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Abstract

Over the last half century the study of superintegrable systems has established
itself as an interesting subject with connections to some of the earliest known
dynamical systems in mathematical-physics. Systems with constants second-
order in the momenta have been particularly well studied in recent years.
This thesis provides a classification of non-degenerate (maximum parameter)
three-dimensional second-order superintegrable systems over conformally-flat
spaces. I show that, up to Stéckel equivalence, such systems can be put into
correspondence with a 6 points in the extended complex plane with an action
induced by the conformal-group in three dimensions. I use this correspon-
dence, and the tools of classical-invariant theory, to determine the inequiv-
alent orbits under this action and show there are only 10 conformal-classes.
This answers an open problem by showing that no unknown systems exist on
the sphere.

Additional interest in these systems comes from studying their algebra of
constants. In the three-dimensional maximum-parameter case this algebra
is generated by the iterated Poisson brackets of the 6 linearly independent
second-order constants and is known to close at finite order. These 6 second-
order constants are necessarily functionally dependent, and up to now the
explicit relation for their dependence has only been known on a case-by-case
basis. In this thesis I demonstrate a quartic identity which provides the func-

tional relation for a general system.
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Chapter 1

Introduction

This thesis is concerned with maximum-parameter (non-degenerate) super-
integrable systems over conformally-flat complex spaces with constants of
the motion second-order in the momenta. Two-dimensional systems over
conformally-flat spaces and three-dimensional systems over flat space (both
complex) have both been completely classified [28, 16, 17]. The classifications
use, in part, algebraic varieties (i.e. the zero set of irreducible polynomial
ideals). These algebraic varieties come from examining the integrability con-
ditions for such systems. The varieties are foliated by the nonlinear action of
a Lie group (e.g. the Euclidean group or the conformal group) and the leaves
of this foliation, or more precisely, the closure of the leaves with respect to
the classical topology, are described by subvarieties. Working over complex
spaces guarantees these subvarieties are connected (even if points from other
algebraic sets are removed) and this fact simplifies the arguments needed to
give a complete classification.

Before presenting the results obtained in this thesis a brief historical ac-
count of superintegrability will be given. A more complete introduction can

be found in the upcoming review of Miller, Post and Winternitz [60].

1.1 Historical Background

Dynamical systems with exact-solutions have played an in important role in
the development of mathematics and physics. In classical mechanics these
system are characterised by there being sufficiently many constants of motion

to allow the trajectories to be determined via integration (if the energy level

1
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set of an orbit is compact then this integration corresponds to the well known
action-angle coordinates). An important subclass of these systems are given
by systems that possess an overabundance of constants of motion, placing
tighter algebraic restrictions on the trajectories obtained. In the last half-
century the study and recognition of these types of systems has been growing
steadily, and these systems have been given a new name: ‘superintegrable’
(older terms for such systems include: ‘degenerate integrability’ and ‘non-
Abelian integrability’).

Despite the recency of the term ‘superintegrable’ such systems are actually
amongst the oldest studied, two prime examples being the harmonic oscillator
and the Kepler-Coulomb potentials. One of the ways the superintegrability of
the Kepler-Coulomb potential manifests itself in the classical case is through
Kepler’s three laws of planetary motion. These relations were determined in
the early 17th century from data collected at that time and are quite striking
for their algebraic simplicity. These laws predate the discovery of the inverse
square law and the Newton/Leibniz invention of calculus, both of which were
needed to investigate this system thoroughly.

The superintegrability of the Kepler-Coulomb potential also manifest itself
in its quantum mechanical analogue, the hydrogen atom. Here the spectrum
of the energy operator (the Balmer series) is calculable from algebraic meth-
ods alone. The Balmer series, like Kepler’s three laws, was determined from
observational data, and, somewhat analogously to the classical case, predated
the invention of Schrédinger’s wave equation and the foundation of modern
quantum mechanics. Both facts follow from their respective superintegrability
and, at least in the quantum case, many superintegrable system known today
share similar properties.

The systematic search for superintegrable systems can be traced back to
the 1965-67 papers of Y. A. Smorodinskii, P. Winternitz et al [34, 61, 1] who
were interested in two and three-dimensional quantum systems with ‘higher
symmetries’, meaning symmetries that do not come from geometric symme-
tries.

The phrase ‘superintegrable’ comes from the work of Rauch-Wojciechowski
in 1983, whose work on the Calogero-Moser system [62] which provided some
of the first examples of superintegrable systems with constants of motion of

order higher than two.
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Interest in superintegrability was spurred at the end of the 20th century
by the work of N. W. Evans in 1990 which gave a complete classification of
three-dimensional real systems with second-order constants [30].

There has been shown to be close relationship between Exact and Quasi-
Exact Solvability (QES) and superintegrable systems [20, 41, 59, 58], and it
has been conjectured that all maximally-superintegrable systems are exactly
solvable [50].

An important tool in the construction and classification of superintegrable
systems is given by the coupling-constant-metamorphosis (CCM) [35] and its
close cousin the Stéckel transform [5], both introduced in the mid 1980s. When
focusing on second-order superintegrable systems the CCM and Stéckel trans-
form coincide, but for general systems they are distinct [52, 23].

For the last half-century the most extensively known superintegrable cases
are those with second-order constants separating in two or more coordinate
systems. Second-order integrability (super or not) and separation of vari-
ables are intimately connected through theorems of Stackel [38, 56, 5, 11, 13]
showing that separability of a system implies the existence sufficiently many
mutually commuting Killing tensors' to give integrability and, conversely giv-
ing conditions necessary to ensure that second-order integrability gives rise to
separability.

This strong connection to separation of variables has lead to powerful
classification results regarding systems with second-order constants. However,
this close connection also limits these techniques from being generalised to
systems with higher-order constants. Recent work of Kalnins et al in the
classification of two and three-dimensional systems over complex Euclidean
space has lead to classification results that explore the algebraic geometry
present in these systems [16, 17, 15]. This thesis is a continuation of that
work. This is important as recently superintegrable systems have been found
which do not possess separation of variables [53].

The most recent interest in superintegrability has been spurred by the 2009
paper of Tremblay, Turbiner and Winternitz [31] containing what are now
known as the TTW potentials. The TTW potentials were conjectured to be

superintegrable for rational choice of its parameter k, and this conjecture was

'the leading part of the second-order constants are killing tensors for the pseudo-
Riemannian manifold
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validate shortly thereafter [54, 19, 22, 37]. These systems provides examples
of superintegrable systems with constants of arbitrarily high degree.

By generalising the TTW systems from two dimensions to higher di-
mensions, superintegrable systems have been found over non-conformally flat
spaces, possessing constants of arbitrarily high degree [18].

Another aspect, and probably the primary aspect, of superintegrable sys-
tems that has been of interest to the research community is the various links to
special function theory that exist. Special functions can arise as the eigenfunc-
tion for the symmetry operators in quantum superintegrable systems, and in
the interbasis expansion coefficients for multiseparable systems [21, 29]. They
also arise in models of quadratic algebras of superintegrable systems [51].
Very recently the Askey-Wilson scheme for orthogonal polynomials has been
shown to arise from the contractions of models of the quadratic algebras of
second-order superintegrable systems [25].

A family of exactly-solvable two-dimensional Hamiltonians has been found
with wave functions related to Laguerre and exceptional Jacobi polynomials
[55]. And superintegrable systems with non-polynomial constants are also
known [42].

Tool such as supersymmetry and ladder operators have been used in the
construction of superintegrable systems [45, 46, 47]. And superintegrable sys-
tems having potentials linked to Painlevé transcendents have also been found
[44].

Superintegrable systems have also appeared in applications, such as study-
ing the Hartmann potential [39, 43|, which was introduced in quantum chem-

istry to describe ring-shaped molecules like benzene [3].

1.2 Outline of this thesis

Chapter 2 begins by presenting the idea of a second-order superintegrable sys-
tem over a conformally-flat space and discusses the classical structure theory
as derived by Kalnins, Kress and Miller [12]. After this relevant background
material is provided the chapter concludes by generalising a result that simpli-
fied the differential closure of the ideal of integrability conditions in Euclidean
space [17]. The corresponding result is given for spaces of constant curvature.

In chapter 3 the local action of the rotation group SO(3,C) is examined
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and a large set of rotation representations is defined. These representations
are used to examine the space of higher-order constants, recreating for the
most part the work of Kalnins et al [12] regarding the closure of the quadratic
algebra. The use of rotation representations allows the calculations to be car-
ried further than previous attempts and analyses the space of eighth-order
constants. The results of this analysis closes an open question in the litera-
ture [36] by proving that the functional relation between the 6 second-order
constants and the 5 parameters is a quartic relation. The form of this quartic
relation is given explicitly for a general system.

In chapter 4 the notion of a conformally-superintegrable (Laplace-type)
system is discussed. How these are related, by Stéackel transform and conformal-
scaling, to the superintegrable systems in chapter 2 is also discussed. The
action of the conformal group on these systems is then examined and the
concepts necessary for the classification results in chapter 5 are presented.
Specifically it is shown that the classification of such systems depends solely
on a single 7-dimensional SO(3, C) representation.

Chapter 5 gives the full classification of maximally-superintegrable, second-
order maximum-parameter systems by determining 10 conformal-classes of
Stéckel equivalent systems. These classes are determined by studying the or-
bits of the conformal group on a seven-dimensional manifold. The orbits are
completely described by a set of algebraic varieties. The subvariety structure
obtained by examining the containment of the associated polynomial ideals
reveals a hierarchical structure consistent with the hierarchical structures al-
ready known [26].

In chapter 6 conclusions are drawn and the future directions that this
research could take are discussed.

Appendix A contains a description of the connection between SO(3,C)
representations and SL(2, C) representations. This information is particularly
important for the techniques employed in chapter 3.

Appendix B defines a Hilbert basis for the space of covariants of a 6th de-
gree binary form. This 6th degree binary form, and the covariants constructed
from it, carry representations of the conformal group in three dimensions. This
Hilbert basis is used to concisely describe the classification results in chapter 5.

And finally, for ease of reference, appendix C contains a list of the various

notations and variable names used throughout this thesis.



Chapter 2

Second-Order
Superintegrable Systems

After reviewing the necessary concepts needed to study classical mechan-
ics, this chapter will then review the classical structure theory for three-
dimensional second-order superintegrable systems, this working follows closely
that of Ref. [12], which is one of the five papers by Kalnins, Kress and Miller
that established the structure theory for second-order superintegrable systems
in 2 and 3 dimensions [10, 11, 12, 13, 14].

In §2.1 Hamiltonian mechanics is briefly discussed and definitions relevant
to the systems studied in this thesis are given.

In §2.2 the definition of a maximally superintegrability system is given.

In §2.3 the structure result regarding second-order superintegrable sys-
tems over three-dimensional conformally-flat space is reviewed, following the
discussion in Ref. [12]. Importantly it is shown that the potential of a maxi-
mally superintegrable second-order system satisfies a set of linear PDEs which
admits solution depending on 5 parameters (including the one trivial additive
term).

In §2.4 the Stéackel transform is defined and it is shown how it can be used to
map between second-order superintegrable systems over different conformally
flat spaces. Only distinguishing systems up to Stéckel equivalence make the
classification easier.

Finally, in §2.5 the algebraic ideal of integrability conditions for superin-

tegrable potentials on the 3-spheres is shown to be generated by 6 quadratics,
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generalising a result that was only previously known for flat space.

2.1 Hamiltonian Mechanics

An important method in classical mechanics is the Hamiltonian formalism.
This allows the dynamics of a classical system to be encoded by a single
function over the position-momentum phase space. In this thesis only au-
tonomous (time-independent) Hamiltonians are considered. More details on
Hamiltonian mechanics can be found in, for example, V.I. Arnold’s “Classical
Mechanics” [2].

Start by considering an n-dimensional momentum-position phase space
(p,q) € C?", where the components of q are the position coordinates ¢;(t),
the components of p are the generalised-momentum coordinate p;(t) and ¢
denotes the time. In this thesis only natural Hamiltonians of the form H =
“kinetic energy” + “potential energy” will be considered. More precisely, the

following definition will be used for the Hamiltonian.

Definition 2.1.1. A classical system defined over a (pseudo)-Riemannian
manifold with contravariant metric tensor g¥/(q) and potential function V(q)

has a Hamiltonian of the form

3
H(p.a) = Y g7 (@)pip; + V(q). (2.1.2)
i,j=1
The metric is non-degenerate (i.e. det(g”) # 0) and symmetric (g% = g/?).
Furthermore, as the spaces considered in this thesis are conformally flat, there
will a coordinate system such that the metric takes the form ¢ = (q)(S;
The dynamics of such a system are given by Hamilton’s equations, which

are the differential equations

dgi 0" dpi O

dt _ap1'7 dt __Oql-’

i1=1,...,n. (2.1.3)
Solutions of these give the trajectories of the system.

Definition 2.1.4. If A(p,q), B(p,q) are function on the phase space, their

Poisson commutator or Poisson bracket is defined to be

" (0AOB JAOB
{ABYpp =) <6plaql  9g; 8p,-> '

=1

(2.1.5)
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The Poisson bracket is a bi-linear, skew-symmetric Lie bracket. That is,
given three functions on the phase space A(p,q), B(p,q),C(p,q), the Poisson

bracket can be shown to satisfy the following identities

{Av B}PB == {B’ A}PB>
{A,sB+tCpp =s{A,B}pg +t{AC}pp,

{AAB,CYpptpp +{BAC. Atpptpp +{C.{A, B} pp}pp =0,
(A, BCY pyy = B{AC)pps + A By ppC. (2.1.6)

Using the Poisson bracket, Hamilton’s equations (2.1.3) take on the symmetric

form

dg;

dp; .
E:{”H,qi}PB, E:{H,pi}PB, 7,21,...,71. (217)

If the Poisson bracket of two functions vanishes they are said to be in invo-
lution. Any autonomous function A(p, q) in involution with the Hamiltonian

‘H will be a constant along any trajectory thanks to the generic equation

dA 0A
= At (2.1.8)

Such an A will be referred to as a constant of the motion.

The Poisson bracket associates a vector field to each differentiable function
on the phase space and in particular the Hamiltonian vector field X4 is given
by

Xy ={H,e}. (2.1.9)

The flow of the the vector field X4 follows the trajectories of the system.

If A is a constant of the motion then
Xa(H) ={A,H} = —Xn(A) =0
and so the Hamiltonian H is conserved under the flow of the vector field X 4.
For this reason a constant of the motion A is often referred to as a symmetry.
2.2 Integrability and (Maximal) Superintegrability

An n-dimensional Hamiltonian S;(p,q) = H(p,q) is said to be integrable

in the Liouville sense if their exist n — 1 additional functionally independent
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constants S;(p,q), ¢ € {2,...,n} all of which are in mutual involution. That
is

8,8} pp =0, i,je{l,...,n}. (2.2.1)
Maximal-superintegrability is characterised by there being an additional n —
1 functionally independent functions Sk(p,q), & € {n +1,...,2n — 1} in
involution with (at least) the Hamiltonian.

In this thesis the maximal-superintegrability assumption will be relaxed
to just requiring 2n — 1 second-order constants of the motion (including the
Hamiltonian). So the starting hypothesis is a system with 2n — 1 second-order
functions S; (with §; = H) such that

(H,Si}pp =0, i=1,....2n—1. (2.2.2)

That such systems are also integrable is seen to hold a posteriori.

Note that 2n—1 is the maximum possible number of functionally indepen-
dent constants that can exist for an unconstrained system, and that locally
such constants exist for any Hamiltonian system. However the main interest
in this thesis is in constants that are polynomial in the momentum and defined
up to the existence of lower-dimensional singularities such as poles and branch

points.

2.3 Classical Structure Theory and the

Bertrand-Darboux equations

Consider a conformally-flat pseudo-Riemannian manifold, for which coordi-

nates x = (z1, z2,x3) can be found such that the metric has the form
ds® = \(x) (dx% + dz2 + dx%) . (2.3.1)
The conformal factor \(x) will often be expressed in the form
A(x) = 6™ (2.3.2)

as this tends to give equations that are, at least visually, simpler.

As per (2.1.2) the natural Hamiltonian over this metric is of the form

) 2 2
_ Py T Py T Pag + Py + Piy + V(x).

H A(x)

(2.3.3)
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It will be assumed that the Hamiltonian (2.3.3) is second-order maximally
superintegrable, that is, admits 4 additional second-order constants of the

form
3 .. .. ..
L= Z a"’ (X)pz,pz; + W(x), a” =d" (2.3.4)
ij=1

that Poisson commute with the Hamiltonian, that is
{H,L}pp =0. (2.3.5)

Splitting the conditions given by (2.3.5) by degree in the momenta gives two
independent conditions, one third-order and the other first-order. Explicitly

these conditions are

2 2 2 3
px1+px2+p13 E ij
_ s 2 A Py, Px. = 07
)\ ) T 7
ij=1 PB
2 2 2 3
+ + i 7
{W7 W} v, 2 : Ay, pe, =0. (2.3.6)
PB i,j=1 PB

The first condition in (2.3.6) implies that the purely second-order part of L is
a second-order Killing tensor on the manifold.

Conditions (2.3.6) can be written out explicitly as

3

2 K ik NgPay e AkPa; —0
Z Xa,i pxsz]pzk + | a )\2 —+ a )\2 pxszz =0,
i,,k=1

W, LN
)\’pri —2> aVip,; =0, (237

ij=1

3
—

(2

where a comma in the subscript followed by an index i indicates a partial
derivative with respect to the variable x;. Since the momentum is unrestricted

the coefficients of the monomials in the p,’s must vanish independently, this
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gives four types of conditions (for distinct i, j, k)

4 . .
X(G,Jik + aff + afi) =0,

3
4 i 2 Ay
Xa’fk + Xa,7,i + 27‘5 1 a’mp = 0,
2 3 A
1) A
N + 2; 1 a3y = 0,

2

3
Wi—2 Zl a"Vv, = 0. (2.3.8)

Setting A = exp(G) the equations above can be rewritten as
] =
i+l = =3 a"G, =
r=1
n
Wi=A> a"V,. (2.3.9)
r=1

The compatibility conditions 0., W ; = 0., W ; lead to the Bertrand-Darboux

equations

Vs — Vi
0 al2 gl _ 422 031 g2 Vs — Vi
a3 0 23 2! Gl _ 433 Vi
023 23 i3 022 _ ¢33 12 Vs
Vis
) (Aa'?) 1 — (Aa'h) o ) (Aa*?) 1 — (Ma'?) 2 ) (Aa*?) 1 — (Xa'?) o
=1 | Q)= Qal) s [ Vit | (Aa®) 1 = (Aa'?) 5 [ Vit | (Aa™) 1 = (Aa'?) 5 | V.
()\a13),2 _ (}\CL12)’3 ()\a23)72 _ (Aa22)’3 ()\a33)’2 _ ()\a23)’3

(2.3.10)

Each second-order constant gives a set of conditions and as will be discussed
in the next section, for sufficiently many independent constants these can be

used to give a set of linear PDEs governing V' (x).

Maximum-Parameter (non-degenerate) Potentials

Most of this section is based on the 2005 paper of Kalnins et al [12], however

that paper was found to contain a slight error and the correct statements
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about the relationship between functional-linear independence and maximum-
parameter (non-degenerate) systems can be found in their subsequent 2006
paper [14].

The Bertrand-Darboux equations (2.3.10) for the four independent second-
order constants (not including the Hamiltonian) can be written in the form

Bv = b where B is a 12 x 5 matrix, b is a 12 x 1 vector and

V= Vio

If it is assumed that the potential contains sufficiently many parameters
such that the value of V1,V and V3 can freely be specified at a generic point
(that is, the potential depends non-degenerately on the three coordinates) then
the second-order constants are functionally-linearly independent (i.e. the only
functions m;(x) satisfying Z?:l m;(x)S;(x) = 0 are the trivial ones). The

functionally-linearly independence of the four constants means the matrix

Ay T oy 90 T ey )y 9 o)
33 11 33 11 12 12 23
4= %@ "% ‘@ %0 %0 %0 Y%
33 11 33 11 12 12 23
3 7 43y 43 T ey Y YE)r Ye)

a:(%_a%i)’ aﬁ’)“lﬁw a%fw a%fw aﬁ’)

has rank 4 at a generic point, where aa) are the coefficients in the four con-
stants.

From the fact that the matrix A above has rank 4 it can be shown that
the 12 x 5 matrix B has rank 5. Thus there exists a 5 x 5 submatrix which is
invertible in an open set around the generic point and hence the vector v can
be solved for. This means the potential V satisfies a set of 5 linear, second-

order PDEs. These PDEs can be written in the symmetric (but redundant)
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form,

Vit = Vee + A1'Vi + AY' Vo + A}V,

‘/,22 = Vee + A%2‘/:1 + A%2‘/’2 + A§2‘/’3,

Vg = Vee + APV + APV + APV,

Viz = APV 4 APV + AV,

Vig = APV + APV, + APV,

Vi = ABV + APV, + APV, (2.3.11)
where v v .

y,, = Yt 2 V) (2.3.12)

Here the coefficient functions A;j are unknown, but cannot depend in any way
on the parameters in V. The five parameters are the value of the potential
V, the value of the 3 first order derivatives V1, V2, Vi3 and the combination
of the second-order derivatives V.. abovel.

