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Abstract

Over the last half century the study of superintegrable systems has established

itself as an interesting subject with connections to some of the earliest known

dynamical systems in mathematical-physics. Systems with constants second-

order in the momenta have been particularly well studied in recent years.

This thesis provides a classification of non-degenerate (maximum parameter)

three-dimensional second-order superintegrable systems over conformally-flat

spaces. I show that, up to Stäckel equivalence, such systems can be put into

correspondence with a 6 points in the extended complex plane with an action

induced by the conformal-group in three dimensions. I use this correspon-

dence, and the tools of classical-invariant theory, to determine the inequiv-

alent orbits under this action and show there are only 10 conformal-classes.

This answers an open problem by showing that no unknown systems exist on

the sphere.

Additional interest in these systems comes from studying their algebra of

constants. In the three-dimensional maximum-parameter case this algebra

is generated by the iterated Poisson brackets of the 6 linearly independent

second-order constants and is known to close at finite order. These 6 second-

order constants are necessarily functionally dependent, and up to now the

explicit relation for their dependence has only been known on a case-by-case

basis. In this thesis I demonstrate a quartic identity which provides the func-

tional relation for a general system.
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Chapter 1

Introduction

This thesis is concerned with maximum-parameter (non-degenerate) super-

integrable systems over conformally-flat complex spaces with constants of

the motion second-order in the momenta. Two-dimensional systems over

conformally-flat spaces and three-dimensional systems over flat space (both

complex) have both been completely classified [28, 16, 17]. The classifications

use, in part, algebraic varieties (i.e. the zero set of irreducible polynomial

ideals). These algebraic varieties come from examining the integrability con-

ditions for such systems. The varieties are foliated by the nonlinear action of

a Lie group (e.g. the Euclidean group or the conformal group) and the leaves

of this foliation, or more precisely, the closure of the leaves with respect to

the classical topology, are described by subvarieties. Working over complex

spaces guarantees these subvarieties are connected (even if points from other

algebraic sets are removed) and this fact simplifies the arguments needed to

give a complete classification.

Before presenting the results obtained in this thesis a brief historical ac-

count of superintegrability will be given. A more complete introduction can

be found in the upcoming review of Miller, Post and Winternitz [60].

1.1 Historical Background

Dynamical systems with exact-solutions have played an in important role in

the development of mathematics and physics. In classical mechanics these

system are characterised by there being sufficiently many constants of motion

to allow the trajectories to be determined via integration (if the energy level

1



CHAPTER 1. INTRODUCTION 2

set of an orbit is compact then this integration corresponds to the well known

action-angle coordinates). An important subclass of these systems are given

by systems that possess an overabundance of constants of motion, placing

tighter algebraic restrictions on the trajectories obtained. In the last half-

century the study and recognition of these types of systems has been growing

steadily, and these systems have been given a new name: ‘superintegrable’

(older terms for such systems include: ‘degenerate integrability’ and ‘non-

Abelian integrability’).

Despite the recency of the term ‘superintegrable’ such systems are actually

amongst the oldest studied, two prime examples being the harmonic oscillator

and the Kepler-Coulomb potentials. One of the ways the superintegrability of

the Kepler-Coulomb potential manifests itself in the classical case is through

Kepler’s three laws of planetary motion. These relations were determined in

the early 17th century from data collected at that time and are quite striking

for their algebraic simplicity. These laws predate the discovery of the inverse

square law and the Newton/Leibniz invention of calculus, both of which were

needed to investigate this system thoroughly.

The superintegrability of the Kepler-Coulomb potential also manifest itself

in its quantum mechanical analogue, the hydrogen atom. Here the spectrum

of the energy operator (the Balmer series) is calculable from algebraic meth-

ods alone. The Balmer series, like Kepler’s three laws, was determined from

observational data, and, somewhat analogously to the classical case, predated

the invention of Schrödinger’s wave equation and the foundation of modern

quantum mechanics. Both facts follow from their respective superintegrability

and, at least in the quantum case, many superintegrable system known today

share similar properties.

The systematic search for superintegrable systems can be traced back to

the 1965-67 papers of Y. A. Smorodinskii, P. Winternitz et al [34, 61, 1] who

were interested in two and three-dimensional quantum systems with ‘higher

symmetries’, meaning symmetries that do not come from geometric symme-

tries.

The phrase ‘superintegrable’ comes from the work of Rauch-Wojciechowski

in 1983, whose work on the Calogero-Moser system [62] which provided some

of the first examples of superintegrable systems with constants of motion of

order higher than two.
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Interest in superintegrability was spurred at the end of the 20th century

by the work of N. W. Evans in 1990 which gave a complete classification of

three-dimensional real systems with second-order constants [30].

There has been shown to be close relationship between Exact and Quasi-

Exact Solvability (QES) and superintegrable systems [20, 41, 59, 58], and it

has been conjectured that all maximally-superintegrable systems are exactly

solvable [50].

An important tool in the construction and classification of superintegrable

systems is given by the coupling-constant-metamorphosis (CCM) [35] and its

close cousin the Stäckel transform [5], both introduced in the mid 1980s. When

focusing on second-order superintegrable systems the CCM and Stäckel trans-

form coincide, but for general systems they are distinct [52, 23].

For the last half-century the most extensively known superintegrable cases

are those with second-order constants separating in two or more coordinate

systems. Second-order integrability (super or not) and separation of vari-

ables are intimately connected through theorems of Stäckel [38, 56, 5, 11, 13]

showing that separability of a system implies the existence sufficiently many

mutually commuting Killing tensors1 to give integrability and, conversely giv-

ing conditions necessary to ensure that second-order integrability gives rise to

separability.

This strong connection to separation of variables has lead to powerful

classification results regarding systems with second-order constants. However,

this close connection also limits these techniques from being generalised to

systems with higher-order constants. Recent work of Kalnins et al in the

classification of two and three-dimensional systems over complex Euclidean

space has lead to classification results that explore the algebraic geometry

present in these systems [16, 17, 15]. This thesis is a continuation of that

work. This is important as recently superintegrable systems have been found

which do not possess separation of variables [53].

The most recent interest in superintegrability has been spurred by the 2009

paper of Tremblay, Turbiner and Winternitz [31] containing what are now

known as the TTW potentials. The TTW potentials were conjectured to be

superintegrable for rational choice of its parameter k, and this conjecture was

1the leading part of the second-order constants are killing tensors for the pseudo-
Riemannian manifold
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validate shortly thereafter [54, 19, 22, 37]. These systems provides examples

of superintegrable systems with constants of arbitrarily high degree.

By generalising the TTW systems from two dimensions to higher di-

mensions, superintegrable systems have been found over non-conformally flat

spaces, possessing constants of arbitrarily high degree [18].

Another aspect, and probably the primary aspect, of superintegrable sys-

tems that has been of interest to the research community is the various links to

special function theory that exist. Special functions can arise as the eigenfunc-

tion for the symmetry operators in quantum superintegrable systems, and in

the interbasis expansion coefficients for multiseparable systems [21, 29]. They

also arise in models of quadratic algebras of superintegrable systems [51].

Very recently the Askey-Wilson scheme for orthogonal polynomials has been

shown to arise from the contractions of models of the quadratic algebras of

second-order superintegrable systems [25].

A family of exactly-solvable two-dimensional Hamiltonians has been found

with wave functions related to Laguerre and exceptional Jacobi polynomials

[55]. And superintegrable systems with non-polynomial constants are also

known [42].

Tool such as supersymmetry and ladder operators have been used in the

construction of superintegrable systems [45, 46, 47]. And superintegrable sys-

tems having potentials linked to Painlevé transcendents have also been found

[44].

Superintegrable systems have also appeared in applications, such as study-

ing the Hartmann potential [39, 43], which was introduced in quantum chem-

istry to describe ring-shaped molecules like benzene [3].

1.2 Outline of this thesis

Chapter 2 begins by presenting the idea of a second-order superintegrable sys-

tem over a conformally-flat space and discusses the classical structure theory

as derived by Kalnins, Kress and Miller [12]. After this relevant background

material is provided the chapter concludes by generalising a result that simpli-

fied the differential closure of the ideal of integrability conditions in Euclidean

space [17]. The corresponding result is given for spaces of constant curvature.

In chapter 3 the local action of the rotation group SO(3,C) is examined
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and a large set of rotation representations is defined. These representations

are used to examine the space of higher-order constants, recreating for the

most part the work of Kalnins et al [12] regarding the closure of the quadratic

algebra. The use of rotation representations allows the calculations to be car-

ried further than previous attempts and analyses the space of eighth-order

constants. The results of this analysis closes an open question in the litera-

ture [36] by proving that the functional relation between the 6 second-order

constants and the 5 parameters is a quartic relation. The form of this quartic

relation is given explicitly for a general system.

In chapter 4 the notion of a conformally-superintegrable (Laplace-type)

system is discussed. How these are related, by Stäckel transform and conformal-

scaling, to the superintegrable systems in chapter 2 is also discussed. The

action of the conformal group on these systems is then examined and the

concepts necessary for the classification results in chapter 5 are presented.

Specifically it is shown that the classification of such systems depends solely

on a single 7-dimensional SO(3,C) representation.

Chapter 5 gives the full classification of maximally-superintegrable, second-

order maximum-parameter systems by determining 10 conformal-classes of

Stäckel equivalent systems. These classes are determined by studying the or-

bits of the conformal group on a seven-dimensional manifold. The orbits are

completely described by a set of algebraic varieties. The subvariety structure

obtained by examining the containment of the associated polynomial ideals

reveals a hierarchical structure consistent with the hierarchical structures al-

ready known [26].

In chapter 6 conclusions are drawn and the future directions that this

research could take are discussed.

Appendix A contains a description of the connection between SO(3,C)

representations and SL(2,C) representations. This information is particularly

important for the techniques employed in chapter 3.

Appendix B defines a Hilbert basis for the space of covariants of a 6th de-

gree binary form. This 6th degree binary form, and the covariants constructed

from it, carry representations of the conformal group in three dimensions. This

Hilbert basis is used to concisely describe the classification results in chapter 5.

And finally, for ease of reference, appendix C contains a list of the various

notations and variable names used throughout this thesis.



Chapter 2

Second-Order

Superintegrable Systems

After reviewing the necessary concepts needed to study classical mechan-

ics, this chapter will then review the classical structure theory for three-

dimensional second-order superintegrable systems, this working follows closely

that of Ref. [12], which is one of the five papers by Kalnins, Kress and Miller

that established the structure theory for second-order superintegrable systems

in 2 and 3 dimensions [10, 11, 12, 13, 14].

In §2.1 Hamiltonian mechanics is briefly discussed and definitions relevant

to the systems studied in this thesis are given.

In §2.2 the definition of a maximally superintegrability system is given.

In §2.3 the structure result regarding second-order superintegrable sys-

tems over three-dimensional conformally-flat space is reviewed, following the

discussion in Ref. [12]. Importantly it is shown that the potential of a maxi-

mally superintegrable second-order system satisfies a set of linear PDEs which

admits solution depending on 5 parameters (including the one trivial additive

term).

In §2.4 the Stäckel transform is defined and it is shown how it can be used to

map between second-order superintegrable systems over different conformally

flat spaces. Only distinguishing systems up to Stäckel equivalence make the

classification easier.

Finally, in §2.5 the algebraic ideal of integrability conditions for superin-

tegrable potentials on the 3-spheres is shown to be generated by 6 quadratics,

6
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generalising a result that was only previously known for flat space.

2.1 Hamiltonian Mechanics

An important method in classical mechanics is the Hamiltonian formalism.

This allows the dynamics of a classical system to be encoded by a single

function over the position-momentum phase space. In this thesis only au-

tonomous (time-independent) Hamiltonians are considered. More details on

Hamiltonian mechanics can be found in, for example, V.I. Arnold’s “Classical

Mechanics” [2].

Start by considering an n-dimensional momentum-position phase space

(p,q) ∈ C2n, where the components of q are the position coordinates qi(t),

the components of p are the generalised-momentum coordinate pi(t) and t

denotes the time. In this thesis only natural Hamiltonians of the form H =

“kinetic energy” + “potential energy” will be considered. More precisely, the

following definition will be used for the Hamiltonian.

Definition 2.1.1. A classical system defined over a (pseudo)-Riemannian

manifold with contravariant metric tensor gij(q) and potential function V (q)

has a Hamiltonian of the form

H(p,q) =
3∑

i,j=1

gij(q)pipj + V (q). (2.1.2)

The metric is non-degenerate (i.e. det(gij) 6= 0) and symmetric (gij = gji).

Furthermore, as the spaces considered in this thesis are conformally flat, there

will a coordinate system such that the metric takes the form gij = λ(q)δij .

The dynamics of such a system are given by Hamilton’s equations, which

are the differential equations

dqi
dt

=
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

, i = 1, . . . , n. (2.1.3)

Solutions of these give the trajectories of the system.

Definition 2.1.4. If A(p,q),B(p,q) are function on the phase space, their

Poisson commutator or Poisson bracket is defined to be

{A,B}PB =

n∑
i=1

(
∂A
∂pi

∂B
∂qi
− ∂A
∂qi

∂B
∂pi

)
. (2.1.5)
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The Poisson bracket is a bi-linear, skew-symmetric Lie bracket. That is,

given three functions on the phase space A(p,q),B(p,q), C(p,q), the Poisson

bracket can be shown to satisfy the following identities

{A,B}PB = −{B,A}PB ,

{A, sB + tC}PB = s {A,B}PB + t {A, C}PB ,

{A, {B, C}PB}PB + {B, {C,A}PB}PB + {C, {A,B}PB}PB = 0,

{A,BC}PB = B {A, C}PB + {A,B}PB C. (2.1.6)

Using the Poisson bracket, Hamilton’s equations (2.1.3) take on the symmetric

form

dqi
dt

= {H, qi}PB ,
dpi
dt

= {H, pi}PB , i = 1, . . . , n. (2.1.7)

If the Poisson bracket of two functions vanishes they are said to be in invo-

lution. Any autonomous function A(p,q) in involution with the Hamiltonian

H will be a constant along any trajectory thanks to the generic equation

dA
dt

= {H,A}PB +
∂A

∂t
. (2.1.8)

Such an A will be referred to as a constant of the motion.

The Poisson bracket associates a vector field to each differentiable function

on the phase space and in particular the Hamiltonian vector field XH is given

by

XH = {H, •} . (2.1.9)

The flow of the the vector field XH follows the trajectories of the system.

If A is a constant of the motion then

XA(H) = {A,H} = −XH(A) = 0

and so the Hamiltonian H is conserved under the flow of the vector field XA.

For this reason a constant of the motion A is often referred to as a symmetry.

2.2 Integrability and (Maximal) Superintegrability

An n-dimensional Hamiltonian S1(p,q) = H(p,q) is said to be integrable

in the Liouville sense if their exist n − 1 additional functionally independent
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constants Si(p,q), i ∈ {2, . . . , n} all of which are in mutual involution. That

is

{Si,Sj}PB = 0, i, j ∈ {1, . . . , n}. (2.2.1)

Maximal-super integrability is characterised by there being an additional n−
1 functionally independent functions Sk(p,q), k ∈ {n + 1, . . . , 2n − 1} in

involution with (at least) the Hamiltonian.

In this thesis the maximal-superintegrability assumption will be relaxed

to just requiring 2n − 1 second-order constants of the motion (including the

Hamiltonian). So the starting hypothesis is a system with 2n−1 second-order

functions Si (with S1 = H) such that

{H,Sj}PB = 0, i = 1, . . . , 2n− 1. (2.2.2)

That such systems are also integrable is seen to hold a posteriori.

Note that 2n−1 is the maximum possible number of functionally indepen-

dent constants that can exist for an unconstrained system, and that locally

such constants exist for any Hamiltonian system. However the main interest

in this thesis is in constants that are polynomial in the momentum and defined

up to the existence of lower-dimensional singularities such as poles and branch

points.

2.3 Classical Structure Theory and the

Bertrand-Darboux equations

Consider a conformally-flat pseudo-Riemannian manifold, for which coordi-

nates x = (x1, x2, x3) can be found such that the metric has the form

ds2 = λ(x)
(
dx2

1 + dx2
2 + dx2

3

)
. (2.3.1)

The conformal factor λ(x) will often be expressed in the form

λ(x) = eG(x) (2.3.2)

as this tends to give equations that are, at least visually, simpler.

As per (2.1.2) the natural Hamiltonian over this metric is of the form

H =
p2
x1 + p2

x2 + p2
x3

λ(x)
+ V (x). (2.3.3)
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It will be assumed that the Hamiltonian (2.3.3) is second-order maximally

superintegrable, that is, admits 4 additional second-order constants of the

form

L =
3∑

i,j=1

aij(x)pxipxj +W (x), aij = aji. (2.3.4)

that Poisson commute with the Hamiltonian, that is

{H,L}PB = 0. (2.3.5)

Splitting the conditions given by (2.3.5) by degree in the momenta gives two

independent conditions, one third-order and the other first-order. Explicitly

these conditions are p2
x1 + p2

x2 + p2
x3

λ
,

3∑
i,j=1

aijpxipxj


PB

= 0,

{
p2
x1 + p2

x2 + p2
x3

λ
,W

}
PB

+

V,
3∑

i,j=1

aijpxipxj


PB

= 0. (2.3.6)

The first condition in (2.3.6) implies that the purely second-order part of L is

a second-order Killing tensor on the manifold.

Conditions (2.3.6) can be written out explicitly as

3∑
i,j,k=1

(
2

λ
ajk,i pxipxjpxk +

(
ajk

λ,jpxk
λ2

+ ajk
λ,kpxj
λ2

)
pxipxi

)
≡ 0,

3∑
i=1

W,i

λ
pxi − 2

3∑
i,j=1

aijV,ipxj ≡ 0, (2.3.7)

where a comma in the subscript followed by an index i indicates a partial

derivative with respect to the variable xi. Since the momentum is unrestricted

the coefficients of the monomials in the px’s must vanish independently, this



CHAPTER 2. SUPERINTEGRABLE SYSTEMS 11

gives four types of conditions (for distinct i, j, k)

4

λ
(ajk,i + aik,j + aij,k) ≡ 0,

4

λ
aik,k +

2

λ
akk,i + 2

3∑
r=1

ari
λ,r
λ2
≡ 0,

2

λ
aii,i + 2

3∑
r=1

air
λ,r
λ2
≡ 0,

2

λ
W,i − 2

3∑
r=1

airV,r ≡ 0. (2.3.8)

Setting λ = exp(G) the equations above can be rewritten as

ajk,i + aik,j + aij,k ≡ 0,

2aij,j + ajj,i ≡ −
n∑
r=1

airG,r ≡ aii,i ,

W,i ≡ λ
n∑
r=1

airV,r. (2.3.9)

The compatibility conditions ∂xiW,j = ∂xjW,i lead to the Bertrand-Darboux

equations

 0 a12 a11 − a22 a31 −a23

a13 0 −a23 a21 a11 − a33

a23 −a23 −a13 a22 − a33 a12



V,33 − V,11
V,22 − V,11

V,12

V,23

V,13



=
1

λ

(λa12),1 − (λa11),2

(λa13),1 − (λa11),3

(λa13),2 − (λa12),3

V,1+
1

λ

(λa22),1 − (λa12),2

(λa23),1 − (λa12),3

(λa23),2 − (λa22),3

V,2+
1

λ

(λa23),1 − (λa13),2

(λa33),1 − (λa13),3

(λa33),2 − (λa23),3

V,3.

(2.3.10)

Each second-order constant gives a set of conditions and as will be discussed

in the next section, for sufficiently many independent constants these can be

used to give a set of linear PDEs governing V (x).

Maximum-Parameter (non-degenerate) Potentials

Most of this section is based on the 2005 paper of Kalnins et al [12], however

that paper was found to contain a slight error and the correct statements
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about the relationship between functional-linear independence and maximum-

parameter (non-degenerate) systems can be found in their subsequent 2006

paper [14].

The Bertrand-Darboux equations (2.3.10) for the four independent second-

order constants (not including the Hamiltonian) can be written in the form

Bv = b where B is a 12× 5 matrix, b is a 12× 1 vector and

v =



V,33 − V,11

V,22 − V,11

V,12

V,23

V,13


.

If it is assumed that the potential contains sufficiently many parameters

such that the value of V,1, V,2 and V,3 can freely be specified at a generic point

(that is, the potential depends non-degenerately on the three coordinates) then

the second-order constants are functionally-linearly independent (i.e. the only

functions mi(x) satisfying
∑4

i=1mi(x)Si(x) ≡ 0 are the trivial ones). The

functionally-linearly independence of the four constants means the matrix

A =


a33

(1) − a
11
(1), a33

(1) − a
11
(1), a12

(1), a12
(1), a23

(1)

a33
(2) − a

11
(2), a33

(2) − a
11
(2), a12

(2), a12
(2), a23

(2)

a33
(3) − a

11
(3), a33

(3) − a
11
(3), a12

(3), a12
(3), a23

(3)

a33
(4) − a

11
(4), a33

(4) − a
11
(4), a12

(4), a12
(4), a23

(4)


has rank 4 at a generic point, where aij(k) are the coefficients in the four con-

stants.

From the fact that the matrix A above has rank 4 it can be shown that

the 12× 5 matrix B has rank 5. Thus there exists a 5× 5 submatrix which is

invertible in an open set around the generic point and hence the vector v can

be solved for. This means the potential V satisfies a set of 5 linear, second-

order PDEs. These PDEs can be written in the symmetric (but redundant)
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form,

V,11 = Vee +A11
1 V,1 +A11

2 V,2 +A11
3 V,3,

V,22 = Vee +A22
1 V,1 +A22

2 V,2 +A22
3 V,3,

V,33 = Vee +A33
1 V,1 +A33

2 V,2 +A33
3 V,3,

V,12 = A12
1 V,1 +A12

2 V,2 +A12
3 V,3,

V,13 = A13
1 V,1 +A13

2 V,2 +A13
3 V,3,

V,23 = A23
1 V,1 +A23

2 V,2 +A23
3 V,3. (2.3.11)

where

Vee =
(V,11 + V,22 + V,33)

3
.. (2.3.12)

Here the coefficient functions Aijk are unknown, but cannot depend in any way

on the parameters in V . The five parameters are the value of the potential

V , the value of the 3 first order derivatives V,1, V,2, V,3 and the combination

of the second-order derivatives Vee above1.

The symmetric form of equations (2.3.11) comes at the price of redun-

dancy. To avoid placing restriction on the first order parameters the coefficient

functions must satisfy the 3 linear conditions

A11
i +A22

i +A33
i = 0, i ∈ {1, 2, 3} . (2.3.13)

The second-order superintegrable systems in this thesis will be assumed

to depend on all five parameters (maximum-parameters) and this assump-

tion allows integrability conditions to be obtained relating the Aijk ’s and their

derivatives (2.3.11). The simplest integrability conditions are given by 5 linear

conditions

A22
1 −A12

2 = A33
1 −A13

3 ,

A11
2 −A12

1 = A33
2 −A23

3 ,

A11
3 −A13

1 = A22
3 −A23

2 ,

A12
3 = A13

2 ,

A12
3 = A23

1 . (2.3.14)

1In the papers by Kalnins et al the chosen second order parameter was V,11, however
the choice of Vee has the advantage of not favoring any particular coordinate direction.
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Taking the conditions (2.3.13) and (2.3.14) together puts 8 linearly indepen-

dent conditions on 18 coefficient functions Aijk and hence there can be at most

10 independent ones. Continuing the theme of notational symmetry, these

coefficient functions can be parameterised by in the following way,

A11
1 = −4S1 −R12

2 −R13
3 , A11

2 = 2S2 +R12
1 , A11

3 = 2S3 +R13
1 ,

A22
1 = 2S1 +R12

2 , A22
2 = −4S2 −R12

1 −R23
3 , A22

3 = 2S3 +R23
2 ,

A33
1 = 2S1 +R13

3 , A33
2 = 2S2 +R23

3 , A33
3 = −4S3 −R13

1 −R23
2 ,

A23
1 = Q123, A23

2 = R23
2 − 3S3, A23

3 = R23
3 − 3S2,

A13
1 = R13

1 − 3S3, A13
2 = Q123, A13

3 = R13
3 − 3S1,

A12
1 = R12

1 − 3S2, A12
2 = R12

2 − 3S1, A12
3 = Q123,

(2.3.15)

where 10 new variable names have been defined

(Q123, R12
1 , R

12
2 , R

13
1 , R

13
3 , R

23
2 , R

23
3 , S

1, S2, S3). (2.3.16)

These ten functions will be referred to as the set {Q,R,S} if needed. These

variables were not chosen just because they are symmetric, but also because

the sets {Q,R} and {S} form irreducible rotation representations (as will be

shown in chapter 3).

