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Abstract

This dissertation explores various generalizations of global symmetries and 't Hooft anomalies.
Chapter two is based on work with Po-Shen Hsin and Nathan Seiberg [1]. It is dedicated to
the study of one-form global symmetries in three and four dimensions. We investigate their
physical implications, classify their 't Hooft anomalies and analyze their gauging. Chapter three
is based on the work with Pranay Gorantla, Nathan Seiberg and Shu-Heng Shao [2]. It focuses
on exotic theories with subsystem symmetries including theories of fractons. We reformulate
these theories on a Euclidean spacetime lattice in a modified Villain formulation. This provides
a rigorous treatment of the continuum theories and their singularities while preserving some of
their essential properties including 't Hooft anomalies and dualities. Chapter four is based on
work with Clay Cérdova, Dan Freed and Nathan Seiberg [3,4]. It extends the notion of 't Hooft
anomalies to anomalies in the space of coupling constants. We demonstrate through examples
in diverse dimensions that these generalized anomalies can constrain the phase diagram of the

theories and their defects associated with space-dependent coupling constants.
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Chapter 1

Introduction

1.1 Global symmetries and their generalizations

Symmetry is one of the most fundamental concepts in theoretical physics. It furnishes a powerful
principle for organizing different phases of matter, and provides a universally applicable tool for
analyzing strongly-coupled quantum field theories.

From the modern perspective, an ordinary global symmetry! in quantum field theories are
understood abstractly as a set of codimension one topological operators? whose fusion obey the
group multiplication law of the symmetry group [5].

As an example, consider a d-dimensional theory with an ordinary continuous internal global
symmetry G. Noether’s theorem implies that there is a conserved current J# that obeys 0, J" =
0. We can define a (d — 1)-form current J = €, 5.0, J* dz#2 A - - A da# and recast the current

conservation equation into the condition that J is a closed form dJ = 0. The conserved charges

'We distinguish global symmetry from gauge symmetry. Global symmetry is an intrinsic property of a quantum
field theory while gauge symmetry is a redundancy in the descriptions. This is well illustrated in the context
of duality. The same quantum field theory can have two equivalent descriptions whose gauge symmetries are
completely different but their global symmetries must be the same.

2We will use operators and defects interchangeably.



are operators supported on closed (d — 1)-dimensional manifolds M(@~1

Q (M) = fMdl J . (1.1)

By exponentiating the charges, we construct a set of codimension one symmetry operators
Ug(/\/l(d_l)) labeled by group elements g. Two symmetry operators can fuse according to the

group multiplication law

U, (M(d—l)) Uy, (M(dfl)) = Uyg (M(dq)) (1.2)

Because J is a closed form, these symmetry operators are topological — they are invariant under
small deformation of M@~ unless the deformation crosses a charged operator.

The local operators transform in representations of the symmetry group G. A symmetry
operator U,(M@1) acts on a local operator O;(x) by surrounding its manifold M@~Y around

the point x

Uy(M ) 0;(x) = Ri(9)0;(x) | (1.3)

where R7;(g) is the representation of the group element g.

This formulation of global symmetry in terms of symmetry operators naturally generalizes
to discrete symmetries where there are no conserved currents. As we will discuss below, chang-
ing different properties of the symmetry operators lead to different generalizations of global
symmetry including higher-form symmetry and subsystem system symmetry.

One generalization of global symmetry is to consider topological symmetry operators of higher
codimensions. This leads to high-form symmetry [5]. A g-form global symmetry in d dimensions
is generated by topological operators U, (M4=a=1)) supported on (g+1)-codimensional manifolds
M@=a=1) " These symmetry operators fuse according to group multiplication law. For ¢ = 0,
the g-form symmetry reduces to the ordinary symmetry so we will use zero-form symmetry and

ordinary symmetry interchangeably. For ¢ > 1, because of the topological property, the fusion



Figure 1.1: Linking the one-form symmetry operator U,(M) with the charged line operator
V() in three dimensions. The one-form symmetry operator U,(M) is a line operator in three
dimensions.

of the symmetry operators is commutative, and hence the symmetry group must be abelian.
Operators charged under a g-form symmetry are extended operators supported on g-dimensional
manifolds. For example, one-form symmetry acts on line operators, two-form symmetry acts
on surface operators and so on. A ¢-form symmetry operator Ug(/\/l(d’q’l)) acts on these ¢-

d=¢=1) link with them. An example of such

dimensional charged operators when its manifold M
linking for a one-form symmetry in three dimensions is illustrated in figure 1.1. More generally,
higher-form symmetries of different degrees can mix and form higher-group symmetry [6-10].

One of the simplest example of theories with higher-form symmetry is U(1) Maxwell theory

in four dimensions with Euclidean Lagrangian

1
L=—FAxF 1.4
s P ASE (1.4)
where *F' is the Hodge dual of the field strength FF = dA. The theory has an electric one-
form symmetry generated by a two-form current Jp = g% x F', which is closed because of the
equations of motion. The symmetry shifts the electric gauge fields by a flat connection. The

. E
corresponding symmetry operators are surface operators U,_, .

(ic) (M®) = exp(ia $pu ) and
the charged operators are the Wilson lines W = exp(i § A). There is also a magnetic one-form
symmetry generated by the two-form current Jy; = %F , which is closed due to the Bianchi

identity. The symmetry operators are surface operators U é\i explic) (M®P) = exp(ia 56/\/1(2) Jnr)



and the charged operators are the 't Hooft lines H = exp(i ¢ fl) where the magnetic gauge field
A obeys dA = g% * dA.

Another generalization of global symmetry is to consider symmetry operators of higher codi-
mensions that are conserved in time but are not completely topological in space. This leads
to subsystem symmetry. Since the symmetry operators depend not only on their topology but
also on their geometry and where they are inserted, there can be infinitely many of them in the
continuum. As a result, the continuum field theories with subsystem symmetries exhibit many
peculiarities such as infinite ground state degeneracy and discontinuities in physical observables.

As an example, consider a U(1) subsystem symmetry with currents (Jy, J,,) in 241 dimen-

sions that obey a nonstandard current conservation equation [11]

0o = 020y Ty - (1.5)

On a two-dimensional torus with periodic boundary conditions in both the x and the y direction,

the conserved charges are line operators that extend either in the x direction or in the y direction

Qy(y) = ]{dx Jo, Qu(x)= j{dy Jo - (1.6)

These charges obey the constraint § dz Q,(x) = § dy Q,(y). The charges at different = or y are
distinct charges. Hence there are infinitely many of them in the continuum. We can regularize
it by introducing a lattice of finite size L,, L,. Then the number of independent charges is

regularized to L, + L, — 1.

1.2 ’t Hooft anomalies and their generalizations

Ordinary global symmetry can have 't Hooft anomalies — an obstruction to gauging the sym-
metry. The same is true for its generalizations including higher-form symmetry and subsystem

symmetry.



A useful way to characterize the 't Hooft anomalies is to couple the global symmetry to
an appropriate classical background gauge field A. Depending on the symmetry, A could be a
standard connection for an ordinary continuous (zero-form) global symmetry, a discrete gauge
field for a discrete global symmetry, a (¢+ 1)-form gauge field for a g-form symmetry, or a tensor
gauge field for a subsystem symmetry. For example, the U(1) subsystem symmetry (1.5) couples
to a U(1) tensor gauge field (Ag, A,,) with a gauge symmetry (Ao, Azy) = (Ao+0oA, Azy+0,0,N).
The coupling introduces the term AgJy + A,y Jzy in the Lagrangian.

The 't Hooft anomaly is a violation of the gauge invariance of the partition function Z[A]
under the background gauge transformation of A. We denote the gauge parameter by A and the
gauge field after the gauge transformation by A*. Under the background gauge transformation

of A, the partition function transforms by a phase

214 = Z[A] exp (—z’/Xda(/\,A)> , (1.7)

where X, is the d-dimensional spacetime. Since the partition function Z[A] is subject to an
ambiguity due to different regularization scheme, the 't Hooft anomaly is considered nontrivial
only if it cannot be removed by classical counterterms. If the global symmetry is anomaly free,
we can generate new theories by gauging the symmetry. It amounts to promoting the background
gauge field A to a dynamical gauge field and summing over all gauge inequivalent configurations.

In general, a 't Hooft anomaly in d dimensions can be summarized using a (d+1)-dimensional
classical action w(A) of background gauge fields with the property that its partition function

Q[A] = exp(iw(A)) is gauge invariant on a closed manifold and transforms as

Q[AY) = Q[A] exp <@/Y da(A,A)) . (1.8)

on an open manifold Yy;;. Such actions are also referred to as invertible field theories [12].
Suppose there exists an extension of the background gauge field A from X, to Yy, with

Y441 = X4 We can then define a gauge invariant partition function Z[A] = Z[A]Q[A] where



the 't Hooft anomaly of the d-dimensional theory is canceled by the invertible field theory in the
bulk Y. This is known as the anomaly inflow [13].

The 't Hooft anomaly is invariant under renormalization group flow [14]. One way to argue
for this is to consider how the partition function Z[A] evolves along the flow. The classical
anomaly action w transforms continuously under renormalization so in order to maintain the
gauge invariance of Z [A], the long distance theory on the boundary X,; must have an anomaly
action that can be continuously connected to the original one. Hence the deformation class
of the anomaly actions is a renormalization group invariant, which can be used to constrain
renormalization group flow. In particular any theory with an anomaly action w that is not
continuously connected to the trivial action cannot flow at long distances to a trivially gapped
theory with a unique vacuum and no long-range degrees of freedom.

In the orthogonal direction of generalizing 't Hooft anomaly to generalized symmetries, we can
also extend the notion of 't Hooft anomaly by considering anomaly actions w(A) that depend on
both background fields and coupling constants. We refer to this generalized anomaly as anomaly
in the space of coupling constants. As we will demonstrate in Chapter 4, anomaly in the space

of coupling constants can be a useful tool for deducing the dynamics of a quantum field theory.

1.3 Phases of matter

Symmetry is a powerful organizing principle for thinking about phases of matter.

One criterion for distinguishing different phases is based on whether symmetries are sponta-
neously broken or not. For example, we can differentiate a crystalline phase and a liquid phase by
the behavior of the continuous translational symmetry. The symmetry is spontaneously broken
in the crystalline phase but it is preserved in the liquid phase.

Just as ordinary global symmetry, generalized global symmetries such as higher-form sym-
metry and subsystem symmetry can also be spontaneously broken. They lead to new criteria

for classifying phases of matter.



As an example, deconfinement and confinement in a gauge theory can be rephrased as whether
a one-form symmetry is spontaneously broken or not. They can be diagnosed by the behavior
of large Wilson loops — whether the Willson loops obey a perimeter law or an area law. If the
Wilson loops obey a perimeter law as opposed to an area law, we can redefine the loop operator
by a local geometric counterterm such that it has a nonzero expectation value when it is large and
correspondingly the one-form symmetry is spontaneously broken. Physically, the Wilson loops
can be interpreted as the trajectories of a charged probe particle. An area law as opposed to a
perimeter law means that the probe particles have a confining potential that increases with their
separation and hence signals confinement in the theory. A canonical example for spontaneous
one-form symmetry breaking is four-dimensional U(1) Maxwell theory. The theory has two U(1)
one-form global symmetries which are both spontaneously broken and the associated Goldston
boson is the massless photon [5].

It is more dramatic when a subsystem symmetry is spontaneously broken. For example,
if a discrete subsystem symmetry is spontaneously broken, it can lead to a vast ground state
degeneracy that grows with the system size. This happens for example in various fracton models
including the Haah’s code and the X-cube model [15-17].

Symmetry breaking however is not the only criterion for classifying phases of matter. For
example, there are more refined classifications within the symmetry-preserving phases. With a
given global symmetry, there are distinct gapped phases with short-ranged entanglement that
cannot be smoothly connected to each other through symmetry-preserving deformations. They
are known as symmetry protected topological (SPT) phases [18,19]. A characteristic of nontrivial
SPT phases is that their boundary theory cannot be trivially gapped with a symmetry preserving
boundary condition. This is because of the anomaly inflow from the bulk to the boundary. This
suggests that SPT phases are equivalent to 't Hooft anomalies in one lower dimension [20].
Mathematically, they can both be described by invertible topological field theories [12]. Just
as 't Hooft anomalies, the notion of SPT phases naturally extends to SPT phases protected by

generalized symmetries such as higher-form SPT phases [7] and subsystem SPT phases [21-23].



There are also a large class of gapped topological phases that are not characterized by sym-
metries. They are under the name of topological order. One of the most prominent topological
orders is the fractional quantum Hall states [24], which exhibit fractional statistics and topo-
logically degenerate ground states. Mathematically, topological orders can be described by
topological quantum field theory (TQFT) [25,26]. Many of them can be constructed by gauging
the global symmetry of SPT phases. The same construction generalizes to higher-form symme-
try. Gauging a higher-form SPT phase leads to a topological higher-form gauge theory [7]. On
the other hand, if we gauge a subsystem SPT phase, we can end up with a fracton phase [17].
Some characteristics of fracton phases include massive excitations with restricted mobility and
sub-extensive ground state degeneracy that grows with the system size. Because of these proper-
ties, fracton phases are different from topological orders, and it is challenging to find continuum

descriptions for them.

1.4 Overview and summary

The overall theme of this dissertation is to explore generalizations of global symmetries and 't
Hooft anomalies. We first explore various aspects of higher-form symmetries in three dimensions
and four dimensions. We then move on to study systems with subsystem symmetries including
various fracton models. Finally, we discuss an extension of 't Hooft anomalies to anomalies in
the space of coupling constants. The content of each chapter is summarized below.

In chapter 2, we study three-dimensional and four-dimensional systems with a one-form global
symmetry, explore their consequences, and analyze their anomalies and gauging. For simplicity,
we focus on Zy one-form symmetries. Generalizations to general discrete abelian groups have
also been discussed.

A quantum field theory 7 with a Zy one-form symmetry has N topological symmetry lines
that obey the Zy fusion rule. The braiding of these lines and their spins are characterized by an

integer p mod 2N. We prove that when ged(N, p) = 1, these topological lines themselves form



a consistent TQFT or a modular tensor category denoted by AN?. We further prove that when
ged(N, p) = 1, the quantum field theory T factorizes into two decoupled theories T = T’ ® ANP.
If the theory 7 is a TQFT, the theory 7’ is a decoupled TQFT of lines that are neutral under
the one-form symmetry.

The parameter p also characterizes the 't Hooft anomaly of the Zy one-form symmetry.
When p = 0 mod 2N, the symmetry is anomaly free and it can be gauged. We denote the theory
after gauging by T /Zy. For theories T that are TQFTs, we outline a three-step procedures for
gauging the symmetry. When p # 0 mod N, the one-form symmetry has an anomaly, which
can be canceled by coupling the system to a four-dimensional SPT phase with a Zy one-form
symmetry. We analyze the consequences of gauging the Zy one-form symmetry in this 3d-4d
coupled system. After gauging, the bulk theory becomes a twisted Zy two-form gauge theory
which is equivalent to a Zj one-form gauge theory with L = ged(N,p). If the theory T is a
TQFT, after gauging, the boundary theory can be described by a premodular category with L
lines that braid trivially with all other lines. These L lines are the L topological lines of the
bulk Z; gauge theory. When L = 1, the bulk theory is trivial and the boundary theory is a
consistent TQFT (or a modular tensor category). When L # 1, the bulk theory is nontrivial
and the boundary theory is not a consistent TQFT (or a modular tensor category) on its own.
However, we can extract a TQFT (or a modular tensor category) from the premodular category
on the boundary by identifying the L bulk lines with the trivial line. This leads to an effective

3d TQFT described by
T x AN/L:=p/L
Zn ’

(1.9)

where the Zy quotient represents gauging the diagonal one-form symmetry of the two theories
in the numerator.

Next we apply our understanding of the one-form symmetries to four-dimensional SU (V)
and PSU(N) gauge theories. The PSU(N) gauge theory can be constructed by gauging the Zy
one-form symmetry of the SU(N) gauge theory. Both theories have §-parameters. For all values

of 0, the dynamics of both theories are gapped and they are associated with either confinement or



oblique confinement — probe quarks are confined. At low energy, the SU(N) theory is trivially
gapped while the PSU(N) theory may include a discrete gauge theory depending on the 6-
parameter.

We study these theories in backgrounds of space-dependent #-parameters, which lead to in-
terfaces. In the SU(N) theory, the theories on the interfaces are typically not confined and
they can be described by 3d TQFTs. This means that probe quarks are liberated and become
anyons on the interfaces. Utilizing our understanding of one-form symmetries, we give a descrip-
tion to the interfaces in PSU(N) gauge theory by gauging the Zy one-form symmetries of the
corresponding interfaces in the SU(N) theory.

The materials in this chapter are based on work with Po-Shen Hsin and Nathan Seiberg [1].
They have been presented in the workshop ”Geometrical Aspects of Supersymmetry” at the
Simons Center for Geometry and Physics from October 22-26, 2018 and the conference ” Between
Topology and Quantum Field Theory” at University of Texas at Austin, from January 14-18,
2019.

In chapter 3, we study fractons and other closely-related exotic theories with subsystem sym-
metries. We reformulate these exotic theories on a FEuclidean spacetime lattice. We first write
them using the Villain approach and then modify them by suppressing topological excitations.
The new lattice models are closer to the continuum than the original lattice versions. In particu-
lar, they exhibit many features of the continuum theories including emergent global symmetries,
dualities and 't Hooft anomalies. Also, these new models provide a clear and rigorous formulation
to the continuum theories and their singularities.

We also use this approach to review well-studied lattice models and their continuum limits.
These include the XY-model, the Zy clock-model, and various gauge theories in diverse dimen-
sions. This presentation makes the role of symmetries associated with the topology of field space,
duality, and various anomalies manifest.

The materials in this chapter are based on work with Pranay Gorantla, Nathan Seiberg and

Shu-Heng Shao [2]. They have been presented in the workshop ”"New directions in topological
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phases: from fractons to spatial symmetries” held by the Simons Center for Geometry and Physics
from May 24-28, 2021 and the conference ”String Math 2021” held by IMPA, Rio de Janeiro,
from June 14-18, 2021.

In chapter 4, we introduce anomalies in the space of coupling constants extending the notion
of 't Hooft anomalies, analyze their dynamical implications, and demonstrate them in quantum
mechanics and quantum field theories in diverse dimensions.

Same as classical background gauge fields for global symmetries, we also view coupling con-
stants as background fields and study the theory in backgrounds of space-dependent coupling
constants. In some cases, we observe that with space-dependent coupling constants, the parti-
tion function becomes no longer invariant under background gauge transformations of certain
global symmetries. We interpret these phenomena as generalized anomalies involving coupling
constants. Similar to ordinary 't Hooft anomalies, we can summarize these generalized anomalies
using classical actions of coupling constants and background fields in one higher dimension.

Just as ordinary 't Hooft anomalies allow us to deduce dynamical consequences about the
phases of the theory and its defects, the same is true for these generalized anomalies. An
anomaly in the space of coupling constants implies that the infrared dynamics must be nontrivial
somewhere within a family of theories labeled by coupling constants. Possible scenarios include
phase transitions, conformal field theories or topological quantum field theories in the infrared.
An anomaly in the space of coupling constants also implies an anomaly on the worldvolume of
defects with space-dependent coupling constants.

An important class of examples that we discussed is generalized anomalies involving circle-
valued f-angles. This includes the quantum mechanics of a particle on a circle, 2d U(1) gauge
theory and 4d Yang-Mills theory. Another class of examples is generalized anomalies involving
fermion masses in theories with fermions in various dimensions.

The materials in this chapter are based on work with Clay Coérdova, Dan Freed and Nathan
Seiberg [3,4]. They have been presented in the conference ”String Math 2019” at Uppsala

University, from July 01-05, 2019.
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Chapter 2

One-form Global Symmetries in Three

and Four Dimensions

2.1 Preliminary and Summary

In this chapter we will investigate systems with one-form global symmetries in 3 and 4 dimen-
sions. Some examples in 3d are U(1)y or SU(N); Chern-Simons (CS) theory. They have a
spontaneously broken Zy one-form symmetry. An example in 4d is an SU(N) gauge theory
without quarks. Here the Zy one-form symmetry is expected to be unbroken, which is related
to the confinement of the system. If we add quarks in the fundamental representation to this
theory, then the one-form symmetry is absent, and indeed the theory with quarks does not have

a meaningful notion of confinement.

4d SU(N) gauge theory with 6 and domain walls
Of particular interest for us will be the behavior of this 4d SU(V) theory with a #-parameter.
The lore is that at generic 6 the system is confining and gapped with a trivial vacuum. At 0 € 7Z,
we have time-reversal and parity symmetries. These are unbroken at 6 € 27Z. (For small values
of N there are also other logical options [27].) But they are spontaneously broken at 6 an

odd multiple of 7. In these cases the system has two degenerate vacua with domain walls that
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interpolate between them. Arguments based on anomalies in the one-form symmetry, which we
will review below, suggest that the theory on the domain wall is an SU(N); TQFT [5,27].!

As stressed in [5,27], the transition at § = 7 separates two distinct vacua in the following
sense. On one side of the transition monopoles condense, leading to confinement, and on the
other side of the transition dyons condense, leading to oblique confinement. More precisely, the
transition at # an odd multiple of 7 separates two distinct oblique confinement vacua. Since
different dyons condense on the two sides of the domain wall, no dyon condenses on the wall.
Therefore, the theory on the wall is not confining and the Wilson lines of the SU(N); theory
on the wall are world lines of unconfined probed quarks. Not only are these quarks liberated,
they also have nontrivial braiding, i.e. they are anyons! Below we will give an intuitive physical

argument explaining why they are anyons.

Interfaces

One of our goals is to study in detail interfaces in this theory. We let 6 be a space- dependent
interpolation between 6, to 6y + 2wk. If the interpolation is over a length scale much longer
than the inverse of the dynamical scale of the theory A, then at a generic spacetime point € is
essentially constant on the scale where confinement takes place and the vacuum is unique and
varies smoothly. When 6 crosses an odd multiple of 7 there is a domain wall separating two
vacua. Therefore, the interpolation leads to k& domain walls with SU(N); on each of them [27],
as illustrated in Figure 2.1a. If the interpolation is more rapid, then the TQFT SU(N); ®
SU(N); ® ... can undergo a transition to another TQFT 7Ty, see Figure 2.1b. It was suggested
in [27,28] that this theory is SU(N),. However, we will soon argue that there are also other
logical possibilities and only a more detailed dynamical analysis can determine the right answer.

It is important that the theory on the interface is uniquely determined by the microscopic
theory and by the profile of the space-dependent . This is to be contrasted with a sharp interface
when 6 is discontinuous, as illustrated in Figure 2.1c. Here we have the freedom to change the

theory on the interface by adding more degrees of freedom there and to consider their dynamics.

L Although as spin TQFTs SU(N); «— U(1)_n, we prefer to use SU(N); because our theory is bosonic.
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Figure 2.1: The interfaces for different profiles of 6 that interpolate from 6 = 6, to 6 = 6, + 27k.
The dashed lines are the profile of the # parameter and the solid lines are the locations of the
interfaces. In (a), there are k domain walls located at the transitions when 6 crosses an odd
multiple of 7. The theory on each domain wall is 77, which we argue is SU(N); [5]. When the
6 variation is more rapid, as in (b), there is only one interface and the theory on it is 7. One
option for that theory is SU(N )k, but we will argue that other options are also possible. Finally,
as in (c), 6 can be discontinuous. In this case the theory on the interface 7 is not determined
uniquely by the microscopic dynamics. But it is constrained by anomaly considerations.

We will not study it here. The same comments apply to a system with a boundary. As with the
sharp interface, the boundary theory is constrained by anomalies, but there is a lot of freedom
in adding boundary degrees of freedom.

Our main tool for analyzing the system is its Zy one-form global symmetry. Related to this
symmetry is an integer label p with p ~ p+ 2N and pN even [29,5]. Furthermore, we have an

identification in labeling the theories [29,5,27]

(0,p) ~ (6 + 27k, p + k(N — 1)) . (2.1)

One way to think about the parameter p is through coupling the Zy global symmetry to a
classical background two-form gauge field Be (the subscript C means that it is classical). Then,
the parameter p is the coefficient of a counterterm proportional to the square of B¢ [29,5]. This
term does not affect any separated points correlation function, but it does affect contact terms
and the behavior of the system with a boundary.

The key dynamical fact is that the theory confines. This means that the Zy one-form

symmetry is unbroken. Also, the spectrum is gapped and the low-energy dynamics is trivial
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— there is not even a TQFT at long distances. The only meaningful fact that remains at low
energies is the coefficient p of the counterterm of B¢, which means that the system can be in a
nontrivial Symmetry Protected Topological (SPT) phase.

When we have an interface where 6 changes by 27k the two sides of the interface are typically

in different SPT phases labeled by p* with

pT—p =k(N —1) mod 2N . (2.2)

This means that when p* # p~ mod 2N the theory on the interface cannot be trivial. It must
have a Zy one-form global symmetry with anomaly (p* — p~) mod 2N.

Let us try to determine the theory on the interface. When the interface is rapid, we can shift
6 on one side, as in equation (2.2), so that 6 does not change across the interface, but p changes.
It induces a Chern-Simons term SU (N ), on the interface. Next, as the theory becomes strongly
coupled it confines and the bulk on the two sides of the interface become gapped and trivial.
What happens to the SU(N); theory on the interface? One option, which was advocated in [27],
is that at least for small enough |k| it is not affected by the confinement. However, the strong
dynamics could change that answer.? But whatever the dynamics does, the one-form Zy global
symmetry and its anomaly pt — p~ cannot change. Therefore, if p™ # p~ mod 2N, the theory
on the interface cannot be trivial, and we’ll denote it by 7.

We start by reconsidering the special case k = 1. Can the UV answer SU(N); be modified?
We suggest that this cannot happen. First, as we will discuss in detail below, this particular
theory is the minimal theory with a Zy one-form symmetry of anomaly N — 1. Every other
TQFT with this property factorizes into SU(N); times another TQFT, whose line operators
are Zy invariant. Therefore, it is natural to assume that in this case the UV answer does not
change. Also, in a closely related supersymmetric theory, a string construction shows that the
theory on the interface is U(1)_y [30], which is dual (as spin TQFT) to our answer SU(N); [31].