The symmetric form of equations (2.3.11) comes at the price of redun-
dancy. To avoid placing restriction on the first order parameters the coefficient

functions must satisfy the 3 linear conditions
AV A2 L AP =0, ie{1,2,3). (2.3.13)

The second-order superintegrable systems in this thesis will be assumed
to depend on all five parameters (maximum-parameters) and this assump-
tion allows integrability conditions to be obtained relating the Azj’s and their
derivatives (2.3.11). The simplest integrability conditions are given by 5 linear

conditions

AT AP = AT - A
A%l o A%Q — Ag?) o A237
Agl = AP = AP - AP,
A2 = af,
AL? = A2, (2.3.14)

Tn the papers by Kalnins et al the chosen second order parameter was V.11, however
the choice of V.. has the advantage of not favoring any particular coordinate direction.
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Taking the conditions (2.3.13) and (2.3.14) together puts 8 linearly indepen-
dent conditions on 18 coefficient functions Aff and hence there can be at most
10 independent ones. Continuing the theme of notational symmetry, these

coeflicient functions can be parameterised by in the following way,

Aft = —48' — R} — RE3, A =257+ R}?, At =253 + RPP,
A3 =28' + R?, AP = —45? — R> — R3, A3? =253+ RP,
AP =251 + R, A3 =252 4+ R3?, AP = —48° — R}® — RP3,
A%i’) — Q123, A%i’, — R%S _ 353, A§3 — R%S _ 352’
AF’ _ R%?’ — 393, A§3 = Q123 A?1)3 _ R§3 — 351,
A%Q _ R%Q — 352 A%Q _ R%Z — 381 A%Q = Q123
(2.3.15)

where 10 new variable names have been defined
(Q', R{%, R RI®, R®, R3® R3% S' 5% 5%). (2.3.16)

These ten functions will be referred to as the set {Q,R,S} if needed. These
variables were not chosen just because they are symmetric, but also because
the sets {Q, R} and {S} form irreducible rotation representations (as will be

shown in chapter 3).

The (5 = 6) Theorem

Another very useful result from the literature is the so called (5 = 6)
theorem which guarantees that the 5 functionally-independent second-order
constants (including the Hamiltonian) can be extended to a set of six linearly-
independent second-order constants. The importance of this theorem is, at
any regular point in the system, and for any prescribed values of the six a/’s,
there will be a second-order constant for which the a%’s take on the these
values at the regular point. This fact can then be used when examining the
consistency conditions from (2.3.7) and (2.3.11) and puts very strong restric-
tion on the the derivatives of the {Q, R, S}. In fact all the first derivative of
the {Q, R, S} variables can be written as quadratics in the {Q, R, S} variables
and the derivatives of G(x) = In(\). Up to a permutation of indices, these 30
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derivatives are described by the following six equations

AR
8931

2 2 4 5
_ —gR%QRg?’ + §R§3R§3 + gQ123R§3 + §Q123R%3

1 1 1
—R12R13—R%2 Sl —_ZQ 1)+ R13 + 3R52 82 — -G 9 +2Q123 513 o *Gg ,
1 443 3 3 3 3

(2.3.17)

aR%Q 3 12p13 1 13503 11 1903 8 1372, 1 12¢2 4 23\2
= - - - — - (R —— (R

Oz 5 i s g Ry = e R (B +5< ) 5( )

1 1202 4 032 2 123\ 2

b2 (R - ¢ () + 12 (@)
1 1 1
— (R3* + 3R} <Sl — 3G,1> — R{? <52 - SG,2> + R{? <S3 — SG,?,) ,
(2.3.18)

OR!? 1 1 1 1
ax; — _§Q123R%2_§Q123R%3+§R%3R%2+§R§3R%3

_o'?3 <51 _ ;G71> _ R <52 _ ;Gg) — RI? <53 _ ;G73> , (2.3.19)

8@123 - 2 _1 1
or1 3 3 3

1 L 1
Q2 <51 _ 3G71>+(R%3 _ R%S) <52 - 3G72>+(R§3 — R%Z) <S3 — 3G73> .

R%SR%Z R§3R%3 4 Q123R:1)’3 o R%SR%2 + Q123R%2

8
15

(2.3.20)
8(51—%6}1) 17 19 513 I 1
1) A " RIBR23 .~ pl2p23
0z, 90R2 I TR AT R I
7 13\2 1 23\ 2 7 1272 11 123\2 7 13\2 7 12\2
- — - - = - - — (R
55 )+ 35 (B5) = g5 (B07)" = 55 (@) = g5 (A7) = g5 ()
1, ga2 1/ 1N\ 1/ 1.\ 1/, 1.,
— - S = S S - -G
+ 15 (R2 ) + 2 <S 3G’2) + 2 S 3G’3 2 5 3 1 ’
(2.3.21)
o(S'-1iG,

1 2 1 1 2
; ) _ —§R§3R§3—§Q123R§3+§R%2R§3+§R52R§3—§Q123R%3

- <51 - ;GJ) <52 - ;Gg) . (2.3.22)

(BY)”
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Here, to simplify the presentation, the coefficient functions S* and the partial
derivative GG ; have been combined together. This is especially noticeable in
the left-hand sides of (2.3.21) and (2.3.22) where second-order derivatives of
G(x) have been “hidden” by combining them with first-order derivatives of
S?. An indication of why the combination S* — %Gi appears here will become
more apparent when the Stéackel transform is discussed in the next section,
and again in chapter 4 when the conformal equivalence of these potentials is
discussed.

There are still integrability conditions remaining relating the values of
{Q,R,S} to the derivatives of G(x), so the these values cannot be specified
arbitrarily. These conditions are needed to ensure the coefficient functions
are compatible with the metric. The lowest order integrability conditions are

quadratic in {Q, R, S}, two illustrative examples being

4 4 4 2 4 2 4 2 4 2
§R§ZR;,3 — §R§3Ri2 + gRF’ + §R§3 — §R§3 - §R§3
1 1
—4(S' + 6GJ)R;2 +4(8% + 66{2)1%%2

1 1 1 1
+2(5% + 6Gg,)R}?’ —2(8 + 60,1)353 +2(8% + 6G,Q)Rgi“' —2(8% + EG,g)Rgi”

1 1
—2G 18" +2G 582 — 65 + 652 + 3G~ 505~ G+ G =0,
(2.3.23)

2 2 2

3 3 3
1 1

G1)R{Z+2(S* + 6G,Q)R;2 +2(8% + 66‘73)@123

+ §Q123R%3 + §Q123R%3 _ R;’SR%Q _ R§3R%2 + R§3R§3
!
6

— $%G 1 — G oS — 6525 + %GQG,1 ~G12=0. (2.3.24)

+2(8 +

Permuting the indices in (2.3.23) and (2.3.24) gives the full set of five quadratic
integrability conditions.

In Ref. [17] these integrability condition were important in classifying all
Euclidean superintegrable systems. A possible method for classifying systems
over other conformally flat spaces would be to specify the metric for the space
of interest and solve the (2.3.20)-(2.3.22) subject to the integrability condition
(2.3.23)-(2.3.24). Chapter 4 resolves this issue by showing that the metric need
never be specified, and the subsequent classification obtained in chapter 5

covers all systems over conformally flat spaces.
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2.4 Conformal Equivalence of Superintegrable

Systems

Coupling Constant Metamorphosis, Stackel Transform

Two useful tools in the classification of second-order superintegrable systems
are the coupling constant metamorphosis (CCM) [35] and the Stéckel trans-
form [5]. The CCM works by exchanging the roles of the the energy of the
system with a particular parameter choice. In the context of second-order
superintegrable systems the term in the potential associated with the chosen
parameter is used to conformally scaled the metric.

The Stéckel transform works by scaling the system by potentials (the
Stéckel multiplier) that separate in the same coordinate system as the system
begin transformed. If one is only interested in Stackel transforms that take
maximally-superintegrable second-order systems to maximally-superintegrable
second-order system then this transformations coincides with the CCM. For a
discussion of the similarities and the differences of the CCM and the Stéackel
transform outside the realm of second-order maximally-superintegrable sys-
tems see the recent paper of S. Post [52].

The following theorem gives an explicit description of the Stéckel transform

for second-order superintegrable systems.

Theorem 2.4.1. If H = Hy+V +aU = E is a Hamiltonian with constant of

~  Hy+V
the motion L(a) = L+ oWy then the transformed Hamiltonian H = OJ
will have symmetry L(—H) = L — HWy.

Proof. This elegant proof is due to Kalnins et al [23]. Firstly, given functions
of the form G(x,p), F(a,x,p) where a = 7(x,p) then

[F,G} = {F(a,%,D), G P) o ey + 0aF (0%, D) as ) {75 D), G, D)}
Since L(«) is a symmetry

{Hy+V +aU, L(a)} =0,
and so

{Ho+V,L(a)} = —a{U, L(a) }.
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Using these it can be shown that

(.20 = { o (o)

Ho+V Ho+V, L(
= 0V g Ly ¢ VO
Hy+V —aqU, L(«
_ OU2 {U, L( )}_'_{U()}
S )
Therefore
o . Hia
{H, L(~H)} = (aaua) {i,i}- {U,L<a>}>
a=—H
—0
Thus L(—H) is a constant for the Hamiltonian H. O

Importantly for second-order superintegrable systems the new constants
L=L-H Wy are still second-order, and so the Stackel transform preserves
second-order superintegrability. Thus the potential V= % is second-order

maximally-superintegrable over the conformally-flat metric
A=U.

Substituting V = I into the PDE (2.3.11) a new set of {Q.R,S} variables

are obtained. Specifically, the action of the transform gives

ij _ pid
RY? =RY,
0123 — 123
. 1
Si =S8+ ZF;, (2.4.2)

3

where U = exp(F'). Noting that the new G is given by G = G + F, it should

be clear that the combination

o1
S'— -G, (2.4.3)
3
is invariant under the Stéckel transform, and this hints at why this term
appears in (2.3.21) and (2.3.22).
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Example: Self Equivalence of V;;

To see the Stackel transform in action consider the Hamiltonian

i d
H = 2 2 2 2 42 02y g 1T ¢ .
Py Py Py T alet a3 Fwp) F (z1 +idz2)3 (21 + dx0)? + 3 e
(2.4.4)

This system is V77, taken from reference [17]. As discussed the Stéckel equiv-

alent Hamiltonian H = m will be superintegrable over the space with
flat metric ) ) )
ds? — dxi + dxs + dxg
(x1 + iw9)?
The coordinate change
—1+4 2} + 23 + 23
Tr1 =
! 2(21 + iZQ)
1+ 22 + 22 + 22
Ty =1 :
2(z1 +iz2)
Z3
= 2.4.5
s 21+ izg ( )

puts this Hamiltonian back into the standard Euclidean coordinates and it is

clear from direct inspection that it has the same form as above

~ — ) d
T mn? n? bl — b2 224 52) _ g tLT 122 ‘ — te
p21 +pz2 +pz3 (Zl +22 +Z3) a/(21 +Z'22)3 (Zl +7:Z2)2 + Z% +C
(2.4.6)

So in this case the system Vi is Stéackel equivalent to itself.

2.5 The algebraic ideal of integrability conditions
on the 3-sphere

This chapter will conclude with a new result regarding the integrability con-
ditions (2.3.23) and (2.3.24). In Euclidean space Kalnins et al showed that
maximum-parameter superintegrable systems over flat space can be put into
correspondence with the orbits of the Euclidean group acting on a 6-dimensional?
algebraic variety embedded in C!° [17]. Specifically the 10 coefficient functions
(2.3.16) satisfy a set of six quadratic equations (equations (24) in Ref. [17]).

2Hilbert-dimension 6
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Five of these can be given by the setting G = 0 in (2.3.23) and (2.3.24) and

index permutations thereof. The sixth quadratic is given by

2 (RI%)? +2 (R + 2 (RP)” +2 (RP)” + 2 (R1®)* + 2 (RY?)? + 3 (Q'%)?
+ R{®R3® + RI2R%2 + RI?’R13
—45(5")? —45(5%)" —45(5%)*. (2.5.1)

The square of this quadratic was found in the ideal generated by the 5 other
quadratics (2.3.23) and (2.3.24), and their partial derivatives. Taking all six
quadratics generated a radical ideal (i.e. if A™ was in the ideal for a positive
integer n, then so was A) which completely covered the space of integrability
conditions. Conceptually, this allowed Euclidean superintegrable systems to
be put into correspondence with the 6-dimensional algebraic variety defined
by this ideal.

In this section the result is extended to all constant curvature spaces. That
is, for a constant curvature metric there are six conditions quadratic in the
variables (2.3.16) such that the ideal generated from these 6 quadratics covers
the full space of integrability conditions.

To examine a constant curvature metric the sectional curvature will need
to be calculated. To calculated the sectional curvature, two sufficiently generic

vectors on the manifold need to be given, and these are chosen to be

0 0
X—aixl‘i‘raim
and 5 5

Varying q,r will alter the section spanned by X,Y.

Calculating the sectional curvature is straight forward procedure and in
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terms of the vectors above the sectional curvature is given by

1
K(X,Y) =~ ((QA,ggx\ + 12+ 20224 — 2257 — 22 3%)r %P

(A% = 2022 +2X 20\ + 2\ 11\ — 2) 17)
2017 — 2237 + A 2% 42X 33X + 2X 110) ¢
AN 13X + 6A 1A 3)rg

4\ 19\ — 6A 1N 2)7g?

_l’_

+ (
+ (
+ (
+ (Aho3) — 6A,2A,3)q>/(x3 (FPq®+ ¢ + 1)). (2.5.2)

A constant curvature metric would have a sectional curvature independent
of the section chosen (i.e. independent of the parameters ¢, 7). The only way
this can be true is if the numerator is a scalar multiple of (r2¢> + ¢ + 1).
Demanding that the coefficients of ¢, rq, r¢?, rq in the numerator vanish yields

the conditions

6A iAo — 4\ 194 = 0,
6A 15 — 4\ 134 = 0,
6A2) 5 — 4\ 93 = 0. (2.5.3)

Demanding that the ratio of the remaining coefficients make the numerator a

scalar multiple of the denominator yields

3(A2)® — (A1)?) —2(M22 — A11)A =0,
3((A3)% — (M2)?) —2(M\33 — A22)A = 0,
3(A1)% = (A3)?) —2(A11 — A33)A = 0. (2.5.4)

Under the conditions above the sectional curvature can be shown to take

the form

13 ((A1)2+ A2)? + (X3)%) =4 (A1 + Aoz + Ass) A
K= ()2 + (A2) (73)/\)3 A+ A2 +As3) A (2.5.5)

Furthermore (2.5.3)-(2.5.4) can be used to show K is constant on the manifold,

and hence no further conditions need be considered.
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Using (2.5.3),(2.5.4) and (2.5.5) it can be shown that the metric satisfies
the following PDEs

2A36 K — 15(A1)% + 3(A2)% + 3(A 3)?

A== 12X ’
N 206K +3(A\1)% — 15(X2)* + 3(A3)°
22 — 12\ )
N 2V6K +3(01)% +3(A0)? — 15(A3)°
33 12 ’
3X 12
g = =5
,12 2\
C3AaAs
)\,13 — 2\ ;
3X2) 3
Aoz = 2202 2.5.6
23 o (2.5.6)

Making the substitution A = exp (G) gives the equations

1 1 1

Gu = —AK + (G1)? — 1 (Ga)? — i (G3)?,

G = ~AK — % (G1)? + i (Ga)? — i (Gs)?,

Gy = —\K — % (G)? — i (G)? + i (Gs)?,

G2 = %GzGl,

Gi3 = %GIG&

Gz = %GQG;),. (2.5.7)

Additionally the sectional-curvature can be expressed in the form
1
oMK = —5 <(G1>2 =+ <G2)2 + <G3)2> -2 (G11 =+ GQQ + G33) . (2.5.8)

Substituting (2.5.7) into (2.3.23)-(2.3.24) gives
1
4R%3R52 +4R53R%3 o 4R%3R%2 _ 8Q123R§3 _ 8@123R%2 _ 12R%3 <Sl + 6G1>

1 1 1 1
—12Q'% <S2 + 6G2> —12R3? (53 + 6G3> +36 <53 + 6G3) <51 + 6G1> =0,

(2.5.9)
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2

—8(RP)? +8(RI®)” — 8 (RP)* +8(RI®)” — 8RI2R2 + 8R*RY?

1 1
— 12 (2R)* + RY?) <51 + 601> +12 (2R{* + R3®) (52 + 6G2)

1 1.,\? 1.,\°
+12 (R{* — R3) <S3 + 6G3> — 36 <51 + 6G1> + 36 (52 + 6(;2) = 0.
(2.5.10)
Just like in the Euclidean case the 5 quadratic given by the index permu-
tations of (2.5.9) and (2.5.10) conditions do not form an ideal closed under
differentiation. However, the ideal closes after two derivatives. Examining

the quartics in the ideal, and being inspired by the form of (2.5.8), it can be

proven that the square of
13\2 23\ 2 13\2 23\ 2 122 122
2(R°)" +2(R°)" +2(R3°)” +2(R3%)" +2(R°)” +2(Ry)
+3(Q')” + RIRS® + RI2RY + RI?RY
1 \? 1\?2 1\?2
1 2 3
—45 (S + 6G1) — 45 (S + 6G2) — 45 (S + 6G3) —27TAK (2.5.11)

is in the ideal and hence can added to the ideal. Taking (2.5.11) alongside the
5 quadratic given by (2.5.9) and (2.5.10) gives, just like the Euclidean case,

an ideal which is closed under differentiation.



Chapter 3

Rotationally Adapted
Variables and the Algebra of

Constants

The purpose of this chapter is two-fold, firstly it redefines our variables in a
rotationally adapted form by writing them as SO(3, C) representations. The
use of representations is a very important technique in this thesis and the
classification result in chapter 5 hinges on their use. Secondly, this chapter
examines the space of higher-order constants and provides a rigorous proof for
the existence of a quartic identity between the second-order constants. The
explicit form of this quartic identity is then given directly from the defining
equations and their integrability conditions.

In §3.1 the action of the Euclidean group is examined and then used in
§3.2 to define a set of SO(3,C) representations.

In §3.3 the rotation representations are used to study the dimension of the
space of constants of order 2,3,4,6 and 8, calling on results from the Ref. [12]
as needed. This examination proves that is a linear relationship between in
the space of (up to) the quartic monomials and this identity provides the func-
tional relationship between the 6 linearly-independent second-order constants,
answering a open question from the literature [36].

Finally in §3.4 the algebra of constants generated from the iterated Pois-
son brackets of the second-order constants is briefly discussed. This algebra

is known to close polynomially and has been called a ‘quadratic algebra’, al-

24
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though this terminology does not appear to be standard outside the field of
superintegrable systems. Part of the general structure of the quadratic alge-
bra is demonstrated by explicitly stating the form of the fourth-order identity
between the second-order constants! proven to exist in §3.3. Until now the
general form of the quartic identity was unknown, but here it is written out

explicitly as a one dimensional rotation representation (see figure 3.1).

3.1 Local Action of the Euclidean Group

The Action of the Lie Group SO(3,C) and Lie algebra so(3,C)

Consider a differentiable change of coordinates x = F'(u) which fixes the origin

and preserves the form of the Euclidean metric
da? + das + das = du? + dus + du3.
The action of this change of variables on the Hamiltonian is

o (P8 PR ) V0 = s O+ 2+ 90) + V(P

This group is parameterised by the Lie group of complex orthogonal matrices
and the action of the Lie algebra can be used to create rotation representations
from the most of the variables (e.g. x;, pa,, Azj, V, Vi,... etc).

Consider, for example, the subgroup of rotations that fixes the x; axis. As

a coordinate change this is given by

ul 1 0 0 Il
ug | =] 0 cos(t) sin(t) T2 (3.1.1)
us 0 —sin(t) cos(t) x3

for varying t. The form of the Hamiltonian (2.3.3) is unchanged by this co-
ordinate transformation and, of course, the second-order constants remain
second-order constants. So the set up in chapter 2 still holds and the poten-
tial must satisfy as set of PDEs of the form (2.3.11). This allows the action
of the rotation group to be induced on the coefficient functions (2.3.16). For

example, returning to the original names for the coefficient functions (i.e. Azj),

!making the identity eighth-order in the momenta
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the change of variables (3.1.1) turns V; ,, into

COS(t)‘/,ul'MQ + Sin(t)‘/,ulug = APV:?H + A%2(COS(t)V:u2 -+ sin(t)VUS)
+ AR (= sin(t) V., + cos(t)Vy,), (3.1.2)

and similarly V;, ., becomes

cos(t)Vuyuy — SIn()Vuyuy = APVM + A%g(cos(t)V,ug + sin(t)Viuy)
+ AP (—sin(t)Vy, + cos(t) V). (3.1.3)
These can be used to derive the equations

Viurus = (A1? cos(t) — A7’ sin(t)) V.,
+ (A5 cos(t)? — (A3 + A3®) sin(t) cos(t) + A5’ sin(t)*) Via,
+ (A3% cos(t)? 4 (A3 — AL3) cos(t) sin(t) — A3 sin(t)?) Vs,
Viurus = (A1 cos(t) + A7 sin(t)) V.,
+ (A7° cos® (1) + (437 — A®) cos(t) sin(t) — A§? sin® (t)) Via,
+ (A3 cos®(t) + (A3 + A%?) cos(t) sin(t) + A sin?(t)) V. (3.1.4)
The new coeflicients can now be read off from equations like those above, for
example
AP (wst) = (A}% cos(t) — A} sin(t)),
Al (u;t) = (A3 cos(t) + Al%sin(t)). (3.1.5)
This expresses the new coefficient functions in terms of the old ones, and
allows an action of the SO(3,C) Lie group to be induced on the AZ]
The action of the so(3,C) Lie algebra is given by examining the derivative

of this action at ¢ = 0, denoting this operator by J; the Lie algebra action
corresponding to (3.1.5) is

12/ ..
n(ap) = MYy
¢ t=0
13 dﬁ{i(u;t) 12
J1(A}°) = — —A”. (3.1.6)
t=0

The Lie algebra action of rotations around the z1,zo and x3 axes will be
denoted Ji, Jo and J3 respectively. The action of this Lie algebra on the
coordinates (with the identification X = u) is shown table 3.1, and the action
on the coefficient functions {Q, R, S} is given in table 3.2.
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Jalz) | i Ty s

Ml
T2
T3

—XI3 )
I3 0 —I1
—Z2 I

Table 3.1: The so0(3,C) action on the coordinates

Jo(®) J1 Jo J3

St 0 —53 52

S2 S3 0 -5t

S3 —5? St 0

RI2 RI3 201 3RI2+ R
R1? 2()123 _RP —3R12 — RP
RI3 ~RI? 3R13 — R12 2()123
RB | —2Q'2  3RB4+RP RP

R% | 3R + RV R1? 90123
R¥ | —3R¥ - R 2123 ~RI
Q% | RI3 - RJ RI2 - R R — RI3

Table 3.2: The s0(3,C) action on the coefficient functions

Rotationally Adapted Variables (and the standard

normalisation)

27

The action of the so(3, C) Lie algebra shown in table 3.2 makes it clear that the

span of the {S} variables is an invariant subspace under this action. This is

because the action of SO(3, C) on the S*’s forms an irreducible representation.

