20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

Control functionality of DAQ-Middleware

H Maeda', Y Nagasaka', H Sendai’, E Inoue’, E Hamada®, T Kotoku’,
N Ando’, S Ajimura* and M Wada®

' Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima 731-5193
Japan

* High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki
305-0801 Japan

* The National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1
Umezono, Tsukuba, Ibaraki 305-8568 Japan

* Osaka University, 1-1 Machikaneyama, Toyonaka 560-0043, Osaka Japan

> Bee Beans Technologies Co., Ltd., Sengen 2-1-6, Tsukuba, Ibaraki 305-0047 Japan

E-mail: nagasaka@cc.it-hiroshima.ac.jp

Abstract. DAQ-Middleware is a software framework for a network-distributed data
acquisition (DAQ) system that is based on the Robot Technology Middleware (RTM). The
framework consists of a DAQ-Component, that is implemented as a data transfer module, a
data gather module, a data record module, etc., and a DAQ-Operator, that is implemented as a
control module of other components. The basic functionalities, that are necessary as a DAQ
system, such as transferring data, starting and stopping the system, etc., are already prepared in
the framework. But one of control functionalities, i.e., the functionality of changing parameter
values on the DAQ-Components, wasn’t provided yet. In order to implement the functionality,
the framework has to have the communication method to transfer data from the DAQ-Operator
to the DAQ-Component, and the new state to realize the functionality because it should be
separated from a normal state to acquire data. Then we developed and added the new
functionality in the DAQ-Middleware to transfer data from DAQ-Operator to DAQ-
Components in the new state. The new DAQ-Middleware framework allows us to implement
easily not only functionality of acquiring data but also that of controlling component modules.

1. Introduction

A high performance data acquisition system is used to collect data in many high energy and nuclear
physics experiments. Moreover, most of the systems are connected to each other by using network
technologies such as Ethernet and TCP/IP. A system called network-distributed DAQ is normally used
to gather event fragment data from read-out modules of detectors.

Although the functionality of the DAQ system is almost the same, the system has been
developed individually for each experiment so far, and it caused the system development efficiency to
become smaller. We have developed a software framework for DAQ systems, called DAQ-
Middleware in the following.

The DAQ system can be easily implemented by using this framework, and we can collect to
data taken by an experiment. The role of the DAQ system is not only to collect data but also to control
the system. The basic control functionalities such as starting and stopping the system is provided by
the framework, but the functionality to transfer data from the DAQ-Operator to the DAQ-Components

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd 1

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

was not implemented. It is useful, for example, when we change threshold values on readout modules
or high-voltage values via modules. The functionality to set the first values on DAQ-Component was
provided, but we were not able to change values after the DAQ system started, and the system had to
be restarted when we changed them.

We developed the functionality to transfer data from the DAQ-Operator to the DAQ-
Components to change values in the DAQ-Components. In order to enable the new functionality, the
new state, SET, should be introduced in the DAQ-Middleware. The new functionality was
implemented in the state and it allows us to transfer data, which are stored in a parameter file on the
DAQ-Operator, to the specified DAQ-Components. By using this functionality, any parameters can be
transferred and set with the DAQ-Middleware without restarting the system.

2. DAQ-Middleware

DAQ-Middleware is a software framework to develop for a network-distributed DAQ system easily'”.
It is a network-distributed DAQ framework and based on the Robot Technology Middleware, RTM®,
developed by the National Institute of Advanced Industrial Science and Technology, AIST. The
framework is also based on an object-oriented technology.

DAQ-Middleware consists of two kinds of nodes, a DAQ-Component and a DAQ-Operator.
These are objects and communicate with each other with CORBA. The basic functionalities such as
transferring data, starting and stopping the system, etc., are already implemented in the DAQ-
Component and the DAQ-Operator. The DAQ-Component is especially used as a core component to
read, transfer, and record data. On the other hand, the DAQ-Operator is used as a controller for the
DAQ-Components. The framework also works as a state machine system and it has four states;
LOADED, CONFIGURED, RUNNING and PAUSED. The transition between these states occurs by
a command that is transmitted by the DAQ-Operator.

Figure 1 shows a typical example of a system architecture that is developed with using DAQ-
Middleware. The system consists of one DAQ-Operator and four DAQ-Components on two
computers, PC(UI) and PC(DAQ#]1).

—— PC(UI)
DAQ
XML > Operator
stem . omman
Syst ™ C d/
configuration L2 !\, Status
/, / \ \\
i U [REN
— PC(DAQ#1) 7 -+ —
e ’ \—

N & L AT
>E 4 " Logger

o
i i
Gatherer Dispatcher [
Read-out Monitor
Modules

Figure 1. Typical example of a system architecture
based on DAQ-Middleware

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

The PC(UI) is used for a user interface and the DAQ-Operator. The user controls the system via
the DAQ-Operator with using a system configuration file written in XML. The DAQ-Operator
transmits the control command to each DAQ-Components. On the other hand, four DAQ-Components
are implemented on the PC(DAQ#1). These four components, Gatherer, Dispatcher, Logger, and
Monitor shown in the figure, are typical components of a DAQ system and are developed by using the
DAQ-Component of DAQ-Middleware. The Gatherer gathers event fragments from Read-out
Modules, builds an event and transfers it. The Dispatcher duplicates event data that are received from
the Gatherer and transferred to two components, the Logger and the Monitor. The Logger stores the
event into the database, and the Monitor shows the data for checking them. In this figure, it shows
these components on only one computer, but it is also possible to implement them on several
computers separately because the communication between components is implemented with CORBA.

