2 +-;;_aa - a2()<f>2 + W(a,</>) \ll(a,</>) = 0 (2.20) 

where the superpotential 

vV(a, </>) = -ka2 + Aa4 + V(</>)a4
• 

Notice that this equation is independent of the lapse N. The Mini-Superspace 

of this model is a two-dimensional manifold 0 < a < oo, -oo < </> < oo with 

metric Mrs ( w), appearing in the the action 

I=~ J dt (~-Mrs(w)ti/ti;3 - NvV(w)) 

22 



If we compare this with the Einstein-scalar action 2.16, we are able to write 

the Mini-Superspace metric element explicitly, 

(2.21) 

where the lapse N is constant on every surface of homogeneity. It has a 

nonsingular boundary at a = 0 with</> finite. Singular boundaries occur when 

at least one of the two variables is infinite. The solutions to the Wheeler-De 

Witt equation are the wave functions W (a, </>), functions of the two variables 

(a,</>), and independent of the time t. 

How many Einstein field equations are there in Mini-Superspace? Well, 

if the reduced metric Mr~ is n-dimensional, we anticipate !n( n + 1) field 

equations. The momentum constraints (2.9) constitute n of these equations, 

and are trivially satisfied (we were able to prove this in the case of compact 

three-manifolds with no matter content). So in principle we are left with 

!n( n - 1) remaining equations to solve. Symmetry considerations (such as 

the Copernican principle) may reduce this number even further. 

For example, we consider only Friedman-Robertson-Walker geometries, so 

that there is only one gravitational variable, namely the scale factor (w0 =a). 

We also represent any form of matter by a single, spatially homogeneous 

scalar field (w1 = </>). Therefore the whole of Mini-Superspace is further re­

duced to a two-dimensional system, with its metric element given by equation 

2.21. So although there are maximally three ( ~ · 2(2+1)) field equations, two 

of these constitute momentum constraints (2.9). They are trivially satisfied, 

and simply imply that the wave function W is independent of the choice of 
' coordinates on the three-surface S [139]. We are therefore required to solve 

only one equation: the so-called Wheeler-De Witt equation (2.20). 
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Attempts to solve and interpret equation 2.20 for various scalar potentials 

V( <P) are encountered in much of the recent literature on inflation and related 

issues. More recently, Hawking and Page [85] have proposed that quantum 

wormholes are solutions to 2.20 provided they satisfy the appropriate bound­

ary conditions. 

2.6 Classical Spacetime 

Before we venture on a discussion of the various issues regarding the interpre­

tation of the wave functional , we briefly explain what prediction of classical 

spacetime in the context of quantum cosmology constitutes: 

It was mentioned earlier that a suitable wave functional should predict 

that the canonical variables ( Section 2.4 ) are strongly correlated accord­

ing to classical laws. Any single or superposition of such wave functional(s) 

should be strongly peaked about one or more classical phase- space configu­

rations. 

Secondly, there should be negligible interference between distinct configu­

ration-paths. In principle one should be able to construct a coherent state, 

so that on following its evolution through Superspace, we would find that 

it follows one particular trajectory. In the Mini- Superspace formalism of 

Section 2.4, the wave functional 

is such a solution to the vVheeler-De Witt equation 2.10. C(wT) is a slowly 

varying functional in Mini-Superspace coordinates wT. We expand wT around 

a classical trajectory as wT = w~1 + bwT, so that '1t ( wT) is a functional of the 

fluctuations bwT. It also satisfies the Schroedinger equation along the classical 
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trajectories w~1 in Mini- Superspace, about which the wave function 'Ill( wr) 

is peaked: Here So( wr) is a solution to the Hamilton-Jacobi equation 

(2.22) 

for So real. For instance, if we introduce the tangent vector to such classical 

solutions (see D.N.Page (117]) 

a 
ot = \l So . \l ' 

then it can then be shown [54) that if! obeys the functional Schroedinger 

equation 
aq, -

i at = H2 w . 
Generally, Schwinger-Tomonaga Hamiltonian 1{2 acts as a perturbation 

Hamiltonian to some fixed background Mini-Superspace. In the case of a 

gravitational background consisting of a Friedmann-Robertson- Walker met­

ric 2.15, with purely inhomogeneous scalar firld perturbations for a potential 

V(¢) = m 2¢2
, and after expansion of 8¢ in the three-sphere harmonics Qn1m, 

the Hamiltonian reads 

'"' 1 -3 [ a
2 

2 6 ( 2 4 ) 2 ] 1i2=~2a -
8

J2 +(ma+ n -l)a fnlm , 
nlm nlm 

after expansion in the three-sphere harmonics Qnlm· So in the semi-classical 

limit, Quantum Cosmology reduces to quantum field theory on a fixed curved 

spacetime background. At least in this sense, we may speak of a semi-classical 

domain emerging from (Mini- )Superspace. The important advantage of such 

a region is that for any quantum theory of gravity to make predictions, their 

observation would be through correlation with the semi-classical domain-[64). 

Its meaning appears to be similar to the quasi-classical domain of Gell-Mann 

and Hartle [31). In fact, in [70) it is shown on more general grounds that if 

ICl2 (the density in Superspace) is conserved along the classical trajectories, 
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then ~ satisfies a Schroedinger equation in the field representation for the 

quantum matter field 8wM in the classical background. It is also pointed out 

in [70) that this classical correlation should be implemented by some sort of 

coarse graining; as we point out in Section 6.3, one would probably need a 

wave packet construction. 

Since So( wr) is a solution to the Hamilton-Jacobi equation, we can im­

mediately write down a first integral to the classical field equations: 

8So 
7rr = -8 ' wr (2.23) 

and define a set of solutions to the field equations. The wave functional '11( wr) 

is an approximate solution to the Wheeler-De Witt equation and is therefore 

peaked about such a set of solutions to the field equations. The slowly varying 

function C( wr) in fact corresponds to the usual WKB prefactor. 

2.7 The WKB approximation 

Since the Wheeler-De Witt equation is a Klein-Gordon type equation, we 

instinctively associate with it the conserved current 

.J = ~( '11* 'V '11 - '11 'V '11* ) (2.24) 

-Conserved by virtue of the fact that 

v·.J=O. 

However, since (Mini)-Superspace has an indefinite metric signature, neg­

ative probabilities could occur if we define the probability measure in this 

fashion. This fact, first pointed out by De Witt [22], has prompted alternate 

approaches to arriving at the correct measure. For instance, the measure on 

sets of inflationary solutions was studied in [79, 82]. A measure on the set of 
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solutions to the Wheeler-De Witt equation was also introduced by Gibbons 

and Grischuk [38]. An earlier attempt to make classical predictions in quan­

tum cosmology was made by Gibbons et al [39]. We reflect more on these 

proposals in Chapter 3, entitled Probability Measure. 

Since the Mini-Superspace wave functional may be expanded to the first 

order in the Planck mass m; 

(2.25) 

for complex prefactors C and C, we insert these functionals into the Wheeler­

De Witt equation (2.14), after recovering Planck units : 

( - 2~; '\ls., +m:W(w)] W(w) = 0, 

By equating powers of m; and splitting S into real and imaginary parts, 

S = So( w )-il, and provided So is a rapidly-varying function of wr compared 

to I, then So is a solution to the Lorentzian Hamilton-Jacobi equation 2.22 

while simultaneously satisfying 

vI · vso = o. 

It is clear from the Wheeler-De Witt equation that the wave functional is 

oscillatory in the region W( wr) ~ O; this loosely corresponds to regions of 

Mini-Superspace for which the four-dimensional spacetime is classical. In 

fact, this is precisely the type of wave functional the WKB approximation 

(2.25) yields. (In general, the result will depend also on the possibility of 

separating the Wheeler-De Witt equation, which will in turn depend on the 

existence of eventual Killing-symmetries in Superspace.) Furthemore, equa­

tion 2.23 defines the first integral to the classical field equations, and for a 

given (n - 1)- surface L: at the beginning of classical evolution, effectively 
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Chapter 3 

Probability Measure 

3.1 P redictions in Quantum Cosmology 

An issue that is very much under scrutiny of late is a more satisfactory 

and less heuristic scheme for the extraction of predictions from the wave 

functional in accordance with the Copenhagen interpretation, as outlined in 

Chapter 2. The best currently available approach (according to J .J. Hal­

liwell [64]) employs not the wave functional, but the so-called decoherence 

functional as its central tool [62, 64, 31 ]. It has a number of features that 

may be perfectly suited to quantum cosmology : 

It applies to closed systems; the Copenhagen interpretation applies to 

systems that interact with an external observer. 

It assumes no a priori separation of quantum and classical domains as in 

the Copenhagen interpretation. 

It does not rely on notions of measurement or observations by an external 

agency (fig. 3.1). 

It focuses on histories rather than events at a single moment, a possible 1 

remedy to the problem of time in Quantum Gravity. This also translates the 

"Many Worlds" interpretation of Hugh Everett III (1957) [26) (the idea that 

the Universe splits up into many copies of itself whenever a measurement is 
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Figure 3.1: The difference between laboratory physics and cosmology: An 
external observer studying the system may control the external conditions, 
and use them as boundary conditions when determining what is going on 
inside the system. In cosmology, the observer is inside the system, and there 
is no outside world onto which the specification of boundary conditions can 
be passed. 
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performed) into a statement about the wave function of the entire system. 

As formulated by Hartle (1986) [67]: 

"If the wave function for the closed system is strongly peaked about a 

particular region of configuration space, then we predict the correlations 

associated with that region; if it is very small, we predict the lack of the 

corresponding correlation; if it is neither strongly peaked, nor very small, we 

make no prediction." 

Most attempts to interpret the wave functional have adopted this basic 

idea. One may henceforth think of the wave functional (and hence in this 

sense, Mini-Superspace models of quantum cosmology) as an approximation 

to the decoherent histories approach [64]. 

3.2 Conditional Probabilities 

Such an interpretational scheme suggests that it is necessary to determine 

those quantities for which the theory gives probabilities close to one or zero. 

Hartle [67, 54] argues that we may arrive at the usual statistical interpre­

tation of ordinary quantum mechanics through the Quantum Mechanics of 

Individual Systems ( QMIS) : 

Consider a closed, individual system W, consisting· of a large number of 

identical subsystems 

It is claimed' [54] that in general we should not deal with probabilities for 

W, but only for subsystems tPn· Only if W is an exact eigenstate of some 

observable Q (with eigenvalue q) is there certainty of observing the vale q; if 

W is an approximate eigenstate, then one should look for peaks. 
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Now since W is the wave functional of an individual system, the proba­

bility of it being an eigenstate of some observable Q is either one or zero. 

But its identical subsystems {'If;( wn)} may be eigenstates of some relative 

frequency operator J:!, an operator defining the relative probability for the 

Nth to be peaked at a value w = a . Then it can be shown (4 7) that as 

N-+ oo, the subsystem probabilities are given by the square modulus of its 

wave functional, i.e. 

In the limit of large N, W becomes an eigenstate of f::° with eigenvalue 

j1/;(a)j 2 • In this way the Everett formulation of quantum mechanics is de­

signed to deal with correlations internal to an isolated, individual system. In 

particular, it is designed to describe correlations in an isolated system con­

sisting of an observer and an observed subsystem. Halliwell (54) deals with 

correlations in the wave functionals of quantum mechanics and quantum cos­

mology for such closed systems. 

Predictions are extracted from the wave functionals using the interpreta­

tion of quantum cosmology proposed by Geroch (34), Hartle (66) and Wada 

(132). One regards a strong peak as a definite prediction. A useful tool 

for identifying correlations between coordinates and momenta is the Wigner 

distribution function, important in the discussion of classical behaviour in 

quantum mechanical systems. It serves a good purpose in the study of scalar 

field fluctuations in inflationary universe models. 

Furthermore, a. weak form of the Anthropic Principle may be employed 
' 

to make predictions: 

We the observers look out into a Universe with conditions suitable for our 

own existence; hence we should restrict attention to those plausible histories 
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of the Universe which exist long enough that make evolution of life possible. 

That is, we restrict our attention to a certain subset of the possible histories 

of the Universe, and make predictions within that subset. In this way we 

study only Conditional Probabilities (see also A.Vilenkin (1988) (88] for its 

application). 
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Figure 3.2: The integral curves of the current :T (bold lines) and some pos­
sible choices for the hypersurfaces :E,a (dashed lines) . :E1 is a bad choice 
because the flow of :T intersects :E1 more than once. :E2 is a good choice 
because the flow intersects it once and only once. 

3.3 Conserved Measure 

The regions in which the wave functional is rapidly oscillating in wr we regard 

as the semiclassical domain. It was also stated in the previous chapter that 

certain contributions from a rapidly oscillating wave functional are peaked 

about classical configurations. Therefore we deduced (equation 2.23) a strong 

correlation between coordinates wr and momenta 7rr, which is a first integral 

that may be solved to yield an n-parameter set of classical equations. Given 

some ( n - 1 )- dimensional hypersurface :E in Mini-Superspace as the begin­

ning of classical evolution, we may solve the classical equations derived from 

equation 2.23 to arrive at a pencil B of the congruence of paths with tangent 
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vector V~up S0 • The conserved current (2.26) allows the construction of a 

non-negative probability measure: 

Suppose there is a family of hypersurfaces { E.a}, parameterized by /3, that 

cut across the flow of :1. Then the conservation of current implies that for 

each /3, a probability measure on the pencil B of the congruence of paths (i.e. 

through the intersection of the hypersurface B n E,a,for some /3) is just the 

flux :1 across the surface: 

dP = :1 · dE. (3.1) 

This measure is conserved along the pencil B of flow, due to conservation 

of the current :J. But (3.1) is not always positive; it vanishes for real '11, 

and becomes negative where the pencil B of flow intersects the same hyper­

surface E.a more than once (see fig. 3.2) due to the possibility of expanding 

and contracting universes . However, by suitable choice of the hypersurfaces 

{E.a} in the semi-classical regime, one may construct a sensible Probability 

measure. 

We have seen that the Wheeler-De Witt equation is independent of time. 

However, the parameter /3 labelling the family of hypersurfaces {E.a} may be 

chosen to be the same as the affine parameter along the integral of curves 

V'~up So - i.e. the time t. Thus, four-dimensional spacetime may emerge 

over such regions of Mini- Superspace over which an_ appropriat.e family of 

hypersurfaces {Et} is defined. 

The probability measure (3.1) on possible histories of the universe is com­

monly not n,ormalizable over the entire hypersurface E. Given a pencil B of 

trajectories of the current fl.ow through hypersurface E2 , one may calculate 

the Conditional Probability P( 1 I 2 ) for that same pencil B to pass through 

another hypersurface E1 : 

35 



P( 1 I 2 ) = f BnE1 J . dE 
fBnE

2 
J. d"f, 

(3.2) 

where E1 is chosen in such a way that its intersection with B is a subset of 

universes which possess features that resemble our universe. 

Instead, Hawking and Page (79, 82] uses a more traditional probability 

measure 

(3.3) 

over a volume element dV of Mini-Superspace. This is indeed positive- defi­

nite, and some authors argue that it reduces to (3.1) in the limit in which the 

volume element dV is taken to be a hypersurface of codimension one slightly 

thickened (i.e. copies of the same hypersurface densely stacked) along the 

direction of the flow of J. However, this measure fall short in other respects 

(Kuchar (1992) (99]). 

36 



Chapter 4 

Boundary Conditions 

The standard hot big bang model leaves many features of the Universe un­

explained. For instance, the observational fact that the Universe is spatially 

very fiat at present means that it must have started out fiat to within one 

part in 1060
• This is known as the "flatness problem". 

The "horizon problem" arises out of the extreme uniformity of the Uni­

verse at very large scales, so that it consists of vast regions that could never 

have been in causal contact throughout their entire classical history. 

In order for galaxies to form, fluctuations in the matter density need 

to have occurred in the very early Universe. How did these fluctuations 

originate? To resolve some of these problems, Alan Guth [52) proposed the 

so-called Inflationary Universe Scenario, in which the Universe experience a 

brief ( ,.., 10-30seconds ) period of inflation from an initial size of ,.., 10-28 

centimetres to ,.., lmetre. 

However, this Scenario cannot address the question of initial conditions 

necessary for the Einstein field equations of General Relativity to predict the 

correct classical behaviour of the Universe from an initial state of very high 
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curvature and density. The second order quantized version of GR known 

as quantum cosmology, addresses this question in the context of boundary 

conditions in Superspace. Halliwell (63] is more conservative, and points out 

that quantum cosmology should be seen mainly as an "effective theory" until 

a more detailed and satisfactory theory of Quantum Gravity emerges. 

Modulo contour ambiguities in the Euclidean Path Integral (see later), 

an appropriate boundary condition in Superspace selects one wave function 

of the Universe out of an infinite set of solutions to the Wheeler-De Witt 

equation. Initially, De Witt (22] suggested that mathematical consistency 

alone should lead to a unique wave function. Numerous proposals motivated 

by considerations of simplicity, naturalness, etc. have since been considered. 

We concentrate on recent "Tunneling" boundary condition of Vilenkin (133)­

(139] and Linde (103, 104, 105] and the "No Boundary" proposal of Hartle 

and Hawking (Hawking (74, 77] and Hartle and Hawking (65]). 
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4.1 The Tunneling wave function 

One particular proposal to determine the quantum state of the Universe is 

based on the picture of spontaneous nucleation into a de Sitter spacetime 

from nothing, after which it evolves along standard inflationary lines. The 

nucleation process is a nonsingular event, often referred to as "quantum 

tunneling from nothing". That, however, does not exclude the possibility of 

singular events such as black holes or a "big crunch" from occurring after 

nucleation. 

In the semi-classical framework, evolution under the potential barrier cor­

responds to evolution in imaginary time, so that the tunneling process is an 

instanton. This regular Euclidean solution may be matched to a Lorentzian 

solution at the nucleation point. 

The so-called Tunneling Boundary condition for the wave function W as 

formulated by Vilenkin (1988) [139] is that 

"At singular boundaries of Superspace, the wave function includes only 

outgoing modes (carrying flux out of Superspace)." 

The definition of ingoing and outgoing modes is similar to that of positive­

and negative-frequency modes, with the direction toward the boundary play­

ing the role of "time" direction. We briefly summarize what is meant by a 

boundary in Superspace [110]. It consists of singular configurations which 

have points or regions with infi~ite three-curvature (3) R, or where the scalar 

field is infinite, or its gradient ( od> )2 diverges, including configurations of 

infinite three- volume. 

It is important to note that for a three-metric hij = D.2 hij, where hij 

has a unit determinant, then the configurations with n -+ 0 but hij and </> 
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nonsingular do not necessarily correspond to four-dimensional singularities. 

It is assumed that we can divide the boundary of Superspace into two parts: 

. 1) The nonsingular boundary of Superspace, that includes three­

geometries hi; which can be attributed to the slicing of only regular four­

geometries g µ11. 

2) The singular boundary of Superspace, which includes the rest of the 

boundary. 