As we move to higher values of k the situation is less clear. It was suggested in [27] that as

2We thank E. Witten for encouraging us to think about other options.
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a slow interface becomes steeper, the SU(N)$* TQFT can be Higgsed to the diagonal SU(N ).
This would agree with the answer in the UV. However, further dynamical effects can change
this answer. Since we expect the interface theory to remain non-confining, we do not anticipate
monopoles to participate in this dynamics on the interface. Instead, we can consider dynamical
scalar fields in the adjoint representation of SU(N). Such scalar fields can arise from modes
of the microscopic gluons and their presence does not break the exact Zy one-form symmetry
of the system. The condensation of these scalars can Higgs SU(N) to various subgroups. The
maximum possible Higgsing with one adjoint scalar is to the Cartan torus U(1)V~!. In this case
the SU(N); theory becomes U(1)¥~! with a coefficient matrix given by kKcartan With Kcarean
the Cartan matrix of SU(N). (Note that for k£ = 1 the TQFT SU(N); is the same as this
Abelian TQFT.) With more than one adjoint scalars, we can further Higgs the system all the
way down to a Zy gauge theory® with level K = —kN(N — 1) = —(p™ — p~)N. Below we will
review in detail this TQFT and its properties.

The upshot of the discussion above is that the spontaneously broken Zy one-form symmetry
and its anomaly p™ — p~ restrict the TQFT on the interface Ty, but do not uniquely determine
it. For k = 1 it is natural to assume that the correct answer is the minimal one 7; = SU(N);.
For higher values of k there are several natural possibilities including SU(N), but the other
options include also some Abelian TQFTs. It should be emphasized, however, that despite our
inability to determine 7, beyond the symmetry and anomaly constraints, this theory is uniquely

determined by the dynamics.

Gauging the Zy one-form symmetry — 4d PSU(N) gauge theory and interfaces
When the Zy one-form symmetry is gauged, the microscopic 4d SU(N) gauge theory be-

comes a PSU(N) gauge theory and the macroscopic theory might no longer remain trivial [34].

3The Zx gauge theory at level K can be expressed as the following U (1) x U (1) Chern-Simons theory [32,33,29]

(ZN)K : /(fra:dx—k é\;mdy) . (2.3)

For even K this is a Dijkgraaf-Witten (DW) theory [26].
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Specifically, it becomes a Zj, gauge theory with*

L =gcd(p,N) . (2.4)

Unlike the original SU(N) theory where p affects only the SPT phase, here it affects the low-
energy dynamics. Now the interface is more interesting. Clearly, we have a Z;, gauge theory
with Ly = ged(ps, N) on the two sides of the interface. But what is the resulting theory on the
interface?®

When L, = L_ =1 the bulk theory on the two sides is trivial and the low-energy theory is
only the 3d theory on the interface and it is completely meaningful. However, when either L, or
L_ (or both) are not equal to one, the bulk theory is not trivial and the low-energy TQFT is not
three dimensional. It is four dimensional and the interface appears as a 3d defect in the 4d bulk.
Therefore, it is meaningless to ask what the 3d theory on the interface is. It is not decoupled
from the 4d bulk. Nevertheless, we will argue that there exists a 3d TQFT that captures many
of the features of the physics along the interface. Roughly, it is a quotient of the full 4d system

by the physics of the 4d bulk. We will describe this in more detail below.

One-form global symmetries in 3d and their gauging
In order to understand these TQFTs we will have to explore in more detail the one-form
global symmetry, its anomaly, and its gauging in 3 and 4 dimensions. Let us start with a 3d
one-form symmetry 4. The charge operators are line operators ag labeled by a group element

g € A. The group multiplication corresponds to the fusion of the lines:

Ugtg = Qglg/ , (2.5)

where the group multiplication of A is denoted by addition, and the product of two lines denotes

their fusion. Each line ag represents an Abelian anyon in the TQFT.

4Below we will show that on a nonspin manifold this Zj; gauge theory is sometimes twisted in a particular
way.
®Note that the naive answer PSU(N)j cannot be right. For generic k this is not a consistent theory [35,26]!
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Figure 2.2: Braiding the line operators supported on the curves v and ~'.

For simplicity we will focus on a Zy one-form symmetry. The symmetry lines are a® with

aVy =1 (2.6)

and we refer to a as the generating line. In general, this generator is not unique and some of the
expressions below depend on the choice of generator.

In a TQFT with a Zy one-form symmetry, each line W carries a Zy charge ¢(W) € Zy
under the symmetry, which is determined by braiding the generating line a with W (see Figure
2.2):

2mig(W)

a(y)W () =WH)e v . (2.7)

We will show that general considerations constrain the spins of the symmetry lines to be®

2
hla] = % mod 1, (2.8)

for some integer p =0,1,--- ,2N — 1 mod 2N. Imposing (2.6) leads to

pN € 27, . (2.9)

The situation in spin TQFT is slightly different because such theories have a transparent
spin-half line 1. This will be discussed in detail below.

One significance of the parameter p is that it determines the Zy charge ¢(a) = —p mod N

SWe thank Z. Komargodski and J. Gomis for a discussion about this point.
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of the generating line a (see Section 2.2.1). Clearly, the symmetry can be gauged only when the
symmetry lines themselves are neutral, i.e. when g(a) = 0. Therefore, the parameter p controls
the obstruction to gauging, which is the 't Hooft anomaly.

When p = 0, the Zy one-form symmetry is anomaly free and it can be gauged. Denoting the

original TQFT by T, we will denote the result of this gauging by the TQFT

T =T/Zy . (2.10)

When p = N the generating line has spin % and the gauged system 7 /Zy is a spin TQFT.”

There are several ways to describe the gauging procedure. From the perspective of symmetry
defects, gauging a symmetry amounts to summing over all possible insertions of symmetry de-
fects [5]. In the corresponding two-dimensional chiral algebra, gauging the one-form symmetry
corresponds to extending the chiral algebra [36,35]. For Chern-Simons theory it can sometimes
be described by the quotient of the gauge group by a subgroup of the center [35,5]. In the con-
densed matter literature, it is called “anyon condensation” of the Abelian anyon that corresponds
to the generating line of the one-form symmetry [37].

For p = 0 when the symmetry generating line a has integer spin the gauging involves three

steps [36, 35]:
Step 1 Discard the lines W that are not invariant under the Zy one-form symmetry.
Step 2 Since a is trivial, we identify the lines W and Wa obtained by fusing with a.

Step 3 If W is a fixed point under the fusion with a, then there are N copies of W. More precisely,
if s is the minimal divisor of N such that W is invariant under the fusion with a°, then

there are N/s copies of W.8

"This is the case even when the original TQFT is non-spin. In this case we can say that there is a mixed 't
Hooft anomaly between the Zx one-form symmetry and gravity (the bosonic Lorentz symmetry).

8This can be proven by iteration. Let N; be the highest non-trivial divisor of Ny = N. Then gauging the
Zp, /N, subgroup generated by a™' leads to Ny/N; copies at each fixed point. We can continue to gauge the
remaining Zy, symmetry by repeating the process. For the minimal divisor N; such that W is the fixed point

%%—; e N&tl = % copies of W after gauging the Zy symmetry.

under the fusion with o™i, there will be
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For even p = N, the generating line a has half-integer spin and then the resulting theory after
gauging is a spin TQFT. As we will discuss below, this leads to the same three-step process.
When p # 0, N the generating line a is charged under the Zy symmetry and that symmetry

cannot be gauged. However, a subgroup Z;, C Zy with®

L = ged(p, N) (2.11)

pN

N/L PN
2129

can be gauged. It is generated by the line a = a™/*. Since its spin is h = its p-parameter is

p= ’% mod 2L. Note that p = 0 mod L. When p = 0 mod 2L we can gauge this Z; subgroup
as above, and when p = L mod 2L the resulting gauged theory is a spin TQFT. The most

anomalous case has L = 1 and it will have particular significance below.

9The relation to the seemingly unrelated equation (2.4) will be clear soon.
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Outline and summary of new results
In Section 2 we will discuss in detail the one-form symmetry in 3d and will prove the state-
ments above. We will also show that for given relatively prime N and p (i.e. L = 1) there
is a minimal TQFT with a Zy one-form symmetry of anomaly p. We will denote it by ANP.
Furthermore, we will show that any TQFT 7 with such a one-form global symmetry factorizes

as

T @ A¥?  for  L=gced(N,p)=1. (2.12)

This means that all the lines in 7" are Zy neutral. This is quite surprising — the entire effect of
the global symmetry is limited to this factor of ANP and the rest of the theory is not affected

by it. We can also invert equation (2.12) and map the TQFT T to

T @ AN

T o (2.13)

When L = N we have the three-step gauging procedure we discussed above that maps a
TQFT T to T' = T /Zy (2.10). In the other extreme of L = 1 we can map T to T’ of (2.13).

Here we simply remove the non-invariant lines, i.e. we perform only step 1 of the three steps.

In Section 2.2.5 we will generalize this procedure to generic L = ged(N,p). We map

T @ AN/L=p/L T )7, @ AN/ E—p/L

T—T
Ly ZnyL

(2.14)

The equality between these expressions will be derived in Section 2. In the map (2.14) we
perform step 1 of the three-steps using Zy and perform steps 2 and 3 using Zj,. This expression
coincides with (2.10) for L = N and with (2.13) for L = 1 and generalizes them to generic L.
(Depending on the details (2.14) might be a spin TQFT.)

This generalized gauging procedure has a physical interpretation, which we describe below, in
terms of coupling the system to a 4d bulk gauge theory. It is also related to a more mathematical

discussion in [38-41] and the discussion on the Walker-Wang lattice models in [42,43].
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In Section 3, we couple the 3d system to a 4d bulk and promote the background B. gauge
fields to quantum fluctuating fields and correspondingly, we drop the subscript C. The bulk
theory becomes effectively a Z; gauge theory.

As we said above, for L = 1 the bulk theory is trivial and therefore there is a meaningful
3d TQFT on the boundary. It cannot be 7 /Zy because the anomaly makes this quotient
inconsistent. Instead, we will show that the theory on the boundary is 7" of (2.13)

T @ AN
=

T (2.15)
This equation has several complementary interpretations. First, we can say that the bulk pro-
duces a factor of our minimal theory AN " on the boundary such that the combined boundary
theory 7 x AN 7P is anomaly free and then we can gauge the Zy symmetry using the three steps
above. Second, T’ is as in (2.12), i.e. it includes only the Zy invariant lines in 7. This means
that it is obtained from 7 by applying only step 1 of the three-step gauging procedure above.
And since L = 1 this leads to a consistent TQFT.

When L # 1 it is not meaningful to discuss the boundary theory, because it does not decouple
from the bulk, which includes a non-trivial 4d TQFT. We could attempt to consider a 3d theory
that consists only of the lines on the boundary and describes their correlation functions. We
will find that these lines are the Zy invariant lines from 7. This amounts to implementing
step 1 of the three-step gauging procedure above. Because of the lack of decoupling from the
bulk, the resulting theory is not a consistent 3d TQFT. It includes L lines that can move from
the boundary to the 4d bulk and therefore they have trivial braiding with every line on the
boundary. It is natural to consider a new effective theory obtained by performing a quotient by

these lines.'® In more detail, we performed step 1 of the three-step procedure above for Zy, and

now we perform steps 2 and 3 with respect to the Zj, subgroup. The resulting TQFT is 7" of

0This quotient is related to the discussion in [38-42].
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(2.14)

N/L,—p/L
T = T®AZN (2.16)

and it is a fully consistent 3d TQFT. It captures the nontrivial correlation functions of the lines
on the boundary. However, as we said above, T’ is not “the theory on the boundary” except
for L = 1. We will refer to it as “the effective boundary theory”. We can think of the factor of
AN/E=P/L a5 8 3d TQFT produced by the bulk so that the Zy gauging can be performed.

We see that the 3d discussion of 7' of (2.14) has a physical interpretation in terms of a 4d
system with a boundary. We will discuss in detail the purely 3d system in Section 2 and the 4d
interpretation in Section 3.

We will further generalize this discussion to interfaces between bulks with p™ and p~. Again,
when Lt = L~ = 1 there is a meaningful 3d theory on the interface. And for other values of L*
there is only an effective description as above. It is

T & AN/LF =0 /LY g AN/L™p /L™
Zn '

(2.17)

As in the case of a boundary, the two factors of AN/ LEFp%/L* can be interpreted as being
produced by the bulk in the two sides such that the Zy gauging can be performed on the
interface.

In Section 4, we review the bulk dynamics of the SU(N) and the PSU(N) gauge theories
and discuss their interfaces. Here we use the results in Section 3 to construct the interfaces in
the PSU(N) theory by gauging the one-form Zy symmetry of the corresponding interfaces in
SU(N) theory.

In several appendices we summarize some background information and extend the analysis in
the body of this chapter. Appendix A reviews the equivalence of different definitions of Abelian
anyons and derives some useful facts we use in this chapter. Appendix B reviews the properties
of the Jacobi symbols that appear in the central charge of the minimal Abelian TQFT AN?. In

Appendix C, we demonstrate that every Abelian TQFT corresponds to a unitary chiral RCFT.
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In Appendix D, we prove the equivalence of different procedures that remove lines from a TQFT.
Appendix E reviews and extends the analysis of a Zy two-form gauge theory in 4d. In Appendix

F, we generalize the discussion to a TQFT with an arbitrary Abelian one-form global symmetry

group [ Zy;, .

2.2  One-form symmetries in 3d and their gauging

2.2.1 One-form global symmetries in 3d TQFT's

In a 3d TQFT with a Zy one-form symmetry, every line W is in some Zy representation of

charge q(W). This means that the line transforms under a symmetry group element s by

2mwisq(W)
N

a* (VW () =W()e : (2.18)
where the symmetry transformation is implemented by the symmetry line a® that braids with W
as illustrated in Figure 2.2 with a the generating line of the symmetry. The charge ¢(W) can be

determined by the spins of the lines h[W] [44] (for a later presentations see e.g. the mathematical

treatment in [45] and a more physical review in [46])
q(W) = N (h[a] + h[W] — h[aW]) mod N, (2.19)

where alV denotes the unique line in the fusion of @ and W. (The line aWV is unique since a is
an Abelian anyon as explained in Appendix A.)
For the special case W = a*, the transformation under the group element s is characterized

by some integer P mod N

as(,)/)as’ (7/) _ CLS/ (’}//)67 271'11].;@’P ’ (220>
Using (2.19) we obtain
/ / P !
hla***] — hla®] — h[a*] = ]ff mod 1 . (2.21)



Consider the case s’ = —s. Since particles and their antiparticles have the same spin h[a®] =

hla=®] mod 1, and h[1] = 0 mod 1, we find two solutions with a given P mod N

2
hla®] = % mod 1, pe{0,1,...,2N —1}, (2:22)

with p = P or (P + N) mod 2N.

The condition a™ = 1 in (2.6) requires that a" has spin 2 = 0 mod 1 and hence pN must
be even. Therefore, for even N, the distinct cases are labeled by p =0, 1,...,2N — 1 and for odd
N, they are labeled by p =0,2,....,2N — 2.

Some different values of the label p can be identified using group automorphisms. For a Zy
one-form symmetry, this amounts to choosing a new generating line for the symmetry a = a”
with ged(NV,r) = 1. The charge of a line W in the TQFT becomes ¢(W)r mod N. The new
generating line @ has spin & mod 1 with p = pr? mod 2N so the label p and p = pr? mod 2N
should be identified.

In a spin TQFT there are new elements. These theories include a transparent spin-half line
1. Using the language of one-form symmetries, we can say that ¢ generates a Zy one-from
symmetry that does not act faithfully on the lines.

Consider first the case of even N. Here we can replace the generating line a with a = a,
which also satisfies (2.6) " = 1. The spin of a is 5% + 1 = %. Therefore, we can identify
p ~ p+ N. Equivalently, we can say that our system has a Zy ® Zs one-form symmetry, where
the first factor is generated either by a or by a and the second by .

For odd N we could contemplate a” = ¢ and therefore allow odd pN (and hence p is also
odd). This means that a generates a Zoy symmetry. Since N is odd, Zoy = Zn ® Zsy. Here, the
first factor is generated by @ = a®; indeed, a”¥ = 1. The second factor is generated by 1. The
Zy factor is characterized by the label p = (p + N) mod 2N, which is even (because p and N
are both odd). Therefore, without loss of generality, we can say that even in spin theories we

impose that pN is even. (Alternatively, we can allow odd p/N, but identify p ~ p+ N.)
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even N odd N
non-spin TQFT | p=0,1,....2N -1 p=0,2,....,2N —2
p=0,1,..,.N—1
spin TQFT p=01..N—-1 or equivalently
p=20,2,...,2N — 2

Table 2.1: The allowed labels p for Zy one-form symmetry up to the redundancy in redefining
the generators of the symmetries. A Zy one-form symmetry of parameter p is generated by a

line a of spin hfa] = 5% mod 1. For a non-spin TQFT, we need pN € 2Z, and p ~ p +2N. For

a spin TQFT, we can use pN € Z and p ~ p+ N. Alternatively, we can say that in the spin
case we keep the condition pN € 27Z and add the identification p ~ p + N only for even N.

The labels of distinct one-form symmetries for both non-spin and spin theories are summa-
rized in Table 2.1. Recall that in addition, choosing a different generator for the Zy symmetry

changes p.

Ezamples
An example of a class of 3d TQFTs that has a Zx one-form symmetry of all possible parameter
p=20,---,2N — 1 mod 2N is the U(1),y Chern-Simons theory. The symmetry lines of the Zy
one-form symmetry are generated by the Wilson line a of U(1) charge p, and the line a® for a

general group element s has spin

has) = P2 _ P

T 99N 2N

mod 1, (2.23)

in accordance with (2.22).

Another example is the simplest Abelian Zy gauge theory in 3d, denoted by (Zx)o. The
theory has a Zy x Zy one-form symmetry, generated by the basic electric and magnetic lines
Vg, Vi of integer spins. Vg generates a Zy one-form symmetry with p = 0 and V), generates
another Zy one-form symmetry with p = 0. However, these two lines Vg, V), have a mutual
braiding phase e~2m/N This fact can be used to find a Zy C Zy X Zy of arbitrary even label
p. Specifically, the line

b=VE?Vy, (2.24)
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generates a Zy C Zy X Zy one-form symmetry and since its spin is 35 mod 1, the one-form
symmetry is characterized by p.

What about the remaining lines? The line
c=VIPv, (2.25)

generates a Zy one-form symmetry of even parameter —p mod 2N. However, the lines b and ¢
satisfy
(be)™/Eedtr) — 1, (2.26)

and therefore only when ged(V,p) = 1 do the two lines generate the entire Zy x Zy one-form
symmetry.
Let us study a third example. We consider U(1)y ® U(1)_y (for N odd this is a spin TQFT)

with gauge fields z and y and an action

N N
— - — . 2.2
/(47Tzdz 47Tydy) (2.27)

Writing it in terms of x = z — y, this action becomes

N N
— — 2.2
/ (47Txdx + 2dey> , (2.28)

and as in [29], it describes the Zy DW theory [26] that we denote as (Zy)y. It has a Zy X Zy
one-form symmetry, generated by Z = exp(i § z) of spin ﬁ mod 1, and Y = exp(i § y) of
spin —ﬁ mod 1. The two lines Z and Y have trivial mutual braiding. The basic electric and
magnetic lines of the DW Zy gauge theory can be written as Vg = ZY ™! = exp(i § ) and

Vir =Y. As in the previous example of (Z)y, the line

b= ZD2y-0e-D/2 _ ye+D/2y, (2.29)
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generates a Zy C Zy X Zy one-form symmetry of odd parameter p ~ p 4+ 2N.

Again, we could ask about the remaining lines. The line
¢ = Ze D2y -@ih/2 — ye-U2y et (2.30)

generates a Zy one-form symmetry of odd parameter —p mod N. As in the previous example,
these lines satisfy a relation: (bc)/&d(NP) = 1 and therefore only when gcd(N,p) = 1 do the
two lines b and ¢ generate the entire Zy X Zx one-form symmetry.

Let us summarize the last two examples. A subset of the lines of (Zy)o generates a Zy
one-form symmetry with even parameter p and a subset of the lines of (Zy)x generates a Zy
one-form symmetry with odd parameter p. When ged(N, p) = 1 the remaining lines also generate
a Zy one-form symmetry with parameter —p.

We can combine these two examples more concisely using the theory (Zy)_,n with the action

pN N
/( ym xdx + 2dey) . (2.31)

Here the parameter p can be identified with p + 2 using the redefinition y — y — = so these
theories are either (Zy)o or (Zx)n, and the lines b and ¢ in (Zy)o and (Zy)y are mapped to

the following lines in (Zy)_pn

b= exp(i}{y), c= exp@p]{x - ij{y) . (2.32)

2.2.2 The minimal Abelian TQFT AN

In this section, we will show that when gcd(NV,p) = 1 and pN € 2Z the N symmetry lines
associated to a Zy one-form symmetry form a consistent TQFT. We call this theory “the minimal
Abelian TQFT” and denote it by AY?. This theory was first studied in [44] and more recently

in [47,6]. Here we emphasize its one-form global symmetry and show how it appears as a
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sub-theory in TQFTs with a Zy one-form global symmetry.!!
Using the assumed underlying Zy one-form symmetry, we can simplify the discussion in [44].
The symmetry determines the spins of the lines hla®] = 2 1mod 1, and their braiding leads to

2N

the following S matrix

1 1 2mip

Sy = —— ex <2m' hls| + h[s'| — h[ss ) = ——ex (— ss’) . s,8e{l,..,N}.

T P (hls] + h[sT = h[ss]) p { }
(2.33)

This matrix is unitary only when L = ged(N,p) = 1. (If L = ged(N, p) # 1, the line a™¥/” has

trivial braiding with all the lines in the theory, so the S matrix is not unitary.)

The chiral central charge c%) modulo 8 of the Abelian TQFT AN can be computed using

the following formula (see e.g. [48,46])"?

-2

N
27 (p) 1 2 'h[ s]
TN = — E esmmMa (2.34)
N s=1

The summation is a Gaussian sum with the following closed-form expression [44,49]

2
(]i) e(N) N odd, p even
2T () N
exp | i—ey | = N/ , (2.35)
(—) e(p) texp (mi/4) N even, p odd
p
where €(s) = 1 for s = 1 mod 4, €(s) = i for s = —1 mod 4 and (%) is the Jacobi symbol reviewed

in Appendix B. The values of the chiral central charges are summarized in Table 2.2, and they
are always integers.
Every Abelian TQFT can be represented by some Abelian Chern-Simons theory [50-54]

(for a review see e.g. [55]). It is also true for ANP?. For example,® AM! +— U(1)y and

A putative theory with N Abelian lines a® with h(a®) = % is not a consistent (modular) TQFT when
ged(N,p) # 1.

12The chiral central charge of a TQFT can be shifted by adding a (Eg); theory, since it has ¢ = 8 and no
nontrivial lines.

13Typically (and perhaps always) the TQFT can be described by a Chern-Simons (CS) gauge theory and a
corresponding Rational Conformal Field Theory (RCFT). In fact, there are often several distinct CS theories
corresponding to the same TQFT. Then the symbol «— means that they are dual. It is important to stress,
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Table 2.2: The chiral central charge cg\’;)

from (2.35). For each case cgf;) mod 8 is one of the two possible values depending on [N] = N

mod 4 and [p] = p mod 4. Here x means that the theories with such p and N do not exist
according to the conditions that p/N is even and ged(N,p) = 1.

mod 8 of the minimal Abelian theory AN computed

V] Pl 1 2
0 x 1,5 x 37
1 04 x 04 x
2 x 1,56 x 3,7
3 6,2 x 6,2 X

ANN=L « 5 SU(N);. An alternative description of ANV =1 is the U(1)N~! Chern-Simons theory
with the coefficient matrix given by the Cartan matrix of SU(N) (see e.g. [48]). The dualities
also hold after taking orientation-reversal.

Similar to one-form symmetries, any two minimal Abelian TQFTs AN? and AN?™ with
ged(N,r) = 1 are related by group automorphsims.

Following the discussion of spin TQFTs in the previous subsection we can generalize the
minimal theory to spin theories. Originally, we imposed a” = 1 and then pN has to be even
and the minimal theory is nonspin. We can make it into a spin TQFT by tensoring the almost
trivial theory!* {1,¢}. After doing that, for odd N we can further redefine a — a1y, which makes

a” =1 and shifts p — p + N making pN odd. This way we can define a spin TQFT

ANP = ANPTN & 11 ) for odd pN and ged(N,p) =1 . (2.36)

This is the minimal spin TQFT generated by a line of spin 5% mod 1.

however, that distinct RCFTs with the same TQFT are often inequivalent.
Y The almost trivial TQFT {1,%} can be represented by SO(M); for some integer M. The dependence on M
is only in the framing anomaly or equivalently in the chiral central charges ¢ = 2. See e.g. Appendix C of [56],

Appendix B of [57], and also [31].
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As an application, the spin TQFT U(1)y for odd N factorizes!®

U(l)y ¢+ AVNT @ {14}, (2.37)

where the first factor is a nonspin minimal theory. Since ANV = AN=N+1 « 5 SU(N)_;. This

reproduces the level-rank duality U(1)y <— SU(N)_y, which is valid only as spin TQFTs [31].1

2.2.3 Factorization of 3d TQFTs when gcd(N,p) =1

In this section we show that a TQFT 7T with a Zy one-form symmetry of label p such that

ged (N, p) = 1 factorizes as

T=A""xT when ged(N,p) =1. (2.38)

This is quite surprising. It means that in this case all the information about the global symmetry
and its action on 7 is included in a decoupled factor of the minimal theory AY* and T is
invariant under the symmetry.!”

The theory T includes the Zy symmetry lines a®. When ged(N,p) = 1 these lines form
the minimal theory AMP. Next, consider any line W € 7. Since a is Abelian, the fusion of
W with a includes a single line rather than a sum of lines. (See Appendix A.) Therefore, since
ged(N, p) = 1, we can always find an integer s such that the line W' = Wa* has vanishing charge
q(W’) = 0 mod N. Denote the set of neutral lines W’ by 7’. This shows that every line W € T
is a product of a line W’ € 77 and a line in AN?. It is clear that all the conditions of a consistent

TQFT are satisfied separately for 77 and AN and hence we have the factorization (2.38).