The (5 =⇒ 6) Theorem

Another very useful result from the literature is the so called (5 =⇒ 6)

theorem which guarantees that the 5 functionally-independent second-order

constants (including the Hamiltonian) can be extended to a set of six linearly-

independent second-order constants. The importance of this theorem is, at

any regular point in the system, and for any prescribed values of the six aij ’s,

there will be a second-order constant for which the aij ’s take on the these

values at the regular point. This fact can then be used when examining the

consistency conditions from (2.3.7) and (2.3.11) and puts very strong restric-

tion on the the derivatives of the {Q,R,S}. In fact all the first derivative of

the {Q,R,S} variables can be written as quadratics in the {Q,R,S} variables

and the derivatives of G(x) = ln(λ). Up to a permutation of indices, these 30
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derivatives are described by the following six equations

∂R12
1

∂x1
= −2

3
R12

2 R
23
3 +

2

3
R13

3 R
23
3 +

4

3
Q123R23

2 +
5

3
Q123R13

1

−R12
1 R

13
3 −R12

1

(
S1 − 1

3
G,1

)
+
(
R13

3 + 3R12
2

)(
S2 − 1

3
G,2

)
+2Q123

(
S3 − 1

3
G,3

)
,

(2.3.17)

∂R12
1

∂x2
=

3

5
R12

2 R
13
3 −

1

15
R13

1 R
23
2 −

11

15
R12

1 R
23
3 +

8

15

(
R13

1

)2
+

1

5

(
R12

1

)2−4

5

(
R23

2

)2
+

8

15

(
R13

3

)2
+

1

5

(
R12

2

)2 − 4

5

(
R23

3

)2
+

2

15

(
Q123

)2
−
(
R13

3 + 3R12
2

)(
S1 − 1

3
G,1

)
−R12

1

(
S2 − 1

3
G,2

)
+R13

1

(
S3 − 1

3
G,3

)
,

(2.3.18)

∂R12
1

∂x3
= −1

3
Q123R12

2 −
1

3
Q123R13

3 +
1

3
R23

2 R
12
1 +

1

3
R23

3 R
13
1

− 2Q123

(
S1 − 1

3
G,1

)
−R13

1

(
S2 − 1

3
G,2

)
−R12

1

(
S3 − 1

3
G,3

)
, (2.3.19)

∂Q123

∂x1
=

2

3
R13

1 R
12
1 −

1

3
R23

3 R
13
1 +Q123R13

3 −
1

3
R23

2 R
12
1 +Q123R12

2

−Q123

(
S1 − 1

3
G,1

)
+
(
R23

2 −R13
1

)(
S2 − 1

3
G,2

)
+
(
R23

3 −R12
1

)(
S3 − 1

3
G,3

)
.

(2.3.20)

∂
(
S1 − 1

3G,1
)

∂x1
= −17

90
R12

2 R
13
3 +

1

30
R13

1 R
23
2 +

1

30
R12

1 R
23
3

− 7

45

(
R13

3

)2
+

1

15

(
R23

3

)2 − 7

45

(
R12

1

)2 − 11

90

(
Q123

)2 − 7

45

(
R13

1

)2 − 7

45

(
R12

2

)2
+

1

15

(
R23

2

)2
+

1

2

(
S2 − 1

3
G,2

)2

+
1

2

(
S3 − 1

3
G,3

)2

− 1

2

(
S1 − 1

3
G,1

)2

,

(2.3.21)

∂
(
S1 − 1

3G,1
)

∂x2
= −1

9
R13

3 R
23
3 −

2

9
Q123R23

2 +
1

9
R12

1 R
13
3 +

1

9
R12

2 R
23
3 −

2

9
Q123R13

1

−
(
S1 − 1

3
G,1

)(
S2 − 1

3
G,2

)
. (2.3.22)
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Here, to simplify the presentation, the coefficient functions Si and the partial

derivative G,i have been combined together. This is especially noticeable in

the left-hand sides of (2.3.21) and (2.3.22) where second-order derivatives of

G(x) have been “hidden” by combining them with first-order derivatives of

Si. An indication of why the combination Si − 1
3Gi appears here will become

more apparent when the Stäckel transform is discussed in the next section,

and again in chapter 4 when the conformal equivalence of these potentials is

discussed.

There are still integrability conditions remaining relating the values of

{Q,R,S} to the derivatives of G(x), so the these values cannot be specified

arbitrarily. These conditions are needed to ensure the coefficient functions

are compatible with the metric. The lowest order integrability conditions are

quadratic in {Q,R,S}, two illustrative examples being

4

3
R12

2 R
13
3 −

4

3
R23

3 R
12
1 +

4

3
R13

1
2

+
4

3
R13

3
2 − 4

3
R23

3
2 − 4

3
R23

2
2

− 4(S1 +
1

6
G,1)R12

2 + 4(S2 +
1

6
G,2)R12

1

+ 2(S3 +
1

6
G,3)R13

1 − 2(S1 +
1

6
G,1)R13

3 + 2(S2 +
1

6
G,2)R23

3 − 2(S3 +
1

6
G,3)R23

2

− 2G,1S
1 + 2G,2S

2 − 6S12
+ 6S22

+
1

3
G2
,1 −

1

3
G2
,2 −G,11 +G,22 ≡ 0,

(2.3.23)

+
4

3
Q123R13

1 +
4

3
Q123R23

2 −
2

3
R13

3 R
12
1 −

2

3
R23

3 R
12
2 +

2

3
R23

3 R
13
3

+ 2(S1 +
1

6
G,1)R12

1 + 2(S2 +
1

6
G,2)R12

2 + 2(S3 +
1

6
G,3)Q123

− S2G,1 −G,2S1 − 6S2S1 +
1

3
G,2G,1 −G,12 ≡ 0. (2.3.24)

Permuting the indices in (2.3.23) and (2.3.24) gives the full set of five quadratic

integrability conditions.

In Ref. [17] these integrability condition were important in classifying all

Euclidean superintegrable systems. A possible method for classifying systems

over other conformally flat spaces would be to specify the metric for the space

of interest and solve the (2.3.20)-(2.3.22) subject to the integrability condition

(2.3.23)-(2.3.24). Chapter 4 resolves this issue by showing that the metric need

never be specified, and the subsequent classification obtained in chapter 5

covers all systems over conformally flat spaces.
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2.4 Conformal Equivalence of Superintegrable

Systems

Coupling Constant Metamorphosis, Stäckel Transform

Two useful tools in the classification of second-order superintegrable systems

are the coupling constant metamorphosis (CCM) [35] and the Stäckel trans-

form [5]. The CCM works by exchanging the roles of the the energy of the

system with a particular parameter choice. In the context of second-order

superintegrable systems the term in the potential associated with the chosen

parameter is used to conformally scaled the metric.

The Stäckel transform works by scaling the system by potentials (the

Stäckel multiplier) that separate in the same coordinate system as the system

begin transformed. If one is only interested in Stäckel transforms that take

maximally-superintegrable second-order systems to maximally-superintegrable

second-order system then this transformations coincides with the CCM. For a

discussion of the similarities and the differences of the CCM and the Stäckel

transform outside the realm of second-order maximally-superintegrable sys-

tems see the recent paper of S. Post [52].

The following theorem gives an explicit description of the Stäckel transform

for second-order superintegrable systems.

Theorem 2.4.1. If H = H0 +V +αU = E is a Hamiltonian with constant of

the motion L(α) = L+αWU then the transformed Hamiltonian H̃ =
H0 + V

U
will have symmetry L(−H̃) = L− H̃WU .

Proof. This elegant proof is due to Kalnins et al [23]. Firstly, given functions

of the form G(x,p), F (a,x,p) where a = τ(x,p) then

{F,G} = {F (a,x,p), G(x,p)}|a=τ(x,p)+∂aF (a,x,p)|a=τ(x,p) {τ(x,p), G(x,p)}.

Since L(α) is a symmetry

{H0 + V + αU,L(α)} = 0,

and so

{H0 + V,L(α)} = −α{U,L(α)}.
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Using these it can be shown that

{H̃, L(α)} =

{
H0 + V

U
,L(α)

}
= −H0 + V

U2
{U,L(α)}+

{H0 + V,L(α)}
U

= −H0 + V

U2
{U,L(α)}+

−α{U,L(α)}
U

= −H̃ + α

U
{U,L(α)} .

Therefore

{H̃, L(−H̃)} =

(
∂αL(α)

{
H̃, H̃

}
− H̃ + α

U
{U,L(α)}

)∣∣∣∣∣
α=−H̃

= 0

Thus L(−H̃) is a constant for the Hamiltonian H̃.

Importantly for second-order superintegrable systems the new constants

L̃ = L − H̃WU are still second-order, and so the Stäckel transform preserves

second-order superintegrability. Thus the potential Ṽ = V
U is second-order

maximally-superintegrable over the conformally-flat metric

λ̃ = Uλ.

Substituting Ṽ = V
U into the PDE (2.3.11) a new set of {Q̃, R̃, S̃} variables

are obtained. Specifically, the action of the transform gives

R̃ijj = Rijj ,

Q̃123 = Q123,

S̃i = Si +
1

3
F,j , (2.4.2)

where U = exp(F ). Noting that the new Ĝ is given by G̃ = G+ F , it should

be clear that the combination

Si − 1

3
G,i (2.4.3)

is invariant under the Stäckel transform, and this hints at why this term

appears in (2.3.21) and (2.3.22).
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Example: Self Equivalence of VII

To see the Stäckel transform in action consider the Hamiltonian

H = p2
x1 + p2

x2 + p2
x3 + a(x2

1 + x2
2 + x2

3) + b
x1 − ix2

(x1 + ix2)3
+

c

(x1 + ix2)2
+

d

x2
3

+ e.

(2.4.4)

This system is VII , taken from reference [17]. As discussed the Stäckel equiv-

alent Hamiltonian H̃ = H
(x1+ix2)2

will be superintegrable over the space with

flat metric

ds2 =
dx2

1 + dx2
2 + dx2

3

(x1 + ix2)2
.

The coordinate change

x1 =
−1 + z2

1 + z2
2 + z2

3

2(z1 + iz2)

x2 = i
1 + z2

1 + z2
2 + z2

3

2(z1 + iz2)

x3 =
z3

z1 + iz2
(2.4.5)

puts this Hamiltonian back into the standard Euclidean coordinates and it is

clear from direct inspection that it has the same form as above

H̃ = p2
z1 + p2

z2 + p2
z3 − b(z

2
1 + z2

2 + z2
3)− a z1 − iz2

(z1 + iz2)3
+

e

(z1 + iz2)2
+

d

z2
3

+ c.

(2.4.6)

So in this case the system VII is Stäckel equivalent to itself.

2.5 The algebraic ideal of integrability conditions

on the 3-sphere

This chapter will conclude with a new result regarding the integrability con-

ditions (2.3.23) and (2.3.24). In Euclidean space Kalnins et al showed that

maximum-parameter superintegrable systems over flat space can be put into

correspondence with the orbits of the Euclidean group acting on a 6-dimensional2

algebraic variety embedded in C10 [17]. Specifically the 10 coefficient functions

(2.3.16) satisfy a set of six quadratic equations (equations (24) in Ref. [17]).

2Hilbert-dimension 6
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Five of these can be given by the setting G ≡ 0 in (2.3.23) and (2.3.24) and

index permutations thereof. The sixth quadratic is given by

2
(
R13

1

)2
+ 2

(
R23

2

)2
+ 2

(
R13

3

)2
+ 2

(
R23

3

)2
+ 2

(
R12

1

)2
+ 2

(
R12

2

)2
+ 3

(
Q123

)2
+R13

1 R
23
2 +R12

1 R
23
3 +R12

2 R
13
3

− 45
(
S1
)2 − 45

(
S2
)2 − 45

(
S3
)2
. (2.5.1)

The square of this quadratic was found in the ideal generated by the 5 other

quadratics (2.3.23) and (2.3.24), and their partial derivatives. Taking all six

quadratics generated a radical ideal (i.e. if An was in the ideal for a positive

integer n, then so was A) which completely covered the space of integrability

conditions. Conceptually, this allowed Euclidean superintegrable systems to

be put into correspondence with the 6-dimensional algebraic variety defined

by this ideal.

In this section the result is extended to all constant curvature spaces. That

is, for a constant curvature metric there are six conditions quadratic in the

variables (2.3.16) such that the ideal generated from these 6 quadratics covers

the full space of integrability conditions.

To examine a constant curvature metric the sectional curvature will need

to be calculated. To calculated the sectional curvature, two sufficiently generic

vectors on the manifold need to be given, and these are chosen to be

X =
∂

∂x1
+ r

∂

∂x2

and

Y =
∂

∂x2
+ q

∂

∂x3
.

Varying q, r will alter the section spanned by X,Y .

Calculating the sectional curvature is straight forward procedure and in
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terms of the vectors above the sectional curvature is given by

K(X,Y ) = −1

4

(
(2λ,33λ+ λ,1

2 + 2λ,22λ− 2λ,2
2 − 2λ,3

2)r2q2

+
(
λ,3

2 − 2λ,2
2 + 2λ,22λ+ 2λ,11λ− 2λ,1

2
)

+ (−2λ,1
2 − 2λ,3

2 + λ,2
2 + 2λ,33λ+ 2λ,11λ)q2

+ (−4λ,13λ+ 6λ,1λ,3)rq

+ (4λ,12λ− 6λ,1λ,2)rq2

+ (4λ,23λ− 6λ,2λ,3)q

)
/
(
λ3
(
r2q2 + q2 + 1

))
. (2.5.2)

A constant curvature metric would have a sectional curvature independent

of the section chosen (i.e. independent of the parameters q, r). The only way

this can be true is if the numerator is a scalar multiple of (r2q2 + q2 + 1).

Demanding that the coefficients of q, rq, rq2, rq in the numerator vanish yields

the conditions

6λ,1λ,2 − 4λ,12λ = 0,

6λ,1λ,3 − 4λ,13λ = 0,

6λ,2λ,3 − 4λ,23λ = 0. (2.5.3)

Demanding that the ratio of the remaining coefficients make the numerator a

scalar multiple of the denominator yields

3((λ,2)2 − (λ,1)2)− 2(λ,22 − λ,11)λ = 0,

3((λ,3)2 − (λ,2)2)− 2(λ,33 − λ,22)λ = 0,

3((λ,1)2 − (λ,3)2)− 2(λ,11 − λ,33)λ = 0. (2.5.4)

Under the conditions above the sectional curvature can be shown to take

the form

K =
1

12

3
(
(λ,1)2 + (λ,2)2 + (λ,3)2

)
− 4 (λ,11 + λ,22 + λ,33)λ

λ3
. (2.5.5)

Furthermore (2.5.3)-(2.5.4) can be used to show K is constant on the manifold,

and hence no further conditions need be considered.
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Using (2.5.3),(2.5.4) and (2.5.5) it can be shown that the metric satisfies

the following PDEs

λ,11 = −2λ36K − 15(λ,1)2 + 3(λ,2)2 + 3(λ,3)2

12λ
,

λ,22 = −2λ36K + 3(λ,1)2 − 15(λ,2)2 + 3(λ,3)2

12λ
,

λ,33 = −2λ36K + 3(λ,1)2 + 3(λ,2)2 − 15(λ,3)2

12λ
,

λ,12 =
3λ,1λ,2

2λ
,

λ,13 =
3λ,1λ,3

2λ
,

λ,23 =
3λ,2λ,3

2λ
. (2.5.6)

Making the substitution λ = exp (G) gives the equations

G11 = −λK +
1

4
(G1)2 − 1

4
(G2)2 − 1

4
(G3)2 ,

G22 = −λK − 1

4
(G1)2 +

1

4
(G2)2 − 1

4
(G3)2 ,

G33 = −λK − 1

4
(G1)2 − 1

4
(G2)2 +

1

4
(G3)2 ,

G12 =
1

2
G2G1,

G13 =
1

2
G1G3,

G23 =
1

2
G2G3. (2.5.7)

Additionally the sectional-curvature can be expressed in the form

6λK = −1

2

(
(G1)2 + (G2)2 + (G3)2

)
− 2 (G11 +G22 +G33) . (2.5.8)

Substituting (2.5.7) into (2.3.23)-(2.3.24) gives

4R13
1 R

12
2 +4R13

3 R
23
2 −4R23

2 R
12
2 −8Q123R23

3 −8Q123R12
1 −12R13

1

(
S1 +

1

6
G1

)
−12Q123

(
S2 +

1

6
G2

)
−12R13

3

(
S3 +

1

6
G3

)
+36

(
S3 +

1

6
G3

)(
S1 +

1

6
G1

)
≡ 0,

(2.5.9)
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− 8
(
R23

2

)2
+ 8

(
R13

3

)2 − 8
(
R23

3

)2
+ 8

(
R13

1

)2 − 8R12
1 R

23
3 + 8R12

2 R
13
3

− 12
(
2R12

2 +R13
3

)(
S1 +

1

6
G1

)
+ 12

(
2R12

1 +R23
3

)(
S2 +

1

6
G2

)
+ 12

(
R13

1 −R23
2

)(
S3 +

1

6
G3

)
− 36

(
S1 +

1

6
G1

)2

+ 36

(
S2 +

1

6
G2

)2

≡ 0.

(2.5.10)

Just like in the Euclidean case the 5 quadratic given by the index permu-

tations of (2.5.9) and (2.5.10) conditions do not form an ideal closed under

differentiation. However, the ideal closes after two derivatives. Examining

the quartics in the ideal, and being inspired by the form of (2.5.8), it can be

proven that the square of

2
(
R13

1

)2
+ 2

(
R23

2

)2
+ 2

(
R13

3

)2
+ 2

(
R23

3

)2
+ 2

(
R12

1

)2
+ 2

(
R12

2

)2
+ 3

(
Q123

)2
+R13

1 R
23
2 +R12

1 R
23
3 +R12

2 R
13
3

− 45

(
S1 +

1

6
G1

)2

− 45

(
S2 +

1

6
G2

)2

− 45

(
S3 +

1

6
G3

)2

− 27λK (2.5.11)

is in the ideal and hence can added to the ideal. Taking (2.5.11) alongside the

5 quadratic given by (2.5.9) and (2.5.10) gives, just like the Euclidean case,

an ideal which is closed under differentiation.



Chapter 3

Rotationally Adapted

Variables and the Algebra of

Constants

The purpose of this chapter is two-fold, firstly it redefines our variables in a

rotationally adapted form by writing them as SO(3,C) representations. The

use of representations is a very important technique in this thesis and the

classification result in chapter 5 hinges on their use. Secondly, this chapter

examines the space of higher-order constants and provides a rigorous proof for

the existence of a quartic identity between the second-order constants. The

explicit form of this quartic identity is then given directly from the defining

equations and their integrability conditions.

In §3.1 the action of the Euclidean group is examined and then used in

§3.2 to define a set of SO(3,C) representations.

In §3.3 the rotation representations are used to study the dimension of the

space of constants of order 2, 3, 4, 6 and 8, calling on results from the Ref. [12]

as needed. This examination proves that is a linear relationship between in

the space of (up to) the quartic monomials and this identity provides the func-

tional relationship between the 6 linearly-independent second-order constants,

answering a open question from the literature [36].

Finally in §3.4 the algebra of constants generated from the iterated Pois-

son brackets of the second-order constants is briefly discussed. This algebra

is known to close polynomially and has been called a ‘quadratic algebra’, al-

24
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though this terminology does not appear to be standard outside the field of

superintegrable systems. Part of the general structure of the quadratic alge-

bra is demonstrated by explicitly stating the form of the fourth-order identity

between the second-order constants1 proven to exist in §3.3. Until now the

general form of the quartic identity was unknown, but here it is written out

explicitly as a one dimensional rotation representation (see figure 3.1).

3.1 Local Action of the Euclidean Group

The Action of the Lie Group SO(3,C) and Lie algebra so(3,C)

Consider a differentiable change of coordinates x = F (u) which fixes the origin

and preserves the form of the Euclidean metric

dx2
1 + dx2

2 + dx2
3 = du2

1 + du2
2 + du2

3.

The action of this change of variables on the Hamiltonian is

1

λ(x)

(
p2
x1 + p2

x2 + p2
x3

)
+ V (x) =

1

λ(F (u))

(
p2
u1 + p2

u2 + p2
u3

)
+ V (F (u)).

This group is parameterised by the Lie group of complex orthogonal matrices

and the action of the Lie algebra can be used to create rotation representations

from the most of the variables (e.g. xi, pxi , A
ij
k , V , V,i,. . . etc).

Consider, for example, the subgroup of rotations that fixes the x1 axis. As

a coordinate change this is given by
u1

u2

u3

 =


1 0 0

0 cos(t) sin(t)

0 − sin(t) cos(t)




x1

x2

x3

 (3.1.1)

for varying t. The form of the Hamiltonian (2.3.3) is unchanged by this co-

ordinate transformation and, of course, the second-order constants remain

second-order constants. So the set up in chapter 2 still holds and the poten-

tial must satisfy as set of PDEs of the form (2.3.11). This allows the action

of the rotation group to be induced on the coefficient functions (2.3.16). For

example, returning to the original names for the coefficient functions (i.e. Aijk ),

1making the identity eighth-order in the momenta



CHAPTER 3. ROTATIONALLY ADAPTED ALGEBRAS 26

the change of variables (3.1.1) turns V,x1x2 into

cos(t)V,u1u2 + sin(t)V,u1u3 = A12
1 V,u1 +A12

2 (cos(t)V,u2 + sin(t)V,u3)

+A12
3 (− sin(t)V,u2 + cos(t)V,u3), (3.1.2)

and similarly V,x1x3 becomes

cos(t)V,u1u3 − sin(t)V,u1u2 = A13
1 V,u1 +A13

2 (cos(t)V,u2 + sin(t)V,u3)

+A13
3 (− sin(t)V,u2 + cos(t)V,u3). (3.1.3)

These can be used to derive the equations

V,u1u2 = (A12
1 cos(t)−A13

1 sin(t))V,u1

+ (A12
2 cos(t)2 − (A13

2 +A12
3 ) sin(t) cos(t) +A13

3 sin(t)2)V,u2

+ (A12
3 cos(t)2 + (A12

2 −A13
3 ) cos(t) sin(t)−A13

2 sin(t)2)V,u3 ,

V,u1u3 = (A13
1 cos(t) +A12

1 sin(t))V,u1

+ (A13
2 cos2(t) + (A12

2 −A13
3 ) cos(t) sin(t)−A12

3 sin2(t))V,u2

+ (A13
3 cos2(t) + (A13

2 +A12
3 ) cos(t) sin(t) +A12

2 sin2(t))V,u3 . (3.1.4)

The new coefficients can now be read off from equations like those above, for

example

Ã12
1 (u; t) = (A12

1 cos(t)−A13
1 sin(t)),

Ã13
1 (u; t) = (A13

1 cos(t) +A12
1 sin(t)). (3.1.5)

This expresses the new coefficient functions in terms of the old ones, and

allows an action of the SO(3,C) Lie group to be induced on the Aijk .

The action of the so(3,C) Lie algebra is given by examining the derivative

of this action at t = 0, denoting this operator by J1 the Lie algebra action

corresponding to (3.1.5) is

J1(A12
1 ) =

dÃ12
1 (u; t)

dt

∣∣∣∣∣
t=0

= −A13
1 ,

J1(A13
1 ) =

dÃ13
1 (u; t)

dt

∣∣∣∣∣
t=0

= −A12
1 . (3.1.6)

The Lie algebra action of rotations around the x1, x2 and x3 axes will be

denoted J1, J2 and J3 respectively. The action of this Lie algebra on the

coordinates (with the identification x̃ = u) is shown table 3.1, and the action

on the coefficient functions {Q,R,S} is given in table 3.2.



CHAPTER 3. ROTATIONALLY ADAPTED ALGEBRAS 27

Jα(xi) J1 J2 J3

x1 0 −x3 x2

x2 x3 0 −x1

x3 −x2 x1 0

Table 3.1: The so(3,C) action on the coordinates

Jα(•) J1 J2 J3

S1 0 −S3 S2

S2 S3 0 −S1

S3 −S2 S1 0

R12
1 R13

1 −2Q123 3R12
2 +R13

3

R12
2 2Q123 −R23

2 −3R12
1 −R23

3

R13
1 −R12

1 −3R13
3 −R12

2 2Q123

R13
3 −2Q123 3R13

1 +R23
2 R23

3

R23
2 3R23

3 +R12
1 R12

2 −2Q123

R23
3 −3R23

2 −R13
1 2Q123 −R13

3

Q123 R13
3 −R12

2 R12
1 −R23

3 R23
2 −R13

1

Table 3.2: The so(3,C) action on the coefficient functions

Rotationally Adapted Variables (and the standard

normalisation)

The action of the so(3,C) Lie algebra shown in table 3.2 makes it clear that the

span of the {S} variables is an invariant subspace under this action. This is

because the action of SO(3,C) on the Si’s forms an irreducible representation.

It is clear from direct inspection that {Q,R} variables also form a repre-

sentation, but it is not completely clear whether or not the {Q,R} variables

can be decomposed into the direct sum of smaller representations. To answer

this question systematically, the following standard Lie algebra operators are

introduced

J+ = iJ1 − J2, J0 = iJ3, J− = iJ1 + J2, (3.1.7)



CHAPTER 3. ROTATIONALLY ADAPTED ALGEBRAS 28

which will be referred to as the raising, level-set and lowering operators re-

spectively. These operators satisfy the commutation relations

[J0, J+] = J+, [J+, J−] = 2J0, [J0, J−] = −J−. (3.1.8)

The irreducible subspaces are now identified by their so-called highest weight

vectors, that is, eigenvectors of J0 vanishing under the raising operator J+.

