
 
 
 
 
 
 

Control functionality of DAQ-Middleware 

H Maeda1, Y Nagasaka1, H Sendai2, E Inoue2, E Hamada2, T Kotoku3,  
N Ando3, S Ajimura4 and M Wada5 
1 Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193 

Japan 
2 High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 

305-0801 Japan 
3 The National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 

Umezono, Tsukuba, Ibaraki 305-8568 Japan 
4 Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka Japan 
5 Bee Beans Technologies Co., Ltd., Sengen 2-1-6, Tsukuba, Ibaraki 305-0047 Japan 

E-mail: nagasaka@cc.it-hiroshima.ac.jp 

Abstract. DAQ-Middleware is a software framework for a network-distributed data 
acquisition (DAQ) system that is based on the Robot Technology Middleware (RTM). The 
framework consists of a DAQ-Component, that is implemented as a data transfer module, a 
data gather module, a data record module, etc., and a DAQ-Operator, that is implemented as a 
control module of other components. The basic functionalities, that are necessary as a DAQ 
system, such as transferring data, starting and stopping the system, etc., are already prepared in 
the framework. But one of control functionalities, i.e., the functionality of changing parameter 
values on the DAQ-Components, wasn’t provided yet. In order to implement the functionality, 
the framework has to have the communication method to transfer data from the DAQ-Operator 
to the DAQ-Component, and the new state to realize the functionality because it should be 
separated from a normal state to acquire data. Then we developed and added the new 
functionality in the DAQ-Middleware to transfer data from DAQ-Operator to DAQ-
Components in the new state. The new DAQ-Middleware framework allows us to implement 
easily not only functionality of acquiring data but also that of controlling component modules. 

1. Introduction 
A high performance data acquisition system is used to collect data in many high energy and nuclear 
physics experiments. Moreover, most of the systems are connected to each other by using network 
technologies such as Ethernet and TCP/IP. A system called network-distributed DAQ is normally used 
to gather event fragment data from read-out modules of detectors. 

Although the functionality of the DAQ system is almost the same, the system has been 
developed individually for each experiment so far, and it caused the system development efficiency to 
become smaller. We have developed a software framework for DAQ systems, called DAQ-
Middleware in the following. 

The DAQ system can be easily implemented by using this framework, and we can collect to 
data taken by an experiment. The role of the DAQ system is not only to collect data but also to control 
the system. The basic control functionalities such as starting and stopping the system is provided by 
the framework, but the functionality to transfer data from the DAQ-Operator to the DAQ-Components 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1



 
 
 
 
 
 

was not implemented. It is useful, for example, when we change threshold values on readout modules 
or high-voltage values via modules. The functionality to set the first values on DAQ-Component was 
provided, but we were not able to change values after the DAQ system started, and the system had to 
be restarted when we changed them. 

We developed the functionality to transfer data from the DAQ-Operator to the DAQ-
Components to change values in the DAQ-Components. In order to enable the new functionality, the 
new state, SET, should be introduced in the DAQ-Middleware. The new functionality was 
implemented in the state and it allows us to transfer data, which are stored in a parameter file on the 
DAQ-Operator, to the specified DAQ-Components. By using this functionality, any parameters can be 
transferred and set with the DAQ-Middleware without restarting the system. 

2．DAQ-Middleware 
DAQ-Middleware is a software framework to develop for a network-distributed DAQ system easily1-3. 
It is a network-distributed DAQ framework and based on the Robot Technology Middleware, RTM4, 
developed by the National Institute of Advanced Industrial Science and Technology, AIST. The 
framework is also based on an object-oriented technology. 

DAQ-Middleware consists of two kinds of nodes, a DAQ-Component and a DAQ-Operator. 
These are objects and communicate with each other with CORBA. The basic functionalities such as 
transferring data, starting and stopping the system, etc., are already implemented in the DAQ-
Component and the DAQ-Operator. The DAQ-Component is especially used as a core component to 
read, transfer, and record data. On the other hand, the DAQ-Operator is used as a controller for the 
DAQ-Components. The framework also works as a state machine system and it has four states; 
LOADED, CONFIGURED, RUNNING and PAUSED. The transition between these states occurs by 
a command that is transmitted by the DAQ-Operator.  

Figure 1 shows a typical example of a system architecture that is developed with using DAQ-
Middleware. The system consists of one DAQ-Operator and four DAQ-Components on two 
computers, PC(UI) and PC(DAQ#1).  
 
 

 

 
 

Figure 1.  Typical example of a system architecture 
based on DAQ-Middleware 

 
 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

2



 
 
 
 
 
 

The PC(UI) is used for a user interface and the DAQ-Operator. The user controls the system via 
the DAQ-Operator with using a system configuration file written in XML. The DAQ-Operator 
transmits the control command to each DAQ-Components. On the other hand, four DAQ-Components 
are implemented on the PC(DAQ#1). These four components, Gatherer, Dispatcher, Logger, and 
Monitor shown in the figure, are typical components of a DAQ system and are developed by using the 
DAQ-Component of DAQ-Middleware. The Gatherer gathers event fragments from Read-out 
Modules, builds an event and transfers it. The Dispatcher duplicates event data that are received from 
the Gatherer and transferred to two components, the Logger and the Monitor. The Logger stores the 
event into the database, and the Monitor shows the data for checking them. In this figure, it shows 
these components on only one computer, but it is also possible to implement them on several 
computers separately because the communication between components is implemented with CORBA. 