15We use equal sign to relate two isomorphic TQFTs. However, we used +— to denote two dual presentations
of the same TQFT. Typically one or both of these presentations is given by a Chern-Simons gauge theory. Then
the classical Chern-Simons theories are not equal (hence we do not use an equal sign), but the quantum theories
are the dual.

161f N = 8n for some integer n, the non-spin minimal Abelian TQFT satisfies AN:! = AN:N+1 by redefining
the generating line a — a*"*!. Thus U(1)s, +— SU(8n)_; are dual as non-spin TQFTs in agreement with [58].

17If the theory T is a spin TQFT, then since the transparent spin-half line is invariant under any one-form
symmetry, the theory 7' also contains such a line and is a spin TQFT.
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The factorization (2.38) also follows from a theorem in modular tensor category (see [40]
and Theorem 3.13 in [41]). In physics language, the theorem states that if a 3d TQFT T has
a consistent sub-theory A, then T factorizes into A ® 7' where T’ is another consistent TQFT
that consists of all the lines in 7 that have trivial braiding with the lines in A.'®

Next, we use the fact that (AN @ AN"P)/Zy is a trivial theory, where the quotient means
gauging the anomaly free diagonal Zy one-form symmetry generated by the two generating lines

of the minimal Abelian TQFTs. This leads to an alternative presentation of the TQFT T’

o TeATT (2.39)
LN

where the quotient means gauging the anomaly free diagonal Zy one-form symmetry generated
by the symmetry generating line a in 7 and the generating line of AY:7P.

Let us demonstrate this factorization in some examples.

The minimal Abelian TQFTs can be found as sub-theories in various examples discussed
in Section 2.2.1. We start by considering U(1),5 when ged(N,p) = 1. The theory has a
Zyny = Zn ® Z, one-form symmetry with a Zy subgroup generated by a, the Wilson line of
charge p, and a Z, subgroup generated by b, the Wilson line of charge N. The line @ and the

line b each generates a minimal Abelian TQFT AM? and APY. The full theory factorizes into

these minimal Abelian TQFTs!?
U1y +— AN = AVP @ APN when ged(N,p) = 1. (2.40)

To show the factorization of an Abelian TQFT, it is sufficient to check the factorization in the
fusion rules, the spins of the lines and the chiral central charge. The fusion rules of U(1),y are

the same as the group law of Z,n. When ged(N, p) = 1, the group factorizes into Zy x Z, and

18We thank Zhenghan Wang for discussions about this point.

YFor odd pN the full theory U(1),n as well as AYP and APV are spin TQFTs. The spin Chern-Simons theory
U(1),n can also factorize as U(1),n +— ANPTN @ APPTN @ {1 4} (compare with (2.37)), where the first two
factors are non-spin minimal theories.
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every line in the theory can be decomposed into W = a®b" with some unique (s,r) € Zy X Z,,.

The spins of the lines also factorize

B = (ps + Nr)? _ ( p

N S T
2N ﬁs + — 2p ) mod 1 = (h[a®] + A[b"]) mod 1. (2.41)

The chiral central charge of U(1),x is ¢ = 1. It agrees with the sum of the chiral central charges

of individual sub-theories up to a periodicity of 8

=

iz ( <p>+c(N>> -
e -

71'7,p] 7r'LNk2 7”(17]+Nk)2 277
— g E N =S . (2.42)
J,k

3l
ﬁ\

<.

We conclude that U(1),y factorizes into AM? @ AP when ged(N,p) = 1.
The minimal Abelian TQFT AM? is also a sub-theory in (Zx)_,ny when ged(N,p) = 1.

Similarly, the theory also factorizes

(Zy)_py +— AYP @ AN7P when ged(N,p) =1, (2.43)

where AN? and AP are generated by the lines b and ¢ in (Zy)_,y defined in (2.32).
As a consistency check, combining (2.38) and (2.39) and using the factorization property of

(ZN)—pn in (2.43), we recover the following canonical duality [59]

—T ® (ZN>O even p
7,12 (Zn)pn Zy (2.44)
VAN T ®(ZN)N odd p ’ '
Zn

where the quotient means gauging the anomaly free diagonal one-form symmetry generated by
the line a in 7 and the line ¢ in the Zx gauge theories defined in (2.25), (2.30) and (2.32). The
duality holds even when gcd(V,p) # 1. Under the duality, the symmetry generating line a in 7
is mapped to the line b in the dual theories defined in (2.24), (2.29) and (2.32). Then the Zy

one-form symmetry is entirely in the (Zx)_,n factor.
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We remark that although the 3d TQFT factorizes, the corresponding 2d RCFTs may not
factorize since the unitary modular tensor category does not fully specify the 2d chiral conformal

field theory [60]. For Abelian TQFTs, we provide a construction of a corresponding unitary chiral
RCFT in Appendix C.

2.2.4 ’t Hooft anomaly of one-form global symmetries

Consider a 3d TQFT T with a Zy one-form symmetry of label p with the symmetry generating
line a. Gauging the one-form symmetry amounts to summing over all possible insertions of the
symmetry lines [5]. If the symmetry lines have non-integer spin, the partition function vanishes
because of the summation. This means that the one-form symmetry has a 't Hooft anomaly
unless p = 0 mod 2N. Indeed, the one-form symmetry of label p = 0 mod 2N can be gauged
following the procedure outline in Section 2.1. (When p = N, the theory can also be gauged as
a spin TQFT by redefining the symmetry generating line using the transparent spin-half line.
After gauging it becomes a spin TQFT, even though the original theory can be a non-spin theory.
It reflects a mixed 't Hooft anomaly between the one-form symmetry and gravity, which we will
explain in details later.)

We couple the one-form symmetry of the 3d TQFT to a classical Zy two-form gauge field
Be € H*(My,Zy).2° The anomaly of the one-form symmetry is characterized by a 4d term of
the gauge field By through anomaly inflow. To determine the 4d term, we use the canonical

duality in (2.44) [59]
7- ® (ZN)pr

T 7

(2.45)

Under the duality, the original Zx one-form symmetry in 7 is mapped to the one-form symmetry
generated by line b defined in (2.32) in the dual description so the theory on the right hand side

couples to the classical gauge field B through the (Zx)_,n factor. It was shown in [29] that the

20The subscript C, as in Bc, denotes that the gauge field is classical.
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anomaly of (Zy)_,n is cancelled by the 4d term

p
2oy | P (2.46)

where P is the Pontryagin square operation (for a review see e.g. [34,61,10]). Therefore, the
anomaly of a Zy one-form symmetry of label p is characterized by the 4d term (2.46) [29,5,10].
The 4d term (2.46) is consistent with the Zy periodicity of the B¢ field only for even pN.

Furthermore, for p = N (which is possible only for even N) it can be written as

7| PBe)= <7r

My

Be U Bc) mod 27 = (ﬂ'/ wa(My) U BC> mod 27 , (2.47)
My

My

where wy(My) € H?*(My,Zs) is the second Stiefel-Whitney classe of the manifold M, (see
e.g. [62,63]). Equation (2.47) follows from the identity x Uz = wo(My)Ux for x = (Be mod 2) €
H?*(My,Zs) (on orientable manifolds). We interpret the 4d term (2.47) as a mixed 't Hooft
anomaly between the one-form symmetry and gravity (fermion parity), which means that when
this anomaly exists the one-form symmetry can be gauged only on spin manifolds. See also the
related discussion in appendix E.

On spin manifolds, pN in (2.46) can be odd. Furthermore, (2.46) vanishes for p = N.

In summary, on non-spin manifolds, the anomaly is labeled by p = 0,1,...,2N — 1 for even
N and p = 0,2,...,2N — 2 for odd N, and on a spin manifolds, the anomaly is labeled by
p=0,1,..., N —1. This agrees with the labels of 3d Zy one-form symmetries listed in Table 2.1.

The anomaly can be changed by choosing a different generating line @ = a” with ged(N,r) = 1
as explained in Section 2.2.1. It is equivalent to redefining the classical gauge field B¢ by a
multiplication by 7 and the anomaly coefficient in (2.46) becomes pr? mod 2N.

In the presence of the classical gauge field Be, the line W is dressed with an open surface
e~ TR Be for gauge invariance and the redefinition of the classical gauge field B¢ rescales the

charge from ¢(W) to q(W)r.

An anomalous Zy one-form symmetry can have anomaly free subgroups. On spin manifolds,
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N/m

a Z, subgroup is anomaly free if the symmetry generator a = a has integer or half-integer

spin
_pN 1

= 7 . 2.4
2m?2 < 2 (2.48)

hla]
There is always a Z; subgroup with L = ged(N,p) that satisfies this condition and hence it
is anomaly free. But the Z; subgroup may not be the maximal anomaly free subgroup. For
NL = r?t with some integers r, ¢ such that ¢ does not contain any complete-square divisors great

than one, the maximal anomaly free subgroup is Z,. As a non-spin TQFT, a Z,, subgroup is

anomaly free only if h[a] € Z and therefore the Zj, subgroup is anomaly free only for even pN/L?.

2.2.5 A generalization of the three-step gauging procedure to anoma-

lous theories

In this subsection, we will introduce a new operation on 3d TQFTs that generalizes the three-
step gauging procedure outlined in Section 2.1. This generalized operation will appear naturally
in Section 2.3, where we consider 4d theories with boundaries and interfaces.

The standard gauging procedure of an anomaly free Zy one-form symmetry can be used
when p = 0, where all the symmetry lines have integer spins. Then in step 1 we remove the
non-invariant lines, in step 2 we identify lines that differ by the fusion with the symmetry lines,
and in step 3 we take lines at fixed points of the identification several times.

When p = N this simple process cannot be repeated because the generating line a has half-
integer spin. As we said above, this can be interpreted as a mixed anomaly between the one-form
symmetry and gravity. This anomaly vanishes on spin manifolds and therefore, we can gauge
the symmetry and find a spin TQFT. Let us discuss it in more detail. If the original TQFT T
is a spin theory, it has a transparent spin-half line ¢). Otherwise, we make it into a spin TQFT
by tensoring the almost trivial theory {1,¢}. Now that we have a spin TQFT we can redefine
a — a = arp. Since p = N and pN is even, this occurs only for even N and then the redefinition

preserves the fact that ¥ = 1. The redefinition shifts p to be zero. As a result, even in this
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case we can use the standard three-step gauging process with a. The only difference is that the
theory is spin.

For simplicity from this point on we will limit ourselves to spin TQFTs.

Consider a 3d spin TQFT T with a Zy one-form symmetry of label p such that ged(N,p) = 1,

the spin TQFT factorizes as discussed in Section 2.2.3
T=T & A7, (2.49)

where 7" is the 3d spin TQFT that consists of all the Zy invariant lines in 7, and it can be

extracted through
T @ AN

T 7 (2.50)

In this case, we define an operation that maps 7 to 7'. The operation discards all the Zy
non-invariant lines in 7. It is equivalent to applying only the step 1 of the three-step gauging
procedure.

When ged(N, p) # 1, the Zy one-form symmetry has an anomaly free Z;, subgroup generated
by a = a™/* with L = ged(N, p). Gauging this Z, subgroup produces a new spin TQFT T /Z;.
The new spin TQFT contains the original symmetry generating line a, but now it generates a

Zy one-form symmetry (N’ = N/L) with label p’ = p/L. Since gcd(N',p’) = 1, T /Z, factorizes

T _(T
Z, \Z

!/
) ® AN/EP/L (2.51)

where (7 /Zr)" contains all the lines in 7 /Zj, that have trivial braiding with a. We define the

generalized gauging operation that maps

(2.52)

/ N/L,—p/L N/L,—p/L
T_>T,E<ZI>:T/ZL®A v _Te AT
L

LNy Ly

In both presentations, the quotient in the denominator uses the symmetry generator a and the

generating line of the minimal Abelian TQFT. In the second presentation, the Zj subgroup of
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the Zx quotient acts only on 7.

There are three ways to think about the map (2.52).

First, as we motivated it and as in the first presentation in (2.52), we first gauge the Z,
subgroup of the Zy one-form symmetry and then remove the sub-theory in 7 /Zj, consisting of
the Zy/;, symmetry lines.

Second, since the Zy symmetry is anomalous, we tensor a minimal theory AN/L~P/L that
cancels the anomaly and then gauge the new anomaly free Zy symmetry. This is clear in the
second presentation in (2.52).

Third, we can perform step 1 of the three-step gauging procedure using the full Zy symmetry

and then perform steps 2 and 3 using only its Z subgroup:

Step 1 Select the lines invariant under the Zy one-form symmetry. In particular, among the
symmetry lines, only the ones associated to the Zj; subgroup generated by a = a™/*

remain.
Step 2 If a has integer spin, identify W ~ Wa and if a has half-integer spin, identify W ~ Waz.
Step 3 Take multiple copies at the fixed points of the identification.

When p = 0, N, the symmetry is anomaly free and the generalized gauging operation reduces
to the standard gauging procedure that produces 7' = T /Zy.

In general, the Zy one-form symmetry can have larger anomaly free Z,, subgroups that
contain the Zj, subgroup. In Appendix D we show that the same result (2.52) can be reproduced
if we first gauge the Z,, subgroup and then apply the generalized gauging operation to the
remaining theory (up to a possible transparent spin-half line, which we will ignore).

Below we will see similar operations on TQFTs, which are not minimal. Following the second
presentation in (2.52), we can tensor not the minimal theory AN/%~?/L hut other theories that

cancel the anomaly, e.g.
T ® .AN/Lﬂ—pﬂL/LJr ® AN/L*,p*/L*
Ly ’

(2.53)
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where p = p* — p~ and L* = gcd(N,p*). The operation adds to the theory 7 two minimal
Abelian TQFTs to cancel the anomaly and then gauges the diagonal one-form symmetry. The
two minimal Abelian TQFTs AN/ET—2"/LT @ AN/L™=27 /L™ glways have greater or equal number
of lines than AN/5~P/L with L = ged(N,p) and p = p* — p~.2! All the lines in 7" defined in
(2.52) can be identified with the lines from the original TQFT 7. In contrast, the theory (2.53)

in general has additional lines.

2.3 Coupling to a 4d bulk

2.3.1 The bulk coupling

Consider a 4d symmetry protected topological (SPT) phase of Zy one-form symmetry with the

same action as the anomaly in (2.46)

P
215 5 P(Be) , (2.54)

where Be € H*(My,Zy) is a classical Zy two-form gauge field. The theory has a description,
reviewed in Appendix E; in terms of a dynamical U(1) one-form gauge field A and a classical

U(1) two-form gauge field Be

pN N
—B¢B, —BedA ) . 2.
//\/14 (47r cbe + 27 ¢ ) ( 55)

The equation of motion of A constrains B¢ to be a Zy two-form gauge field %BC.

The theory (2.55) is invariant under a one-form gauge transformation of background fields

Be — Be —d\, A— A+pA, (256)

2L AN/L.=p/L has N/L lines and AN/E"—p" /LT @ AN/L™.p" /L™ hag N2/L+L~ lines. The ratio between them

is Lff, = (Livf,) (%) with ged(NV, pT,p~) = £. Since the two factors are integers, the product theory has more
lines.
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with A a one-form gauge parameter.

22

We put the theory on a 4-manifold M, with a boundary.” The action is gauge invariant

under (2.56) up to a boundary term

—/ (ﬂAdHﬁAdA) . (2.57)
OMy 47T 27T

It can be cancelled by a theory on the boundary with a Zy one-form symmetry of anomaly
p, that couples to the classical gauge field Be. So we are going to place on the boundary an
arbitrary TQFT T with such a symmetry and anomaly.

The coupling of the boundary TQFT T to the classical gauge field Be has a convenient

Lagrangian description using the canonical duality in (2.44) [59]

7 o TEEN)ow (2.58)
Ly

and the Lagrangian description (2.31) of the second factor in the numerator. Then the classical

gauge field B¢ couples to the boundary theory through the (Zx)_,n theory

pN N N N
——ad —xd —Bey — —BcA 2.
/BM4( 47Txx+27rxy+27r cy 27 ¢ ’ (2.59)

where the last term B¢A can be absorbed into the bulk action by modifying BedA to AdBe.

Now the one-form gauge transformation (2.56) acts as

Be— Be—d\, A—A+p\, x—x+ )\ y—y+p\. (2.60)

2.3.2 Gauge the one-form symmetry

The whole system is anomaly free so there is no obstruction to gauging the one-form symmetry

by turning the background gauge field B¢ into a dynamical gauge field denoted by B. After

22We restrict to the 4-manifolds such that every Zy two-form gauge field on the boundary can be extended to
the bulk. It requires the third relative cohomology H?3(M.y, 0M4;Zy) to vanish.

40



gauging, the bulk theory becomes a dynamical Zy two-form gauge theory reviewed in Appendix

E. For later convenience, we define
L =gcd(N,p), K =N/L. (2.61)

The bulk Zy two-form gauge theory is effectively a Z; one-form gauge theory® [29,5]. Tt has
L genuine line operators generated by V' = exp(iKX § A) and L surface operators generated by
U = exp(i § B). We will be interested in the effect of gauging on the boundary TQFT. For
simplicity, we will limit ourselves to spin 4-manifolds.

It is important to stress that when L # 1 the bulk theory is nontrivial and hence it is
meaningless to ask what the 3d theory on the boundary is. Instead, it should be thought of
as part of the 4d-3d system. Nevertheless, we can discuss the physical observables such as the
line operators on the boundary and their correlation functions. We will extract from the 4d-3d
system an effective boundary theory that reproduces many of these observables.

Let us examine the line operators on the boundary. The bulk Zy gauge theory has L line
operators. When they are restricted to the boundary, they are regarded as boundary lines. But
they have trivial braiding with all the boundary lines since they can smoothly move into the
bulk and get un-braided. This means that unless L = 1 (where the bulk is trivial) the boundary
lines to do not form a modular TQFT [29].

What are the other lines on the boundary? They can be constructed by fusing a line W from
the 3d TQFT 7 and the bulk lines generated by exp(i § A)|, where | denotes the restriction to

the boundary

W (v) exp (imj{A) exp (i(mp — q(W)) /2 B) with v=0%, (2.62)

where m ~ m + N. The coupling to B is needed for the one-form gauge symmetry. Next, we

ZWhen pN/L? is odd, V = exp(iK ¢ A) represents the worldline of a fermionic particle and the bulk theory
is effectively a Zj, gauge theory that couples to wy(My) of the manifold (see Appendix E).
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Figure 2.3: If a boundary line W (y) is at the fixed point of the identification using a = o€, it
can form a junction by emanating a bulk line exp(i K fm A).

impose that these lines are genuine line operators, i.e. independent of the choice of surface >.

This happens when ¢(W) = mp mod N [29,5]
W () exp (im]{A) with  ¢(W) =mp mod N . (2.63)
ol

An operator W for which we cannot solve ¢(W) = mp mod N cannot be “dressed” to a physical

line operator. In addition, using (2.59), the equation of motion of B on the boundary leads to

exp(i?fA)] = exp(z'j{y) : (2.64)

Now, the canonical duality (2.44) maps exp(i § y) to the symmetry generating line a € T, so
exp(i § A)| = a. Therefore all the line operators on the boundary are the Zy-invariant lines in
7. This means that we have performed only step 1 of the three-step gauge procedure.

Using this identification we also recognize the L symmetry lines associated to the Z; subgroup
generated by a = a® as the bulk lines generated by V = exp(iK ¢ A). As we said above, these
lines have trivial braiding with all the lines on the boundary.

One of the main points in our discussion is that since the bulk lines are trivial in any 3d

correlation functions, we find it natural to identify them with the trivial line and accordingly,
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identify the boundary lines W ~ Wa. This works when pN/L? is even, so that the bulk line
V| = a = a® has integer spin h[a] = pN/2L?. When pN/L? is odd, the bulk line V is charged
under the Zs fermion parity (see Appendix E), and on the boundary it is identified with a of
half-integer spin. Thus, we identify W ~ Waw. The procedure above is equivalent to quotienting
by the boundary lines that can move to the bulk. This is essentially the step 2 of the gauging
procedure, except that we perform it with respect to Zy, rather than with respect to Zy. As with
the step 3 in the gauging procedure, the identification leads to new lines. Consider a boundary
line W at the fixed point of the fusion with a. It can form junctions by emanating bulk lines at
some points as shown in Figure 2.3. When the bulk lines are viewed as trivial, these junctions
become new boundary line operators.

We have just performed step 1 of the gauging with respect to Zy and steps 2 and 3 with

respect to its Zjy, subgroup. The result is exactly 7’ defined in (2.52)

T @ AN/Lp/L

T 7 (2.65)

We note that the identification by the bulk lines, whose correlation functions on the boundary
are trivial, is similar to the procedure of the more mathematical analysis in [38-42].

In this system, the minimal theory ANL=P/L can be interpreted as the 3d TQFT that the
bulk theory provides to cancel the anomaly.

After gauging the Zy one-form symmetry, there is an emergent dual Zy one-form symmetry
in the bulk and an emergent dual Zy zero-form symmetry on the boundary. They are both
generated by exp(i § B). The original system can be recovered by gauging these emergent
symmetries.

In summary, starting with a general 3d TQFT 7T with a Zy one-form symmetry of anomaly
p, by coupling it to the bulk (2.54) and then gauging the one-form symmetry, we find the 3d
TQFT T as the effective boundary theory. We emphasize again that 7' is only an effective

theory, since the boundary can only be thought of as part of the 4d-3d system when the bulk
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gauging bulk boundary theory | effective boundary theory
none SPT of Zy T
Zn with L =1 trivial T’ :%ﬁ’p
Zy with L # 1 | Zp, gauge theory | not meaningful T = T®A;§\[L’ZJ/L

Table 2.3: Gauging an SPT phase of Zy one-form symmetry with a boundary supporting a 3d
TQFT T leads to a 4d-3d system. It is not meaningful to discuss the resulting boundary theory
unless the bulk is trivial. This happens when L = ged(N,p) = 1. However, we can extract an
effective boundary theory that captures many of the features for any L.

theory is nontrivial. However, in the special cases when L = 1, the bulk theory is trivial and 7"

is the theory on the boundary.

2.3.3 Interfaces between two different bulk TQFTs

4

A generalization?* is to consider interfaces between two different SPT phases of Zy one-form

symmetry one with coefficient p* and the other with p~

Sig = /Mz (I%Bng + %BgdA—) + /MI (p;JTVBng + %Bgdﬁ) : (2.66)
On the interface IM7 = OMy, we choose the boundary condition B = Bf| = B;| where |
represents the restriction to the interface. The anomaly inflow can be cancelled by an interface
theory with a Zy one-form symmetry of anomaly p = p, — p_ that couples to Be. As in the
case of a boundary, which we discussed above, we place on the interface a 3d TQFT T with
a Zy one-form symmetry generated by a and with anomaly p. Following the discussion of the

boundary, we use the canonical duality (2.44) and couple the interface theory to B through the

24 As above, for simplicity, we will limit ourselves to spin 4-manifolds.
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(Zn)-pn factor

pN N N N B
S3a = ———uxd —uxd __B-y— —B-(AT — A . .
¥ /aM< g vt gy + 52 Bey = 57 Bel )) (2.67)

The one-form gauge symmetry of the system is
B - B —d\, AT = AT+pt\, z =2+, y—oy+ph. (2.68)

We can gauge the Zy one-form symmetry in the full system, i.e. make B¢ dynamical (and

remove the subscript C). For later convenience, we define
L* = ged(N,p*), L=gcd(L*,L7), K*=N/L*¥, K=N/L=lem(K",K7). (2.69)

After gauging, the bulk theory becomes effectively a Z;+ one-form gauge theory on each side.
In the special cases when L* = 1, the bulk theories on both sides are trivial and there is
a meaningful 3d theory on the interface. Otherwise, the interface can only be thought of as
coupled to the 4d TQFT.

All the line operators T on the interface can be constructed by fusing the lines W from the

original 3d TQFT T and the lines Vi = exp(i § A*)]
W=wvmvm (W)= @rmt +p m”) mod N . (2.70)

The various factors in W are not Zy gauge invariant line operators — each of them needs to be

+ means that their

attached to a surface with B to make them invariant. But the condition on m
product W is Zy invariant and hence it is a genuine line operator. (We ignore here a possible
trivial open surface exp(iN [ B) and use m* ~ m* + N.) An operator W for which we cannot

solve this equation cannot be “dressed” to a physical operator.
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bulk at M Interface bulk at M
one-form: Zy — Zy- one-form: Zy — 1 one-form: Zy — Zy+
U_=exp(i§ B7) U=exp(i [BT—i[B") Uy =exp(i § BY)

Table 2.4: The emergent global symmetry in a 4d system with an interface. The first row
summarizes the symmetries and their spontaneous breaking. The second row presents the charge
generators. In U the integral is over a closed surface that pierces the interface. U. ii = 1 means
that this symmetry is broken to Zy+. Below we will study an effective theory on the interface by
performing a quotient of the full 4d-3d system by the bulk modes. We will see that the one-form
global symmetry of this effective theory is Zgcq(x+ x-) = ZN/tem(L+,L-)-

Using the equation of motion of B

V. =aV_ (2.71)

and that a is a special case of W, all the lines on the interface can be written as®

W=wvnr gqW)=p m™ mod N . (2.72)

Let us discuss the global symmetry of the system and its breaking (Table 2.4). After gauging,
the bulk theories have an emergent Zy one-form symmetry. It is spontaneously broken to Zj+
on the two sides. The broken Z;+ = Zy/Z+ one-form symmetry is generated by the surface
operator Us = exp(i § B¥) with UL™ = 1. Tt acts on the Z,+ gauge theories in the two sides.

The interface has an emergent symmetry generated by the surface operator that pierces the

interface

U= exp(i/ Bt — z/ B7) oxt =09%" (2.73)
s+ -

where X% are two hemispheres in the two sides of the interface. Together they form a closed
surface. U acts on the interface lines (2.70) WV V™ by a phase of e~ 2% m™+m)/N (Ag o
check, this phase is invariant under the fusion with the trivial operator af/g .= 1.)