We express the semi-classical wave function as 

( 4.1) 
n 

which is necessarily complex, and where the phase Sn satisfies the 

Hamilton-Jacobi equation in Superspace (see Chapter 2, Section 2.6) 

and the current for the nth term of ( 4.2) 

( 4.2) 

The tunneling boundary condition essentially means that any congruence of 

classical paths defined by Sn are allowed to end at the singular boundary of 

Superspace, but none are allowed to begin there. That is, the vectors - '\J Sn 

should point out of Superspace at the boundaries. In addition, a supplement 

to the boundary condition is that 

l'111<oo. ( 4.3) 

For a Mini-Superspace model with a homogeneous and isotropic scalar 

field</>, and FRW metric (see eqn 2.15, Chapter 2) for a closed universe, the 
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Wheeler-De Witt equation 2.20 without a cosmological constant ( A = O) 

has a superpotential 

( 4.4) 

where the potential is assumed to be a slowly varying function of <P and far 

from the barrier V( <P) = 1/ a2 : 

I 
dV( <P) I d</J ~max{ I V(<P) I, 1/a2

}. (4.5) 

(There is also the condition V ~ 1 for the classical approximation to remain 

valid.) This justifies omitting the ¢>-derivative term in the Wheeler-De Witt 

equation (2.20), which now reads 

[ a2 a ] 
a2 aa2 +pa 8a + W(a, </>) w(a,¢>) = 0. (4.6) 

Since the factor-ordering p does not affect semi-classical probabilities we 

may choose p = -1 and introduce a new variable 

so that '11 ( 1J) satisfies 

[ ::2 + 1J l '11 = 0 . 

With hindsight [139, 140) we choose Airy function solutions with -appropriate 

asymptotic forms 

Ai ( 1J) 
1 -1/4 -27)312 /3 

~ 2yf7rz e (4.7) 

~ _1_7}-1/4 sin ( ~7}3/2 + ~) 
yf7r 3 4 

( 4.8) 

in the limit 1J ---too. Now the Tunneling wave function WT has to satisfy the 

requirement that only the outgoing wave should be present in the classically 
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allowed region (iw- 18\I!/8a > 0 for V > a-2
). Hence for V(<P) < 0, 

WT = Ai( I T/ I ) 
Ai( I T/O I ) (4.9) 

where T/o = T/(a = 0). In the classically allowed region far from the barrier, 

T/ is large and positive while T/o is large and negative, so that the asymptotic 

forms ap:ply. We therefore write the approximation for a2V(¢>) > 1 

. [ 1 + i( a
2
V - 1 )

3
1

2 l \I!T ~ e'7r/4( a2V - 1 )-1/4 exp - 3V. (4.10) 

and in the classically forbidden region a2V(¢>) < 1 for both positive and 

negative values of V(</>), 

[ 
( 1 - a2V )3/2 - 1 l 

\I!T = ( 1 - a2V )-1!4 exp 
3
V ( 4.11) 

It is possible to obtain the Hartle-Hawking wave function \I! H by the 

transformation 

For a general three-metric hii -+ ei7r hii and the corresponding transformation 

of the potential V( ¢>),the Superspace Wheeler-De Witt equation remains in­

variant [139]. Equation 4.11 is interpreted to describe an ensemble of classical 

universes after nucleation. vVe proceed to determine the probability distri­

bution for the initial states of the Universe, characterized by the scalar field 

</>at the barrier V(¢>) = a2 and the initial conditions a = 0, ¢> = 0. The 

conserved current (2.24 in Chapter 2) has components 

·if> 
J 

and continuity equation 

~aP( \J!* 8 \J! - \J! 0 \J!*) 
2 

a a 

- ~ap-2 ( \I!* 8q, \I! - \I! 8q, \I!* ) 
2 
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Since the classical configurations represented by the wave function 4.11 in­

clude only expanding de Sitter spacetimes 

a~ v-1l 2cosh( v1 l 2t) ' <P ~ const. 

problems with negative probabilities do not arise. Hence the scale factor 

is a good "time variable", so that at every "instant" of scale factor a, the 

component ja can be interpreted as the probability density for </>, provided it 

is properly normalized. We formally the probability density from equations 

4.11-4.12, with p = 1: 

PT(a,</>) = CTexp [- 3V~<P)], ( 4.14) 

where 

-1 J, [ 2 l CT = d<f>exp - . 
[V(cfi)>O] 3V(<f>) 

( 4.15) 

has been defined so that PT( a, </>)d</> is the probability for the scalar field to 

be between </> and </> + d<f> at the "instant" when the scale factor has value 

a. Since the probability is obviously independent of a ( since </> is approxi­

mately constant along pencils of classical trajectories ), the conservation of 

probability is trivially satisfied: 

aa J jad<P = 0 . 

Proper normalization requires that the integral 4.15 converges; this oc­

curs if 

1) V(<f>) < 0 as</>-+ ±oo, or 

2) V(</>)-+ 0 faster than 2/31n I</> I, or if 

3) </> is a cyclic variable in a finite range 0 < </> < </>0 where the points 

</> = 0 and </>0 are identified. ' 

For sufficiently slow growth of the potential at large </>, the initial state 

leads to the "chaotic" inflation of Linde (1984) [103, 104, 105). The largest 
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nucleation probability is at the highest maximum of V ( ¢>), corresponding to 

the initial condition required in the New Inflationary Scenario. Hence the 

Tunneling wave function naturally predicts inflation. 

On the contrary, if the maximum of V(¢>) is very close to zero, the initial 

density of the Universe is much lower than Planck density m~, so that the 

whole history of the Universe is semi-classical. 
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4.2 The Hartle-Hawking wave function 

4.2.1 The Path Integral Formulation 

The alternative to the canonical quantization procedure discussed in the 

previous sections is the path integral method: The wave functional is an 

Euclidean functional integral over a certain class of four-metrics [9µ 11 ] and 

matter-fields [~], weighted by e-1
E, where IE is the Euclidean action of the 

gravity plus matter system. The wave functional 

'11[ hij, ~' B] = L j 'Dgµ11 'D~ e-IE 

M 

( 4.16) 

is the sum taken over the class of manifolds M for which the three-surface B 

is part of their boundary, and over the class of four- metrics [9µ 11 ] and matter­

fields [~]which induce the three-metric hii and the matter-field configuration 

~ on B. The path integral ( 4.16) is weighted by the Euclidean action (and 

not the Lorentzian action) in order to pick out '11 as the ground state wave 

functional, and possibly to more easily deal with topology, avoiding the ob­

structions due to singularities in the Lorentzian theory. The measure 'Dgµ 11 

includes the product of the differentials dg00 • • • dg33 for each member of the 

class [9µ11], and similarly for the measure v~. 

A particular problem with this formulation is that the gravitational action 

is not bounded from below, so the path integral diverges if we integrate over 

real Euclidean metrics. Only by integrating along a complex contour in the 

space of complex four-metrics does the integral converge. Nor is there any 

unique contour, or for that matter, an exact and explicit prescription for the 

scale (or conformal) factor contour. So the wave functional depends crucially 

on which contour one chooses. Although there is no precise relationship, this 

problem is closely related to that of choosing boundary conditions on the 

wave functional. (More on these matters later.) 
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Provided that the action IE, measure, and class of paths summed over 

respect an invariance generated by the Hamiltonian constraints, Halliwell and 

Hartle (1990) [62] have formally shown that the wave functionals generated 

by the path integral (2.15) indeed satisfy the Wheeler-De Witt equation 

(2.10) and the momentum constraints (2.9). This formulation of the wave 

functionals is essential for a discussion of the so-called Hartle-Hawking wave 

function of the Universe. 

4.2.2 The No Boundary proposal 

This proposal made by Hartle and Hawking [65] is essentially a topologi­

cal statement about the class of histories summed over. The No Bound­

ary proposal says that the three-surface B is the only surface of a compact 

four-manifold M, on which the four-metric g1w induces hij on B, and the 

matter-field configuration </>matches~ on B. (See fig. 4.1.) 

For a manifold M of the form 1?.. ® B, with closed four-geometries that 

have vanishing shift Ni = 0 and constant lapse N = 0, the path integral 

reduces to 

In two-dimensional Mini-Superspace, such a path integral will have an 

Euclidean action IE, for the homogeneous and isotropic scalar field </> and 

Friedmann-Robertson-Walker metric. (This is obtained by the substitution 

t--+ -iT 

in the Einstein scalar action 2.16 in Chapter 2.) If we represent the final 

surface B by r = 1 in terms of time-parameter r, and label the initial point 

by r = 0, then for the four-geometry to close in a regular way as the scale 

46 



8 

Figure 4.1: A pictorial representation of the class of histories summed over 
in the calculation of the No Boundary wave functional w[hii, ¢, B]. 

factor tends to zero we have to impose the initial condition 

1 da 
a(O) = 0 or N dT (0) = 1, ( 4.17) 

but not necessarily both (58]. Since the Euclidean action IE leads to the 

Euclidean field equations (i.e. the Euclidean analogue of the Lorentzian field 

equations 2.17 - 2.19) it is easy to verify that this condition compels the 

scalar field to satisfy the initial condition 

~~(0)=0 ( 4.18) 

Hence, we conclude that the No Boundary proposal applied to Mini­

Superspace is equivalent to specifying initial conditions ( 4.17 and 4.18) for 

solutions to the field equations. Furthermore, the fact that the four-metrics 
- -

induce hij and </> matches </> on B, is translated into the final condition that 

a(l) =a, and </>(I)=¢ ( 4.19) 
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in Mini-Superspace. However, these boundary conditions still fall short in 

giving unique solutions to the field equations (for an example, see [64] ). But 

now the path integral has a number of saddle-points (i.e. where ~ = 0) , 

each of .which contribute to the integral by an amount ,...., e- 1~, with I~ the 

action of the solution corresponding to saddle-point k. 

Nor do the boundary conditions ( 4.2 - 4.4) restrict the complex contour 

along which the lapse N is integrated. In fact, for every contour there exists 

a different path integral wave function solution W NB· 

In an attempt to determine which saddle-point makes the dominant con­

tribution to the path integral, Halliwell and Louka (1989) [58] found that 

there are a number of inequivalent contours along which the path integral 

converges, each dominated by different saddle-points, again leading to differ­

ent forms of the wave function. Indeed, the No Boundary wave function of 

Hartle and Hawking is uniquely determined only after supplementing extra 

information to fix the contour. For instance, Hartle and Halliwell (1989) [56] 

suggested restricting the possible contours on the grounds of mathematical 

consistency and physical prediction. 

Hartle and Hawking [65] gave heuristic arguments to support their thesis 

that a saddle-point will provide the dominant contribution only if the chosen 

contour in the path integral may be distorted into a steepest-descent contour 

along which the saddle-point is a global maximum. This allows them to 

derive a semiclassical form for the No Boundary wave function: 

a) the wave function should be exponentially growing in the scale factor 

a in the cl~ssically forbidden region a 2V ( </>) < 1 

[ 
1 - ( 1 - a 2V )312 

] 
W NB = ( 1 - a 2 V t 1/ 4 exp 3 V ' ( 4.20) 
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b) and contains equal contributions from contracting and re-expanding 

modes for the classically allowed region a2V > 1 : 

[ 
1 l [ ( a2V - 1 )3/2 7r l '11 NB = 2( a2V - 1 )-

1
/

4 
exp JV cos JV - "4 ( 4.21) 

This wave function represents an ensemble of both expanding universes and 

contracting universes. Since the total wave function is real , the current J is 

identically zero. Anyway, the probability distribution for expanding universes 

is readily given by equations 4.14 and 4.15 of Section 4.1, and reads 

( 4.22) 

where 

CNk = 1 d</>exp [ 3V~</>) l · 
( V(t/>)>O] 

( 4.23) 

Clearly the integral di_verges when V(</>) = 0 for certain values of</>. The 

probability distribution appears to be n~rmalizable only if 

1) V(</>) is strictly positive, and 

2) </> has a finite range. 

Since the maximum nucleation probability now corresponds to the true 

minimum of V( </>),it is not so clear how inflation will be predicted. 
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4.3 No-Boundary vs Tunneling proposal 

We have seen that both the Tunneling and the No Boundary wave functions 

are peaked at about the same set of solutions to the field equations, whose 

first integral is equation 2.23 of Chapter 2. These solutions are inflationary for 

a slowly varying scalar field ¢> ~ ¢>0 = constant along pencils of trajectories. 

To determine which pencils lead to sufficient inflation in order to resolve 

outstanding problems in the standard model of the Hot Big Bang therefore 

depends directly on ¢>0 • 

It is therefore interesting to see which of the two proposals is more rea­

sonable in its predictions. It is clear from 4.14 and 4.23 that the respective 

probability distributions differ by a sign: 

dPNB/T ~exp [ ± 3V~¢>) l def> (4.24) 

( +) for the No Boundary, (-) for the Tunneling proposal. Hawking and 

Page (1986) [79] argue that values of ¢> for which the initial density is too 

small should be excluded, and suggest that we should calculate conditional 

probabilities with the condition the density of the Universe is over a given 

range. We therefore assume that for a chaotic potential, the initial value of 

¢> lies in a certain range 

ef>min < ¢> < ef>max · 

As outlined by Vilenkin [141], sufficient inflation is achieved if ef>o > ¢>min, 

and is not achieved if ef>o < ef>max· Given the range (ef>min, ef>max), suppose that 

¢> = ef>suf is the value of the scalar field within this range when sufficient 

inflation has occurred. Then the probabi!ity for sufficient inflation is the 

conditional probability (see equation 3.2 in Chapter 3) 

f¢ma:r def> e( ±2/3V ) 
J¢,u/ 

J:¢ma:i: def> e( ±2/3V) . 
¢mon 
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Figure 4.2: A plot of l\J!l 2 against</> on a hypersurface of constant scale factor, 
for the Tunneling wave function and one component of the No Boundary wave 
function. 
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The Tunneling proposal (-) has by far its largest contribution from the 

region </> > ef>suf, so that the conditional probability for inflation is of the 

order unity (fig. 4.2). 

The No Boundary proposal ( +) receives its largest contribution from the 

region very close to </>min, a very small cut-off. The conditional probability is 

therefore very close to zero, so that sufficient inflation is not predicted. On 

the other hand, Hawking and Page [79] assumes that </>max ~ oo, and argue 

that despite the peak close to </>min, the contribution to the integral from this 

region is overwhelmingly outweighed by that from very large values of ¢>. 
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Chapter 5 

A Measure of Inflation 

5.1 An infinite period of inflation? 

D.N. Page [117] claims that the No Boundary proposal applied to FRW 

Mini- Superspace suggests that the Universe may have had an infinite period 

of inflation. 

If the scalar potential V ( q)) rises monotonically well past unity for large 

l<PI, so that 

V(<P) ~ 1 

and 0 < I dlnd:(q)) I~ 6 

(5.1) 

(5.2) 

for all larger values of l<PI, then the wave function of the Universe is a solution 

of equation 2.20 with p = 1 and A = 0: 

Jo(z) 

with z ~a3~' 
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i.e. a zero order Bessel function J0 • For large z the wave function oscillates 

rapidly with the WKB form 2.25 

where the prefactor is just C = (27rz)-112 , and the phase 

1r 
S= --z 

4 

obeys the Hamilton-Jacobi equation 2.22, i.e. 

(V' S) 2 + a3 V( <P) - ka = 0 

for curvature k = -1, 0, +1, in the Mini-Superspace metric 2.21 with the 

lapse constant N = 1: 

(5.5) 

The integral curves of V'S represent the trajectories 2.23 of the semi­

classical wave packets of which \JI is a superposition, and along each of these 

trajectories there exists an affine time parameter t, satisfying 

d 
dt =vs. V'. 

So the No Boundary wave function gives a superposition of a subset of all 

allowed semi-classical wave packets. For instance, the wave function (3) gives 

classical solutions for which l<PI, V and z are all large have the inflationary 

form 

a 
y'Vij)' (5.6) - f"V 

a 

1 dV( <P) 
6y'Vij} d<P 

(5.7) 
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where the derivatives are with respect to the conformal time t. The solutions 

are then labelled by one parameter </>0 , say at the first root j 0 ,1 of the Bessel 

function Jo(z). A quantum regime exists for z ~ j 0,1 , where there is no good 

classical notion of time. The classical regime occurs for z 2:: j 0 ,1 , since W has 

an oscillatory WKB form there. The probability per unit time t contributed 

by W + along a pencil of trajectories is proportional to the flux F of the 

conserved current :1 of W +, so that the flux per range of <Po is asymptotically 

constant for large </>0 , i.e. 

dF 3 _2 ) 

d</>o = 27r + O( <Po · 

This leads to a divergence of the total flux at l</>ol = OO: hence the proba­

bility per unit time is dominated by contributions from arbitrarily large l</>ol, 

where the potential energies diverge. 

Page [117) now tries to assess the amount of time the classical solution 

spends in the inflationary regime described by equations 5.6 and 5. 7. It is 

clear from equation 7 that the time taken for </> to drop from </>0 to some 

fixed value where inflation ends, will diverge as </>0 becomes large and if the 

potential V ( </>) does not increase faster than quadratic in </>. The power-law 

scalar field potential 

(5.8) 

is that of a free massive scalar field for p = 1, and chaotic if p = 2. For 

0 < p ~ 2, equation 7 yields 

t - to ~ 3(l</>ol2-p - l</>12-p) ~ ]_ ln (<Po) ' 
m(2 - p)./Pf2 m </> 

(5.9) 

which diverges as <Po -+ oo. 

Since the largest contribution of the trajectories come from large </>0 , al­

most all have an arbitrarily long period of inflation. For large values of the 
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potential, the spatial curvature becomes negligible in the classical field equa­

tions 2.17 - 2.19, so we may put k = 0. They integrate to give for </> ~ p/3, 

with 

and 

t = 3 (-</>2-p + 2 - P </>-p - P4 -12p3 + 24p2 </>-p-2 + O(</>-p-4)) 
mVif2 2 - p 18 648(p + 2) 
+ const. 

Inflation requires that 

if I H2 
.:g:: 1 ' 

i.e. equation 2.18 gives 

for the Hubble parameter H, so that we restrict 

l<PI '?_ P · (5.10) 

This leads to a duration of inflation of the order 

3(l</>ol2-p - P2-P) 
~t'.:::'. CM' 

m(2 - p)y p/2 
(5.11) 

which diverges as l</>ol -+ oo, for 0 < p ~ 2. 

Since l</>I decreases monotonically from infinity during inflation, we may 

use it as a time coordinate. For arbitrarily large l</>ol, it would appear that 

the scale factor a diverges, but since this gives effectively a k = 0 model, we 
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rescale the comoving coordinates to have a finite range and make the rescaled 

a finite: An explicit choice could be 

anew= <P-1
1

3
exp (-

2
: </>2 + 0(</>-2)) 

during inflation. The spacetime four-metric now approximates to 

_ ~</>2-2pd</>2 + </>-2/3e-3<P2/p(dx2 + dy2 + dz2) 
m~ ' 

(5.12) 

(5.13) 

which gives a Universe that has an infinite classical history, yet the spacetime 

is still singular in the sense of being geodesically incomplete [73]. The proper 

time to go from a = 0 to some finite a = a1 is just 

r1 H-1da 

lo (P2 + a2)1/2 ' 

which is finite for positve H and positive spatial momentum P 2 = 
'°' a4 (dx'/dT) 2

• The null and spacelike geodesics are also incomplete: L..ix,y,z 

For a null geodesic with affine parameter >., 
rl da 

.6.>. = 1
0 

PH' 

while the spacelike geodesic with proper length s has 

r1 H-1aa 
.6.s = lo (P2 - a2)1/2 ' 

which are both finite. Hence the age of the Universe may be infinite , even 

though its size is finite. This is a counter-example to the common notion 

that the Universe must have a finite age and that its classical evolution 

could not have started at curvatures above the Planck value. We believe 

it more likely that these results highlight the shortcomings associated with 

models constructed from quantum Mini-Superspace. This is due to the many 

strong assumptions made when "'freezing" out extra degrees of freedom. It 

may also be because Einstein-Hilbert gravity and quantum cosmology is just 

an effective theory at large scales which is missing higher order corrections 

comming, for instance, from string theory. 