It is clear from direct inspection that {Q, R} variables also form a repre-

sentation, but it is not completely clear whether or not the {Q, R} variables

can be decomposed into the direct sum of smaller representations. To answer

this question systematically, the following standard Lie algebra operators are

introduced

Ji =1iJ1 — Jo,

Jo = iJ3,

J_=1iJi + Jo,

(3.1.7)
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which will be referred to as the raising, level-set and lowering operators re-

spectively. These operators satisfy the commutation relations
[Jo,J+] = v, [y, -] =2Jo, [Jo,J-]=—J_. (3.1.8)

The irreducible subspaces are now identified by their so-called highest weight
vectors, that is, eigenvectors of Jy vanishing under the raising operator J,.
On the 10-dimensional space of coefficient functions there are two such highest
weight vectors. One with eigenvalue +1 and one with eigenvalue +3. These
split the 10 variables into a 3-dimensional and a 7-dimensional representation.

Specifically the eigenvectors under Jy are given by

X1 =15 £ 51,
Xo=—53V2 (3.1.9)

and
Vig = B2+ LR 41 (352 + iRé‘”’) )
Yio = %\/6 (i (Ri® = R3®) 72Q'%),
Vi = i\/ﬁ (R FiR®),
Yy = —%z‘\@ (R1* + R3?). (3.1.10)

Here the eigenvalue is indicated in the subscript of the X,Y variables. These
eigenvectors have been scaled so as to satisfy the following relations for an
n-dimensional representation. Given an eigenvector F),, with eigenvalue m in
a representation whose highest weight is [ = (n—1)/2, the action of the raising

and lowering operators is given by

JFp= (I —=m)({ +m+1)Fpy1,
J—Fm = \/(l + m)(l —m + 1)Fm_1,
JoF,, = mFE,,. (3.1.11)

This normalisation for an rotation representation is a quite common one and

will be appear again briefly when describing the results in chapter 5.
Another normalisation, which was found to be convenient in describing

the result of the following section, comes from considering rotation represen-

tations as binary forms. Further details about this interpretation of rotation
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representations can be found in appendix A. Because of the conciseness of the
binary form description the rotation representations described in the rest of
this chapter will be given as binary forms.

Consider an (n + 1)-dimensional representation with eigenvectors F,. A

new set of variable a; can be defined from the identification below

An(r,5) = Zn:“l)k (Z) Fln st "

i n
_ akskr”_k
k
k=0

-1
n(n2)aﬂzsn—2 Fota™ (3.1.12)

The induced action of the rotation Lie algebra on the new variables ay, is given
by

= ags” +najrs” "t +

J(ar) = —(n — k)ag41.
Jo(ax) = (k: — g) ag,
J_(ar) = —kag_1. (3.1.13)

The nice thing about this scaling is that the raising operator acts in an iden-
tical manner near the highest-weight vector, e.g. Ji(an—1) = —a, regardless
of the dimension of the representation. Because of this a combination of a,_j
that vanishes under J; for an (n + 1)-dimensional representation will still
vanish if the coefficient b,,_; from an (m + 1)-dimensional representation is
substituted, provided m and n are larger than the smallest given k. So this
removes a lot of the representation dependent factors that appear when con-

sidering the construction of highest-weight vectors.

Constructing rotation representation: tranvectants and partial

derivatives

Given a set of rotation representations further representations can easily be
constructed. One construction method is to use the transvectant operator.
Given two representations as binary forms A(r, s), B(r, s) their nth transvec-
tant is defined to be

1 < n O™ A o"B
A B — § ( —1)F . 1.14
(4, B) (n!)2 k:O( ) <k> Okron—Fkg gn—Fkroks (3 )




CHAPTER 3. ROTATIONALLY ADAPTED ALGEBRAS 30

The binary form (A, B)!" also carries a rotation representations. By recur-
sively applying the transvectant to the newly constructed representations a
large set of representations can be obtained. The representations obtained
from the transvectant have eigenvectors which are higher-order polynomials of
the eigenvectors of the input representations. Conversely, every representation
constructed from higher order polynomials of a given base set of representa-
tions can be written out in terms of transvectants of those base representation
(for a proof see Ref. [49] regarding the transvectant and the joint covariants
of binary forms).

Partial derivatives with respect to the x;’s can also be used to map repre-
sentations to representations. These representations can also be systematically

constructed as follows?. Consider the operators

0y =102 + 01,
0o = 03,
0_ =10y — 01, (3.1.15)

which will be referred to as the raising derivative, the level-set derivative and
the lowering derivative. Being derivatives these satisfy the obvious commuta-

tion relations
[0—,0+] =0, [04+,00]=0, [0-,00]=0.

More interestingly are the commutators of the partial derivatives with the Lie
algebra action, shown in table 3.3. The first thing to notice is that, given an

eigenvector vy of the Jy operator with eigenvalue A the following hold,

Jo04(va) = (A +1)04(v),
Jo@o(V)J )\ao(V)\),
Jo0—_(vy) = (A — 1)0_(v)). (3.1.16)

So 04(vy),do(vy),0—(vy) are also eigenvectors of Jy with raised, unchanged
and lowered eigenvalues respectively. Furthermore, if v is a highest weight

vector then the commutation relations imply

J+8+(v,\) = 0, (3117)

2If the partial derivatives are considered to be a three-dimensional representations (with
associated binary form) then the construction that follows can also be described in the form
of a transvectant.
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[Ja O8] | 0+ 00 O-

A 0 -0, —20
Jo 0, 0 -0
J_ | =200 —-o_ 0

Table 3.3: Table of J, 0 commutators

i.e. 04 (v)y) is a highest weight vector. Unfortunately the same statement does
not apply to dyp and J_, but a similar statement is given by the following

theorem.

Theorem 3.1.18. Given an (n + 1)-dimensional representation of the form
(3.1.12), where n > 2, there are three representations made from the first-order

partial derivatives and they have the highest-weight vectors

b1 = 04 (an), (3.1.19)
cn = 0y (an) — 04 (an—1), (3.1.20)
dp—1 = 0_ (an) — 20y (anfl) + 8+ ((lnfg) . (3.1.21)

Proof. Applying the operator Jy to b,4+1 above, the relations (3.1.13) and the

commutators in table 3.3 can be used to show

It (bpt1) = J4+04 (an)
= 04J4 (an)
=0, (3.1.22)

and
Ti (cn) = J4 (ao (an) — 04 (an_1) )

= <80J+ (an) — 05 (an)> — 0+ J4 (an-1)

= =04 (an) + 04 (an)
=0, (3.1.23)
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and finally
Ty (dnot) = T (a_ (an) — 20 (an_1) + 0 <an_2>)

= <6J+ (an) — 200 (an)> - 2<30J+ (an—1) — 04 (anl)) + 04+ J4 (an—2)

= —200 (an) + 200 (an) + 204 (an—1) — 204 (an—1),
—0. (3.1.24)

This proves that each element vanishes under Jy. Since (3.1.19)-(3.1.21) are
each clearly eigenvectors of the Jy operator (with three distinct eigenvalues)
these form highest-weight vectors for three distinct representations. A simple
count of dimensions shows these are sufficient to cover the space of first-order

derivatives. O

For the special case where a,, is a one-dimensional representation the three-
dimensional representation given by (3.1.19) suffices to cover the space of first
derivatives.

In the next section these constructions will be employed to study the di-
mension of the space of constants. For this some new notation will be defined.
Given a binary form carrying a representation R(r, s) the three representations

constructed from its first derivatives will be denoted
o (R), o (R), °(R).

Letting 7w be the projection of a representation onto its highest weight vector,

these will be defined so they satisfy

(33(72)) = = 04(rn);

2
z(@o 8+ T'n— 1)>

<aC<R>>=;(a ) =20 0 (ra))- (L)

The scaling in the highest weight eigenvector of (3.1.25) was chosen partly to
make the factors in the next section appear as simple as possible, and in some

sense is natural given the choice of variables in that section.
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3.2 More Rotationally Adapted Variables

In Ref. [12] the closure of the algebra of constants (the quadratic algebra)
was proven by considering the maximal possible dimension of the space of
constants up to order 6. This same approach could be used to rigorously
establish the existence of the quartic-identity between the second-order con-
stants, but until now this has not been done. This section begins by using
rotation representations to re-derive the result of Ref. [12]. The primary pur-
pose of this re-derivation is to show how representations can be used to achieve
this goal. These techniques are then carried further to prove the existence of
the aforementioned quartic identity. In the final section of this chapter the
rotation representations are used to explicitly demonstrate the form of this
quartic identity.

The motivation to use representation is two-fold: on the one-hand it makes
some of the results more concise to state (for example the quartic identity in
figure 3.1 would span several pages if written out directly) and on the other
hand, by restricting attention to the highest weight vectors it also focuses the
calculations onto a much smaller set of equations which, ultimately, allowed

the computations to be done in a case which seemed infeasible before.

Further sl(2,C) ~ so(3, C) representations

The coefficients functions {Q, R, S} have been set up as rotation representa-
tion in the previous section. The purpose of this section is to set up the rest
of the variables as rotation representations.

To start with, observe that the form of the Hamiltonian

1
H= X (pil +p3:2 +p:%3) + V(l’l,ZL‘Q,QZg), (321)

is invariant under rotations. This makes the Hamiltonian a one-dimensional

rotation representation. To make this more explicit consider the change of

coordinates
wo = —1x1 + Ta,
w1 = —i$3,
wy = 1x1 + Ta. (3.2.2)

The action of the so(3) Lie algebra on these coordinates is given by
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Jo(wg) ‘ wo w1 Wy
Ji 0 —wy —2wq
Jo wo 0 —wWy
J_ —2w, —wsy 0

Obviously wyq is a highest weight vector in a three-dimensional representation,

and a written as binary form (cf. appendix A) this is
W(r, s) = war? + 2wirs 4 wos>

= (—ixy + acg)r2 — 2ixzgrs + (izy + $2)82.

The canonical-momenta for (3.2.2) are

1.
pwo = 3 (prl +ng)7

2
Pw; = ipm3>
1, .
Dy = B (—ipz, + Day) - (3.2.3)

and the action of the so(3) Lie algebra is given by

Ja (pwﬁ)\ Pwoe  Pwi  Dun

J+ Pwy 2pw2 0
Jo —Puwo 0 Pws
J— O 2pw0 pwl

Clearly p,, is a highest weight vector in a three-dimensional representation.

As a binary form this representation is expressible as
P(r,5) = Pugs” = PunTs + PupT” (3.2.4)

Using these representations the Hamiltonian can be re-written using the transvec-

tant operator (3.1.14). Specifically

92 (2]
H:M+V
A
4w wo 2
:wﬂ_v’ (3.2.5)

The unrestricted first derivatives of the potential (i.e. the first order pa-

rameters) can be set up as a 3-dimensional rotation representation

ov 4 oV v
= _— . -2.
V(r,s) 8wos D rs+ 8w2r (3.2.6)
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The second-order parameter can be set up as the one-dimensional representa-

4 ( 0%V 1 0%V
e = — S . 2.
v 3 <8w08w2 4 6w12> (3 7)

tion

In terms of the original coordinates the representation V.. is just the symmet-

ric second-order parameter

Vee = = (Va1 + Vg + Vag).

1
3
This ‘ee’ notation will be used elsewhere to denote symmetric combinations
of the second order derivatives.

The seven-dimensional representation (3.1.10) re-expressed as a binary

form is
Y(r,s) = <R12 + R + iR%Q + iRg’) 70
< 30123 4 R23 )
% (R3® —iRY) s*r* + 51 (R + R23) (R +iR§%) r?st
4 <_3Q123 4 %Rga% R13>
(R? + ZR§3 — iR — iR},,?’) s, (3.2.8)
and the binary form version of the three-dimensional representation (3.1.9) is
X(r,s) = (iSy + S1)r* 4 2S37s + (iSy — Sp)s>. (3.2.9)

The derivatives of the conformal factor A = exp(G) also will appear, and so

there is a need to define the representations
Z(r,8) = (105, G + 00y G)1% + 2 (05, G) 75 + (102, G — 05, G)s*  (3.2.10)

and

4 0*G 1 0°G
Zee = = - = . 3.2.11
3 <8w08w2 4 8w12> ( )
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Concise Forms for the Governing Equations

These representations and the derivative representations allow for the govern-
ing equations to be written in more compact form. For example equations the

5 PDEs (2.3.11) can be written as the single representation
Coly — — 2 (v 9N 13 (. 5C v\ 0
0LOE(V) = - I (Y,0C(V))™ +3i (X,05(V)) . (3.2.12)

where 0 has been defined in (3.1.25).
Similarly the 30 derivatives of the {Q, R, S} variable given by (2.3.17)-

(2.3.20) can expressed as the following 6 representations

¢ (V) = 2i (¥, Xo) - ﬁ )k
o (V) =0,
o _ = [
W) =2 (9 40) - 225 @,
o (Xc) = £ (Ao, %) = 5o (9, 9)1
o (Xc) =0,
0% (Xc) = (XC,XC)[O] (y )l (3.2.13)

where Xo =X — 1 Z.

3.3 The Algebra of Constants (Quadratic Algebra)

Since the Poisson-commutator of two constants of the motion is again a con-
stant of the motion and since the Poisson-commutator of an order d; constant
with a order ds constant is generically of order dy + do — 1, the order of the
constants obtained under repeatedly taking the Poisson-commutators (start-
ing with the second-order constants) will grow without bound. In this way
the second-order constants will typically generate an infinite dimensional Lie
algebra of constants. The constant in this algebra cannot be independent but
they need not be related by polynomial equations. However, in the case of a
maximum-parameter second-order superintegrable system it has been shown
that this algebra closes at the third-order. That is to say, all constants of
order greater than 3 are polynomial in the second-order constant and their

Poisson-brackets (i.e. polynomials in L; and {L;, Ly} pR).
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Second-order Constants in Rotationally Adapted Variables

Second-order constants, already discussed in §2.3, are now revisited in the
rotationally adapted framework. This allows the techniques used in the rest
of this chapter to be demonstrated before the equations get too complicated
to write down in full. The technique used here is to rewrite the constants
(2.3.4) in such a way that makes the rotationally adapted variables obvious
(i.e. with the variables explicitly chosen to form irreducible rotation represen-
tations).

Beginning with the purely second-order part, there are only two represen-

tations second order in the momenta,
(P,P,) =P and (P, P,)H. (3.3.1)

In order to make the one-dimensional representation corresponding to the
second-order part of the second-order constant, it is necessary to define the two

representations that balance the size of (3.3.1). This means a 5-dimensional

representations
Aa(r,s) = i <4> alMyigh
, i=0 i)
= a(()4)s4 + 4a§4)r33 + 6&%4)1"232 + 4(1:(),4)7"35 + a§4)r4, (3.3.2)
and a 1-dimensional
Ao(r,s) = a). (3.3.3)

Using these the leading part of the second order constant can be defined as

[0]

Ky = (A, P+ (AO, (7?,73,)[2]) (3.3.4)

which allows for all 6 second-order monomials in the momenta.
The zeroth-order part in the second-order constant can also be expressed
as a representation, however this one is not required to balance any momenta

and so it can simply be defined as the 1-dimensional representation
Bo(r,s) = b (3.3.5)
So the zeroth-order part by will be defined to be

Ko = By. (3.3.6)
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Using the above, the rotationally adapted form of (2.3.4) is given by

L =K+ Ky

0
= (A, P 4 (Ao, (P, P, )[2])[ ' B, (3.3.7)

The equivalence between the form (2.3.4) and (3.3.7) is given by

4 .
(4) 22 1 _ 9ig12,

a;’ =a” —a

a§4) — —a'® — g,

aé4) _ é(am +all — 2433,

a§4) — a3 — i,

agl) =a* — o't + 2ia'?, (3.3.8)
and

a(()o) = %(a11 +a* + a®), (3.3.9)
and finally

B =W (3.3.10)

For the types of constants that are of interest in this thesis, the term By will
be linear in the parameters (i.e. linear in the coefficients of V. and V(r,s)).
To construct such a By we define a pair of representations of the same size as
the pair (3.2.6) and (3.2.7), namely

FO,O(T> 8) = f[‘gop)v
2

2
Fos(r,s) =Y <k> FOP kg2 k, (3.3.11)

k=0

Using these a suitable form for By is given by

By = (F(0,0): Vee)[O] + (Fo3), V) .
= 1" Ve 4+ 15 Voo + 1PV + 1" Vo (3:3.12)

which suffices to cover all four first-order monomials in the parameters. Note
that the parameter V' (i.e. the value of the potential at the regular point) does
not need to appear in this set up because, without loss of generality, it can be

assumed to be zero.



CHAPTER 3. ROTATIONALLY ADAPTED ALGEBRAS 39

Taking the Poisson bracket of this second-order constant with the Hamil-
tonian gives the first order condition

4pw0pw2 _pz%)
Ky, —MmM——2 Ky, V =0.
{ 0, h\ . +{ 2, }PB

Expanding this, there are 12 monomials in coefficients of V., V(r, s), P(r, s).
The coefficients of these 12 monomials must vanish identically, giving a set of
12 conditions. From these 12 conditions a set of 4 highest-weight vectors can
be constructed. Highest weight vectors are, by construction, adapted to the
current orientation of wq, w1, ws. But since there is nothing special about the
current orientation these 4 highest weight vectors must vanish independent
of the choice of coordinates. The only way this is possible is if the entire
representation vanishes identically and this implies the following conditions,

written in the form of representations,

—51

S (Foo) = — (X, Foo)¥ — *}"o 3,

593
o5 (Fos) = i (Xa, Fo, 5)

141

A.A4 — 28?; (.FO,3) = -FO,O <2025 (y y) 45

~ 2 (Foa P i (Fon )

15
2 5 5
Mo = 50€ (Foa) = Foa (32 .9 - S (2.0 = D2+ 2.2 -
101
+ ?Z (Fos. X)[Q] ) (3.3.13)

These leave the six variables in the two representations 0 (Fo3), 0% (Fo,3)
unrestricted (or alternatively A4, Ap unrestricted). Likewise the values of F 3
and Fo o are also unrestricted, but the value of these four variables only affects
the trivial additive constant, and so can be neglected.

From the third-order condition

K 4pwopw2 _p%Ul — O
2 \ B -

two more highest weight vectors can be found, representing the conditions
05 (A1) =0

49 (Ay) 4 100 (Ag) = % (As, Z2)? + 5i (Ao, 22)10. (3.3.14)

()= 2 (2.9) 2.0

)
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Constructing the raising, lowering and level-set derivative representations of

(3.3.13) gives a further 8 conditions

0% (95 (Foo)) = -+,
8¢ (05 (Fop)) = .-,
oY (05 (Fo3)) = -,
8% (35 (Foa)) =,
A0S (Ay — 208 (Fos)) = —%)\A4Z T
/\ag (.A4 — 28? (f()g,)) = —é/\ (.A4, Z)m + ,
AC (Ay — 208 (Fos)) = —éx (A, 22 .
) :
e <A0 - 589 (f0,3)> = —%AAOZ +.., (3.3.15)

where the terms not written down are just the appropriate derivative con-
structions applied to the left-hand sides of (3.3.13). The missing terms con-
tain (at worst) first-order derivative of the J;; representations, and so the
left-hand sides of (3.3.15) can be used to determine how many of the first-
order derivatives of the A; and second-order derivatives of the F;; can be
solved for. In total the 10 conditions from (3.3.14) and (3.3.15) cover the 6
representations constructed from second-order derivatives of Fg o, Fp 3 and the
4 first-order derivatives of Ay, A4. Thus the aforementioned variables (which
will be denoted {04, 9*F}) can be solved for explicitly in terms of lower order
derivatives.

The conclusion, therefore, is that a second-order constants depends only on
the value of 65 (Fo3) ¢ (Fo,3)- The representation Fy 3 is a three-dimensional
representation and therefore 0 (Fo3) , 0% (Fo,3) are respectively of dimension
5 and 1. So the space of purely® second-order constants has dimension at most
6. This is consistent with the (5 = 6) theorem which states that the space

of purely second-order constants is ezactly 6.

Third-order Constants

This section examines the classical structure theory for the space of third order

constants. To do so, note there are two representations in the 10-dimensional

3meaning the additive constant is begin ignored.
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space spanned by the monomials cubic in the momenta. These are the 7-

dimensional representation
(P2, P) = p3 (3.3.16)
and the three-dimensional representation
(P2, P) = 4P (P, P)? = 2pu, (4pugpuss — P2 )72 + -+ . (3.3.17)

Recycling the previous notation, a pair of representation balancing (3.3.16)
and (3.3.17) are defined via

6

6 o

Ag(r,s) = Z <i)a§6)r’s6_l
i=0

= a(()ﬁ)sﬁ + 6a§6)rs5 + 15a§6)r284 +...4+ aé6)r6, (3.3.18)

and

2
— 6\ (2 i.2-i
Ao(r,s) = ZZ; (i)ai r's
= a82)32 + 2a§2)7“5 + a§2)72. (3.3.19)
Using these the purely third-order part of the constant is then defined to be

2
Ky = (A6, P)) "+ (45, (7?2,73)[2})[ ' (3.3.20)

Similarly to the case of second-order constants, the linear part of the third-
order constant will be assumed linear in the parameters. There is one repre-

sentation linear in the momentum
P
and two representations linear in the parameters
VYV, Vee-

The representation P only needs a 3-dimensional representation (a degree
2 binary form) to balance it out under transvection. It is not too difficult

to determine that there four possible ways such a representation could be
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constructed from transvectants with V, V.. Defining the representations,

Faar,s) = SR 270 rs 4 292
6
Fa3(r, s) Z < > righ=i
1=0
52’3) + 4f1 3+ 6f1(2’3)r252 + 4f§2’3)7“38 + ff’g)r4,

(3.3.21)

a suitable form for the linear part is be given by

(2]
= ((fz,o, Vo) (For, VO 4 (Fao, MW 4 (Fps, V)P ,P) . (3.3.22)
The third order constant can now be written in the form
Ks =Kz + K. (3.3.23)

The Poisson-bracket of the Hamiltonian and K3 is fourth-order in the momenta,
and consists of fourth, second and zeroth-order components that must vanish

independently. Considering the equation which is zeroth-order in the momenta
{V.Ki}pp =0
there are 3 highest-weight conditions can be found

As before, there is nothing special about this particular orientation and so

these conditions will only be satisfied if
Fa0=0,F21=0,F23=0. (3.3.24)

Keeping in mind (3.3.24), the equations quadratic in the momenta are

given by

{7 (0,29 (e (P2 )m)m}PB+ {’Ho»(le,(v,P)[”)m}PB:O'

(3.3.25)
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From these conditions four highest-weight conditions can be calculated and

these imply, written as representations, the following conditions

—4
Ag = o (.7:2,2,3))[1} ,
doe i (Fppy L2)"
2 = o\ 2,2, 4 + 6 ,
c —1 2] _ 31 [0]
0% (Fop2) = i (Fo,2, V) — 5 (Fo,2, &),
o —i5 2 \M
0 (Fop) = = (F22, X - =) (3.3.26)

This leaves only the values of F3 2 and ¢ (Fa,2) free.
Clearly all derivatives of Ag and A can be calculated using (3.3.26). Of
the six possible ways to construct the representations for the second-order

derivatives of F3 9, one is trivial,
0% (05 (Fa2)) = 0
and two give the same representation up to scaling
0% (0 (Fa)) = 20 (9 (Faz))-

The four remaining representations are independent and cover the space of
second-order derivatives of F3 2 and hence all second-order derivatives of F3 o
can be solved for. Thus a third-order constant only depends on the values of
the three-dimensional representation /3 o and one-dimensional representation
89(}'2,2). This means the space of third-order constants has dimension < 4.
For most systems the dimension 4 is achieved, the exceptions are given by the

following theorem (Corollary 5 in Ref. [12]).