On the 10-dimensional space of coefficient functions there are two such highest

weight vectors. One with eigenvalue +1 and one with eigenvalue +3. These

split the 10 variables into a 3-dimensional and a 7-dimensional representation.

Specifically the eigenvectors under J0 are given by

X±1 = iS2 ± S1,

X0 = −S3

√
2 (3.1.9)

and

Y±3 = R12
1 +

1

4
R23

3 ± i
(
R12

2 +
1

4
R13

3

)
,

Y±2 =
1

4

√
6
(
i
(
R13

1 −R23
2

)
∓ 2Q123

)
,

Y±1 =
1

4

√
15
(
R23

3 ∓ iR13
3

)
,

Y0 = −1

2
i
√

5
(
R13

1 +R23
2

)
. (3.1.10)

Here the eigenvalue is indicated in the subscript of the X,Y variables. These

eigenvectors have been scaled so as to satisfy the following relations for an

n-dimensional representation. Given an eigenvector Fm with eigenvalue m in

a representation whose highest weight is l = (n−1)/2, the action of the raising

and lowering operators is given by

J+Fm =
√

(l −m)(l +m+ 1)Fm+1,

J−Fm =
√

(l +m)(l −m+ 1)Fm−1,

J0Fm = mFm. (3.1.11)

This normalisation for an rotation representation is a quite common one and

will be appear again briefly when describing the results in chapter 5.

Another normalisation, which was found to be convenient in describing

the result of the following section, comes from considering rotation represen-

tations as binary forms. Further details about this interpretation of rotation
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representations can be found in appendix A. Because of the conciseness of the

binary form description the rotation representations described in the rest of

this chapter will be given as binary forms.

Consider an (n + 1)-dimensional representation with eigenvectors Fm. A

new set of variable ak can be defined from the identification below

An(r, s) =
n∑
k=0

(−1)k

√(
n

k

)
F−n

2
+ks

krn−k

=
n∑
k=0

(
n

k

)
aks

krn−k

= a0s
n + na1rs

n−1 +
n(n− 1)

2
a2r

2sn−2 + . . .+ anr
n. (3.1.12)

The induced action of the rotation Lie algebra on the new variables ak is given

by

J+(ak) = −(n− k)ak+1.

J0(ak) =
(
k − n

2

)
ak,

J−(ak) = −kak−1. (3.1.13)

The nice thing about this scaling is that the raising operator acts in an iden-

tical manner near the highest-weight vector, e.g. J+(an−1) = −an regardless

of the dimension of the representation. Because of this a combination of an−k

that vanishes under J+ for an (n + 1)-dimensional representation will still

vanish if the coefficient bm−k from an (m + 1)-dimensional representation is

substituted, provided m and n are larger than the smallest given k. So this

removes a lot of the representation dependent factors that appear when con-

sidering the construction of highest-weight vectors.

Constructing rotation representation: tranvectants and partial

derivatives

Given a set of rotation representations further representations can easily be

constructed. One construction method is to use the transvectant operator.

Given two representations as binary forms A(r, s), B(r, s) their nth transvec-

tant is defined to be

(A,B)[n] =
1

(n!)2

n∑
k=0

(−1)k
(
n

k

)
∂nA

∂kr∂n−ks

∂nB

∂n−kr∂ks
. (3.1.14)
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The binary form (A,B)[n] also carries a rotation representations. By recur-

sively applying the transvectant to the newly constructed representations a

large set of representations can be obtained. The representations obtained

from the transvectant have eigenvectors which are higher-order polynomials of

the eigenvectors of the input representations. Conversely, every representation

constructed from higher order polynomials of a given base set of representa-

tions can be written out in terms of transvectants of those base representation

(for a proof see Ref. [49] regarding the transvectant and the joint covariants

of binary forms).

Partial derivatives with respect to the xi’s can also be used to map repre-

sentations to representations. These representations can also be systematically

constructed as follows2. Consider the operators

∂+ = i∂2 + ∂1,

∂0 = ∂3,

∂− = i∂2 − ∂1, (3.1.15)

which will be referred to as the raising derivative, the level-set derivative and

the lowering derivative. Being derivatives these satisfy the obvious commuta-

tion relations

[∂−, ∂+] = 0, [∂+, ∂0] = 0, [∂−, ∂0] = 0.

More interestingly are the commutators of the partial derivatives with the Lie

algebra action, shown in table 3.3. The first thing to notice is that, given an

eigenvector vλ of the J0 operator with eigenvalue λ the following hold,

J0∂+(vλ) = (λ+ 1)∂+(vλ),

J0∂0(vλ) = λ∂0(vλ),

J0∂−(vλ) = (λ− 1)∂−(vλ). (3.1.16)

So ∂+(vλ), ∂0(vλ), ∂−(vλ) are also eigenvectors of J0 with raised, unchanged

and lowered eigenvalues respectively. Furthermore, if vλ is a highest weight

vector then the commutation relations imply

J+∂+(vλ) = 0, (3.1.17)

2If the partial derivatives are considered to be a three-dimensional representations (with
associated binary form) then the construction that follows can also be described in the form
of a transvectant.
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[Jα, ∂β] ∂+ ∂0 ∂−
J+ 0 −∂+ −2∂0

J0 ∂+ 0 −∂−
J− −2∂0 −∂− 0

Table 3.3: Table of J, ∂ commutators

i.e. ∂+(vλ) is a highest weight vector. Unfortunately the same statement does

not apply to ∂0 and ∂−, but a similar statement is given by the following

theorem.

Theorem 3.1.18. Given an (n + 1)-dimensional representation of the form

(3.1.12), where n ≥ 2, there are three representations made from the first-order

partial derivatives and they have the highest-weight vectors

bn+1 = ∂+ (an) , (3.1.19)

cn = ∂0 (an)− ∂+ (an−1) , (3.1.20)

dn−1 = ∂− (an)− 2∂0 (an−1) + ∂+ (an−2) . (3.1.21)

Proof. Applying the operator J+ to bn+1 above, the relations (3.1.13) and the

commutators in table 3.3 can be used to show

J+ (bn+1) = J+∂+ (an)

= ∂+J+ (an)

= 0, (3.1.22)

and

J+ (cn) = J+

(
∂0 (an)− ∂+ (an−1)

)
=

(
∂0J+ (an)− ∂+ (an)

)
− ∂+J+ (an−1)

= −∂+ (an) + ∂+ (an)

= 0, (3.1.23)
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and finally

J+ (dn−1) = J+

(
∂− (an)− 2∂0 (an−1) + ∂+ (an−2)

)
=

(
∂−J+ (an)− 2∂0 (an)

)
− 2

(
∂0J+ (an−1)− ∂+ (an−1)

)
+ ∂+J+ (an−2)

= −2∂0 (an) + 2∂0 (an) + 2∂+ (an−1)− 2∂+ (an−1) ,

= 0. (3.1.24)

This proves that each element vanishes under J+. Since (3.1.19)-(3.1.21) are

each clearly eigenvectors of the J0 operator (with three distinct eigenvalues)

these form highest-weight vectors for three distinct representations. A simple

count of dimensions shows these are sufficient to cover the space of first-order

derivatives.

For the special case where an is a one-dimensional representation the three-

dimensional representation given by (3.1.19) suffices to cover the space of first

derivatives.

In the next section these constructions will be employed to study the di-

mension of the space of constants. For this some new notation will be defined.

Given a binary form carrying a representationR(r, s) the three representations

constructed from its first derivatives will be denoted

∂C+(R), ∂C0 (R), ∂C−(R).

Letting π be the projection of a representation onto its highest weight vector,

these will be defined so they satisfy

π(∂C+(R)) =
−i
2
∂+(rn),

π(∂C0 (R)) = i

(
∂0(rn)− ∂+(rn−1)

)
,

π(∂C−(R)) =
−i
2

(
∂−(rn)− 2∂0(rn−1) + ∂+(rn−2)

)
. (3.1.25)

The scaling in the highest weight eigenvector of (3.1.25) was chosen partly to

make the factors in the next section appear as simple as possible, and in some

sense is natural given the choice of variables in that section.
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3.2 More Rotationally Adapted Variables

In Ref. [12] the closure of the algebra of constants (the quadratic algebra)

was proven by considering the maximal possible dimension of the space of

constants up to order 6. This same approach could be used to rigorously

establish the existence of the quartic-identity between the second-order con-

stants, but until now this has not been done. This section begins by using

rotation representations to re-derive the result of Ref. [12]. The primary pur-

pose of this re-derivation is to show how representations can be used to achieve

this goal. These techniques are then carried further to prove the existence of

the aforementioned quartic identity. In the final section of this chapter the

rotation representations are used to explicitly demonstrate the form of this

quartic identity.

The motivation to use representation is two-fold: on the one-hand it makes

some of the results more concise to state (for example the quartic identity in

figure 3.1 would span several pages if written out directly) and on the other

hand, by restricting attention to the highest weight vectors it also focuses the

calculations onto a much smaller set of equations which, ultimately, allowed

the computations to be done in a case which seemed infeasible before.

Further sl(2,C) ' so(3,C) representations

The coefficients functions {Q,R,S} have been set up as rotation representa-

tion in the previous section. The purpose of this section is to set up the rest

of the variables as rotation representations.

To start with, observe that the form of the Hamiltonian

H =
1

λ

(
p2
x1 + p2

x2 + p2
x3

)
+ V (x1, x2, x3), (3.2.1)

is invariant under rotations. This makes the Hamiltonian a one-dimensional

rotation representation. To make this more explicit consider the change of

coordinates

w0 = −ix1 + x2,

w1 = −ix3,

w2 = ix1 + x2. (3.2.2)

The action of the so(3) Lie algebra on these coordinates is given by
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Jα(wβ) w0 w1 w2

J+ 0 −w0 −2w1

J0 w0 0 −w2

J− −2w1 −w2 0

Obviously w0 is a highest weight vector in a three-dimensional representation,

and a written as binary form (cf. appendix A) this is

W(r, s) = w2r
2 + 2w1rs+ w0s

2

= (−ix1 + x2)r2 − 2ix3rs+ (ix1 + x2)s2.

The canonical-momenta for (3.2.2) are

pw0 =
1

2
(ipx1 + px2) ,

pw1 = ipx3 ,

pw2 =
1

2
(−ipx1 + px2) . (3.2.3)

and the action of the so(3) Lie algebra is given by

Jα
(
pwβ
)

pw0 pw1 pw2

J+ pw1 2pw2 0

J0 −pw0 0 pw2

J− 0 2pw0 pw1

Clearly pw2 is a highest weight vector in a three-dimensional representation.

As a binary form this representation is expressible as

P(r, s) = pw0s
2 − pw1rs+ pw2r

2. (3.2.4)

Using these representations the Hamiltonian can be re-written using the transvec-

tant operator (3.1.14). Specifically

H =
2 (P,P)[2]

λ
+ V

=
4pw0pw2 − p2

w1

λ
+ V. (3.2.5)

The unrestricted first derivatives of the potential (i.e. the first order pa-

rameters) can be set up as a 3-dimensional rotation representation

V(r, s) =
∂V

∂w0
s2 − ∂V

∂w1
rs+

∂V

∂w2
r2. (3.2.6)
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The second-order parameter can be set up as the one-dimensional representa-

tion

Vee =
4

3

(
∂2V

∂w0∂w2
− 1

4

∂2V

∂w1
2

)
. (3.2.7)

In terms of the original coordinates the representation Vee is just the symmet-

ric second-order parameter

Vee =
1

3
(V,11 + V,22 + V,33) .

This ‘ee’ notation will be used elsewhere to denote symmetric combinations

of the second order derivatives.

The seven-dimensional representation (3.1.10) re-expressed as a binary

form is

Y(r, s) =

(
R12

1 +
1

4
R23

3 + iR12
2 +

i

4
R13

3

)
r6

+

(
3Q123 +

3i

2
R23

2 −
3i

2
R13

1

)
r5s

+
15

4

(
R23

3 − iR13
3

)
s2r4 + 5i

(
R13

1 +R23
2

)
r3s3 +

15

4

(
R23

3 + iR13
3

)
r2s4

+

(
−3Q123 +

3i

2
R23

2 −
3i

2
R13

1

)
rs5(

R12
1 +

1

4
R23

3 − iR12
2 −

i

4
R13

3

)
s6, (3.2.8)

and the binary form version of the three-dimensional representation (3.1.9) is

X (r, s) = (iS2 + S1)r2 + 2S3rs+ (iS2 − S1)s2. (3.2.9)

The derivatives of the conformal factor λ = exp(G) also will appear, and so

there is a need to define the representations

Z(r, s) = (i∂x2G+ ∂x1G)r2 + 2 (∂x3G) rs+ (i∂x2G− ∂x1G)s2 (3.2.10)

and

Zee =
4

3

(
∂2G

∂w0∂w2
− 1

4

∂2G

∂w1
2

)
. (3.2.11)
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Concise Forms for the Governing Equations

These representations and the derivative representations allow for the govern-

ing equations to be written in more compact form. For example equations the

5 PDEs (2.3.11) can be written as the single representation

∂C+∂
C
+(V ) =− 1

15

(
Y, ∂C+(V )

)[2]
+ 3i

(
X , ∂C+(V )

)[0]
. (3.2.12)

where ∂C+ has been defined in (3.1.25).

Similarly the 30 derivatives of the {Q,R,S} variable given by (2.3.17)-

(2.3.20) can expressed as the following 6 representations

∂C+(Y) = 2i (Y,XC)[0] − 1

675
(Y,Y)[2] ,

∂C0 (Y) = 0,

∂C−(Y) =
−i
10

(Y,XC)[0] − 2

225
(Y,Y)[4] ,

∂C+ (XC) =
i

2
(XC ,XC)[0] − 2i

2025
(Y,Y)[4] ,

∂C0 (XC) = 0,

∂C− (XC) =
−i
4

(XC ,XC)[0] − 11i

90
(Y,Y)[6] , (3.2.13)

where XC = X − 1
3Z.

3.3 The Algebra of Constants (Quadratic Algebra)

Since the Poisson-commutator of two constants of the motion is again a con-

stant of the motion and since the Poisson-commutator of an order d1 constant

with a order d2 constant is generically of order d1 + d2 − 1, the order of the

constants obtained under repeatedly taking the Poisson-commutators (start-

ing with the second-order constants) will grow without bound. In this way

the second-order constants will typically generate an infinite dimensional Lie

algebra of constants. The constant in this algebra cannot be independent but

they need not be related by polynomial equations. However, in the case of a

maximum-parameter second-order superintegrable system it has been shown

that this algebra closes at the third-order. That is to say, all constants of

order greater than 3 are polynomial in the second-order constant and their

Poisson-brackets (i.e. polynomials in Li and {Lj , Lk}PB).
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Second-order Constants in Rotationally Adapted Variables

Second-order constants, already discussed in §2.3, are now revisited in the

rotationally adapted framework. This allows the techniques used in the rest

of this chapter to be demonstrated before the equations get too complicated

to write down in full. The technique used here is to rewrite the constants

(2.3.4) in such a way that makes the rotationally adapted variables obvious

(i.e. with the variables explicitly chosen to form irreducible rotation represen-

tations).

Beginning with the purely second-order part, there are only two represen-

tations second order in the momenta,

(P,P, )[0] = P2 and (P,P, )[2] . (3.3.1)

In order to make the one-dimensional representation corresponding to the

second-order part of the second-order constant, it is necessary to define the two

representations that balance the size of (3.3.1). This means a 5-dimensional

representations

A4(r, s) =

4∑
i=0

(
4

i

)
a

(4)
i ris4−i

= a
(4)
0 s4 + 4a

(4)
1 rs3 + 6a

(4)
2 r2s2 + 4a

(4)
3 r3s+ a

(4)
4 r4, (3.3.2)

and a 1-dimensional

A0(r, s) = a
(0)
0 . (3.3.3)

Using these the leading part of the second order constant can be defined as

K2 =
(
A4,P2

)[4]
+
(
A0, (P,P, )[2]

)[0]
, (3.3.4)

which allows for all 6 second-order monomials in the momenta.

The zeroth-order part in the second-order constant can also be expressed

as a representation, however this one is not required to balance any momenta

and so it can simply be defined as the 1-dimensional representation

B0(r, s) = b
(0)
0 . (3.3.5)

So the zeroth-order part by will be defined to be

K0 = B0. (3.3.6)
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Using the above, the rotationally adapted form of (2.3.4) is given by

L = K2 +K0

=
(
A4,P2

)[4]
+
(
A0, (P,P, )[2]

)[0]
+ B0. (3.3.7)

The equivalence between the form (2.3.4) and (3.3.7) is given by

a
(4)
4 = a22 − a11 − 2ia12,

a
(4)
3 = −a13 − ia23,

a
(4)
2 =

1

3
(a22 + a11 − 2a33),

a
(4)
1 = a13 − ia23,

a
(4)
0 = a22 − a11 + 2ia12, (3.3.8)

and

a
(0)
0 =

2

3
(a11 + a22 + a33), (3.3.9)

and finally

b
(0)
0 = W. (3.3.10)

For the types of constants that are of interest in this thesis, the term B0 will

be linear in the parameters (i.e. linear in the coefficients of Vee and V(r, s)).

To construct such a B0 we define a pair of representations of the same size as

the pair (3.2.6) and (3.2.7), namely

F0,0(r, s) = f
(0,0)
0 ,

F0,3(r, s) =
2∑

k=0

(
2

k

)
f

(0,3)
k rks2−k. (3.3.11)

Using these a suitable form for B0 is given by

B0 =
(
F(0,0),Vee

)[0]
+
(
F(0,3),V

)[2]

= f
(0,0)
0 Vee + f

(0,3)
2 V,w0 + f

(0,3)
1 V,w1 + f

(0,3)
0 V,w2 (3.3.12)

which suffices to cover all four first-order monomials in the parameters. Note

that the parameter V (i.e. the value of the potential at the regular point) does

not need to appear in this set up because, without loss of generality, it can be

assumed to be zero.
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Taking the Poisson bracket of this second-order constant with the Hamil-

tonian gives the first order condition{
K0,

4pw0pw2 − p2
w1

λ

}
PB

+ {K2, V }PB ≡ 0.

Expanding this, there are 12 monomials in coefficients of Vee,V(r, s),P(r, s).

The coefficients of these 12 monomials must vanish identically, giving a set of

12 conditions. From these 12 conditions a set of 4 highest-weight vectors can

be constructed. Highest weight vectors are, by construction, adapted to the

current orientation of w0, w1, w2. But since there is nothing special about the

current orientation these 4 highest weight vectors must vanish independent

of the choice of coordinates. The only way this is possible is if the entire

representation vanishes identically and this implies the following conditions,

written in the form of representations,

∂C+ (F0,0) =
−5i

2
(X2,F0,0)[0] − 1

2
F0,3,

∂C0 (F0,3) =
5i

4
(X2,F0,3)[1] ,

λA4 − 2∂C+ (F0,3) = F0,0

(
52

2025
(Y,Y)[4] − 14i

45
(X ,Y)[2] − 2i

27
(Z,Y)[2] − 2 (X ,X )[0]

)
− 2

15
(F0,3,Y)[2] + i (F0,3,X )[0] ,

λA0 −
2

3
∂C− (F0,3) = F0,0

(
29

27
(Y,Y)[6] − 5

6
(X ,X )[2] − 5

9
(X ,Z)[2] +

5

54
(Z,Z)[2] − 10

3
Zee
)

+
10i

3
(F0,3,X )[2] . (3.3.13)

These leave the six variables in the two representations ∂C+ (F0,3), ∂C− (F0,3)

unrestricted (or alternatively A4,A0 unrestricted). Likewise the values of F0,3

and F0,0 are also unrestricted, but the value of these four variables only affects

the trivial additive constant, and so can be neglected.

From the third-order condition{
K2,

4pw0pw2 − p2
w1

λ

}
PB

≡ 0

two more highest weight vectors can be found, representing the conditions

∂C+ (A4) = 0,

4∂C− (A4) + 10∂C+ (A0) =
5i

3
(A4,Z2)[2] + 5i (A0,Z2)[0] . (3.3.14)
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Constructing the raising, lowering and level-set derivative representations of

(3.3.13) gives a further 8 conditions

∂C+
(
∂C+ (F0,0)

)
= . . . ,

∂C−
(
∂C+ (F0,0)

)
= . . . ,

∂C+
(
∂C0 (F0,3)

)
= . . . ,

∂C−
(
∂C0 (F0,3)

)
= . . . ,

λ∂C+
(
A4 − 2∂C+ (F0,3)

)
= − i

2
λA4Z + . . . ,

λ∂C0
(
A4 − 2∂C+ (F0,3)

)
= − i

8
λ (A4,Z)[1] + . . . ,

λ∂C−
(
A4 − 2∂C+ (F0,3)

)
= − i

12
λ (A4,Z)[2] + . . . ,

λ∂C+

(
A0 −

2

3
∂C− (F0,3)

)
= − i

2
λA0Z + . . . , (3.3.15)

where the terms not written down are just the appropriate derivative con-

structions applied to the left-hand sides of (3.3.13). The missing terms con-

tain (at worst) first-order derivative of the Fi,j representations, and so the

left-hand sides of (3.3.15) can be used to determine how many of the first-

order derivatives of the Ai and second-order derivatives of the Fi,j can be

solved for. In total the 10 conditions from (3.3.14) and (3.3.15) cover the 6

representations constructed from second-order derivatives of F0,0,F0,3 and the

4 first-order derivatives of A0,A4. Thus the aforementioned variables (which

will be denoted {∂A, ∂2F}) can be solved for explicitly in terms of lower order

derivatives.

The conclusion, therefore, is that a second-order constants depends only on

the value of ∂C+ (F0,3) , ∂C− (F0,3). The representation F0,3 is a three-dimensional

representation and therefore ∂C+ (F0,3) , ∂C− (F0,3) are respectively of dimension

5 and 1. So the space of purely3 second-order constants has dimension at most

6. This is consistent with the (5 =⇒ 6) theorem which states that the space

of purely second-order constants is exactly 6.

Third-order Constants

This section examines the classical structure theory for the space of third order

constants. To do so, note there are two representations in the 10-dimensional

3meaning the additive constant is begin ignored.
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space spanned by the monomials cubic in the momenta. These are the 7-

dimensional representation (
P2,P

)[0]
= P3 (3.3.16)

and the three-dimensional representation(
P2,P

)[2]
= 4P (P,P)[2] = 2pw2(4pw0pw2 − p2

w1
)r2 + · · · . (3.3.17)

Recycling the previous notation, a pair of representation balancing (3.3.16)

and (3.3.17) are defined via

A6(r, s) =
6∑
i=0

(
6

i

)
a

(6)
i ris6−i

= a
(6)
0 s6 + 6a

(6)
1 rs5 + 15a

(6)
1 r2s4 + . . .+ a

(6)
6 r6, (3.3.18)

and

A2(r, s) =
2∑
i=0

(
6

i

)
a

(2)
i ris2−i

= a
(2)
0 s2 + 2a

(2)
1 rs+ a

(2)
2 r2. (3.3.19)

Using these the purely third-order part of the constant is then defined to be

K3 =
(
A6,P3

)[6]
+
(
A2,

(
P2,P

)[2]
)[2]

. (3.3.20)

Similarly to the case of second-order constants, the linear part of the third-

order constant will be assumed linear in the parameters. There is one repre-

sentation linear in the momentum

P

and two representations linear in the parameters

V,Vee.

The representation P only needs a 3-dimensional representation (a degree

2 binary form) to balance it out under transvection. It is not too difficult

to determine that there four possible ways such a representation could be
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constructed from transvectants with V,Vee. Defining the representations,

F2,0(r, s) = f
(2,0)
0 ,

F2,1(r, s) = f
(2,1)
0 ,

F2,2(r, s) = f
(2,2)
0 s2 + 2f

(2,2)
1 rs+ f

(2,2)
2 r2,

F2,3(r, s) =
6∑
i=0

(
4

i

)
f

(2,3)
i ris4−i

= f
(2,3)
0 s4 + 4f

(2,3)
1 rs3 + 6f

(2,3)
1 r2s2 + 4f

(2,3)
3 r3s+ f

(2,3)
4 r4,

(3.3.21)

a suitable form for the linear part is be given by

K1 =
(

(F2,0,Vee)[0] + (F2,1,V)[0] + (F2,2,V)[1] + (F2,3,V)[2] ,P
)[2]

. (3.3.22)

The third order constant can now be written in the form

K3 = K3 +K1. (3.3.23)

The Poisson-bracket of the Hamiltonian and K3 is fourth-order in the momenta

and consists of fourth, second and zeroth-order components that must vanish

independently. Considering the equation which is zeroth-order in the momenta

{V,K1}PB ≡ 0

there are 3 highest-weight conditions can be found

f
(2,3)
4 = 0, f

(2,1)
2 = 0, f

(2,0)
0 = 0.

As before, there is nothing special about this particular orientation and so

these conditions will only be satisfied if

F2,0 = 0,F2,1 = 0,F2,3 = 0. (3.3.24)

Keeping in mind (3.3.24), the equations quadratic in the momenta are

given by{
V,
(
A6,P3

)[6]
+
(
A2,

(
P2,P

)[2]
)[2]
}
PB

+

{
H0,

(
F21, (V,P)[1]

)[2]
}
PB

≡ 0.