57 



5.2 Higher order corrections 

Given the appropriate action 2.16 that result in the field equations 2.17 -

2.19 with vanishing cosmological constant and power-law potential 5.8, we 

now discuss in greater detail how the Hartle-Hawking No Boundary proposal 

enables us to impose initial conditions to these equations. In addition, the 

phase S of the WKB approximation is obtained by analytical continuation of 

the Euclidean action for compact metrics and regular matter-fields. Similar 

to the previous section, we are able to solve the Lorentzian field equations in 

terms of an affine time variable t , but now more accurately (25]. We see that 

such solutions exhibit a period of exponential inflation, as anticipated. The 

requirements for sufficient inflation are then outlined. 

5.2.1 Lorentzian initial conditions 

In the Euclidean regime the No Boundary proposal is equivalent to the initial 

conditions 4.17 and 4.18. The potential V of the scalar field <P acts as an 

effective cosmological constant when <P is large and roughly constant <P ~ </J0 . 

Since inflation does not last forever (the present Universe is not expanding 

exponentially), the effective cosmological constant must eventually vanish as 

time passes. Thus, the full set of initial conditions are conditions 4.17 and 

4.18 with the addenda 

<P(r=O)=</Jo. (5.14) 

The corresponding value for the potential is H6 = m2 </J~P /2p, in terms of the 

Hubble constant at T = 0. Since the Euclidean Path Integral (EPI) is taken 

over compact four-metrics, the scale factor a( T) has to vanish for some value 

of T we can choose to be zero (25]. Th11s, for large </Jo, we have 

a(r) = H01 sin(Hor), 

consistent with the initial conditions 4.17, 4.18 and 5.14. Now we perform 

the analytic continuation to Lorentzian spacetime: 
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In the WKB ansatz 2.25 for the wave function, the phase S is chosen 

to satisfy the Hamilton-Jacobi equation 2.22 while the No Boundary pro­

posal picks out a solution to this equation that corresponds to the analytic 

continuation of the Euclidean action 

(5.15) 

This corresponds to the action of the smaller part of a four-sphere of radius 

/2P/m</JP, bounded by a three-sphere of radius a, and it generalizes what 

has been done in the case of the massive scalar field [75]. The solution to the 

Hamilton-Jacobi equation 2.22 is therefore the analytic continuation of IE, 
and at large <P it is given by the phase 

S '.::::'. - 2p (a2m2¢2p /2p - 1)3/2. 
3m2<jJ2P (5.16) 

The application of this method yields, for r = 7r /2H0 +it, see [100] : 

a(t) = H01 cosh (Hot) 

at very small times t, for large and constant <P( t) = <Po. So the minimum 

value of a in the Lorentzian regime is equal to the maximum value of a in 

the Euclidean regime, while the initial conditions for a differ vastly : 

a(t = 0) 

a(t = o) 

./2iJ --;y = ao 
m'Yo 

0. 

The initial conditions for the scalar field are 

<P(t = 0) 

~(t = 0) 
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<Po 

0. 

(5.17) 

(5.18) 

(5.19) 

(5.20) 



The phase S defines the first integrals 2.23 of the system, 

a 

</> 

besides the Friedmann constraint 

. (5.21) 

(5.22) 

(5.23) 

The phase itself, up to the first order correction to that of Section 1, reads 

m 3 P ( 3p ) S ~ - 3..j2pa </> 1 - m2a2<f>2P • (5.24) 

which is an approximation of equation 5.16 for large a, such that a "' eHt /2H 

(i.e. equation 5.24 holds in the range [ti, t]. The Lorentzian Hartle-Hawking 

trajectories (106] then explicitly have 

,;. _ p ,J,p-1 
<y- ---m'f' 

3y/2p 

and 

<:_ = m <f>P / J'fii . 
a 

Integrate over the time interval [ t 1 , t ] , we find 

</>( t) ( 

p ) 1/(2-p) 
</>

2
-p - (2 - p)--m(t - t1 ) 

1 3..j2p 

a(t) = a, exp [;;, J.: ( ~:-p - (2 - p) 
3
j.q; m( t' - t1 ) )'"'-p) dt'] , 

fo; every p =J 2, with a2 = H0
1 cosh (H0 t 1 ). 

For the case of the chaotic potential p = 2 [105], the integrals yield 
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and 

a = a2 exp { 
3:~ [ 1 - exp (- 3~(t - t1))]} . 

For very early times when t - t 1 is very small, the inflationary formula 

for any p is approximately 

a(t) ~ a2 exp [ m</>i(t - t1)/ J2PJ ~ ~ao exp (~</>it) , (5.25) 

where the scale factor at the end of inflation is~ a2 exp (3</>i/2p) and assum­

ing that </>1 ~ <Po. 

5.2.2 Minimal conditions for sufficient inflation 

In order to solve the horizon and flatness problems [52, 105] the inflationary 

formula has to satisfy the condition 

a(t) 2: 1028a0 ~ aoexp ( 65). 

If we put t = f3t f where t f denotes the time at the end of inflation, and for 

/3 in the interval (0,1], we find the constraint 

_.!!2_,+.2 ~A.2 l (A. /A. ) > (65 + ln 2) 
V2P'P1 t1 + 

2 
'P1 n <pl 'P 1 _ 

/3 
(5.26) 

for the chaotic potential, where 

Generally, for p > 2, we have the constraint 

m ,+.P 3 (<1>1)P A.2 (65+ln2) 
V'JP'P1t1 + P(R- 2) </>1 'Pf 2: /3 . (5.27) 

In this case, we have the duration of the inflationary era 
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These are minimal requirements since a thorough inflationary model also 

has to solve other problems, e.g. the origin of the energy density fluctuations 

to account for galaxy-formation. 

5.3 How probable is Inflation ? 

5.3.1 Towards a representative model 

So far we have seen how the No Boundary proposal leads to a wave function 

that possess, amongst others, the feature of sufficient inflation. However, 

this is not the only possible choice of boundary condition for a wave function 

defined in Superspace, so the question arises whether a sufficiently long period 

of inflation is a property of a "typical" wave function. 

Gibbons and Grishchuk [38] attempted to clarify this issue using a model 

of a two dimensional Mini-Superspace describing a free massive scalar field <P 
in a closed FRW universe with scale factor a. Various aspects of this model 

have been studied at both classical [42 , 39) and quantum [77, 79, 51) level. 

We broaden the scope of their [38) arguments somewhat by applying it to a 

scalar field with the power-law potential 5.8 already encountered . Of course, 

we can instead of m 2 /2p, simply read >../2p, the self-interaction constant used 

in [25, 75, 85, 103, 104, 105, 106, 117), for p-=/= 1. 

The Wheeler-De Witt equation 2.20 has the form 

--aq- - -- - a + -<P a '11 a, <P = 0 , ( 
1 a a 1 8

2 2 m
2 

2p 4) ( ) 
aq oa oa a 2 8¢2 2p 

(5.28) 

where q reflects the factor-ordering ambiguity. In the inflationary regime as 

outlined in Section 2, we define 

m2 
H 2 = -<P~P = const. 

2p 
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Figure 5.1: The potential vV(a) = a2 
- H2a4 for H 2 = 1.0. 

One neglects t~e term -(1/a2)(fJ2 /8¢>2
) in this regime, so that the model 

exhibits the features of a closed universe with a cosmological constant H2 • 

The case q = -1 [38) has equation 

( 
d 1 d 2 2 4) a--- - a + H a w(a) = 0. 
daa da 

(5.29) 

The solutions to this equation are Infeld, Macdonald and Hankel special 

functions with argument ±(H2a2 -1) [38 , 51). Equation 5.29 has the form of 

the Schroedinger equation for a one-dimensional problem with superpotential 

W(a) = a2 
- H 2a4

• The turning point is at a= H-1 (see fig. 5.1). 

The ordinary semiclassical probability for the system to tunnel from one 

classically allowed region to another, has the value 

D - I w(a2) 12 
- w(ai) ' 
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always less than unity for quantum tunneling. We define a similar quantity 

D in quantum cosmology, except that its physical interpretation is not so 

clear: 

= l'iJ!(H-1)12 
D 'iJ!(O) . (5.30) 

Provisionally, we define D as the probability coefficient describing the cre­

ation of the Universe from "nothing". It is then likely that the wave functions 

predicting D < 1 describe quantum tunneling. It is possible to show [51] that 

provided H ~ 1, the Hartle-Hawking wave function gives 

To answer the question of how many such wave functions there are, we con­

sider the space of all possible wave functions and introduce a suitable measure 

on this space. 

Since the system has only two linearly independent states, we introduce 

an arbitrarily chosen, suitably normalized basis of states 11 > and 12 >. A 

general state can be expanded as 

where Z1 and Z2 are complex constants. Then D can only depend on the 

ratio ( = Zif Z2 = x exp ( i b), parameterizing the points on a two-sphere. In 

fact, it was shown (51] that in the approximation H ~ 1, 

D ""H-2l 3 x-2 exp (-;;
2

) • 

The set of possible wave functions is in 1-1 correspondence with the points 

on the two-sphere. The effective physical (unitary) transformations acting 

on the space of quantum states is the rotation group S0(3) = SU(2)/C2 , 
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where C2 is the group consisting of + 1 and -1. This acts on the two-sphere in 

the usual way provided bis the longitudinal angle and x = cotan(~O), where 

e is the co-latitude. 

In terms of the ratio (, the line-element on the two-sphere is 

and the volume element 

dV = 4(1 + ((t2d( /\ d(. (5.31) 

The quantum analogue of the principle of general covariance is that the 

measure is invariant on the space of quantum states, which will be the volume 

element of the two-sphere: 

dV = sin OdOdb . (5.32) 

If we define a new variable (51] y = arctan x = (7r - 0)/2, then dV = 
2 sin 2ydydb, with 0 :=::; y :=::; 7r /2 and 0 :=::; b :=::; 27r, and the surface area 

corresponding with the wave functions D > 1 : 

y < Yo = exp ( - ;;2 ) 0 :::; b :::; 27r 

is very small compared to the surface area of the two-sphere. So the ratio of 

wave functions that predict D > 1 (among them the Hartle-Hawking wave 

function) at the point 0 = 7r and those that predict D < 1 is just 

Y6 « 1 , 

i.e. very small indeed. Hence the probability of finding a wave function with 

D > 1 is minute. 

65 



5.3.2 Asymptotically flat curvature 

In the limit that the curvature term -a2 becomes negligible [38, 117] (see 

Section 1), the Wheeler-De Witt equation reduces to 

--a- - -- + -<fJ2
Pa

4 w(a, <P) = 0. (
1 a a 1 82 m 2 

) 

a aa aa a 2 8</J2 2p 
(5.33) 

In the WKB approximation 2.25, the phase S satisfies the Hamilton-Jacobi 

equation 2.22 and has the form [38] 

S(a, <P) = -a3F(<P) 

and F satisfies the equations 

a 

a 

dF 

d</J 

3F. 

(5.34) 

(5.35) 

(5.36) 

Different solutions to F correspond to different trajectories in the <P - J 
plane of fig. 5.2 starting from the Big Bang, the repulsive knots K1 and K2. 

All trajectories are woven around the stable focus P that corresponds to the 

final stages of inflationary expansion with k = 0. The boundary of the circle 

correspond to infinity, J2 + m 2 </J2 /2p = oo. The two attractive separatrices 

S1 and S2 correspond to the solutions [25] 

m 
F(<P) =±-<PP 

3$p 

and represent the Hartle-Hawking wave function 
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Figure 5.2: The compactified </> - </> phase plane. 

Now for different solutions Fn denoted by the discrete index n , there are 

different wave functions Wn that may sum to an arbitrary wave function of 

the form 

n 

It is possible to show that to every trajectory in the </> - </> plane one can 

assign a conserved quantity Qn, corresponding to different Fn. Some of these 

solutions will be "unfavourable" as opposed to "favourable" with regards to 

having sufficient inflation. That is, for N different wave functions '11 n form­

ing a linear superposition, with n' denoting those peaked around favourable 

trajectories, and n" those not, such that their totals N' , N" add linearly 

N' + N" = N, then the wave function 

N' N" 

W=LWn•+LWn 11 

n 1 n 11 
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can be characterized by the number P reflecting the amount of inflation, 

So what is the mean value of P ? Well, as in the case of the cosmological 

constant model, the state J \JI > can be expressed as a sum of the basis states 

Jn>, 
N 

JW' >= L Zn Jn> 
n=l 

where the coefficients JZnJ 2 = Qn, each n. We assume such bases Jn > are 

normalized. Then the space of physical states may be parameterized by N -1 

complex ratios { (n}, with (n = Zn/ZN, n = 1, 2, ... , N - 1. 

They form coordinates to an (n-1)-dimensional complex manifold, known 

as "complex projective space" cpN-l _ There is an effective symmetry 

SU(N)/CN, where CN is the cyclic group generated by multiplication by 

exp (27ri/N). The cpN-l space is homogeneous with respect to this group, 

so there is a unique invariant measure in terms of coordinates {(n}, given 

by the Riemannian volume measure with respect to the invariant metric on 

cpN-l (known as the "Fubini- Study" metric). It is given by 

(5.38) 

The "amount of inflation" P over the C pN-l space endowed with this 

measure has an average value 

(5.39) 

A reasonable choice of states Jn > can be obtained by dividing the "quantum 

boundary" where the energy density ¢2 + m2 <f>2
P /2p reaches its Planck value 
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m;, which constitutes a Cauchy surface for all trajectories in <P- ~space, into 

N equal intervals. One of the trajectories in a given interval can play the role 

of a representative. It is then possible to show that N' / N = 1- /3m/ .J2Pmp, 
where /3 = 0( 1). Thus, inflation indeed seems to be a property of a typical 

wave function provided m ~mp and the power p = 0(1). 
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Chapter 6 

Time in Quantum Cosmology 

"The physical space I have in mind (which already includes time) is therefore 

nothing but the dependence of the phenomena on one another. A completed 

physics that knew this would have no need of separate concepts of space and 

time because these would already have been encompassed." 

-Ernest Mach (1866) 

"By an old sundial motto, the time thou killest will in time kill thee." 

-Karel Kuchar (1992) 

6.1 The problem of Time 

A fundamental problem in quantum cosmology is the lack of a natural proba­

bilistic interpretation of the wave function [91], as outlined in previous chap­

ters. Closely related to this is the "problem of time" in any generally co­

variant theory. (The concept of general covariance applies to a theory like 

70 



General Relativity, for instance, in which gravitational phenomena are de­

scribed by the spacetime metric alone; no one family of spacelike surfaces is 

preferred over any other [70].) We also learnt that the concept of probability 

is tenable only when one can specify with respect to which time variable it 

is conserved (see for instance Section 2.6, Chapter 2). 

Due to the peculiar role that time plays in the usual framework of Hamil­

tonian quantum mechanics, the latter is insufficiently general for quantum 

cosmology. The observable Universe seems to have a fixed classical geometry 

that yields the notion of "preferred time" in quantum mechanics. Despite 

the presence of many foliating families of spacelike surfaces in the spacetimes 

of special relativity, different choices of such families to define a preferred 

time of quantum mechanics all give equivalent results. Similarly, General 

Relativity is generally covariant. 

However, since we expect quantum fluctuations of spacetime in the very 

early Universe, there is no fixed background to define a notion of causality. 

So quantum mechanics constructed from two different choices of preferred 

spacelike surfaces may not be unitarily equivalent [99, 89]. The fact that 

spacetime is treated as a dynamical quantum variable may compel us to 

formulate a Hamiltonian quantum mechanics with time variable other than 

a family of spacelike surfaces in spacetime. This would be a generalization of 

familiar quantum mechanics provided the usual formulation with a preferred 

time variable emerges in the appropriate limit [70]. The generalization of 

quantum mechanics with the spacelike hypersurface as preferred time variable 

is just one such possibility. 
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6.2 The Arrow of Time 

We briefly concentrate on the intriguing disparity observed in the time sym­

metry of the fundamental laws of physics and the time symmetries we en­

counter in the real Universe. To mention those peculiar to cosmology (32, 

118, 146]: 

(a) The thermodynamic arrow of time - approximately isolated systems 

almost all evolve towards equilibrium in the same direction of time. 

(b) The arrow of time of the approximately uniform expansion of the 

Universe. 

( c) The arrow of time supplied by the growth of inhomogeneity in the 

expanding Universe.1 

Such time asymmetries could arise from time-symmetric dynamical laws 

solved with time-asymmetric boundary conditions (32]. For example, (a) is 

implied by an initial condition that would make conditions in the very early 

Universe far from equilibrium. Asymmetries (b) and ( c) may follow from 

an initial Big Bang of sufficient spatial homogeneity and isotropy, given the 

attractive nature of gravity. 

Since Quantum Cosmology is primarily a theory of the boundary con­

dition( s) for our Universe, it is the perfect environment to address the ori­

gin of time asymmetries. Hawking (78], Page (114) and others (63, 100) in­

vestigate the emergence of the thermodynamic arrow of time from the No 

10ther asymmetries are the Psychological arrow of time - we remember the past but 
not the future , the time-direction inherent in Retarded Electromagnetic Radiation , and 
the arrow of time supplied by the GP non- invariance of the weak interactions and the 
C PT invariance of field theory. 
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Boundary proposal. In the classical framework, Penrose [118] and others 

[82, 78, 114, 53, 80] have imposed time-asymmetric initial and final condi­

tions on the Einstein field equations. 

In the Copenhagen interpretation, the laws of quantum mechanics nor­

mally incorporate an arrow of time in the sense that for exhaustive sets of 

alternative histories { ak} at instants t 1 < t2 < ... < tn, the probability for a 

particular history in the exhaustive set of histories is given by 

where {Pa"k(tk)} is the set of projection operators in the Heisenberg pic­

ture representing an exhaustive set of alternatives { ak} at time tk, and the 

density matrix p describes the initial state of the system, and with usual 

time-ordering from the density matrix to the trace [70]. This formula there­

fore exhibits an asymmetry between 'future' and 'past', defining the arrow of 

time in ordinary quantum mechanics that in turn implies the familiar notion 

of causality. The conditional probabilities for future are 

(6.2) 

The present time t lies between the instants tk and tk+I · These probabil­

ities can be expressed in terms of an effective density matrix PeJJ(tk) at the 

instant tk, and reads 

Tr [ P:,. (tn) ... P:k:~ (tk+i)Pef 1(tk)P:k:~ (t1) ... ] , 

where the effective density matrix is 

P:k (tk) ... Pif
1 
(t1)pPif

1 
(t1) ... P:k (tk) 

PeJJ(tk) = ---------­
p(ak, ... a1) 

(6.3) 

Given the history ( ai, ... ,ak), then the effective state of the Universe at the 

time tk is given by the density matrix PeJJ(tk), as seen in the Copenhagen 
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quantum mechanics of measured subsystems. Projection operators { P~\ (tk)} 

describe alternative outcomes of measurements on subsystems. 

For a closed system such as the Universe described by a spacetime with 

negligible gross fluctuations, the density matrix p can be seen as describing its 

initial condition. But consistent probabilities p are predicted only for those 

sets of histories for which there is negligible interference between individual 

members of the set as a consequence of the particular initial p. This is known 

as decoherence between sets of histories. 