Theorem 3.3.27. Let V be a superintegrable mazximum-parameter potential
on a conformally flat space, not a Stdckel transform of the isotropic oscillator.
Then the space of truly third-order constants of the motion is four-dimensional

and is spanned by Poisson brackets of the second-order constants of the motion.

Fourth-order constants

The space of fourth-order monomials in the momenta is 15-dimensional and

splits into the three representations

PP e, (3:3.28)
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These representations are of respective dimension 9, 5 and 1. To construct a
generic fourth-order combination the following three representations, we define

three representation of the same size as (3.3.28)

8
Asg(r,s) = Z <§) ags)riss_i

1=0
= a(()8)58 + 8a§8)rs7 + 28a§8)r2s4 +...4+ aés)rﬁ, (3.3.29)

4
4 o
Ay(r,s) = Z <i>a£4)rls4z
=0
= a[()4) st 4 4ag4)rs3 + 6a§4)r252 + aé4)r3s + ai4)r4, (3.3.30)

Ao(r, s) = al. (3.3.31)

These are used to balance the sizes of (3.3.28) and, in some sense, “complete”
them as a 1-dimensional representation. For this point forward representation
like these will be referred to as complementary representation. For the second-
order part, two representations complementary to those in (3.3.1) are defined
to be

1=0
= 04)5 + 4b§4)r53 + 6bg4)7’282 +...+ b[(l4)T4, (3.3.32)
Bo(r,s) = b (3.3.33)

And the finally the zeroth-order term is defined to be
Co(r,s) = c(()o). (3.3.34)

The representations By, By and Cy must be respectively linear, linear and
quadratic in the parameters. From the previous sections it should be clear

that there are two first order representations in the parameters
V, Vee.

The space of monomials quadratic in the parameters splits into four represen-

tations

V2 VeV, W=, »Pl (3.3.35)
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Considering the most generic way in which representations can be transvected
with V, V. to give representations of the form By and By leads to the following

definitions

By = FioVee + (Fan, V)0 (Fa2, 4 (Fa3, V),
By = F0,0Vee + (Fo,3, V)& (3.3.36)

The dimension of the representations F;; is implicit in the set up above!
(e.g. Fo,3 and Fy, are of dimension 3).

Likewise the most general form of Cy is given by

Co = GooVZ+Vee (G0 V)" 4 Vee (Go2 V)™ + Vee (Go,3, V)P
0] ‘ .,
+ (90,47 (V7V)[2]) + (gu.saVZ)M + (Gogs V'))m
+ (Gor V) + (Gos. V)™ + (Go VM, (3.3.37)

where the G; ; are chosen such that Cy will be a one-dimensional representa-
tion. Note in order for the final representation to be an invariant (i.e. one-
dimensional) the representations Go 1, Go2, Go 5, Go,6, Go,7 and G g must all be
identically zero, they are only shown here to indicate how the representations
quadratic in the parameters will be constructed in later cases.

A generic fourth-order constant can now be written in the form
Ky = K4+ Ko+ Ky, (3.3.38)

where

2
Ky = (A, PY 4+ (A, (772,732)[2]>[ |

0
Ky = (B4, 7)" 1 (o, (P, P)) "

n (A()? (PQ’PZ)[AL])[O]’

Ko = Co. (3.3.39)

The Poisson-Bracket {H,K4}pp = 0 splits into conditions based on the

degree in the momenta. The 1st order conditions give

{H07 KO}pB + {‘/, KZ}PB =0.

4To determine the dimension it is helpful to remember that the rth transvectant of an
nth-degree binary form and mth-degree binary form will be of degree n + m — 2r.
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From these conditions a set of eight highest-weight vectors can be determined.

In terms of the representations these give the conditions

1
0¥ (Gop) = —590,3 — 53 (Go,0, X2)[0} , (3.3.40)
.
0 (Go3) = 5 (X2, Go)" (3.3.41)
104 4
AFa0 — 28f (Go,3) = Go,0 <2025 y, y)[4 45 (X y) - (Z y) 4(x, X)[O])
9
1 (Go3,Y W 4 6i (Go,3, )0 4 2Go.9, (3.3.42)
_2 58 6 _ D 2 _ 10 2, 2 _ 20
Fo,0 8 (Go3) = Gopo <27 >, 3 (X, &) ) (X, 2) 27 (Z Z) 3 Zee
+5i (Go3, X)P + 2G40, (3-3~43)
_250h  _ 4] _ o) _ 14t 2 _ 2
F13 = 750+ Gog = Gos <30375 ST (X A =5 VT~ 1s 5 2)
4
- % (Go, 9737) 15 (90,4,37)[0] (go 9, ) o

(3.3.44)

4 2
Fo,3 — 559 (Goo) + 73090 4=
29 5 10
%%WWJW S (X)) -2 (x, 2 4 M@ZW—3aQ

.
5 Goo. V)P (3.3.45)

4
Fa1+ *(99 (Go9) — 495 (Goa) =

Gos S (0,00~ 1 eyl 2z ey 2 )
0,35 5 75 45 ) 9

43 4
+wu%%am—§@wﬂwtiy%&wm,@&%)

| =

1
Fio— *300 (Go) =

6 14i % [

(0] _ 2] _ = RIS [4
7 (Gon - a? - ) L + o (V9))

+ 2 (G0, ) = (Goo, V)Y (3:3.47)

120
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These are 8 representation cover 30 out of the 54 variables in the set {F,9G},
leaving 24 to be freely specified..
Examining components of {#,K4}pz = 0, which are third-order in the

momenta, gives the equation
{Ho, K2} pp +{V, K4} pp = 0.

The subsequent equations can be used to solve for 8 of the representation in
the set {A, 0F}. Using 9° (3.1.25) the partial derivatives of (3.3.40)-(3.3.47)
can be constructed. This construction gives an additional 20 representations
whose highest derivatives are in the set {A,dF,9*G}. Together these 28
representations cover 126 of the 147 possible variables in {A, 0.F, 9?°G}, leaving
21 to be freely specified.

Finally the 5th order conditions

{Ho, K4}PB =0

gives rise to 3 representation, namely

0 As =0,
00 A+ 0C A= — (2, 4B = L (2, 4g)0
* 27 336 " 27 ’
0S Ao + ?ai&u = —%Z (2, A0 —i (2, 4)0 (3.3.48)

These 3 representations cover 21 of 45 possible the variables in the set {0.A}.

Taking the partial derivatives of the 28 representations obtained so far
for {A,0F,0%G} gives an 50 representations on the set {0.4, 9>F,93G} inde-
pendent from three in (3.3.48). In total these 53 representations completely
cover the 289 variables in the set {94, 3> F, 393G} and hence prove that all 289
variables can be solved for in terms of lower order derivatives.

So, ignoring the trivial additive term (i.e. the values of G) the 24 unre-
stricted variables in the set {F,9G} and the 21 unrestricted variables in the
set {A,0F,0?G} implies that the space of fourth-order constants is at most
45-dimensional. A set of 24 of these possible dimensions correspond to the six
purely second-order constants multiplied with the four parameters and hence
the space of truly fourth-order constants is at most 21-dimensional. This
bound of 21 is achieved and the following theorem holds (taken from [12])
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Theorem 3.3.49. Defining the The 21 distinct standard monomials L ;)L
form a basis for the space of purely fourth-order symmetries, where the 6

linearly independent constants have been denoted Ly, i € {1,...,6}

Sixth-order constants

The space of the even-order monomials up to degree 6 in the momenta splits
into 10 representation (including the constant representation). Ordered by

descending degree and size these are

Kﬁ . 7)67 (7)377)3)[2] 7 (IP37733)[4} 7 (7)3’733)[6} ’
K4 . 734’ (732’7)2)[2] , (732’732)[4} ,
Ky P2 (PP )P,

Kp: 1. (3.3.50)
To each of these representations we will assign a complementary representation

K¢ : A1z, Ag, Ay, Ao,

Ky : By, By, Bo,

Ky : Cy, Co,

Ko : Do. (3.3.51)

Where, like before, these are of equal dimension to (3.3.50).

Using this set up we parameterise a sixth-order constant via the form

8
Ko = (Arz, PO+ (s, (PP 7
4
+ (B, P + (B4, (7>2,7>2)[4])[ i
0
+(Ca, P+ <C0, (P,P)m)[ LDy (3.3.52)

For the following discussion, the terms in Kg which are nth order in the
momenta will be referred to as K,,.

The representations B;, C; must be respectively linear and quadratic in the
parameters and the explicit form for these can be deduced from (3.3.36) and
(3.3.37). Borrowing the notation from the previous cases, the complemen-
tary that are defined in the construction of B;’s will be labeled F; ;. and the

complementary representations in C;’s will be labeled G; ;.



CHAPTER 3. ROTATIONALLY ADAPTED ALGEBRAS 49

The term Dy will be assumed cubic in the parameters and therefore be

constructed by balancing the representations
V3. VRV, V..WVE, v ()P e

Explicitly Dy can be written in the form

[0]

Do = Ve Hoo + Vee? (Ho3, V)P + Vee <<H0,47 v, V)[Q]) + (Ho,9, VQ)[4]>

>\ [0] o 2
(a0 ¢ (b (27 (o 0297
+ (Hoas, Vg)w + (Ho4, V3>m + (Ho,15, V5>[2J
+ (Ho,se, V3>m + (Mo, V?’)m + (Ho,1s, V5>[5] + (7{0,19,1/3)[6]
(3.3.53)

for appropriately sized representations H; ;. Like before, seven trivial repre-
sentation appear for the sake of notational completeness.

In what follows the notation (n),, will be used as a shorthand for ‘n vari-
ables forming a set of m representations’, if the subscript is dropped it won’t
change the meaning of the following sentences.

The condition

{H,Ko}pp +{V, Ka}pp =0

can be shown to put (60)14 linearly independent restrictions (that is 60 con-
dition which lie inside 14 representations of varying dimensions) on the set

{G,0H} and consequently leave (60)14 parameters free>. The condition
{H, Ko} pp +{V, Ku}pp =0

puts (100);g restrictions on the set {F,0G} and a further (176)ss conditions
can be constructed for the set {9G, 9?H}, giving a total of (276)s54 restrictions,

and leaving (84);¢ parameters free. The condition
{H,Ka}pp +{V, K} pp =0

gives (84)12 conditions on the set {A,0F} and an additional (624)110 condi-
tion can be constructed for the set {9F, 9>G,0°H}, giving a total of (712)120

conditions and leaving (56)19 parameters free. Finally the condition

{H7K6}PB =0

5There are (120)2s parameters in total.
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gives (36)4 conditions on the set {0.A} and an additional (1308);9¢ can be
constructed for the set {9A, 92°F,0%G,0*H} and gives a total of (1344)a09
conditions leaving 0 parameters free. Hence the equations close at this level.

So the maximum number of sixth order constants is (200)40 (ignoring
the additive constant). There (60)14 second-order constants with coefficients
quadratic in the parameters and (84)16 combinations of the second-order in
the second-order constants and linear in the parameters. Thus the space of
purely sixth-order constants at most (56);o-dimensional. The following theo-
rem states that this bound is achieved (see Ref. [12]).

Theorem 3.3.54. The 56 distinct standard monomials L)L) Ly form a
basis for the space of purely sizth-order symmetries, where the 6 linearly in-

dependent constants have been denoted L;), i € {1,...,6}

Eighth-order constants

We now venture into new territory and apply the technique to the case of
eighth-order constants. Previous attempts (by the author) to do this without
exploiting the rotational-adapted variables met with limited success. The
analysis will make it clear that there is necessarily an identity at this level
between the second-order constants.

To start, note the space spanned by the even-order monomials up to degree
eight in the momenta splits into fifteen representation (including one constant

representation). Ordered by descending degree and size these are

)
Lo
o

7)4’ 7)4) [4] , (7)47 P4) [6] , (7)47 7)4) [8] ,
7)3 7)3) (4] (7)3 P3) (6]
732 732) [4]

3
3

Kg:

P (

: PO, (P,
K4ZP4,(P2,

:P (

~

6

)

R,

3

)
’)
)

)

)

2 2]

)

P,

3
3

(3.3.55)
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To each of these representations will be assigned a representation

Kg: Aig, A1z, Ag, As, Ao,
Kg : Bia, Bs, By, By,

K4 : CBa C4> COa
K2 : D4a DOv
Ko : &, (3.3.56)

which have the same dimensions as (3.3.55).

From these representations the eighth-order constant will be defined by

112)
Kg = («416,738)[16] + («412, (734,734)[2]) +...

8
+ (Biz, PO+ (B, (733,733)[2])[ '
4
+ (e P+ (i, (7>2,7>2)[4])[ |
0
+ (Dy, P 4 (Do, (P,P)m)[ L&, (3.3.57)

and like the previous cases, the terms nth-order in the momenta will be de-
noted by K.

Before making the assumptions about where the parameters appear, I will
list all conditions that arise from the vanishing of the Poisson-bracket with
the Hamiltonian. As no assumptions have been made these condition cover all
the previous (even-order) cases. The condition {Hy, Ko} pp +{V. K2} pp =0

gives
0% (&) = A (112 (Dy, V) 4 % (Do, V)[‘”) . (3.3.58)
The condition {Hoy, K2} pg + {V, K4} pp = 0 gives
o€ (D1) =2 (55 @) +s€)).

o (D) + 305(00) = A (5 (Pa V) 4§ (20, ))

+ ;’71 (2, D)% + % (2,Dy). (3.3.59)
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The condition {Ho, K4} pp +{V, K6} pp = 0 gives

4
o€ = A (37 BV + D (5.

495

9% (Cs) + 2709 (Cy) = X <

9¢
e &I

0 (Ca) + -9 (Co) = ) ( BV 4§ )
71 5%

Dz L2t

271 (Z 64)[0]
(Z,C0) (3.3.60)
The condition {Hy, K¢} pp +{V, Ks}pp = 0 gives

1
0% (Bya) = A ( (A, V) + 56 (Am,w[‘”) ,

195
69(312) 80(88) ( (A12,V )[2 + 780 (As, ) >
132 1957
13i 2] ol
9 924
0 (Bs) + 0 (B1) = A ( (As. VP + 5 (As, w“’])
112 9‘
2, [0
1
90 (Ba) + o0 (By) = ( AP+ & (0
3t 2, b [0]
+35 (2,807 + o5 (Z,BO) . (3.3.61)

Finally the condition {Ho, K3} pp = 0 gives

0¥ (Aig) = 0,
0 (Arg) + 23807 (Ar2) = i;é (2, Ae)? +119i (2, Ap2) Y
195 5Y) 1957
0% (Arz) + 20 (As) = 8; (2, A1) + T‘Z (2, Ag)l)
9% (As) + —8C(A4) if; (2, As) + 5 Iz, A0),
c 1 e 113 2 (0]
0% (Aa) + 7 12@ (o) = 57 (2, A0 + L (2, A0 (3.3.62)

Now assuming that the representations B;,C;, D; are respectively linear,

quadratic and cubic in the parameters, the necessary forms can be deduced
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from (3.3.36), (3.3.37) and (3.3.53). As might be obvious from the previous
notational-recycling the complementary representations contained in B; are
labeled F; ;, the representations contained in C; are labeled G; ;, and the ones
comprising D; are labeled H; ;.

The new term &y comes from balancing the nine representations fourth-

order in the parameters. Explicitly, the form is
(0]
Eo = Ve Too + Vee® (Zo 3 VA 4y, <(Io,47 v, V)m) + (Zo.o, Vz)[4])

2
V., ((10,12,(122,12)[2]) +(Io,17,V3)[6}>

(4]

0 L
+ (Zo20, 02 V)N 7+ (Tozs, 02)) 7 4 (o, V)"

(3.3.63)

for appropriately sized representations Zp;. Since the analysis will stop at
the eighth-order constants the trivial terms that would contribute when con-
structing higher-order constants haven’t been written down (like the terms
written down when considering the Dy in (3.3.53)).

Again the notation (n),, will be used as shorthand to refer to n vari-
ables forming a set of m representation, and dropping the subscript m doesn’t
change the meaning of the following sentences.

The condition

{H,Ko}pp +{V, Ka}pp =0

puts (105)2; restrictions on the set {#,0Z} leaving (120)24 parameters free.

The condition
{H,Ks}pp +{V,Ka}pg =0

puts (200)34 restrictions on the set {G,0H} and a further (311)s7 conditions
can be constructed for the set {OH, 9°T}, giving a total of (511)g; restrictions,

and leaving (209)37 parameters free. The next condition
{H,Ka}pp +{V, K¢} pp =0,

puts (220)sg restrictions on the set {F,dG} and a further (1198);192 conditions
can be constructed for the set {9G, 9*H,9>T}. This gives a total of (1408)a29
conditions on the set and leaves (224)34 parameters free. The penultimate

Poisson-Brackets
{H7 KG}PB + {V7 KS}PB = 07
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puts (2736)3ss restrictions on the set {A,dF} and a further (2736)33s condi-
tions can be constructed for the set {0.F,9?G, 0?°H,d3T}. This gives a total of
(2880)404 conditions on the set and leaves (126)3s parameters free. The final
Poisson-Bracket

{H,Ks}py =0

puts (55)5 restrictions on the set A and a further (4787)gp3 conditions can
be constructed for the set {0.A,0%*F,03G,0%H,0°T}. This gives a total of
(4842)608 conditions and leaves no parameters free, hence the equations close
at this level.

Taking into account the additive constants (i.e. the representations Z; ;)
the space of eight order constants is of dimension at most (714)142. However
the monomials of which are purely fourth-order in terms of the six second-

order constants and the 4 parameters can be easily shown to have dimension
(35)9 + (120)24 + (210)38 + (224)34 + (126)38 = (715)143.

4+3) = 35 monomials purely quadratic

3
in the 4 parameter. At the other extreme the term (126)ss comes from (°%?)

Here the term (35)g comes from the (

monomials purely quadratic in the 6 second-order constants. The rest of the
terms come from the mixed monomials and can easily be enumerated using
basic combinatorics.

So the space of monomials is larger (by one) than the space of possible
constants of this type. Thus these monomials are not linearly independent
and there necessarily exists a linear-combination of these monomials which is
identically zero. That is, there exists a quartic identity between the second-
order constants and the parameters. In the next section this identity will be

given explicitly.

3.4 The Quartic Identity

For a maximum-parameter second-order system the algebra formed from the
iterated Poisson-commutators of the second-order constant closes at the third
order in the momenta, that is, given any constant derived from Poisson com-
mutators in this manner and which is of order greater than 4, then it must be
a polynomial in the second and third order constants [12, 8]. As only 5 of the

six second-order constant can be independent it is necessary that they satisfy
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a functional relation, and for the known systems and this identity is a quartic
(or at most quartic). The result of the previous section prove that a similar
quartic identity would necessarily exist for any unknown system as well. By
choosing a canonical form for the second-order constants, a general formula

can be found.

The canonical basis

Thanks to the (5 = 6) theorem it is known, that at any regular point
in the systems x,,, and for any particular set of values for aéj there will be
a second-order constant which takes these values, i.e. a¥(x,,) = aéj . Since
each constant of the motion allows an additive parameter these can also be
assumed to have W|XW =0.