(3.3.25)
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From these conditions four highest-weight conditions can be calculated and

these imply, written as representations, the following conditions

A6 =
−4

9λ
(F2,2,Y)[1] ,

A2 =
i

2λ

(
F2,2,X +

1

6
Z
)[1]

,

∂C+ (F2,2) =
−1

45
(F2,2,Y)[2] − 3i

2
(F2,2,X )[0] ,

∂C0 (F2,2) =
−i5

4

(
F2,2,X −

2

15
Z
)[1]

. (3.3.26)

This leaves only the values of F2,2 and ∂C−(F2,2) free.

Clearly all derivatives of A6 and A2 can be calculated using (3.3.26). Of

the six possible ways to construct the representations for the second-order

derivatives of F2,2, one is trivial,

∂C−(∂C0 (F2,2)) = 0

and two give the same representation up to scaling

∂C+(∂C0 (F2,2)) = 2∂C0 (∂C+(F2,2)).

The four remaining representations are independent and cover the space of

second-order derivatives of F2,2 and hence all second-order derivatives of F2,2

can be solved for. Thus a third-order constant only depends on the values of

the three-dimensional representation F2,2 and one-dimensional representation

∂C−(F2,2). This means the space of third-order constants has dimension ≤ 4.

For most systems the dimension 4 is achieved, the exceptions are given by the

following theorem (Corollary 5 in Ref. [12]).

Theorem 3.3.27. Let V be a superintegrable maximum-parameter potential

on a conformally flat space, not a Stäckel transform of the isotropic oscillator.

Then the space of truly third-order constants of the motion is four-dimensional

and is spanned by Poisson brackets of the second-order constants of the motion.

Fourth-order constants

The space of fourth-order monomials in the momenta is 15-dimensional and

splits into the three representations

P4,
(
P2,P2

)[2]
,
(
P2,P2

)[4]
. (3.3.28)
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These representations are of respective dimension 9, 5 and 1. To construct a

generic fourth-order combination the following three representations, we define

three representation of the same size as (3.3.28)

A8(r, s) =
8∑
i=0

(
8

i

)
a

(8)
i ris8−i

= a
(8)
0 s8 + 8a

(8)
1 rs7 + 28a

(8)
1 r2s4 + . . .+ a

(8)
6 r6, (3.3.29)

A4(r, s) =

4∑
i=0

(
4

i

)
a

(4)
i ris4−i

= a
(4)
0 s4 + 4a

(4)
1 rs3 + 6a

(4)
1 r2s2 + a

(4)
3 r3s+ a

(4)
4 r4, (3.3.30)

A0(r, s) = a
(0)
0 . (3.3.31)

These are used to balance the sizes of (3.3.28) and, in some sense, “complete”

them as a 1-dimensional representation. For this point forward representation

like these will be referred to as complementary representation. For the second-

order part, two representations complementary to those in (3.3.1) are defined

to be

B4(r, s) =

4∑
i=0

(
4

i

)
b
(4)
i ris4−i

= b
(4)
0 s4 + 4b

(4)
1 rs3 + 6b

(4)
1 r2s2 + . . .+ b

(4)
4 r4, (3.3.32)

B0(r, s) = b
(0)
0 . (3.3.33)

And the finally the zeroth-order term is defined to be

C0(r, s) = c
(0)
0 . (3.3.34)

The representations B4, B0 and C0 must be respectively linear, linear and

quadratic in the parameters. From the previous sections it should be clear

that there are two first order representations in the parameters

V, Vee.

The space of monomials quadratic in the parameters splits into four represen-

tations

V2
ee, VeeV, (V,V)[0] = V2, (V,V)[2] . (3.3.35)
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Considering the most generic way in which representations can be transvected

with V, Vee to give representations of the form B4 and B0 leads to the following

definitions

B4 = F4,0Vee + (F4,1,V)[0] + (F4,2,V)[1] + (F4,3,V)[2] ,

B0 = F0,0Vee + (F0,3,V)[2] . (3.3.36)

The dimension of the representations Fi,j is implicit in the set up above4

(e.g. F0,3 and F4,1 are of dimension 3).

Likewise the most general form of C0 is given by

C0 = G0,0V2
ee+Vee (G0,1,V)[0] + Vee (G0,2,V)[1] + Vee (G0,3,V)[2]

+
(
G0,4, (V,V)[2]

)[0]
+
(
G0,5,V2

)[0]
+
(
G0,6,V2

)[1]

+
(
G0,7,V2

)[2]
+
(
G0,8,V2

)[3]
+
(
G0,9,V2

)[4]
, (3.3.37)

where the Gi,j are chosen such that C0 will be a one-dimensional representa-

tion. Note in order for the final representation to be an invariant (i.e. one-

dimensional) the representations G0,1, G0,2, G0,5, G0,6, G0,7 and G0,8 must all be

identically zero, they are only shown here to indicate how the representations

quadratic in the parameters will be constructed in later cases.

A generic fourth-order constant can now be written in the form

K4 = K4 +K2 +K0, (3.3.38)

where

K4 =
(
A8,P4

)[8]
+
(
A4,

(
P2,P2

)[2]
)[2]

+
(
A0,

(
P2,P2

)[4]
)[0]

,

K2 =
(
B4,P2

)[0]
+
(
B0, (P,P)[2]

)[0]
,

K0 = C0. (3.3.39)

The Poisson-Bracket {H,K4}PB ≡ 0 splits into conditions based on the

degree in the momenta. The 1st order conditions give

{H0,K0}PB + {V,K2}PB ≡ 0.

4To determine the dimension it is helpful to remember that the rth transvectant of an
nth-degree binary form and mth-degree binary form will be of degree n + m− 2r.
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From these conditions a set of eight highest-weight vectors can be determined.

In terms of the representations these give the conditions

∂C+ (G0,0) = −1

2
G0,3 − 5i (G0,0,X2)[0] , (3.3.40)

∂C0 (G0,3) =
5i

2
(X2,G0,3)[1] , (3.3.41)

λF4,0 − 2∂C+ (G0,3) = G0,0

(
104

2025
(Y,Y)[4] − 28i

45
(X ,Y)[2] − 4i

27
(Z,Y)[2] − 4 (X ,X )[0]

)
− 2

15
(G0,3,Y)[2] + 6i (G0,3,X )[0] + 2G0,9, (3.3.42)

F0,0 −
2

3
∂C+ (G0,3) = G0,0

(
58

27
(Y,Y)[6] − 5

3
(X ,X )[2] − 10

9
(X ,Z)[2] +

5

27
(Z,Z)[2] − 20

3
Zee
)

+ 5i (G0,3,X )[2] + 2G4,0, (3.3.43)

F4,3 −
2

15
∂C+G0,9 = G0,3

(
52

30375
(Y,Y)[4] − 2

15
(X ,X )[0] − 14i

675
(Y,X )[2] − 2i

405
(Y,Z)[2]

)
− 2

675
(G0,9,Y)[2] − 4

15
(G0,4,Y)[0] +

2i

15
(G0,9,X )[0] ,

(3.3.44)

F0,3 −
4

3
∂C− (G0,9) +

2

3
∂C+G0,4 =

G0,3

(
29

27
(Y,Y)[6] − 5

6
(X ,X )[2] − 5

9
(X ,Z)[2] +

5

54
(Z,Z)[2] − 10

3
Zee
)

+
5i

3
(G0,9,X )[2] , (3.3.45)

F4,1 +
4

5
∂C− (G0,9)− 4∂C+ (G0,4) =

1

6

(
G0,3,−

6

5
(X ,X )[0] − 14i

75
(X ,Y)[2] − 2i

45
(Z,Y)[2] +

52

3375
(Y,Y)[4]

)[2]

+ 12i (G0,4,X )[0] − 4i

5
(G0,9,X )[2] − 4

25
(G0,9,Y)[4] , (3.3.46)

F4,2 −
1

3
∂C0 (G0,9) =

5

144

(
G0,3,−

6

5
(X ,X )[0] − 14i

75
(X ,Y)[2] − 2i

45
(Z,Y)[2] +

52

3375
(Y,Y)[4]

)[1]

+
i

3
(G0,9,X )[1] − 1

120
(G0,9,Y)[3] . (3.3.47)
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These are 8 representation cover 30 out of the 54 variables in the set {F , ∂G},
leaving 24 to be freely specified..

Examining components of {H,K4}PB ≡ 0, which are third-order in the

momenta, gives the equation

{H0,K2}PB + {V,K4}PB ≡ 0.

The subsequent equations can be used to solve for 8 of the representation in

the set {A, ∂F}. Using ∂C (3.1.25) the partial derivatives of (3.3.40)-(3.3.47)

can be constructed. This construction gives an additional 20 representations

whose highest derivatives are in the set {A, ∂F , ∂2G}. Together these 28

representations cover 126 of the 147 possible variables in {A, ∂F , ∂2G}, leaving

21 to be freely specified.

Finally the 5th order conditions

{H0,K4}PB ≡ 0

gives rise to 3 representation, namely

∂C+A8 = 0,

∂C+A4 +
1

27
∂C−A8 = − i

336
(Z,A4)[2] − i

2
(Z,A0)[0] ,

∂C+A0 +
36

5
∂C−A4 = −21i

10
(Z,A4)[2] − i (Z,A0)[0] . (3.3.48)

These 3 representations cover 21 of 45 possible the variables in the set {∂A}.
Taking the partial derivatives of the 28 representations obtained so far

for {A, ∂F , ∂2G} gives an 50 representations on the set {∂A, ∂2F , ∂3G} inde-

pendent from three in (3.3.48). In total these 53 representations completely

cover the 289 variables in the set {∂A, ∂2F , ∂3G} and hence prove that all 289

variables can be solved for in terms of lower order derivatives.

So, ignoring the trivial additive term (i.e. the values of G) the 24 unre-

stricted variables in the set {F , ∂G} and the 21 unrestricted variables in the

set {A, ∂F , ∂2G} implies that the space of fourth-order constants is at most

45-dimensional. A set of 24 of these possible dimensions correspond to the six

purely second-order constants multiplied with the four parameters and hence

the space of truly fourth-order constants is at most 21-dimensional. This

bound of 21 is achieved and the following theorem holds (taken from [12])
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Theorem 3.3.49. Defining the The 21 distinct standard monomials L(i)L(j)

form a basis for the space of purely fourth-order symmetries, where the 6

linearly independent constants have been denoted L(i), i ∈ {1, . . . , 6}

Sixth-order constants

The space of the even-order monomials up to degree 6 in the momenta splits

into 10 representation (including the constant representation). Ordered by

descending degree and size these are

K6 : P6,
(
P3,P3

)[2]
,
(
P3,P3

)[4]
,
(
P3,P3

)[6]
,

K4 : P4,
(
P2,P2

)[2]
,
(
P2,P2

)[4]
,

K2 : P2,
(
P ,P

)[2]
,

K0 : 1. (3.3.50)

To each of these representations we will assign a complementary representation

K6 : A12,A8,A4,A0,

K4 : B8,B4,B0,

K2 : C4, C0,

K0 : D0. (3.3.51)

Where, like before, these are of equal dimension to (3.3.50).

Using this set up we parameterise a sixth-order constant via the form

K6 =
(
A12,P6

)[12]
+
(
A8,

(
P3,P3

)[2]
)[8]

+ . . .

+
(
B8,P4

)[8]
+
(
B4,
(
P2,P2

)[4]
)[4]

+ . . .

+
(
C4,P2

)[4]
+
(
C0, (P,P)[2]

)[0]
+D0. (3.3.52)

For the following discussion, the terms in K6 which are nth order in the

momenta will be referred to as Kn.

The representations Bi, Ci must be respectively linear and quadratic in the

parameters and the explicit form for these can be deduced from (3.3.36) and

(3.3.37). Borrowing the notation from the previous cases, the complemen-

tary that are defined in the construction of Bi’s will be labeled Fi,k and the

complementary representations in Ci’s will be labeled Gi,k.
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The term D0 will be assumed cubic in the parameters and therefore be

constructed by balancing the representations

V3
ee, V2

eeV, Vee (V,V)[2] , VeeV2,
(
V2,V

)[2]
, V3.

Explicitly D0 can be written in the form

D0 = Vee3H0,0 + Vee2 (H0,3,V)[2] + Vee
((
H0,4, (V,V)[2]

)[0]
+
(
H0,9,V2

)[4]
)

+
(
H0,10,

(
V2,V

)[2]
)[0]

+
(
H0,11,

(
V2,V

)[2]
)[1]

+
(
H0,12,

(
V2,V

)[2]
)[2]

+
(
H0,13,V3

)[0]
+
(
H0,14,V3

)[1]
+
(
H0,15,V3

)[2]

+
(
H0,16,V3

)[3]
+
(
H0,17,V3

)[4]
+
(
H0,18,V3

)[5]
+
(
H0,19,V3

)[6]

(3.3.53)

for appropriately sized representations Hi,j . Like before, seven trivial repre-

sentation appear for the sake of notational completeness.

In what follows the notation (n)m will be used as a shorthand for ‘n vari-

ables forming a set of m representations’, if the subscript is dropped it won’t

change the meaning of the following sentences.

The condition

{H,K0}PB + {V,K2}PB ≡ 0

can be shown to put (60)14 linearly independent restrictions (that is 60 con-

dition which lie inside 14 representations of varying dimensions) on the set

{G, ∂H} and consequently leave (60)14 parameters free5. The condition

{H,K2}PB + {V,K4}PB ≡ 0

puts (100)18 restrictions on the set {F , ∂G} and a further (176)36 conditions

can be constructed for the set {∂G, ∂2H}, giving a total of (276)54 restrictions,

and leaving (84)16 parameters free. The condition

{H,K4}PB + {V,K6}PB ≡ 0

gives (84)12 conditions on the set {A, ∂F} and an additional (624)110 condi-

tion can be constructed for the set {∂F , ∂2G, ∂2H}, giving a total of (712)122

conditions and leaving (56)10 parameters free. Finally the condition

{H,K6}PB ≡ 0

5There are (120)28 parameters in total.
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gives (36)4 conditions on the set {∂A} and an additional (1308)196 can be

constructed for the set {∂A, ∂2F , ∂3G, ∂4H} and gives a total of (1344)200

conditions leaving 0 parameters free. Hence the equations close at this level.

So the maximum number of sixth order constants is (200)40 (ignoring

the additive constant). There (60)14 second-order constants with coefficients

quadratic in the parameters and (84)16 combinations of the second-order in

the second-order constants and linear in the parameters. Thus the space of

purely sixth-order constants at most (56)10-dimensional. The following theo-

rem states that this bound is achieved (see Ref. [12]).

Theorem 3.3.54. The 56 distinct standard monomials L(i)L(j)L(k) form a

basis for the space of purely sixth-order symmetries, where the 6 linearly in-

dependent constants have been denoted L(i), i ∈ {1, . . . , 6}

Eighth-order constants

We now venture into new territory and apply the technique to the case of

eighth-order constants. Previous attempts (by the author) to do this without

exploiting the rotational-adapted variables met with limited success. The

analysis will make it clear that there is necessarily an identity at this level

between the second-order constants.

To start, note the space spanned by the even-order monomials up to degree

eight in the momenta splits into fifteen representation (including one constant

representation). Ordered by descending degree and size these are

K8 : P8,
(
P4,P4

)[2]
,
(
P4,P4

)[4]
,
(
P4,P4

)[6]
,
(
P4,P4

)[8]
,

K6 : P6,
(
P3,P3

)[2]
,
(
P3,P3

)[4]
,
(
P3,P3

)[6]
,

K4 : P4,
(
P2,P2

)[2]
,
(
P2,P2

)[4]
,

K2 : P2,
(
P ,P

)[2]
,

K0 : 1. (3.3.55)
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To each of these representations will be assigned a representation

K8 : A16, A12, A8, A4, A0,

K6 : B12, B8, B4, B0,

K4 : C8, C4, C0,

K2 : D4, D0,

K0 : E0, (3.3.56)

which have the same dimensions as (3.3.55).

From these representations the eighth-order constant will be defined by

K8 =
(
A16,P8

)[16]
+
(
A12,

(
P4,P4

)[2]
)[12]

+ . . .

+
(
B12,P6

)[12]
+
(
B8,
(
P3,P3

)[2]
)[8]

+ . . .

+
(
C8,P4

)[8]
+
(
C4,
(
P2,P2

)[4]
)[4]

+ . . .

+
(
D4,P2

)[4]
+
(
D0, (P,P)[2]

)[0]
+ E0, (3.3.57)

and like the previous cases, the terms nth-order in the momenta will be de-

noted by Kn.

Before making the assumptions about where the parameters appear, I will

list all conditions that arise from the vanishing of the Poisson-bracket with

the Hamiltonian. As no assumptions have been made these condition cover all

the previous (even-order) cases. The condition {H0,K0}PB + {V,K2}PB = 0

gives

∂C+(E0) = λ

(
1

12
(D4,V)[2] +

1

2
(D0,V)[0]

)
. (3.3.58)

The condition {H0,K2}PB + {V,K4}PB = 0 gives

∂C+(D4) = λ

(
1

28
(C8,V)[2] + 6 (C4,V)[0]

)
,

∂C−(D4) +
5

2
∂C+(D0) = λ

(
7

2
(D4,V)[2] +

5

3
(D0,V)[0]

)
+

5i

24
(Z,D4)[2] +

5i

4
(Z,D0)[0] . (3.3.59)
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The condition {H0,K4}PB + {V,K6}PB = 0 gives

∂C+(C8) = λ

(
1

44
(B12,V)[2] +

45

2
(B8,V)[0]

)
,

∂C−(C8) + 27∂C+(C4) = λ

(
495

112
(B8,V)[2] + 81 (B4,V)[0]

)
+

9i

112
(Z, C8)[2] +

27i

2
(Z, C4)[0] ,

∂C−(C4) +
5

36
∂C+(C0) = λ

(
9

8
(B4,V)[2] +

1

8
(B0,V)[0]

)
+

7i

24
(Z, C4)[2] +

5i

36
(Z, C0)[0] . (3.3.60)

The condition {H0,K6}PB + {V,K8}PB = 0 gives

∂C+(B12) = λ

(
1

60
(A16,V)[2] + 56 (A12,V)[0]

)
,

∂C−(B12) +
195

2
∂C+(B8) = λ

(
70

11
(A12,V)[2] + 780 (A8,V)[0]

)
+

13i

264
(Z,B12)[2] +

195i

4
(Z,B8)[0] ,

∂C−(B8) +
9

5
∂C+(B4) = λ

(
13

14
(A8,V)[2] +

24

5
(A4,V)[0]

)
+

11i

112
(Z,B8)[2] +

9i

5
(Z,B4)[0] ,

∂C−(B4) +
1

36
∂C+(B0) = λ

(
22

27
(A4,V)[2] +

2

63
(A0,V)[0]

)
+

3i

8
(Z,B4)[2] +

i

24
(Z,B0)[0] . (3.3.61)

Finally the condition {H0,K8}PB = 0 gives

∂C+(A16) = 0,

∂C−(A16) + 238∂C+(A12) =
17i

480
(Z,A16)[2] + 119i (Z,A12)[0] ,

∂C−(A12) +
195

28
∂C+(A8) =

5i

88
(Z,A12)[2] +

195i

28
(Z,A8)[0] ,

∂C−(A8) +
2

5
∂C+(A4) =

13i

112
(Z,A8)[2] +

3i

5
(Z,A4)[0] ,

∂C−(A4) +
1

112
∂C+(A0) =

11i

24
(Z,A4)[2] +

i

56
(Z,A0)[0] . (3.3.62)

Now assuming that the representations Bi, Ci,Di are respectively linear,

quadratic and cubic in the parameters, the necessary forms can be deduced
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from (3.3.36), (3.3.37) and (3.3.53). As might be obvious from the previous

notational-recycling the complementary representations contained in Bi are

labeled Fi,j , the representations contained in Ci are labeled Gi,j , and the ones

comprising Di are labeled Hi,j .
The new term E0 comes from balancing the nine representations fourth-

order in the parameters. Explicitly, the form is

E0 = Vee4I0,0 + Vee3 (I0,3,V)[2] + Vee2

((
I0,4, (V,V)[2]

)[0]
+
(
I0,9,V2

)[4]
)

+ Vee
((
I0,12,

(
V2,V

)[2]
)[2]

+
(
I0,17,V3

)[6]
)

+
(
I0,20,

(
V2,V2

)[4]
)[0]

+
(
I0,25,

(
V2,V2

)[2]
)[4]

+
(
I0,31,V4

)[6]

(3.3.63)

for appropriately sized representations I0,i. Since the analysis will stop at

the eighth-order constants the trivial terms that would contribute when con-

structing higher-order constants haven’t been written down (like the terms

written down when considering the D0 in (3.3.53)).

Again the notation (n)m will be used as shorthand to refer to n vari-

ables forming a set of m representation, and dropping the subscript m doesn’t

change the meaning of the following sentences.

The condition

{H,K0}PB + {V,K2}PB ≡ 0

puts (105)21 restrictions on the set {H, ∂I} leaving (120)24 parameters free.

The condition

{H,K2}PB + {V,K4}PB ≡ 0

puts (200)34 restrictions on the set {G, ∂H} and a further (311)57 conditions

can be constructed for the set {∂H, ∂2I}, giving a total of (511)91 restrictions,

and leaving (209)37 parameters free. The next condition

{H,K4}PB + {V,K6}PB ≡ 0,

puts (220)28 restrictions on the set {F , ∂G} and a further (1198)192 conditions

can be constructed for the set {∂G, ∂2H, ∂2I}. This gives a total of (1408)220

conditions on the set and leaves (224)34 parameters free. The penultimate

Poisson-Brackets

{H,K6}PB + {V,K8}PB ≡ 0,
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puts (2736)338 restrictions on the set {A, ∂F} and a further (2736)388 condi-

tions can be constructed for the set {∂F , ∂2G, ∂2H, ∂3I}. This gives a total of

(2880)404 conditions on the set and leaves (126)38 parameters free. The final

Poisson-Bracket

{H,K8}PB ≡ 0

puts (55)5 restrictions on the set ∂A and a further (4787)603 conditions can

be constructed for the set {∂A, ∂2F , ∂3G, ∂4H, ∂5I}. This gives a total of

(4842)608 conditions and leaves no parameters free, hence the equations close

at this level.

Taking into account the additive constants (i.e. the representations Ii,j)
the space of eight order constants is of dimension at most (714)142. However

the monomials of which are purely fourth-order in terms of the six second-

order constants and the 4 parameters can be easily shown to have dimension

(35)9 + (120)24 + (210)38 + (224)34 + (126)38 = (715)143.

Here the term (35)9 comes from the
(

4+3
3

)
= 35 monomials purely quadratic

in the 4 parameter. At the other extreme the term (126)38 comes from
(

6+3
3

)
monomials purely quadratic in the 6 second-order constants. The rest of the

terms come from the mixed monomials and can easily be enumerated using

basic combinatorics.

So the space of monomials is larger (by one) than the space of possible

constants of this type. Thus these monomials are not linearly independent

and there necessarily exists a linear-combination of these monomials which is

identically zero. That is, there exists a quartic identity between the second-

order constants and the parameters. In the next section this identity will be

given explicitly.

3.4 The Quartic Identity

For a maximum-parameter second-order system the algebra formed from the

iterated Poisson-commutators of the second-order constant closes at the third

order in the momenta, that is, given any constant derived from Poisson com-

mutators in this manner and which is of order greater than 4, then it must be

a polynomial in the second and third order constants [12, 8]. As only 5 of the

six second-order constant can be independent it is necessary that they satisfy
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a functional relation, and for the known systems and this identity is a quartic

(or at most quartic). The result of the previous section prove that a similar

quartic identity would necessarily exist for any unknown system as well. By

choosing a canonical form for the second-order constants, a general formula

can be found.

The canonical basis

Thanks to the (5 =⇒ 6) theorem it is known, that at any regular point

in the systems xrp, and for any particular set of values for aij0 there will be

a second-order constant which takes these values, i.e. aij(xrp) = aij0 . Since

each constant of the motion allows an additive parameter these can also be

assumed to have W |xrp = 0.