Hartle [70], Griffiths [49] and Aharonov et al [2] formulated a "neutral­

time" quantum mechanics for cosmology, that is devoid of the effective den­

sity matrix Pe11(t) that enables one to compute future probabilities from 

past histories. In fact in this new formulation, probabilities for the indi­

vidual members of a set of alternative histories { ak} depend on Heisenberg 

operators (Hermitian and positive) Pi and Pl that represent initial and fi­

nal conditions for the Universe respectively. That is, this formulation of 

quantum mechanics need not have a fundamental arrow of time. Here, the 

probabilities are defined as 

where 

In the case of Pl ex: I, the identity matrix, we arrive back at the Copen­

hagen formulation 6.3. This generalized quantum framework allows for the 

possibility of violation of causality, with advanced and retarded effects. 

For instance, the imposition of time-symmetric (statistical) boundary 

conditions on a classical cosmology means that the entropy must behave 
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time- symmetrically provided the coarse-graining is itself time-symmetric. 

The thermodynamic arrow of time will run backwards on one side of the mo­

ment of time symmetry as compared to the other side. This does not mean 

that individual histories (fine-graining) need necessarily be time-symmetric. 

Penrose [118] estimated values of the initial low entropy for our Universe 

at the Big Bang, so we basically know its initial condition with respect to 

coarse-grainings defining the classical domain of familiar experience [32]. The 

problem of finding the final condition is somewhat more intricate: 

a) If the Universe is closed and has a lifespan of the order of its present 

age since the Big Bang, then there are ample examples of models within 

our Universe with relaxation times comparable to (or even longer than) the 

timespan between the Big Bang and the final Big Crunch. This will enable 

us to detect (or infer) the existence of a time-symmetric final condition of 

our Universe from experiments on phenomena that remain out of equilibrium 

long enough for them to be affected by such a final condition. For example, 

radioactive material with very long half-lives, singularities contained within 

black holes, or black holes with life-time to decay by the Hawking radiation 

longer than the Hubble time. 

b) However, if the lifespan of the Universe is much longer than its present 

age, such systems might be difficult to find. This would mean that we will 

never be able to detect the existence of a time-symmetric final condition. 

We can expect that the wave function for the Universe gives an ensemble 

of classical solutions very much like that obtained from the WKB approxi­

mation, with different probabilities. For instance, closed geometries will be 

a probability distribution over possible lifespans of the Universe. Both the 

No Boundary and the Tunneling proposal predict very long lifespans for the 
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Universe (see (82, 139)). 

6.2.1 Decoherence 

We stated earlier that the quantum mechanics of a closed system such as 

the Universe as a whole predicts probabilities only for sets of alternative 

histories that decohere. So the minimal requirement on any theory of bound­

ary conditions is that the universe exhibit a decoherent set of histories that 

corresponds to the semi-classical domain of everyday experience. 

The coherence between individual histories in an exhaustive set of coarse 

grained histories {a} is measured by the decoherence functional, a complex­

valued functional on each pair of histories (a, a'), 

(6.5) 

Here we have abbreviated the strings of projective operators in equation 

6.4 by Ca. Decoherence occurs when the real parts of the off-diagonal el­

ements of the functional (those between two histories with any ak f:. ak) 

vanish with sufficient accuracy. (More generally, it should occur when the 

off-diagonal elements of D are sufficiently small for any ak f:. a~.) Under 

these conditions the probabilities p in equation 6.4 satisfy the usual sum 

rules of probability, and are in fact just the diagonal elements of D. 

An extreme example of boundary conditions that are inconsistent with 

the existence of a semi-classical regime is when the final density matrix equals 

the initial density matrix 

PJ =Pi= P · 

It is possible to show (32] that the probabilities of the different projections 

P remain constant in time, so that there is no dynamics nor any second law 

of thermodynamics. This is in contradiction with experience. 
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Figure 6.1: The sum-over-histories construction of the decoherence functional 

Finally, besides predicting a semi-classical domain of familiar experience, 

the boundary conditions must also lead to probabilities that are strongly 

peaked at histories that are correlated by classical dynamics. I.e. we must 

still be able to derive the classical equations of motion. 

So for the sum-over-histories quantum mechanics [70] the decoherence 

functional (fig. 6.1) is naturally defined on a set of coarse-grained histories 

{hi} as 

D(hi, hj) = r 8g8</J r 8g'8<P'ei(S(g, ¢>]-S(g' ,¢>'])/n . (6.6) 
jh; ,C jh; ,C 

Here S is the action for gravity and matter-fields . The integral is over four­

metrics g and matter-field configurations <P that lie in the partition hi . Simi­

larly for the integral over g' and <P' over hi. It is assumed that the initial and 

final conditions on the histories are incorporated in the sum over histories as 

conditions C on the fine-grained histories . 
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FINAL CONDITION 

SUPERSPACE 

INITIAL CONDITION~------_J 

Figure 6.2: Recovery of Hamiltonian physics in the late Universe. Here 
is a schematic representation of the Superspace of all three-geometries and 
matter-field configurations. The region surrounded by the dotted line con­
tains the large three-geometries of the late Universe. 

In this formulation, there is no purely geometric quantity that uniquely 

labels a spacelike hypersurface. A Hamiltonian formulation may, however be 

approximated in a restricted domain of Superspace (see fig. 6.2), for special 

coarse-grainings and for particular initial conditions. 

Suppose that the initial conditions were such that for coarse-grainings de­

fined by sufficiently unrestricted regions of Superspace, in a regime of three­

geometries much larger than the Planck scale, only a single spacetime ge­

ometry fJ contributed to the sum defining the decoherence functional. Then 

the remaining sum over </> in the functional integral defines a Quantum Field 

Theory (QFT) on the background spacetime g, with the approximation 
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(6.7) 

This is true if the action can be decomposed as S = S(g) + SM(fJ, </>). 
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6.3 The need for a Wave Packet 

Despite other desirable features (like inflation), the Hartle-Hawking (1983) 

"no boundary" proposal fails to address the issue of time and probability 

interpretation in a satisfactory manner. Any viable theory of quantum cos­

mology should be capable of naturally describing the emergence of classical 

spacetime. Kazama and Nakayama (1985) (91] argue that since the "no 

boundary" proposal does not exhibit a localized wave- packet structure, the 

argument of how classical behaviour can emerge out of the wave function is 

not convincing. 

On the other hand, Vilenkin's prescription is of no use in models where 

there are no modes with outgoing flux only through the singular boundaries 

of Superspace, or where the flux turns around within Superspace and crosses 

only the nonsingular boundary (10]. If Vilenkin's condition is modified by 

choosing the phase Sn --~nd pre-factor in such a way that the superposition 

'11 = :l::n CneiSn is a wave packet, then (at least in the case of the confor­

mally coupled scalar field considered in [10]) there are several possible wave 

functions for the Universe. It therefore seems that this proposal also needs 

to be improved. 

The Wave Packet proposal for the wave function of the Universe (94, 10, 
93] corresponds to a so called "final con di ti on": 

The quantum evolution must lead to the present classical Universe, i.e. 

the wave function of the Universe must approach a Wave Packet characteriz­

ing the presently observed cosmological data (10]. Also, the wave packet 

must go to zero as the scale factor grows to infinity (which means that 

the'returning' packets should be present'ab initio'). The wave packet then 

plays the role of a final condition from which we will retrodict the evolution 

80 



of the Universe backwards in time. 

Only if the wave function permits a probabilistic interpretation, and a 

wave packet can be constructed, can the gradient \JS, of the classical action 

determine the classical trajectories (equation 2.23). This makes the prin­

ciple of constructive interference indispensable. Consider superpositions of 

WKB solutions of the Wheeler-De Witt equation 2.20 which are of the form 

(compare with 2.25) 

the pre-factors Cn and Cn being slowly varying amplitudes. These wave func­

tions are extended all over configuration space. They interfere destructively 

everywhere except where the phase Sn( a,</>) has a saddle point with respect 

to the wave number n: 

[ 8Sn l = 0 . 
8n n=n 

(6.8) 

Sn( a,</>) is a solution to the Hamilton -Jacobi equation 2.22 and yields 

classical trajectories in configuration space. Together with the principle of 

constructive interference, the general Hamilton-Jacobi equation correspond­

ing to the Superspace Wheeler-De Witt equation 2.10 is equivalent to all 10 

Einstein field equations (35]. The second derivatives 82 Sn/8n2 are a measure 

of the dispersion of the wave packet around the classical trajectories [93]. 

Since the Universe may be viewed as an isolated, individual system (in 

the sense described by Hartle (67, 54], see Chapter 3) there is a characteristic 

absence of an external observer. The so-called relative state formalism of 

Everett (26] was designed to deal with exactly this situation. If we regard the 

total system as composed of two subsystems, one the observing apparatus, 
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the other the observed system, then the total wave function is just a super­

position of eigenstates of the respective systems. All the possible results of 

measurement are contained in such a superposition. 

It then becomes possible for a probability interpretation to emerge in a 

purely natural fashion; i.e. it is not something given a priori to the wave 

function. Kazama and Nakayama [58] then illustrates using a simple model 

due to von Neumann, that in the absence of an external observer, the emer­

gence of classical spacetime requires the total wave function representing all 

the possible outcomes of measurement itself must be localized. 

6.4 In search of a desirable time variable 

In order to arrive at a good probability interpretation for wave packets in 

simple Mini-Superspace models, we need to specify a desirable time variable 

that will lead to conserved probability current. For instance, a bad choice 

would be the scale factor a in closed FRW models, since the wave function 

will be multi-valued with respect to a, and the semi-classical treatment will 

fail around the turning points. Matter-fields that are essential in driving the 

evolution of the scale factor a (such as scalar fields with chaotic potentials) 

do not qualify either: 

To give a good probability interpretation for the wave packet , a good clock 

should not disturb or be disturbed by the system being observed in regions 

where the scale factor is large, i.e. it should decouple from the rest of the 

system. In addition, it should be monotonic with respect to the time t of the 

comoving frame. Th..ese features will guarantee that the square modulus of 

the wave packet is approximately conserved with respect to the desired time 

variable. An example of such a material clock is the homogeneous, isotropic 

and massless scalar field (91}. We shall see that this concept of a material 
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clock is useful in the construction of wave packets for bulk matter wormholes 

(Chapter 9). 

There are many other proposals about the problem of time in Quan­

tum Gravity, the emergence of semiclassical spacetime and the question of 

the'arrow' of time ([90] and for a most recent and interesting approach [47]). 
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Chapter 7 

Spacetime Wormholes 

7.1 A survey on known solutions 

Overview 

We now turn our attention to one of the most interesting features in quantum 

gravity: the so- called ' Wormhole. These are gravitational instantons, i.e. 

exact solutions of the classical Euclidean Einstein field equations with finite 

action. Giddings and Strominger [43] and Hawking [81] were the first to 

introduce wormhole solutions in "canonical" Einstein gravity. 

Semiclassical gravitational instantons joining two asymptotically flat 

manifolds in Mini-Superspace appear in [43, 1, 92, 102]; asymptotically flat 

space with a closed FRvV universe [9, 101, 126], and a de Sitter space with 

a closed FRW or another de Sitter space [4, 17, 45, 57, 109, 124] have pre­

viously been found. Wormhole solutions have been discussed extensively in 

[7, 14, 95, 96, 48, 28, 18, 5, 6, 20, 21, 36] and [46, 108, 112, 37, 113, 131, 144, 

60, 145]. Hawking and Page [85] and Campbell and Garay [88] have initiated 

investigations into the existence of quantum wormholes as solutions to the 

Wheeler-De Witt equation which satisfy appropriate asymptotic boundary 

conditions (Section 4). 
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The Yang-Mills instanton 

Hosoya and Ogura (88) discovered a spherically symmetric classical wormhole 

solution of an SU(2) Yang Mills magnetic field coupled to gravity with a 

cosmological constant. Rey (124) studied a version with time dependent 

magnetic and electric fields. The wormhole solution is SO( 4) symmetric, 

and describes a particle moving in a double well potential. The explicit 

analytic solutions are elliptic integrals, but a discrete set of wormholes exist 

for appropriate boundary conditions. The existence of a conserved energy 

density makes the spectrum of solutions similar to that of Giddings and 

Strominger (43) and Coleman and Lee (14). See Section 3 for an outline of 

the Giddings-Strominger axionic wormhole. 

The massive charged scalar field instanton 

A minimally coupled charged scalar field was studied by Abbott and Wise 

[1], Coleman and Lee [14) and Lee [102). Due to U(l) symmetry, the theory 

has a conserved current Jµ, that yields an associated conserved charge Q = 
J dEµJµ, integrated over a three-sphere containing the wormhole mouth. 

If we restrict the model to be that of a massless Goldstone boson, an 

equivalence with the Giddings- Strominger (43) wormhole emerges. This is 

because the current is a vector density that is equivalent to a three-form in 

axionic theory: lµ = f.~13-r H 0113-y- The time-time component of the Einstein 

field equations essentially describes the motion of a particle in a repulsive a-4 

potential, where a is. It comes from infinity and bounces off the barrier at 

the turning point (the minimum radius of the wormhole throat) and returns 

to infinity. 

It appears that such wormholes may be able to simulate the formation and 

decay of blackholes: the size of the black hole collapsing under the collective 
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Figure 7 .1: (a) Wormhole charge Q as a function of the wormhole size. The 
dotted curves show large-wormhole and small-wormhole limits. (b) An illus­
tration of black hole evaporation. 

mass m of Q mesons, is proportional to the charge Q (fig. 7.1). For large Q, 
the wormhole size grows to that of a black hole. The action corresponding 

to the insertion of a wormhole mouth into a region of constant background 

field f is found to be 

I = -Q In [ 4f ( ; ) 
1

'

2

] 

Double periodic wormhole solutions 

Massive charged scalar field wormholes similar to the above were numerically 

analyzed by Midorikawa [109]. New boundary conditions to the same Ein­

stein field equations yield single period instantons connecting two universes 

of the same size. The potential is restricted to have a local maximum at a 

finite value of the scalar field. 

For a different potential (see fig. 7.2), a wormhole of double period con­

nects two universes of different sizes. Such a double periodic solution implies 
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Figure 7.2: The potential V for double period instanton. 

the creation of hot universe with a large cosmological constant from a cold 

universe with a small constant. The existence of universes with different A's 

may be useful for a large universe to evolve. Even if wormholes set small 

A to zero (the Coleman mechanism) in our Universe, the large A may stay 

finite. 

Theories with axion and scalar fields 

Lavrelashvili, Rubakov and Tinyakov [101] and Rubakov and Tinyakov [126] 

explored a theory containing a scalar field and an axionic field. They found 

a gravitational instanton whose analytic continuation is a closed expanding 

universe born at minimal radius and then undergoing inflation. There is 

a conserved axion charge present that lead to wormhole solutions for small 

radii. However, its contribution to the energy-momentum tensor decrease as 

a-4 (as in Giddings and Strominger [43]), so the universe quickly enters an 

inflationary phase as the scalar field undergoes damped oscillations. 
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Figure 7.3: (a) A wormhole that connects two asymptotically fiat Euclidean 
regions. Two dimensions are suppressed; each circle around the throat rep­
resents a three-sphere. (b) A wo~mhole connecting two de Sitter spacetimes. 

Non-linear gravity coupled to axionic and scalar matter 

Non-linear gravity wormhole instantons in the context of a theory containing 

additional scalar and axion fields were found by Coule and Maeda [17]. An 

antisymmetric tensor axionic field H is coupled to a scalar field with an 

arbitrary potential. Again the axion current Hµ. is conserved, defining a 

quantized charge. 

For an approximately fiat, non-zero scalar potential there exists a worm­

hole with throat- radius a0 which connects two asymptotically de Sitter 

spaces with radius avs, provided a0 ~ avs. (see fig. 7.3). For zero scalar 

potential, the wormhole connects two fiat regions a = t as I t I -+ oo. 
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This theory is shown to be equivalent to a theory for a conformally coupled 

scalar field. Similar solutions exist for some generalized Einstein theories of 

gravity, e.g. a higher derivative gravity minimally coupled to an axion. 

Wormhole solutions are also found for the case of a non-minimally coupled 

scalar in an effective theory derived from string theory. 

7.2 The Hawking-Tolman wormhole 

This is an asymptotically flat solution to a metric that does not satisfy the 

Einstein field equations. However, subsequent work [7,34) has shown that 

this wormhole is indeed a solution to the Einstein field equations. Gonzalez­

Diaz considers pure gravity with a cut-off in the scale factor a. The same 

model has also been reproduced from a perfect fluid equation of state p = p/3 

in [8, 9), and its quantum version occurs in Chapter 9 if/ = 4/3. We give a 

brief outline of the Hawking-Tolman wormhole: 

It has a conformally flat metric 

[ 

b2 l 2 

ds2 = 1 + Ix - xol2 (7.1) 

which is an asymptotic Euclidean metric that looks like it has a singularity 

at the point x 0 • However, this is a mere coordinate singularity, with the 

regions x 2 < b2 and x 2 > b2 having similar geometry. The metric describes 

two asymptotically flat regions connected by a throat with radius 2b at the 

three-sphere (see fig. 7.4), also known as a baby universe. Typically, b will 

be of the order of the Planck length, so when the separation of the two ends 

is much greater than the Planck length, we may neglect their interaction. 
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wormhole throat-radius 2b 

Figure 7.4: The Tolman-Hawking wormhole with throat-radius 2b connects 
two asymptotically fiat Euclidean regions. 

The metric is not a solution of the Einstein equations since Rµ. 11 =I 0 

although the Ricci scalar R = 0. The total gravitational action has its only 

contribution from the boundary term 

Sb = - - d xVh( ]( - Ko ) = -1 J 3 37rb
2 

87rG G 

where]( is the trace of the extrinsic curvature of the boundary, and ](0 that 

of the boundary embedded in fiat space. 

It was shown by Gonzalez-Diaz [45) that the above wormhole solution 

can be obtained in a pure gravity Mini-Superspace model with a positive 

cosmofogical constant, provided a cut-off in the scale factor is introduced. 

For the Euclidean metric 
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the action reads 

(7.2) 

For a constant m, the transformation 

is equivalent to having a minimum radius m for the Euclidean three- sphere. 

The new time-coordinate is dt = ( 1 - r;:: )112 dT. For conformal time 

dry = d; , and defining a' = ~~ , the equations of motion have 

~a'2 + W(a, m) 

a" 

with 

0 

aw 
aa 

(7.3) 

(7.4) 

1 
W(a,m) = 2" [ m 2

( 1 +m2A )-( 1 +2m2A )a2 + Aa4
] • (7.5) 

This may be viewed as describing the motion of a particle of zero energy in 

the potential W. With A= 0 we have 

a= ( m 2 + T 2 )t 

representing two asymptotically fiat regions connected by a Tolman-Hawking 

wormhole of radius m. For A > 0, periodic wormhole solutions 

l 

a= A-1
/

2 
[ m 2A + cos2

( AtT) J 2 
(7.6) 

occur in the region 
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In the Lorentzian framework ( r -+ ±ir), this represents a Tolman uni­

verse with maximum radius m and a de Sitter universe with minimum radius 

Jm2 + A-1 . The instanton describes the tunneling between these two clas­

sical regions. 

Numerical calculations have revealed that a conformal scalar field (see 

Halliwell and Laflamme [57]) in Mini-Superspace may have less physical sig­

nificance due to a negative effective gravitational constant G = ( 1-¢>2 
)-

1 G, 

where <P is restricted to values greater than one. Starobinsky [129] has sug­

gested that there may exist bounded regions where G = const. > 0 in a more 

detailed analysis that includes anisotropies. 

7.3 The Giddings-Strominger axionic worm­
hole 

An axionic field minimally coupled to gravity has Euclidean action 

S = _J__G j d4 xJg ( -R + H2
) +(topological and boundary terms). 