The canonical basis is defined as follows. For any prescribed regular point

in the system let L;; be the linearly independent constants that satisfy the

following,
2
Luly,, = P2y
_ 2
Looly, = Pay
2
L33|x7.p - p1‘3’

L]‘2‘X7‘p - 2p$1p1‘17
Ll3| - 2p1‘1px37

= 2D2yDas- (3.4.1)

Xrp

Los|

Xrp

For example, taking the Euclidean superintegrable system with potential

c d
Viv = a(4at + 23 + 23) + by + o + 2 +e (3.4.2)
2 3

and defining the regular point to be with the regular point x,, = (1,1,1) the
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canonical second-order constants are

L1 = szcl + 4a(ac1 — 1)($1 + 1) + (3}1 — 1)[),

Loy =2, +a(es ~ D(as +1) - 2= AR LY,
2
(z3 —1)(zs +1)

2 b
T3

Lsg =ps, +a(zs—1)(z3+1) —d

L1 = 2Dy (Pay — Pro®1 + T2py, ) + a(22321 + 223 — 4)

(xg — 1)(:11'2 + 1) 2(1‘1 — 1)
+b 5 —c PR
2

Lng = 2Dy (Dug — Dug®1 + T3ps, ) + 020321 + 225 — 4)

(x3 — D@z +1) d2(5171 - 1)7

b
+ 2 T3

Loz = p;, + Pay — (@3Day — 22pay)” + alaf + 23 — 2)

_lzs— 1iéx3 LY CE 13%332 U, (3.4.3)

Returning to the general case, the canonical second-order constants can
be split into two rotation representations. As binary forms these are the 5-

dimensional representation

M(T, S) = (LH +1L19 — LQQ)’I“4 + 2(iL23 + L13)T38
+ 2(2L33 — L1 — LQQ)?"QSQ
+ 2(iL23 — L13)7“83 + (LH —iLq19 — L22)84, (344)

and the one-dimensional representation
Lo = Li1 + Log + Las. (345)

By the result in the previous section, there is an eighth-order identity in
the form of a quartic between the 6 canonical constants and the four param-
eters of the potential. To find this identity all that needs to be done is to set
up a generic fourth-order combination of the canonical constants L;; and the
parameters. According to the previous section this eighth-order constant will
be determined completely by knowing the value of (up to) 5th order partial
derivatives. So, once the linear combination has been set up, finding the coef-
ficients which cause this combination to vanish at a sufficiently high number

of derivatives at the regular point will give the identity.
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A first pass over the equations shows that the coefficients of terms which
are either zeroth-order or linear in the second-order constants must be iden-
tically zero. Hence the quartic identity in the canonical constants will be of

the form

Q= Z CONCORCCORC Y 5 0 Sy s Z BN KD, (D [ Ly L Vg
+ Z fy(ij)f(kl)v(Q)’(T) LiijquVT (346)

where the ¢ in V, is from the set {1,2, 3, ee} (i.e. the four parameters) and the
sums are over all possible combinations of variables.

If equations governing the remaining coefficients of (3.4.6) are examined,
which are not listed here for reason of space, it quickly becomes apparent that
the equations would look more balanced if the a! coefficients were quadratic
in the variables {Q, R, S} and if the coefficients 8! were linear in {Q, R, S}.
Making this assumption a set of non-trivial coefficients can be found which
cause the linear combination to vanishes at the regular point up to fifth-order
derivatives. Hence an explicit form for the quartic identity has been found®.
This result was also verified by testing it at various regular points in the known
systems.

The quartic identity that was obtained is very long, containing 1641 terms
and covering 4 or more pages when written out directly. An example of the

purely quartic terms that appear are given by

(65© + G5 — 2r3*")?
18

2(653’(0) + GS;? _ 2R§3’(0))Q123’(0)
9

Ly L3y—

where the notation A©) = A|

Xrp has been used. Likewise an example of the

quadratic terms is

T2 V1

1 2
(2L11L33*§L%3)V3¢(§) +(L12L23*2L22L13)V;;(§)Vz(?)+(L13L23*2L33L12)V(0) v,

Despite the length of the identity found, it has the structure of a one-
dimensional rotation representation, and this means it can be written out in
terms of transvectants of simpler representations.

Using the notation Y, X, Z,V, Vee, Z, Zee and A to denote the value of those

representations at the chosen regular point, and expressing the second-order

5The results of the previous section are enough to show the coefficients in an an eighth-
order constant need only been known up to their 5th derivative to completely determine
which eight-order constants is being referred to
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constants as the representation (3.4.4) and (3.4.5), the quartic identity can be

drastically simplified to a more manageable form and is given in figure 3.1.

Example: The quartic identity for Vjy

Taking the system Vi given at (3.4.2), the representations related to the

structural equations take the form, at the regular point x = (1,1,1),

3
Y(r,s) =1 (r6 + 3rts? + 8irdsd + 3r?st + 56) )

X(r,s) :% (7"2 — 2irs + 32) ,

A=1,
Z(r,s) =0,
Z,. =0, (3.4.7)

and the representations coming from the parameter take on the form

V(r,s) =((1+ 4i)a + %b —¢)s® + 2i(a — d)rs + ((1 — 4i)a — %b —o)r?,
Vee =4a + 2¢ + 2d. (3.4.8)
Redefining the basis of 2nd-order constants to be the same as the one given

by Daskaloyannis [8] (which is specifically adapted to the sub-algebras within
the quadratic algebra of system IV')

H = Ly1 + Los + L33 — 2a + c+ d + b,
Ay = L1 — 4a + ib,
Ay =Ly +a+c,
. . 1 . 1
By = —ilsg3 —id + §L13+za+1b,
By = L33 — La3 + Loz + ¢ + d,

1 1
F=—JLip— ;b +ily —ia+tic, (3.4.9)
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the quartic identity is given by

1645, (A1 + AQ)F - 8(A1 + A2)2F2 84, <A1A2B2 4 A2By + AQBf)
- 8(AlB§ - 4F3132)a + 4<A231B2 ¥ Bo(A; + Ag)F)b _ 84 (A1 + A2)2c
+ 8(A1A232 (A + Ag)F? — 2A2FB1>H — SH2F? — 84, A%
—4(F32b—4A1c(A1+A2))H+32 (B%c+F2d)a+8(A2Fd+Bl(A1 +A2)c)b

1
32A1acd — 8A H?c — 8B Hbc — 5331)2 + 2db%c = 0. (3.4.10)
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Figure 3.1: The Quartic Identity



Chapter 4

Structure Theory of
Second-Order
Conformally-Superintegrable

Systems

A classification of second-order superintegrable systems (i.e. the types dis-
cussed in chapter 2) is hindered by the need to specify the conformally-flat
metric beforehand. A way around this obstruction is to instead consider con-
formal classes of potentials. That is, only distinguish systems which are not
related via a Stackel transform. This leads naturally to the study of the
so-called conformally-superintegrable systems (also known as a Laplace-type
system). Every superintegrable system over a conformally flat space is, by
default, conformally superintegrable and every conformally superintegrability
systems is Stéckel equivalent to a superintegrable system (see theorem 4.1.8).

The notion of conformal-superintegrability was introduced by Kalnins et
al for the purpose of classifying superintegrable systems over conformally flat
spaces [27]. It was shown that the second-order conformally-superintegrable
systems over flat spaces can be put into correspondence with a 10-dimensional
manifold. It is this correspondence that forms the starting point for the classi-
fication in chapter 5. This 10-dimensional manifold possess an action induced
by the conformal group in three dimensions (which is a 10-dimension Lie

group), and the foliation of the space under this actions provides the classifi-

61
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cation result.

In §4.1 the notion of a conformally-superintegrable system is defined and
how these relate to the superintegrable systems is discussed. Specifically a
conformally-superintegrable system is Stéckel equivalent to a superintegrable
system, and a superintegrable system yields a conformally superintegrable
one via a conformal scaling. This allows the classical structure theory for
conformally-superintegrable systems to be determined from the discussion in
chapter 2. Most importantly the potential for a conformally-superintegrable
systems over a conformally flat-space statisfies a set of linear PDEs. However,
unlike the superintegrable case the 5th parameter is no longer a trivial additive
one.

In §4.2 the local action of the conformal group is studied by considering
the action of a conformal change of coordinates. It is shown that this action
decomposes the space of coefficient functions (denoted {Q,R,S}) into a 3-
dimensional and a 7-dimensional component. These are almost the same as the
SO(3,C) representations X', ((3.1.9) and (3.1.10) respectively) introduced
in chapter 3. The local action of the conformal group is then shown to act
transitively on variables {S}.

In §4.3 the non-local action of the conformal group is examined through
translation of the regular point. This requires examining the partial deriva-
tives, which take polynomials in {Q, R, S} to higher degree polynomials in
{Q,R,S}. The goal in chapter 5 is to, as was done for the Euclidean case
[17], create polynomial ideals constructed from the {Q, R, S} variables which
are closed under translation of the regular point (i.e. under the action of 9,).

Theorems 4.2.12 and 4.3.4 are both very relevant in this regard.

4.1 Classical Structure Theory for a

Conformally-Superintegrable System

Consider a classical system with a Hamiltonian over a conformally-flat space.
Without loss of generality this can be assumed to take the form

p$12 +p:l?22 +P132

H(p,x) = )

+ V(x). (4.1.1)

This is the same form as (3.2.1). However instead of a second-order constant,

consider a second-order conformal-constant. This will be a function of the
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form
3 .. .. ..
L= Z a" (X)pa;pe; + W(x), a’ =a*, (4.1.2)
ij=1

such that the Poisson commutator of the Hamiltonian H and the conformal-

constant gives
{H,L}pp = pH, (4.1.3)

where p(p,x) is polynomial in momentum coordinates. In this case pr will
first order in the momentum.

Notice that any Hamiltonian H will have infinitely many trivial conformal-
constants of the form F(x,p)H for any differentiable function F(x,p). So two
conformal-constants will only be considered different if their difference is not
a multiple of the Hamiltonian (or equivalently, all second-order conformal-
constants are assume to have a traceless second-order component). So while
a superintegrable Hamiltonian would quite naturally be called a second-order
constant for the system it describes, this identification makes a conformally-
superintegrable Hamiltonian equivalent to zero.

Based on the discussion above, the obvious definition for a maximally
conformally-superintegrable system is for the Hamiltonian H to possess 2n —2

independent and inequivalent conformal-constants.

Lemma 4.1.4. FEvery conformally-superintegrable system over a conformally-
flat space can be conformally scaled to a conformally-superintegrable system

over flat space.

Proof. By hypothesis the systems possess a Hamiltonian of the form

H,
H= 70+V (4.1.5)

where Hy = p? LT pfw + p%S. This Hamilton will possess conformal constants
L which satisfy
{H, L} py = prH. (4.16)

Scaling the Hamiltonian by the conformal factor A\ gives the new Hamilto-
nian H = \H = Hy + \V. The Poisson-Bracket of this new Hamiltonian and
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the original conformal-constant satisfies

{H.L} = {H L
— MH, L} pp + H{\ L} pp
— NoLH + H{\ L} py

(oo Do)

_ (pL N {ALA}PB) a (4.1.7)

The factor

~ AL
= g+ L

is also polynomial in the momentum and hence L is also a conformal-constant

of H , which is clearly a Hamiltonian over flat space. O

So henceforth the conformally-superintegrable systems under considera-
tion will be assumed to be over flat space, conformally scaling if necessary.
There do exist superintegrable systems which are not Stéckel equivalent to
conformally flat systems [18], but these are not the subject of this thesis.
Note that a superintegrable system is a conformally-superintegrable system
with conformal-constants for which p; = 0, so an immediately corollary of
lemma 4.1.4 is that all superintegrable systems over conformally-flat spaces

are equivalent (by conformal scaling) to a conformally-superintegrable one.

Theorem 4.1.8. If H = Ho+aU is a Hamiltonian with a conformal-constant
L(e) = Lo + oWy, then the new Hamiltonian H = % has constant L£(—H).

Proof. This proof is almost identical to the proof of theorem 2.4.1. Recall
that, given functions of the form G(x,p), F'(a,x,p) where a = 7(x, p) then

{F.G}tpp = [{F(a,x,p),G(x, p)}PB]a:T(X,p)+[aaF(a7 X, p)]a:T(x,p) {r(x,p),G(x,p)}PB.

Consider the conformal constant L which, by hypothesis, satisfies a relation

of the form
{H + aU, L(a)} pp = p(H + aU),

and so

{H,L(a)}pp = —a{U, L(a)} pp + p(H + aU).
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Using these it can be shown

~ H
{H,L(a)}pp = {U,L(a)}PB
=~ T U L) pp + T
— _E (U, L(a)} pg + —o{U, L(ca)} pp + p(H + aU)
vz’ U
— _H; @ (U, L(a)} pps + /)(H;;O‘U).
So
{H,L(-H)}pp = [%L(a) {ﬁ,fl}PB - H; @ (U, L(c)} pps + P(HgO‘U)
_ p(H — HU)
==
=0.

Thus L(—H) is a constant of the motion for the transformed Hamiltonian. [J

Theorem 2.4.1 is a special case of this theorem with p = 0. Although a
subtle difference in the proof is the reason behind p(H — H U) vanishing.

In the superintegrable case an arbitrary constant can be added to the
Hamiltonian without altering the superintegrability, however adding an arbi-
trary constant here would destroy the conformally-superintegrability of the
Hamiltonian. Also note that if £(«) is one of the trivial conformal-constant
of the form F(x)(Ho + o) then £(—H) = 0.

Nondegenerate (maximum-parameter) Potentials

Because of the Stéackel equivalence between superintegrable and conformally-
superintegrable systems, results regarding the structure theory of conformally-
superintegrable potentials can easily be determined from the structure theory
of the superintegrable systems. So if a superintegrable potential V is scaled

via the conformal-factor A then the new potentials

V=V
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can be shown to satisfy a set of PDEs written in the symmetric (but once

again redundant) form
Vi = Vee + A1V + A3Wo + A3V + ANV,

Vg = Vee + A2V + A2V + ARV 3 4+ A2V,
Viaz = Vee + APV + APV + APV + APV,

Vi = APV + APV + APV + AV,

Vi = APV + APV + APV + AV,

Vg = APV + APV, + APV + APV (4.1.9)
Like before, the second-order parameter is Ve, = W))w Note that,

unlike the superintegrable case, the value of V' is no longer just an additive
parameter. This dependence on 5 parameter shouldn’t be surprising as the
additive constant of the superintegrable case C' becomes a 5th term in the
potential C'A under the conformal scaling.

The redundancy in the PDEs above takes the same form as before and can

be expressed as
AL AR L AB =0 i=0,...,3.

Like before the integrability conditions can be use to show these 18 coeffi-
cient functions Ag depend only on a subset of 10 coefficient function. These
10 coefficients, which will be referred to as {Q,R,S}, and for Azj, k # 0,
these take essentially the same form as (2.3.16). If we wish to express these
coefficients function in terms of the superintegrable system from which they
were derived they can be expressed in terms of the old variables {Q, R, S}

and the conformal factor, A = exp(G), via the following formulas

R =R},
Q123 — (123
. o1
§'=5-3C. (4.1.10)

The remaining 6 coefficients .Af)j can be expressed as quadratics in the variables

{Q,R,S}. These can be determined by index permutation in the following
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two illustrative examples
4 8 4 1 8 1
Ap' = 5 (R1Y)? = S(RE)? + (R + 5 (R)* — S(RE) + (RS
9 9 9 9 9 9
8
= 2RYIST + 2P — A4S + SRR - 28R +2(S7)? + 28Ry
1 1
9 9
: 4 osiz . A 1oso:
./4(1)2 — 2Q12385 + 27?,%231 + 28272%2 _ 68281 + ng%R%d + ngZdR%J

+28*R12 — “REBR]? — —“RIPRE,

2 2 2
- SRR - SRERS + SRR (4.1.11)

Alternatively, using the concise notation introduced in chapter 3 these can be
recovered by writing out the PDEs (4.1.9) as the following SO(3, C) represen-

tation

070 (V) = — — (05 (V) + 3i(x, 0 (V)

1
15
2 i 3

2 4 , * 2], 9 [0]
+V<675(J),y) + 15(32,2() + 2(2(,2() ) (4.1.12)

If equations (2.3.17)-(2.3.20) are rewritten in the new {Q, R, S} variables

the following illustrative derivatives can be derived

OR1? 2 2 4 5
8951 _ —§R§2R§3 + §R§3R§3 + §Q123R§3 4 §Q123R%3
— RIPRE — RP2S + (R3® + 3R3?) S* + 201387, (4.1.13)
oRZ 3 1 11
S = SRERE - ZRERE - RERS
é 13)2 1 122_% 23\ 2 é 13)2 1 122_% 232
2
+ (Q'28)% — (R + 3R12) ! — RI2S? + RIBS®, (4.1.14)
ORI? 1 1 1 1
ax; — —591237?,%2 _ §Q123R§3 + gR%.gR%Q + §R§3R%3
— 202381 _ R}3S2 — R}ZS?’, (4.1.15)
oS! 17 1 1
orr 00 R R R g RIRY
7 13\ 2 1 23\ 2 7 12\ 2 11 123\ 2 7 13\ 2 7 12\ 2
- — — (R —— (R - — —— (R —— (R
Lomomve  1ocoy2 1oy 142
+1—5(R2) +§(8) +§(8) —5(5) , (4.1.16)
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251:_;R§R§_3Qm%g3+;R¥R§+;R¥R?—;Q”%§?4¢S%
T2

(4.1.17)
8Q123 2 1312 1 231513 123513 1 2312
8:[;1 == §R1 Rl - §R3 Rl + Q R3 - gRQ Rl

+ QBRI — QI8! 4 (RP - RIP)S2 4 (RP - RI12)S3. (4.1.18)

As before, all other derivatives can be found though index permutation. The
full set of equations can also be derived directly from (3.2.13). Perhaps surpris-
ingly, the integrability conditions for equations (4.1.13)-(4.1.18) are satisfied
identically. This lack of restrictions means that there will be a solution to
(4.1.9) for any given 10-tuple (Q,R,S) € C'V.

The 10-dimensional space of initial conditions is acted on by the conformal
group in three-dimensions (which is a 10-dimensional group) and at a generic
point the action is rank 10. So it should be expected that the bulk of this
space corresponds to a single orbit under the conformal group (and hence a
single conformal class). However there may (and do) exist points for which
the action is less than rank 10, and so the task now is to find these points and
determine which lower-dimensional orbits they belong to.

The following section answers part of this question on a local level, that
is, determining what the orbit of a fixed regular point from a system is under

a conformal change of coordinates and subsequent conformal rescaling.

4.2 The Local action of the Conformal Group

The local-action of the conformal group is given by conformal changes of
variables, i.e. a change of variables x = F'(u) that simply scales the metric by

a conformal factor. So in our new variables the flat space metric is given by
ds® = dz} + dzj + dag = X (duf + du3 + duj) .

Under this change of the coordinates the leading part of the conformally-

superintegrable Hamiltonian is scaled by A~1,

_ Dy 70, P2

H =py, +p%, +p5, +V(X) \

+ V(F(u)).



CHAPTER 4. CONFORMALLY-SUPERINTEGRABLE SYSTEMS 69

By lemma 4.1.4 this can be conformally scaled to flat-space conformally-

superintegrable Hamiltonian in the standard flat space coordinates

H=p} +py, +0a, + VA (4.2.1)

making V' A a conformally-superintegrable potential on flat-space.

Inversion in the Sphere (Kelvin Inversion)

To study the effect of the local conformal group it is sufficient to examine a
single conformal-change of variables, inversion in the sphere. Since a transla-
tion change of variables act trivially on form of the PDEs (4.1.9) it induces a
trivial action on the coefficient functions {Q, R, S}. Thus the sphere of inver-
sion can be assumed to be centred at the origin. The inversion with respect

to the sphere of radius § is then given by the change of variables

52 Ui
x; =10 P (4.2.2)

Under this change of variables the Hamiltonian becomes

(U12 + U22 + U32)2
64

H= (p'121,1 +p12,LQ +pi3) + V(Ul,’lLQ,ug)

which, via a conformal scaling, can be turned into the conformally-superintegrable
system
~ §*H

_ (.2 2 2
i = (ul2 + ug? + u32)2 a (pm Py +pU3) "

62V (u1, uz, us)

(u1? + ug? + us?)?

Applying the change of variables to the PDEs (4.1.9) and making the substi-
tution
V=0 w? +ud +u?)?V

the action on {Q, R, S} is given by the three illustrative equations

§1:_ u%_u%_u§25281_ 2U1U2 25282
(uf +u3 + u3) (uf + 3 + u3)

- 8%+ 5+

(u2 + 12 + u2)’ (uf + uj +u3)

2
t . (4.2.3)
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ﬁ%Q _ 2uuy (6u3u2 2u3u? + uj + uf — 10uu? + 5u§)
(“1 +u +uf)’

2uguy (2u3u2 - u3 2u3u1 10u2u? + 3ui + 3u2)
(u} +uf +u3)”

Suguius (2u§ —2u3 + u%)

(u2 + w3 +ud)*

Ry’

5*Ry’

OR%3

6 4,9 204 | 6 4 6 4,2 | 24 204 2,22 4,2
N (—u§ — 15ufud + 15ufug + uf + uf — ujuj + vdus — ufug + 6uiudul — ufuj)

: R}
(uf +uj +u3)
_ 2uguo ( — 10uu? + 2uu — 6uu? + 5ui + u2) S2R13
1
(uf +u3 + u3)4
0 (6033 — oo — i — i+ )
- 3
(u2 + w3 +ud)*
(uf +u3 + )" ’
~ Sust — ud — 10u2u? + u? Sut — ul — 10udu? + ud
Q123 = QU3U1 ( 2 2 3 2 ! 224 1) 527?/%2 + 2’U,3UQ ( L 2 3 2 2 214 2) (5273%2
(uf +ud + uj) (uf +ud + uf)
S5uf — ut — 10u2u? + ud S5ud — ut — 10020 + ud
T Quyus ( 3 21 2 2 234 2) 5273%3 + 2U1U3( 2 a 1 2 3 224 3) 527€§3
(uf +u3 + u3) (uf + uj + u3)
Sut — ut — 10udu? + ud S5uf — ud — 10u2u? + u?
+2u2u;z,( ! 22 5 3214 3)52R§3+2uQu1( 3 22 5 1234 1)5276%3
(u? +ud + ud) (u? + ud + ud)
B (u$ + u§ + u§ — 5udui — bufuj + 30uiudud — bujuf — Suiuj — Suiul — Sutuj) 52012

(uf 4 u3 + u3)4
(4.2.5)

and as before the full set can be obtained through index permutation. For
the variables {Q,R} a simpler description of this action will be given by
(4.2.15) when the rotations representation are reconsidered as binary forms
(see appendix A).

Inversions in the sphere (for spheres of varying sizes and locations) and

translations generate the full conformal group. For example, consider the
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change of variables

t2Z1
x fry
T 24224 (a3 4 1)
t2,22
x =
2T 21 24 (z3 1)
12 t
s — (23 +1)

—t,
22 4+ 22 + (23 + )2

given by translating the coordinate system by z3 — x3+t, inverting in a sphere
of radius t? centred at the origin and then translating again by z3 +— x3 — t.

In the limit ¢ — oo this becomes the reflection

Iy = 21,
Ty = 22,
r3 = —Zz23.

Clearly all reflections can be generated this way, and by extension all rotations.