The canonical basis is defined as follows. For any prescribed regular point

in the system let Lij be the linearly independent constants that satisfy the

following,

L11|xrp = p2
x1 ,

L22|xrp = p2
x2 ,

L33|xrp = p2
x3 ,

L12|xrp = 2px1px1 ,

L13|xrp = 2px1px3 ,

L23|xrp = 2px2px3 . (3.4.1)

For example, taking the Euclidean superintegrable system with potential

VIV = a(4x2
1 + x2

2 + x2
3) + bx1 +

c

x2
2

+
d

x2
3

+ e (3.4.2)

and defining the regular point to be with the regular point xrp = (1, 1, 1) the
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canonical second-order constants are

L11 = p2
x1 + 4a(x1 − 1)(x1 + 1) + (x1 − 1)b,

L22 = p2
x2 + a(x2 − 1)(x2 + 1)− c(x2 − 1)(x2 + 1)

x2
2

,

L33 = p2
x3 + a(x3 − 1)(x3 + 1)− d(x3 − 1)(x3 + 1)

x2
3

,

L12 = 2px2(px2 − px2x1 + x2px1) + a(2x2
2x1 + 2x2

2 − 4)

+ b
(x2 − 1)(x2 + 1)

2
− c2(x1 − 1)

x2
2

,

L13 = 2px3(px3 − px3x1 + x3px1) + a(2x2
3x1 + 2x2

3 − 4)

+ b
(x3 − 1)(x3 + 1)

2
− d2(x1 − 1)

x2
3

,

L23 = p2
x2 + p2

x3 − (x3px2 − x2px3)2 + a(x2
3 + x2

2 − 2)

− c(x3 − 1)(x3 + 1)

x2
2

− d(x2 − 1)(x2 + 1)

x2
3

. (3.4.3)

Returning to the general case, the canonical second-order constants can

be split into two rotation representations. As binary forms these are the 5-

dimensional representation

M(r, s) = (L11 + iL12 − L22)r4 + 2(iL23 + L13)r3s

+ 2(2L33 − L11 − L22)r2s2

+ 2(iL23 − L13)rs3 + (L11 − iL12 − L22)s4, (3.4.4)

and the one-dimensional representation

L0 = L11 + L22 + L33. (3.4.5)

By the result in the previous section, there is an eighth-order identity in

the form of a quartic between the 6 canonical constants and the four param-

eters of the potential. To find this identity all that needs to be done is to set

up a generic fourth-order combination of the canonical constants Lij and the

parameters. According to the previous section this eighth-order constant will

be determined completely by knowing the value of (up to) 5th order partial

derivatives. So, once the linear combination has been set up, finding the coef-

ficients which cause this combination to vanish at a sufficiently high number

of derivatives at the regular point will give the identity.
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A first pass over the equations shows that the coefficients of terms which

are either zeroth-order or linear in the second-order constants must be iden-

tically zero. Hence the quartic identity in the canonical constants will be of

the form

Q =
∑

α(ij),(kl),(mn),(op)LijLklLmnLop +
∑

β(ij),(kl),(mn),(q)LijLklLmnVq

+
∑

γ(ij),(kl),(q),(r)LijLklVqVr (3.4.6)

where the q in Vq is from the set {1, 2, 3, ee} (i.e. the four parameters) and the

sums are over all possible combinations of variables.

If equations governing the remaining coefficients of (3.4.6) are examined,

which are not listed here for reason of space, it quickly becomes apparent that

the equations would look more balanced if the αI coefficients were quadratic

in the variables {Q,R,S} and if the coefficients βI were linear in {Q,R,S}.
Making this assumption a set of non-trivial coefficients can be found which

cause the linear combination to vanishes at the regular point up to fifth-order

derivatives. Hence an explicit form for the quartic identity has been found6.

This result was also verified by testing it at various regular points in the known

systems.

The quartic identity that was obtained is very long, containing 1641 terms

and covering 4 or more pages when written out directly. An example of the

purely quartic terms that appear are given by

2(6S3,(0) +G
(0)
x3 − 2R

23,(0)
2 )Q123,(0)

9
L22L

3
12−

(6S3,(0) +G
(0)
x3 − 2R

23,(0)
2 )2

18
L2

22L
2
33,

where the notation A(0) = A|xrp has been used. Likewise an example of the

quadratic terms is

(2L11L33−
1

2
L2

13)V (0)
x2

2
+(L12L23−2L22L13)V (0)

x3 V
(0)
x1 +(L13L23−2L33L12)V (0)

x2 V
(0)
x1 .

Despite the length of the identity found, it has the structure of a one-

dimensional rotation representation, and this means it can be written out in

terms of transvectants of simpler representations.

Using the notation Y,X ,Z,V,Vee,Z,Zee and λ to denote the value of those

representations at the chosen regular point, and expressing the second-order

6The results of the previous section are enough to show the coefficients in an an eighth-
order constant need only been known up to their 5th derivative to completely determine
which eight-order constants is being referred to
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constants as the representation (3.4.4) and (3.4.5), the quartic identity can be

drastically simplified to a more manageable form and is given in figure 3.1.

Example: The quartic identity for VIV

Taking the system VV I given at (3.4.2), the representations related to the

structural equations take the form, at the regular point x = (1, 1, 1),

Y(r, s) =
3

4

(
r6 + 3r4s2 + 8ir3s3 + 3r2s4 + s6

)
,

X (r, s) =
i

5

(
r2 − 2irs+ s2

)
,

λ =1,

Z(r, s) =0,

Zee =0, (3.4.7)

and the representations coming from the parameter take on the form

V(r, s) =((1 + 4i)a+
i

2
b− c)s2 + 2i(a− d)rs+ ((1− 4i)a− i

2
b− c)r2,

Vee =4a+ 2c+ 2d. (3.4.8)

Redefining the basis of 2nd-order constants to be the same as the one given

by Daskaloyannis [8] (which is specifically adapted to the sub-algebras within

the quadratic algebra of system IV )

H = L11 + L22 + L33 − 2a+ c+ d+ ib,

A1 = L11 − 4a+ ib,

A2 = L22 + a+ c,

B1 = −iL33 − id+
1

2
L13 + ia+

1

4
b,

B2 = L33 − L23 + L22 + c+ d,

F = −1

2
L12 −

1

4
b+ iL22 − ia+ ic, (3.4.9)
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the quartic identity is given by

16A2B1

(
A1 +A2

)
F − 8

(
A1 +A2

)2
F 2 − 8A2

(
A1A2B2 +A2

1B2 +A2B
2
1

)
− 8
(
A1B

2
2 − 4FB1B2

)
a+ 4

(
A2B1B2 +B2(A1 +A2)F

)
b− 8A1

(
A1 +A2

)2
c

+ 8
(
A1A2B2 + 2(A1 +A2)F 2 − 2A2FB1

)
H − 8H2F 2 − 8A1A

2
2d

−4
(
FB2b−4A1c(A1 +A2)

)
H+32

(
B2

1c+F 2d
)
a+8

(
A2Fd+B1(A1 +A2)c

)
b

32A1acd− 8A1H
2c− 8B1Hbc−

1

2
B2

2b
2 + 2db2c ≡ 0. (3.4.10)
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Figure 3.1: The Quartic Identity



Chapter 4

Structure Theory of

Second-Order

Conformally-Superintegrable

Systems

A classification of second-order superintegrable systems (i.e. the types dis-

cussed in chapter 2) is hindered by the need to specify the conformally-flat

metric beforehand. A way around this obstruction is to instead consider con-

formal classes of potentials. That is, only distinguish systems which are not

related via a Stäckel transform. This leads naturally to the study of the

so-called conformally-superintegrable systems (also known as a Laplace-type

system). Every superintegrable system over a conformally flat space is, by

default, conformally superintegrable and every conformally superintegrability

systems is Stäckel equivalent to a superintegrable system (see theorem 4.1.8).

The notion of conformal-superintegrability was introduced by Kalnins et

al for the purpose of classifying superintegrable systems over conformally flat

spaces [27]. It was shown that the second-order conformally-superintegrable

systems over flat spaces can be put into correspondence with a 10-dimensional

manifold. It is this correspondence that forms the starting point for the classi-

fication in chapter 5. This 10-dimensional manifold possess an action induced

by the conformal group in three dimensions (which is a 10-dimension Lie

group), and the foliation of the space under this actions provides the classifi-

61
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cation result.

In §4.1 the notion of a conformally-superintegrable system is defined and

how these relate to the superintegrable systems is discussed. Specifically a

conformally-superintegrable system is Stäckel equivalent to a superintegrable

system, and a superintegrable system yields a conformally superintegrable

one via a conformal scaling. This allows the classical structure theory for

conformally-superintegrable systems to be determined from the discussion in

chapter 2. Most importantly the potential for a conformally-superintegrable

systems over a conformally flat-space statisfies a set of linear PDEs. However,

unlike the superintegrable case the 5th parameter is no longer a trivial additive

one.

In §4.2 the local action of the conformal group is studied by considering

the action of a conformal change of coordinates. It is shown that this action

decomposes the space of coefficient functions (denoted {Q,R,S}) into a 3-

dimensional and a 7-dimensional component. These are almost the same as the

SO(3,C) representations X ,Y ((3.1.9) and (3.1.10) respectively) introduced

in chapter 3. The local action of the conformal group is then shown to act

transitively on variables {S}.
In §4.3 the non-local action of the conformal group is examined through

translation of the regular point. This requires examining the partial deriva-

tives, which take polynomials in {Q,R,S} to higher degree polynomials in

{Q,R,S}. The goal in chapter 5 is to, as was done for the Euclidean case

[17], create polynomial ideals constructed from the {Q,R,S} variables which

are closed under translation of the regular point (i.e. under the action of ∂x).

Theorems 4.2.12 and 4.3.4 are both very relevant in this regard.

4.1 Classical Structure Theory for a

Conformally-Superintegrable System

Consider a classical system with a Hamiltonian over a conformally-flat space.

Without loss of generality this can be assumed to take the form

H(p,x) =
px1

2 + px2
2 + px3

2

λ(x)
+ V (x). (4.1.1)

This is the same form as (3.2.1). However instead of a second-order constant,

consider a second-order conformal -constant. This will be a function of the
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form

L =
3∑

i,j=1

aij(x)pxipxj +W (x), aij = aji, (4.1.2)

such that the Poisson commutator of the Hamiltonian H and the conformal-

constant gives

{H,L}PB = ρH, (4.1.3)

where ρ(p,x) is polynomial in momentum coordinates. In this case ρL will

first order in the momentum.

Notice that any Hamiltonian H will have infinitely many trivial conformal-

constants of the form F (x,p)H for any differentiable function F (x,p). So two

conformal-constants will only be considered different if their difference is not

a multiple of the Hamiltonian (or equivalently, all second-order conformal-

constants are assume to have a traceless second-order component). So while

a superintegrable Hamiltonian would quite naturally be called a second-order

constant for the system it describes, this identification makes a conformally-

superintegrable Hamiltonian equivalent to zero.

Based on the discussion above, the obvious definition for a maximally

conformally-superintegrable system is for the Hamiltonian H to possess 2n−2

independent and inequivalent conformal-constants.

Lemma 4.1.4. Every conformally-superintegrable system over a conformally-

flat space can be conformally scaled to a conformally-superintegrable system

over flat space.

Proof. By hypothesis the systems possess a Hamiltonian of the form

H =
H0

λ
+ V (4.1.5)

where H0 = p2
x1 + p2

x2 + p2
x3 . This Hamilton will possess conformal constants

L which satisfy

{H,L}PB = ρLH. (4.1.6)

Scaling the Hamiltonian by the conformal factor λ gives the new Hamilto-

nian H̃ = λH = H0 + λV . The Poisson-Bracket of this new Hamiltonian and
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the original conformal-constant satisfies{
H̃, L

}
PB

= {λH,L}PB

= λ {H,L}PB +H {λ, L}PB
= λρLH +H {λ, L}PB

=

(
ρL +

{λ, L}PB
λ

)
λH

=

(
ρL +

{λ, L}PB
λ

)
H̃. (4.1.7)

The factor

ρ̃L = ρL +
{λ, L}PB

λ

is also polynomial in the momentum and hence L is also a conformal-constant

of H̃, which is clearly a Hamiltonian over flat space.

So henceforth the conformally-superintegrable systems under considera-

tion will be assumed to be over flat space, conformally scaling if necessary.

There do exist superintegrable systems which are not Stäckel equivalent to

conformally flat systems [18], but these are not the subject of this thesis.

Note that a superintegrable system is a conformally-superintegrable system

with conformal-constants for which ρL = 0, so an immediately corollary of

lemma 4.1.4 is that all superintegrable systems over conformally-flat spaces

are equivalent (by conformal scaling) to a conformally-superintegrable one.

Theorem 4.1.8. If H = H0 +αU is a Hamiltonian with a conformal-constant

L(α) = L0 + αWU , then the new Hamiltonian H̃ =
H
U

has constant L(−H̃).

Proof. This proof is almost identical to the proof of theorem 2.4.1. Recall

that, given functions of the form G(x,p), F (a,x,p) where a = τ(x,p) then

{F,G}PB = [{F (a,x,p), G(x,p)}PB]a=τ(x,p)+[∂aF (a,x,p)]a=τ(x,p) {τ(x,p), G(x,p)}PB.

Consider the conformal constant L which, by hypothesis, satisfies a relation

of the form

{H + αU,L(α)}PB = ρ(H + αU),

and so

{H,L(α)}PB = −α{U,L(α)}PB + ρ(H + αU).
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Using these it can be shown

{H̃, L(α)}PB =

{
H

U
,L(α)

}
PB

= − H
U2
{U,L(α)}PB +

{H,L(α)}PB
U

= − H
U2
{U,L(α)}PB +

−α{U,L(α)}PB + ρ(H + αU)

U

= −H̃ + α

U
{U,L(α)}PB +

ρ(H + αU)

U
.

So

{H̃, L(−H̃)}PB =

[
∂αL(α)

{
H̃, H̃

}
PB
− H̃ + α

U
{U,L(α)}PB +

ρ(H + αU)

U

]
α=−H̃

=
ρ(H − H̃U)

U

= 0.

Thus L(−H̃) is a constant of the motion for the transformed Hamiltonian.

Theorem 2.4.1 is a special case of this theorem with ρ = 0. Although a

subtle difference in the proof is the reason behind ρ(H − H̃U) vanishing.

In the superintegrable case an arbitrary constant can be added to the

Hamiltonian without altering the superintegrability, however adding an arbi-

trary constant here would destroy the conformally-superintegrability of the

Hamiltonian. Also note that if L(α) is one of the trivial conformal-constant

of the form F (x)(H0 + αU) then L(−H̃) ≡ 0.

Nondegenerate (maximum-parameter) Potentials

Because of the Stäckel equivalence between superintegrable and conformally-

superintegrable systems, results regarding the structure theory of conformally-

superintegrable potentials can easily be determined from the structure theory

of the superintegrable systems. So if a superintegrable potential V̂ is scaled

via the conformal-factor λ then the new potentials

V = V̂ λ,
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can be shown to satisfy a set of PDEs written in the symmetric (but once

again redundant) form

V,11 = Vee +A11
1 V,1 +A11

2 V,2 +A11
3 V,3 +A11

0 V,

V,22 = Vee +A22
1 V,1 +A22

2 V,2 +A22
3 V,3 +A22

0 V,

V,33 = Vee +A33
1 V,1 +A33

2 V,2 +A33
3 V,3 +A33

0 V,

V,12 = A12
1 V,1 +A12

2 V,2 +A12
3 V,3 +A12

0 V,

V,13 = A13
1 V,1 +A13

2 V,2 +A13
3 V,3 +A13

0 V,

V,23 = A23
1 V,1 +A23

2 V,2 +A23
3 V,3 +A23

0 V. (4.1.9)

Like before, the second-order parameter is Vee =
(V,11+V,22+V,33)

3 . Note that,

unlike the superintegrable case, the value of V is no longer just an additive

parameter. This dependence on 5 parameter shouldn’t be surprising as the

additive constant of the superintegrable case C becomes a 5th term in the

potential Cλ under the conformal scaling.

The redundancy in the PDEs above takes the same form as before and can

be expressed as

A11
i +A22

i +A33
i ≡ 0 i = 0, . . . , 3.

Like before the integrability conditions can be use to show these 18 coeffi-

cient functions Aijk depend only on a subset of 10 coefficient function. These

10 coefficients, which will be referred to as {Q,R,S}, and for Aijk , k 6= 0,

these take essentially the same form as (2.3.16). If we wish to express these

coefficients function in terms of the superintegrable system from which they

were derived they can be expressed in terms of the old variables {Q,R,S}
and the conformal factor, λ = exp(G), via the following formulas

Rijk = Rijk ,

Q123 = Q123,

Si = Si − 1

3
G,i. (4.1.10)

The remaining 6 coefficientsAij0 can be expressed as quadratics in the variables

{Q,R,S}. These can be determined by index permutation in the following
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two illustrative examples

A11
0 =

4

9
(R13

1 )2 − 8

9
(R23

2 )2 +
4

9
(R12

1 )2 +
4

9
(R13

3 )2 − 8

9
(R23

3 )2 +
4

9
(R12

2 )2

− 2R12
2 S1 + 2(S3)2 − 4(S1)2 +

8

9
R12

2 R13
3 − 2S1R13

3 + 2(S2)2 + 2S3R13
1

+ 2S2R12
1 −

4

9
R23

3 R12
1 −

4

9
R13

1 R23
2 ,

A12
0 = 2Q123S3 + 2R12

1 S1 + 2S2R12
2 − 6S2S1 +

4

3
Q123R13

1 +
4

3
Q123R23

2

− 2

3
R13

3 R12
1 −

2

3
R23

3 R12
2 +

2

3
R23

3 R13
3 . (4.1.11)

Alternatively, using the concise notation introduced in chapter 3 these can be

recovered by writing out the PDEs (4.1.9) as the following SO(3,C) represen-

tation

∂C+∂
C
+(V ) =− 1

15
(Y, ∂C+(V ))[2] + 3i(X , ∂C+(V ))[0]

+ V

(
2

675
(Y,Y)[4] +

i

15
(Y,X )[2] +

3

2
(X ,X )[0]

)
. (4.1.12)

If equations (2.3.17)-(2.3.20) are rewritten in the new {Q,R,S} variables

the following illustrative derivatives can be derived

∂R12
1

∂x1
= −2

3
R12

2 R23
3 +

2

3
R13

3 R23
3 +

4

3
Q123R23

2 +
5

3
Q123R13

1

−R12
1 R13

3 −R12
1 S1 +

(
R13

3 + 3R12
2

)
S2 + 2Q123S3, (4.1.13)

∂R12
1

∂x2
=

3

5
R12

2 R13
3 −

1

15
R13

1 R23
2 −

11

15
R12

1 R23
3

+
8

15

(
R13

1

)2
+

1

5

(
R12

1

)2 − 4

5

(
R23

2

)2
+

8

15

(
R13

3

)2
+

1

5

(
R12

2

)2 − 4

5

(
R23

3

)2
+

2

15

(
Q123

)2 − (R13
3 + 3R12

2

)
S1 −R12

1 S2 +R13
1 S3, (4.1.14)

∂R12
1

∂x3
= −1

3
Q123R12

2 −
1

3
Q123R13

3 +
1

3
R23

2 R12
1 +

1

3
R23

3 R13
1

− 2Q123S1 −R13
1 S2 −R12

1 S3, (4.1.15)

∂S1

∂x1
= −17

90
R12

2 R13
3 +

1

30
R13

1 R23
2 +

1

30
R12

1 R23
3

− 7

45

(
R13

3

)2
+

1

15

(
R23

3

)2− 7

45

(
R12

1

)2− 11

90

(
Q123

)2− 7

45

(
R13

1

)2− 7

45

(
R12

2

)2
+

1

15

(
R23

2

)2
+

1

2

(
S2
)2

+
1

2

(
S3
)2 − 1

2

(
S1
)2
, (4.1.16)
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∂S1

∂x2
= −1

9
R13

3 R23
3 −

2

9
Q123R23

2 +
1

9
R12

1 R13
3 +

1

9
R12

2 R23
3 −

2

9
Q123R13

1 −S1S2,

(4.1.17)

∂Q123

∂x1
=

2

3
R13

1 R12
1 −

1

3
R23

3 R13
1 +Q123R13

3 −
1

3
R23

2 R12
1

+Q123R12
2 −Q123S1 +

(
R23

2 −R13
1

)
S2 +

(
R23

3 −R12
1

)
S3. (4.1.18)

As before, all other derivatives can be found though index permutation. The

full set of equations can also be derived directly from (3.2.13). Perhaps surpris-

ingly, the integrability conditions for equations (4.1.13)-(4.1.18) are satisfied

identically. This lack of restrictions means that there will be a solution to

(4.1.9) for any given 10-tuple (Q,R,S) ∈ C10.

The 10-dimensional space of initial conditions is acted on by the conformal

group in three-dimensions (which is a 10-dimensional group) and at a generic

point the action is rank 10. So it should be expected that the bulk of this

space corresponds to a single orbit under the conformal group (and hence a

single conformal class). However there may (and do) exist points for which

the action is less than rank 10, and so the task now is to find these points and

determine which lower-dimensional orbits they belong to.

The following section answers part of this question on a local level, that

is, determining what the orbit of a fixed regular point from a system is under

a conformal change of coordinates and subsequent conformal rescaling.

4.2 The Local action of the Conformal Group

The local-action of the conformal group is given by conformal changes of

variables, i.e. a change of variables x = F (u) that simply scales the metric by

a conformal factor. So in our new variables the flat space metric is given by

ds2 = dx2
1 + dx2

2 + dx2
3 = λ

(
du2

1 + du2
2 + du2

3

)
.

Under this change of the coordinates the leading part of the conformally-

superintegrable Hamiltonian is scaled by λ−1,

H = p2
x1 + p2

x1 + p2
x1 + V (x) =

p2
u1 + p2

u1 + p2
u1

λ
+ V (F (u)).
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By lemma 4.1.4 this can be conformally scaled to flat-space conformally-

superintegrable Hamiltonian in the standard flat space coordinates

H̃ = p2
u1 + p2

u1 + p2
u1 + V λ, (4.2.1)

making V λ a conformally-superintegrable potential on flat-space.

Inversion in the Sphere (Kelvin Inversion)

To study the effect of the local conformal group it is sufficient to examine a

single conformal-change of variables, inversion in the sphere. Since a transla-

tion change of variables act trivially on form of the PDEs (4.1.9) it induces a

trivial action on the coefficient functions {Q,R,S}. Thus the sphere of inver-

sion can be assumed to be centred at the origin. The inversion with respect

to the sphere of radius δ is then given by the change of variables

xi = δ2 ui
u1

2 + u2
2 + u3

2
. (4.2.2)

Under this change of variables the Hamiltonian becomes

H =

(
u1

2 + u2
2 + u3

2
)2

δ4

(
p2
u1 + p2

u2 + p2
u3

)
+ V (u1, u2, u3)

which, via a conformal scaling, can be turned into the conformally-superintegrable

system

H̃ =
δ4H

(u1
2 + u2

2 + u3
2)2 =

(
p2
u1 + p2

u2 + p2
u3

)
+

δ2V (u1, u2, u3)

(u1
2 + u2

2 + u3
2)2

Applying the change of variables to the PDEs (4.1.9) and making the substi-

tution

V = δ−4(u2
1 + u2

1 + u2
1)2Ṽ

the action on {Q,R,S} is given by the three illustrative equations

S̃1 = − u2
1 − u2

2 − u2
3(

u2
1 + u2

2 + u2
3

)2 δ2S1 − 2u1u2(
u2

1 + u2
2 + u2

3

)2 δ2S2

− 2u3u1(
u2

1 + u2
2 + u2

3

)2 δ2S3 +
2u1(

u2
1 + u2

2 + u2
3

) , (4.2.3)
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R̃12
1 =

2u2u1

(
6u2

3u
2
2 − 2u2

2u
2
1 + u4

2 + u4
1 − 10u2

3u
2
1 + 5u4

3

)(
u2

1 + u2
2 + u2

3

)4 δ2R13
3

+
2u2u1

(
2u2

3u
2
2 − u4

3 − 2u2
3u

2
1 − 10u2

2u
2
1 + 3u4

1 + 3u4
2

)(
u2

1 + u2
2 + u2

3

)4 δ2R12
2

+
8u3u

2
1u2

(
2u2

3 − 2u2
2 + u2

1

)(
u2

1 + u2
2 + u2

3

)4 δR23
2

+

(
−u6

2 − 15u4
1u

2
2 + 15u2

1u
4
2 + u6

1 + u6
3 − u4

2u
2
3 + u2

2u
4
3 − u2

1u
4
3 + 6u2

1u
2
3u

2
2 − u4

1u
2
3

)(
u2

1 + u2
2 + u2

3

)4 δ2R12
1

−
2u3u2

(
u4

3 − 10u2
3u

2
1 + 2u2

3u
2
2 − 6u2

2u
2
1 + 5u4

1 + u4
2

)(
u2

1 + u2
2 + u2

3

)4 δ2R13
1

−
4u2

1

(
6u2

3u
2
2 − u2

3u
2
1 − u4

2 − u4
3 + u2

2u
2
1

)(
u2

1 + u2
2 + u2

3

)4 δ2R23
3

+
4u3u1

(
3u4

2 + 2u2
3u

2
2 − 8u2

2u
2
1 + u4

1 − u4
3

)(
u2

1 + u2
2 + u2

3

)4 δ2Q123, (4.2.4)

Q̃123 = 2u3u1

(
5u4

2 − u4
3 − 10u2

1u
2
2 + u4

1

)(
u2

1 + u2
2 + u2

3

)4 δ2R12
1 + 2u3u2

(
5u4

1 − u4
3 − 10u2

2u
2
1 + u4

2

)(
u2

1 + u2
2 + u2

3

)4 δ2R12
2

+ 2u1u2

(
5u4

3 − u4
1 − 10u2

2u
2
3 + u4

2

)(
u2

1 + u2
2 + u2

3

)4 δ2R23
2 + 2u1u3

(
5u4

2 − u4
1 − 10u2

3u
2
2 + u4

3

)(
u2

1 + u2
2 + u2

3

)4 δ2R23
3

+ 2u2u3

(
5u4

1 − u4
2 − 10u2

3u
2
1 + u4

3

)(
u2

1 + u2
2 + u2

3

)4 δ2R13
3 + 2u2u1

(
5u4

3 − u4
2 − 10u2

1u
2
3 + u4

1

)(
u2

1 + u2
2 + u2

3

)4 δ2R13
1

−
(
u6

1 + u6
2 + u6

3 − 5u2
2u

4
3 − 5u2

1u
4
2 + 30u2

1u
2
3u

2
2 − 5u4

2u
2
3 − 5u2

1u
4
3 − 5u4

1u
2
2 − 5u4

1u
2
3

)(
u2

1 + u2
2 + u2

3

)4 δ2Q123,

(4.2.5)

and as before the full set can be obtained through index permutation. For

the variables {Q,R} a simpler description of this action will be given by

(4.2.15) when the rotations representation are reconsidered as binary forms

(see appendix A).