167r 
(7.7) 

The 3-form H · dB is the axion strength such that dH = 0. One may now 

derive the Einstein field equations 

3H H a{3 1 H Haf3-r 
µ.a{3 v - 2,9µ.v a{3-y ' 

0. 

Giddings and Strominger [43] make the spherically symmetric ansatz 

ds 2 

(7.8) 

(7.9) 

(7.10) 

(7.il) 

with Euclidean FRW-metric scale factor a, while lijk is the volume element 

normalized to integrate to 27r2 on surfaces of constant a. All other compo-
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nents of H vanish. The axion current Hµ. is now conserved, allowing one to 

define an axionic charge flow down the wormhole, 

Q - 2_ { Hdfh = 27r2b2 
- G }'E(b) G 

(7.12) 

if the three-surface E, of radius b encloses the origin t = 0. The time-time 

component of the equations of motion (1.8) depends crucially on the charge. 

The equation is 

0,2 - 1 = - 3b4 . 
a4 

Its solution in parameterized form reads 

a2 = b2 cosh 2TJ 

where 

t ..:... b J J cosh 2TJ dTJ • 

(7.13) 

(7.14) 

(7.15) 

The Euclidean metric is invariant under the transformation a ~ -a, so 

it represents two asymptotically flat regions as I a I ~ oo that are connected 

by a throat with minimum radius b and three-sphere cross-sections. The 

extrinsic curvature K of the boundary at minimum throat-size bis zero. The 

wormhole instanton describes tunneling between an initial three-surface Ei 

of topology R3 , and a final surface E f of topology R3 EB S3 (see fig. 7 .5). 

The instanton action reads 

S= 31 QI 
8 ' 

(7.16) 

so that nucleation of closed baby FRW universes are suppressed for large 

maximum radii b = m large relative to the Planck size. The fields and 

their first derivatives on Ei and E f are real when analytically continued back 

to the Lorentzian regime. This is obvious for R3
, but on S 3 this is ensured by 
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Figure 7.5: Tunneling from a topology R3 initial geometry Ei to a topology 
R3 EB S3 final geometry E 1. 

the ansatz that the time components of H vanish, while the time derivative 

of the metric vanishes because it is a minimal surface. 

7.4 The Wheeler-De Witt equation 

In an effort to find a more general class of wormholes, Hawking and Page (85] 

and Campbell and Garay [7] regarded wormholes as full quantum solutions of 

the 2nd quantized Wheeler-De Witt equation. This is crucial to finally provide 

a mechanism for black hole evaporation suggested by Hawking [81], due to 

a lack of macroscopic wormhole instantons with arbitrary matter content. 

It should also facilitate the construction of a more fundamental theory of 

topological fluctuations in gravity. 
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The boundary conditions required for the wave function solution to rep­

resent an asymptotically flat wormhole will be reviewed in Chapter 8. We 

also derive exact wave functions for wormholes for the free massive scalar 

field. 

In Chapter 9 we proceed in this new programmme by finding the quantum 

analogue of the FRW bulk matter instantons found by Carlini (8) and Carlini 

and Mijic (9). 

7.4.1 Wormhole wave functions 

Hawking-Page 

In the ansatz ds 2 = N?dt2 + a2df25, Hawking and Page (85) solve the WDW 

equation for a minimally coupled massless scalar field </> by means of the 

separation 

where c( a) satisfies 

[ ~ + ~ i_ + ( k
2 

- a 2 
) ] c( a) = O . 

da2 a da a 2 
(7.17) 

This has two independent solutions J±i.!5..( i~
2 

). These are eigenstates of the 
2 

operator -i :¢ with eigenvalue k, and carry a conserved charge Q = 27r2 k. 

This continuous set of solutions oscillates for 0 < a < k!, and correspond to 

classical Lorentzian FRW solutions with scalar flux Q, bouncing between a 

singularity and a sphere of maximum radius k!. 

For a > k!, W decreases like e-a
2
12

• There appears to be an irregularity 

as a -+ 0, but by a coordinate transformation x = a sinh </> and y = a cosh </>, 
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one can derive a discrete spectrum 

n 

with Wn(x) = Hn(x)e-x2
/

2 (Hn are Hermite polynomials). Then each mem­

ber of the spectrum is just a product of harmonic oscillator wave functions 

with the same energy, and therefore regular at the origin. 

The Killing vector to the WDW equation, O<J> = yox+xoy can be expressed 

in terms of harmonic creation and annihilation operators a, at, as 

so that the 8,p eigenstates lk > is a sum of harmonic eigenstates In > : 

jk >= L Cn(k)jn > , 
n 

with Cn satisfying the recursive relation 

ikcn = (n + l)cn+l - ncn-1 

which can be solved iteratively in terms of hypergeometric functions. So the 

eigenstates jk > are superpositions of regular harmonic oscillators that are 

regular everywhere and damped at infinity. A similar result is found for the 

case of a conformally invariant scalar field in [85, 94, 96]. 

Kantowski-Sachs 

Campbell and Garay [7] study a spacetime that has the same metric 

ds 2 = N;dT 2 + a2dr2 + b2dn; 

as that of the interior of a Schwarzschild black hole. A more general form 

for the operator-ordering is considered. Two kinds of wormhole solutions are 
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studied, one with the asymptotic behaviour R3 ® 5 1 (a -+ a0 , b -+ r) and 

asymptotic ground state '11 ~ e-ab, and the other R2 ® 5 2 (a -+ r ,b-+ b0) and 

ground state '11 ~ e-a
2 

/
4 • Regular solutions are found by a Fourier transform 

of the explicit continuous ones, and reads 

'11 .>.oBo =exp ( -ab cosh ( cosBolog ;
0 

+ </JsinBo +Ao) ) , 

with constants ()0 ,r0 and excitations Ao of the wormhole state. For R3 ® 5 1 

solutions, Ao = 0 gives a continuous set of degenerate ground states, while 

Ao -=/: 0 gives excited states. However, in the case of R 2 ® 5 2 solutions, 

Ao = ()0 = 0 is the only (ground) state and it corresponds to pure gravity. 
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Chapter 8 

Wormholes in Superspace 

8.1 Exact HP wormhole states 

Hawking and Page (1990) (85] argue that wormholes are to be regarded 

as solutions of the quantum-mechanical Wheeler-De Witt Equation. The 

boundary conditions that these wave functions have to obey are that they 

be exponentially damped for large three-geometries, and regular when the 

three-geometries collapse to zero. 

They found a continuous family of solutions with a massless scalar field, 

and of a conformal field, that correspond to instanton solutions found by 

Giddings and Strominger (1988) (42] . These wave functions are damped at 

infinity, but they oscillate infinitely near zero radius. The trick is to express 

such solutions as an infinite sum of a discrete family of solutions that are 

well-behaved both at infinity and zero radius. 

Furthermore, well-behaved solutions were constructed only approximately 

for a massive scalar field. Explicit formulas for their asymptotic form were 

given. 
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As pointed out by C.Kiefer (1988) (93), the WKB approximation for the 

(Hawking-Page Wormhole) wave function breaks down near the turning point 

of the potential, i.e. as we approach the wormhole throat, thus making it 

difficult to construct wave packets following classical trajectories in such re­

gions. Classical trajectories are shown to be represented by non- overlapping 

wave packets only for discrete values of the mass of the scalar field, and only 

in regions which are not too close to the turning point. 

Kiefer (93] investigates the correspondence of Mini-Superspace quantum 

gravity with classical cosmology. He uses a Born-Oppenheimer type approx­

imation to explicitly construct generalized coherent states in the case of a 

massive scalar field. Coherent states are known to be important to relate 

quantum theory to classical physics. 

In this chapter (Section 3), we derive the exact solutions to the WDW 

equation for the massi..fe scalar field. We also observe that they are regular 

everywhere, and are damped at infinity. This confirms Hawking and Page 

(85]. It shows that such solutions exist only for discrete values of the mass 

of the scalar field, consistent with Kiefer (93].1 

1 Also see Page and Kim (1992) (95] . 
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8.2 Wormhole Representation 

We consider the possibility of wormholes as solutions to the Wheeler-De Witt 

equation 

H'I! = 0 (8.1) 

obeying certain boundary conditions. 

If we regard S as a cross-sectional three-surface of a wormhole that sep­

arates two asymptotically Euclidean regions, then the quantum states of a 

wormhole can be represented by the wave functions 'Itn(hij, </>)where hii is the 

three-metric and </>the matter-fields on S. The wave functions obey equation 

8.1 at all finite non-zero three-metrics hij· 

If the wave functions 'I! n ( hii, </>) are to correspond to wormholes they 

should obey certain boundary conditions : 

a) The boundary condition when hij is large should express that the four­

metric is asymptotically Euclidean. Unlike the case of the No Boundary wave 

function which grows with the size of the three-surface, the wormhole wave 

function will be damped at a large three-surface. 

b) The boundary condition when hii is small should indicate that the 

four-metric is non-singular. In Mini-Superspace models it means that the 

wave function should be regular, or go as a power of the scale factor a as a 

approaches zero. 

Specifically, in the case of the Mini-Superspace model with the usual FRW 

four-metric (2.15) 

(8.2) 

here dO~ is the metric of a three-sphere of unit radius, real N is the lapse of 

a Lorentzian metric for a Friedmann universe. If N is imaginary, the metric 

is that of an Euclidean wormhole (i.e. an instanton). 
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The No Boundary wave function ( 4.16) of Hartle and Hawking, 

'iI!(hij, </>) = J d[ 9µv ]d[ </> ]e-I[g,¢>] (8.3) 

is a path integral over all compact metrics and matter fields with the appro­

priate boundary values. 

It increases as eta2 
where a is the radius of the three-surface S. The 

wormhole wave function decreases like e-ta2 
for large a. The latter case 

indicates that such solutions are asymptotically Euclidean, and the ground 

state wormhole corresponds to a vacuum state. 

In the path integral formulation, the wormhole ground state is therefore a 

path integral over all asymptotically Euclidean metrics and all asymptotically 

zero matter fields that have the given values on the surface S. Excited states 

of the wormhole are other solutions to the WDW equation that are damped 

at large radius and regular at a = 0. Regularity at the origin indicates that 

these solutions are nonsingular. 

8.3 Quantum Wormholes 

8.3.1 The minimally coupled massive scalar field 

In the case of a closed Friedmann universe with scale factor a and metric 

(8.2) containing a homogeneous massive scalar field </> the WDW equation 

(8.1) reads 

a2-p_aP- _ _ P _ + _P m2</>2a6 _ (-P )2ka4 'iI!(a, </>) = 0 ( 
a a m 

2 82 
m 

2 
m 

2 
) 

aa aa l67r 8¢>2 l67r l67r 
(8.4) 

where the matter field potential is m 2 </>2 and the curvature of the space-time 

closed (k = +1), flat (k = 0) or open (k = -1). We for the time being write 
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m2 
~ = 1 and recover it later on. 

Kiefer [93] obtains approximate wave function solutions by means of an 

adiabatic approximation in the Born-Oppenheimer ansatz for ln a, a tech­

nique used in Molecular Physics and also previously in Quantum Gravity. 

In Kim[96] and Kim and Page[95] we see that the wave functions can be 

expanded by a basis of eigenfunctions. However, the Symanzik scaling law 

allows for a suitable choice of coordinates (a, 77) where 

(8.5) 

by which the wave function '11 becomes separable: 

(8.6) 

with separation constant >. , while the WDW equation separates into 

( 277 ~2 + ~ + >. - 2m
2
77) <I>>.(77) 0 (8.7) 

--+ -- + >. - ka 'l/;>.(a) (
1 cP p d ) 
a da 2 a2 da 

0 (8.8) 

We solve for <I>>. ( 77) by writing 

(8.9) 

so that Y>.( x ), where x = 2m77, satisfies 

( 
d2 1 d >. - m) 

x- + (- - x)- + Y>.(x) = 0 
dx 2 2 dx 4m 

(8.10) 

The general solution is a combination of Kummer functions 

<I>(77) e-m,, U[ (m - .\)/4m, 1/2; 2m77] 

+ <I> 0 e-m 11 M[ (m + .\)/4m, 1/2; -2m77] 
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The "final" boundary condition for wormholes Kiefer (1990) (94] is that 

the wave function decays to zero exponentially as the scale factor, hence T/, 

goes to infinity. This compels the constraint <Po = 0 in the complete solution. 

Since the second term is exponentially increasing it is more appropriate to 

the Hartle-Hawking No Boundary proposal. 

This is just another form of the Hermite equation, so that for appropriate 

normalization Nn = (2n N!)-t, the solutions y(TJ) are normalized Hermite 

polynomials 

(8.11) 

provided>.= (2n + l)m for n = 0, 1, 2, ... Therefore 

(8.12) 

This is an exact eigenfunction that is equivalent [modulo prefactor ( ma3
)

114
] 

to the adiabatic solutions obtained in the Born- Oppenheimer ansatz (93] and 

the Symanzik scaling law (see Kim (96]). In addition, differential equation 8.8 

in the scale factor a is the zero-energy Schroedinger equation for the wave 

function 1/J>.( a) with potential ka4 
- >.a3 . In the WKB approximation (93] 

with factor-ordering p = +1, 

cos (- - -)[>.a - a ] - -[arcsm(l - -) + -] - - . [I a >. 2 112 >.2 
• 2a 1C I 'TC] 

2 4 8 ). 2 4 
(8.13) 

However, these solutions break down near the turning point an = An = 
(2n + l)m for closed universe models with maximum radius an. That is, 

the wave functions do not appear to be regular there. So do they represent 

wormholes? 

103 



The answer is yes, and we prove this by first showing that the gravitational 

contribution to the wave function is regular everywhere: 

a) First of all, as we approach the origin for small values of the scale factor 

a, the factor-ordering p becomes important since the Ricci scalar curvature R 

grows bigger than the Planck curvature m;/167!". We may then approximate 

equation 8.8 by neglecting the curvature term. It is then convenient to 

redefine the wave function 

'l/J>..(a) ~ a(l-p)/2 fJ>.,(a) 

so that 

[ 
2<12 d 3 1( 2] a - +a-+ ,\a - - 1 - p) fl>.,( a)= 0. 

da2 da 4 
(8.14) 

We may then express ,the solutions in terms of a sum of Bessel and mod­

ified Bessel functions, in the process substituting An = ( 2n + 1 )m: 

We now see that for fixed n and p, and for the plus sign in this solution, the 

wave function has limiting form 

a(l-p) 2(I-p)/3r[ (1 - p)/3] 
A32(1-p)/3r[ 1 + (1 - p)/3] - A4 7r 

(Ai, A2 , A3 and A4 are constants in p, n and mass m) which is regular as the 

scale factor a -+ 0 for any value of the factor-ordering p < 1. The specific 

case of p = + 1 is trivial provided A2 = 0, since the modified Bessel function 

Yo scales like 3 ln a/7r in this limit. 
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b) Secondly, as the scale factor a increases away from the origin, the 

factor-ordering ambiguity becomes less significant. The WKB approximation 

wave packet ( 8.13) is generic only for closed universe models with turning 

points an much larger that the Planck radius lp. Apart from the multiple 

integral formulation (Kim (96]), equation 8.8 lacks an explicit closed-form 

solution for arbitrary factor-ordering. We are able to construct an exact 

spectrum of states that is regular everywhere, by simply choosing the factor­

ordering p = 0 with positive curvature k = 1. Now the equation for 'l/Jn(a) 

reads 

(:a2 + (2n + l)ma-a
2

) 'l/Jn(a) = 0 (8.15) 

If we now put z =a - (n + ~)m, the wave functions 'l/Jn(a) are found to be 

(confluent hypergeometric) Kummer functions 

1F1 ( l[ 1 - (n + 1/2)2m2]' ~; z2) e-z2/2 

+As 1F1 ( l[ 3 - (n + 1/2)2m 2 ], ~; z
2

) e-z
2

12z, 

which are infinite series in z;, but may be expressed as Hermite polynomials, 

provided that the mass is discrete. That is, 

m 2 = 4r (8.16) 

for odd integers r (on recovering Planck-units m 2 
m2 
i;r). We arrive at a 

spectrum of harmonic oscillator wave functions 

'I/Jn( a) = e-Ha-(n+t)m]2 Nt[(n+t)2m2-l]H H(n+t)2m2-l][ a - (n + ~ )m ]. (8.17) 

So for each non-negative integer n, there exists a regular and exponentially 

damped wormhole state 

e-Ha-(n+t)ml
2 

N((n+t)2m2_11 H[(n+t)2m2_11 [ a - (n + ~)m] 
. e-}m<t>

2
a

3 NnHn[ J2m</>2a3 ] 
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The wormhole wave function is a discrete spectrum of such states : 

00 

(8.18) 
n=O 

) 

for constant coefficients Cn· Another such spectrum exists if the factor-

ordering p = 2, when we simply replace Cn by 9;:1-. But this could mean that 

W and its derivatives blow up as a -t 0. 

8.4 The power-law potential ;q<f>2q. 

If we consider two-dimensional Mini-Superspace containing a homogeneous 

scalar field <P with a power-law potential ;q </J2q, the Wheeler-De Witt equa­

tion 2.20 takes the form 

( a2-P .!!__aP ..!!__ -
82 + ~</J2q a6 

- ka4
) 'lJ (a, </J) = 0 . 

aa aa 8<jJ2 2q 
(8.19) 

Once again, we do not expand W by a basis of eigenfunctions ([95, 96)) , but 

in principle there exists a transformation between the class of solutions found 

by Kim [96] and our derivation. In general we define a new variable by means 

of the Symanzik scaling law as 

3 

T/ = <Pa i+q 

for q positive (see (95, 96]). Equation 8.19 then transforms as 

- - -(ry)2q - a-i+q a 2-P-aP- - ka4 'lJ(a,ry) = 0 . [ a
2 

"' 6 ( a a )] 
8ry2 2q aa aa 

For separation constant ,\, we may split this into 

- + ,\ - -ry2q <P(ry) = 0' [ 8
2 

K l 
8ry2 2q 

and 
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In principle these equations can be solved simultaneously. We were able to 

solve these two equations exactly for q = + 1 and factor-ordering p = 0 in 

the previous section. But in general, (i.e. for q = 2, 3, 4, ... ) this is rather 

intricate. The multiple integral formulation of Kim[96] solves equation 8.19 

exactly by writing it as a system of infinitely many linear differential equa­

tions. 

8.5 Conclusion 

Lorentzian WKB wave packets were constructed for large n in Kiefer [93] by 

applying an appropriate boundary condition to approximate wave functions 

solutions of equation 8.4. However, these wave packets are badly behaved at 

the turning-points. Hawking and Page [85] used an asymptotic formulation to 

show that the wave functions '11n(a, </>) are indeed well-behaved everywhere, 

while Kim [96] used a multiple integral formulation to derive the general 

solutions. 
/ 

By means of a relatively simple coordinate transformation similar to Kim 

[96] and Page and Kim [95] we are able to obtain an exact spectrum of worm­

holes. This occurs under condition that the mass is a discrete multiple of the 

Planck mass, consistent with Kiefer's [93] approximate result. It therefore 

appears that the quantization of mass is a necessary requirement to construct 

quantum states for microscopic closed universes in the case of a free massive 

scalar field. 

We also observe the significant role that the factor-ordering ambiguity 

plays for small radii. Since the Hawking-Page boundary condition requires 

either regularity in the limit of zero radius, or that the wave function go as 

a power of a, depending on the factor-ordering p, then at least in this sense 

our results are validated. 