Continuous transformations

Although the local action of the conformal group is completely described by
spherical inversions, it will be worth discussing continuous changes of variables
as well. That is, the infinitesimal changes of variables around the identity.
The conformal group, as a Lie group, is 10-dimensional and can be iden-
tified with four types of actions: rotation, translations, dilations and Mobius
transformations (i.e. translations conjugated with an inversion in the unit
sphere). When considering the {Q, R, S} variables the local action of trans-
lations is trivial (since the PDEs (4.1.9) don’t change under this change of
variables) and the action of rotations is the same as the superintegrable case

(given on page 27).
Dilations: Consider the change of variables
u; = x; exp(t).
Under this change of variables the Hamiltonian becomes

H = e* (ph, + i, +05,) + V().
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Conformally scaling this by exp(—2t) gives the conformally-superintegrable
potential V = Ve 2t The examining the derivatives around ¢ = 0 gives the

Lie algebra action

D(.CC,) = Ty, D(.A) = .A,

where A is a stand-in for any of the {Q, R, S} variables.

Moébius Transformations: The effect of a M6bius transformation is more
complicated. Given a choice of direction a Mobius transformation can be
constructed by an inversion in the unit sphere, a translation in the chosen
direction and inversion in the unit sphere again. Choosing the direction to be

x1 gives the change of variables

r1 — Zf’l"2
U =———
VT Doty 1 202
€2
U= ————
271 2ty + t2r2’
x
ug = > (4.2.6)

1 — 2txq + t2r2’

2

where 72 = 23 + 23 + z3. In these variables the Hamiltonian is given by

H= (14 2uit + 2(ud + a3 +13)* (02, + 1%, +9%,) + V().

and so, scaling this back to the standard flat metric, the action on potential

is given by
~ Vv

V= .
(1 + 2ust + 2(u2 + ud + u2))’

The corresponding Lie algebra action on the coordinates is given by

Cyi(w1) = 112 — 29? — 137,

Ci(z2) = 2xaxy,

Cl ($3) = 2$3$1. (427)
The action on the coefficient functions is

01(81) =2 - 21’383 — 2.%'232 — 233181,
02(81) = 2.%‘182 — 223281,
03(81) = 21‘183 — 223381, (4.2.8)
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and

C1(R1?) = —221R{® — 225 (RE® + 3R3?) — 4230,

C1(R3?) = —221Ry + 229 (R3® + 3R}?) — 233R3?,

C1(RE?) = —221RE® — 229R3® + 225 (R + 3R{?)

C1(R3) = 221 R + 22oR3 + 4230123, (4.2.9)
and finally

C1(Q') = =221 9" + 2129 (R7® — R3®) + 223 (R{* — R3’).  (4.2.10)

What is immediately apparent from (4.2.8) (and this is also apparent in
(4.2.3)) is that the action on {8} has a different form from the action on
{Q,R}. In light of (4.1.10) this difference can be attributed to the conformal
rescaling. Perhaps less obvious is the fact that, when restricted to the variables

A € {Q, R}, the Lie algebra action can be written out in form

CI(A) == —2$1D(A) — 2J1(£L‘Z‘)J1 (.A) — 2J2(LUZ')J2(A) — 2J3(1‘Z‘)J3(A).
(4.2.11)

From this the following theorem can be proved.

Theorem 4.2.12. Given a polynomial ideal I in the polynomial ring C[Q, R]
which is closed under the action of the dilation Lie algebra action D and the

rotations Lie algebra action Ji,Js,J3. The ideal I is then closed under the
action of Cy,C1,Cs.

Proof. From (4.2.11) it is clear that, over the variable {Q, R} the Lie algebra
action C; a linear combination of the dilation D and the rotations Ji, Ja, J3.
Since D and J are derivations (i.e. they satisfy a Leibniz rule) so are the Cj’s.
Thus (4.2.11) also holds when A is a polynomial in the variables {Q, R},
proving the theorem. O

This will be important in chapter 5 as it means any algebraic ideal closed
under dilations and rotations is immediately closed under Mobius transforma-

tions.
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Action of the M6bius Transformation on the s((2,C)

representations

In appendix A the rotation representations are described as binary forms,
and the action of SO(3,C) is given by the action of SL(2,C) on these binary
forms. If attention is restricted to the 7-dimensional representation )’ then
it can be shown that the local action of the conformal group extends to the
action GL(2,C) ~ C® SL(2,C).

To see this, consider the action of the Mdbius transformations (4.2.2).
The induced action on the 7-dimensional rotations representation is given by
(4.2.9)-(4.2.5) and looks rather complicated. However if this representation is

considered to be the 6th-order binary form
1 .
V(r,s) = (R}Q + ZR?” + iR + iR}f) o4 ...
= ag(r — ms)(r — m2s)(r — ngs)(r — ms)(r — nss)(r —nes) (4.2.13)

(given in full at (3.2.8)) then (4.2.9)-(4.2.5) can succinctly be described by
mapping the roots of (4.2.13) via

7y = ()i & (w1 — i) (4.2.14)

(w1 + dug)n; + (u3)

and by scaling the leading coefficient via

G = o2 H?:1((u1 +dug)n; + (u3))

aeg.
(U3 + u3 + u3)* ¢

Alternatively this can be described by the linear change of variables

1/3 _ o
) — 52 - Uso T (4.2.15)
s (uf + u3 +u3)?/3 \uy + iug u3

Similarly the refection us = —x3 can be modelled by the action on the

Yy )

VA

roots via
0= —n; (4.2.16)
and by a trivial scaling of the leading coefficient

ZL\G = ag.
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Alternatively this can be described by the linear change of variables of the

(-0 e

The same analysis does not hold for the three-dimensional representation.

binary form )(r, s) under

In fact it is this difference which allows the following theorem to be proved.

Theorem 4.2.18. Given a reqular point in a second-order conformally-superintegrable
system there is a local conformal transformation that takes the value of the 10
coefficient functions at the regular point from their initial values (Qo, Ro, So)
to the values (Qo, Ro,0). That is the values of the S; can be mapped to zero

by a conformal group motion without changing the value of the QlQS,R;.j.

Proof. Assume S3 # 0 at the regular point. Performing an inversion in the
sphere via (4.2.2) such that the new regular point satisfies u; = ug = 0,u3 # 0
and then performing a subsequent reflection via (4.2.16) (this reflection is
an important step as (4.2.14) has reflected the roots of the 7-dimensional
representation in the imaginary axis) then the action on S¢ can be shown to
be

1 2 3
St :528—, 32:52‘1, F oS (4.2.19)
uj uj uj

Choosing the dilation factor to be 62 = u2 means the seven dimensional Y(r, s)

has retained its original value under this conformal motion. Meanwhile the

S¥’s have become
St=g' §2=252 5=5%_2us. (4.2.20)

Making the choice uz = %3, which is non-zero by hypothesis, gives 3\3 =0. So
53 has been mapped to zero under this action and the rest of the variables
have retained their original value. By rotating either S' or S? into the place
of 83, the same technique as above can used to set these to zero as well.

Inverting all the rotations used then yields the result. O

An immediate corollary to this result is that the conformal group acts
transitively on the value of the S’. Interpreted in the language of binary
forms the local equivalence of a conformally-superintegrable systems is given

by the following theorem.
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Theorem 4.2.21. Given a reqular point in a mazimum-parameter conformally-
superintegrable system, there is a local conformal transformation that will map
it to another such reqular point if and only if the roots of their respective binary

forms Y(r,s) are equivalent up to a general linear transformation.

Proof. Every conformal change of variable can be constructed from inversion
in the sphere (for varying centres) and dilations. The corresponding action
on Y(r,s) is therefore repeated application of matrices of the form (4.2.15).
These are easily shown to cover the entire space of GL(2,C) matrices. Since

this is the full set of local conformal actions, the result follows. ]

4.3 Non-local Action of the Conformal Group

Thus far the examination of the action of the conformal group has been a
purely local one, meaning that only a fixed point within a systems has been
considered. To understand what effect a translation from one regular point to
another regular point has on the values of the coefficient functions {Q, R, S}
will require an examination of the partial derivatives (4.1.18)-(4.1.17).

It is already clear from the local picture that any invariants will only de-
pend on the value of the 7-dimensional representation ). And in the following
chapter a very specific type of invariant is sought. These are polynomials ide-
als constructed from the variables in the ) representations whose zero-sets are
closed under the action of the full-conformal group.

The search for such invariants can take place in two stages. The first stage
is to consider polynomial ideals closed under dilations and rotations and, by
extension all local-transformations. Such ideals are clearly generated by sets
of homogeneous rotation representations and so these will be the focus of the
following discussion.

The second-stage is to narrow these ideals down to ideals which are also
closed under action the of the derivatives. Using a Taylor expansion it is easy
to see that the zero-set of such an ideal will be invariant under translations
off the regular point.

Consider the derivation

9;(A) = 0 (A) + S'D(A) — J1(S)J1(A) — Jo(S)Jo(A) — J5(S7)J5(A),
(4.3.1)
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where 0; is just the partial derivative, and D and J; are the Lie algebra

operators. Applied to the variables {Q, R} these are

é\lRlQ _ _gR%QRgi’a + ;RéSRgiﬂ + §Q123R§3 + §Q123R%3 _ R%ZR%)?)?
~ 3 1 . 11 ) 8 a2 1 2
OB = SRRy — L RPRY — SRR + o (R)” + = (R?)
4 o328 1332, 12 4 og2 2 12312
= (BY) + 2 (B) + £ (RY) — o (R°) + £ (@7)7,

~ 1 1 1 1
OsR)® = — Q'R — JQ'R + (RPRP + S RPRY,
- 2 1 1
Q' = SRR~ SRPRP + QR - SRPRP + QRSP (432)

Even more compactly the full set of equations for these derivations can be

written as
() = —% V.0,
a5 () =0,
5°(y) = —% ¥, M) (4.3.3)

These only depend on the 7-dimensional representation, reinforcing the point
that Y (r, s) is the only identifying characteristic of the conformally-superintegrable
systems. More imporantantly, since (4.3.1) is a derivation the following theo-

rem can be proved (which, in form, is almost identical to theorem 4.2.12).

Theorem 4.3.4. Given a polynomial ideal I in the polynomial ring C[Q, R]
which is closed under the action of the dilation operator D, the rotation oper-
ators Ji, Js, J3 and derivations 51, 52, 53, then I is closed under the action of

the partial derivatives 0y, 0o, 03.

Proof. From (4.3.1) it is clear that d; a linear combination of the dilation
operator D and the rotation operators J; and the partial derivatives 0;. Since
D, J; and 0; are all derivations (i.e. they satisfy a Leibniz rule) so is 9;. Thus
(4.3.1) also holds when A is a polynomial in the variables {Q,R}. Thus
proving the theorem. O



Chapter 5

Classification of
Conformally-Superintegrable

Systems

As was shown in the previous chapter, only knowledge of the 7-dimensional
rotation representation )(r, s), given at (4.2.13), will be needed to classify the
systems into conformal classes. Furthermore the local action of the conformal
group on this representation can be modelled as the action of GL(2,C) on a
binary form. In projective coordinates this binary form is just a univariate-
polynomial and the action of GL(2,C) is through fractional linear transfor-
mations (sometimes referred to as ‘Md&bius transformations’ or the ‘inversive
group’). This makes the local classification of )(r,s) a problem in classical
invariant theory (see the book by P. Olver on this topic for more details [49]).
Specifically, thinking of the polynomial p(z) = )(z,1), the orbits are uniquely
identified by knowing the multiplicities of roots and the cross-ratios between
the roots.

In this chapter no distinction is made between the linear factors (a;r— 3;s)
of the binary form )(r,s) and the roots 7, = % € C* of the polynomial

“roots” of the binary form

p(2) = Y(z,1). So the references made about the
should be taken to mean the binary form in projective coordinates.

An important fact to keep in mind while reading this chapter is that the
action of GL(2,C) acts transitively on triplets of roots. Given four distinct

roots, three can be can be moved into predetermined canonical locations on the

78
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Riemann sphere, with the location of the fourth root being uniquely determine
by the cross ratio between the four roots.

Classifying the 7-dimensional representation using the roots of the associ-
ated binary form (meaning the linear factors) is conceptually simple, but due
to Galois theory it is well known that for a general sextic these roots cannot be
be expressed in terms of radicals of the coefficients of the binary form. So giv-
ing explicit expression for the roots will not be attempted. A more convenient
method is to express the classifying information in terms of the representations
that vanish given a particular root configuration. That is, rotationally closed
sets of polynomials which vanish for all possible configurations of a given root
structure.

A simple example is given by the discriminant of the binary sextic Y(r, s).
The discriminant can be thought of as a one-dimensional representation (of
order 10) and is a necessary and sufficient condition for the binary form to
have a double root (i.e. a repeated factor). The conditions discussed in this
chapter are generalisations of this observation.

In §5.1 two particular classifications are discussed, motivating the tech-
niques that will be used in the rest of the chapter.

In §5.2 the method used to calculate the polynomial ideals corresponding
to different multiplicity structures is discussed, however the ideals themselves
won’t be explicitly stated until the they are needed in the following section.

In §5.3 the complete classification of the conformally-superintegrable sys-
tems is given and a set of 10 conformal classes are derived. This proves there
are no additional unknown classes. The results in this section are described
using the Hilbert basis in appendix B.

Finally §5.4 conclude this chapter with a brief discussion of how these
systems can be placed into a hierarchy, with all systems naturally occurring

as the limit of one master system.

5.1 Examples of Differentially Closed Algebraic
Ideals

Before discussing the general case it is worth going over two illustrative ex-

amples.
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Example 5.1.1 (The zero sextic). Consider the polynomial ideal
Tigp = (Y4s,...,Yo3),

where (A) denotes the the ring of polynomials generated by A. The zero
set of Ijg) corresponds to the vanishing of the 7-dimensional representation
(3.1.10). Since I 0] 1s generated by elements of homogeneous degree the ideal is
clearly closed under dilations. Since the generators form a complete SO(3,C)
representation the ideal is closed under rotations as well. Hence, by (4.2.11),
the ideal will be closed Mobius transformations and thus closed under all local
conformal transformations.

It is clear from (4.3.3) that Ijg is also closed under partial derivatives.
So if all the coefficient functions Y; are zero at any point in a conformally-
superintegrable system then their derivatives are zero as well (to any order).
This shows the algebraic-set given by g is closed with respect to all conformal
motions (i.e. the local ones induced by a conformal changes of variables and
non-local ones induced by translation of the regular point).

So the second-order conformally-superintegrable systems can be split into
two classes, those with coefficients whose values lie in the algebraic set defined
by Ijg) and those that don’t. Since the action of the conformal group was
proven transitive on the 3-dimensional representation (3.1.9), any two 10-
tuples with Q, R = 0 are related by a conformal motion (in this case a local
one is always sufficient). Hence, up to Stéickel equivalence, there is only one

such system in the [0]-type class.

Example 5.1.2 (The single factor sextic). A more complicated example is
given by considering the Hessian of the the binary form )(r, s). The vanishing
of the Hessian corresponds to a binary form having only one factor of multi-
plicity six, and thus gives an interesting geometric condition to consider. The

Hessian of the binary form Y(r, s) is the covariant

HY] =2, »)?

6 6
=150 [ —Y.3Y. — Y2 r8+...+15O<Y Y_ —YE)SS

1
=3 (Bgizrs — \/gBngﬂs +...+ B(:288) . (5.1.3)

This corresponds to the covariant 3Bj given in the Hilbert basis (B.1.1).
(4)

For the discussion below the coefficients of B4 have been named B; "~ and
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normalised by (3.1.11). Asis hopefully clear, the subscript of Bi(4)

indicates the
eigenvalue and the superscript is just a reference to the name of the covariant
in the Hilbert basis.

The action of the raising derivative (coming from (4.3.1)) on the highest

weight coefficient of the Hessian (5.1.3) gives

a, (Bfg) - (z’éz + 51) (B(fi)
28 . (4) 14 (4) 27
= (=6X11 — ——ivyy ) BY) + —iv,,B —YB
( 7O/ +1> ov3 s +3
(5.1.4)

Likewise the action of level-set derivative is

a 4 a 4
o (Bii) = 03 (Bii)
V2 4
V2Xo + Y>B(4>+ V2X.iq— Y., | BY
( 0 9\/51 0 +1 9\/—52 +1 +3
L 1ovid @ V14 b
Yo B — Y=iB) vy, 5.1.5
s 3 3 (5.1.5)

These show that the derivatives 8+( (4)> and 50 <Bﬁ> are contained in
the ideal generated from the coefficients of the Hessian (that is, the ideal

<B$2, . ,B(j)). However the lowering derivative gives

16v/3 8v/2
- <2X1 T 16V3,, ) BY) - (2X0 i \[iYO) BY)

V5 3v5
194 14 2v/14
—— iY+1B(4+7\[Y B 2V My B
3v/105 3v3 NG
176 V10 V5
+ i| Vi — ~=YoYia + —=Y_1Yi3 | Vi1,  (5.1.6
105v15 < /3 0f+2 /3 1 +3) +1 ( )

and the final term, (Yfl \\CYOYH + %Y 1Y+3) Y,1, is not in the ideal

generated by coefficients of the Hessian. So this is not a differentially closed
ideal.

If all the cubic terms from all of the partial derivatives are added to the
set of generators then a differentially closed ideal is obtained. However these

extra cubic conditions vanish for a binary form of the form Y(r, s) = a(r —cs)°
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regardless of the value of a and c¢. The vanishing of the Hessian already implied
that Y(r,s) would have a single multiplicity six factor, and so these extra
cubics do not actually place any further restrictions beyond those already
implied by the vanishing of the Hessian.

One way to understand this is to notice that the perfect square

2
(Yfl \/\;)YOYH + \\; —1Y+3>
lies in the ideal formed by the coefficients of the Hessian. This condition cor-
responds to the square of the covariant By lying in the ideal (see appendix B).
Taking ideal generated from the coefficient of By and Bs together gives a
differentially closed ideal.

Additionally, it can be shown that B2 lies in the ideal formed from the
coeflicients of By, and also vanishes for a binary form with a single multiplicity
six factor. Taking the coefficients from the pair of covariants By and By
generates another differentially closed ideal. Naturally taking the coefficients
from all three covariants By, By and By also generates a differentially closed
ideal. This last one, the ideal generated by By, B2 and By, is important as it
is a radical ideal, meaning if there is an element in the ideal of the form A™
for a positive integer n, then A is also contained in the ideal.

So four separate differentially closed ideals ideals have been found, (By, 0By),
(B4, Ba), (B4, By) and (By, Ba, By), but clearly they all correspond to the con-
dition B4 = 0. Of course it should be clear that all these ideals have the same
radical, given by (By, B, By), and this demonstrates that it would be best to

work with radical ideals to remove ambiguity.

Insisting that the ideals used in this proof be radical ideals could pose a
problem, although there do exist algorithms for calculating the radical of an
ideal, in practice this is typically computationally expensive. Thankfully this
issue can mostly be avoided by the techniques used in the following section,

which immediately lead to radical ideals.

Definition 5.1.7 (The radical of an ideal). Given an ideal I the radical of
the ideal will ideal containing all elements A such that A™ in the ideal I for a
positive integer n. The radical of the ideal I will be denoted VI
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Given any ideal I it can be closed differentially by adding the derivatives
to set the generators of the ideal until the ideal stops growing (a fact checkable
using Grobner basis techniques). This is process gives an ascending chain of
ideals and the Noetherian property of polynomial rings over C ensures that
a maximal ideal exists in this chain (i.e. the ideal will always close under a

finite number of derivatives).

Definition 5.1.8 (The differential closure of an ideal). The differential closure
of an ideal I will the ideal generated by I and it’s partial derivatives under
(4.3.1). The differential closure of the ideal I be denoted I.

Lemma 5.1.9. If an ideal I is closed under differentiation then so is the
radical of the ideal /1. That is to say

V=V
for any ideal J.

Proof. If A is in the radical of the ideal I then A™ € I for some positive integer

n. Taking the nth derivative of A™ with respect to x; gives
I(A™) = nl(0;A)" + O(A), (5.1.10)

where the terms hidden in O(A) are at least first order in A. Since 0'(A") € I,
rearranging (5.1.10) shows that (0;A)™ can be written as a combination of
elements from v/I. Since I is radical this means ;A € /T as well. Hence /1
is differentially closed. O

5.2 Ideals obtained from Coincident Root-Loci

As was already mentioned, for a non-zero binary form )(r,s), the vanishing
of the Hessian (5.1.3) is equivalent to there being a single multiplicity 6 root
of the polynomial p(z) = Y(z,1). This is a simple algebraic condition and it
would be worth trying to exploit this link between polynomial ideals and the
algebraic structures of the roots.

Considering only the multiplicities of the factors of )Y(r,s) there are 12
different possible configurations. These correspond to the 11 partitions of 6
and the case )Y(r,s) = 0. These will denoted by

[111111],[21111], [2211], [222], [3111], [321], [33], [411], [42], [51], [6], [0],
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where, for example, [21111] denotes five distinct factors and one factor of
multiplicity two, and where [0] indicates the trivial zero-form.

While there exist a number of results in the literature describing ways
to determine the ring of covariants vanishing under certain root multiplicity
structure (e.g. ref. [6]) it is simpler for this particular problem to construct
these rings using elimination ideals using the computer algebra system Singu-
lar [9].

Starting with a binary form with a single root in its most general form
aps® + ayrs® + - + agr® = (ar + Bs)S.
Equality between the coefficients of r, s above gives rise to the ideal
K = (ag — 8% a1 — 68%°a,as — 158%2,- - | ag — o). (5.2.1)

The elimination ideal is now calculated by determining the intersection of
the ideal K with the ideal (ag,a1,---,ag). This eliminates «, from the
generators and yields an ideal generated by 15 homogeneous, second-order
polynomials in the a;’s. In this case the generators are fairly obvious and can
be computed by hand, however the other cases required the assistance of a

computer. Explicitly, the generators are of the form
400agag — a%, 225aga — asay, -, OGagag — 15a§.

In terms of representations these conditions correspond to the coefficients of
the covariants B4, By and By discussed in example 5.1.2 above. Importantly
this technique generates the full ideal (a radical ideal) of conditions for a
type-[6] binary form with minimal effort.

These elimination ideals were used to calculate the ring of conditions for
all of the root multiplicity structures above with one exception!, the case of a
single multiplicity two root (i.e. [21111]), for which it is well-known that the
ring is generated from the vanishing of the discriminant.