The original Zx one-form symmetry acted faithfully on 7. This means that there are lines

W with all possible Zy charges. Therefore, for every value of m* we can find a line W satisfying

25 Note that unlike the case of a boundary discussed in Section 2.3.2, where a = V was a line in the original
theory 7, here the interface lines with m™ # 0 were not present in 7. Correspondingly, there are new interface
lines that arise from the bulk degrees of freedom.
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(2.70). After gauging this Zy symmetry, the emergent Zy symmetry acts with charge —(m™* +
m~). We see that it acts faithfully in the resulting TQFT. This means that this emergent Zy
one-form symmetry is completely broken on the interface.

There is also an emergent dual Zy zero-form symmetry on the interface generated by exp(i ¢ B]).
All these emergent symmetries have the same origin and gauging them with appropriate coun-
terterms recovers the original system.

We conclude that the 4d-3d system has an emergent Zy one-form symmetry, which acts

faithfully on the interface; i.e. it is spontaneously broken.

Effective 3d theory
Next, we imitate what we did with a boundary and construct an effective interface theory by

moding out by the bulk lines
Vi = (Vo))" = exp(iK* fAi)| : (2.74)

Step 2 The bulk lines are trivial in all correlation functions in 3d. We identify them with the

trivial lines and therefore, the interface lines W are identified as
W o~ WV_pR P Wy K P T = oK (V)R KT (2.75)
where we used the result that V. has interger spin for even K*p*/L* and half integer spin

for odd K*p*/L* (see Appendix E).

Step 3 A line at the fixed point of the identification using a® with K = lem(K*, K~) can form
junctions by emanating two bulk lines Vf/ K™ and VA5 at the same point. These junc-

tions become genuine line operators if the bulk lines are taken to be trivial.

As an example we consider T = (Zy)_,n defined in (2.31). After gauging all the lines on
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the interface are generated by b, and b_

by = exp(ifAi —ip* ?{x) : (2.76)

We are interested in the expectation value of a knot on the interface

K[{Ci},{Cg}]—exp(iZj{c.(A —ptx +12j{ A” —px) (2.77)

Since the path integral is quadratic it can be evaluated easily (see Appendix E for similar

calculations)

(KHCHACTH) = exp (2”]"3’ Y cj>> exp ( S (N ) (2.78)
i<j i<j
where ((C;, C;) is the linking number between C; and C;. Here the result arises from contractions
of (ATA*) and (A~ A7). Since (b+)X™ is identified with the bulk line Vi = exp(iK* § A*), the
effective interface theory is AK =77 /LT @ AK P~ /L7
Using the canonical duality (2.44), the effective interface theory for a general 3d TQFT T is

T@AK+7_Z’+/L+ ®AK*,p*/L* B T/ZL®AK+’_1’+/L+ ®AK*,p*/L7
ZN B ZK

, (2.79)

where the quotient in the first presentation means gauging the diagonal anomaly free Zy one-
form symmetry generated by ab™ (b") ™' = aexp(i §(pxr — AT + A7)).

The two minimal Abelian TQFTs AKX —7"/L" and AKX »" /L™ can be interpreted as the 3d
TQFTs that the bulk theory provides to cancel the anomaly. The sign difference in the labels
comes from the different orientations of the bulk relative to the interface.

It should also be added that when we performed the quotient of the full 4d-3d system by
the two bulk theories to find an effective 3d theory, we modded out by the bulk operators. This

means that the effective theory captures the correlation functions of interface lines, but does not
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capture the correlation functions of the bulk lines and the bulk surfaces.

Let us determine the one-form global symmetry of the effective theory. Since we have modded
out by some bulk lines, it is different than the Zy that acts on all possible lines in the interface.

Clearly, we should focus on the surface operator U that pierces the interface (2.73). In
general, it has nontrivial correlation functions with the lines in the bulk. Hence, its intersection
with the interface X" = 90X~ does not represent a genuine line operator on the interface. Since
it is not included as a line operator in our effective theory, the effective theory does not have the
full Zy symmetry.

However, the surface operator

Uk, with L = lem(L", L") (2.80)

has trivial correlation functions with all the bulk lines and therefore we expect that it corresponds

to a line operator on the interface. Indeed, it is
- . —L/Lt ., L/L~
Ut = (v;) (v;) . rept=LF mod N . (2.81)

This line generates a Zy,j subgroup of the emergent Zy one-form symmetry of the full 4d-3d
system.

The one-form global symmetry of the effective theory can also be obtained from (2.79). First,
using the Zx quotient we can express the symmetry lines as the lines in the minimal Abelian
theories. Since r1p*/L* = 1 mod K*, we can choose the generating line of the minimal theories
AEEF0E/LE 6 e (V). Then the lines in the effective interface theory (2.79) originating from

the minimal theories are

(V™ Wy mtLY +m LT =0 mod N, (2.82)
with m* ~ m* + K*. The condition only has solutions (m*,m~) = n(L/L*,—L/L") with
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integer n and hence the line (2.81) generates all the interface lines originating from the minimal
theories. This means that the Z /L one-form symmetry is the largest symmetry of the effective
interface theory (2.79) generated by the lines from the minimal theories.

Another way to understand this global 7Z N/ one-form symmetry of the effective theory is
the following. The full 4d-3d system realizes a spontaneously broken Zy symmetry, which acts
faithfully. In the bulk this symmetry is spontaneously broken to Zy+, so the bulk modes realize
Zy+. Together, the two bulk half-spaces realize Z; = Z+UZ . Therefore, the effective interface
theory, obtained as the quotient by the bulk modes realizes Lyj, Equivalently, the unbroken
global one-form symmetries in the two bulks are Zg= and hence Zgqx+ x-y = Zg+ N Lk~
is unbroken throughout the two bulks. We know that the full Zy symmetry is broken in the

interface. Therefore, the quotient theory should realize the symmetry Zgoqx+ x-) = Zy A

2.4 SU(N) and PSU(N) gauge theory in 4d

2.4.1 SU(N) gauge theory, walls and interfaces

We begin by reviewing the dynamics of 4d pure SU(N) gauge theory and its domain walls and
interfaces following [64,5,27]. The action of the theory is
1 0
S = _4__92 TI'(F A *F) + Q TI"(F AN F) s (283)
where the parameter 6 is identified periodically 6 ~ 6 + 27.

This system has a Zy one-form global symmetry, which we will refer to as electric. It is

generated by a surface operator

Ug = exp(i%C’) : (2.84)

where C' depends on the dynamical gauge fields. As expected of a charge operator, the correlation
functions of the surface operator Ug are topological [5]. The charged objects are Wilson lines

in representations of SU(N) and the Zy charge is determined by the action of the center of
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the gauge group on the representation. We will denote the Wilson line in the fundamental
representation by W.
In addition to the Wilson lines and the charges Uy = exp(ir § C'), the system also includes

open versions of the charges

T(v) exp(i/ C), v =0%, (2.85)

%

where T is the 't Hooft operator. In the SU(N) theory it is not a genuine line operator and needs
to be attached to an open surface operator. The 't Hooft operator is the worldline of a monopole,
which is defined by being surrounded by a two-sphere with a nontrivial PSU(N) bundle on it.
The SU(N) theory does not have such objects. They have to be attached to strings. (This is
like the Dirac string of a magnetic monopole, except that it is detectable by Wilson lines, and
hence it is physical.) The surface in (2.85) can be interpreted as the worldsheet of this string.
This allows us to interpret the Zy charge operator Uy = exp(ir § C') as a closed worldsheet of
such strings.

It is natural to couple the global Zy symmetry to background gauge fields Be. Then, since

the Wilson lines are charged under the symmetry, they take the form
W(y)e® Jsbe 5 =0y (2.86)

One way to think about the classical background Be is that instead of summing over SU(N)
bundles in the path integral, we sum over PSU(N) bundles £ with fixed second Stiefel-Whitney
classes wy(€) = Be € H(My, Zy).

Another consequence of the background field is that we can add to the action the counterterm

p
27T2N v P(Bc) . (287)
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In the presence of this term the 6 periodicity is as in (2.1)
0,p) ~(@+2m,p+N—-1). (2.88)

This lack of 27 periodicity in 6 has another consequence. Because of the Witten effect [65]

the open surface operators (2.85) are not invariant under # — 6 + 27. They transform as

70)expli [

b

) = W()T () expli / ). (2.89)

3

This fact will be important below.

So far we have discussed the kinematics of the SU (V) theory. Now we turn to the dynamics.
At low energies the SU(N) theory has a gap and it confines. This means that the Zy one-form
symmetry is unbroken and the charged Wilson lines (those in representations that transform
nontrivially under the Zy center) have an area law. Correspondingly, these Wilson lines vanish
at long distances. As a result, the low-energy theory is trivial. It does not even have a TQFT.
In the low-energy theory the Wilson lines W" vanish and the charges Uj, are equal to one.

The dynamical objects of the system have electric and magnetic charges that are N times
the basic units of the Wilson line W and the 't Hooft operator (with its attached surface (2.85)).
Confinement means that some dynamical monopoles or dyons condense. But these are different
dyons at 6 and at 6 + 27. Because of the Witten effect, their electric charges differ by N units.
This means that if we have confinement at #, we have oblique confinement at # + 27. And more
generally, we have different kinds of oblique confinement at these two values of 6.

At 0 € wZ, the SU(N) gauge theory has a time-reversal symmetry. It is unbroken at
0 € 2n7Z. At 0 € 2n7Z+ 7, the theory is argued to have two degenerate vacua associated with the
spontaneous symmetry breaking of the time reversal symmetry. Since the action of time reversal
at these points involve a shift of # by a multiple of 27, the two vacua have different kinds of
oblique confinement.

Let us discuss the domain walls between these two vacua. Since they have different kinds of

52



oblique confinement in the two sides, one dyon condenses in one side and another dyon condenses
in the other side. Therefore, no dyon condenses on the wall and correspondingly, the theory is
not confining there. This means that the electric Zy one-form symmetry is spontaneously broken
on the domain wall and the fundamental Wilson loops are physical observables in the low-energy
theory.

It was argued in [27] that the wall supports a nontrivial TQFT, SU(N);. This TQFT has a
Zy one-form symmetry with an anomaly p = N — 1, which accounts to the different anomaly
inflow from the two sides of the wall. Note that this is the minimal TQFT with these properties
ANN=1and any other TQFT with such properties includes SU(N); as a decoupled sector and
the rest of the theory is Zy invariant.

The SU(N) gauge theory can also have interfaces that interpolate between 6, and 6, + 27k
for some integer k. The anomaly inflow requires the interfaces to support theories with a Zy one-
form symmetry of anomaly p = k(N — 1) mod 2N. This does not uniquely specify the theories
on the interfaces. However, when 6 varies smoothly, the interface theory is uniquely determined
by the microscopic theory and the profile of the f-parameter. This is to be contrasted with sharp
interfaces when 6 is discontinuous. When 6 varies smoothly and slowly with |V6| < A, where A
is the dynamical scale of the theory, there are k£ domain walls where 6 crosses an odd multiple
of m. Each domain wall supports an SU(N); TQFT. When 6 varies smoothly and more rapidly
with |V > A, the interface theory SU(N)P¥ is argued to undergo a transition to SU(N)y
theory [27,28]. This can be understood as the Chern-Simons term induced by by the f-term in
the bulk.

However, it is possible that the strong dynamics changes the interface theory at low-energy.
One logical possibility is that the dynamics Higgses SU(N) using scalar fields in the adjoint
representation. This preserves the Zy one-form symmetry and the anomaly. The maximum

possible Higgsing with one adjoint scalar is to the Cartan torus U(1)V~!, where the U(1)N~!
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gauge fields a’, I = 1,--- | N — 1 are embedded in the SU(N) gauge field a through

a=d H', (H"); = diag(0,---,0,1,—1,0,---,0). (2.90)
I—-1 N-I1-1

In terms of these fields the SU(N); theory becomes a U(1)¥~! Chern-Simons theory

k 2i k
ETI" (ada - §a3> — E(KCartan)UaIdaJ (2.91)

where Kgartan is the Cartan matrix of SU(N)
(Kcartan)1s = Te(H'H”) = 26717 — 01,741 = 6141,5 - (2.92)

For k = 1 this Abelian TQFT is the same as SU(N)i, so this possibility is the same as the
previous suggestion.

We can further Higgs SU(N) all the way down to its Zy center. In order to identify the
TQFT of this Zy gauge theory, we use a presentation of SU(N); based on U(N) x U(1) gauge
fields b and y [31]

k 21 k 1
S =2 — (e b)d(Trb) + ——yd(T 2.
o r(bdb 3b> 47T( rb)d( rb)—i—27ryd( rbh), (2.93)

where the U(1) field y constrains b to be a SU(N) gauge field. The Zy gauge field z is embedded
in U(N) through b = zI. After Higgsing, the SU(N); theory becomes a Zy gauge theory
(Zn)-knv-1) = (ZN)—pn. Alternatively, the precise Zy gauge theory can be determined by
matching the anomalies.

In conclusion, without a more detailed dynamical analysis we cannot uniquely determine the
TQFT on the interface, so we will denote it by 7;. The simplest case T; was argued to be the
minimal allowed theory, SU(N);. But for higher values of k there isn’'t a preferred choice and

we presented several options, e.g. SU(N)i and (Zn)_gnv-1) = (Zn)-pn. However, using the
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analysis in the previous sections, we can proceed without knowing exactly what 7y is.
Let us analyze the interface theory 7Ty in more detail. The theory has a Zy one-form symmetry
of anomaly k(N — 1), which means that the symmetry lines are anyons with a braiding phase

of e—2mik(N-1)

/N These symmetry lines can be thought of as bulk charge operators generated by
Ug that pierce the interface. To see that, recall that because of confinement, the shape of Ug in
the bulk is not important (a closed surface on each side equals to one) and therefore, Ug, which
pierces the interface is effectively a line operator on the interface. Also, Ug can be interpreted
as the worldsheet of a string constructed by gluing two t Hooft lines from the two sides at the
interface. So we can view Ug as associated with two 't Hooft lines, T" on one side of the interface
and T~! on the other side. Then, because of the Witten effect [65], the electric charges of these
two 't Hooft lines differ by k& and therefore Ug that pierces the interface appears as a Wilson line
with electric charge k. More precisely, it is the generator of the Zy one-form global symmetry
on the interface. For example, if the theory on the interface Ty, is SU(N)y, it is a Wilson line in
a k index symmetric representation of SU(N).

The fact that Ug leads to a Wilson line on the interface shows that not only are the probe

quarks on the interface liberated (because there is no confinement there), they are also anyons!

2.4.2 PSU(N) gauge theory

The PSU(N) gauge theory differs from the SU(NN) gauge theory in the global form of the gauge
group. It can be constructed by gauging the electric Zy one-form symmetry in the SU(N) gauge
theory, i.e. by making the classical background field Bz dynamical (and dropping the subscript
C). Summing over B means that we sum over all PSU(N) bundles £. Now, the choice of the
counterterm (2.87) is more significant than in the SU (V) theory and the value of p affects the
set of observables.

Let us discuss the operators in the theory. Since now B is dynamical, the Wilson loop (2.86)

is no longer a genuine line operator; it depends on the surface ¥. We can consider a closed
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surface operator

271 271
Uy = exp <%Z fwéDSU(N)) = exp (%Z ]{B) , (2.94)

where ws SUN) i the abbreviation for wy(E) (with € the PSU(N) bundle). It is the generator
of a new emergent Zy one-form symmetry, which we will refer to as magnetic.

The original Wilson line is an open version of Uy;. And just as the surface in this Wilson line
can be interpreted as the worldsheet of an electric (confining) string, the closed surface operator
Uy can be interpreted as a closed worldsheet of such a string. (Note that in the PSU(N) theory
this string worldsheet is an operator in the theory.)

For p = 0 the 't Hooft line T is a genuine line operator and we do not need to write C' of
(2.85). It is charged under the magnetic symmetry (2.94). Other dyonic operators of the form
TW" need an attached surface and they are not genuine line operators (unless 7 =0 mod N).

We would like to find the line operators when p is nonzero. We simplify the discussion by
considering the theory on a spin manifold such that the periodicity of p is p ~ p 4+ N.26 We first
keep p = 0 and extend the range of 6 ~ 6 4+ 2xN. Clearly, T remains a genuine line operator
as we change 6. But because of the Witten effect it acquires electric charge —k as 6 is shifted
by —2mk. Then we restore the original § and have nonzero p = k(N — 1). This means that the

basic line operator has electric charge p, i.e. it is [34]

T(y) =THWH)" . (2.95)

Note that this is a genuine line operator, which does not need a surface.
Another way to understand the lines (2.95) is to write them as TWPexp (i [,(C + Z2B)),
where C' comes from 7' (2.85) and 228 from W (2.86). In the PSU(N) theory with p the term

in the exponent vanishes and hence this operator is independent of X.

260n an orientable non-spin manifold, the change p — p+N (with even N) produces the coupling 7 [ wo(My)U
B (where wy(My) is the second Stiefel-Whitney class of the 4d manifold M,) that is equivalent to turning on
classical background field Be = Nws(My)/2 for the magnetic Zy one-form symmetry generated by exp(2%: § B).
Thus it changes the statistics of the basic 't Hooft line from a boson to a fermion and vice versa [66,10,67]. This
does not modify the PSU(N) bundle but instead gives additional weights in the path integral.
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Now, let us consider the dynamics. In the SU(N) theory the dyons that condense at § = 27k
have the quantum numbers of T¥NWHY,  (Note that these dyons exist as dynamical objects
regardless of the global structure of the gauge group. The global part of the group and the value
of p determine the line operators in the theory.)

Let us focus on # = 0 with arbitrary p. The genuine line operators in the theory are powers
of T' (2.95). Some of them have area law because of the condensation and hence they vanish at

low energies. Only the lines that are generated by

T = TEwrK ., L=gcd(N,p) , K==—, (2.96)

are aligned with the condensed dyons and hence they have a perimeter law. These are the only
nontrivial line operators in the low-energy theory.

It is clear that the magnetic Zy one-form symmetry is spontaneously broken to Zg and the
broken elements are realized at low-energy by a Zj, gauge theory [34]. The operators in this Zj,
gauge theory are generated by the basic Z; Wilson line (2.96) (which is not to be confused with
the microscopic PSU(N) Wilson line) and its dual surface operator, which is the microscopic
operator Uy

In conclusion, the low-energy manifestation of this spontaneous symmetry breaking of the
magnetic Zy one-form symmetry is the theory (2.55). And the relation between the microscopic

operators in the PSU(N) gauge theory and the low-energy theory is summarized in Table 2.5.

2.4.3 Interfaces in PSU(N) gauge theory

Here we study an interface in the PSU(N) theory. We let it interpolate smoothly between 6 = 0
and 0 = 27k. As above, we can approximate it at low energies with constant § = 0 and p
changing from p*™ to p~. This is the setup we considered in the SU(N) theory above, and now

we simply gauge the electric Zy one-form symmetry in that theory.

270On a nonspin manifold this Z;, gauge theory could be twisted, as in Appendix E.
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Microscopic PSU(N) gauge theory | Low energy Zy two-form gauge theory
T = (Twe)" 0 for r # 0 mod K
TK = TEWrK exp (iK § A+ipK [ B) ~exp (iK § A)
Uy = exp (% $ wégSU(N)> exp (z $ B)

Table 2.5: The dictionary between the operators in the microscopic PSU(N) gauge theory and
the operators in the macroscopic Zy two-form gauge theory. The line operator in the second row
is the minimal line that obeys a perimeter law. It is identified with the genuine line operator in
the low-energy theory (and hence we suppress the B dependent term). Here we use a continuous
notation for the low-energy TQFT, which is reviewed in appendix E.

We use the definitions (2.69)

L* = ged(N,p*), L=gcd(Lt,L7), K*=N/L*, K=N/L . (2.97)

The low-energy dynamics of the PSU(N) theory in the two sides are approximated by the Zy
two-form gauge theories with parameters p*, which are equivalent to Z;+ gauge theories. They
describe the spontaneous breaking of the magnetic Zy one-form global symmetry to Zg+. Note
that unlike the SU (V) theory, where the two sides of the interface differed only by a counterterm
for background fields, here the two sides are dynamically different.

The TQFT in the bulk and on the interface is as in Section 2.3.3, so we will not repeat its
analysis in detail, except to summarize the main points.

We have already said that in the bulk the magnetic Zy one-form symmetry is spontaneously
broken to Zg+. On the interface, since the confined line operators in the bulk become liberated,
the magnetic Zy one-form symmetry, generated by the surface operators piercing the interface, is
completely broken. Equivalently, we have argued above that in the SU(N) theory no monopole
condenses on the wall and the dynamics is weakly coupled there. Therefore, the Zy one-form
symmetry of the PSU(N) theory should also be spontaneously broken there.

When 6 varies smoothly and rapidly, the interface in the SU(N) gauge theory supports a

TQFT Tg. The effective interface theory on the corresponding PSU(N) interface is found easily
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using the results in Section 2.3.3. When L™ = L~ =1 the theory on the interface is

Tr @ AN @ ANP”
Zn ‘

(2.98)

As in Section 2.3.3, we can interpret the two minimal theories in the numerator as produced by
the bulk in the two sides, such that we can gauge an anomaly free Zy one-form global symmetry.

For generic L* the interface couples to the Z;+ gauge theory in the bulk and it is meaningless
to ask what the theory on the interface is. Yet, we can identify an effective interface theory. It

1s
T/, @ ANIET T ILT @ ANILT w7 /L7 T AN/LT LT g AN/ET /L
Zx = 7

(2.99)

As an example, we argued above that the interface in the SU(N) theory between § = 0 and
0 = 27 with p™ = p~ = 0 supports an SU(N); theory. This corresponds to § = 0 with p* =0
and p~ =1— N, and thus L™ = N, L~ = 1. The effective interface theory on the corresponding
PSU(N) interface is trivial, since AN = SU(N)_;.

2.5 Appendix A: Definitions of Abelian anyons

In this Appendix we will review some properties of Abelian anyons. There are three equivalent

definitions of Abelian anyons. An anyon a in a 3d TQFT is called Abelian when

(1) a obeys group-law fusion, aa® = a*** for integers s with a® = 1. In particular, since the
number of lines in a consistent 3d TQFT is finite, there exists an integer m such that

a™ =1.

(2) a obeys Abelian fusion rules. For any line W in the 3d TQFT, the fusion product aWW only

contains one line.
(3) the quantum dimension of a is one.
First, the definition (1) implies (3). The group-law fusion ™ = aa---a = 1 implies d' = 1
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for the quantum dimension d, of a. Since d, must be a positive real number in any unitary 3d
TQFT, we conclude d, = 1.

The definition (2) implies (1) by specializing W = a,aa,--- and defining the unique line
appears in the fusion of n line a to be a™.

Now we will show the definition (3) implies (2) by contradiction. Suppose there exists a line

x that fuses with a into at least two lines that we denote by vy, 2:

a-r=y+z+--- . (2.100)

This implies
a-y=x+---, (2.101)
where a denotes the antiparticle of a, i.e. a-a =14---. The quantum dimensions in the fusion

u-v =), w; satisfy d,d, =), dy, [46], and thus

dody = dy+d, +---, daody =dy+--- = dodady > dy +dad, > d , (2.102)

where the last two inequalities used the property that the quantum dimensions are real and
positive, and in particular the last inequality comes from the existence of the second anyon
z in the fusion (2.100). Since a and a have the same quantum dimension, by definition (3)
d, = dz = 1. Thus the last equation in (2.102) leads to a contradiction. Therefore, any line x
must fuse with @ into only one line. We conclude that (3) implies (2), and since we have already
shown that (1) implies (3), this means that (1) implies (2). This completes the proof that the

three definitions are equivalent to one another.
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2.6 Appendix B: Jacobi symbols

For any odd prime number ¢, the Legendre symbol is defined as

0 a=0 modq
=a? modg=141 a = r? mod ¢ for some integer r - (2.103)

—1 otherwise

\

For any odd integer b with a prime factorization b = [[, ¢i*, the Jacobi symbol is the general-

ization of the Legendre symbol defined as

aE

(%) -1 . (2.104)

The Jacobi symbol obeys the following identities for odd integers a, b, ¢

D-00 @-coe am

2.7 Appendix C: 2d unitary chiral RCFT for Abelian 3d
TQFT

In this Appendix we will show that every Abelian 3d TQFT corresponds to a 2d unitary chiral
RCFT. Such unitary CFTs are generally not unique for a given TQFT and here we construct
one example of them. The unitary RCF'T is characterized by an extended chiral algebra of a
product of chiral algebras of free compact bosons, free complex fermions, and SU(N); Wess-
Zumino-Witten models. If the TQFT is a spin theory, then the RCFT is Zy-graded [26].

Every Abelian TQFT A can be expressed as an Abelian Chern-Simons theory 28 [50-54] (for

28For example, the Chern-Simons theories with gauge group of rank n including SU(n + 1)y, Spin(2n); and
(E,)1 can be written as U(1)™ Abelian Chern-Simons theories with the coefficient matrix given by the Cartan
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a review see e.g. [55]). Denote the U(1) gauge fields by xg,z1,- - ,z, for some integer n, and

the Chern-Simons action is

k SN
Ef]ﬁgdl‘o + ; <g—0ﬂ'$0dfﬁl> + E[[El, s ,an] s (2106)
where k, qo; are integers, and L[z1, - - - , x,] denotes Chern-Simons terms independent of the gauge

field xg. k, qo; cannot be simultaneously zero for all 7, since otherwise the theory has a decoupled
gapless sector described by the dual photon of zy. If k& = 0, there exists qo; # 0 for some 17,

and the redefining x; — x; + x¢ produces nonzero k. Thus we can assume k is always nonzero

without loss of generality. Consider the change of variables from xg,x1, -+ ,Z, t0 Yo, ¥1, " , Yn
wO:yO_ZQUiyh ry=ky;, j=1,--,n. (2.107)
i=1

The Jacobian is |k|™. The theory A can thus be expressed as

A/

=
|K|

A

(2.108)

where the quotient denotes gauging a one-form symmetry Zﬁd, and A’ is an Abelian Chern-
Simons theory with U(1) gauge fields yo, y1, -+ ,¥yn. Substituting (2.107) into (2.106), we find
the theory A’ has the Chern-Simons action

k ~
. 2.1
47T3/0dyo + Ly, 2 Unl (2.109)

where E[yl, -+, Y| denotes Chern-Simons terms independent of y,. Thus A" = U(1), ® A” for

another Abelian Chern-Simons theory A” with gauge fields y1, - - - ,y,. By iteration, we find the

matrix of the gauge groups.
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Abelian TQFT A can be expressed as
A=A/Z, A=TJUQ, . (2.110)
i=0

where the quotient denotes gauging a one-form symmetry Z that is a finite Abelian group, and
k; are non-zero integers.