107 



Chapter 9 

Quantum Carlini-Mijic 
Wormholes 

9 .1 Closed bulk m atter universes 

Carlini (1992) (9] explored the fact that spacetime wormholes may be un­

derstood as analytic continuation of closed expanding universes. For every 

classical solution in standard cosmology with closed spatial geometry (k = 
+ 1) and a real scalar field </>that obeys the strong energy condition p+3p > 0, 

there is a wormhole instanton. 

This was achieved by means of the Ellis and Madsen (1990) (107] pro­

cedure for solving the Einstein field equations, after which both the lapse 

N -and the scalar field </> are Wick rotated to the Euclidean sector. This 

is perfectly consistent with the reality of the path integral at one loop, al­

though the asymmetric rotation for the lapse in the gravitational and matter 

part of the action (Carlini and Mijic (1990) (9]) seems rather ad hoc. They 

find an infinite class of new instantons which also includes the Hawking and 

Giddings-Strominger wormholes as specific cases. 

In order for wormholes to solve the problem of the cosmological constant 
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and provide the mechanism for black hole evaporation, Hawking and Page (85] 

have proposed that wormholes are solutions to the Wheeler De Witt equation 

(see Chapter 7 and 8). For this reason it is essential that the class of bulk 

matter wormholes found by Carlini and Mijic (9] are predicted by quantum 

cosmology. We show that this is in fact the case under the condition that the 

wave function for wormholes satisfy the "final condition" for wave packets 

(see Kiefer (94, 93]). 

Since the Wheeler-De Witt equation is independent of the lapse N, we 

are able to find wormhole solutions without having to invoke the asymmetric 

analytic continuation described in Carlini (8] and Carlini-Mijic (9). It also 

becomes clear that the matter- field representation of the perfect fluid bulk­

matter source outlined in Madsen and Ellis (107], in terms of a scalar field </> 

does not immediately yield a desirable time variable for a good probability 

interpretation. Instead we have to introduce a new "bulk matter field" e to 

serve as a material clock. We are able to construct wave packets that are 

strongly peaked along pencils of configuration space paths corresponding to 

the closed bulk matter universes of Carlini-Mijic (9). 

The Lorentzian metric with the so-called Carlini-Mijic lapse N · a(4- 3"'Y)/2 

reads 

(9.1) 

We have put ;~ = 1. The lapse constant N 2 is fixed with respect to the 

timer, normally gauge equivalent to unity in the Lorentzian framework; in 

their analytic continuation scheme, CM [9] defines a Euclidean lapse constant 

N; = - N 2 • The line-element dO~ is defined on a three-sphere (k = + 1). 

Our interest lies in classical closed models, for which we will derive the 

corresponding WDW equation. Consider a bulk matter source with perfect 
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fluid equation of state 

p=(!-l)p (9.2) 

with pressure p and energy density p. The Ellis-Madsen [107] procedure for 

solving the Einstein field-equations for the scale factor and scalar field via 

such a source requires solutions to 

H 2 = p - ka-2
, (9.3) 

where His the Hubble parameter and p the energy density for a perfect fluid 

source 
P = Pma;;: a-3")' • (9.4) 

The strong-energy condition requires/ > 2/3. For closed models k = + 1. 

By the Ellis-Madsen [107] procedure, we may define a scalar field <P such that 

the energy density is the sum of kinetic and potential energy : 

a3")'-4 d</J 2 

P = 2N2 (dr) + V(</J) . (9.5) 

The conservation of energy requires 

a3")'-4 d<P 
p-1JV2 (dr)2 =/=constant. (9.6) 

This leads to the scalar field evolution 

(9.7) 

where am represents the maximum radius for a particular closed universe. 

In the gauge N = 1 we can now solve the Friedmann equation for the scale 

factor from equations 9.3 and 9.4: 

(9.8) 
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This in turn allows us to evaluate the scalar field <P in terms of the time 

variable T (we set the integration constant <Po = 0) 

I </>( T) I= VI1 tanh-1 
[ (

3
i ;;_ 

2
) Tl 

31 - 2 2 2 -1 am 
(9.9) 

From the energy density 9.4 we proceed to define a bulk matter potential 

(9.10) 

where the constant 

(9.11) 

These results reflect the fact that the perfect fluid representation in terms 

of an equation of state 9.2 with constant I and equation 9.6 allows us to 

impose the kind of behaviour we want the model universe to exhibit. In 

principle, the general form of the scalar field potential that will lead to our 

choice of solutions to the field equations, can also be determined. This is 

precisely the point that Madsen and Ellis [107) demonstrates. To fix I is 

equivalent to selecting one feature of the complete quantum theory such as, 

for instance, a massive scalar field where I varies between 0 and 2. Since 

we are already aware of the nature of the classical solutions, we say that 

the wormhole is "on shell". We therefore anticipate that solutions to the 

corresponding Wheeler-De Witt equation exist only in the dilute-wormhole 

approximation. 1 

1 A. Carlini has indeed pointed out to me that it could be dangerous to adopt this 
procedure for the potential at the quantum level. Instead, it should be interesting to 
construct the action 9.12, without a prior relation between the scalar field ¢ and the 
potential V(a). I.e. we abandon any identification with the classical CM wormholes. This 
means that we work in some sort of 'mean field' approximation , with the behaviour of p 
and ¢ separated by some kind of adiabatic mechanism. 
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9.2 The Wheeler-De Witt Equation 

We focus on the quantum behaviour for the potential V(a) in equation 9.10. 

The Lorentzian action that includes a cosmological constant A, here reads 

[ 

b:_i d b'.+1 d l 1 a 2 a 2 a 2 ¢2 sb: 2 
S=-!Ndr ---(-) +--(-) +a-2(ka- -A-V(a)) 

2 N 2 dr N 2 dr 
(9.12) 

and the conjugate momenta ( 7r a, 7r <1>) are defined as 

f}[, a~-1 . 
-=---a oa N 

(9.13) 

~r b.+1 
VJ.., a 2 • 

a~= }I <P 'lr<f> = (9.14) 

for lapse constant N, cosmological constant A and Lagrangian C. We can 

now write down the Hamiltonian 

7raa + 'lr<J><P- C 

~ a1-~ [ -7r; + a-2
7r; + (A+ V(a) )a4 

- ka2
] 

(9.15) 

(9.16) 

The Hamiltonian constraint 'H = 0 is quantized, leading to a zero- en­

ergy Schroedinger equation satisfied by a wave functional w(a, ¢) in Mini­

Superspace : 

'}{ w(a,¢) = 0' 

with quantized conjugate momenta . 
' 

7r2 ----+ 
a 

a a -a-P- aP-oa oa 
()2 

7r2 ----+ 
</> 8¢2 
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with factor-ordering p. The Wheeler-De Witt equation thus reads, for closed 

curvature (k = +1) and potential V(a) = Vma-37 with factor-ordering 

p= +1 

(9.20) 

The separation of variables '11(a, <P) = ,,P(a) <I>(<P) leads to separate equations 

for the matter-field 

(9.21) 

and for the scale factor 

[ d2 + ~_!"£ + Aa4 + Vma 4
-

37 
- a2 + 

82 l ,,P(a) = 0 
da2 a da a2 

(9.22) 

where s is the separation constant. Unfortunately the equation for the scale 

factor 9.22 is difficult to solve even without the cosmological constant term. 

The WKB approximation can be found in principle, but the integrals are 

rather complicated to evaluate. We therefore resort to different means: sim­

ply introduce better coordinates. With a good choice of coordinates we are 

able to perform the WKB approximation far from the turning points, and 

consequently construct a wave packet solution. 
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9.3 Quantum bulk matter states 

With a transformation of coordinates 

(9.23) 

(9.24) 

with constant factor em as yet undetermined, the WDW equation becomes : 

[ 
[)2 [) 4x2(~) ( [)

2 ~ )] 
x2 fJx2 + x fJx + (31 - 2)2 -e~ ae2 + Vm + Ax3-r-2 - x2 w = 0 . 

(9.25) 

Suppose that the bare cosmological constant A is zero. Now introduce the 

-separation ansatz 

w(x,e) = x( x) :=:( e ), (9.26) 

then the functions X(x) and :=:(e) respectively satisfy 

[ d~2 + €2 
] :=:( e) = o (9.27) 

with separation constant E, and 

(9.28) 

Here w2 = €
2 + Vm , the separation constant € having absorbed the factor 

e;:;;,1 temporarily. Also abbreviate the exponent in equation 9.28 

2-1 
2( 13 ) = 2( n + 1 ) 

1-2 
(9.29) 

for n real and positive and 2/3 < /n < 2. The upper limit (2) comes from the 

requirement that the sound wave velocity of the bulk matter should not be 
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greater than the speed of light. (In the perspective outlined in the previous 

footnote, no lower limit besides I> 0 related to the CM classical wormholes 

should be introduced now.) The Wheeler-De Witt equation has solutions 

(9.30) 

The WKB approximation in X(x) in the Lorentzian region with the associ­

ated phase S(x) and Wheeler-De Witt potential W(x) is 

X ( x) = 
1 

exp [ ±i S ( x) ] 
JxW112(x) 

where 

S(x) = jx JW(x') dx' 

and 

with / 

2-1 
n = -1 . 

1-2/3 

This results in the phase 

S(x,w) - n + 2 1w xn J w2 - x2 dx 
2 x 

- -~[ wxn+I cosh-1 w - xn+IJ w2 - x2 
2 x 

+(n+l) wxncosh-1 -dx]. 1w w 

x x 

With the restriction x « w, we can approximate the integral 

xn cosh-1 - dx ~ -xn+I cosh-1 - , 
' (n + 1 )w 1w w w w 

2 x x 2 x 

so that for w = w and x « w the phase approximates to 
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(9.34) 



w xn+l w 
S(x, w) = -wxn+i cosh-1 - + --[ Jw2 - x2 - -- ] . 

x 2 n+l 
(9.35) 

An interesting correlation with classical theory emerges by constructing 

a wave-packet solution by a superposition of WKB states. We also introduce 

Gaussian amplitudes of width band centre(€)= [(w)2 
- Vm]112

, 

(9.36) 

We now integrate over all real values of the separation constant €: 

\ll±(x, O = j 00 

d€ J[€, €] exp [ -i€e ± iS(x, w)]. 
-oo xW1/2 

(9.37) 

On evaluating this integral, we find the wave packet 

where the constants are related as: 

(~) 
€ 

CV: v l-t-l2' (9.38) 

c(€) (2b) t ( 7r ) t 
= -; We:(x) exp [-€7r] . (9.39) 

The wave function is therefore localized, with the gradient of the total 

phase yielding pencils of classical trajectories in configuration space. The 

probability current is conserved throug_h surfaces of constant "time" e (see 

[91]), so that the probability density is normalizable and proportional to 

(9.40) 
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It is now clear that the wave function is peaked about the configuration 

-space paths 

w w I e I= -=- xn+l cosh-1 
- . 

c x 
(9.41) 

At this point we re-introduce coordinates (a,</>), 

and 

We recover the constant 

Substitute for w in the configuration-space paths, and we instantly iden­

tify this configuration as the expression arrived at in the classical theory by 

eliminating the classical time-coordinate r from the solutions for a( r) ( 9.8) 

and </>(r) ( 9.9): 

-(3-r-2) _ -(3-r-2) h2 ( 31 - 2 I ,/... I ) , a - am cos fi'f:::: 'f' 

y2/ 

provided the constants take on values 

with 

3-y-2 
am 

(31 - 2) 2 
3-y-2 

2/ am 

31 - 2 

VY 

2 -1 
n+l= I . 

/ - 2 3 

(9.42) 

(9.43) 

(9.44) 

(9.45) 

(9.46) 

By integrating over the continuous family of wormhole states {Ww(x(a),e)}, 

with Gaussian amplitudes 9.36, we obtain a wave packet that is peaked about 
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configuration-space paths 9.42, where th~ latter satisfies the classical equa­

tions of motion (2.17 - 2.19). 

9.4 Wormhole states 

The effect of the coordinate transformation on the super-potential is that the 

"kinetic energy" term -s2 is now, in effect, stored in the potential term V(a). 
The coefficient Vm is modified, Vm -+ Vm + f. 2 • That is, the superpotential 

Es -+ Ew (see figs. 9.1 and 9.2), where 

(9.47) 

This is similar to the Ellis-Madsen procedure for representing bulk matter 

in terms of a scalar field ¢>: For constant /, the kinetic energy T can be 

expressed in terms of the potential V, T = "1:2 V.2 

Unfortunately, the scalar field ¢> does not facilitate solving the quantum 

mechanical WDW equation; it is a bad choice of coordinate. We therefore 

introduced the "bulk matter field" 

t = 31 - 2 3(1-"(/2) )., .,, v;:y a '+' ' (9.48) 

and obtained the superpotential Ew and an accurate wave packet solution. 

Furthermore, the family of states { W w} behave similar to the massless 

minimally coupled scalar field states described in Hawking [84] and Hawking 

and Page [85] (see Chapter 7, Section 4.1 for an outline of their results). In 

our case, the wave functions Ww fall off exponentially for a > am , (where 

am = w2/(3"l-2)), and correspond to asymptotically Euclidean four geome­

tries. As in the above-mentioned example (for which / = 2), these geome­

tries cannot pinch off to non singular compact metrics (like those of the No 

2In the perspective that A. Carlini proposes, this connection does not exist. 
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Figure 9.1: The potential Es(a) 
Vm = 0.5, and/= 5/3. 

sn1l1· (allC11 11 

0 .3 0 .4 0 .5 0.6 

2.0, 

Boundary proposal), due to a conserved flux 27r2iw of bulk matter particles 

passing through it. Such geometries correspond to that of wormholes, with 

a minimum throat-radius of order w 21(3-y-2). 

The solutions { W w} oscillate for a < w2
/(

3-r- 2
), and in this region cor­

respond to classical Lorentzian Friedmann universes with bulk matter flux 

27r2w. These solutions (like their massless scalar counterparts) expand from 

a = 0 to a maximum radius of w2/(3-r-2), and then recollapse to a = 0. 

We used the principle of constructive interference to arrive at an "on shell" 

wave packet solution (9.39) that is indeed regular near the origin a = 0. It 

is easy to show that the wave packet decays like e-a
2 

/
2 as a -t oo, thus 

satisfying the Hawking-Page boudary conditions for wormholes to occur. 
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0.1 

0 a = a,. = w'/(3>-2) scale factor a 

0.6 0.8 1.2 

·0.1 E.,, = - (37 - 2)(6·- J-y)C•+1l . (w/2)r-!=r 

Figure 9.2: The potential Ew(a) = a4 
- w2a6

-
3'1, for w2 = 1.0, 'Y = 5/3 and 

the turning point am= 1.0. 

For a non-zero bare cosmological constant A the superpotential (fig. 9.3) 

reads 

(9.49) 

which leads to a second Lorentzian region for a > as, a second turning 

point . A quantum FRW universe tunnels through the potential barrjer at 

am < a < as to a large size de-Sitter spacetime. The Coleman mechanism 

for setting A ~ 0 (see Coleman (1988) [13]), means that the second turning 

point as ~ oo. 
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Figure 9.3: The potential E~(a) = a4 
- w 2a6

-
3

"'1 - Aa6
• We have chosen 

w 2 = 1.0, with I= 4/3 and A= 3/16. 

9.4.1 Conditional Probability 

We now compare our results with that of Kiefer [94]. The probability to 

tunnel from a Friedmann closed universe to the forbidden region am < a « as 

is given by the tunneling amplitude 

P(a «as) - exp [-2S(a «as)] (9.50) 

S(a «as) Jam y'j£:T da (9.51) 

,....., I -2/3 2 (9.52) ,....., am 
2-1 

I .e.: P(a «as) 
1- 2/3 2 

(9.53) ,....., exp [-2 
2 

am ] . ,....., 
-1 

The probability for a universe from a large size de-Sitter spacetime to 

emerge from the forbidden region am « a < as from the right is outlined in 
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Rubakov (1988) [125] for a conformal scalar field. A similar argument applies 

in our case. The wave packet W is turned into an operator obeying the WDW 

equation in a third quantized version of our theory. It acts on states Ii > F 

and Ii >ds for Friedmann and de Sitter universes. If there are no universes 

present initially ( i.e. am = 0 ) we choose the vacuum state IO > F· Then the 

probability to obtain a large size de Sitter spacetime is 

(9.54) 

peaked at A = 0. So for a spectrum of baby-universe states Ii > F with "bulk 

matter field" e(I), the conditional probability to tunnel from Friedmann 

universe via wormhole into de Sitter spacetime is 

P( Ii >ds) _ P( a~ as) _ ( ~ 21 - 2/3 2 ) 

P( I. ) - P( ) - exp + am . 
i >F a~ as A 2 -1 

(9.55) 

This result is similar to Kiefer [94] modulo a coefficient in constant I· 

9.4.2 Conclusion 

Carlini and Mijic [9] demonstrated how specific values of / may represent 

wormhole instantons. We now see that for 2/3 < / < 2 there exist coher­

ent states to the WDW equation representing Lorentzian closed universes 

with bulk matter sources. The condition that I > 2/3 ensures that, as 

a--+ oo, Ew--+ +oo (equation 9.47), and thus we recover an asymptotically 

Euclidean region. In addition, the coordinate transformation x 2 = a31-
2

, 

e = ( 31
1-

2
)

2</J2a6
- 31 is useful in that the parameter e(a, </>) serves as a judi-
' cious clock : 

It easily decouples from the scale factor in the separation of variables, 

and more importantly, it is a suitable "time - variable" in the construction of 
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a probability current density. The latter is conserved in "time C and makes 

proper interpretation of the probability density effective. 

On a more general note, it is clear that our choice of Gaussians are quite 

specific, since our WKB wave function is either expanding or contracting 

with respect to "time" e. We could equally well have chosen symmetric 

Guassians if we took the sum of equal amounts. Similarly, we could have 

introduced antisymmetric Guassians if we wanted correspondence with the 

Hartle-Hawking boundary proposal (see Kiefer [94, 93]). 
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Chapter 10 

Issues in Wormhole theory 

Initial excitement around the study of topological features known as worm­

holes and baby universes resided in the hope that they play a crucial role_ 

not just in setting the cosmological constant to zero (Hawking [76], Baum 

[3]) but also fixing the low energy interaction couplings of nature (Coleman 

[16]). 

Integrating out wormhole fluctuations in the Euclidean Path Integral 

(EPI) gives an effective theory for gravity and matter-fields where the cou­

pling constants become dynamical variables, sampled from a probability dis­

tribution. A saddle point analysis of the action functional in the EPI around 

large, smooth geometries shows that this distribution should be exponentially 

peaked at A = 0. This seemed to solve a crucial problem of both standard 

cosmology and particle physics. In his seminal work, Coleman [16] suggested 

a similar mechanism to fix the other coupling constants of nature, such as 

the gravitational constant. 

In this chapter we briefly discuss the main features of the cosmological 

constant theory and the so-called big fix. There are, however, a lot of diffi­

culties that threaten the wormhole theory. For instance, we saw in Chapter 
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4 that a well-defined formulation of Quantum Gravity in terms of the EPI is 

still lacking. The Euclidean action for gravity is unbounded from below, so 

we must choose a contour of integration for which the EPI will converge. 

The proposal by Halliwell and Louka [58] for the use of "steepest- descent" 

methods in the space of complex four-geometries have been considered. Gib­

bons et al [40] initially proposed the rotation of the conformal degrees of 

freedom of the metric. This has not yet been implemented for more general 

and complicated cases, although it has been tried by Hartle and Schleich [68] 

in linear gravity. There is also the embarrassment that the choice of contour 

for the EPI may turn the peak at A = 0 into a broad distribution. A one 

loop estimate was performed by Polchinski [121] . 