3. Control functionality

We developed and added the new control functionality into the DAQ-Middleware. It enables the
DAQ-Operator transfer data to the DAQ-Components without restarting the system. And we also
introduced the new state, SET, for this new functionality.

A state diagram of a DAQ system based on the DAQ-Middleware is shown in Figure 2. DAQ-
Middleware has four states originally, which are shown as blue boxes in the figure. The transitions of
these states are triggered by commands, configure, unconfigure, start, stop, pause and resume. The
data acquisition is normally performed in the RUNNING state. As these four states were prepared only
for collecting data, we introduced the new state, SET, which was shown as a red box in the figure. The
state is transited from the PAUSED state by the command set and to the PAUSED state by the
command return.

When the DAQ-Component receives the command ser and data form the DAQ-Operator, the
daq_setting() method is called, and the state of the component transits to SET state. After finishing
the state transition, the daq_set() method is called repeatedly until receiving command return to
transit to the PAUSE state. A user can implement functionality to change values on the DAQ-
Component by using these two methods.

The data to transfer from the DAQ-Operator are stored in a file on the operator. The file is
specified in the process on the DAQ-Operator. The file consists of value’s names, their values, DAQ-
Component IDs, etc., which are written in XML in order to transfer several different values to
different components. The format is basically the same as that of the configuration file, which is used
in the configuration process at the beginning when starting the system.

By using this functionality, users can easily implement the functionality to control the DAQ-
Components and communication method between DAQ-Operator and DAQ-Components.

RUNNING wssmmN PAUSED
PAUSE

Figure 2. State diagram of a DAQ system
based on DAQ-Middleware

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

4. Performance measurements
4.1. Setup
The transfer times after opening a file that stores transfer values until finishing transferring it from the
DAQ-Operator to the DAQ-Component were measured to evaluate a performance of the new
functionality.

Table 1 shows the specification of two computers used for the performance test. Two computers
were connected directly via 10 Gigabit Ethernet network without any switches. The data used for the
performance measurement were binary one and were prepared before the measurements.

Table 1. Specifications of test computers

CPU Intel(R) Xeon(R) CPU E5606 2.13 GHz
Memory 2048 MBytes
Network Intel Corporation 82598EB
10-Gigabit AT2 Server Adapter
OS Scientific Linux 6.2

4.2. Results
The results of our measurements are shown in Figure 3. The transfer times in the unit of msec are
plotted as a function of parameter data sizes in the unit of bytes.

As shown in the figure, the transfer time becomes bigger for increasing data sizes, and the
absolute values are from about 4.5 msec to about 6.0 msec. This transfer time includes a file access
and a data transfer times in the process of the DAQ-Operator. The overhead of the file access in the
process is about 4.5 msec. The transfer speed of parameter data is a few Mbps in the case of 1 kBytes
of data size. As the DAQ-Middleware is based on object-oriented architecture and uses CORBA
architecture to communicate each other, the data transfer speed is limited by its architecture and the
test environment.

The performance test shows the new control functionality works well without failures. The new
DAQ-Middleware with the functionality allows to set values to modules on the DAQ-Component
without a restart procedure.

6.5

60 3
[}
v
£
~ 55 - %
o
£
p 5.0
g~
2
£ as

4.0

o~ <t 03] {a] ~ <

w
— m o ™~
—

256
512 |
1024

Parameter Data Size (bytes)

Figure 3. Transfer times as a function of data sizes of configuration file

20th International Conference on Computing in High Energy and Nuclear Physics (CHEP2013) IOP Publishing
Journal of Physics: Conference Series 513 (2014) 012020 doi:10.1088/1742-6596/513/1/012020

5. Conclusions

We have developed the DAQ-Middleware, a software framework for the network-distributed DAQ
system. The basic functionalities are already implemented and we can develop a DAQ system easily
by using this framework. The control functionality to set values was not provided, so we developed it
into the framework. A new state, SET, was introduced in the framework. The transfer times of data
stored in the file were measured to evaluate the system. Although the transfer time is a few msec, it is
obviously faster than original middleware, because the original system has to be restarted in order to
set such values to the DAQ-Component. The new control functionality worked without failures, and it
was useful to reduce the time to set values on the DAQ-Components.

References

[1] Y. Yasu, K. Nakayoshi, E. Inoue, H. Sendai, H. Fujii, N. Ando, T. Kotoku, et al., “A Data
Acquisition Middleware,” Proc. IEEE/NPSS Real Time Conference, pp. 1-3, May 2007.

[2] Y. Yasu, K. Nakayoshi, H. Sendai, and E. Inoue, “Functionality of DAQ-Middleware,” IEEE
Trans. Nucl. Sci., vol. 57, no. 2, pp. 487-490, 2010

[3] K. Nakayoshi, H. Sendai, Y. Yasu, E. Inoue, T. Kotoku, N. Ando, Y. Nagasaka, S. Ajimura and
M. Wada, “DAQ-Middleware: Progress and status,” J. Phys.: Conf., Ser. 331 02202318,2011

[4] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and W. K. Yoon, “RT-Middleware: distributed
component middleware for RT (robot technology),” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2005), pp. 3933-3938, 2005