If all k; are positive, then the Abelian TQFT A corresponds to the extended chiral algebra
of a product of compact bosons in 2d (the RCFT may be Z, graded).

If some of k; = —m; is negative, the corresponding U(1)_,,, in A can be replaced by an

SU(N) Chern-Simons theory at level one using the duality 2°

SU (4m;)1/7Z even m;
U), (4ma)1/ 2 , (2.111)

SU(m;)1 @ {1,v} odd m;
where for even m; the theory U(1)_,,, is non-spin, and we omit a trivial TQFT such as (Es); in
the duality.

For odd m; the theory U(1)_,,, is a spin theory. On the right hand side of the duality (2.111)
the theory {1, } represents the almost trivial TQFT that has only two lines (of integer and half
integer spins), and it includes the gravitational Chern-Simons term —2M/;CS, for some positive
integer M; = —m; mod 8. The almost trivial TQFT corresponds to M; free complex fermions
in 2d.

Thus the theory A corresponds to the 2d unitary chiral RCFT (Z, graded if some k; is
odd) given by the product of free compact bosons, free complex fermions, and SU(NV;) Wess-
Zumino-Witten models at level one with N; given in (2.111) (or its extended chiral algebra when

k; = —m; is even and negative). The Abelian TQFT A then corresponds to the 2d unitary chiral
RCFT given by the extended chiral algebra (2.110) of the 2d unitary chiral RCFT of A.

For the case m; is odd, the duality (2.111) is the level-rank duality [31].
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2.8 Appendix D: Gauging a general anomaly free sub-

group

In order to simplify the discussion we will assume in this appendix that all the TQFTs are spin
TQFTs.

A theory T with a Zy one-form symmetry with anomaly p can have multiple anomaly free
subgroups. One of them is the Zj; subgroup with L = ged(N,p). In this Appendix, we will

discuss gauging a larger anomaly free symmetry Z,,, i.e.
7y, C Loy C Ly . (2.112)

It is anomaly free when pN/m? is an integer (recall that we discuss spin theories). Gauging this

symmetry leads to T /Z,,, which has a Zy+ one-form symmetry of anomaly p" with

NL
They satisfy ged(N’, p') = 1. Then we can further apply the generalized gauging operation with

respect to this Zys one-form symmetry to find

Zm Nl77p/
T/Zn & ATV (2.114)
ZN/
The goal of this appendix is to show that this is the same as the answer in (2.52)
Z N/L»fp/L N/vap/L
T/Z® A _TeA ' (2.115)

ZN/L Ly

Note, as a check that for L = m they are trivially the same.
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We will use the canonical duality in (2.44) [59]

Ty T8N (2.116)
AN

The second factor in the numerator can be described by the Lagrangian (2.31)

pN N
/( yym xdx + 27T:L‘dy) . (2.117)

Its lines are generated by b and ¢ (2.32)

- exp(ify), ¢— exp(ip]{x - i]{y). (2.118)

In this dual description, the Zy one-form symmetry is entirely in the (Zy)_,n factor and it is
generated by b.

The duality allows us to only keep tack of the (Zy)_,n factor in various procedures (and
ignore the TQFT T).

Gauging the anomaly free Zj, subgroup in (Zy)_,n is the same as redefining = as 2’ = Lz
and viewing 2’ as a U(1) gauge field. This leads to (Zx)_pyx with K = N/L and p’ = p/L.

Since ged (K, p') = 1, the theory (Zk)_px factorizes (2.43)
(Zk)-pi = A7 @ ARV (2.119)

where the first and second minimal theories are generated by b and c¢, respectively.
Then, gauging the anomaly free Z,, C Zy (which includes Zy) in (Zx)_,n is equivalent
to gauging the anomaly free Z,,,;, subgroup generated by bN/™ in (ZK)-pi = AP @ AKP

Only the first minimal theory is involved in the gauging, which reduces it to AY? with N’ =
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K(L/m)* = NL/m? and p’ = p/L.*° This implies that

T L (T®(ZN)—pN)/Z , T o ANV P @ AK—P

> : 2.12
Ly, Ly Ly ( 0)

The remaining global symmetry is Zy and it is carried by the second factor in the numerator.

Applying the generalized operation with respect to this symmetry removes this factor and leads

to
T @ AN/L—p/L
. 2.121
— 2121
We conclude that the final theory (2.121) is the same for any choice of Z,, D Zj.
2.9 Appendix E: Two-form Zy gauge theory in 4d
The 4d topological Zy two-form gauge theory of a gauge field B € H?*(My, Zy)
S =2l [ P(B) (2.122)
2N ’
has a continuum description [29, 5]
N N
S = / (p—BB+ —BdA) , (2.123)
4m 2m

where A is a U(1) one-form gauge field and B is a U(1) two-form gauge field. A constrains B

to be a Zy two-form gauge field B — %’TB. The theory has a one-form gauge symmetry

B— B—d\, A— A+p\. (2.124)

30More generally, AM-" with ged(M,r) = 1 is generated by a line z such that 2™ = 1 and the spin of z is
s37- When M = Mq? with M, q€ Z, it has a Z, anomaly free subgroup generated by zM%. (It is anomz?ly free
because the spin of this line is “22.) The gauged theory AM"/Z, has M lines generated by 27 (with (7)™ = 1),

whose spin is ﬁ Therefore, the resulting theory is AM:"/Z, = AMr,
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Under the gauge transformation, the action is shifted by

pN N
- —d\d\ + —dMdA ) . 2.12
/ (4% * 2m ) (2.125)

On a closed spin manifolds it is always a multiple of 27, but on general closed manifolds it is a
multiple of 27 only when pN is even. The parameter p has an identification of p ~ p + 2N on
non-spin manifolds and p ~ p + N on spin manifolds.
Define
L =gcd(N,p), K=N/L. (2.126)

The theory has L surface operators generated by
U= exp(i%B), Ul =1. (2.127)
and L genuine lines operators generated by
V = exp(iK 82A + z’pK/E B), Vi=1 (2.128)

(they are genuine line operators because they do not depend on the surface ¥3). These operators
and their correlation functions are identical to the ones in a Zj gauge theory, and they realize
a Zy, = Zy/Zk one-form symmetry. As we will discuss below, depending on N and p this Z,
gauge theory could be twisted on nonspin manifolds.

This theory can arise as the low-energy approximation of a microscopic theory whose Zy one-
form symmetry is spontaneously broken to Zy. Examples of such UV theories are a PSU(N)
gauge theory (discussed in Section 2.4) and the Walker-Wang lattice model [42,68,43].

There are also open surface operators generated by

expl(i ]ngJrip/ZB). (2.129)
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They are genuine line operators if the surface dependence is trivial, otherwise, the surface is
physical and the operators can only have contact terms. Hence, we will not include them in the
list of operators.

Two special cases are particularly interesting. First, for p = 0 this theory is the same as an
ordinary Zy gauge theory. Here B implements the constraint that A is a Zy one-form gauge
field.

The second special case is p = N. On a spin manifold, it is the same as p = 0, i.e. it is
an ordinary Zy gauge theory. On a nonspin manifold, we must have pN € 2Z so, p = N can

happen only when N is even. Then, the action (2.122) is the same as

. / P(B) = <7r / wg(M4)UB> mod 27, (2.130)

where wq(My) is the second Stiefel-Whitney class of the manifold. This fact has some interesting
consequences. First, it shows that the possible added term (2.130) on nonspin manifolds for even
N was already included in our labelling by p = 0,1,--- ;2N — 1. Second, it makes it manifest
that on spin manifolds we can identify p ~ p+ N. Finally, it shows that on a non-spin manifold,
the theory with even p = N, which is an ordinary Zy gauge theory on a spin manifold, becomes
a Zy gauge theory coupled to wy(My) of the manifold.

In the Zy gauge theory, the surface ¢ B is the world volume of a Zy magnetic string. It
generates the one-form symmetry that acts on the Wilson lines in the Zy gauge theory. The
coupling (2.130) is thus equivalent to turning on a background gauge field for this one-form
symmetry Be = (N/2)wy(My) mod N. One consequence of this is that on a non-spin manifold,
the basic Zy Wilson line, which corresponds to the microscopic line f A, is attached to the
surface 2% i Be=m J w2(My). The surface represents an anomaly in the theory along the line
and it implies that if we view this line as the worldline of a probe particle, this particle is a
fermion [66,10]. The conclusion is that the theory with p = N for even N is a (twisted) Zy

gauge theory with fermionic probe particles.
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Another way to see this is as follows. wy(My) of a manifold is the obstruction to lifting the
SO(4) tangent bundle to an Spin(4) bundle. Thus the background Be = (N/2)ws(M,) modifies

the symmetry to be

755" x Spin(4)
Zio .

(2.131)
The quotient identifies Zy C Z5"®° with the Zy fermion parity symmetry (—1)f of the Lorentz
symmetry. Thus the Zy Wilson lines in the odd-charge representations also transform under the
fermion parity, and they represent fermionic probe particles.

Let us examine in more detail the path integral of the Zy gauge theory coupled to fixed
wy(My) of the manifold. The path integral is performed over twisted Zy gauge fields as in the
symmetry (2.131), which is an extension of the bosonic Lorentz group SO(4) by the Zy gauge

group. The twisted Zy gauge field is a one-cochain a valued in Zy that satisfies
da = (N/2)wy(My) mod N . (2.132)

The path integral sums over all possible a with fixed w(My) of the manifold.

If N/2is odd, Zy = Znjs X Zy and the symmetry (2.131) is isomorphic to Zy/, x Spin(4).
Another way to see this is that (2.132) implies we(My) = da mod 2 by reducing both sides to
mod 2. On a general manifold wy(My) is non-trivial, and therefore the gauge field a cannot be
defined everywhere. Indeed, near a surface operator insertion § B that generates the one-form
symmetry, the gauge field a is not well-defined: a Wilson line of a that links with the surface
transforms by its one-form charge. For a similar discussion, see [69].

Let us return to generic p. On a spin manifold the theory is the same (up to a geometric
counterterm) as a Zj, gauge theory [5]. On a non-spin manifold the situation is more interesting.
For odd N the equivalence to a Z; gauge theory is still true [5]. However, for even N a new
subtlety occurs, which is related to (2.130). The computation in [5] can be interpreted to mean
that when both K = N/L and p/L are odd (which can happen only when both N, p, and

therefore also L are even), or equivalently, when pN/L? is odd the equivalent Zj gauge theory is
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actually a twisted theory as mentioned above. In terms of a Zj two-form gauge field, its action
is
pN
iNF)

wy(My) U BE (2.133)
Similarly, the basic line operator in the Z; gauge theory corresponding to exp(i § KA) also
represents a fermion when pN/L? is odd.

This discussion of odd pN/L? is consistent with our 3d analysis in Section 2.2.4, where we
saw that in this case the generating line of the Z; one-form symmetry is a fermion and the 3d
theory has a mixed anomaly between the Z; global symmetry and gravity (2.133).

Next, consider the Zy two-form gauge theory on a manifold with a boundary [29,5].3' We
choose the Dirichlet boundary condition B| = 0. This explicitly breaks the one-form gauge

symmetry on the boundary so the line V= exp(i § A) is liberated there and it satisfies

VAVQH L/DADB@¢<L/——BB+ A&M)@m(L%A+Z% )

271
zexp( Af70%7)>,

where v,7" € OMy and £(7,7') is the linking number of v and 4. When L = ged(N,p) = 1,

(2.134)

the bulk theory is trivial and the N lines generated by V form the minimal Abelian TQFT
AN7P that has a Zy one-form symmetry of label p. For general L, V = VE can smoothly
move into the bulk so it has trivial braiding. Therefore the lines on the boundary do not form a
modular TQFT. However, we can perform a quotient with the bulk lines generated by V' to find
an effective 3d TQFT AX—?/L If K p/L are odd, the line V has half-integer spin so from the
boundary perspective, V' can only be taken as v the transparent spin-half line and the 2K lines

generated by V form a consistent spin TQFT AX—r/L,

31Some examples were considered in [68,43] in the context of the Walker-Wang lattice model.
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2.10 Appendix F: Minimal TQFTs for general one-form
symmetries

In this Appendix, we generalized the previous discussion to a general discrete one-form symmetry
A=1]Zx,.

We start with an arbitrary TQFT with one-form global symmetry [[Zy, and analyze its
symmetry lines, as in the introduction and in Section 2.2.1. Each Zy, factor is generated by a

line a;. The symmetry group means that they satisfy the mutual braiding

_27risIstIJ

af' (y)ay () = aj (v)e M (2.135)

where « circles around 7 as in Figure 2.2 and my; € Zy,. Consistency of the mutual braiding

implies m[JNJ = mJ]N] mod N]NJ and thus

, with N]JEng(N],NJ) , Pry=P; €. (2136)

h(H(l}gl>: med 1, p[J:P[JOI'P]J—f-N[J. (2137)

1

The one-form symmetry A = [[ Zy, is characterized by the symmetric integral matrix py; that
satisfies

prr ~pir +2N;  and  pry~pry+ Nyjfor I #J . (2.138)

Imposing the condition aé\[’ = 1 requires p;; Ny € 27. Otherwise, the theory is a spin theory.

The braiding between V' = [[ a7 and V' =] aj} is given by

2 AVIHRVII=RIVVT) — exp | —2m piSISf] . (2.139)
77 N
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It will be convenient to view the braiding as a bilinear map A x A — U(1). Equivalently, it
defines a linear map M : A — A = Hom(A, U(1)).
An example of a TQFT that has the one-form symmetry A = [[ Zy, characterized by p;; is

the Abelian Chern-Simons theory

p[JN[NJ I I I
E dz’ E i dy! 2.140
47TN[J + 4 ( )

where the generating lines a; are

ar = exp (@‘j{yf) : (2.141)

The symmetry lines in £ = ker M have trivial braiding with all the symmetry lines in A.
Thus the braiding (2.139) is degenerate if and only if £ is non-trivial. If £ is trivial, the symmetry
lines form a modular 3d TQFT, and we will call it the minimal Abelian TQFT for the one-form
symmetry A, denoted by AWHPrst - An example is the (Zy)o theory that corresponds to the
minimal theory with Ny = Ny = N, p11 = pas = 0 and p1p = poy = 1.

Next we discuss the anomaly for the one-form symmetry A. From an argument similar to
that in Section 2.2.4, the anomaly is characterized by the symmetric matrix p;;, and can be

described by the following 4d term with background two-form gauge fields Be € H?( My, A):

2W/Ph(BC):2wZ§JIV1/ P(BL) —I—ZQWPU/ BLUBY (2.142)
i 1

1<J

where on the left hand side P}, is the generalized Pontryagin square with the quadratic function
h that maps a line in A to its spin (2.137) (for a review see e.g. [10]). On the right hand side
we express the anomaly in the basis {ar} for A, and B} € H*(My,Zy,) are the components of
B in this basis.

Let us use the anomaly (2.142) as the bulk action and promote the gauge field B¢ to be a
dynamical gauge field B. The theory has surfaces given by the fluxes of B, and magnetic lines,

both are described by the group A with the group multiplication given by the fusion of operators.
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As we will see, some of the operators have trivial correlation functions, and they should not be
included in the list of non-trivial operators. The equation of motion for the gauge field B in
(2.142) implies

exp (2m’j{M(B)) =1, (2.143)

and thus the surfaces generated by (2.143) have trivial correlation functions, while the non-
trivial surfaces are described by the group £ = ker M. The surfaces generated by (2.143)
are described by the group K = im M = A/L, and the open version of them describe the
line operators that have trivial correlation functions. Thus the non-trivial line operators are
described by the quotient £. The lines realize a faithful one-form symmetry £ generated by
the non-trivial surfaces. The theory can describe the spontaneous breaking of the one-form
symmetry A generated by the surfaces to the subgroup K generated by the surfaces in (2.143).

Note that these K and £ generalize the groups Zg and Zj, in the case A = Zy that we have
been discussing throughout most of this chapter.

We can also study the bulk theory in the continuum description.

proNi Ny N;
——~B;B — B;dA 2.144
/M4IJ ArN, I J—l-;%T 1aAT, ( )

in terms of U(1) two-form gauge fields B; and U(1) one-form gauge fields A;. It has a one-form

gauge symmetry

N
PLIZT N, . (2.145)
I

B]—>B[—d)\[, A[—>A[+Z N
J
J

Therefore the lines are attached to surfaces

. . proN;
exp | ¢ E sfA —|—z/§ S B), =0X. 2.146
p(]{ 1ag g I N, J Y ( )

They are genuine lines, if and only if s; is in £, the kernel of M. Effectively, the theory becomes
a one-form (ordinary) £ gauge theory. It may couple to we(My) of the manifold such that the

symmetry group is twisted as described in Appendix E.
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On an open manifold with the choice of boundary condition B;| = 0, the gauge symmetry
(2.145) is completely broken on the boundary and all the bulk lines are liberated there. Their
braiding is the same as (2.139) with p;; — —prs (see Appendix E for a similar calculation). If
L is trivial, they form a modular TQFT AWhi=prs}t - Otherwise, the bulk lines associated to £
have trivial braiding and we can only find an effective boundary theory consisting of the lines in
A/L by modding out by the bulk lines.

Alternatively, as in the main text we can consider the boundary condition B;| # 0. To do
this, we start with a 4d-3d system with an SPT phase (2.142) in the bulk and a 3d TQFT 7 on
the boundary that has an anomalous one-form symmetry coupled to the classical gauge fields
(Be)!, and the anomaly is cancelled by the inflow. We can then promote the gauge fields to be
dynamical. When L is trivial, the bulk dynamics is trivial and there is a meaningful boundary

theory
TR A{NI}:{_pIJ}

H ZNI 7

It is obtained from 7 by removing all lines that are not invariant under the one-form symmetry.

T’

(2.147)

When L is non-trivial, the theory above is not modular, and we can find an effective boundary
theory as a quotient by the transparent bulk lines associated to £. The discussion can be

generalized easily to interfaces.
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Chapter 3

A Modified Villain Formulation of
Fractons and Other Exotic Theories

with Subsystem Symmetries

3.1 Preliminary and summary

The surprising discoveries of [70, 15] have stimulated exciting work on fracton models. This
subject is reviewed nicely in [71,72], which include many references to the original papers.

One of the peculiarities of these models is that their low-energy behavior does not admit a
standard continuum field theory description. Finding such a description is important for two
reasons. First, it will give a simple universal framework to discuss fracton phases, will organize
the distinct models, and will point to new models. Second, since the field theory will inevitably

be non-standard, this will teach us something new about quantum field theory.

3.1.1 Overview of continuum field theories for exotic models

There have been many progress on constructing and analyzing these exotic field theories, in-

cluding theories of fractons [73-79, 11, 80-84]. The resulting theories are simple-looking, but
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subtle. They capture the low-energy dynamics and the behavior of massive charged particles of
the underlying lattice models as probe particles.

The main features of these exotic continuum field theories are the following:

1. Unlike the underlying lattice models, which are nonlinear, the low-energy continuum ac-

tions are quadratic, i.e., the theories are free.

2. The spatial derivatives in the continuum actions are such that we should consider discon-
tinuous and even singular field configurations and gauge transformation parameters. In

fact, such discontinuities are essential in order to reproduce the microscopic lattice results.

3. Some observables, e.g., the ground state degeneracy and the spectrum of some charged
states, are divergent in the continuum theory. In order to make them finite, we need to
introduce a UV cutoff, i.e., a nonzero lattice spacing a. Even though these observables are

divergent, the regularized versions are still meaningful.

4. Some of the continuum theories have emergent global symmetries, which are not present
in the microscopic lattice models. For example, winding symmetries and magnetic sym-
metries, which depend on continuity of the fields, are absent on the lattice, but are present

in the low-energy, continuum theory.

5. Depending on the specific microscopic description, the global symmetry of the low-energy
theory can involve a quotient of the global symmetry of the lattice model. Some symmetry

operators act trivially in the low-energy theory and we should quotient by them.

6. The analysis of the continuum theories leads to certain strange states that are charged
under the original or the emergent symmetries with energy of order é Because of the
singularities and the energy of these states, this analysis appears questionable and was

referred to as an “ambitious analysis.”

7. The continuum models exhibit surprising dualities between seemingly unrelated models.

These dualities are IR dualities, rather than exact dualities, of the underlying lattice mod-
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els. They depend crucially on the precise global symmetries of the long-distance theories,
including the emergent symmetries and the necessary quotients of the microscopic symme-

try. These dualities also map correctly the strange charged states we mentioned above.

8. The continuum models have peculiar robustness properties. (See [11], for a general discus-
sion of robustness in condensed-matter physics and in high-energy physics.) Some sym-
metry violating operators, which could have destabilized the long-distance theory, have
infinitely large dimension in that theory, and therefore they are infinitely irrelevant. This
comment applies both to some of the underlying symmetries of the microscopic models as

well as to the emergent global symmetries.

3.1.2 Modified Villain lattice models

The purpose of this chapter is to explore further the lattice models, rather than their continuum
limits. We will deform the existing lattice models in a continuous way to find new lattice models
with interesting properties. In particular, despite being lattice models with nonzero lattice
spacing a, they have many of the features of the continuum models we mentioned above.

Although this is not essential, we find it easier to use a discretized Euclidean spacetime
lattice. Then, following Villain [85], we replace the lattice model with another model, which is
close to it at weak coupling. We replace the compact fields, which take values in S' or Z,;, by
non-compact fields, which take values in R and 7Z respectively. Then, we compactify the field
space by gauging an appropriate Z global symmetry. In most cases, this is achieved by adding
certain integer-valued gauge fields.

So far, this is merely the Villain version of the original model. Then, we further modify the
model by constraining the field strength of the new integer-valued gauge fields to zero. We refer
to this model as the modified Villain version of the system.

Let us demonstrate this in the standard 2d Euclidean XY-model. (See Appendix B.1, for a

more detailed discussion of this model.) The degrees of freedom are circle-valued fields ¢ on the

7



sites of the lattice and the standard lattice action is

B 1 —cos(A,0)] , (3.1)

link

where p1 = z,y labels the directions and A,¢ are the lattice derivatives. The standard Villain

version of this action is

gZ(A;@ —27mn,,)? . (3.2)

link
Here ¢ is a real-valued field and n, is an integer-valued field on the links. This theory has the
7 gauge symmetry

¢~ ¢+ 21k , Ny~ ny, + Ak, (3.3)

where k is an integer-valued gauge parameter on the sites. Next, we deform the model further

by constraining the gauge invariant field strength of the gauge field n,,,

N =An, — Ayn, (3.4)

to zero [86]. We will refer to this and similar constraints as flatness constraints. We do that by

adding a Lagrange multiplier ¢, and then the full action becomes

S A2 i Y AN 35)

link plaquette

We refer to the action (3.5) as the modified Villain version of the original action (3.1). We
will analyze it in detail in Appendix B.1.

In the bulk of the chapter, we will apply this procedure to the lattice models of [87,88,17,89—
92,11,80,81]. These include, in particular, the X-cube model [17]. The resulting lattice models
turn out to share some of the nice features of our continuum theories, even though they are on

the lattice. Comparing with the list above, these lattice models have the following features:

1. The actions are quadratic in the fields; these theories are free.
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. The fields and the gauge parameters are discontinuous on the lattice. As we take the
continuum limit, they become more continuous. But some discontinuities remain. In
fact, our rules in [79,11,80-84] about the allowed singularities in the fields and the gauge

transformation parameters follow naturally from this lattice model.
. Since these are lattice models, there is no need to introduce another regularization.

. All the emergent symmetries of the continuum theories (except continuous translations)
are exact symmetries of these lattice models. Starting with these models, there are no

emergent symmetries.

. These lattice models do not exhibit additional symmetries beyond those of the continuum

models. No quotient of the microscopic global symmetry is necessary.

. The strange charged states with energy of order % of the “ambitious analysis” of the

continuum theories are present in the new lattice models and they have precisely the

expected properties.

. All the surprising dualities of the continuum models are present already on the lattice.
These are not IR dualities, but exact dualities. All of them follow from using the Poisson

resummadtion formula

D exp {—g(e —2mn)? + iné]

" ! | (3.6)

1 ~ o 10,
= WZexp {—W(Q—Zﬁn) —%(27m—0)

. Our new lattice models have the same global symmetry as the low-energy continuum
limit. Therefore, there is no need to discuss the robustness of the low-energy theory
with respect the operators violating these symmetries. The analysis of robustness with
respect to symmetry-violating operators should be performed in the low-energy continuum

theory and it is the same in the original models and in these new ones. We note that our

79



lattice theory is natural once this new symmetry is imposed. (See [11] for a discussion of

naturalness and its relation to robustness.)

To summarize, we deform the original lattice models to their modified Villain versions. The
new models exhibit some of the special properties of the continuum theories even without taking
the continuum limit.

Furthermore, it is clear that, at least for some range of coupling constants, the previous
models and the new deformed models flow to the same long-distance theories, which are described
by the continuum field theories mentioned earlier.

One interesting aspect of our new lattice models is that they exhibit global symmetries with
't Hooft anomalies. For example, the model (3.5) has a global U(1) momentum symmetry and
a global U(1) winding symmetry. These symmetries act locally (“on site”), but they still have
a mixed anomaly. The anomaly arises because the Lagrangian density and even its exponential
are not invariant under these two symmetries — instead, only the action, or its exponential, is
invariant. See Appendix B.1, for a more detailed discussion.

We should add another clarifying comment. The original lattice model can have several
different phases. The Villain version of that model has the same phases. However, this is
typically not the case for the modified model. In some cases it describes one of the phases of the
original model and other phases that that model does not have.

For example, as we will discuss in detail in Appendix B.1, the model (3.5) describes the large
[ gapless phase of the 2d XY-model (3.1) or (3.2). But instead of describing its gapped phase
with small 3, it describes other continuum theories there. This behavior is the same as that of
the ¢ = 1 conformal field theory with arbitrary radius.