These ideals are a good starting point for our classification, with some of
the conformal-classes being classifiable simply based on the multiplicities of
the factors of the associated binary sextic. For the remaining systems the

cross-ratios of the roots must somehow be examined.

!Theoretically this computation will finish in finite time, but in practice the computation
failed.
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5.3 The Full Classification

There is now sufficient set up for the full classification of conformally superin-
tegrable systems. For each Stéckel class found below a representative system
is given. Nine of the ten possible Stéckel classes have representatives in flat
space and a complete list of these can be found in Ref. [17]. The tenth class
does not have a flat space equivalent, but does have a representative over a
non-zero constant curvature space. This corresponds to the generic spherical
potential and is given by the 4-dimensional Smorodinskii-Winternitz potential

restricted to the 3-sphere.

Case [0]: The simplest ideal is given by the coefficients of the binary form
Y = As (see the Hilbert basis (B.1.1)). This corresponds to the factor struc-
ture [0] and so this ideal will be denoted Ijg. As was already discussed in
example 5.1.1 above, this ideal is easily seen to be closed under differentiation
(i.e. Iy = Ip). Thus any system which satisfies the condition Ijg = 0 at one
point does so everywhere. The zero locus of I|g is a single 7-tuple and hence
there is only one conformal class represented by this ideal. A particular rep-
resentative of a system in this class is given by the isotropic oscillator on flat

space,
Vo=a(z®+y?+2%) +br+cy+dz+e. (5.3.1)
The classifying binary form is, of course,

Y(r,s) =0

Case [6]: The ideal /g containing the conditions for the [6]-type root struc-

ture is given by the coefficients of the covariants

By = By,
BY = B,,
BY = B,

The ideal Ijg) is generated by 15 second-order polynomials and it can easily be

shown that the cubic polynomials that arise from the derivatives are contained

in I[g), i.e. Ijg) = Ijg. So just like the previous case this shows the vanishing of
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Ig) locally implies it also vanishes globally. This implies the the root structure
[6] is persistent feature when found at a regular point in a system (i.e. it
remains a feature in an open set around that point). Since Ijg # 0 is also a
persistent feature the classifying binary form cannot degenerate into the [0]-
class. The local action of the conformal group, through GL(2,C), is transitive
on three or fewer roots, therefore any two systems in this class can be put
into correspondence using a (purely-local) conformal motion and hence this
corresponds to a single conformal class.

A particular representative of the [6]-class systems is the (Euclidean su-

perintegrable) system
Va=a((z1 —iv2)® + 6(z1 + 22> + 23%)) + b (21 — i72)* + 2(21 + iz2))
+ c(z1 —ixg) +dxz+e. (5.3.2)
The classifying binary form for Vj is given by
V(r,s) = iaf,

which has a leading coefficient that clearly vanishes nowhere.

Case [51]: The ideal Ij5;) of conditions for the [51] root structure is given

by a subset of the Ij5 generators
51
BYY = B,
Y = B,.
As before it is simple to show Ij5;) = I[51] and hence represents another per-
sistent structure. Like before, the conformal group acts transitively on the set

of [51] binary forms and so only one system can exist in this class. A suitable

choice is the (Euclidean superintegrable) system
Vvir = a(ml + iﬂ?g) +b (3(331 + ix2)2 + Ig)
+c (16(3:1 +ix9)? 4 (21 — ixo) + 1223(x1 + zmg))
+d (5(IE1 + i$2)4 + (33% + .’L‘% + x%) +6 (:L‘l + i$2)2$3) +e (533)
which has classifying binary form
3
Y(r,s) = 24i ((azl +ixo)r — 25) .

Note that this binary form can not degenerate into a [6]-type structure at any

finite point.
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Case [42]: The ideal of conditions for the [42] root structure is given by 5

representations, namely

B([)42] B,
ol _ ¢
D = 27B2 — 50B, 42,
DY = 200545 + By B,
D = Dy,

Unlike the cases examined so far, this ideal is not closed under differentiation.
By adding in the first derivatives the ideal closes and using Grobner bases it

can be shown that
I[6]3 C m C I[G]' (5.3.4)

From this, and the fact that I} is radical, it can be concluded that the radical

of the differential closure of Iy is Ijg) (i-e. \/Ija2) = I[g))-

So as should have been expected given the non-closure of I|49), forcing the
conditions for the [42] root structure to hold identically will only yield forms
which are generically the [6] root structure (The type-[0] structure is also a
possible degeneration, however this is just a further degeneration of [6]). This
proves that no potential can have a [42] structure everywhere. However a
binary form with a [42] structure gives valid values for Y(r, s) and hence there

must exist a system with a [42] root structure at a non-generic point.

Case [33]: The ideal Ij33 of conditions for the [33] root structure is gener-

ated by the coefficients of the 3 covariants

¥ =G,
04[133] —Cy,
P = 33By A3 — 5Cs.

This ideal is closed under differentiation. Since the only degenerations of the
[33] root structure are [6] or [0] it is safe to conclude that a system with the [33]
root structure at a regular point has the [33] root structure at every regular

point. The transitivity of the conformal group on three or fewer roots means
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that this can only correspond to one conformal class of systems. A particular
representative is given by the (Euclidean superintegrable) system

d
Voo = a(4z? + 423 + x3) + bay + cxo + 3 +e
3

which has classifying binary form

6i
Y(r,s) = 233,
z3

Case [411]: The ideal Ij4;) of conditions for the [411] root structure is

generated by the coefficients of the 3 covariants

B([)411] — By,
0{411} —
D([)411} ~ Do,

The ideal Ij41q) is closed under differentiation. So if a potential has a [411]
root structure at any point, it will do so in an open set around that point. The
ideal Ij49) contains the ideal Ij4y) (meaning the algebraic set satisfying I, [411]
contains the algebraic set satisfying Ij49) and hence, even without explicitly
checking, it’s clear that the transient [42] structure will break up into the
[411] structure under conformal motions. The action of the local action of the
conformal group is transitive on the 3 roots and hence every system in this
class is conformally related.
A particular representative is the (Euclidean superintegrable) system

c xr1 — 1x9

Vi = a(4a2? + 2% + 22) + bxs + - -
v = a(dzy + 27+ 73) ST (@ 4 ize)? (21 + i)

3+e

which has classifying binary form

Vir.s) = < 9 5 3i(-m; +m2)rs> n

r
1+ ix (21 + i2)?

This potential has the [411] structure at most points and takes the [42] root

structure on the hypersurface
Tr1 — ’il‘Q =0.

The [4111] class of superintegrable systems contains a second-flat space
representative given by scaling the potential Vi, above by the Stackel multi-

plier U = (21 + iz2)? and re-expressing the metric in the standard Euclidean
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coordinates. Specifically Vy, is Stackel equivalent to

1 n x3
; & ;
(x1 +iz2)% (21 +ix2)3
x12 + .T22 — 3.1‘32

Viir=a (.1’12 + .1‘22 + 3:‘32) +b

+d - +e. (5.3.5
(x1 +ix9)* ( )
The potential Vir; has classifying binary form
Yirs) = - 91'. 2 18@3 s 3i(x? + mg — 2m§)52 A
(z1 4 ix2) (z1 4 ixa)? (z1 +ixp)?

which takes the [42] root structure on the hypersurface

x%+x§+m§zo.

Case [321]: The ideal I[39)] of conditions for the [321] root structure is given
by the 5 representations
D = 1182 — 25Dy,
BB = 301By - 5B,
F2Y — 75(2610D, 4 82785 By) A3 — 100(125C5 By + 144C) By) Ay
+ (3125C,? + 5184B4>By),
FI2Y — 300(61By? — 115D0) A3 — 20(5C) By + 22C5By) Ay
— Bu(7B3By — 270D5),
FP*™ = 11By? — 75Dy By — 125F.
This ideal is not closed under differentiation but it closes after 2 derivatives.
By transitivity the location of the three roots is irrelevant and an educated
guess would be that the algebraic-set corresponding to the differential closure
of Ij391) will be points satisfying either the /(33 ideal or the Ij5y) ideal. That
is, it should be expected that

— ¢
\/ L1321 = 1151 N I33)-

This intersection can be calculated by eliminating ¢ from the convex combi-
nation of ideals (1 —t)I[33 + tI[51) (see, for example Hassett, chapter 4 [33]).
Denoting this ideal by I[51533), the elimination above shows that it is gener-

ated by the two covariants
C£51]A[33] — o,
PN — 33B) A3 — 5Cs.
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Straightforward Grobner basis calculations now show

3 P—
(Z51) N Ip331) " € Tzony C sy N sy,

\/ 1321) = I[51) N 33

as predicted. So any systems whose coefficient functions cause the ideals

and hence

I35 to vanish identically must lie in either the [33] or [51] classes (or their

degenerations) and thus have already been classified.

Case [222]: The ideal of conditions for the [222] root structure is given by

5 representations, namely

D = 50B, A3 — 27B2,

D2l = 160By A2 — B4B, — 20C5As,
DI* — _3B,By + 25C; As,

DI = ByBy + 90Ds,

DI = 43B% — 75D,

This ideal is not closed under differentiation, but closes after one derivative.

Straightforward calculations show
I[%] C 1[222] C I[@]

Hence y/Ij229) = Ijg) and any systems with coefficient functions that cause
the ideal Ijpp0 to vanish identically are in the class of [6] type systems and

therefore have already been classified.

Case [3111]: The ideal I[3;11) of conditions for the [3111] root structure is

given by the 3 representations
DB = 1182 — 25D,
BB = 301 By — 5E4,
FPMY — 8B3 — 1257,

This is a differentially closed ideal so we can conclude that a [3111] root struc-

ture is stable. Unlike previous cases the action of the conformal group is not
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automatically transitive, so the values of the roots cannot be assigned arbi-

trarily. To distinguish between different possible [3111] root structures only

the cross-ratio of the roots needs to be be considered, this is clear because once

the conformal group has been used to move three of the roots to a canonical

location the cross-ratio determines the location of the fourth uniquely.

Denoting the 4 roots by r = (n1,n2,13,m4) (where ny will be the triply
repeated root) a cross-ratio? can be defined by

y = (m = m)(ns —m4)

(112 = m3)(ma — m)

Assuming Y7 3 is non-zero (or performing a small rotation such that it is non-

. (5.3.6)

zero), define

1
a=— (Yo1,Y0, Y41, Yio),
+3
which can be expressed as functions of the 7; using Vieta’s formula. From this
the Jacobian g—i can be calculated via the formula
0N OXOr Da
Ox  Or dadx
O (9a\ ' Oa
=— | = —. 5.3.7
ox <8r> 0x ( )

Without loss of generality the roots can be assumed take the values

1—AX
=(-1,0,1,—=
ro ( 70>71+)\>

at the regular point. Substituting this into (5.3.7) gives,

N =B = A+ M)A = DA

Ox1 |y, 27(1 + \)3 ’

ON| =161 =X+ M)A = DA

Oza |, 27(1 + A)3 ’

o\

o 0. (5.3.8)

These imply that the action of the translations is rank 1 for almost all values
of X. The five possible exceptions correspond to points where A = 0,1, 00 or
exp(=+im/3), where the action is, to a first order approximation, rank 0.

The case A = 0, 1, 0o correspond to the degenerate root structure [411] and
so have already been examined. The point A = exp(=+in/3) will be considered

below.

2What follows is actually the multi-ratio, which is equivalent to the standard cross-ratio
by a permutation of the indices.
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Subcase [3111]4Cross Ratio= exp (+%'): The analysis above shows that
the first-order changes in the cross-ratio at value A = exp(=+in/3) are zero with
respect to first order changes in x1, x2, 3. A higher changes in x1, 2, x3 move
A away from this value and so to examine whether or not this really is a
persistent feature the corresponding ideal will need to be generated. This will
be referred to as the [3111] + C'R root structure.

Under the action of GL(2,C), a canonical form of the binary form with
the [3111] + C'R root structure is given by

Y(r,s) = —5°).
Performing a general linear transformation of the form
T — cx + ey, Y = c3x + CqYy,

and setting up an ideal in the same manner as (5.2.1), an elimination ideal
can be calculated with respect to ¢, co,c3,cq. The ideal found in generated

by the coeflicients of the covariants

DBMITCR _ 36000, As + 288B,4 By — 125B2,

D[23111}+CR — ByBy — 10D,

DEMITCR _ 1182 95D, (5.3.9)
This ideal is closed under differentiation and hence this case is actually a
persistent one. Up to local equivalence there is only one binary form with the

[3111] + C'R structure, and hence this represents a single conformal class. A

particular representative of this class is the (Euclidean superintegrable) system

Vir = a (23 — 2(21 —iz2)® + 4(2] + 23)) + b (221 + 2izy — 3(21 — iz2)?)

d
+c(zq —ixe) + - +e (5.3.10)
3

which has classifying binary form
; 3 2 3 3
VY(r,s)=3i | r’+ —s° | r°.
x3

Subcase [3111]4Cross Ratio# exp (i%) Since the action of a transla-

tion on the cross-ratio A (c.f (5.3.7)) is rank 1 everywhere on the connected set
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C*\ {0, 1, 00, exp (:l:%’)} every point will lie in a single orbit under this action.
Hence this there is a single conformal class of systems with this structure.
A particular representative is given by the (Euclidean superintegrable)
potential
(xl_,m)g + e 1, . +di2+e
(x1 + ix2) (x1 +ix2) z3
(5.3.11)

Vir = a ($12 +$22 +$32) + b

which has classifying binary form

r,s)= | —r°+ —7°s — . S
Y(r,s) <x3 T1 + iz (x1 +1ix2)?

Using this binary form to calculate the covariants (5.3.9) yield
4

pBILHCR ’ s
2 (r; ) o x%(azl +ix9)?

verifying that it cannot also contain the [3111] + C'R root structure.

Case [2211]: The ideal I[y9;1) of conditions for the [2211] root structure is

generated by a single covariant
G = 50107 + 2D3 By + 55F") A5 — 4(43B2 — 75D,)Cs + T5EBy.

This ideal is not closed under differentiation, but closes after 3 derivatives.

Straightforward calculations show that

(1[411] N 1[33])4 C Iip211) C Jjg11) N 133

Hence /Ijp211] = I411] N I[33) and any systems with coefficient functions that
identically satisfy polynomials in the Ifs9;) ideal are in the class of [411]

systems or the class of [33] systems and thus have been classified.

Case [21111]: As is well known, the ideal of conditions for the [21111] root
structure is generated by one condition, the discriminant. In terms of the

Hilbert basis, the ideal Ij21111] is generated by the single covariant

JEH = 539385 — 2012500 B3 + 18750D2 B, — 31875F, B2 + 56250F) Dy + 28125.1;.
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The ideal Ij1111) is not closed under differentiation, but closes after five deriva-

tives. Straightforward calculations shown

(1[3111})4 C Iip1111) € 311135

meaning 4/ I[21111] = Ij3111)- Hence any systems with coefficient functions that
identically satisfies the Ij3;11;) ideal are in the [3111] class and have already

been classified above.

Case [111111]: All systems with a persistent root of multiplicity 2 or greater
have been been classified above. All that remains is to classify systems which
correspond to binary forms with distinct linear factors. If all factors are dis-
tinct then there are only three independent absolute invariants. Any three
independent cross-ratios will do and for the following discussion these will be

chosen to be

Ay = =) (s = a)
(2 —n3)(na —m)’
Ay — (m — n2)(n3 — ns)
(n2 —n3)(ns —m)’
Ao = (1 —m2)(n3 — 16) (53.12)

(2 —m3)(n6 —m)’
However, trying to repeat the sort of analysis that was done in the [3111] case
is hampered by the complexity of the equations that arise.

An alternative approach is to define three absolute invariants strictly in
terms of the coefficients of the binary form. This can be achieved by balancing
out the covariant weight (see appendix A) and a suitable set is given by

- <g§§%é%> . (5.3.13)
It is safe to assume By is non-zero as doing otherwise this leads to the case
[411]. Examining the action of translations on the absolute invariants in I
should give equivalent results to examining the action of the cross-ratios pro-
vided the map between them is invertible. Since I can be expressed as a

function of the cross-ratios?, the Jacobian

3(28 5y L%>
det | —2B0” B’ Bo ).

5.3.14
O(Aa; As, Ae) ( )

3as can all absolute invariants
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can be calculated. The Jacobian (5.3.14) factors nicely and can be seen to

vanish if and only if there is either a double root or if the condition
A —Asdg =0 (5.3.15)

is satisfied (up to permutation of roots). Condition (5.3.15) is a well known
object in the literature, going by the name of the Mg = —1 multi-ratio con-
dition and is an interesting object of study in its own right [40]. Written in

terms of the roots (5.3.15) is equivalent to

(m —m2) (05 — m3) (M1 — 16)
(m2 = n5) (N3 — ma)(n6 — M)

= 1. (5.3.16)

Assuming the condition (5.3.15) is satisfied, the roots can be assumed to

take the values

r0:<_1’07171—A5A6 1) 1—>\6>'

14+ XX 14+ X571+ Xg
The action of a translation on the value of Ay — A5\¢ is (to first order) given

by

O = Xsde)|  _
8301 ro ’

8()\4 — A5)\6) _ 8()\5)\6 — 1)()\%)\% — )\%/\6 — )\5/\% + )\g -+ )\% — A5 — g + 1)2

0xo ro 27(1 + /\5/\6)()\6 — 1)()\5 — 1)()\5 + 1)()\6 + 1)
8()\4 - /\5)\6) o —SZ(AE)\% — )\%)\6 — )\5)\(23 + )\g + )\g — A5 — Ag + 1)2
B 27(A6 — 1D)(As — 1)(As + 1) (A6 + 1)

81‘3 ro

(5.3.17)

and so, remembering that all roots are distinct, this action will be rank zero

only if the condition
NAZ = A2N6 — As A2+ A2+ A2 — A5 — XN+ 1=0 (5.3.18)

is also satisfied. Likewise, calculating the action of a derivative on (5.3.18)
shows that the action is rank zero (to first order) and so this is a promising

candidate for a persistent feature.

Subcase [111111]; Mg = —1 + CR: The ideal Ij;+cr of covariants van-
ishing under conditions (5.3.15) and (5.3.18), can be calculated without too

9
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much effort. This ideal Iy +cr is generated by the coefficients of the two

covariants

FMeTCOR — 360(49C) By — 48E;) A3 — 193B2 By — 1896C3C)
+ 288DgBy + 3276 D2 B>,
FMetCOR — 97B3 — 975D0 By + 375 K. (5.3.19)

Calculations using Grobner bases show that the ideal Ips,4cr is closed under
differentiation and hence represents a persistent feature.

The geometry of the algebraic set corresponding to the Iz +cr will deter-
mine whether or not this corresponds to a single conformal class, or whether
is it has several difference components that are inequivalent under the action
of the conformal group. One could imagine a situation where the ideal breaks
into two unconnected components or where one component is separated into
two by removing points from the algebraic set where the rank of the action
drops. Thankfully such a situation would show up algebraically due to the
following theorem (taken from Corollary 4.16 in Ref. [48]).

Theorem 5.3.20. Let X C P™ be an r-dimensional projective variety and let
Y G X be a closed algebraic set. Then X \'Y is connected in the classical
topology.

The locations where the rank of the action drops is defined by polynomial
conditions and hence is an algebraic subset of the algebraic set defined by
(5.3.18). A test using Maple indicates that condition (5.3.18) is absolutely
irreducible over C (meaning its algebraic set is actually an algebraic variety).
Theorem 5.3.20 implies that the set of points for which the action has maximal
rank will be connected. So the action of the translations will be transitive on
set of point satisfying (5.3.15) and (5.3.18) where the action is rank 1. Points
where the rank of the action drops can be shown to correspond to roots of
multiplicity 2 or higher and hence need not be considered.

Hence the ideal Ips+cr found corresponds to single conformal class. A
particular representative of the systems lying in this class is given by the

(Euclidean superintegrable) system

c d
Viv = a(4x? + 23 + 22) + bry + o + 2 +e (5.3.21)
2 3
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which has classifying binary form

Y(r,s) = 4;(7‘2 + 5%)3 + Zr?’s?’.
Subcase [111111]; Rank 3 Jacobian: Assuming now that the multi-ratio
condition (5.3.15) is not satisfied, then the Jacobian (5.3.14) will be rank 3
and the absolute invariants I can be used to examine the rank of the action
on the cross-ratios.
Calculating the the determinant of the Jacobian between the three absolute

invariants (5.3.13) and the coordinates gives,

Do Fy Jo
1 8 (727 n3 75)
det <8> — det | AP Bo” BoJ

ox a(xlv z2, .’,U3)
252185 — 9625D0 By + 6250D32 By
—7500F, B2 + 65625 F Dy — 84375.Jo
25310563&1

This shows that action is rank 3 away from

JJe¢ = 2521 Bf — 9625D¢ B3 + 6250D2 By — 7500F, B2 + 65625 Fy Dy — 84375.J

=0 (5.3.23)

and
O = 0. (5.3.24)
A careful examination reveals that O is a symmetric version of the Mg = —1

condition, specifically

00 x [ ( (To(1) = 7o) (Ta@3) = To@)) (Ta(s) = To(6)) > (5.3.25)
+  (To6) = To2)) (To2) = To3)) (Ta(a) = To(5))

oeX

where . is the subset of 15 elements of the permutation group that give the 15
different versions of the Mg = —1 condition. By the discussion in the previous
section systems satisfying this have already been considered. So henceforth
Op will be assumed non-zero.