3．Control functionality 
We developed and added the new control functionality into the DAQ-Middleware. It enables the 
DAQ-Operator transfer data to the DAQ-Components without restarting the system. And we also 
introduced the new state, SET, for this new functionality.  

A state diagram of a DAQ system based on the DAQ-Middleware is shown in Figure 2. DAQ-
Middleware has four states originally, which are shown as blue boxes in the figure. The transitions of 
these states are triggered by commands, configure, unconfigure, start, stop, pause and resume. The 
data acquisition is normally performed in the RUNNING state. As these four states were prepared only 
for collecting data, we introduced the new state, SET, which was shown as a red box in the figure. The 
state is transited from the PAUSED state by the command set and to the PAUSED state by the 
command return. 

When the DAQ-Component receives the command set and data form the DAQ-Operator, the 
daq_setting( ) method is called, and the state of the component transits to SET state. After finishing 
the state transition, the daq_set( ) method is called repeatedly until receiving command return to 
transit to the PAUSE state. A user can implement functionality to change values on the DAQ-
Component by using these two methods. 

The data to transfer from the DAQ-Operator are stored in a file on the operator. The file is 
specified in the process on the DAQ-Operator. The file consists of value’s names, their values, DAQ-
Component IDs, etc., which are written in XML in order to transfer several different values to 
different components. The format is basically the same as that of the configuration file, which is used 
in the configuration process at the beginning when starting the system. 

By using this functionality, users can easily implement the functionality to control the DAQ-
Components and communication method between DAQ-Operator and DAQ-Components.  
 

 
 

 
 

Figure 2. State diagram of a DAQ system 
based on  DAQ-Middleware 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

3



 
 
 
 
 
 

 
 
4．Performance measurements 
4.1．Setup 
The transfer times after opening a file that stores transfer values until finishing transferring it from the 
DAQ-Operator to the DAQ-Component were measured to evaluate a performance of the new 
functionality.  

Table 1 shows the specification of two computers used for the performance test. Two computers 
were connected directly via 10 Gigabit Ethernet network without any switches. The data used for the 
performance measurement were binary one and were prepared before the measurements. 
 

Table 1. Specifications of test computers 

CPU Intel(R) Xeon(R) CPU E5606 2.13 GHz 

Memory 2048 MBytes 
Network Intel Corporation 82598EB  

10-Gigabit AT2 Server Adapter 
OS Scientific Linux 6.2 

 
4.2．Results 
The results of our measurements are shown in Figure 3. The transfer times in the unit of msec are 
plotted as a function of parameter data sizes in the unit of bytes.  

As shown in the figure, the transfer time becomes bigger for increasing data sizes, and the 
absolute values are from about 4.5 msec to about 6.0 msec. This transfer time includes a file access 
and a data transfer times in the process of the DAQ-Operator. The overhead of the file access in the 
process is about 4.5 msec. The transfer speed of parameter data is a few Mbps in the case of 1 kBytes 
of data size. As the DAQ-Middleware is based on object-oriented architecture and uses CORBA 
architecture to communicate each other, the data transfer speed is limited by its architecture and the 
test environment. 

The performance test shows the new control functionality works well without failures. The new 
DAQ-Middleware with the functionality allows to set values to modules on the DAQ-Component 
without a restart procedure.  
 
 

 

 
 

Figure 3.  Transfer times as a function of data sizes of configuration file 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

4



 
 
 
 
 
 

 

5. Conclusions 
We have developed the DAQ-Middleware, a software framework for the network-distributed DAQ 
system. The basic functionalities are already implemented and we can develop a DAQ system easily 
by using this framework. The control functionality to set values was not provided, so we developed it 
into the framework. A new state, SET, was introduced in the framework. The transfer times of data 
stored in the file were measured to evaluate the system. Although the transfer time is a few msec, it is 
obviously faster than original middleware, because the original system has to be restarted in order to 
set such values to the DAQ-Component. The new control functionality worked without failures, and it 
was useful to reduce the time to set values on the DAQ-Components. 
 
 

References 
[1] Y. Yasu, K. Nakayoshi, E. Inoue, H. Sendai, H. Fujii, N. Ando, T. Kotoku, et al., “A Data 

Acquisition Middleware,” Proc. IEEE/NPSS Real Time Conference, pp. 1-3, May 2007. 
[2] Y. Yasu, K. Nakayoshi, H. Sendai, and E. Inoue, “Functionality of DAQ-Middleware,” IEEE 

Trans. Nucl. Sci., vol. 57, no. 2, pp. 487-490, 2010 
[3] K. Nakayoshi, H. Sendai, Y. Yasu, E. Inoue, T. Kotoku, N. Ando, Y. Nagasaka, S. Ajimura and 

M. Wada, “DAQ-Middleware: Progress and status,” J. Phys.: Conf., Ser. 331  02202318, 2011 
[4] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and W. K. Yoon, “RT-Middleware: distributed 

component middleware for RT (robot technology),” IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS 2005), pp. 3933-3938, 2005 

 
 

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

5