Another example, which we will discuss in Appendix C.1, is the 3d U(1) gauge theory. The
standard lattice model and its Villain version have a gapped confining phase [93]. Our modified
version of that model is gapless and is similar to the corresponding continuum gauge theory.

As we said above, some of our lattice models have global continuous symmetries with 't Hooft

anomalies. This means that their long-distance behavior must be gapless. This is consistent with
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the fact that they are gapless even when the original lattice model is gapped.

Another perspective on these new lattice models is the following. Since our exotic continuum
models involve discontinuous field configurations, their analysis can be subtle. The new lattice
models can be viewed as rigorous presentations of the continuum models. In fact, as we said
above, they lead to the same answers as our continuum analysis including the more subtle
“ambitious analysis”, thus completely justifying it.

In order to demonstrate our approach, we will use it in Appendices A, B, and C to review
some well-known models. In particular, we will present lattice models of various spin systems
(including the XY-model (3.1)) and gauge theories, which share many of the properties of their
continuum counterparts. In addition to demonstrating our approach, some people might find that
discussion helpful. It relates the condensed-matter perspective to the high-energy perspective of

these theories.

3.1.3 Outline

Following [11,80-83], Sections 3.2 and 3.3 are divided into three parts. We study an XY-type
model, then the U(1) gauge theory associated with the momentum symmetry of this XY-type
model, and then the corresponding Zy gauge theory. We present the modified Villain lattice
action of each model, dualize it (if possible) using the Poisson resummation formula (3.6) for
the integer-valued gauge fields, discuss the global symmetries, and take the continuum limit. All
these modified Villain lattice models exhibit all the peculiarities of the corresponding continuum
theories of [11,80,81].

Even though we do not present it here, we have performed the same analysis for the exotic
3+1d continuum theories of [83], and we found similar results for the dualities and global sym-
metries of these modified Villain models. In particular, we have shown that the modified Villain
formulation of the Z, checkerboard model [17] is exactly equivalent to two copies of the modified
Villain formulation of the Z, X-cube model. This equivalence can be regarded as the universal

low-energy limit of the equivalence shown in the Hamiltonian formulation in [94].
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In Section 3.2, we study the modified Villain formulation of the exotic 24+1d continuum
theories of [11]. We start with the XY-plaquette model of [87] on a 2+1d Euclidean lattice,
and present its modified Villain action. Next, we study the modified Villain formulation of the
associated U(1) lattice tensor gauge theory. Finally, we present two equivalent BF-type actions
of the Zy lattice gauge theory: one with only integer fields (integer BF-action), and another
with real and integer fields (real BF-action). All these modified Villain lattice models behave
exactly as the corresponding continuum theories of [11].

In Section 3.3, we study the modified Villain formulation of the exotic 3+1d continuum
theories of [80,81]. We present the modified Villain actions of the XY-plaquette model on a
3+1d Euclidean lattice, its associated U(1) lattice tensor gauge theory, and the Zy X-cube
model. As in Section 3.2, these modified Villain models exhibit the same properties as their
continuum counterparts in [81].

In three appendices we use our modified Villain formulation to review the properties of well-
studied models. Some readers might find it helpful to read the appendices before reading Sections
3.2 and 3.3.

Appendix A is devoted to some classic quantum-mechanical systems. We start with the
problem of particle on a ring with a f-parameter. For 6 € nZ, our Euclidean lattice model
exhibits a mixed 't Hooft anomaly between its charge conjugation symmetry and its U(1) shift
symmetry. We also use our Euclidean lattice formulation to study the quantum mechanics of a
system whose phase space is a two-dimensional torus, a.k.a. the non-commutative torus.

In Appendix B, we discuss some famous 2d Euclidean lattice models using our modified
Villain formulation. First, we study the modified Villain version of the 2d Euclidean XY-model.
Unlike the standard X'Y-model, it has an exact winding symmetry and an exact T-duality. It is
very similar to the continuum ¢ = 1 conformal field theory of a compact boson. Then, we study
the 2d Euclidean Zy clock-model by embedding it into the XY-model.

In Appendix C, we study p-form U(1) gauge theories on a d-dimensional Euclidean spacetime

lattice. We discuss their duality and the role of the Polyakov mechanism for p = d — 2. We also
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study the p-form Zy gauge theory. We briefly comment on the relation between Zy toric code

and the ordinary Zy gauge theory.

3.2 241d (3d Euclidean) exotic theories

In this section, we describe modified Villain lattice models corresponding to the exotic 2+41d
continuum theories of [11]. All lattice models discussed here are placed on a 3d Euclidean lattice
with lattice spacing a, and L* sites in p direction. We use integers z# to label the sites along
the p direction, so that z# ~ z# + L*.

Since the spatial lattice has a Z, rotation symmetry, we will organize the fields according to
the irreducible, one-dimensional representations 1,, of Z, with n = 0, =1, 2 labeling the spin. In
the discussion below, a field without any spatial index is in 1y and a field with the spatial indices

ry is in 1s.

3.2.1 ¢-theory (XY-plaquette model)

We start with a Euclidean spacetime version of the XY-plaquette model of [87]. The degrees of

freedom are phases e’ at every site with the action

Bo S —cos(B,0)]+ 8 S [1 - cos(B,A,6)] - (3.7)

7-link zy-plagq
At large 0y, 8, we can approximate the action by the Villain action

7-link zy-plagq

with real-valued ¢ and integer-valued n, and n,, fields on the 7-links and the zy-plaquettes,

respectively. We interpret (n,,n,,) as Z tensor gauge fields that make ¢ compact because of the
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gauge symmetry

¢~ ¢+ 21k,
n. ~n, + Ak, (3.9)
Ngy ~ Ny + DAYk,

where k is an integer-valued gauge parameter on the sites.

We suppress the “vortices” by modifying the Villain action (3.8) as

% Z (Arp —2mn,)? + g Z (ALA, ¢ — 2mng,)? +i Z O (Arngy — AgAyn,) (3.10)

7-link zy-plaq cube

where ¢™¥ is a real Lagrange multiplier field on the cubes or dual sites of the lattice. It imposes
Arng, — AgAyn, = 0, which can be interpreted as vanishing field strength of the gauge field
(nr,ngy). We will refer to this and similar constraints as flatness constraints. ¢* has a gauge

symmetry

&Y ~ Y + 2wk (3.11)

where k™ is an integer-valued gauge parameter on the cubes of the lattice. We will refer to

(3.10) as the modified Villain version of (3.7).

Self-Duality

Using the Poisson resummation formula (3.6), we can dualize the modified Villain action (3.10)

to
1 1
- A% — 92 zTY\2 - AA G — 9 2
2(27[.)25 dua;—link( T¢ e ) " 2(271-)260 dualzzy-l)laq( ' y¢ ﬂ—n)
(3.12)
—i Y (Arn— A AR

site
where n%¥ and n are integer-valued fields on the dual 7-links and the dual xy-plaquettes respec-

tively. We interpret (n*¥,n) as Z tensor gauge fields that make ¢*¥ compact because of the gauge
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symmetry
"~ O 4 2Tk
niY ~niY + ALK, (3.13)
n~n+ A AR
Here, the field ¢ is a Lagrange multiplier that imposes the constraint that the gauge invariant
field strength of (n%¥,n) vanishes; i.e., it is flat. Therefore, the modified Villain model (3.10) is

self-dual with £y <+ m

Global symmetries

In all the three models, (3.7), (3.8), and (3.10), there is a (1, 12) momentum dipole symmetry,

which acts on the fields as
6= 6+ (@) + ) (3.14)

0

where ¢*(2") is real-valued. Due to the zero mode of the gauge symmetry (3.9), the momentum
dipole symmetry is U(1). Using (3.10), the components of the Noether current of the momentum

dipole symmetry are
1
Jr = iBo(Arp — 2mn,) = Q—(AmAywy —27n) ,
™

(3.15)

JY = iB(A A P — 2mny,) = ALp™ —2mnY) .

1
5
(Jr, J®) are in the (1¢, 1) representations of Z,. They satisfy the (1, 15) dipole conservation

equation

AT, = AgA, T (3.16)

because of the equation of motion of ¢. The momentum dipole charges are

Qa.C = Y. L+ Y. AJY,

dual xy—plaqeél' dual Tm—plaqe(f'“”
(3.17)
=— E n— E AnY
dual zy—plaqeéz dual TI—plaqEéI
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where C* is a strip along the dual zy- and Tz-plaquettes in the 7y plane at fixed Z. The second
line can be interpreted as the Wilson “strip” operator of (n*¥ ,n). Similarly, we can define

QY(y, éy) When C* and C¥ are purely spatial at a fixed 7, the charges satisfy the constraint

Yo U@ =) Q') = > T . (3.18)

Z: fixed 7 g: fixed 7 dual zy-plaq: fixed 7

The charged momentum operators are €.
The modified Villain model (3.10) also has a (12, 1) winding dipole symmetry, which acts

on the fields as

¢ — o™ + V() + ¥ (5) (3.19)

where ¢;Y(2') is real-valued. By contrast, this symmetry is absent in the original lattice model
(3.7) and its Villain version (3.8). Due to the zero mode of the gauge symmetry (3.13), the
winding dipole symmetry is U(1). The components of the Noether current of the winding dipole

symmetry are

1
T = (A = 2 = (A A6 — 2T
m

@ﬂzﬁ (3.20)
=

Ty 1
(27r)2ﬁ A A" —2mn) = o — (A —27n,) .

They satisfy the (12, 1¢) dipole conservation equation

AT = AA, T | (3.21)

because of the equation of motion of ¢*¥. The winding dipole charges are

ey = Y a3 AL,

ry-plaqeC® Ta-plageC®

- - Z Ngy — Z Aznr )

ry-plaqeC® Tr-plaqeC®

(3.22)

where C* is a strip along the xy- and Tz-plaquettes in the 7y plane at fixed . The second

line can be interpreted as the Wilson “strip” operator of (n,,n,,). Similarly, we can define
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QY (4,C¥). When C* and C¥ are purely spatial at a fixed 7, the charges satisfy the constraint

Y@ = > Qrm =y Jm. (3.23)

z: fixed 7 y: fixed 7 zy-plaq: fixed 7

The charged winding operators are e**”.
There is a mixed 't Hooft anomaly between the two U(1) global symmetries. One way to
see this is to couple the system to the classical background gauge fields (A,, A;y; N.py) and

(Afy, A; NT) of the momentum and winding symmetries, respectively. Here A, A,,, A A are

real-valued and N, N, are integer-valued. (See a similar discussion in Appendix B.1.) The

action is:
520 > (Acp— A —2mm,)? + g > (DA — Ay — 27n,,)?
7-link zy-plagq
+i Z OV (Aryy — DpuDyny + Npay)
cube

LS AT(ALAG — Ay — 2704,) —QLZ (Brp— A, —21m,) =iy Nog
7-lin

27 -
zy-plaq site
(3.24)
with the gauge symmetry
o~ ¢+ a+ 2k, " ~ " 4+ &Y + 2wk |
A~ A+ Ao+ 21K, AT~ AT 4 NG+ 2K
Agy ~ Ay + DA ya + 27K, A~ A+ AAGY + 21K
(3.25)
n, ~n, + 50k — K, , N; ~ N, + A K — A AKTY

Mgy ~ Ngy + DAYk — Ky

N’rwy ~ NTa:y + ATsz - AwAyI(T )

Here, K, Ky, K wy K are integers, and «, @™ are real. They are the classical gauge parameters

of the classical background gauge fields (A,, Ayy; Nray) and (A%, A; N,) . The variation of the
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action under the gauge transformation is

_% G A Ary — DolyAr — 27Ny +i Y KA +i Y KA, . (3.26)

cube zy-plaq 7-link

It signals an anomaly because it cannot be cancelled by adding to the action any 2+1d local

counterterms.

A convenient gauge choice

We now discuss a convenient gauge choice that sets most of the integer gauge fields to zero.
We first integrate out ¢®™, which imposes the flatness condition on (n,,n,,). We then gauge
fix n, = 0 and ng,, = 0 except for n (L™ — 1,2,9), Ny (7,2, LY — 1), and ng,(7, L* — 1,7y). The

remaining gauge-invariant information is in the holonomies:

ne(L7 = 1,2,9) = n"(2) + n*(g) ,
Ny (T, 2, LY — 1) = 7g¥ (%) (3.27)

nxy<72, LCE - 1,@) - /ﬁ/zy(g) 5

where n'(#") and n;Y(2') are integer-valued. There is a gauge ambiguity in the zero modes
of @'(2"), while 72;¥(2") satisfy the constraint n3¥(L* — 1) = n¥(LY — 1). In total, there are
2L% + 2LY — 2 independent integers that cannot be gauged away. The residual gauge symmetry
is

¢~ ¢+ 2mw*(2) + 2rw(9) , (3.28)

where w'(2?) is integer-valued.

Let us define a new field ¢ on the sites such that in the fundamental domain

O(7,2,9) = (7, 2,9),  for 0 <" < LV, (3.29)
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and beyond the fundamental domain, it is extended via

6(7,0+ L §) = 6(+,2,9) — 2m Y _a(§) | (3.30)

In particular, in the gauge (3.27), A,¢ = A, ¢ —2mn,, and A, A, ¢ = AyAyd — 27n,,. Although
¢ and (n,,n,,) are single-valued, ¢ can wind around the nontrivial cycles of spacetime. So, in
the path integral, we should sum over nontrivial winding sectors of ¢. The action (3.10) in terms

of ¢ is
b @+ DY (A (331)

7-link zy-plaq
Let us discuss some charged configurations in the lattice model (3.31). We define the periodic

Kronecker delta function

0P (2,80, L") =) Gazo-tre - (3.32)

I1€Z

and a suitable step function ©F (%, &g, L*) such that
0F(0,40, L) =0,  A,OF(i,d0, L) = 67 (&, 20, L*) . (3.33)

Note that this function is not periodic in #. A minimal winding configuration is

A A

Ty
L* Ly

O7,3,9) = 27 | =0 (5, o, ') + £50" (&, 0, L*) - (3:31)
The most general winding configuration can be obtained by taking linear combinations with
integer coefficients of (3.34) with different ¢, 7o and adding to it a periodic function. The winding
charges of (3.34) are Q%(2) = 6% (2,20, L®) and QYY) = 6 (9,90, LY). This configuration

satisfies the equation of motion of ¢, so it is a minimal action configuration with these winding
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charges. Its action is

BRm? (1 1 1
LU\ nt s o) (3.35)

Its Lorentzian interpretation is a winding state with energy

gem)? /1 1 1
50 \Ie T Iv Lo ) (3.36)

where a is the lattice spacing.

Continuum limit

In the continuum limit, we take a — 0, L* — oo with fixed ¢# = aL*. In order for the limit to
be nontrivial, we take the coupling constants to scale as 5y = pga and 5 = i Then, the action

becomes

/ drdudy [%(8@)%%(@6@)2 : (3.37)

where we dropped the bar on ¢. This is the Euclidean version of the 24+1d ¢-theory of [11],
which had been first introduced in [87]. (See also [95-99] for related discussions on this theory.)
The mixed 't Hooft anomaly between the momentum and winding symmetries can be seen

by coupling the system to their background gauge fields (A, A,,) and (A%, A) respectively:

Ho _ 2 i _ 2_i~my _ _LN _
/ drdxdy {Q(ew AV 4 50000 = An)? = 5o A(0,0,9 — Auy) = 5400~ A7)

(3.38)
with gauge symmetry
¢~ P+, ¢~ o™ +a™
A~ Ar + Orar AP~ A+ 0.6 (3.39)
Ayy ~ Ay + 0,0, A~ A+0,0,67 .

Here, a, @™ are the gauge parameters. The variation of the action under the gauge transforma-
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tion is

—QL / drdrdy &™(, Ay, — 0,0,A,) | (3.40)
T

It signals an anomaly because it cannot be cancelled by adding to the action any 2+1d local
counterterms. This is the continuum counterpart of the corresponding lattice expression (3.26).

We can also view the modified Villain lattice model (3.10), or its gauge fixed version (3.31),
as a discretized version the continuum theory (3.37). Our analysis of this lattice model makes
rigorous the various assertions in [11]. Let us discuss them in more detail.

Both the continuum theory (3.37) and the lattice theory (3.31) have real-valued fields and
the periodicity in field space is implemented using the twisted boundary conditions (3.30).

One could question whether the lattice theory (3.31) with this particular sum over twisted
boundary conditions is fully consistent. In the continuum, this was discussed in detail in [11,84].
On the lattice, the consistency follows from relating it to the lattice gauge theory (3.10) before
the gauge fixing (3.27). Furthermore, the remaining gauge freedom (3.28) in the lattice theory
(3.31) can now be interpreted as the gauge freedom of the continuum theory [11,84].

The discussion of [11] uncovered a number of surprising properties of the continuum theory
(3.37), which are not present in the original microscopic theory (3.7). It has an emergent global
dipole U(1) winding symmetry and it is self dual. Now we see these properties already in the
modified Villain lattice model (3.10). A reader who was skeptical about the continuum analysis
of [11] can be reassured by seeing it derived on the lattice.

For fixed ¢7 and ¢ ~ (%, (Y, the action of the winding configuration (3.34) scales as (" /ula,
which diverges as 1/a in the continuum limit. The configuration (3.34) gives a precise meaning
to the winding configuration with infinite action in the continuum [11].! More generally, the
classification of discontinuous configurations in the continuum theory (3.37) [11] is exactly as in
the previous subsection.

In conclusion, the lattice model (3.10) flows in the continuum limit to (3.37). Conversely, the

!The discussion of such infinite action and infinite energy configurations was described in [11] as “ambitious.”
It is rigorous in the context of the modified Villain model.
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lattice model (3.10), or its gauge fixed version (3.31), gives a rigorous setting for the discussion

of the continuum theory (3.37) of [11].

3.2.2 A-theory (U(1) tensor gauge theory)

We can gauge the U(1) momentum dipole symmetry by coupling (3.10) to the (14, 12) tensor
gauge fields (A,, A;,). We will consider this system in Section 3.2.3, and restrict to the pure
tensor gauge theory in this section. This pure gauge theory was discussed on the lattice and in
the continuum in [11] (see also earlier work in [90,96,97,100].

We place the U(1) variables €47 and e*=v on 7-links and xy-plaquettes of the lattice respec-

tively. The action for the pure U(1) tensor gauge theory is

Y Z[l - COS(ATAa:y - AacAyA’r)] ) (3.41)

cube

where A; and A,, are circle-valued fields. It has the gauge symmetry

eiAT ~ eiA.r+iA.ra ’

(3.42)
ey giAeyFidadya 7
with circle-valued « on the sites.
At large 7y, we can approximate (3.41) by the Villain action
/‘y
5 Z(ATA$y - AIAyA’T - 27Tn7'a:y)2 ) (343)

cube

where n.,,, is an integer-valued field on the cubes. Now we view the gauge fields (A,, A,,) and
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the gauge parameters « as real-valued, and the gauge symmetry (3.42) becomes

A, ~A 4+ Ara+ 21k,

Auy ~ Agy + DAy + 27k (3.44)

Ty >

Nrgy ~ Nray + A‘rkgﬁy - AmAykT )

where the gauge parameters £, and k,, are integers on the 7-links and zy-plaquettes respectively.

We can interpret n,,, as the Z gauge field that makes (A4,, A;,) compact. In contrast to
the XY-plaquette model, the U(1) tensor gauge theory has no “vortices.” So, we do not modify
the Villain action (3.43) as in (3.10). Indeed, there is no local gauge-invariant field strength
constructed out of the gauge field n,,,.

We can also add a #-term to the Villain action (3.43):

9 By + o Z Eay (3.45)
cube cube
where we defined the electric field
El‘y = A‘1'14:(31/ - AIAyAT - 27rn‘r:r:y ) (346)

on the cubes. Since (A., A,,) is single-valued, we can write the f-term as —if ) _, . 7rgy, Which
implies that the theta angle is 2m-periodic, i.e., 6 ~ 6 + 27. Note that such a #-term cannot be
added in the original formulation (3.41), while it is straightforward and natural in the Villain
version (3.43).

The quantized electric fluxes

e’(z) = E E,, =27 E Norgy € 277 ,
cube: fixed Z cube: fixed &

(3.47)
()= Y. Ey=-21 > Ny €21Z,

cube: fixed ¢ cube: fixed g
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are associated with nontrivial holonomies of n.,, and they characterize the bundles of the tensor

gauge theory. These fluxes satisfy the constraint

> (@) = D) = 3 By (3.48)

cube

Global symmetries

The three models (3.41), (3.43), and (3.45) have an electric tensor symmetry that acts on the
fields as

A — A+ )\, Ay = Apy + Ay (3.49)

where (\;, \;,) is a flat, real-valued tensor gauge field (i.e., it has vanishing field strength).? Due
to the integer-valued gauge symmetry with (k;, k;,) (3.44), the electric tensor symmetry is U(1),

rather than R. The Noether current of this electric symmetry follows from (3.45)

0
SV = —iyEy, + — . 3.50
s VY Ly + o ( )

It satisfies the conservation equation and the differential condition (Gauss law)
AW =0, AN, T =0 (3.51)

due to the equations of motion of A,, and A, respectively. The conserved charge is

Qz,9) = J7¥ = Q°(2) + Q(9) (3.52)

2Using the a gauge symmetry of (3.44), and the flatness of (Ar, Az ), we can set A, = ¢%(%) + ¢¥(§), and
Awy = Y (E) + ¥ (§), where ¢/(&") and ¢;”(i") are real-valued.
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where Q°(2") is an integer, and the second equation follows from the Gauss law. The observables

charged under the electric symmetry are the Wilson defect/operator

Y

W7(2,5) = exp [Z > A

7-link: fixed &9

(3.53)

Y

W?(&,C%) = exp [@ ST Anti > A4

zy-plageC® Ta-plaqgeC®

where C* is a closed strip along the zy- and 7z-plaquettes in the Ty-plane at a fixed £. Similarly,

there is W¥(y,CY).

Gauge-fixing and the continuum limit

Using the integer gauge freedom (3.44), we gauge fix n.,, = 0, except for

Nyay(LT — 1,2, LY — 1) = 0%, (7) , Mray(L™ — 1, L% — 1,§) = i, (7) . (3.54)

TXY

i

The integers 07,

(2') capture the only gauge-invariant information in n,,,: its holonomies. They

satisfy a constraint nf,, (L* — 1) = n¥,, (LY —1). The residual gauge freedom is

A~ A+ Ara+ 21k,
(3.55)

Agy ~ Agy + Ay Ay + 21k,

where (k;, k) is a flat, integer-valued tensor gauge field.

Similar to (3.30) in the ¢-theory, we define a new tensor gauge field (A, A,,) on the 7-links

and xy-plaquettes such that

A AL, — AAA = AL Ay, — AAJA — 270, (3.56)

Although (4., A;,) and n,,, are single-valued, (A,, A,,) can have nontrivial monodromies

around nontrivial cycles of the Euclidean spacetime. So, in the path integral, we should sum
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over nontrivial twisted sectors of (/L, zzlxy).

The action (3.45) in terms of (A,, A,,) is

g 2 0 n

B,y = A A, — AA A, (3.58)

on the cubes.
In the continuum limit @ — 0, choosing the coupling to scale as v = ﬁ and the fields to
scale as A, = aA, and A,, = a*A,,,® the action becomes

1 i0
drdady | =E% + —E,, ) |
arasds G2+ 328

e

(3.59)
Euy = 0, Agy — 0,0,A, .

This is the Euclidean version of the continuum 2+1d A-theory of [11]. (See also [90,96,97,100].)
The Villain model (3.45) has the same U(1) electric symmetry as the continuum A-theory.

The spectrum of the lattice model consists of light states, whose action scales as a. In the
continuum limit ¢ — 0 with fixed ¢7, ¢* and ¢¥, these light states become infinitely degenerate.
The details can be found in [11].

We conclude that the lattice model (3.45) flows in the continuum limit to (3.59). Conversely,
the lattice model (3.45), or its gauge fixed version (3.57), give a rigorous setting for the discussion

of the continuum theory (3.59) of [11].

3The continuum tensor gauge fields (A,, A,,) and their electric field defined here are not the same as the ones
defined on the lattice at the beginning of this section. We hope this does not cause any confusion.
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3.2.3 Zy tensor gauge theory

In this subsection, we will consider the modified Villain lattice version of the 24+1d Zy Ising
plaquette model [89]. The modified Villain lattice model takes the form of a BF-type action,
which admits two equivalent presentations. The first one, which we call the integer BF-action,
uses only integer-valued fields, while the second one, which we call the real B F-action, uses both
real and integer-valued fields. The real BF-action is naturally connected to the continuum Zy
tensor gauge theory of [11].

We can restrict the U(1) variables in the U(1) tensor gauge theory (3.41) to Zy variables
eifr = e N'Mr and etder = N ™ with integers m, and my,. This leads to the Zy tensor gauge

theory with the action

cube

At large v, Aymgy, — AyAym, = 0 mod N and we can replace the action by

2mi o
W m y(Amey - AacAymT) 9 (361)

cube

where m™ is an integer-valued field on the cubes. We will refer to this presentation of the Zy
tensor gauge theory as the integer BF -action. This is analogous to the presentation (3.192) for
the topological lattice Zx gauge theory reviewed in Appendix C.

There is a gauge symmetry

my ~ms;+ A4+ Nk, ,
Mgy ~ Mgy + Ay Ayl + Nkyy (3.62)

M ~ Y+ NE™

where £ is an integer-valued field on the sites, k; and k,, are integer-valued fields on the 7-links

and zy-plaquettes respectively, and k% is an integer-valued field on the cubes.
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Global symmetries

In both models, (3.60) and (3.61), there is a Zy electric tensor symmetry, which shifts (m.,, my,)
by a flat, integer-valued tensor gauge field. In the presentation of the model based on (3.61),
the charge operator is

)
U(%,2,7) = exp {%mw] . (3.63)

The observables charged under the electric symmetry are the Wilson defect/operator

)

WT(jviQ) = exp [_ Z msr

7-link: fixed &,y

(3.64)

Y

vl 2me 2me
W(:L’,C):explw Z mzy—l—W Z A,m,

zy-plageC® Tx-plaqgeC®

where C” is a strip along the xy- and Tz-plaquettes in the 7y-plane at a fixed 2. Similarly, there
is W¥(y,CY).