Inversions in the sphere (for spheres of varying sizes and locations) and

translations generate the full conformal group. For example, consider the
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change of variables

x1 =
t2z1

z2
1 + z2

2 + (z3 + t)2

x2 =
t2z2

z2
1 + z2

2 + (z3 + t)2

x3 =
t2(z3 + t)

z2
1 + z2

2 + (z3 + t)2
− t,

given by translating the coordinate system by x3 7→ x3+t, inverting in a sphere

of radius t2 centred at the origin and then translating again by x3 7→ x3 − t.
In the limit t→∞ this becomes the reflection

x1 = z1,

x2 = z2,

x3 = −z3.

Clearly all reflections can be generated this way, and by extension all rotations.

Continuous transformations

Although the local action of the conformal group is completely described by

spherical inversions, it will be worth discussing continuous changes of variables

as well. That is, the infinitesimal changes of variables around the identity.

The conformal group, as a Lie group, is 10-dimensional and can be iden-

tified with four types of actions: rotation, translations, dilations and Möbius

transformations (i.e. translations conjugated with an inversion in the unit

sphere). When considering the {Q,R,S} variables the local action of trans-

lations is trivial (since the PDEs (4.1.9) don’t change under this change of

variables) and the action of rotations is the same as the superintegrable case

(given on page 27).

Dilations: Consider the change of variables

ui = xi exp(t).

Under this change of variables the Hamiltonian becomes

H = e2t
(
p2
u1 + p2

u2 + p2
u3

)
+ V (u; t).
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Conformally scaling this by exp(−2t) gives the conformally-superintegrable

potential Ṽ = V e−2t. The examining the derivatives around t = 0 gives the

Lie algebra action

D(xi) = xi, D(A) = A,

where A is a stand-in for any of the {Q,R,S} variables.

Möbius Transformations: The effect of a Möbius transformation is more

complicated. Given a choice of direction a Möbius transformation can be

constructed by an inversion in the unit sphere, a translation in the chosen

direction and inversion in the unit sphere again. Choosing the direction to be

x1 gives the change of variables

u1 =
x1 − tr2

1− 2tx1 + t2r2
,

u2 =
x2

1− 2tx1 + t2r2
,

u3 =
x3

1− 2tx1 + t2r2
, (4.2.6)

where r2 = x2
1 + x2

2 + x2
3. In these variables the Hamiltonian is given by

H =
(
1 + 2u1t+ t2(u2

1 + u2
2 + u2

3)
)2 (

p2
u1 + p2

u2 + p2
u3

)
+ V (u; t).

and so, scaling this back to the standard flat metric, the action on potential

is given by

Ṽ =
V(

1 + 2u1t+ t2(u2
1 + u2

2 + u2
3)
)2 .

The corresponding Lie algebra action on the coordinates is given by

C1(x1) = x1
2 − x2

2 − x3
2,

C1(x2) = 2x2x1,

C1(x3) = 2x3x1. (4.2.7)

The action on the coefficient functions is

C1(S1) = 2− 2x3S3 − 2x2S2 − 2x1S1,

C2(S1) = 2x1S2 − 2x2S1,

C3(S1) = 2x1S3 − 2x3S1, (4.2.8)
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and

C1(R12
1 ) = −2x1R12

1 − 2x2

(
R13

3 + 3R12
2

)
− 4x3Q123,

C1(R12
2 ) = −2x1R12

2 + 2x2

(
R23

3 + 3R12
1

)
− 2x3R23

2 ,

C1(R13
3 ) = −2x1R13

3 − 2x2R23
3 + 2x3

(
R13

1 + 3R13
1

)
,

C1(R23
3 ) = −2x1R23

3 + 2x2R13
3 + 4x3Q123, (4.2.9)

and finally

C1(Q123) = −2x1Q123 + 2x2

(
R13

1 −R23
2

)
+ 2x3

(
R12

1 −R23
3

)
. (4.2.10)

What is immediately apparent from (4.2.8) (and this is also apparent in

(4.2.3)) is that the action on {S} has a different form from the action on

{Q,R}. In light of (4.1.10) this difference can be attributed to the conformal

rescaling. Perhaps less obvious is the fact that, when restricted to the variables

A ∈ {Q,R}, the Lie algebra action can be written out in form

Ci(A) = −2xiD(A)− 2J1(xi)J1(A)− 2J2(xi)J2(A)− 2J3(xi)J3(A).

(4.2.11)

From this the following theorem can be proved.

Theorem 4.2.12. Given a polynomial ideal I in the polynomial ring C[Q,R]

which is closed under the action of the dilation Lie algebra action D and the

rotations Lie algebra action J1, J2, J3. The ideal I is then closed under the

action of C1, C1, C2.

Proof. From (4.2.11) it is clear that, over the variable {Q,R} the Lie algebra

action Ci a linear combination of the dilation D and the rotations J1, J2, J3.

Since D and J are derivations (i.e. they satisfy a Leibniz rule) so are the Ci’s.

Thus (4.2.11) also holds when A is a polynomial in the variables {Q,R},
proving the theorem.

This will be important in chapter 5 as it means any algebraic ideal closed

under dilations and rotations is immediately closed under Möbius transforma-

tions.
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Action of the Möbius Transformation on the sl(2,C)
representations

In appendix A the rotation representations are described as binary forms,

and the action of SO(3, C) is given by the action of SL(2,C) on these binary

forms. If attention is restricted to the 7-dimensional representation Y then

it can be shown that the local action of the conformal group extends to the

action GL(2, C) ' C⊕ SL(2, C).
To see this, consider the action of the Möbius transformations (4.2.2).

The induced action on the 7-dimensional rotations representation is given by

(4.2.9)-(4.2.5) and looks rather complicated. However if this representation is

considered to be the 6th-order binary form

Y(r, s) =

(
R12

1 +
1

4
R23

3 + iR12
2 +

i

4
R13

3

)
r6 + . . .

= a6(r − η1s)(r − η2s)(r − η3s)(r − η4s)(r − η5s)(r − η6s) (4.2.13)

(given in full at (3.2.8)) then (4.2.9)-(4.2.5) can succinctly be described by

mapping the roots of (4.2.13) via

η̂i =
(−u3)ηi + (u1 − iu2)

(u1 + iu2)ηi + (u3)
(4.2.14)

and by scaling the leading coefficient via

â6 = δ2

∏6
i=1((u1 + iu2)ηi + (u3))

(u2
1 + u2

2 + u2
3)4

a6.

Alternatively this can be described by the linear change of variables(
r

s

)
=

δ1/3

(u2
1 + u2

2 + u2
3)2/3

(
−u3 u1 − iu2

u1 + iu2 u3

)(
r̂

ŝ

)
(4.2.15)

Similarly the refection u3 = −x3 can be modelled by the action on the

roots via

η̂i = −ηi (4.2.16)

and by a trivial scaling of the leading coefficient

â6 = a6.



CHAPTER 4. CONFORMALLY-SUPERINTEGRABLE SYSTEMS 75

Alternatively this can be described by the linear change of variables of the

binary form Y(r, s) under (
r

s

)
=

(
−1 0

0 1

)(
r̂

ŝ

)
. (4.2.17)

The same analysis does not hold for the three-dimensional representation.

In fact it is this difference which allows the following theorem to be proved.

Theorem 4.2.18. Given a regular point in a second-order conformally-superintegrable

system there is a local conformal transformation that takes the value of the 10

coefficient functions at the regular point from their initial values (Q0,R0,S0)

to the values (Q0,R0,0). That is the values of the Si can be mapped to zero

by a conformal group motion without changing the value of the Q123,Rijj .

Proof. Assume S3 6= 0 at the regular point. Performing an inversion in the

sphere via (4.2.2) such that the new regular point satisfies u1 = u2 = 0, u3 6= 0

and then performing a subsequent reflection via (4.2.16) (this reflection is

an important step as (4.2.14) has reflected the roots of the 7-dimensional

representation in the imaginary axis) then the action on Si can be shown to

be

Ŝ1 = δ2S1

u2
3

, Ŝ2 = δ2S2

u2
3

, Ŝ3 = δ2S3

u2
3

− u3. (4.2.19)

Choosing the dilation factor to be δ2 = u2
3 means the seven dimensional Y(r, s)

has retained its original value under this conformal motion. Meanwhile the

Si’s have become

Ŝ1 = S1, Ŝ2 = S2, Ŝ3 = S3 − 2u3. (4.2.20)

Making the choice u3 = S3
2 , which is non-zero by hypothesis, gives Ŝ3 = 0. So

S3 has been mapped to zero under this action and the rest of the variables

have retained their original value. By rotating either S1 or S2 into the place

of S3, the same technique as above can used to set these to zero as well.

Inverting all the rotations used then yields the result.

An immediate corollary to this result is that the conformal group acts

transitively on the value of the Si. Interpreted in the language of binary

forms the local equivalence of a conformally-superintegrable systems is given

by the following theorem.
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Theorem 4.2.21. Given a regular point in a maximum-parameter conformally-

superintegrable system, there is a local conformal transformation that will map

it to another such regular point if and only if the roots of their respective binary

forms Y(r, s) are equivalent up to a general linear transformation.

Proof. Every conformal change of variable can be constructed from inversion

in the sphere (for varying centres) and dilations. The corresponding action

on Y(r, s) is therefore repeated application of matrices of the form (4.2.15).

These are easily shown to cover the entire space of GL(2,C) matrices. Since

this is the full set of local conformal actions, the result follows.

4.3 Non-local Action of the Conformal Group

Thus far the examination of the action of the conformal group has been a

purely local one, meaning that only a fixed point within a systems has been

considered. To understand what effect a translation from one regular point to

another regular point has on the values of the coefficient functions {Q,R,S}
will require an examination of the partial derivatives (4.1.18)-(4.1.17).

It is already clear from the local picture that any invariants will only de-

pend on the value of the 7-dimensional representation Y. And in the following

chapter a very specific type of invariant is sought. These are polynomials ide-

als constructed from the variables in the Y representations whose zero-sets are

closed under the action of the full-conformal group.

The search for such invariants can take place in two stages. The first stage

is to consider polynomial ideals closed under dilations and rotations and, by

extension all local-transformations. Such ideals are clearly generated by sets

of homogeneous rotation representations and so these will be the focus of the

following discussion.

The second-stage is to narrow these ideals down to ideals which are also

closed under action the of the derivatives. Using a Taylor expansion it is easy

to see that the zero-set of such an ideal will be invariant under translations

off the regular point.

Consider the derivation

∂̂i(A) = ∂i(A) + SiD(A)− J1(Si)J1(A)− J2(Si)J2(A)− J3(Si)J3(A),

(4.3.1)
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where ∂i is just the partial derivative, and D and Ji are the Lie algebra

operators. Applied to the variables {Q,R} these are

∂̂1R
12
1 = −2

3
R12

2 R
23
3 +

2

3
R13

3 R
23
3 +

4

3
Q123R23

2 +
5

3
Q123R13

1 −R12
1 R

13
3 ,

∂̂2R
12
1 =

3

5
R12

2 R
13
3 −

1

15
R13

1 R
23
2 −

11

15
R12

1 R
23
3 +

8

15

(
R13

1

)2
+

1

5

(
R12

1

)2
− 4

5

(
R23

2

)2
+

8

15

(
R13

3

)2
+

1

5

(
R12

2

)2 − 4

5

(
R23

3

)2
+

2

15

(
Q123

)2
,

∂̂3R
12
1 = −1

3
Q123R12

2 −
1

3
Q123R13

3 +
1

3
R23

2 R
12
1 +

1

3
R23

3 R
13
1 ,

∂̂1Q
123 =

2

3
R13

1 R
12
1 −

1

3
R23

3 R
13
1 +Q123R13

3 −
1

3
R23

2 R
12
1 +Q123R12

2 . (4.3.2)

Even more compactly the full set of equations for these derivations can be

written as

∂̂C+(Y) = − 1

675
(Y,Y)[2] ,

∂̂C0 (Y) = 0,

∂̂C−(Y) = − 2

225
(Y,Y)[4] . (4.3.3)

These only depend on the 7-dimensional representation, reinforcing the point

that Y(r, s) is the only identifying characteristic of the conformally-superintegrable

systems. More imporantantly, since (4.3.1) is a derivation the following theo-

rem can be proved (which, in form, is almost identical to theorem 4.2.12).

Theorem 4.3.4. Given a polynomial ideal I in the polynomial ring C[Q,R]

which is closed under the action of the dilation operator D, the rotation oper-

ators J1, J2, J3 and derivations ∂̂1, ∂̂2, ∂̂3, then I is closed under the action of

the partial derivatives ∂1, ∂2, ∂3.

Proof. From (4.3.1) it is clear that ∂̂i a linear combination of the dilation

operator D and the rotation operators Ji and the partial derivatives ∂i. Since

D, Ji and ∂i are all derivations (i.e. they satisfy a Leibniz rule) so is ∂̂i. Thus

(4.3.1) also holds when A is a polynomial in the variables {Q,R}. Thus

proving the theorem.



Chapter 5

Classification of

Conformally-Superintegrable

Systems

As was shown in the previous chapter, only knowledge of the 7-dimensional

rotation representation Y(r, s), given at (4.2.13), will be needed to classify the

systems into conformal classes. Furthermore the local action of the conformal

group on this representation can be modelled as the action of GL(2,C) on a

binary form. In projective coordinates this binary form is just a univariate-

polynomial and the action of GL(2,C) is through fractional linear transfor-

mations (sometimes referred to as ‘Möbius transformations’ or the ‘inversive

group’). This makes the local classification of Y(r, s) a problem in classical

invariant theory (see the book by P. Olver on this topic for more details [49]).

Specifically, thinking of the polynomial p(z) = Y(z, 1), the orbits are uniquely

identified by knowing the multiplicities of roots and the cross-ratios between

the roots.

In this chapter no distinction is made between the linear factors (αir−βis)
of the binary form Y(r, s) and the roots ηi = βi

αi
∈ C∗ of the polynomial

p(z) = Y(z, 1). So the references made about the “roots” of the binary form

should be taken to mean the binary form in projective coordinates.

An important fact to keep in mind while reading this chapter is that the

action of GL(2,C) acts transitively on triplets of roots. Given four distinct

roots, three can be can be moved into predetermined canonical locations on the

78
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Riemann sphere, with the location of the fourth root being uniquely determine

by the cross ratio between the four roots.

Classifying the 7-dimensional representation using the roots of the associ-

ated binary form (meaning the linear factors) is conceptually simple, but due

to Galois theory it is well known that for a general sextic these roots cannot be

be expressed in terms of radicals of the coefficients of the binary form. So giv-

ing explicit expression for the roots will not be attempted. A more convenient

method is to express the classifying information in terms of the representations

that vanish given a particular root configuration. That is, rotationally closed

sets of polynomials which vanish for all possible configurations of a given root

structure.

A simple example is given by the discriminant of the binary sextic Y(r, s).

The discriminant can be thought of as a one-dimensional representation (of

order 10) and is a necessary and sufficient condition for the binary form to

have a double root (i.e. a repeated factor). The conditions discussed in this

chapter are generalisations of this observation.

In §5.1 two particular classifications are discussed, motivating the tech-

niques that will be used in the rest of the chapter.

In §5.2 the method used to calculate the polynomial ideals corresponding

to different multiplicity structures is discussed, however the ideals themselves

won’t be explicitly stated until the they are needed in the following section.

In §5.3 the complete classification of the conformally-superintegrable sys-

tems is given and a set of 10 conformal classes are derived. This proves there

are no additional unknown classes. The results in this section are described

using the Hilbert basis in appendix B.

Finally §5.4 conclude this chapter with a brief discussion of how these

systems can be placed into a hierarchy, with all systems naturally occurring

as the limit of one master system.

5.1 Examples of Differentially Closed Algebraic

Ideals

Before discussing the general case it is worth going over two illustrative ex-

amples.
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Example 5.1.1 (The zero sextic). Consider the polynomial ideal

I[0] = 〈Y+3, . . . , Y−3〉,

where 〈A〉 denotes the the ring of polynomials generated by A. The zero

set of I[0] corresponds to the vanishing of the 7-dimensional representation

(3.1.10). Since I[0] is generated by elements of homogeneous degree the ideal is

clearly closed under dilations. Since the generators form a complete SO(3,C)

representation the ideal is closed under rotations as well. Hence, by (4.2.11),

the ideal will be closed Möbius transformations and thus closed under all local

conformal transformations.

It is clear from (4.3.3) that I[0] is also closed under partial derivatives.

So if all the coefficient functions Yi are zero at any point in a conformally-

superintegrable system then their derivatives are zero as well (to any order).

This shows the algebraic-set given by I[0] is closed with respect to all conformal

motions (i.e. the local ones induced by a conformal changes of variables and

non-local ones induced by translation of the regular point).

So the second-order conformally-superintegrable systems can be split into

two classes, those with coefficients whose values lie in the algebraic set defined

by I[0] and those that don’t. Since the action of the conformal group was

proven transitive on the 3-dimensional representation (3.1.9), any two 10-

tuples with Q,R ≡ 0 are related by a conformal motion (in this case a local

one is always sufficient). Hence, up to Stäckel equivalence, there is only one

such system in the [0]-type class.

Example 5.1.2 (The single factor sextic). A more complicated example is

given by considering the Hessian of the the binary form Y(r, s). The vanishing

of the Hessian corresponds to a binary form having only one factor of multi-

plicity six, and thus gives an interesting geometric condition to consider. The

Hessian of the binary form Y(r, s) is the covariant

H[Y] = 2 (Y,Y)[2]

= 150

(
6√
15
Y+3Y+1 − Y 2

+2

)
r8 + . . .+ 150

(
6√
15
Y−3Y−1 − Y 2

−2

)
s8

=
1

2

(
B

(4)
+4r

8 −
√

8B
(4)
+3r

7s+ . . .+B
(4)
−4s

8
)
. (5.1.3)

This corresponds to the covariant 1
2B4 given in the Hilbert basis (B.1.1).

For the discussion below the coefficients of B4 have been named B
(4)
i and



CHAPTER 5. CLASSIFICATION 81

normalised by (3.1.11). As is hopefully clear, the subscript ofB
(4)
i indicates the

eigenvalue and the superscript is just a reference to the name of the covariant

in the Hilbert basis.

The action of the raising derivative (coming from (4.3.1)) on the highest

weight coefficient of the Hessian (5.1.3) gives

∂̂+

(
B

(4)
+4

)
=
(
i∂̂2 + ∂̂1

)(
B

(4)
+4

)
=

(
−6X+1 −

28

9
√

15
iY+1

)
B

(4)
+4 +

14

9
√

3
iY+2B

(4)
+3 −

2
√

7

9
iY+3B

(4)
+2 .

(5.1.4)

Likewise the action of level-set derivative is

∂̂0

(
B

(4)
+4

)
= ∂̂3

(
B

(4)
+4

)
=

(√
2X0 +

56

9
√

5
iY0

)
B

(4)
+4 +

(
√

2X+1 −
77
√

2

9
√

15
iY+1

)
B

(4)
+3

+
10
√

14

9
√

3
iY+2B

(4)
+2 −

√
14

3
iB

(4)
+1Y+3. (5.1.5)

These show that the derivatives ∂̂+

(
B

(4)
+4

)
and ∂̂0

(
B

(4)
+4

)
are contained in

the ideal generated from the coefficients of the Hessian (that is, the ideal

〈B(4)
+4 , . . . , B

(4)
−4〉). However the lowering derivative gives

∂̂−

(
B

(4)
+4

)
=
(
i∂̂2 − ∂̂1

)(
B

(4)
+4

)
=

(
2X−1 +

16
√

3√
5
iY−1

)
B

(4)
+4 −

(
2X0 +

8
√

2

3
√

5
iY0

)
B

(4)
+3

− 194

3
√

105
iY+1B

(4)
+2 +

14
√

7

3
√

3
iY+2B

(4)
+1 −

2
√

14√
5
iY+3B

(4)
0

+
176

105
√

15
i

(
Y 2

+1 −
√

10√
3
Y0Y+2 +

√
5√
3
Y−1Y+3

)
Y+1, (5.1.6)

and the final term,
(
Y 2

+1 −
√

10√
3
Y0Y+2 +

√
5√
3
Y−1Y+3

)
Y+1, is not in the ideal

generated by coefficients of the Hessian. So this is not a differentially closed

ideal.

If all the cubic terms from all of the partial derivatives are added to the

set of generators then a differentially closed ideal is obtained. However these

extra cubic conditions vanish for a binary form of the form Y(r, s) = a(r−cs)6
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regardless of the value of a and c. The vanishing of the Hessian already implied

that Y(r, s) would have a single multiplicity six factor, and so these extra

cubics do not actually place any further restrictions beyond those already

implied by the vanishing of the Hessian.

One way to understand this is to notice that the perfect square(
Y 2

+1 −
√

10√
3
Y0Y+2 +

√
5√
3
Y−1Y+3

)2

lies in the ideal formed by the coefficients of the Hessian. This condition cor-

responds to the square of the covariant B2 lying in the ideal (see appendix B).

Taking ideal generated from the coefficient of B4 and B2 together gives a

differentially closed ideal.

Additionally, it can be shown that B2
0 lies in the ideal formed from the

coefficients of B4, and also vanishes for a binary form with a single multiplicity

six factor. Taking the coefficients from the pair of covariants B4 and B0

generates another differentially closed ideal. Naturally taking the coefficients

from all three covariants B4, B2 and B0 also generates a differentially closed

ideal. This last one, the ideal generated by B4, B2 and B0, is important as it

is a radical ideal, meaning if there is an element in the ideal of the form An

for a positive integer n, then A is also contained in the ideal.

So four separate differentially closed ideals ideals have been found, 〈B4, ∂B4〉,
〈B4, B2〉, 〈B4, B0〉 and 〈B4, B2, B0〉, but clearly they all correspond to the con-

dition B4 ≡ 0. Of course it should be clear that all these ideals have the same

radical, given by 〈B4, B2, B0〉, and this demonstrates that it would be best to

work with radical ideals to remove ambiguity.

Insisting that the ideals used in this proof be radical ideals could pose a

problem, although there do exist algorithms for calculating the radical of an

ideal, in practice this is typically computationally expensive. Thankfully this

issue can mostly be avoided by the techniques used in the following section,

which immediately lead to radical ideals.

Definition 5.1.7 (The radical of an ideal). Given an ideal I the radical of

the ideal will ideal containing all elements A such that An in the ideal I for a

positive integer n. The radical of the ideal I will be denoted
√
I.
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Given any ideal I it can be closed differentially by adding the derivatives

to set the generators of the ideal until the ideal stops growing (a fact checkable

using Gröbner basis techniques). This is process gives an ascending chain of

ideals and the Noetherian property of polynomial rings over C ensures that

a maximal ideal exists in this chain (i.e. the ideal will always close under a

finite number of derivatives).

Definition 5.1.8 (The differential closure of an ideal). The differential closure

of an ideal I will the ideal generated by I and it’s partial derivatives under

(4.3.1). The differential closure of the ideal I be denoted I.

Lemma 5.1.9. If an ideal I is closed under differentiation then so is the

radical of the ideal
√
I. That is to say√

J =
√
J

for any ideal J .

Proof. If A is in the radical of the ideal I then An ∈ I for some positive integer

n. Taking the nth derivative of An with respect to xi gives

∂ni (An) = n!(∂iA)n +O(A), (5.1.10)

where the terms hidden in O(A) are at least first order in A. Since ∂ni (An) ∈ I,

rearranging (5.1.10) shows that (∂iA)n can be written as a combination of

elements from
√
I. Since I is radical this means ∂iA ∈

√
I as well. Hence

√
I

is differentially closed.

5.2 Ideals obtained from Coincident Root-Loci

As was already mentioned, for a non-zero binary form Y(r, s), the vanishing

of the Hessian (5.1.3) is equivalent to there being a single multiplicity 6 root

of the polynomial p(z) = Y(z, 1). This is a simple algebraic condition and it

would be worth trying to exploit this link between polynomial ideals and the

algebraic structures of the roots.