The use of smooth geometries , and the distinction between large universes 

and wormholes in the derivation of Coleman's theory is still not fully justi­

fied . The issue of suppressing the amplitudes of "giant" wormholes, and the 

question of regulating the infrared divergence of the probability measure, still 

need attention. In addition, the meaning of the probability w(A) constructed 

from the EPI is not yet clear. 

We also explore the idea of a "multi-universe" quantum field theory on 

Superspace, where 3rd quantized operators create 2nd quantized states in the 

field theory of a single universe. The field equation in the 3rd quantized theory 

is non-linear, and represents a dynamical equation for the 2nd quantized 

couplings. These couplings satisfy a 3rd quantized Uncertainty Principle. 

Euclidean 3rd quantization theories agree with the main predictions of the 

Coleman mechanism. The Lorentzian version, on the other hand, predict that 

a peak at A = 0 should not occur. Different versions of a 3rd qi1antization 

theory differ in their predictions, and are still to be implemented in a more 
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realistic cosmological context. 

Scepticism over wormhole theory seems to have grown, since progress to 

overcome these difficulties has been rather slow. 

10.1 A theory of the cosmological constant 

In a misguided effort to model a static Universe, Einstein [23] was obliged to 

introduce a free parameter A into the equation of motion 

(10.1) 

Even after Hubble's discovery that the Universe is expanding, the need for 

A persisted due to possibly non-zero vacuum mass density< p > contribution 

to equation 1. We therefore write, for an effective cosmological constant Aef f, 

Aef J = A+ < P > . 

In a homogeneous and isotropic Universe like our own, with the expansion 

rate H0 ~ 75 km.seC 1 Mpc- 1 smoothing out any gross effects of the spatial 

curvature, and a near-critical value of the total mass density :S 3H5 /87rG, 

there is an upper bound to the effective cosmological constant: 

I Aeff I :S s!~ ~ 10-47 GeV4. (10.2) 

This contradicts the predictions of Quantum Field Theory (QFT), e.g. for a 

free massive scalar field. The zero point energy summed over all modes, with 

a wave number cut-off mp is of the order of < p >~ m~/l67r2 ~ 1074 Ge V 4 • 

This means that the bare A should be fine tuned to at least 121 significant 

places for the Universe to be large and fiat with Aeff ~ 0. 
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Hawking [76] studied a saddle point approximation dominated by large 

four-spheres in the EPI for gravity, in which A > 0 is treated as a dynam­

ical variable. He then showed that probability of a given configuration is 

exponentially peaked at A = 0: 

Baum [3] found a slightly different way out of the problem by considering a 

minimally coupled scalar field to make A dynamical without invoking topo­

logical fluctuations of gravity. He found the same peak at A= 0. 

10.1.1 The Coleman mechanism 

It was Coleman [40] who first gave a detailed mechanism for setting A -+ 0, by 

giving a semiclassical analysis, based on a few debatable hypotheses, about 

the effects that wormholes have on A and other coupling constants. 

The first assumption is that the EPI for Quantum Gravity is given by the 

Hartle-Hawking wave function, which is determined by a contour integration 

over all compact topologies approximated by large four-spheres, and even­

tually connected by microscopic wormholes. In the "dilute approximation" 

for wormholes, end-point interaction between wormholes are neglected, and 

they only interact with low energy physics. It also neglects the possibility 

that wormholes can divide into two or more, and have sizes far above the 

Planck scale,..., m;1 . 

We present an outline of an argument due to Hawk!ng in [84], as a sum­

mary of Coleman's original approach [16]. It considers an effective interaction 

Bi(x 0 ), between a wormhole state i and low energy quantum fields ¢, at a 

point x 0 on an asymptotically Euclidean region of spacetime. The other end 

of the wormhole i will join onto the same, or a different asymptotic region, at 
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a point y0 • The effect between points x0 and y0 is equivalent to the insertion 

of the factor 

In the dilute wormhole approximation described earlier, the effect of n worm­

holes joining onto the asymptotic regions is given by a factor 

Here n! compensates for overcounting identical wormholes. For an arbitrary 

wormhole configuration we have to sum over n , obtaining a factor of 

This exponential is now regarded as a bi-local addition to the action. The 

bi-local action is 

The bi-local action can be transformed into a sum of local terms, as 

performed by Klebanov, Susskind and Banks [97). At this stage, position 

independent parameters, a are introduced in the identity 

exp ( ~ j d4x~O(x) j d4 yfg[00(y)) 

= ~ j dae-ta
2 

exp ( - ~ j d4x~O(x)) . 
The path integral now becomes 

(10.3) 

where 

(10.4) 
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and 

(10.5) 

This is the formula for an ensemble of worlds with a statistical distribution 

of coupling constants, O:i. An observer in one of the members of the ensemble 

would have no way to deduce the existence of others. The quantum state of 

the universe is divided into non-interacting "superselection" sectors. Each 

sector is labelled by the coupling constants O:i, and an effective Lagrangian 

is the ordinary Lagrangian L plus an a-dependent term, ae. 

The integration variables are independent of position, so the effects of 

wormholes are to equalize the couplings in all the regions of spacetime. 

There is a spread of possible couplings, and different sectors are weighted 

by the probability distribution P( ai)· If one measures the strength of one 

of the effective interactions, the probability distribution collapses to the cor­

responding value of the coupling constants O:i. Any further measurement of 

that effective interaction will give the same strength. 

The probability distribution P( ai) for the couplings O:i is multiplied by 

the factor Z(ai) given by equation 5, a path integral over all low energy fields 

</>, with effective interactions ai()i· The path integral does not converge since 

the action is not bounded from below. We estimate Z(ai) by looking for 

the saddle point with the greatest contribution to the path integral. Such a 

saddle point will be the that of a 4-sphere, with the lowest action 

3 
r = -8G2A. 

For a single sphere (see Hawking (76)) we may write Z = exp(-r), but for 

an arbitrary amount of spheres connected by wormholes (see fig. 10.1) there 

is the distribution 

z = exp ( exp ( - r ) ) . (10.6) 
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Figure 10.1: The large spheres represent parent universes, and the thin tubes 
baby universes. In the dilute approximation, these baby universes interact 
only via coupling to the parent universes. 

Both the single and the double exponentials blow up rapidly as A ap­

proaches zero from above. This means that the probability distribution is 

peaked at those ai for which A= 0. 

In conclusion, our Universe is in contact with other large cool universes, 

through microscopic wormholes that set A ---+ 0. Even as our Universe un-
, 

dergoes inflation as a small hot Universe, the other large four-spheres still 

see A = 0 (fig. 10.2). 

The approach of Klebanov et al (97] improves on that of Coleman [16] 

since it depends very little on the scale of the wormhole since it avoids the 
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Figure 10.2: Small hot and large cool universes 

controversy surrounding the behaviour of metrics and manifolds at the Planck 

scale. Nor does (97] assume any semi-classical approximations, since it is 

based on a bilocal effective interaction. 

10.1.2 The "big fix" 

The fundamental idea that wormholes might fix most, if not all of the con­

stants of nature present in an effective Lagrangian theory was first suggested 

by Coleman (16]. A better mechanism was proposed by Preskill (122] and 

Grinstein and Wise (50]. Since the dominant term in the action is - 8J2 A, 

the probability distribution would be peaked at either G = 0 or A= 0. Since 

we observe G(ai) to be non-zero, it has to have some minimum value, about 

which the probability distribution would be concentrated. We hope that this 
' 

minimum would occur at a single value of the couplings O:i. There is as yet 

little agreement about the effective values of other couplings such as masses, 

0QCD etc. 
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A flaw in this argument has been pointed out by Hawking (84]. The 

probability measure P( ai)Z( ai) diverges strongly on the surface G2 A = 0. 

This means that the total measure of O'i- space is infinite. The only way 

to avoid such a divergence is for µ( ai) = P Z to be finite and positive, to 

predict a large concentration at an isolated point in O'i-space. To do this 

one needs an appropriate cut-off for the probability measure. But there is 

no unique way of doing this, and different such cut-offs give different results. 

The ambiguity in the choice of the cut-off is known as the regulator problem 

for the measure. 

Coleman (16] introduces such a cut-off in O'i-space at A, so that the prob­

ability measure is finite yet highly peaked there. Preskill (122] proposes the 

volume cut-off at G2 A 2 • Another alternative is - ~, leading to A = 0 and a 

P( ai) distribution of the other couplings. 

The fact of the matter is that the probability measure diverges since the 

Einstein Hilbert action is not bounded below. An ad hoc way to make the 

path integral converge is to integrate the conformal factor over a complex 

contour. However, it is not yet clear if this will always work. 

10.1.3 The contour problem 

The idea of integrating along a complex contour was explored in Gibbons et 

al (92], but it fails when the metric is coupled to non-conformally invariant 

matter. 

J.B. Hartle's original idea that the EPI should be calculated along the 

"steepest descent path" in the space of complex four-geometries was applied 

by Halliwell and Louko (58, 59, 60, 30] to a de Sitter Mini-Superspace model. 

Unfortunately there are many .contours that make the path integral con-
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verge, and the question arises whether some "correct boundary condition" 

will determine the contour uniquely. 

A peculiar consequence of a complex contour is that some saddle points 

in the path integral may have neither Euclidean nor Lorentzian signature. 

It should be interesting to apply Hartle's idea to more realistic cases which 

also include matter-fields and maybe metrics that are anisotropic. 

Also, higher derivative gravitational corrections to the stationary point 

for large four-spheres in the effective action that include terms up to A 2 , 

showed the surprising result that the peak at A = 0 disappears. Instead 

the (normalized) Z(ai) becomes a uniform smooth distribution in A ( see 

Elizalde and Gaztanaga (24]). This is somewhat disappointing. 

10.1.4 The giant wormhole disaster 

The dilute wormhole approximation excludes wormholes larger than the 

Planck size ,...., m;1 . Yet "giant" wormholes of sizes ~ m;1 might be of 

great use as a mechanism to explain the "evaporation" of black holes as 

suggested by Hawking (83). The problem is that low energy QFT may be 

violated if macroscopic wormholes are free to join onto arbitrary regions of 

spacetime. This is the so-called giant wormhole disaster. 

Fischler and Susskind (27) showed that the main assumptions in the Cole­

man mechanism for A are mutually inconsistent and give rise to wormholes of 

every size. Essentially, we assume that the path integral over small-wormhole 

fluctuations (i.e. wormholes of scale b, say, at Planck value m;1 or less) has 

been calculated resulting in an effective theory with probability distribution 

Z(a) (equation 3) for a single Universe. This distribution may be expanded 

as the sum 
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where the Nth term can be interpreted as representing N macroscopic worm­

holes inserted in the large (parent) Universe, with an average 

1 """"" N a az 
< N >= Z(a) ~ NCNet = z 8a . 

For small Ae11(b), the mean density of wormholes is the average < N > 
divided by the volume, approximately 

8Ae11(b) -a---
8a 

On dimensional grounds Aeff ,...., (m;b6t1, so that the maximum wormhole 

density is ,...., the close packing density b-4 provided a ,...., m;b2
• 

Preskill (122] suggested that interactions between microscopic instantons 

should "crowd out" large ones (see fig. 10.3a). This seems to violate the prin­

ciple that short distance physics is effectively decoupled from long distance 

physics. 

By dividing a large four-volume into k-cells that may (or may not) contain 

an instanton of size 2k-1 b, for some fixed unit b, Polchinski [120] argued for 

"the return of the giant wormholes" : The EPI over all topologies on a k-cell 

is then the sum over all the instantons of sizes 2k-1 b, 2k-2 b, 2k-3 b, ... (see 

fig. 10.3b). 

The presence (or absence) of arbitrary instantons in such k-cells shifts 

the effective cosmological constant by an amount 

b-4 L 2-4 ( k-i) ln ( 1 - nk ) , 

k 

where nk is the fraction of k-cells occupied by instantons of size 2k-l b. This 

is well-defined under condition that 0 ~ nk ~ 1, and in particular nk can be 
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2k- l · b-cell 

• • • • •• • • t 2.1: · b-cell ~ .. ... .. . a·· • •• • 0 0 • • • • 
• •• 0 

• • • • •• • ••• • 0 •••• • •••••• • 2.1:- 2 · b-cell J 
(a) (b) 

Figure 10.3: (a) Large wormholes "crowd out" small ones from spacetime. 
(b) A large instanton in a k-cell forbids any smaller instanton in that cell. 

of order 1 for arbitrary large k, allowing the existence of giant wormholes. 

Also, it now becomes clear that the probability for the existence of a 2k-1 b­

size instanton at a given point depends on the probability that no larger 

instanton is found at that point. This demonstrates that violation of the 

decoupling principle is really just an illusion. 

An "escape from the menace of the giant wormholes" was partly per­

formed by Coleman and Lee [14] for a peculiar type of wormhole carrying a 

conserved global U(l) charge Qk and of size 2k-1 b, occuring only at stationary 

points of the EPI. Also assuming that wormhole induced terms in the effec­

tive Lagrangian are charge changing, the shift in the effective cosmological 

constant arising at the second order in a is 

b-4 L Bklakj22-4(k-1)e-2sk ' 

k 

for dimensionless constants Bk and wormhole action 2Sk. The fraction of the 
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Figure 10.4: A large wormhole "bleeded" by small wormholes attached to it. 

four-volume occupied by wormhole ends of type k is then 

It finally assumes that microscopic wormholes "bleed" the giants by in­

ducing charge nonconservation interactions (see fig. 10.4). As charge flows 

into the throat of a large wormhole, it can be diverted into small wormholes, 

until there is too little charge left to support the large one, therefore desta­

bilizing it. The giant wormhole becomes unstable when the mean square 

charge carried by the microscopic wormholes is greater than its own charge 

Qk-. That is, when the stability condition 

is violated. 

L Bklakl22-4(k-K)e-2skQz < Q~ 
k<K 
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10.2 A multi-universe 3rd-quantized theory 

The theory of A thus far makes no clear distinction between the nature of a 

single universe theory and effective interactions with other universes. This 

has been pointed out by Coule and Solomons [19) where the Wheeler-De 

Witt equation for a de Sitter spacetime is modified by the presence of bulk­

matter wormholes. Generally, the Hartle-Hawking path integral used in the 

Coleman mechanism for A do not take such modifications into account. And 

what about interactions among wormholes themselves ? 

A more fundamental framework in which small closed "baby universes" 

can interact with each other or with a macroscopic "parent universe" is 

achieved through third quantization. It is essentially a "multi- universe" 

system treated as a QFT on Superspace. Third quantized field operators act 

on a third quantized state with no universes, the so-called void, and create 

(and subsequently annihilate) quantized states in the field theory of a single 

universe. These operators obey the Wheeler- De Witt equation. Interac­

tions then generalize this. equation to a non-linear equation for spacetime 

couplings. 

It is a gauge theory, therefore third quantized gauge symmetries are im­

portant in the construction of the action [130, 128]. Since Superspace is 

infinite dimensional, it is ill-defined because of non- renormalizability. An 

advantage over the second quantized theory is that topology-changing inter­

actions are naturally described by a sum- over-smooth-four-geometries with 

fixed boundaries. This amounts to the addition of non-linear terms in its 

fundamental equation. 

Strominger [130] postulates that a multi-universe system described by a 

Schroedinger state w[<I>(Xi), X 0
] of the third quantized Hilbert space obeys 
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Figure 10.5: Iterating the basic joining-splitting interaction leads to arbitrar­
ily complicated many-universe processes. 

the third quantized Schroedinger equation 

'Hlw >= i a;o 1w > (10. 7) 

where X 0 is a second quantized field operator that serve as a third quantized 

"time" coordinate, and '}{ is the Hamiltonian of the third quantized action 

where cl) is the second quantized wave function of the universe. Here the 

arbitrary weighting A reflects the strength of multi- universe interactions like 

those in fig. 10.5. 

Xµ is the D dimensional field configuration in the universe. We may 

define orthonormal eigenspaces In > for the universe number operator N 

Nin>= nln > (10.8) 

and decompose the state 1'11' > at some moment X 0
: 

(10.9) 
n 
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The probability amplitude for n universes at an instant X 0 is then '11n(X0 ). 

We now give an outline of the "single universe" approximation, that is 

to some extent valid for an observer in our Universe. Consider two separate 

classes of universes, the small (,...., Planck scale) baby universes and large 

(,...., Hubble scale) parent universes. The second quantized actions are for 

simplicity written in D = 1, as 

SP,B = J dr ( r;; -Nm~.B) (10.10) 

The topology changing interactions are assumed to be (a) nucleation (or 

annihilation) of a baby by a parent universe, or (b) bifurcation of a baby 

universe (see fig. 10.6). The third quantized action reads 

SE[<I>] = 

2~2 J dX (-(v<I>p)2 + m~<I>~ - (V<l>B)
2 

+ m1<I>1+1>:<.I>~<I>B + ~<I>1) 
(10.11) 

with <I> P,B acting as annihilation and creation operators for "babies" and 

"parents" ,and g2 is a scaled out third quantization coupling. For very large 

mp, pair production of parent universes is suppressed, and since the couplings 

preserve parent universe number modulo 2 we may restrict ourselves to the 

case of a single parent universe propagating in a plasma of baby universes . 

See fig. 10.7. 

Parent-baby interaction may be described by the "hybrid" action 

Sr= J dzNl; .Ci(T)<I>k 
1 

(10.12) 

for local second quantized operators .Ci on the parent universe, and third 

quantized baby field operator <I>k. Replace the discrete index i by the con­

tinuous index k and introduce the Fourier transform ~B(k), then the action 

139 



(a) (b) 

Figure 10.6: A double line represents a parent universe, and a single line 
a baby uni verse. (a) Nucleation (or annihilation) of a baby by a parent 
universe. (b) Bifurcation of a baby universe. 

is equivalent to 

S1=K1 1 

dr~B[ X(r)), 

so that the third quantized functional integral for the parent propagator in 

the bath becomes a second quantized path integral 

(10.13) 

where 

Sp+ S1[<>] = j dr (:;; - Nm' - Nw(X)) 

This looks like an ordinary second quantized action for, a one dimensional . 

universe. The effect of baby universes is summarized by the addition of an 

ordinary potential a(X) into the field theory (42, 15). In the semi-classical 

limit of the third quantized theory, g2 ---+ 0 in equation 10.13, the field op-
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Figure 10.7: A parent universe propagating in a plasma of baby universes. 

erators all commute and we can diagonalize <I> B in terms of real time third 

quantized baby universe eigenstates la(X) > : 

<I>B(X)la(X) > = a(X)ia(X) > 

where the eigenvalues a(X) are constrained to obey the baby universe field 

equation 
,\ 

( 9 2 + m1 )a(X) + 2a2 (X) = 0 (10.14) 

in the absence of parent universe sources. 

10.2.1 The Third Quantized Uncertainty Principle 

Generally a baby universe is in a linear superposition of (orthogonal) eigen­

states 

la, a' > = ,Bia> +,B'la' > (10.15) 

141 



where l,812 + l,8'12 = 1. For a desirable clock in the parent universe, we may 

calculate the correlation function of n-field operators at times T1 ... Tn : 

< X(T1) ... X(Tn) >a,a' - <a, a'I J VX(T)eiSp+iSi X(T1) .. . X(Tn)la, a'> 

l,812 J VX( T )eiSp+iS1[a]X( T1) ... X( Tn) 

+l,8'12 J VX( T)eiSp+iS1[a'] X( 71) ... X( Tn) . 