Returning to the main argument, the action of the translations will be
rank 3 on the absolute invariants I away from J()] % =0 and Op = 0. The set
C3\{I e C?: Jj* = 0,00 = 0} is clearly connected (invoking theorem 5.3.20
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if needed) and hence there can only be one orbit under this action. A par-
ticular representative of the system in this orbit is given by the conformally-

superintegrable potential

a b c
+ =+ —=
(1+azf+a3+a3)? 2] a3

e

Vs = :
5 (—1+a + 23 + 23)2

+ d +
3
The potential Vg above is Stackel equivalent to the potential

« 1)
VSIZ*Z—F%"F%‘F*Q-FE
s1 83 83 5y

which is superintegrable over the 3-sphere s? + s3 + s2 + 53 = 1.
Subcase [111111]; Rank 2 Jacobian; JJ% = 0: Taking the condition

Jf)] % on its own generates a closed ideal, which will be denoted Ij,.. The

differential closure of Ij,. is easily seen by considering the following relations

dJgee J
0 —5(X gy — X)) JJee
ax ( 1 +1) 0 >
aJJac - e
5; = 5i (X1 + X41) J§,
Jac
6532._ 5v/2 (Xo) JJ . (5.3.26)

The Hilbert dimension of the the ideal Ij,. is 6 and, a check for absolutely
irreducibility using Maple returns a positive result. This means (like Ip,+cR)
the ideal Ij,. gives an algebraic variety and hence is connected set. The
local action of the conformal group is rank 4 and the action of a non-local
transformation on the absolute invariants is rank 2 (which is clearly distinct
from the local action). Hence the generic action on this space will be rank 6
and thus can only be one orbit under the action of the conformal group.

So 1 j4c represents a single conformal class and a particular representative

of the systems in this class is given by
2 2 2 b d
Vi=a(er” + 22" +as’) + 5+ 5+ 5 +e (5.3.27)
which has the classifying binary form

67 3 31
V(r,s) = 383 4 (5 3r2st + 3rts? %) — —Z(SG —3r2st 4+ 3rts? —10).
T3 4o 4xq
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Subcase [111111]; Rank 1 Jacobian: Any further restrictions would nec-
essarily show up when the Jacobian is rank 1. Examining the 2 x 2 subminors
of the Jacobian under the restriction J(i] ¢ = ( gives an additional 14th order

covariant that must vanish identically, namely

NRankl — (195 Fy + 49B3 — 125D Bo) Hy — 20(—25D¢ + 14B2).J; + 150L; By
(5.3.28)

The ideal Ipqni1 generated by the coeflicients of the covariants NIR“”’“, J(‘]] ac

closes after 3 derivatives. Straightforward calculations show

3 —
(Ing+cr N I31117)" € TRankt € Ing+or N 3111)-

Hence m = Ipg+orMNI3111) and all corresponding systems have already
been classified.

This completes the classification. There are a total of 10 conformal classes
and a given maximal-parameter, second-order conformally-superintegrable sys-
tems can be identified by determining which of the ideals above vanished.
Table 5.1 shows the pattern of vanishing ideals for each of the representative
systems.

A classification of maximal-parameter, second-order superintegrable sys-
tems over flat spaces and the sphere can now be determined by which of the
10 given conformally-superintegrable systems givens an appropriate metric.

The conclusion is there are 10 Euclidean Systems (as was well known) labeled
IIIIIIIV,V,VI,VII,O,00,A
and 6 systems on the Sphere, labeled

S,1,I1,1V,VI,O0O.

5.4 Limiting Diagrams of the
Maximum-Parameter Systems
The ideals that were found when performing this classification gives a natural

way to think about limiting from one class to another by considering the

partial ordering put on these ideals via ideal containment. For example, the
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| | oy | Ty | Ty | Ty | Dy | Ty | gonngeon | Tugrcr | T8

I 0

II 0
II1)V 0 0 0
v 0 0
VI 0 0 0 0
VII 0 0 0 0 0 0
o lololo] o] o] o 0 0 0
00 0| o 0 0 0
A 0 0 0 0 0 0 0 0

Table 5.1: Vanishing irreducible ideals for the ten maximum-parameter sys-
tems

ideal Ij3111)4cr contains the ideal Ij3111] as a subideal, this means that the
algebraic variety defined by I[3111] contains the algebraic variety defined by
Iiz111)4cr- A particular [3111] + C'R system corresponds to a point in the
variety defined by Ij3111j4cr- A motion (either local conformal or translation
of the regular point) can move a point in the variety and take it arbitrarily
close to a subvariety.

The structure of ideals and subideals is displayed in figure 5.1. The arrows
in figure 5.1 point from subideal to superideal, and since ideal containment
is transitive only a minimal set of arrows has been drawn. In terms of sub-
varieties (or thinking about limiting from one variety to another) the arrows
should be reversed.

There are three pieces of information contained in the boxes in figure 5.1,
the first is the name of the chosen representative of the system in the classifica-
tion above, the second is the factor structure for the binary form )(r, s) asso-
ciated to the system, the third is a reference to the bracket notation of Bocher
where a partition of 5 indicates the generic separable coordinates in which
the system separates [4], and the last piece of information is Hilbert dimen-
sional of the ideal with regards to the seven variables from the 7-dimensional
representation )(r,s) (that is, ignoring the values of the three-dimensional
representation X'(r, s)). The generic system, labeled S, has Hilbert dimension

7 as this corresponds to a generic point in C7. Most of the (minimal) degen-
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erations shown by the arrows drop the Hilbert dimensional by one, the only
exception to this is the degeneration from [6] to [0] where the two degrees
of freedom coming from the position of the single root and the value of the
leading coefficients are lost.

The systems denoted by O,00 and A only separate in non-generic sep-
arable coordinates and so do not have a Bocher bracket associated to them.
However it should be clear that, for the 7 classes that do, the partial-ordering
of the Bocher brackets (as partitions of five) is the same as the partial-ordering

given by the ideal containment relations.
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o
(0]
n/a
d=20
A
(6]
n/a
d=2
VII
(51]
(5)
d=3
A% [e]6]
[411] [33]
(23) n/a
d=4 d=3
V1
[3111] + CR
(41)
d=4
v
[Mg = —1]
(311)
d=>5
11
[3111]
(221)
d=5
I
[JJac — 0]
(2111)
d=26
S Key: Potential Name
[111111] Factor Structure
(11111) Bécher Bracket
d=17 Hilbert Dimension (d)

Figure 5.1: Subideal Containment Diagram



Chapter 6

Conclusions and Future

Directions

The central result in this thesis is the classification of three-dimensional second-
order systems with maximum-parameter (non-degenerate) potentials over con-
formally flat complex spaces. The classification made use of the algebraic-
geometry that arose when considering the action of the conformal-group on
the variety of integrability conditions. Importantly the techniques used did
not depend on separation of variables (which is a purely second-order phe-
nomenon) and hence should be applicable to a wide range of systems.

There are four natural directions to investigate next: systems in higher
dimensions, systems depending on strictly fewer than the maximum of pa-
rameters (degenerate), systems with higher-order constants, and the quantum
analogues of these classical systems.

The quantization procedure for maximal-parameter three-dimension second-
order superintegrable systems has already been worked out in Ref. [14] and
so there is no-foreseeable difficulty in carrying the classification over to the
quantum case.

In the case of classifying a classical n-dimensional maximum-parameter
second-order systems there is already a large class of systems known to corre-
sponding to separation of variables in ellipsoidal coordinates and their degen-
erations [26]. If the 3-dimensional case is a good model for the n-dimensional
cases (as they appear to be) then the techniques discussed here can be used

to more efficiently examine the completeness of the list of known potentials
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and find the systems which are missing.

Only maximum-parameter (non-degenerate) second-order systems were
discussed in this thesis, and in three-dimensional spaces the complete clas-
sification of systems depending on strictly fewer parameters is still an open
question. However using the integrability conditions to to derive algebraic
varieties already seem like a promising path towards a complete classifica-
tion [15] and it would be interesting to try and take the techniques developed
here and apply them to the degenerate potentials.

Since the classification result in this thesis was primarily based on the in-
tegrability conditions for second-order superintegrable systems (i.e. without
appealing to separation of variables) the techniques used here should be ap-
plicable to systems with higher-order constants. The systems studied in this
thesis are somewhat special as their classification only depends on the invari-
ants of a single GL(2,C) representation, however the techniques should also
carry over to joint invariants between multiple representations.

The techniques used in this thesis are not without their drawbacks. They
would most likely become intractable if the binary form model of the seven-
dimensional representation hadn’t been used as they required significant com-
puting power. A deeper understanding of the algebraic geometry underlying
the varieties which does not rely on such a specific model is a natural avenue
that will be pursued. Each of the generalisations discussed above allow for
ample new examples to be investigated and improvements to these techniques
can be explored.

Finally a very important aspect of superintegrable systems, which wasn’t
discussed in this thesis, is the connection to special function theory. A par-
ticularly interesting example of this connection is given by the relationship
between the contractions of the quantum quadratic algebras of 2-dimensional
systems and the Askey-Wilson scheme for hypergeometric orthogonal polyno-
mials [25].

Analogously to the 2d case all second-order maximum-parameter systems
can be obtained from contraction of the generic spherical case (as can be seen
in the limiting diagram in figure 5.1). A model of the quadratic algebra of the
generic spherical potentials is given by two-variable Wilson polynomials [24]
and it would be expected that suitable models for all the quadratic algebras

of all 3-dimensional superintegrable systems could be given by taking appro-
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priate limits of this master model (a task which, to the best of the Author’s
knowledge, hasn’t been completed yet). The classification of the classical sys-
tems given in chapter 5 should provide information relevant to this limiting
process.

The rotation representations in chapter 3 were effective at determining the
dimension of the space of constants. It seems reasonable to expect that this
technique could be extended to prove the existence of the quadratic algebra
for higher-dimensional systems.

The subalgebras of the quadratic algebras is also a topic of interest to the
research community [7] and the techniques in chapter 3 should be adaptable to
describe such subalgebras in terms of invariants and joint-invariants. At the

very least it seems feasible that the descriptions could be made more concise.



Appendix A

Representations of

50(3,C) ~ sl(2,C)

In this thesis the irreducible representations of so(3, C) are use to describe the
results obtained, identify possible avenues of investigation and to simplify the
computations involved. The main idea that is needed here is that all so(3,C)
representations can be modelled as odd dimensional s((2, C) representations.
This identification allows the representations to be concisely described as a
binary form. This description in terms of binary forms makes the tools of

classical invariant theory relevant.

A.1 The isomorphism between so(3,C) ~ sl((2,C)

Before beginning a discussion of sl(2,C) representations, recall some basic

facts about the s0(3,C) Lie algebra. Examining the action of the rotation
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group on the coordinate the following matrix-infinitesimals are determined

00 O
Ji=10 0 —-11{,
1 0

Jo=10 0 01,

-1 0 0
0 —1 0
Ji=11 0 o]f. (A.1.1)

These matrices satisfy the commutations relations
[J1, J2] = J3, [J2, J3] = Ji, [J3, J1] = Ja.

This Lie algebra is isomorphic to the s[(2, C) Lie algebra whose generators

are given by the Pauli matrices

0 i
i 0
0 1

A2 = ;
-1 0
—i 0

As = ( ! ) . (A.1.2)
0 ¢

Like the J; above these satisfy the commutation relations
[A1, Ag] = 243, [A2, A3] = 24, [A3, A1] = 24,

so the identification %Ai ~ J; provides the Lie algebra isomorphism (over C).

Exponentiating these matrices, using the (absolutely convergent) sum

1 1
exp(A):I+A+§A2+§A3+---
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gives the recognisable rotation matrices

1 0 0
exp(tJi) = | 0 cos(t) —sin(t) |,
0 sin(t) cos(t)

cos(t) 0 sin(t)
exp(tJa) = 0 1 0 ;
—sin(t) 0 cos(t)

cos(t) —sin(¢) 0
exp(tJ3) = | sin(t) cos(t) 0 |. (A.1.3)
0 0 1

Similarly, taking exponentials of the A; gives the matrices
t cos(t) isin(
o (ta) - () oih ),
2 isin(5) cos(3)
t L) s
exp <A2) = cos(3 )
2 - sin(%) cos
)

t cos(L) — isin( 0
exp | -Az ) = 2 . Al4
P (2 3> ( 0 cos(%) + isin(3) ) ( )

These allow a homomorphism to be defined from the SL(2, C) Lie group to
the SO(3, C) Lie group. Thus any SO(3, C) representation can be pulled back

to a SL(2,C) representation. Importantly, the irreducible representations

w0

=

=
—~

~—

NI+ o+ N[+
S—
v

remain irreducible. In the following section the irreducible representations
of SL(2,C) will be discussed, an only those that are in correspondence with
SO(3,C) representations will be kept.

Irreducible Representations of SL(2,C)

The standard way to examine the irreducible, finite-dimensional representa-
tions of SL(2,C) (or any semi-simple Lie algebra) is to split these into weight
spaces and identify the representation by its highest weight vector. Specifi-

cally, for the Lie algebra s[(2,C) the raising, lowering and level-set operators
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are defined via

1
5(2}41 — Ay),
1.
f = Q(ZAl + AQ)a
h = %Ag. (A.1.5)
These satisfy the commutation relations

hel=e,  [hfl=—f [ef]=2h (A.1.6)

From these it can easy be shown that an eigenvector vy of h, that is hvy = Avy,
then

hevy = (A + 1)evy,
hfvy=(A—=1)fvy. (A.1.7)

So ev) is an eigenvector with eigenvalue A+ 1 and fv) is an eigenvector with
eigenvalue A — 1.

Rather than go through a full exposition on how to determining the prop-
erties of an irreducible SL(2,C) representation we will skip straight to the
model used to construct them.

There are two well-known two models that could be used, the first is to

take a 2 X 2 complex matrix

and act on the complex polynomial

n n
p(2) = ap + <1>a1z + <2>a222 + ...+ a,"
via
az +c
50 = 0z+a7p (s (A18)
This identification induces an action of the coefficients of p(z). This descrip-

tion gives a nice way to think about parameterising the representations by

considering the roots of the polynomial.
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The second, equivalent, model is is to work instead in homogeneous coor-
dinates. Computationally, this description is easier to work with. Consider

the binary form

Q(r,s) = ags" + <T> arrs" 4+ <Z> agr?s" 2 L+ anr. (A.1.9)
The action of M on the coordinates will be defined to be

7 =ar +br,

S =cs+ds. (A.1.10)
The identification
Q7,3 = QF,3) (A.1.11)

induces the same action as (A.1.8). The explicit link between these two model
is given by the equation
o (7) = Q).
s
In terms of the matrices e, h, f the action on r,s will be given by the

coordinate changes

r = exp(te)r,
r = exp(t)F,
r = exp(th)r. (A.1.12)
By defining the action of the Lie algebra via ‘g—f . and noting
t=
exp(tg) ™" = exp(~tg)
yields the relations
e(r) = s, h(r) = —3. f(r) =0,
e(s) = 0, M@—§7 £(s) = s, (A.1.13)

which can be verified to satisfy the commutation relations (A.1.6). This action

can be expressed using the operators

J+ = 887«,
1
Jo = B (—ro, + s0s) ,

J_ =10y, (A.1.14)



APPENDIX A. REPRESENTATIONS 111

which will be convenient when applying this action to higher order combina-

tions. This algebra has a Casimir given by

C = % (roy + s0s)

which is related to the other operators via
JE+ T3+ T =C(C+1).

Returning to the binary form (A.1.9), the action of the matrix M on the

coefficients can be defined via the relation
The corresponding Lie algebra action is given by

Ji(ag) = —(n — k)a
Jo(ak) = (k — ﬁ) af
J_(ar) = —kay, (A.1.15)

And finally, returning to the polynomial point of view, the action of (A.1.8)
can be given by mapping the roots 7; of p(z) to
dn; — ¢
i —bn; +a

and scaling the leading coefficient by

n
ag — H(a — bn;)ag.
i=1

These binary forms define all the irreducible SL(2,C) representations,
however since SL(2,C) is a double cover of SO(3,C) one final point must
be clarified. When ¢ = 27 (i.e. a full rotation) the matrices (A.1.3) are all the
3 x 3 identity matrix. However at ¢ = 27 the matrices (A.1.4) are the 2 x 2
anti-identity matrix —I. The action of —I on the nth degree binary form
(A.1.9) is to scaled it by (—1)", for this to make sense n must be an even inte-
ger. This reveals the well known fact that SO(3, C) only has odd-dimensional

representations.
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A.2 The covariants of Y (r, s)

In chapter 4 the SO(3,C) representation Y(r, s) is shown to also be a repre-
sentation of the local action of the conformal group. This representation is
isomorphic to one for GL(2,C) for the action described above. It is natural
therefore to talk about the covariants of Y(r, s), that is, combinations of r, s
and the coefficients of )(r, s) such that the action of a matrix in GL(2,C) of
is just some multiple of the determinant. A Hilbert basis for these covariants
in given in appendix B.

The only difference between the SL(2,C) representations above and the
GL(2,C) representations (i.e. the covariants) is given by the determinant.
To each covariant a weight can be assigned, for example, the covariant By
(defined in appendix B) has covariant weight 6. So the action of a matrix

with determinant A is given by
BO — AGB(_).

Similarly Dg, Fy, Hg, Jo and Oy have covariant weights 12,18,24,30 and
90 repsectively. This information is important in chapter 5 as it allow the

absolute invariants' I = (%, %, %) to be defined.
0 0 0

! Absolutely invariant under the local action of the conformal group (i.e. GL(2,C))
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A Hilbert Basis for the

Binary Sextic

The polynomial ideals that arise in this thesis form sets of s0(3,C) ~ sl(2,C)
representations created from the symmetric tensor products of a single irre-
ducible 7-dimensional representation. From the discussion in appendix A it is
clear the ideals can be described in terms of the covariants of a 6th order bi-
nary form. It has been known almost a century and a half that every covariant
of a binary form can be be written as a (non-unique) polynomial in a finite
set of basis covariants [32]. Abstractly, such a basis is guaranteed to exist
by Hilbert’s basis theorem (which applies to any Noetherian ring) but more
concretely, a basis can be constructed using Gordan’s method (see P. Olver,
chapter 7 [49]).

The only tool we really need for constructing the Hilbert basis is the

transvectant operator1

(A, Bl = 1)22

=0

q 014 0B
( ) Orkdsi—k ora—kosk’ (B.0-1)

Defined this way the transvectant can be applied to any two functions of
r,s. Any covariant can now be written as a linear combination of iterated

transvectants. A simple example is given by the determinant of the Hessian

Lthe algorithm actual uses a closely related operator, the partial transvectant. However
partial transvectants can be rexpressed in terms of full transvectants.
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matrix (also known as the Hessian) which can be expressed as

f,’/"l‘ f,T’S

H(f)=det
(f) ‘ f,sr f,ss

= f,rrf,ss_ ,?r’s :2(f,f)[2]

B.1 The Hilbert Basis

114

The ring of covariants of a degree-six polynomial has a Hilbert basis consisting

of twenty-six elements [57], but such a basis is not (to the best of the author’s

knowledge) canonically defined. As such a particular choice will need to be

given explicitly. Letting Y(r, s) to be 6th degree binary form defined at (3.2.8)

the Hilbert basis used in this thesis is defined in the following recursive manner

A3 =D,

By = 4(As, A3)12, By = 576(As, A3)14,
By = 518400(As, A3)!6],

Ce = %(A3,B4)[1], Cy = %(A3732)[1],

Cy = g(Ag,,Bz)PJ 454580,  Cy = 96(As, Ba)Y,
D5 = g(A3,C3)[1], D3 = (A3, C),

Dy = 4(A3,C1)2, Dy = 34560(As, C3)"%,
Ey = (As, D)1, By = 36(As, Do),

By = 576(A3, Do),

)
F,?El) = (A37El)[1]a F3$2) = _§(A35E1)[1} + 2(A37E2)[2]’

Fy = 4(Cy, )P,

Ga = %(BZ,EQ[”, Gy = 4(C1, D),
Hy = —48(A3,G2)1Y,

I = 4(A3, Hy)?,

Jy = 576(As, 1)1, Jo = 4(C1, G1)2,

2 1
L, = 5(32, J)E 4 gBOJla

Oy = 4(Ly, 1)1,

(B.1.1)
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The notation chosen here (consisting of a capital letter with a numerical sub-
script) indicate of the type of representation each covariant represents. The
position of the letter in the English alphabet is a reflection of the polyno-
mial degree of the coefficients and the subscript indicates the weight of the
highest-weight vector. This convention is also used when describing the ideals
in chapter 5 with the addition of descriptive superscripts to distinguish them

from the elements of the Hilbert basis.



Appendix C

Notation

This is a brief review of notation used in the thesis. Tables C.1 and C.2 can

be used as a quick guide to most of the symbols used in this thesis.

Symbol Meaning Definition

A The partial derivative of A with respect to x;

A\ The .conformal factor of the conformally flat (2.3.1)
metric

K The sectional curvature (2.5.2)
The nth order part of a constant (contextually

K, dependent upon which constant is under §3.3
examination)

A linearly independent and symmetric choice
{Q,R,S}  of coefficient functions for the superintegrable (2.3.16)
systems

A linearly independent and symmetric choice
{Q,R,S8} of coefficient functions for the (4.1.10)
conformally-superintegrable systems

Jy,J-,Jo  The raising, lowering and level set operators (3.1.7)

The 7-dimensional representations constructed
) 3.2.8
r,s) from the {Q, R} variables ( )

The 3-dimensional representations constructed
X(r, 3.2.9
(r,s) from the {S} variables ( )

Table C.1: Symbols used in this thesis with their places of definition.
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Symbol Meaning Definition
i The roots of polynomial p(z) = Y(z,1)
The 3-dimensional representations constructed

Z(r, s) from the first-order derivatives of the (3.2.10)
conformal-factor A = exp(G)
The 1-dimensional representations constructed

Zee from the second-order derivatives of the (3.2.11)
conformal-factor A = exp(G)

P(r, s) The 3-dimensional representations constructed (3.2.4)
from the momenta

V(r, s) The 3—d1men81or}al representations constructed (3.2.6)
from the potential’s parameters
The 1-dimensional representations constructed

Vee : (3.2.7)
from the potential’s parameters

(M) Shorthand for n representations covering a §3.3
space of m variables

{A,B}pp  The Poisson-Bracket /Poisson Commutator (2.1.5)

(4, B)" The transvectant (3.1.14)

04,0-,00  The raising,lowering and level-set derivatives (3.1.15)

('94(5, aC, 88; The? ral‘smg,lowermg and level-set constructor (3.1.25)
derivatives

(A,B,...) The polynomial ideal generated by 4, B, ... 5.1.1

VI The radical ideal of the ideal T 5.1.7

1 The differential closure of the ideal 5.1.8

Table C.2: More symbols used in this thesis with their places of definition.
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