Considering only the multiplicities of the factors of Y(r, s) there are 12

different possible configurations. These correspond to the 11 partitions of 6

and the case Y(r, s) ≡ 0. These will denoted by

[111111], [21111], [2211], [222], [3111], [321], [33], [411], [42], [51], [6], [0],
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where, for example, [21111] denotes five distinct factors and one factor of

multiplicity two, and where [0] indicates the trivial zero-form.

While there exist a number of results in the literature describing ways

to determine the ring of covariants vanishing under certain root multiplicity

structure (e.g. ref. [6]) it is simpler for this particular problem to construct

these rings using elimination ideals using the computer algebra system Singu-

lar [9].

Starting with a binary form with a single root in its most general form

a0s
6 + a1rs

5 + · · ·+ a6r
6 = (αr + βs)6.

Equality between the coefficients of r, s above gives rise to the ideal

K = 〈a0 − β6, a1 − 6β5α, a2 − 15β4α2, · · · , a6 − α6〉. (5.2.1)

The elimination ideal is now calculated by determining the intersection of

the ideal K with the ideal 〈a0, a1, · · · , a6〉. This eliminates α, β from the

generators and yields an ideal generated by 15 homogeneous, second-order

polynomials in the ai’s. In this case the generators are fairly obvious and can

be computed by hand, however the other cases required the assistance of a

computer. Explicitly, the generators are of the form

400a0a6 − a2
3, 225a0a6 − a2a4, · · · , 6a4a6 − 15a2

5.

In terms of representations these conditions correspond to the coefficients of

the covariants B4, B2 and B0 discussed in example 5.1.2 above. Importantly

this technique generates the full ideal (a radical ideal) of conditions for a

type-[6] binary form with minimal effort.

These elimination ideals were used to calculate the ring of conditions for

all of the root multiplicity structures above with one exception1, the case of a

single multiplicity two root (i.e. [21111]), for which it is well-known that the

ring is generated from the vanishing of the discriminant.

These ideals are a good starting point for our classification, with some of

the conformal-classes being classifiable simply based on the multiplicities of

the factors of the associated binary sextic. For the remaining systems the

cross-ratios of the roots must somehow be examined.

1Theoretically this computation will finish in finite time, but in practice the computation
failed.
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5.3 The Full Classification

There is now sufficient set up for the full classification of conformally superin-

tegrable systems. For each Stäckel class found below a representative system

is given. Nine of the ten possible Stäckel classes have representatives in flat

space and a complete list of these can be found in Ref. [17]. The tenth class

does not have a flat space equivalent, but does have a representative over a

non-zero constant curvature space. This corresponds to the generic spherical

potential and is given by the 4-dimensional Smorodinskii-Winternitz potential

restricted to the 3-sphere.

Case [0]: The simplest ideal is given by the coefficients of the binary form

Y = A3 (see the Hilbert basis (B.1.1)). This corresponds to the factor struc-

ture [0] and so this ideal will be denoted I[0]. As was already discussed in

example 5.1.1 above, this ideal is easily seen to be closed under differentiation

(i.e. I0 = I0). Thus any system which satisfies the condition I[0] = 0 at one

point does so everywhere. The zero locus of I[0] is a single 7-tuple and hence

there is only one conformal class represented by this ideal. A particular rep-

resentative of a system in this class is given by the isotropic oscillator on flat

space,

VO = a(x2 + y2 + z2) + bx+ cy + dz + e. (5.3.1)

The classifying binary form is, of course,

Y(r, s) = 0

Case [6]: The ideal I[6] containing the conditions for the [6]-type root struc-

ture is given by the coefficients of the covariants

B
[6]
4 = B4,

B
[6]
2 = B2,

B
[6]
0 = B0.

The ideal I[6] is generated by 15 second-order polynomials and it can easily be

shown that the cubic polynomials that arise from the derivatives are contained

in I[6], i.e. I[6] = I[6]. So just like the previous case this shows the vanishing of
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I[6] locally implies it also vanishes globally. This implies the the root structure

[6] is persistent feature when found at a regular point in a system (i.e. it

remains a feature in an open set around that point). Since I[0] 6= 0 is also a

persistent feature the classifying binary form cannot degenerate into the [0]-

class. The local action of the conformal group, through GL(2,C), is transitive

on three or fewer roots, therefore any two systems in this class can be put

into correspondence using a (purely-local) conformal motion and hence this

corresponds to a single conformal class.

A particular representative of the [6]-class systems is the (Euclidean su-

perintegrable) system

VA = a
(
(x1 − ix2)3 + 6(x1

2 + x2
2 + x3

2)
)

+ b
(
(x1 − ix2)2 + 2(x1 + ix2)

)
+ c(x1 − ix2) + dx3 + e. (5.3.2)

The classifying binary form for VA is given by

Y(r, s) = ix6,

which has a leading coefficient that clearly vanishes nowhere.

Case [51]: The ideal I[51] of conditions for the [51] root structure is given

by a subset of the I[6] generators

B
[51]
2 = B2,

B
[51]
0 = B0.

As before it is simple to show I[51] = I[51] and hence represents another per-

sistent structure. Like before, the conformal group acts transitively on the set

of [51] binary forms and so only one system can exist in this class. A suitable

choice is the (Euclidean superintegrable) system

VV II = a(x1 + ix2) + b
(
3(x1 + ix2)2 + x3

)
+ c

(
16(x1 + ix2)3 + (x1 − ix2) + 12x3(x1 + ix2)

)
+ d

(
5(x1 + ix2)4 + (x2

1 + x2
2 + x2

3

)
+ 6

(
x1 + ix2)2x3

)
+ e (5.3.3)

which has classifying binary form

Y(r, s) = 24i

(
(x1 + ix2)r − 3

2
s

)
r5.

Note that this binary form can not degenerate into a [6]-type structure at any

finite point.
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Case [42]: The ideal of conditions for the [42] root structure is given by 5

representations, namely

B
[42]
0 = B0,

C
[42]
1 = C1,

D
[42]
8 = 27B2

4 − 50B2A
2
3,

D
[42]
6 = 20C3A3 +B4B2,

D
[42]
0 = D0.

Unlike the cases examined so far, this ideal is not closed under differentiation.

By adding in the first derivatives the ideal closes and using Gröbner bases it

can be shown that

I[6]
3 ⊂ I[42] ⊂ I[6]. (5.3.4)

From this, and the fact that I[6] is radical, it can be concluded that the radical

of the differential closure of I[42] is I[6] (i.e.
√
I[42] = I[6]).

So as should have been expected given the non-closure of I[42], forcing the

conditions for the [42] root structure to hold identically will only yield forms

which are generically the [6] root structure (The type-[0] structure is also a

possible degeneration, however this is just a further degeneration of [6]). This

proves that no potential can have a [42] structure everywhere. However a

binary form with a [42] structure gives valid values for Y(r, s) and hence there

must exist a system with a [42] root structure at a non-generic point.

Case [33]: The ideal I[33] of conditions for the [33] root structure is gener-

ated by the coefficients of the 3 covariants

C
[33]
6 = C6,

C
[33]
4 = C4,

C
[33]
3 = 33B0A3 − 5C3.

This ideal is closed under differentiation. Since the only degenerations of the

[33] root structure are [6] or [0] it is safe to conclude that a system with the [33]

root structure at a regular point has the [33] root structure at every regular

point. The transitivity of the conformal group on three or fewer roots means
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that this can only correspond to one conformal class of systems. A particular

representative is given by the (Euclidean superintegrable) system

VOO = a(4x2
1 + 4x2

2 + x2
3) + bx1 + cx2 +

d

x2
3

+ e

which has classifying binary form

Y(r, s) =
6i

x3
r3s3.

Case [411]: The ideal I[411] of conditions for the [411] root structure is

generated by the coefficients of the 3 covariants

B
[411]
0 = B0,

C
[411]
1 = C1,

D
[411]
0 = D0.

The ideal I[411] is closed under differentiation. So if a potential has a [411]

root structure at any point, it will do so in an open set around that point. The

ideal I[42] contains the ideal I[411] (meaning the algebraic set satisfying I[411]

contains the algebraic set satisfying I[42]) and hence, even without explicitly

checking, it’s clear that the transient [42] structure will break up into the

[411] structure under conformal motions. The action of the local action of the

conformal group is transitive on the 3 roots and hence every system in this

class is conformally related.

A particular representative is the (Euclidean superintegrable) system

VV = a(4x2
3 + x2

1 + x2
2) + bx3 +

c

(x1 + ix2)2
+ d

x1 − ix2

(x1 + ix2)3
+ e

which has classifying binary form

Y(r, s) =

(
9i

x1 + ix2
r2 − 3i(−x1 + ix2)

(x1 + ix2)2
rs

)
s4.

This potential has the [411] structure at most points and takes the [42] root

structure on the hypersurface

x1 − ix2 = 0.

The [4111] class of superintegrable systems contains a second-flat space

representative given by scaling the potential VV above by the Stäckel multi-

plier U = (x1 + ix2)2 and re-expressing the metric in the standard Euclidean
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coordinates. Specifically VV is Stäckel equivalent to

VIII = a
(
x1

2 + x2
2 + x3

2
)

+ b
1

(x1 + ix2)2
+ c

x3

(x1 + ix2)3

+ d
x1

2 + x2
2 − 3x3

2

(x1 + ix2)4
+ e. (5.3.5)

The potential VIII has classifying binary form

Y(r, s) =

(
− 9i

(x1 + ix2)
r2 − 18ix3

(x1 + ix2)2
rs+

3i(x2
1 + x2

2 − 2x2
3)

(x1 + ix2)3
s2

)
s4

which takes the [42] root structure on the hypersurface

x2
1 + x2

2 + x2
3 = 0.

Case [321]: The ideal I[321] of conditions for the [321] root structure is given

by the 5 representations

D
[321]
0 = 11B2

0 − 25D0,

E
[321]
+1 = 3C1B0 − 5E1,

F
[321]
+8 = 75(2610D2 + 827B2B0)A3

2 − 100(125C3B2 + 144C1B4)A3

+ (3125C4
2 + 5184B4

2B0),

F
[321]
+6 = 300(61B0

2 − 115D0)A3
2 − 20(5C1B2 + 22C3B0)A3

−B4(7B2B0 − 270D2),

F
[321]
0 = 41B0

3 − 75D0B0 − 125F0.

This ideal is not closed under differentiation but it closes after 2 derivatives.

By transitivity the location of the three roots is irrelevant and an educated

guess would be that the algebraic-set corresponding to the differential closure

of I[321] will be points satisfying either the I[33] ideal or the I[51] ideal. That

is, it should be expected that√
I[321]

?
= I[51] ∩ I[33].

This intersection can be calculated by eliminating t from the convex combi-

nation of ideals (1 − t)I[33] + tI[51] (see, for example Hassett, chapter 4 [33]).

Denoting this ideal by I[51]∧[33], the elimination above shows that it is gener-

ated by the two covariants

C
[51]∧[33]
4 = C4,

C
[51]∧[33]
3 = 33B0A3 − 5C3.
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Straightforward Gröbner basis calculations now show(
I[51] ∩ I[33]

)3 ⊂ I[321] ⊂ I[51] ∩ I[33],

and hence √
I[321] = I[51] ∩ I[33]

as predicted. So any systems whose coefficient functions cause the ideals

I[321] to vanish identically must lie in either the [33] or [51] classes (or their

degenerations) and thus have already been classified.

Case [222]: The ideal of conditions for the [222] root structure is given by

5 representations, namely

D
[222]
8 = 50B2A

2
3 − 27B2

4 ,

D
[222]
6 = 160B0A

2
3 −B4B2 − 20C3A3,

D
[222]
4 = −3B4B0 + 25C1A3,

D
[222]
2 = B2B0 + 90D2,

D
[222]
0 = 43B2

0 − 75D0.

This ideal is not closed under differentiation, but closes after one derivative.

Straightforward calculations show

I4
[6] ⊂ I[222] ⊂ I[6].

Hence
√
I[222] = I[6] and any systems with coefficient functions that cause

the ideal I[222] to vanish identically are in the class of [6] type systems and

therefore have already been classified.

Case [3111]: The ideal I[3111] of conditions for the [3111] root structure is

given by the 3 representations

D
[3111]
0 = 11B2

0 − 25D0,

E
[3111]
1 = 3C1B0 − 5E1,

F
[3111]
0 = 8B3

0 − 125F0.

This is a differentially closed ideal so we can conclude that a [3111] root struc-

ture is stable. Unlike previous cases the action of the conformal group is not
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automatically transitive, so the values of the roots cannot be assigned arbi-

trarily. To distinguish between different possible [3111] root structures only

the cross-ratio of the roots needs to be be considered, this is clear because once

the conformal group has been used to move three of the roots to a canonical

location the cross-ratio determines the location of the fourth uniquely.

Denoting the 4 roots by r = (η1, η2, η3, η4) (where η4 will be the triply

repeated root) a cross-ratio2 can be defined by

λ =
(η1 − η2)(η3 − η4)

(η2 − η3)(η4 − η1)
. (5.3.6)

Assuming Y+3 is non-zero (or performing a small rotation such that it is non-

zero), define

a =
1

Y+3
(Y−1, Y0, Y+1, Y+2) ,

which can be expressed as functions of the ηi using Vieta’s formula. From this

the Jacobian ∂λ
∂x can be calculated via the formula

∂λ

∂x
=
∂λ

∂r

∂r

∂a

∂a

∂x

=
∂λ

∂x

(
∂a

∂r

)−1 ∂a

∂x
. (5.3.7)

Without loss of generality the roots can be assumed take the values

r0 =

(
−1, 0, 1,

1− λ
1 + λ

)
at the regular point. Substituting this into (5.3.7) gives,

∂λ

∂x1

∣∣∣∣
r0

=
−8i(1− λ+ λ2)(λ− 1)λ

27(1 + λ)3
,

∂λ

∂x2

∣∣∣∣
r0

=
−16(1− λ+ λ2)(λ− 1)λ

27(1 + λ)3
,

∂λ

∂x3

∣∣∣∣
r0

= 0. (5.3.8)

These imply that the action of the translations is rank 1 for almost all values

of λ. The five possible exceptions correspond to points where λ = 0, 1,∞ or

exp(±iπ/3), where the action is, to a first order approximation, rank 0.

The case λ = 0, 1,∞ correspond to the degenerate root structure [411] and

so have already been examined. The point λ = exp(±iπ/3) will be considered

below.
2What follows is actually the multi-ratio, which is equivalent to the standard cross-ratio

by a permutation of the indices.



CHAPTER 5. CLASSIFICATION 92

Subcase [3111]+Cross Ratio= exp
(
± iπ

3

)
: The analysis above shows that

the first-order changes in the cross-ratio at value λ = exp(±iπ/3) are zero with

respect to first order changes in x1, x2, x3. A higher changes in x1, x2, x3 move

λ away from this value and so to examine whether or not this really is a

persistent feature the corresponding ideal will need to be generated. This will

be referred to as the [3111] + CR root structure.

Under the action of GL(2,C), a canonical form of the binary form with

the [3111] + CR root structure is given by

Y(r, s) = r3(r3 − s3).

Performing a general linear transformation of the form

x 7→ c1x+ c2y, y 7→ c3x+ c4y,

and setting up an ideal in the same manner as (5.2.1), an elimination ideal

can be calculated with respect to c1, c2, c3, c4. The ideal found in generated

by the coefficients of the covariants

D
[3111]+CR
4 = 3600C1A3 + 288B4B0 − 125B2

2 ,

D
[3111]+CR
2 = B2B0 − 10D2,

D
[3111]+CR
0 = 11B2

0 − 25D0. (5.3.9)

This ideal is closed under differentiation and hence this case is actually a

persistent one. Up to local equivalence there is only one binary form with the

[3111] + CR structure, and hence this represents a single conformal class. A

particular representative of this class is the (Euclidean superintegrable) system

VV I = a
(
x2

3 − 2(x1 − ix2)3 + 4(x2
1 + x2

2)
)

+ b
(
2x1 + 2ix2 − 3(x1 − ix2)2

)
+ c (x1 − ix2) +

d

x2
3

+ e (5.3.10)

which has classifying binary form

Y(r, s) = 3i

(
r3 +

2

x3
s3

)
r3.

Subcase [3111]+Cross Ratio6= exp
(
± iπ

3

)
: Since the action of a transla-

tion on the cross-ratio λ (c.f (5.3.7)) is rank 1 everywhere on the connected set
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C∗\
{

0, 1,∞, exp
(
± iπ

3

)}
every point will lie in a single orbit under this action.

Hence this there is a single conformal class of systems with this structure.

A particular representative is given by the (Euclidean superintegrable)

potential

VII = a
(
x1

2 + x2
2 + x3

2
)

+ b
(x1 − ix2)

(x1 + ix2)3 + c
1

(x1 + ix2)2 + d
1

x3
2

+ e

(5.3.11)

which has classifying binary form

Y(r, s) =

(
6i

x3
r3 +

9i

x1 + ix2
r2s− 3i(−x1 + ix2)

(x1 + ix2)2
s3

)
s3.

Using this binary form to calculate the covariants (5.3.9) yield

D
[3111]+CR
2 (r, s) ∝ s4

x2
3(x1 + ix2)2

verifying that it cannot also contain the [3111] + CR root structure.

Case [2211]: The ideal I[2211] of conditions for the [2211] root structure is

generated by a single covariant

G
[2211]
6 = 50(10F

(2)
3 + 2D3B0 + 55F

(1)
3 )A3 − 4(43B2

0 − 75D0)C6 + 75E2B4.

This ideal is not closed under differentiation, but closes after 3 derivatives.

Straightforward calculations show that(
I[411] ∩ I[33]

)4 ⊂ I[2211] ⊂ I[411] ∩ I[33].

Hence
√
I[2211] = I[411] ∩ I[33] and any systems with coefficient functions that

identically satisfy polynomials in the I[2211] ideal are in the class of [411]

systems or the class of [33] systems and thus have been classified.

Case [21111]: As is well known, the ideal of conditions for the [21111] root

structure is generated by one condition, the discriminant. In terms of the

Hilbert basis, the ideal I[21111] is generated by the single covariant

J
[21111]
0 = 5393B5

0 − 20125D0B
3
0 + 18750D2

0B0 − 31875F0B
2
0 + 56250F0D0 + 28125J0.
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The ideal I[21111] is not closed under differentiation, but closes after five deriva-

tives. Straightforward calculations shown(
I[3111]

)4 ⊂ I[21111] ⊂ I[3111],

meaning
√
I[21111] = I[3111]. Hence any systems with coefficient functions that

identically satisfies the I[21111] ideal are in the [3111] class and have already

been classified above.

Case [111111]: All systems with a persistent root of multiplicity 2 or greater

have been been classified above. All that remains is to classify systems which

correspond to binary forms with distinct linear factors. If all factors are dis-

tinct then there are only three independent absolute invariants. Any three

independent cross-ratios will do and for the following discussion these will be

chosen to be

λ4 =
(η1 − η2)(η3 − η4)

(η2 − η3)(η4 − η1)
,

λ5 =
(η1 − η2)(η3 − η5)

(η2 − η3)(η5 − η1)
,

λ6 =
(η1 − η2)(η3 − η6)

(η2 − η3)(η6 − η1)
. (5.3.12)

However, trying to repeat the sort of analysis that was done in the [3111] case

is hampered by the complexity of the equations that arise.

An alternative approach is to define three absolute invariants strictly in

terms of the coefficients of the binary form. This can be achieved by balancing

out the covariant weight (see appendix A) and a suitable set is given by

I =

(
D0

B2
0

,
F0

B3
0

,
J0

B5
0

)
. (5.3.13)

It is safe to assume B0 is non-zero as doing otherwise this leads to the case

[411]. Examining the action of translations on the absolute invariants in I

should give equivalent results to examining the action of the cross-ratios pro-

vided the map between them is invertible. Since I can be expressed as a

function of the cross-ratios3, the Jacobian

det

∂
(
D0

B2
0
, F0

B3
0
, J0
B5

0

)
∂(λ4, λ5, λ6)

 (5.3.14)

3as can all absolute invariants
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can be calculated. The Jacobian (5.3.14) factors nicely and can be seen to

vanish if and only if there is either a double root or if the condition

λ4 − λ5λ6 = 0 (5.3.15)

is satisfied (up to permutation of roots). Condition (5.3.15) is a well known

object in the literature, going by the name of the M6 = −1 multi-ratio con-

dition and is an interesting object of study in its own right [40]. Written in

terms of the roots (5.3.15) is equivalent to

(η1 − η2)(η5 − η3)(η4 − η6)

(η2 − η5)(η3 − η4)(η6 − η1)
= −1. (5.3.16)

Assuming the condition (5.3.15) is satisfied, the roots can be assumed to

take the values

r0 =

(
−1, 0, 1,

1− λ5λ6

1 + λ5λ6
,
1− λ5

1 + λ5
,
1− λ6

1 + λ6

)
.

The action of a translation on the value of λ4 − λ5λ6 is (to first order) given

by

∂(λ4 − λ5λ6)

∂x1

∣∣∣∣
r0

= 0,

∂(λ4 − λ5λ6)

∂x2

∣∣∣∣
r0

=
8(λ5λ6 − 1)(λ2

5λ
2
6 − λ2

5λ6 − λ5λ
2
6 + λ2

5 + λ2
6 − λ5 − λ6 + 1)2

27(1 + λ5λ6)(λ6 − 1)(λ5 − 1)(λ5 + 1)(λ6 + 1)
,

∂(λ4 − λ5λ6)

∂x3

∣∣∣∣
r0

=
−8i(λ2

5λ
2
6 − λ2

5λ6 − λ5λ
2
6 + λ2

5 + λ2
6 − λ5 − λ6 + 1)2

27(λ6 − 1)(λ5 − 1)(λ5 + 1)(λ6 + 1)
.

(5.3.17)

and so, remembering that all roots are distinct, this action will be rank zero

only if the condition

λ2
5λ

2
6 − λ2

5λ6 − λ5λ
2
6 + λ2

5 + λ2
6 − λ5 − λ6 + 1 = 0 (5.3.18)

is also satisfied. Likewise, calculating the action of a derivative on (5.3.18)

shows that the action is rank zero (to first order) and so this is a promising

candidate for a persistent feature.

Subcase [111111]; M6 = −1 + CR: The ideal IM6+CR of covariants van-

ishing under conditions (5.3.15) and (5.3.18), can be calculated without too
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much effort. This ideal IM6+CR is generated by the coefficients of the two

covariants

FM6+CR
4 = 360(49C1B0 − 48E1)A3 − 193B2

2B0 − 1896C3C1

+ 288D0B4 + 3276D2B2,

FM6+CR
0 = 97B3

0 − 275D0B0 + 375F0. (5.3.19)

Calculations using Gröbner bases show that the ideal IM6+CR is closed under

differentiation and hence represents a persistent feature.

The geometry of the algebraic set corresponding to the IM6+CR will deter-

mine whether or not this corresponds to a single conformal class, or whether

is it has several difference components that are inequivalent under the action

of the conformal group. One could imagine a situation where the ideal breaks

into two unconnected components or where one component is separated into

two by removing points from the algebraic set where the rank of the action

drops. Thankfully such a situation would show up algebraically due to the

following theorem (taken from Corollary 4.16 in Ref. [48]).

Theorem 5.3.20. Let X ⊂ Pn be an r-dimensional projective variety and let

Y $ X be a closed algebraic set. Then X \ Y is connected in the classical

topology.

The locations where the rank of the action drops is defined by polynomial

conditions and hence is an algebraic subset of the algebraic set defined by

(5.3.18). A test using Maple indicates that condition (5.3.18) is absolutely

irreducible over C (meaning its algebraic set is actually an algebraic variety).

Theorem 5.3.20 implies that the set of points for which the action has maximal

rank will be connected. So the action of the translations will be transitive on

set of point satisfying (5.3.15) and (5.3.18) where the action is rank 1. Points

where the rank of the action drops can be shown to correspond to roots of

multiplicity 2 or higher and hence need not be considered.

Hence the ideal IM6+CR found corresponds to single conformal class. A

particular representative of the systems lying in this class is given by the

(Euclidean superintegrable) system

VIV = a(4x2
1 + x2

2 + x2
3) + bx1 +

c

x2
2

+
d

x2
3

+ e (5.3.21)
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which has classifying binary form

Y(r, s) =
3

4x2
(r2 + s2)3 +

6i

x3
r3s3.

Subcase [111111]; Rank 3 Jacobian: Assuming now that the multi-ratio

condition (5.3.15) is not satisfied, then the Jacobian (5.3.14) will be rank 3

and the absolute invariants I can be used to examine the rank of the action

on the cross-ratios.