This is a sum of ordinary correlation functions in universes with different cou­

plings a and a' . Second quantized operators corresponding to observables in 

a single universe do not affect the baby universe state, so they cannot connect 

the states la> and la'>. Two observers measuring different eigenvalues can 

never communicate. 

/ 

We employ the Copenhagen interpretation to rephrase this result. Ini­

tially the coupling constants are not defined, but depend on a probability 

distribution. Performing some measurements which indicate that the cou­

pling constants are a (a'), will collapse the wave function into the orthogonal 

eigenstates with respective probabilities l,812 and l,8'12. All future measure­

ments are then consistent with some definite coupling a (a'). When 92 -+ 0, 

after fixing the values of the parent universe potential a(X) and its first 

derivative 8~~) at a given X, then 10.14 uniquely determines a(X) for each 

other value of X. 

However, for 92 =/:- 0, the baby state is subject to quantum fluctuations 
.... 

and the results of measurements are expressed as conditional probabilities. 

Measurements at X1 and X 2 give results a 1,2 for the parent universe 

potential a(X). So the conditional probability amplitude that the potential 
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at an intermediate point X3 will have value 0'.3 is given by 

Here SB is the third quantized baby universe action, and the path integral is 

over all paths obeying a 1,2,3 = <P(X1,2,3), respectively, and is normalized to 

one. The Uncertainty Principle now reads as follow : 

If X runs over an infinite range, A( a3) is zero for all 0'.3. Even if X has 

finite range, there will be difficulties in measuring the first derivative of a 

at X
3

: the "momentum" spread is very large immediately after a precise 

measurement of "position". As this would be the case in practice, we explore 

it in greater detail. 
Suppose that the potential has not been measured exactly at X 1 and X 2 , 

but has been determined to within a Gaussian of width .X around the values 

a
1 

and a
2

• Then the conditional probability amplitude for measuring the 

first derivative of the potential at X3 to take the value 

00'. ( ) t ax x3 =a 

is given by the Fourier transform of A(a3 ). For X3 very near to X 2 , it reads 

Now as the difference between the two field values X1 and X 3 and the 

uncertainty .X of the measurement of the potential at X1 go to zero, the 

spread in a' goes to infinity. This is equivalent to the statement that the 

momentum spread of a quantum mechanical particle is very large shortly 

after a precise measurement of its position. This inability to obtain precise 

measurements of coupling constants is known as the uncertainty principle for 

spacetime couplings. 
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10.2.2 Third Quantized Coherent States 

Suppose that FRW Mini-Superspace containing a massless scalar field ¢>, 

is third-quantized as recommended by Giddings and Strominger [44]. This 

avoids difficulties with negative probabilities encountered in second quantized 

Mini-Superspace. Coherent states can then be constructed in such a model, 

and the Heisenberg uncertainty relation investigated. This suggestion was 

taken up by H.J. Pohle [119], and they exposed a peculiarity in the sense that 

quantum effects dominate in regions that are essentially classical in nature. 

This strange prediction may forecast problems for the third-quantization of 

gravity in general. Here we present a brief outline of their paper, Pohle [119]. 

A Friedmann-Robertson-Walker Mini-Superspace with its usual metric 

and containing a massless scalar field, was quantized in the sense of third 

quantization by Pohle [119]. The analogue of the Klein-Gordon equation for 
/ 

Mini-Superspace is the Wheeler-De Witt equation 

( 
EJ2 a a2 ) 

a2 {)a2 +a oa - 8¢>2 - a4 'lf;(a, ¢>) = 0' (10.16) 

The Hamiltonian operator of the system is 

(10.17) 

where the functional derivative s,µ~:)2 is performed with respect to the oper­

ator ~(¢>,a) taken to be the "time-independent" c-number field 'If;(¢>). The 

amplitude to find an instantaneous field configuration 'If;(¢>) on a spacelike 

hypersurface in Mini-Superspace is given by the wave functional '11['1/J, a] of 

the Schroedinger equation 

(10.18) 

with time variable a. The third-quantized Lagrangian now reads 
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(10.19) 

The inner product is defined in the usual way. Since we are interested 

in classical behaviour for the Universe, we look for coherent state solutions 

of the Schroedinger equation. An exact solution to this equation is given by 

the ansatz 

'11[¢>, a] = 

C exp (- ~ j d</> d¢>' [ D + if] x [ 7/l( </>) - 77( </>, a)][ 7/l( ¢>') - 77( ¢>', a)]) 

·exp (i j d¢>P(¢>, a)[ 7/l(</>) - 77(¢>, a) l) , 
where C is the normalization. All the functions indicated are real, and can 

in principle be determined from the Schroedinger equation. Due to transla­

tion invariance with respect to ¢>, the functions D and I have the following 

properties : 

D( ¢>, ¢>',a) 

I ( ¢>, ¢>',a) 

By taking Fourier transforms we find 

D(¢>-¢>',a) 

I ( ¢> - ¢>', a) . 

D(</>, ¢>',a)= 2~ j dk exp [-ik(</>- <P')]D( k, a) , 

(10.20) 

(10.21) 

and similarly for the function I. Substitute the ansatz into equation 18 and 

define 

2A(k, a)= D(k, a)+ il(k, a). 

Then the function A( k, a) satisfies the equation 

ia 8A + A2 + a4 = k2 . aa 
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Re-define 
A= -~au 

u8a 
(10.23) 

and it is now clear that we have been able to produce the Fourier transformed 

second quantized Wheeler-De Witt equation 16: 

( 2 a2 a k2 4) ( ) a Ba2 + a Ba + - a u a, k = 0 . (10.24) 

The solutions are combinations of independent modified Bessel functions 

I<ik/2 (a;) (also called Macdonald functions) and Lik/2(a;). The former is 

zero at infinity and trigonometric at zero a, while the latter goes like ~ea2 
as 

a goes to infinity. The general solution of equation 22 for A(k, a) we write as 

A(k,a) = -i a 8(r1u1 +r2u2) 
(r1u1+r2u2) 8a 

with ri,r2 complex functions of k. It is easy to show that the real part of A, 

w 
2D=---­I r1u1 + r2u2 l2 (10.25) 

for constant w. The left-hand side of Heisenberg's uncertainty relation can 

readily be calculated, and is found to be 

(t>.j,)'(M)
2 

= ~ [ 1 + ( ~)'] 
The imaginary part of equation 22 leads to the result 

1 =!!_an 
D 8a 

and therefore 
I ' a 

D -1 
D = -aaa · 

Given the solution to D in equation 25 we arrive at the result 
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This means that quantum effects dominate the Universe at large radius. 

Clearly we are contradicting the fact that spacetime is essentially classical 

at present. This seem to raise questions about the true meaning of third 

quantized gravity on Mini-Superspace and beyond. 
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Chapter 11 

Conclusion 

We now review the contents of our work, emphasizing areas where there are 

prospects for progress, and taking heed of the shortcomings. 

Throughout, there has been a positive attempt to clarify the role that time 

plays in quantum cosmology, yet a generally covariant theory of quantum 

gravity should indicate a marked absence of time. Only in the 'classical 

limit' (in this context, General Relativity and Quantum Mechanics) should 

the notion of classical spacetime as we know it, enter the arena. 

To start with, Chapter Two explores the general formulation of quantum 

cosmology, by using the Hamiltonian formalism. The Dirac quantization 

procedure results in an operator-ordering ambiguity that has received con­

siderable attention, but still remains unresolved. This we consider to be the 

first indication that any predictions of quantum cosmology are to be taken 

with a large grain of salt. The attempt to construct Mini- Superspace models 

in which all except finitely many degrees of freedom are frozen violates the 

uncertainty principle [61]. It also skips the regularization problems. 

Futhermore, we observe the Universe to be homogeneous and isotropic. 
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Any effective theory of quantum gravity should therefore predict the na­

ture of the spacetime metric; to impose an FRW-metric and a homogeneous, 

isotropic matter-field onto two-dimensional Mini-Superspace merely begs the 

question. 

Nevertheless, we are able to make some interesting remarks concerning 

the emergence of classical behaviour from the"quantum fuzz" that perme­

ate throughout most of Superspace (Section 2.6). The WKB approximation 

leads to a conserved current that may have negative probability density. This 

raises the question of the role of time and the issue of predictions in quan­

tum cosmology. First and foremost, the usual Copenhagen interpretation of 

Quantum Mechanics falls short due to the absence of an external observer 

[67, 26]. Instead, the (post)-Everett idea of splitting our single Universe (es­

sentially an isolated, "closed" system) into many identical subsystems, allows 

us to retrodict its history using Conditional Probabilities [88, 34, 66, 132, 54], 

in Chapter 3. 

The issue of choosing initial conditions to the classical Einstein field equa­

tions is translated into proposing an appropriate boundary condition in Su­

perspace. The heuristic aim of such a proposal is to select a single wave 

function for the Universe that predicts sufficient inflation to resolve among 

others, the flatness-, horizon- and monopole problems of standard cosmology, 

and provide the seeds for galaxy-formation. The No Boundary proposal of 

Hartle and Hawking [74, 77, 65] seems to fall short in this regard, while the 

Tunneling proposal of Vilenkin and Linde [133, 134, 135, 136, 137, 138, 139] 

,and [103, 104, 105] make predictions that appear more reasonable. However, 

the Tunneling wave function is not well- defined, since there is no guarantee 

that flux is carried out of Superspace at singular boundaries. 

In practice, the WKB approximation results in an ensemble of possible 
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wave functions to the Universe, that predict pencils of classical trajectories 

in configuration space, instead of a single classical path. More-over, if we 

require an initial inflationary phase along its classical evolution, it would 

appear (117) that the Universe has an infinite classical history, despite the 

spacetime being singular in the sense that it is geodesically incomplete. This 

misleading result emphasizes the need for more realistic models that contain 

a reliable time variable, and well- defined probability densities. 

It would appear that the Hartle-Hawking wave function is not an example 

of a"typical" wave function of the Universe (51). On the other hand, for an 

appropriate basis {In >} defined on the space of all wave functions for a 

Mini-Superspace model with a power-law potential, it seems plausible that 

sufficient inflation is a property of a typical wave function (Chapter 5). 

What we definitely learn from quantum cosmology is that the usual frame­

work of Hamiltonian quantum mechanics needs to be generalized - gravita­

tional fluctuations of spacetime deny us any definite notion of causality, since 

spacetime itself becomes a dynamical variable [99, 89). The"neutral-time " 

formalism (2, 49, 70) is devoid of a fundamental arrow of time, hence the prob­

abilities for the individual members of a set of alternative histories depend 

on the initial and the final conditions of the Universe. The semi-classical 

domain of everyday experience emerge only when such boundary conditions 

lead to decoherence of alternative sets of histories in an appropriate fashion. 

For quantum evolution to lead to the present classical Universe, the wave 

function must approach a ~ave packet that describe observed cosmological 

data [91, 10). To obtain a good probability interpretation for the wave packet, 

we need to specify a judicious clock. 

This is ideally manifested in the description of bulk-matter wormholes in 
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Mini-Superspace (Chapter 9). The wave function exhibits wave packet-like 

structure with a"bulk matter-field" clock ( Since they satisfy the strong­

energy condition/> 2/3, and the Wheeler-De Witt equation, these solutions 

are a substantial contribution to existing wormhole theory. In the Appendix 

we attempt to construct a relation between the Lorentzian perfect fluid index 

I for bulk matter universes, and its analytic continuation le for an Euclidean 

exterior. 

Previously, wormhole instantons [4, 17, 85, 42, 9, 45, 57, 88, 101, 102, 126, 

109, 124] were obtained by analytic continuation of the Lorentzian Einstein 

field equations to the Euclidean regime. Wormholes in Superspace were in­

troduced to provide mechanisms for black hole evaporation and setting the 

cosmological constant to zero [85, 88]. We are able to improve on the Born­

Oppenheimer approximation [93], as well as the asymptotic expansions of 

Hawking and Page [85] by producing exact quantum wormhole states for 

the free massive scalar field, provided the mass m2 takes on discrete integer 

values. 

The initial enthusiasm over wormholes and the Coleman mechanism [13] 

for setting A to zero, has largely subsided, and is slowly being replaced by 

cool realism: 

There is no well-defined theory of quantum gravity to date. 

The Euclidean action for gravity is not bounded from below. 

Different choices for the contour of integration to make the EPI converge 

lead to different results. The idea of integrating along a complex contour 

[92] fails in the case of non-conformally invariant matter. A complex cc;~ntour 

results in saddle points in the EPI with neither Euclidean nor Lorentzian 

signature . 
• 

The Coleman peak at A = 0 disappears and becomes a disappointingly 

smooth distribution in A in higher derivative corrections to the stationary 
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point for large four-spheres in the effective action. 

In the giant wormhole disaster, low energy QFT may be violated if macro­

scopic wormholes are free to join onto arbitrary regions of spacetime. 

A multi-universe third quantized theory of interacting baby- and parent 

universes was formulated as a QFT on Superspace. The third quantized 

Uncertainty Principle states that there is some uncertainty in the prediction 

for the relation among coupling constants of the Universe. Unfortunately, the 

fact that a simple FRW-universe model containing a homogeneous, isotropic 

matter-field in third quantized theory instead reveals maximum uncertainty 

[119), merely adds to the existing doubts of the Mini-Superspace formalism. 
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Appendix A 

Relating ~ and ~e 

The Ellis -Madsen procedure [8, 9, 107] defined the index/ for bulk matter in 

a perfect fluid model as a function of the kinetic energy T and the potential 

energy V of a scalar field </>: 

(A.l) 

In order to describe wormholes as analytic continuations of classical FRW 

closed universes, we rotate the scalar field such that 

(A.2) 

so that the Lorentzian index I has to be redefined as an Euclidean index /e· 

Since the kinetic energy is a square function of the time derivative in </>, we 

see that Te ---+ -T, while dynamical consideration tells us that the potential 

energy Ve---+ V. Equation A.1 now reads 

-2T 
/-+ /e =a -T + V' (A.3) 

where a is a constant of proportionality. Simple manipulation of equa­

tions A.1 and A.3 lead to 
1 1 v 
/ - 2 + 2T 

1 v 
/e 2- 2T' 
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which add up to 
1 a - + - = 1 . (A.4) 
I /e 

We have found a relation between the indices I for the Lorentzian and Eu-

clidean regimes respectively, barring the unknown a. It is also possible to 

formulate a tentative argument for evaluating this constant, which contains 

two crucial stages: 

a) We demonstrate that the potential energy Ye of the scalar field </> 

approximates to a power-law potential 

!:_</>2q 
2q 

for small </>, for a perfect fluid model with index le· This will allow us to 

separate the Wheeler-De Witt equation as in Section 8.4, provided that the 

power q is a function of /e · 

b) Secondly, for </> sufficiently small, and for high order modes, the power­

law potential model of Section 8.4 approximates to the closed bulk matter 

universe model described by equations 9.27 and 9.28 of Section 9.3. This 

implies that the power q may in turn be expressed as a function of the 

Lorentzian index / · 

The upshot of all this is firstly, that (a) results in 

31e 

and secondly, (b) leads tg 

q= 
3/e -2 

I q--­- 2-1. 

Equating these two expressions for q results in the relation 
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(A.6) 

(A.7) 



and finally, 
1 1 
-+-=1. 
I 3/e 

(A.8) 

This crucial relation matches the closed FRW universe bulk matter index to 

its analytic Euclidean continuation. It is easy to see that 

1 
a= - . 

3 
(A.9) 

A.1 (a) The scalar field potential 

We give an outline to the derivation of the sinh potential in the framework 

used by CM[8, 9). If this new potential is indeed the correct one, we are able 

to derive the asymptotic wave functions for 11>1 ~ 1 by means of the HP[85) 

procedure. These expansions are functions of a and ¢>, with coefficients that 

contain terms in 3/e - 2, so that /e = 2/3 is a critical point. 

With the Lorentzian metric 9.1 

(A.10) 

the scale factor is the same as that of CM[8, 9), namely 9.8 

(A.11) 

Here am corresponds to the maximum size of the FRW Universe. The scale 

factor ¢> satisfies the relation 

a3-r-4 def> 2 
-2- (dr) + V(¢>) = P' (A.12) 

where V( ¢>) is the scalar field potential that we are about to determine ex­

plicitely, and the p is the energy density of the perfect fluid bulk matter 

source. We recall from 9.4 that it reads 

P = Pma;;: a-3-r ' (A.13) 
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for an arbitrary constant Pm· The conservation of energy requires 

p-1a3
"Y-

4 
( ~~) 2 =/=constant. 

Substitute equation A.13 into equation A.14, to obtain the relation 

~~ = ±VPm/a:;;: a
2

-
3
"Y. 

Now use equation A.11 to write 

T - ±J a
3"Y1dt' l </>( ) -Pm/ m ,,. [a:;;:-2 - (1 - 3/ /2)2t'2) . 

(A.14) 

(A.15) 

(A.16) 

For convenience, we set the integration constant to zero. Depending on the 

sign ±, we obtain two solutions to the integral. In CM[9], the+ sign gives the 

arctanh solution. This solution we call interior in the sense that the integral 

is defined for a closed Lorentzian universe. The model starts off from zero 

radius, evolves along classical lines to a maximum radius am and recollapses. 

On the other hand, the - sign leads to an arccoth solution: 

vfFj; -1 [ 3/e - 2 l </>( r) = coth (3'"1 _ 2)/2 r . 
3/e - 2 2am e 

(A.17) 

In this case we have continued the evolution analytically pass its classical 

maximum, into a forbidden Euclidean regime which we call the exterior so­

lution. We have also introduced the Euclidean index /e into our formal­

ism. This will correspond to the index described for the instantons found by 

CM[9], for which a -t oo as r -t oo. We now use equation A.12 to derive 

the scalar field potential, and find 

-2.:!L-1 - /e/2 . ~ [3/c - 2 l V(</>) = (-1)3..,e-2 
2 

smh3..,e-2 </> 
am vfFj; 

(A.18) 

There appears to be some ambiguity in the sign of this potential. If we take 

the scalar field to be imaginary, </> -t i</>, and if we then correctly write sin 

instead of sinh for the potential ( A.18), we are able to remove this ambiguity. 
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Provided that l</>I « 1, the potential( A.18) approximates to 

v ( </>) = !:___ </>2q ' 
2q 

of HP[85], where we have abbreviated 

3/e 
q = 3/e -2 ' 

and 

(A.19) 

(A.20) 

(A.21) 

The important result is of course the exterior relation A.20. It is then possible 

to use the expansions of refs. [95 , 96] to derive the appropriate wormhole 

wave functions. Alternatively, we may use our own formalism of Section 8.4 

for a qualitative discussion. 

A.2 (b) The Lorentzian interior 

For closed Lorentzian bulk matter universe models we derived the ordinary 

differential equations 9.27 and 9.28, which we rewrite as 

(A.22) 

with separation constant t:, and 

[ a
2 d2 +a.!:_+ (t:2 + Vm)a6-3--t - a4

] X( a)= 0. 
da2 da 

(A.23) 

with the wave function 

w(a,e) = X( a) 3( e) . (A.24) 
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We briefly compare these equations with that of the power-law potential of 

Section 8.4. For very small </>, and high order modes such that 

2 I\, >. ~ t ~ - = Vm, 
2q 

(A.25) 

we may say that the equations for the power-law potential approximates to 

equations A.22 and A.23, under condition that we compare the indices of the 

scale factor in the energy terms: 

2-4q 
6 - 31 = 4 + ---'-

1 + q 

and solving for q, we arrive at relation A.6. This completes our argument for 

fi . 1 xmg a= 3. 
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