In the presentation of the model based on (3.61), but not in (3.60), there is also a Zy magnetic
dipole symmetry. The charge operators are W*(z,C*) and W¥(g,CY), and the charged operator
is U(7,,7).

Ground state degeneracy

All the states of the model based on (3.61) are degenerate. The model has only ground states.
Let us count them. First, we sum over the integer-valued fields m, and mg,. They impose the

following constraint on m™

An®™ = AgAyn™ =0 mod N (3.65)

The gauge inequivalent configurations of m*¥ are

m(7, 2, 9) = m" (%) + MY () (3.66)
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where m3¥(%) and m;¥(y) are Z/NZ-valued. There is a gauge ambiguity in the zero modes of

miY () and mi¥(§). So, in total, there are N*"+£°~1 degenerate ground states.

Real BF-action and the continuum limit

The model based on the integer BF-action (3.61) has several different presentations. Here we
discuss a presentation in terms of real-valued and integer-valued fields, which is closer to the
continuum limit.

We start with the integer BF-action (3.61) and replace the integer-valued fields m™ and
(M, May) with real-valued fields ¢* and (A,, A,,). In order to restrict these real-valued fields
to be integer-valued, we add integer-valued Lagrange multiplier fields n,,, and (2%, 7). Further-
more, since the gauge field (A,, A,,) has real-valued gauge symmetry, we introduce a real-valued

Stueckelberg field ¢ for that gauge symmetry. We end up with the action

N
;7 3 FA A — DDA, — 2mngy,) FiN Y AR
cube zy-plaq (367)
HIN Y A+ Y (A — A AR
7-link site

where ¢, ngy7 A and A, are real-valued fields on the sites, the dual site, the 7-links and the
xy-plaquettes respectively, and n,,,, %Y and n are integer-valued fields on the cubes, the dual

7-links, and the dual xy-plaquettes, respectively.
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There action (3.67) has the gauge symmetry

o~o¢+ Na+ 21k ,
GV~ 0 4 2k
A~ A 4+ Ara+ 21k,

Apy ~ Ay + DA ya + 27k (3.68)

Ty
~r ~ 7.z
ney ~ntt + ALK

i~ A AKY

Nrgy ~ Mgy + Drkgy — A Aykr .
As a check, summing over the integer-valued fields n,,,, 7%¥, and 7 in (3.67) constrains

2m
- M,
N

2
Wmacy )

2T 1 1 B
gb Y= Wm y, AT — NATQb = A:vy — NAIAbe = (369)

where m®™, m, and m,, are integer-valued fields. Substituting them back into the action leads
to (3.61).

We will refer to the presentation (3.67) of the Zy tensor gauge theory as the real BF -action,
which uses both real and integer fields. This is to be compared with the integer B F-action (3.60),
which uses only integer-valued fields. These two presentations describe the same underlying
lattice model, but use different sets of fields. In the real BF-action, the integer fields effectively
make the real fields compact.

The real BF-action (3.67) can also be derived through Higgsing the U(1) tensor gauge theory
(3.45) to a Zy theory using the field ¢ in (3.10). The Higgs action is

o > B(Ar¢— NA, —2mn,) + o > EM(A Ay — NA,, — 2mng,)
r-link zy-plaq

(3.70)
- ZZ q;a?y (ATn:vy - AxAynT + NnT:vy) )

cube
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where B and EY are real-valued fields on the 7-links and the xy-plaquette, which implement the

Higgsing as constraints. In addition to the gauge symmetry (3.68), there is a gauge symmetry

Ny ~n. + Ak — Nk, |

(3.71)

Mgy ~ Ngy + DgAyk — Nkgyy

Summing over the integer-valued fields n, and n,, constrains
B— AN 9% = =217, E% — A9 = —27R% | (3.72)

where 7 and R%¥ are integer-valued fields. Substituting them back into the action leads to (3.67).
In a convenient gauge choice, most of the integer fields are fixed to be zero, while the remaining
ones enter into the twisted boundary conditions of the real fields.
Let us make it more explicit. First, we integrate out ¢, which imposes the constraint A, n —

AgAynEY = 0. Then we can gauge fix n.,,, nZ¥ and n to be zero almost everywhere except at

Mray (LT — 1,8, LY — 1) = 2%, (%) ,
nrmy(LT - ]-a LI - 17@) = ﬁy (Q) )

(LT —1,%,9) = ng¥(2) + 5% () (3.73)

where 17, ,nY,, 0%, 07 Ny, gy are all integer-valued. These integers obey n7, (L* — 1) =
nY,, (LY — 1) and i, (7, L* — 1) = iy (7, LY — 1). The zero modes of n7% () and n7Y (9) have a
gauge ambiguity.

As in Sections 3.2.1 and 3.2.2, we define new fields ¢*¥, A, and flzy on the sites, the 7-links,
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and the zy-plaquettes such that

AP = A — 2mRlY
A DG = DA™ — 27 (3.74)

ATAmy - AmAyAq— — ATAxy - AmAyAT — 27Tn7-xy .

In contrast to the original variables that are single-valued, the new variables can have nontrivial
twisted boundary conditions around the nontrivial cycles of space-time. So, in the path integral,
we should sum over nontrivial twisted sectors of ¢*¥ and (A,, A,,).

In terms of the new variables, the action (3.67) becomes

iN = 7y o .
o D V(A AL — A AA,)

cube
_ ) _ (3.75)
+iN > Ay, (A + 0 +iN Y A, +iN > A,
zy-plagq 7-link 7-link
F=L7T—1 z=L"—-1 y=LY—-1

The real BF-action of our modified Villain model is closely related to the continuum field

theory. In the continuum limit, a — 0, the action becomes
1N
= / drdrdy 6™ (0, Ay, — 0,0,A,) | (3.76)
0

where we dropped the bars over the variables and rescaled them by appropriate powers of the
lattice spacing a. We also omitted the boundary terms that depend on the transition functions
of ¢ and (A,, A,,).* This is the Euclidean version of the 2+1d Zy tensor gauge theory of [11].

We conclude that the lattice model (3.61), or equivalently (3.67), flows in the continuum limit
to (3.76). Conversely, the lattice model (3.61), or equivalently (3.67), gives a rigorous setting for

the discussion of the continuum theory (3.76) of [11].

4Such boundary terms are necessary in order to make the continuum action (3.76) well-defined. They played
a crucial role in the analysis of [84].
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3.3 341d (4d Euclidean) exotic theories with cubic sym-
metry

In this section, we will describe the modified Villain formulation of the exotic 3+1d continuum
theories of [80,81]. All the models are placed on a periodic 4d Euclidean lattice with lattice
spacing a, and L* sites in the p direction. We label the sites by integers z# ~ z# 4 LH.

Since the spatial lattice has an S; rotation symmetry, we can organize the fields according
to S4 representations: the trivial representation 1, the sign representation 1’, a two-dimensional
irreducible representation 2, the standard representation 3 and another three-dimensional irre-
ducible representation 3'.

We will label the components of Sy representations using SO(3) vector indices 4, 7, k. In this
section, the indices i, j, k in every expression are never equal, i # j # k.

We label the components of an object V in 3 of Sy as V; and the components of an object
E in 3’ of S, as E;; = Ej;. The labeling of the components of 7" in 2 of S, is slightly more
complicated. We can label them as TWF = —TUdk with an identification under simultaneous
shifts of Tl#¥# TW= Tlkly by the same amount. Alternatively, we can define the combinations
Tk@) = Tkli _ UM which are not subject to the identification. In this presentation, we have a
constraint 772 4 Tv(z2) 4 72(y) — (). We will also use Ty(i5) = Tk(j) with lower indices to label
the components of 2. It has an identification under simultaneous shifts of T}.(,.), Tyiza), Th(ay)
by the same amount. Similarly, we define the combinations T, = Tj(jxy — Tj(r), which are not

subject to an identification, but obey the constraint Tj,,. + Tjy.je + ]2y = 0.

3.3.1 ¢-theory

There is a U(1) variable ¢’ at each site of the lattice. The action is

Bo D (1 —cos(Ar)] + 8 > [1—cos(AiA;)] (3.77)

7-link 1<j ij-plaq
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where ¢ is circle-valued. At large [y, 5, we can approximate the action with the Villain action

7-link 1<j ij- plaq

where ¢ is real and n, and n;; are integer-valued fields on 7-links and ij-plaquettes, respectively.

There is an integer gauge symmetry

¢~ ¢+ 2mp, ny ~n; +Amp, nij ~ nij + AiAjp (3.79)

where p is an integer-valued gauge parameter on the sites. We can interpret (n.,n;;) as Z tensor

gauge fields that make ¢ compact.

44

Next, we suppress the “vortices” by modifying the Villain action as

gOZ(Agzﬁ—%mT BZZ (DA — 27n;5)?

7-link 1<j ij-plaq

+ZZ Z A (Arniy — AiAny) —ZZ Z AV Ainge = Ajna)

1<j Tij-cube Cychc xyz-cube

(3.80)

where A% and A are real-valued fields on dual 7-links and dual k-links respectively. They are
Lagrange multipliers that impose the flatness constraint of (n,,n;;). They have their own gauge

symmetry
Agj]k ~ Agj]k + AT@[U]’C + Qﬁqgﬂk
(3.81)
AV~ AT 4 NG 4 27l

% and ¢ are integers on the dual

Here 417 are real-valued fields on the dual sites, while q[]
7-links and the dual k-links, respectively.

Following similar steps in Section 3.2.1, we can integrate out the real fields A[Tij]k, A% and
gauge fix most of the integer fields to be zero. In this gauge choice, the continuum limit of

this modified Villain model is recognized as the 3+1d ¢-theory of [80]. See also [73,101,92,102]

for related discussions on this theory. Moreover, the modified Villain model has a U(1) (1,3’)
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momentum dipole symmetry and a U(1) (3’,1) winding dipole symmetry, which are the same
as in the continuum 3+1d ¢-theory.
Alternatively, we can apply the Poisson resummation formula (3.6) to dualize the modified

Villain action (3.80) to

> ) (AAT - AGAKY) — o)
cyclic  dual Tk-plaq

o (3.82)

2
1 iid o - o ~i

dual xyz-cube \ i<j site 1<j

b
2(2m)%5

where 1 and n are integer-valued fields on the dual Tk-plaquettes (or ij-plaquettes) and the dual
hypercubes (or sites) respectively. We interpret (2%, 1) as Z gauge fields that make (A, A1)

compact via the gauge symmetry®

ARG o ARG 1 A R 4 9pahlid)
A~ AT 4 NGGFD) o

. y y B 3.83
A~ A NG — NG 45

Aonb YNNG
i<j
The Lagrange multiplier ¢ imposes the flatness constraint of (R, n).

Once again, following similar steps in Section 3.2.1, we can integrate out the real field ¢
and gauge fix most of the integer fields to be zero. In this gauge choice, the continuum limit
of this modified Villain model is recognized as the 3+1d A-theory of [80] (see also [73,92]).
Moreover, the modified Villain model has a U(1) (3',1) electric dipole symmetry and a U(1)
(1, 3) magnetic dipole symmetry, which are the same as in the continuum 3+1d fl—theory. The
duality maps the momentum (winding) dipole symmetry of ¢-theory to the magnetic (electric)

dipole symmetry of the A—theory, exactly like in the continuum theories.

5(i ) is the Z version of (C¥,C) of [82].
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In conclusion, the modified Villain action (3.80) has the same continuum limit as the XY-
plaquette action (3.77). It has all the properties of the continuum ¢-theory of [80] including the
emergent winding symmetry and the duality to the fl—theory. It is straightforward to check that
the analysis of the singular configurations and the spectrum of charged states of the continuum

theory are regularized properly by this modified Villain lattice action.

3.3.2 A-theory

There are U(1) variables €7 and ¢ on the 7-links and the ij-plaquettes of the lattice, re-

spectively. The action is

WY D [M—cos(AAy —ANAD +y Y0 D [T —cos(Didi — AjAu)] (380

1<j Tij-cube xyz-cube Cy?lli:
1,5,

where (A,, A;;) are circle-valued. This action has a tensor gauge symmetry

oiAr o giArFilra

)

(3.85)

A iAij-‘riAiAjOc

i e ,

with circle valued « at the sites.

At large 79,7y, we can approximate the action, a la Villain, as

? Z Z (ATAZ']' — AiAjAT — 27Tnﬂ'j)2 -+ % Z Z (AZAJk — AJAZk — 27Tn[ij]k)2 s

1<j Tij-cube xyz-cube Cy%‘l;:
i3,

(3.86)

where now (A;, A;;) are real and n,;; and npj);, are integer-valued fields on the 7ij-cubes and
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the zyz-cubes respectively. The gauge symmetry (3.85) is now replaced with

AT ~ AT + AT& + 27Tq‘r s

(3.87)
Nrij ~ Nrig + Dr iy — DiAjgr

Mgk ~ Mgk + Digjx — Djgix -

Here « is a real-valued field on the sites, while ¢, and ¢;; are integer-valued fields on the 7-links
and the ij-plaquettes, respectively. We interpret (n,;;, npjx) as the Z gauge fields that make

-, A;;) compact.
(Ar, Aij) °

14

Next, we suppress the “vortices” by modifying the Villain action as

% Z Z (ATAij — AiAjAT — 27'('717-1] Z Z A Agk A Azk 27rn [ij]k )

1<j Tij-cube xyz—cube Cychc

Z Z ng[ij}k(A’rn[ij]k — Aingji + Ajngi)

dual site cyclic
1,7,k

(3.88)

where ¢lilF is a real-valued field on the dual sites of the lattice. It is a Lagrange multiplier that

imposes the flatness constraint of (n.;, ny;k), and it has a gauge symmetry

Plidlk Gk 4 o plidlk (3.89)

where plU* is an integer-valued field on the dual sites.

Following similar steps in Section 3.2.1, we can integrate out the real fields q@“ﬂk and gauge
fix most of the integer fields to be zero. In this gauge choice, the continuum limit of this modified
Villain model is recognized as the 34+-1d A-theory of [80]. See also [88,73,90,91,101,92] for related
discussions on this theory. Moreover, the modified Villain model has a U(1) (3',2) electric tensor

symmetry and a U(1) (2, 3') magnetic tensor symmetry, which are the same as in the continuum

S(nrij, nije) is the Z version of (C¥, CliilF) of [82].
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3+1d A-theory.
Alternatively, we can apply the Poisson resummation formula (3.6) to dualize the modified

Villain action (3.88) to

Z Z (A </5k (i) _ QﬂAk w)) Z Z Akqgk(ij) _ 27?7%”)2

dual 7-link  cyclic Cycl;vc dual k-link

h o (3.90)
Fi Y S Ag(Aal — Ay 10 3T AN AART
cyclic  7j-plaq 7-link 1<J
1,5,k
where 25 and 741/ are integer-valued fields on the dual 7-links and the dual k-links respectively.

There is a gauge symmetry
Q6D o GRGD o pk(id)
AN LN L2 (3.91)

A~ A A

We interpret (57 7i1) as Z gauge fields that make ¢*(9) compact. The Lagrange multipliers
(A, A;j) impose the flatness constraint of (7r i) ,77). The dual action (3.90) is the modified
Villain action of the ¢-theory of [80].

Once again, following similar steps in Section 3.2.1, we can integrate out the real fields
(A, A;j) and gauge fix most of the integer fields to be zero. In this gauge choice, the continuum
limit of this modified Villain model is recognized as the 3+1d ¢-theory of [80]. Moreover, the
modified Villain model has a U(1) (2, 3’) momentum tensor symmetry and a U(1) (3, 2) winding
tensor symmetry, which are the same as in the continuum 341d (;B—theory. The duality maps
the electric (magnetic) tensor symmetry of the A-theory to the winding (momentum) tensor
symmetry of gzg—theory, exactly like in the continuum theories.

To summarize, the lattice A-theory (3.84) and the modified Villain action (3.88) flow to
the same continuum theory — the continuum A-theory. The modified Villain action has all the
features of the continuum theory. It has a magnetic symmetry and it is dual to the qg theory. It

gives a rigorous presentation of the analysis of singular field configurations and the spectrum of
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charged states found in [80].

3.3.3 X-cube model

In this subsection, we will start with the X-cube model in its Hamiltonian formalism and deform
it to a modified Villain lattice model. The latter takes the form of a BF-type action, which
admits two equivalent presentations. The first one, which we call the integer BF'-action, uses
only the integer fields, while the second one, which we call the real BF-action, uses both real

and integer fields. The real B F-action is naturally connected to the continuum Z tensor gauge

theory of [73,81].

Review of the Hamiltonian formulation

We start with the Hamiltonian formulation of the X-cube model. On a periodic 3d lattice, there
is a Zy variable U and its conjugate variable V on each link. They obey UV = >*/NVU. We
label the sites by integers § = (&, ¢, 2) and label the links, the plaquette and the cubes using the

coordinates of their centers. The Hamiltonian of the X-cube model is [17]

= _61 Z( yz]x"’G Jlzx]y +G [my]z ﬁQZL@—FC.C.,

site cube
Gs e = Vit 3.0 Vs]L+(0 0,2)‘/;(0,%,0)‘/;*(0’0’%) ’
G§,[zm]y = Vgl(%’o,o)V§+(0,0,%)‘/37(%,0,0)‘/;,(070,%) )
G ay)s = V§+(% )V+(07170)VT_(2,0 O)V —(0,3,0) s (3.92)
Le = Usr3 30U 110U 0 10U b0)
Usrobb U0 U0y Um0
Ué+<%,07%>Uel(—%pé)Ug+<§,o,f§)Uéf<%,0,%> '

All the terms in the Hamiltonian commute with each other. The operators G ji; are in the 2

of Sy and satisty G 212G 220y G5 [ey]z = 1.
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The ground states satisfy G jjjx = Le = 1 for all §,¢. There are dynamical excitations that
violate only Lz = 1 at a cube. Such excitations cannot move so they are fractons. There are
also dynamical excitations that violate only Gy .. = Gs .0y = 1 at a site. Such excitations
can only move along the z direction so they are z-lineons. Similarly, there are z-lineons and
y-lineons that can only move along the x and y direction, respectively. Because of the relation
Gs,y12G5 22y G5 [zy)- = 1, an a-lineon, a y-lineon and a z-lineon can annihilate to the vacuum
when they meet at the same point.

The X-cube model has a faithful Zy (3’,2) tensor symmetry and a faithful Zy (3’,1) dipole
symmetry.” A typical symmetry operator of the faithful Zy (3',2) tensor symmetry is the line

link: fixed §.2 U And there are similar lines along other directions. A typical symmetry

operator | |

operator of the faithful Zy (3',1) dipole symmetry is [[.., V where C*¥ is a closed curve along

the dual links at fixed Z,. Similarly, there are other symmetry operators on the other planes.
We are interested in the 31, 8, — oo limit of the model. In this limit, Gz = Le = 1 for all

s, ¢ and the Hilbert space is restricted to the ground states.

Integer BF'-action

We now formulate the X-cube model in the 51, 2 — oo limit in the Lagrangian formalism. We
put the model on a periodic 4d Euclidean lattice. For each k-link, we introduce an integer-valued

field m¥ with i # j # k for the Zy variable U = exp(%ﬁm). For each dual ij-plaquette, we

27rimij )

introduce an integer-valued field m;; for the conjugate Zy variable V' = exp(=

Next, we introduce Lagrange multiplier fields to impose the constraints Gy = Le = 1.

On each dual 7-link (or zyz-cube), we introduce an integer-valued field m, to impose L. =
1 as a constraint. On each 7-link, we introduce three integer-valued fields mk’ﬂk to impose

G jij)e = 1 as constraints. Since G 202G 22y Gs,[ey)- = 1, one combination of fn[fj]k decouples

"To clarify the terminology, recall that each symmetry operator is associated with a geometrical object C.
According to [103], if the action of the operator depends only on the topology of C, the symmetry is not faithful,
while if it depends also on its geometry, the symmetry is faithful. For example, the non-relativistic ¢-form
symmetry of [79] is faithful, while the relativistic ¢-form symmetry of [5] is not faithful. In [81], the faithful
symmetry was referred to as “unconstrained” and the unfaithful symmetry was referred to as “constrained.”
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and therefore 7" has a gauge symmetry. Below, we will instead work with the combinations
kD) = kil 5l k]i, which are not subject to any gauge symmetry, but are constrained to
satisfy mZ¥? + m29 42 = o,

In terms of these integer fields, the Euclidean lattice action for the low-energy limit of the

X-cube model is

2mi 2w i
T > iy (A — A ™) 4 == e (ZMW) - (3.93)
Tyz-cube

cyclic  rk-plaq i<j
g,k

There are gauge symmetries:

m; ~m; + Al + Ng,
mi; ~ My + AZAJ£ + qu-j s (3 94)
~ k(zg) ~ mk(zg 4+ A gk i7) + NAk z]) ‘

WM~ 4 AR 4 NG

where ¢, (%09) g g, ¢*0) and ¢ are integer-valued fields on the dual sites, the sites, the dual
7-links, the dual 7j-plaquettes, the 7-links, and the k-links, respectively. We will refer to this
presentation of the model as the integer B F-action. This is analogous to the presentation (3.192)
for the topological lattice Zy gauge theory reviewed in Appendix C and the presentation (3.61)
of the 2+1d tensor Zy tensor gauge theory.

The fields (" mi) and (m.,m;;) pair up into two integer-valued tensor gauge fields.
Comparing with (3.82) and (3.88), we can interpret (3.93) as the Zy lattice tensor gauge theory
of the A gauge field or the A gauge field.

In this Lagrangian, there are no dynamical fractons and lineons. Instead, charged particles

become defects of probe fractons and lineons. The probe fracton defect is

" s 2mi
W7 (&,4,2) = exp % > m.| (3.95)

dual 7-link: fixed ,79,2

111



and the probe z-lineon defect is

W#(&,9,C%) = exp % Z @) 4 % Z me| (3.96)
r-linkeC? 2-linkeC?
where C* is a curve along the 7- and z-links in the 7z-plane at fixed  and y. The - and y-lineons
are defined similarly.

The Zy lattice tensor gauge theory has a Zy (3',2) tensor symmetry and a Zy (3',1) dipole
symmetry. The Zy (3',2) tensor symmetry is generated by the line operator of (3.96) along
a closed curve C* and other similar line operators on the 7x- and Ty-plane. These symmetry
operators are constrained by the flatness condition on M. So, the Zy (3,2) tensor symmetry
is unfaithful (in the sense of [103]). The charged observables are the probe fracton defect (3.95)

and the Wilson observable

. 271
Wl’y(z7 Cﬂfy) = exp [W ( Z My, + Z My, + Z Azm7>] ,
dual zz-plaqgeC®y dual yz-plageC®y dual Tz-plageC®¥

(3.97)
where C* is a closed strip along the zz-, yz- and 7z-plaquettes at a fixed Z. Similarly, there are
other charged Wilson observables W¥*(z,C¥?*) and W**(y,C**). The Zy (3',1) dipole symmetry
is generated by the line operator (3.95), (3.97) and similar lines operators at fixed & or §. These
symmetry operators are quasi-topological, i.e., they are invariant under small deformation of C*¥
on the Tzy-volume. So, the Zy (8',1) dipole symmetry is unfaithful (in the sense of [103]). The

charge operators are (3.96) and similar operators on the other planes.

Real BF-action and the continuum limit

As in Section 3.2.3, we discuss another presentation of this theory, which is closer to the contin-
uum action.

Starting from the integer BF-action (3.93), we replace the integer-valued fields (m., m;;) and
(M) i) with real-valued fields (A,, A;;) and (AX A7), We constrain them to be integer-

valued using Lagrange multiplier fields (2%, 7n) and (n.4;, ng;,) - Furthermore, since the gauge
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fields (A,, A;;) and (fllﬁ(ij ) Aii ) have real-valued gauge symmetries, we introduce Stueckelberg

fields ¢ and ¢l* for their gauge symmetries. We end up with the action

Tk-plagq ryz-cube
+iN Y AVng —iN Y A g —i Y T ¢ (Arn — AARY) (3.98)
ij-plaq T-link dual site

—1 Z qg[ij]k<Arn[ij]k — Ak + Ajngg)

site

(To simplify this particular expression and (3.101), we use the convention that repeated indices
i,j and i, j, k are summed over cyclically.) Here ¢, ¢l9F, A A, AR and A are real-valued
fields on dual sites, sites, dual 7-links, dual ¢j-plaquettes, 7-links and k-links, respectively, and
Nrijs Nijlks n¥ and n are integer-valued fields on the dual 7ij-cubes, the dual zyz-cubes, the
Tk-plaquettes, and the xyz-cubes, respectively. We will refer to this presentation as the real
B F-action, which uses both the real and integer fields.

These fields have the same gauge symmetries as in (3.79), (3.83) (3.87), (3.91) except that

the o and &% gauge symmetry also acts on ¢ and QAS[U]’“ as

¢~ ¢+ Na,
(3.99)
Jlidlk - Gk 4 Nalidlk
As a check, summing over (2%, n) and (n,;;, njj,) in (3.98) constrains
1 1 2m
(AT - NAT¢7 Aij — NAz'Aﬂb) = W(mnmzj) )
(3.100)

< Ak) _ % AL G jii % Akqgkw)) _ %(mkw)’mij) _

T

Substituting them back to the action leads to (3.93).

The real BF-action (3.98) can also be derived through Higgsing the U(1) tensor gauge theory
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(3.88) to a Zy theory using the field ¢ in (3.80). The Higgs action is

7-link ij-plaq

—1 Z A (Arng — AiAjny — Nngg) +i Z AUR(Ainjy, — Ajngg — Nnjgp) (3.101)
Tij-cube ryz-cube

— 1 Z é[ij]k<A‘rn[ij}k — Aingje + Ajneg)
dual site

where B and E¥ are real-valued fields on the 7-links and the i J-plaquattes, respectively. These
fields have the same gauge symmetries as in (3.79), (3.83), (3.87), (3.91), and (3.99). In addition,

the fields (n,,n;;) also transform under the (¢.,¢;;) gauge symmetry

nTNnT_NqT7

(3.102)
nij ~ nij — Nggj -
Summing over the integer-valued fields (n,,n;;) constrains
B AN = 2w B AR ALY = 2wl (3303

1<j

where 7 and 17 are integer-valued fields. Substituting them back into the action leads to (3.98).
Similarly, the real BF-action (3.98) can also be derived through Higgsing the U(1) tensor gauge
theory (3.82) to a Zy theory using the field ¢l4% in (3.90).