Calculating the the determinant of the Jacobian between the three absolute

invariants (5.3.13) and the coordinates gives,

det

(
∂I

∂x

)
= det

∂
(
D0

B2
0
, F0

B3
0
, J0
B5

0

)
∂(x1, x2, x3)



=

(
2521B5

0 − 9625D0B
3
0 + 6250D2

0B0

−7500F0B
2
0 + 65625F0D0 − 84375J0

)
2531056B11

0

O0. (5.3.22)

This shows that action is rank 3 away from

JJac0 = 2521B5
0 − 9625D0B

3
0 + 6250D2

0B0 − 7500F0B
2
0 + 65625F0D0 − 84375J0

= 0 (5.3.23)

and

O0 = 0. (5.3.24)

A careful examination reveals that O0 is a symmetric version of the M6 = −1

condition, specifically

O0 ∝
∏
σ∈Σ

(
(rσ(1) − rσ(2))(rσ(3) − rσ(4))(rσ(5) − rσ(6))

+ (rσ(6) − rσ(2))(rσ(2) − rσ(3))(rσ(4) − rσ(5))

)
(5.3.25)

where Σ is the subset of 15 elements of the permutation group that give the 15

different versions of the M6 = −1 condition. By the discussion in the previous

section systems satisfying this have already been considered. So henceforth

O0 will be assumed non-zero.

Returning to the main argument, the action of the translations will be

rank 3 on the absolute invariants I away from JJac0 = 0 and O0 = 0. The set

C3 \
{
I ∈ C3 : JJac0 = 0, O0 = 0

}
is clearly connected (invoking theorem 5.3.20



CHAPTER 5. CLASSIFICATION 98

if needed) and hence there can only be one orbit under this action. A par-

ticular representative of the system in this orbit is given by the conformally-

superintegrable potential

VS =
a

(1 + x2
1 + x2

2 + x2
3)2

+
b

x2
1

+
c

x2
2

+
d

x2
3

+
e

(−1 + x2
1 + x2

2 + x2
3)2

.

The potential VS above is Stäckel equivalent to the potential

VS′ =
α

s2
1

+
β

s2
2

+
γ

s2
3

+
δ

s2
4

+ ε

which is superintegrable over the 3-sphere s2
1 + s2

2 + s2
3 + s2

4 = 1.

Subcase [111111]; Rank 2 Jacobian; JJac0 ≡ 0: Taking the condition

JJac0 on its own generates a closed ideal, which will be denoted IJac. The

differential closure of IJac is easily seen by considering the following relations

∂JJac0

∂x
= 5 (X−1 −X+1) JJac0 ,

∂JJac0

∂y
= 5i (X−1 +X+1) JJac0 ,

∂JJac0

∂z
= 5
√

2 (X0) JJac0 . (5.3.26)

The Hilbert dimension of the the ideal IJac is 6 and, a check for absolutely

irreducibility using Maple returns a positive result. This means (like IM6+CR)

the ideal IJac gives an algebraic variety and hence is connected set. The

local action of the conformal group is rank 4 and the action of a non-local

transformation on the absolute invariants is rank 2 (which is clearly distinct

from the local action). Hence the generic action on this space will be rank 6

and thus can only be one orbit under the action of the conformal group.

So IJac represents a single conformal class and a particular representative

of the systems in this class is given by

VI = a(x1
2 + x2

2 + x3
2) +

b

x1
2

+
c

x2
2

+
d

x3
2

+ e (5.3.27)

which has the classifying binary form

Y(r, s) =
6i

x3
r3s3 +

3

4x2
(s6 +3r2s4 +3r4s2 +r6)− 3i

4x1
(s6−3r2s4 +3r4s2−r6).
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Subcase [111111]; Rank 1 Jacobian: Any further restrictions would nec-

essarily show up when the Jacobian is rank 1. Examining the 2×2 subminors

of the Jacobian under the restriction JJac0 = 0 gives an additional 14th order

covariant that must vanish identically, namely

NRank1
1 = (125F0 + 49B3

0 − 125D0B0)H1 − 20(−25D0 + 14B2
0)J1 + 150L1B0

(5.3.28)

The ideal IRank1 generated by the coefficients of the covariants NRank1
1 , JJac0

closes after 3 derivatives. Straightforward calculations show(
IM6+CR ∩ I[3111]

)3 ⊂ IRank1 ⊂ IM6+CR ∩ I[3111].

Hence
√
IRank1 = IM6+CR∩I[3111] and all corresponding systems have already

been classified.

This completes the classification. There are a total of 10 conformal classes

and a given maximal-parameter, second-order conformally-superintegrable sys-

tems can be identified by determining which of the ideals above vanished.

Table 5.1 shows the pattern of vanishing ideals for each of the representative

systems.

A classification of maximal-parameter, second-order superintegrable sys-

tems over flat spaces and the sphere can now be determined by which of the

10 given conformally-superintegrable systems givens an appropriate metric.

The conclusion is there are 10 Euclidean Systems (as was well known) labeled

I, II, III, IV, V, V I, V II,O,OO,A

and 6 systems on the Sphere, labeled

S, I, II, IV, V I,OO.

5.4 Limiting Diagrams of the

Maximum-Parameter Systems

The ideals that were found when performing this classification gives a natural

way to think about limiting from one class to another by considering the

partial ordering put on these ideals via ideal containment. For example, the
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I[0] I[6] I[51] I[411] I[33] I[3111] I[3111]+CR IM6+CR JJac0

S

I 0

II 0 0

III/V 0 0 0 0

IV 0 0

V I 0 0 0 0

V II 0 0 0 0 0 0

O 0 0 0 0 0 0 0 0 0

OO 0 0 0 0 0

A 0 0 0 0 0 0 0 0

Table 5.1: Vanishing irreducible ideals for the ten maximum-parameter sys-
tems

ideal I[3111]+CR contains the ideal I[3111] as a subideal, this means that the

algebraic variety defined by I[3111] contains the algebraic variety defined by

I[3111]+CR. A particular [3111] + CR system corresponds to a point in the

variety defined by I[3111]+CR. A motion (either local conformal or translation

of the regular point) can move a point in the variety and take it arbitrarily

close to a subvariety.

The structure of ideals and subideals is displayed in figure 5.1. The arrows

in figure 5.1 point from subideal to superideal, and since ideal containment

is transitive only a minimal set of arrows has been drawn. In terms of sub-

varieties (or thinking about limiting from one variety to another) the arrows

should be reversed.

There are three pieces of information contained in the boxes in figure 5.1,

the first is the name of the chosen representative of the system in the classifica-

tion above, the second is the factor structure for the binary form Y(r, s) asso-

ciated to the system, the third is a reference to the bracket notation of Bôcher

where a partition of 5 indicates the generic separable coordinates in which

the system separates [4], and the last piece of information is Hilbert dimen-

sional of the ideal with regards to the seven variables from the 7-dimensional

representation Y(r, s) (that is, ignoring the values of the three-dimensional

representation X (r, s)). The generic system, labeled S, has Hilbert dimension

7 as this corresponds to a generic point in C7. Most of the (minimal) degen-
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erations shown by the arrows drop the Hilbert dimensional by one, the only

exception to this is the degeneration from [6] to [0] where the two degrees

of freedom coming from the position of the single root and the value of the

leading coefficients are lost.

The systems denoted by O,OO and A only separate in non-generic sep-

arable coordinates and so do not have a Bôcher bracket associated to them.

However it should be clear that, for the 7 classes that do, the partial-ordering

of the Bôcher brackets (as partitions of five) is the same as the partial-ordering

given by the ideal containment relations.
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Figure 5.1: Subideal Containment Diagram



Chapter 6

Conclusions and Future

Directions

The central result in this thesis is the classification of three-dimensional second-

order systems with maximum-parameter (non-degenerate) potentials over con-

formally flat complex spaces. The classification made use of the algebraic-

geometry that arose when considering the action of the conformal-group on

the variety of integrability conditions. Importantly the techniques used did

not depend on separation of variables (which is a purely second-order phe-

nomenon) and hence should be applicable to a wide range of systems.

There are four natural directions to investigate next: systems in higher

dimensions, systems depending on strictly fewer than the maximum of pa-

rameters (degenerate), systems with higher-order constants, and the quantum

analogues of these classical systems.

The quantization procedure for maximal-parameter three-dimension second-

order superintegrable systems has already been worked out in Ref. [14] and

so there is no-foreseeable difficulty in carrying the classification over to the

quantum case.

In the case of classifying a classical n-dimensional maximum-parameter

second-order systems there is already a large class of systems known to corre-

sponding to separation of variables in ellipsoidal coordinates and their degen-

erations [26]. If the 3-dimensional case is a good model for the n-dimensional

cases (as they appear to be) then the techniques discussed here can be used

to more efficiently examine the completeness of the list of known potentials

103
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and find the systems which are missing.

Only maximum-parameter (non-degenerate) second-order systems were

discussed in this thesis, and in three-dimensional spaces the complete clas-

sification of systems depending on strictly fewer parameters is still an open

question. However using the integrability conditions to to derive algebraic

varieties already seem like a promising path towards a complete classifica-

tion [15] and it would be interesting to try and take the techniques developed

here and apply them to the degenerate potentials.

Since the classification result in this thesis was primarily based on the in-

tegrability conditions for second-order superintegrable systems (i.e. without

appealing to separation of variables) the techniques used here should be ap-

plicable to systems with higher-order constants. The systems studied in this

thesis are somewhat special as their classification only depends on the invari-

ants of a single GL(2, C) representation, however the techniques should also

carry over to joint invariants between multiple representations.

The techniques used in this thesis are not without their drawbacks. They

would most likely become intractable if the binary form model of the seven-

dimensional representation hadn’t been used as they required significant com-

puting power. A deeper understanding of the algebraic geometry underlying

the varieties which does not rely on such a specific model is a natural avenue

that will be pursued. Each of the generalisations discussed above allow for

ample new examples to be investigated and improvements to these techniques

can be explored.

Finally a very important aspect of superintegrable systems, which wasn’t

discussed in this thesis, is the connection to special function theory. A par-

ticularly interesting example of this connection is given by the relationship

between the contractions of the quantum quadratic algebras of 2-dimensional

systems and the Askey-Wilson scheme for hypergeometric orthogonal polyno-

mials [25].

Analogously to the 2d case all second-order maximum-parameter systems

can be obtained from contraction of the generic spherical case (as can be seen

in the limiting diagram in figure 5.1). A model of the quadratic algebra of the

generic spherical potentials is given by two-variable Wilson polynomials [24]

and it would be expected that suitable models for all the quadratic algebras

of all 3-dimensional superintegrable systems could be given by taking appro-
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priate limits of this master model (a task which, to the best of the Author’s

knowledge, hasn’t been completed yet). The classification of the classical sys-

tems given in chapter 5 should provide information relevant to this limiting

process.

The rotation representations in chapter 3 were effective at determining the

dimension of the space of constants. It seems reasonable to expect that this

technique could be extended to prove the existence of the quadratic algebra

for higher-dimensional systems.

The subalgebras of the quadratic algebras is also a topic of interest to the

research community [7] and the techniques in chapter 3 should be adaptable to

describe such subalgebras in terms of invariants and joint-invariants. At the

very least it seems feasible that the descriptions could be made more concise.



Appendix A

Representations of

so(3,C) ' sl(2,C)

In this thesis the irreducible representations of so(3,C) are use to describe the

results obtained, identify possible avenues of investigation and to simplify the

computations involved. The main idea that is needed here is that all so(3,C)

representations can be modelled as odd dimensional sl(2,C) representations.

This identification allows the representations to be concisely described as a

binary form. This description in terms of binary forms makes the tools of

classical invariant theory relevant.

A.1 The isomorphism between so(3,C) ' sl(2,C)

Before beginning a discussion of sl(2,C) representations, recall some basic

facts about the so(3,C) Lie algebra. Examining the action of the rotation
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group on the coordinate the following matrix-infinitesimals are determined

J1 =


0 0 0

0 0 −1

0 1 0

 ,

J2 =


0 0 1

0 0 0

−1 0 0

 ,

J3 =


0 −1 0

1 0 0

0 0 0

 . (A.1.1)

These matrices satisfy the commutations relations

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2.

This Lie algebra is isomorphic to the sl(2,C) Lie algebra whose generators

are given by the Pauli matrices

A1 =

(
0 i

i 0

)
,

A2 =

(
0 1

−1 0

)
,

A3 =

(
−i 0

0 i

)
. (A.1.2)

Like the Ji above these satisfy the commutation relations

[A1, A2] = 2A3, [A2, A3] = 2A1, [A3, A1] = 2A2,

so the identification 1
2Ai ' Ji provides the Lie algebra isomorphism (over C).

Exponentiating these matrices, using the (absolutely convergent) sum

exp(A) = I +A+
1

2
A2 +

1

3!
A3 + · · ·
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gives the recognisable rotation matrices

exp(tJ1) =


1 0 0

0 cos(t) − sin(t)

0 sin(t) cos(t)

 ,

exp(tJ2) =


cos(t) 0 sin(t)

0 1 0

− sin(t) 0 cos(t)

 ,

exp(tJ3) =


cos(t) − sin(t) 0

sin(t) cos(t) 0

0 0 1

 . (A.1.3)

Similarly, taking exponentials of the Ai gives the matrices

exp

(
t

2
A1

)
=

(
cos( t2) i sin( t2)

i sin( t2) cos( t2)

)
,

exp

(
t

2
A2

)
=

(
cos( t2) sin( t2)

− sin( t2) cos( t2)

)
,

exp

(
t

2
A3

)
=

(
cos( t2)− i sin( t2) 0

0 cos( t2) + i sin( t2)

)
. (A.1.4)

These allow a homomorphism to be defined from the SL(2,C) Lie group to

the SO(3,C) Lie group. Thus any SO(3,C) representation can be pulled back

to a SL(2,C) representation. Importantly, the irreducible representations

remain irreducible. In the following section the irreducible representations

of SL(2,C) will be discussed, an only those that are in correspondence with

SO(3,C) representations will be kept.

Irreducible Representations of SL(2,C)

The standard way to examine the irreducible, finite-dimensional representa-

tions of SL(2,C) (or any semi-simple Lie algebra) is to split these into weight

spaces and identify the representation by its highest weight vector. Specifi-

cally, for the Lie algebra sl(2,C) the raising, lowering and level-set operators
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are defined via

e =
1

2
(iA1 −A2),

f =
1

2
(iA1 +A2),

h =
i

2
A3. (A.1.5)

These satisfy the commutation relations

[h, e] = e, [h, f ] = −f, [e, f ] = 2h. (A.1.6)

From these it can easy be shown that an eigenvector vλ of h, that is hvλ = λvλ,

then

hevλ = (λ+ 1)evλ,

hfvλ = (λ− 1)fvλ. (A.1.7)

So evλ is an eigenvector with eigenvalue λ+ 1 and fvλ is an eigenvector with

eigenvalue λ− 1.

Rather than go through a full exposition on how to determining the prop-

erties of an irreducible SL(2,C) representation we will skip straight to the

model used to construct them.

There are two well-known two models that could be used, the first is to

take a 2× 2 complex matrix

M =

(
a c

b d

)

and act on the complex polynomial

p(z) = a0 +

(
n

1

)
a1z +

(
n

2

)
a2z

2 + . . .+ anz
n

via

p̂(ẑ) = (bẑ + d)np

(
aẑ + c

bẑ + d

)
. (A.1.8)

This identification induces an action of the coefficients of p(z). This descrip-

tion gives a nice way to think about parameterising the representations by

considering the roots of the polynomial.
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The second, equivalent, model is is to work instead in homogeneous coor-

dinates. Computationally, this description is easier to work with. Consider

the binary form

Q(r, s) = a0s
n +

(
n

1

)
a1rs

n−1 +

(
n

2

)
a2r

2sn−2 + . . .+ anr
n. (A.1.9)

The action of M on the coordinates will be defined to be

r̂ = ar + br,

ŝ = cs+ ds. (A.1.10)

The identification

Q̂(r̂, ŝ) = Q(r̂, ŝ) (A.1.11)

induces the same action as (A.1.8). The explicit link between these two model

is given by the equation

snp
(r
s

)
= Q(r, s).

In terms of the matrices e, h, f the action on r, s will be given by the

coordinate changes

r = exp(te)r̂,

r = exp(tf)r̂,

r = exp(th)r̂. (A.1.12)

By defining the action of the Lie algebra via ∂r̂
∂t

∣∣∣
t=0

and noting

exp(tg)−1 = exp(−tg)

yields the relations

e(r) = s, h(r) = −r
2
, f(r) = 0,

e(s) = 0, h(s) =
s

2
, f(s) = s, (A.1.13)

which can be verified to satisfy the commutation relations (A.1.6). This action

can be expressed using the operators

J+ = s∂r,

J0 =
1

2
(−r∂r + s∂s) ,

J− = r∂s, (A.1.14)



APPENDIX A. REPRESENTATIONS 111

which will be convenient when applying this action to higher order combina-

tions. This algebra has a Casimir given by

C =
1

2
(r∂r + s∂s)

which is related to the other operators via

J2
1 + J2

2 + J2
3 = C(C + 1).

Returning to the binary form (A.1.9), the action of the matrix M on the

coefficients can be defined via the relation

Q̂(â, r̂) = Q (a,M r̂) .

The corresponding Lie algebra action is given by

J+(ak) = −(n− k)ak

J0(ak) =
(
k − n

2

)
ak

J−(ak) = −kak (A.1.15)

And finally, returning to the polynomial point of view, the action of (A.1.8)

can be given by mapping the roots ηi of p(z) to

ηi →
dηi − c
−bηi + a

and scaling the leading coefficient by

a6 →
n∏
i=1

(a− bηi)a6.

These binary forms define all the irreducible SL(2,C) representations,

however since SL(2,C) is a double cover of SO(3,C) one final point must

be clarified. When t = 2π (i.e. a full rotation) the matrices (A.1.3) are all the

3 × 3 identity matrix. However at t = 2π the matrices (A.1.4) are the 2 × 2

anti-identity matrix −I. The action of −I on the nth degree binary form

(A.1.9) is to scaled it by (−1)n, for this to make sense n must be an even inte-

ger. This reveals the well known fact that SO(3,C) only has odd-dimensional

representations.
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A.2 The covariants of Y (r, s)

In chapter 4 the SO(3,C) representation Y(r, s) is shown to also be a repre-

sentation of the local action of the conformal group. This representation is

isomorphic to one for GL(2,C) for the action described above. It is natural

therefore to talk about the covariants of Y(r, s), that is, combinations of r, s

and the coefficients of Y(r, s) such that the action of a matrix in GL(2,C) of

is just some multiple of the determinant. A Hilbert basis for these covariants

in given in appendix B.

The only difference between the SL(2,C) representations above and the

GL(2,C) representations (i.e. the covariants) is given by the determinant.

To each covariant a weight can be assigned, for example, the covariant B0

(defined in appendix B) has covariant weight 6. So the action of a matrix

with determinant ∆ is given by

B0 7→ ∆6B0.

Similarly D0, F0, H0, J0 and O0 have covariant weights 12, 18, 24, 30 and

90 repsectively. This information is important in chapter 5 as it allow the

absolute invariants1 I =
(
D0

B2
0
, F0

B3
0
, J0
B5

0

)
to be defined.

1Absolutely invariant under the local action of the conformal group (i.e. GL(2,C))



Appendix B

A Hilbert Basis for the

Binary Sextic

The polynomial ideals that arise in this thesis form sets of so(3,C) ' sl(2,C)

representations created from the symmetric tensor products of a single irre-

ducible 7-dimensional representation. From the discussion in appendix A it is

clear the ideals can be described in terms of the covariants of a 6th order bi-

nary form. It has been known almost a century and a half that every covariant

of a binary form can be be written as a (non-unique) polynomial in a finite

set of basis covariants [32]. Abstractly, such a basis is guaranteed to exist

by Hilbert’s basis theorem (which applies to any Noetherian ring) but more

concretely, a basis can be constructed using Gordan’s method (see P. Olver,

chapter 7 [49]).

The only tool we really need for constructing the Hilbert basis is the

transvectant operator1

(A,B)[q] =
1

(q!)2

q∑
k=0

(−1)k
(
q

k

)
∂qA

∂rk∂sq−k
∂qB

∂rq−k∂sk
. (B.0.1)

Defined this way the transvectant can be applied to any two functions of

r,s. Any covariant can now be written as a linear combination of iterated

transvectants. A simple example is given by the determinant of the Hessian

1the algorithm actual uses a closely related operator, the partial transvectant. However
partial transvectants can be rexpressed in terms of full transvectants.
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matrix (also known as the Hessian) which can be expressed as

H(f) = det

∣∣∣∣∣ f,rr f,rs

f,sr f,ss

∣∣∣∣∣ = f,rrf,ss − f2
,rs = 2 (f, f)[2] .

B.1 The Hilbert Basis

The ring of covariants of a degree-six polynomial has a Hilbert basis consisting

of twenty-six elements [57], but such a basis is not (to the best of the author’s

knowledge) canonically defined. As such a particular choice will need to be

given explicitly. Letting Y(r, s) to be 6th degree binary form defined at (3.2.8)

the Hilbert basis used in this thesis is defined in the following recursive manner

A3 = Y,

B4 = 4(A3, A3)[2], B2 = 576(A3, A3)[4],

B0 = 518400(A3, A3)[6],

C6 =
1

2
(A3, B4)[1], C4 =

1

2
(A3, B2)[1],

C3 =
2

3
(A3, B2)[2] + 5A3B0, C1 = 96(A3, B2)[4],

D5 =
2

3
(A3, C3)[1], D3 = (A3, C1)[1],

D2 = 4(A3, C1)[2], D0 = 34560(A3, C3)[6],

E4 = (A3, D2)[1], E2 = 36(A3, D2)[3],

E1 = 576(A3, D2)[4],

F
(1)
3 = (A3, E1)[1], F

(2)
3 = −5

2
(A3, E1)[1] + 2(A3, E2)[2],

F0 = 4(C1, C1)[2],

G2 =
1

2
(B2, E1)[1], G1 = 4(C1, D2)[2],

H1 = −48(A3, G2)[4],

I2 = 4(A3, H1)[2],

J1 = 576(A3, I2)[4], J0 = 4(C1, G1)[2],

L1 =
2

3
(B2, J1)[2] +

1

3
B0J1,

O0 = 4(L1, C1)[2]. (B.1.1)
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The notation chosen here (consisting of a capital letter with a numerical sub-

script) indicate of the type of representation each covariant represents. The

position of the letter in the English alphabet is a reflection of the polyno-

mial degree of the coefficients and the subscript indicates the weight of the

highest-weight vector. This convention is also used when describing the ideals

in chapter 5 with the addition of descriptive superscripts to distinguish them

from the elements of the Hilbert basis.



Appendix C

Notation

This is a brief review of notation used in the thesis. Tables C.1 and C.2 can

be used as a quick guide to most of the symbols used in this thesis.

Symbol Meaning Definition

A,i The partial derivative of A with respect to xi

λ
The conformal factor of the conformally flat
metric

(2.3.1)

K The sectional curvature (2.5.2)

Kn

The nth order part of a constant (contextually
dependent upon which constant is under
examination)

§3.3

{Q,R,S}
A linearly independent and symmetric choice
of coefficient functions for the superintegrable
systems

(2.3.16)

{Q,R,S}
A linearly independent and symmetric choice
of coefficient functions for the
conformally-superintegrable systems

(4.1.10)

J+, J−, J0 The raising, lowering and level set operators (3.1.7)

Y(r, s)
The 7-dimensional representations constructed
from the {Q,R} variables

(3.2.8)

X (r, s)
The 3-dimensional representations constructed
from the {S} variables

(3.2.9)

Table C.1: Symbols used in this thesis with their places of definition.

116



APPENDIX C. NOTATION 117

Symbol Meaning Definition

ηi The roots of polynomial p(z) = Y(z, 1)

Z(r, s)
The 3-dimensional representations constructed
from the first-order derivatives of the
conformal-factor λ = exp(G)

(3.2.10)

Zee
The 1-dimensional representations constructed
from the second-order derivatives of the
conformal-factor λ = exp(G)

(3.2.11)

P(r, s)
The 3-dimensional representations constructed
from the momenta

(3.2.4)

V(r, s)
The 3-dimensional representations constructed
from the potential’s parameters

(3.2.6)

Vee The 1-dimensional representations constructed
from the potential’s parameters

(3.2.7)

(m)n
Shorthand for n representations covering a
space of m variables

§3.3

{A,B}PB The Poisson-Bracket/Poisson Commutator (2.1.5)

(A,B)[n] The transvectant (3.1.14)

∂+, ∂−, ∂0 The raising,lowering and level-set derivatives (3.1.15)

∂C+ , ∂
C
− , ∂

C
0

The raising,lowering and level-set constructor
derivatives

(3.1.25)

〈A,B, . . .〉 The polynomial ideal generated by A,B, . . . 5.1.1
√
I The radical ideal of the ideal I 5.1.7

I The differential closure of the ideal I 5.1.8

Table C.2: More symbols used in this thesis with their places of definition.
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superintegrability. In AIP Conference Proceedings, volume 1323, page

265, 2010.

[53] S. Post and P. Winternitz. A nonseparable quantum superintegrable

system in 2d real euclidean space. Journal of physics. A, Mathematical

and theoretical, 44(16), 2011.

[54] C. Quesne. Superintegrability of the tremblay–turbiner–winternitz quan-

tum hamiltonians on a plane for odd k. Journal of Physics A: Mathe-

matical and Theoretical, 43(8):082001, 2010.

[55] S. Tsujimoto S. Post and L. Vinet. Families of superintegrable hamilto-

nians constructed from exceptional polynomials. Journal of Physics A:

Mathematical and Theoretical, 45(40):405202, 2012.
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