Let us discuss a convenient gauge choice for this lattice model. Following similar steps in
Section 3.2.3 and in Appendix C.2, we first integrate out ¢ and ¢@*, and then gauge fix most
of the integers (n,ij, nyjx) and (7%, 1) to zero. Next, we define new fields that are not single-

valued and have transition functions. In this gauge choice, it is then straightforward to take the
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continuum limit of the real BF-action:

ZN A Akz(i') A
o / drdedydz | Y Ay (&AJ — O AR ) + A, (Z aiajAJ> , (3.104)

i<j

cyclic
0,5,k

where we omit the terms that depend on the transition functions of these fields.® This is the
Euclidean version of the 34+1d Zy tensor gauge theory of [73,81] which describes the low-energy
limit of the X-cube model.

We conclude that the modified Villain lattice model (3.93), or equivalently (3.98), flows to
the same continuum field theory (3.104) as the original X-cube model (3.92). Conversely, the
modified Villain lattice model (3.93), or equivalently (3.98), gives a rigorous setting for the

discussion of the continuum theory (3.104) of [73,81].

3.4 Appendix A: Villain formulation of some classic quantum-
mechanical systems

In this appendix, we review two classic quantum-mechanical systems. The various versions of the
theory that we will present and the manipulations of the equations are simple warmup examples

for the other models.

3.4.1 Appendix A.1: Particle on a ring

We start with the quantum mechanics of a particle on a ring parameterized by the periodic
coordinate q¢ ~ ¢ 4+ 2m. This problem is a classic example of the #-parameter and its effects. We

discuss it using the lattice Villain formulation.

8Such boundary terms are necessary in order to make the continuum action (3.104) well-defined. They played
a crucial role in the analysis of [84].
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The problem is characterized by the Fuclidean continuum action
1 16
S = ¢dr|=(0.q)°+ —0- 3.105
far (3007 + o) (3.105)

and we take the circumference of the Euclidean-time circle to be ¢. The #-parameter is 2x-
periodic. (Here, we used the freedom to rescale 7 to set the coefficient of the kinetic term to
)

This system has a global U(1) symmetry shifting ¢ by a constant. And for § € 77, it also has

N

a charge conjugation symmetry ¢ — —¢q. These two symmetries combine to O(2). As emphasized
in [27], for 0 € (2Z + 1)7 there is a 't Hooft anomaly stating that while the operator algebra has
an O(2) symmetry, the Hilbert space realizes it projectively. Related to that, this system has an
anomaly in the space of coupling constants [3,4]. We are going to reproduce these results on a
Euclidean lattice.

Next, we place this theory on a Euclidean-time lattice with lattice spacing a. We label the
sites by 7 € Z such that 7 = a7 and the total number of sites is L = ¢/a. Then, following the
Villain approach, we make the coordinate ¢(7) real-valued and add an integer-valued gauge field

on the links. The lattice Lagrangian and action are

L= %(Aq(%) — 27m(7°))2 + %(AC](%) —2mn(7)) ,
o 2‘: . (3.106)

Aq(7) =q(7 +1) —q(7) .

This system has a Z gauge symmetry

n(#) ~ n(?) + A k(7) (3.107)
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We can replace the Lagrangian in (3.106) by
1
= o (Aq(7) - 21n(7)) — i0n(7) (3.108)
a

without changing the action. Unlike £, the new Lagrangian £’ is not gauge invariant under
(3.107).

The main point about (3.106) or (3.108) is the description of the #-term using the gauge field.
The integer topological charge of the continuum theory % ¢ dr0,q is described by the Wilson
line of n.

As in the continuum, the global U(1) symmetry acts by shifting ¢ by a constant. It is U(1)
rather than R because its subgroup Z C R is gauged. The charge conjugation operation ¢ — —q
should be combined with n — —n. Unless § = 0, it is not a symmetry of the action (3.106).
However, for § € 77Z, it is a symmetry of e™°.

Let us examine the charge conjugation symmetry more carefully. Its action is “on-site.”
However, unless § = 0, it does not leave the Lagrangian £ or even the action S in (3.106)

L

invariant. It does not even leave the exponential of the Lagrangian e™* invariant. The symmetry

S

is present for 6 € 7Z because it leaves e invariant. This opens the door for a 't Hooft anomaly

associated with this symmetry and to the related anomaly in the space of coupling constants
of [3,4].°
This anomaly is exactly as in the continuum discussion of [27]. It can be demonstrated by
adding to (3.106) a classical U(1) gauge field A
1 10

L= %(AC](?) — A(7) — QWH(f))Q + %(Aq(%) — A(%) — 2mn(7)) . (3.109)

9Note that e~ with £’ of (3.108) is O(2) invariant for § € nZ, but it is not gauge invariant. This is common
with anomalies. Using counterterms, we can move the problem around, but we cannot get rid of it.
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To see that the gauge symmetry of A is U(1) rather than R, we note that its gauge symmetry

a(#) ~ a(#) + M) + 2mh(7)
n(7) ~n(7) + A k(T) — N(7)

(3.110)
A(T) ~ A(T) + AAN(T) + 27N (T)

k(T),N(T) € Z

includes a Z one-form gauge symmetry with the integer gauge parameter N (7). Invariance under
this gauge symmetry shows that the f-term must depend on A even if we use £’ of (3.108).1°
Now, the charge conjugation symmetry acts also on A and as a result, the f-term is not invariant
under it unless # = 0. As in [3,4], this also means that there is an anomaly in the 27-periodicity
in 6.

One way to think about this lattice model is the following. We choose the gauge n(7) = 0
except for n(0). In this gauge the Wilson line of n is given by n(0), which is gauge invariant.
The remaining gauge symmetry is the identification ¢ ~ ¢ + 27k with integer k£ independent of

7. It is convenient to redefine ¢ to the nonperiodic (in 7) variable

q(7) fort=1,---,L
q(7) = . (3.113)

q(0) 4+ 27n(0) for 7 =0

10An extreme version of this system is when the lattice has only one site, i.e., L = 1. In that case the action
becomes ) 9
5 (A7) +2mn(7))” - ;7(,4(%) +27n(#)) . (3.111)
a ™

The global U(1) symmetry is reflected in the fact that action is independent of ¢. It depends only on the integer
dynamical gauge field n and the classical gauge field A. The remaining gauge symmetry is the one-form gauge
symmetry

n(7) ~n(7) — N(7)

A(7) ~ A(7) + 2nN(7) (3.112)

N(T)eZ.

>

Again, the anomaly is manifest in (3.111).
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In these variables, after dropping the bar, (3.106) becomes

1 2 b .
L= Z(AQ(T)) + %AQ(T) ;
P (3.114)

This can be interpreted as follows. We have a real-valued field ¢ and we sum over twisted
boundary conditions labeled by an integer n(0) such that ¢(7 + L) = ¢(7) — 27n(0).
In the form (3.114), it is easy to take the continuum limit. We take a — 0, L — oo with

finite ¢ = La. In this limit ¢ becomes smooth and we recover (3.105).

3.4.2 Appendix A.2: Noncommutative torus

Next, we review the quantum mechanics of N degenerate ground states using a Euclidean lattice.
In the continuum, the theory can be described using a phase space of two circle-valued

coordinates p, ¢ with the Euclidean action

N
Z—/dqu. (3.115)
21

(Soon, we will make this action more precise.) Its quantization leads to N degenerate ground

states. These ground states are in the minimal representation of the operator algebra

27i

UV =e~vVU,
(3.116)
U=e?, V=¢4.
Since p and ¢ are circle-valued, i.e., p(7) ~ p(7) 4+ 27 and ¢q(7) ~ ¢(7) + 27, the Lagrangian
in (3.115) is not well defined. There are several ways to correct it. One of them involves lifting ¢

and p to be real-valued with transition functions at some reference point 7,. Then, we can take
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the action to be [104,3,4] (see also [105,106,29, 84])"

iN T+l .
gf dr pq — iNwy(7.)q(T) (3.117)

where ¢ is the period of the Euclidean time and w, = p(7. 4+ ¢) — p(7.) is the winding number of
p. Similarly, we define w, = ¢(7.+¢) —q(7) as the winding number of ¢. In the path integral, we
sum over the integers w, and w,. The action is independent of the choice of 7, i.e., the choice
of trivialization.

Note that as in (3.105), we could have added to (3.117) 6-terms for p and ¢q. However, it
is clear that they can be absorbed in shifts of ¢ and p respectively. Therefore, without loss of
generality, we can ignore them. The same comment applies to the lattice discussion below.

We now discretize the Fuclidean time direction and replace it by a periodic lattice with
T = a7, T € 7Z and periodicity 7 ~ 7 4+ L. We use the Villain approach and let ¢ and p be
real-valued (as opposed to circle-valued) coordinates coupled to Z gauge fields n, and n,. The

action is

¥ =
(]

p(%)(Aq(f') — 2ﬁnq(f)) + 2mn,(7)q(7) | ,
#=0 (3.118)

Aq(7) = q(7+1) —q(7) .
The fields ¢, n, naturally live on the lattice sites, while p, n, naturally live on the links. These

fields are subject to gauge symmetries with integer gauge parameters k,, k,

p(7) ~ p(7) + 2mky(7)

q(7) ~ q(7) + 2mky(7) ,
(3.119)

np(7) ~ np(7) + kp(7) — kp(F — 1),

~

ng(7) ~ 1g(7) + kg (T +1) = Ky(7) -

Note that the Lagrangian is not gauge invariant. Even the action is not gauge invariant. But

U The rigorous mathematical treatment uses differential cohomology [107-110] (see [111-113] and the references
therein for modern developments).
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e~ is gauge invariant.

We can choose the gauge n,(7) = n,(7) = 0 except for n,(0), n,(0). The action then becomes

— > p(7)Aq(7) —iNn,(0)p(0) + iNn,(0)g(0) . (3.120)

There is a residual gauge symmetry:

p(7) ~ p(7) + 27,
(3.121)

q(7) ~ q(7) + 27 .

To relate the gauge fixed lattice action (3.120) to the continuum action (3.117), we define new

variables p, ¢ on the covering space of the periodic lattice:

(
p(r) for7=0,--- L—1
p(7) = ,
p(7) —2mn,(0) for 7 =1L
p (3.122)
q(t) fort=1,---,L
q(7) =
\q(O) + 27n,y(0) for 7 =0

Unlike the single-valued real fields p,q, which obey p(0) = p(L), ¢(0) = ¢(L), the new real

fields p, ¢ are not single-valued on the periodic lattice; they can have non-trivial winding number

w, = —n,(0), wy = —ng(0). In terms of the new variables, the action becomes
ING
P (T)AG(T) — iNw,q(0) , (3.123)
m
#=0

In the continuum limit, this lattice action becomes (3.117).

Instead of gauge fixing the integer fields n,,n,, we can sum over them. This restricts the
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real-valued fields p, ¢ to p = —mp and g = mq with integer fields m,,, m,. The action becomes

L
Z F)Amy(7) (3.124)
with the following gauge symmetry making the integer fields Z, variables

my(7) ~ my(7) + Nky(7) ,
(3.125)

mg(7) ~ mg(T) + Nkqy(7) .
3.5 Appendix B: Modified Villain formulation of 2d Eu-

clidean lattice theories without gauge fields

In this appendix, we review well-known facts about some lattice models and their Villain for-
mulation. As in the models in the bulk of the chapter, we deform the standard Villain action
to another lattice action, which has special properties. In particular, it has enhanced global
symmetries and it exhibits special dualities. Then, we study other models by deforming this

special action.

3.5.1 Appendix B.1: 2d Euclidean XY-model

Here we study the two-dimensional Euclidean XY-model on the lattice and in the continuum

limit [114,115).

Lattice models

We place the theory on a 2d Euclidean periodic lattice, whose sites are labeled by integers
(2,9) ~ (2 + L® §) ~ (2,9 + LY). The dynamical variables are phases ¢ at each site of the

lattice. The action is

B [1—cos(Aup)] (3.126)
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where pi = x, y labels the directions and A, ¢ = ¢(2+1,y)—¢(Z,9) and Ay¢ = (2, y+1)—P(2,9)
are the lattice derivatives.

At large (5, we can approximate the action (3.126) by the Villain action [85]:

gZ(Am —2mmn,)* . (3.127)

link

Here ¢ is a real-valued field and n, is an integer-valued field on the links. These fields satisfy
periodic boundary conditions.
The fact that in the original formulation (3.126), ¢ was circle-valued rather than real-valued

is related to the Z gauge symmetry

¢~ ¢+ 2rk n, ~mn, + Ak (3.128)

where £ is an integer-valued gauge parameter on the sites. We can interpret n, as a Z gauge
field, which makes ¢ compact.

The gauge invariant “field strength” of the gauge field n,, is

N =Aun, — Ayn, . (3.129)

It can be interpreted as the local vorticity of the configurations.
We are interested is suppressing vortices. One way to do that is to add to the action (3.127)

a term like

koY, N (3.130)

plaquette
with positive k. For k — oo the vortices are completely suppressed [86]. Instead of adding this

term and taking this limit, we can introduce a Lagrange multiplier ¢ to impose N' = 0 as a
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constraint. The full action now becomes!?

5 . -
S=5D (Auo—2mm,) +i Y, N, (3.131)
link plaquette
where the Lagrange multiplier ¢ is a real-valued field on the plaquettes (or dual sites). It has a
Z gauge symmetry

&~ Gt 2k (3.132)

with k is an integer-valued gauge parameter on the plaquettes.
Note that the action (3.131) is not invariant under this gauge symmetry. However, e is
gauge invariant. In fact, even the local quantity e~*, with £ the Lagrangian density, is invariant.
The action (3.131) is the starting point of our discussion. We refer to it as the modified

Villain action of the XY-model.'3

We can restore the vortices by perturbing the modified Villain action (3.131) as

O Aoz ai Y N -A Y o) (5:133)

link plaquette plaquette

(For simplicity of the presentation, we take A > 0.) Note that the action is still invariant under

the gauge symmetries (3.128) and (3.132). Integrating out b gives

gZ(A“(b —27mn,)? — Z log Ijn(A) (3.134)

link plaquette

where [j(z) is the modified Bessel function of the first kind. Let us compare this action with

2Related ideas were used in various places, including [116].

13Using common terminology in the condensed matter literature, one could refer to the corresponding theory
as noncompact. However, we emphasize that even though the ¢ field in (3.127) and (3.131) is real-valued, i.e.,
noncompact, the gauge symmetry (3.128) effectively compactifies the range of ¢. The effect of the term with N
in (3.131) is to suppress the vortices rather than to de-compactify the target space. We will discuss it further
below.
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(3.130). For small A < 1, we have

—log I,(\) ~ log [k! (;)k +0(N\) . (3.135)

In this case, vortices with |[A| > 1 are suppressed. For [N| = 0,1 we identify

2
k =~ log X >1. (3.136)
In the other limit A > 1, we have
1

where we ignored some k-independent terms that depend on A. In this case, we can identify

1
~ 1 3.138
RS (3.138)

We conclude that the deformation —\ cos(¢) is mapped to kA%, and small (large) A corre-
sponds to large (small) k.

To summarize, the XY-model is usually studied using the actions (3.126) or (3.127). We
added another coupling to this model (3.130). Equivalently, we can write the model as (3.133)
and then the usually studied model (3.127) is obtained in the limit A — co. On the other hand,
when A = 0, this reduces to our modified Villain action (3.131) of the XY-model.

Below we will see that the modified Villain action (3.131), unlike its other lattice relatives,
exhibits many properties similar to its continuum limit, including emergent global symmetries,

anomalies, and self-duality.
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Global symmetries

The three models, (3.126), (3.127), and (3.131) have a momentum symmetry, which acts as

b — b+, (3.139)

where ¢ is a real position-independent constant. Due to the zero mode of the gauge symmetry
(3.128), the 277Z part of this symmetry is gauged. So the momentum symmetry is U(1) rather
than R.

From (3.127) and (3.131) we find the Noether current of momentum symmetry'*

St = —iB(Aup —2mn,) (3.140)

which is conserved because of the equation of motion of ¢. The momentum charge is'®

QUEC) = Y. el (3.141)
dual linkeC
where C is a curve along the dual links of the lattice. The dependence of Q™ on Cis topological.
The local operator € is charged under this symmetry.
The modified Villain action (3.131) (but not (3.126) or (3.127)) also has a winding symmetry,

which acts as

b d+c (3.142)

where ¢ is a real constant. Due to the zero mode of the gauge symmetry (3.132), the 277 part

of this symmetry is gauged. So the winding symmetry is also U(1).

14The factor of i in the Euclidean signature is such that the corresponding charge is real.
5Here, €4y = —€yp = 1 and €,, = €,y = 0.
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The Noether current of the winding symmetry is'6

w Cpv
Jy = i(Aygb —27n,) , (3.143)

which is conserved because of the equation of motion of ¢. It is crucial that n, is flat, i.e., N =0

and vortices are suppressed, for the Noether current to be conserved. The winding charge is

QUC) =D ey ==, (3.144)

linkeC linkeC

where C is a curve along the links of the lattice. The last equation follows from the single-
valuedness of ¢. Hence, we can interpret Q“(C) as the gauge invariant Wilson line of the Z
gauge field n,. It is topological due to the flatness condition of n,. Finally, the local operator
¢ is charged under this symmetry.

Both the momentum symmetry (3.139) and the winding symmetry (3.142) act locally on
the fields and they both leave the action (3.131) invariant. However, the Lagrangian density in
(3.131) is invariant under the momentum symmetry, but not under the winding symmetry. This
fact makes it possible for these symmetries to have a mixed 't Hooft anomaly, even though the
two symmetries act locally (“on site”).

Using “summing by parts”, we can write (3.131) as

g D (Aud—2mn) i Y (naDyd — nyAg) (3.145)

link plaquette

In this form both the momentum symmetry (3.139) and the winding symmetry (3.142) act
locally and leave the Lagrangian density invariant. How is this compatible with the anomaly?
The point is that unlike (3.131), the Lagrangian density in (3.145) is not gauge invariant. As is
common with anomalies, we can move the problem around, but we cannot completely avoid it.

One way to see this anomaly is by trying to couple the action (3.131) to background gauge

From the action (3.131), the Noether current appears to be J)) = —€uny, but it is not gauge invariant.
Therefore, we added to it an improvement term to construct a gauge invariant current.
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fields for the momentum and winding symmetries (A,; N) and (A,; N). Here A,, A, are real-

valued and N, N are integer-valued. The action is

g Z(Au¢ - A, - 27mﬂ)2 +1 Z &(Axny — Ayn, + N)

link plaquette

) (3.146)

1 ~ ~
- > ewAu(Ayp— A, —2mn,) +i> N¢,

link site
with the gauge symmetry
b~ ¢+ a+2rk ¢~ d+a+2rk
Ay~ A+ Ao+ 21K, A, ~ A, +Aa+ 21K,
(3.147)

N~y + Ak — K, N~N+AK, —AK,

N ~N+AK,—AK, .

Here, K,,, K . are integers, and «, & are real. They are the gauge parameters of the background
gauge fields (A,; N) and (A,; N). The variation of the action under this gauge transformation
is .
_ZL Z a(AzAy — AyA; —2aN) +1 Z (f(:cAy - f(yAx) . (3.148)
plaquette plaquette

It signals an anomaly because it cannot be cancelled by adding any 1+1d local counterterms.

This expression of the anomaly is the lattice version of the familiar continuum expression

—5= [dady a(8,4, — 0,A,).

T-Duality

Here we will demonstrate the self-duality of the modifield Villain lattice model (3.131). We start

with the presentation (3.145). Using the Poisson resummation formula (3.6) for n,, and ignoring
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the overall factor, we can dualize the above action to

1 ~ ~
- A,b —2mi, )t + i N,
2 2 (Bud = ) i) 0 (3.149)

N = Ay, — Ay,

where 7, is an integer-valued field on the dual links. The gauge symmetry of the original theory

acts as

O~ d+2mk, iy~ T+ Ak G~ 2k (3.150)

n, can be interpreted as the Z gauge field associated with the gauge symmetry of ¢ and N is
its field strength. Furthermore, we can interpret ¢ as a Lagrange multiplier imposing ' = 0 as
a constraint.
We conclude that the modified Villain action (3.131) is a self-dual lattice model with 5 <«
1

@75 Moreover, the momentum and winding currents, (3.140) and (3.143), in the dual picture

are

E}UJ 7 ~ Z
V= =(Ayp —2mn,) , Y= —
e L (SEE

We emphasize that the lattice model (3.131) is exactly self-dual, rather than being only

(A, b —2771,) . (3.151)

IR-self-dual. It has exact T-duality.
We can easily relate this discussion to the classical analysis of [114,115]. By adding the term
—A cos(gg) to the Lagrangian and taking A — oo, the field ¢ is frozen at zero and we end up with

Villain action (3.127). Repeating this in the dual action (3.149), we find

% doar+iy oN,

dual link site (3.152)
N = Auhy — Ayity .
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Locally, the Lagrange multiplier ¢ determines 7, = A,¢ with an integer ¢.!” We end up with

% > (M), (3.153)

dual link

which is the dual theory of [114,115].

Gauge-fixing and the continuum limit

In the following we will pick a convenient gauge where most of the integer fields are set to
zero. Following the discussion around (3.120), we integrate out é, which imposes the flatness
condition on n,,. Then, we gauge fix n,(z,y) = 0 at all links, except n,(L*—1,y) and n,(z, LY—1)
(recall, ## ~ " + L*). The remaining information in the gauge fields n,, is in the two integers
ny(L* —1,9) = n, and n,(z, LY — 1) = n,, i.e., in the holonomies of n, around the z and y

cycles. The residual gauge symmetry is

b~ bt 2. (3.154)

Let us define a new field ¢ such that

$(0,0) = ¢(0,0) ,  Aup=ANup—2mn, . (3.155)
In the gauge above, where in most of the links n, = 0, in most of the sites ¢ = ¢. Then the

action in terms of ¢ is

52 (A0). (3.156)

"More precisely, N =0 can be solved in terms of an integer-valued field ¢, but ¢ does not have to be periodic
(i.e., single-vlaued on the torus). Its lack of periodicity is characterized by two integers, which are the Wilson
lines of n around two cycles of the torus. This Wilson line is the momentum charge (3.141) constructed out of
the momentum current (3.151) and it is nontrivial only when ¢ is not periodic.
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Although ¢ and n, are single-valued fields, ¢ can wind around nontrivial cycles:

o(& + L, 9) = ¢(2,§) — 277,

q;(:ﬁ,g + Ly> = QZ_S(CE’,Q) - 27Tﬁy :

(3.157)

So, in the path integral, we should sum over nontrivial winding sectors of ¢.®

In the continuum limit @ — 0 such that ¢* = aL* is fixed, the action (3.156) becomes

g/dajdy (0,9)% (3.158)

where we dropped the bar on ¢. This is the action of the 2d compact boson. Locally, this is
the same as a theory of a noncompact scalar ¢. However, here we sum over twisted boundary

conditions and that makes the ¢ field compact. See the related discussion in footnote 18.

Kosterlitz-Thouless transition

In order to compare with the standard conformal field theory literature (e.g., [117,118]), we
define the radius R of the compact boson as R = /7. The theory at radius R has momentum

and winding operators with dimensions

(h,h) = (% @% + an>2 % (g—g - an)Q) , (3.159)

where n,,,n, are the momentum and winding charges of the operator. These operators corre-
spond to the lattice operators ei(nmé+nwe) T-duality exchanges the theories at radius R and %2.
At the radius R = \/LT the theory is self-dual. See Figure 3.1.

Unlike the modified Villain model (3.131), the original XY-model (3.126) and its Villain

18Note that the variables ¢ are noncompact and we can rescale them to make the action (3.156) independent
of B. Then, the compactness and the 5 dependence enter only through the twisted boundary conditions (3.157).
One might say that therefore, the local dynamics is independent of 8 and the model is the same as that of a
noncompact scalar. This is the rationale behind the terminology mentioned in footnote (13). This reasoning is
valid when we consider the model with fixed twisted boundary conditions like (3.157). However, in our case, we
sum over this twist. And this affects the set of local operators in the theory. In particular, as in (3.159), their
dimensions depend on the value of § = R? /7.
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RG flow

I [l
1 T

R5D=1/\/E RKT=\/E R:m

Figure 3.1: The space of coupling constants of the 2d Euclidean XY-model. The orange line
corresponds to the theories based on (3.126) or (3.127), while the purple line corresponds to the
modified theory (3.131). Each of them depends on the parameter R = /7. The parameter \
(equivalently, k) interpolates between these two lines. The theories of the purple line (3.131) are
special because they have a global U(1) winding symmetry and they enjoy a R — ﬁ duality with
selfduality at R = \/Li The dashed lines represent the renormalization group flow, or equivalently
the continuum limit. The theories of the purple line flow to the ¢ = 1 compact-boson conformal
field theories, which are represented by the blue line. The theories of the orange line (3.126) or
(3.127) also flow to this conformal theory, provided R > Ry = V2 (equivalently, 5 > %) For
R < Rgr = /2 (equivalently, 8 < %), the theories of the orange line flow to a gapped phase,
which is represented by the blue region at the left. The more generic theories with nonzero but
finite A (and k) behave like the theories of the orange line.

counterpart (3.127) have only the momentum symmetry, but no winding symmetry. It could
still happen that their long-distance theory has such an emergent winding symmetry. This
happens when the winding number violating operators are irrelevant (or exactly marginal) in
the IR theory. This is the case for R > Ryr = v/2, or equivalently 8 > fxr = %, where
the subscript KT' stands for Kosterlitz-Thouless. However, for smaller values of R and ( the
winding operators are relevant and the lattice models undergo the Kosterlitz-Thouless transition
to a gapped phase. See Figure 3.1.

Finally, this reasoning implies that the qualitative behavior of the flow for finite nonzero \ is
the same as the flow for infinite A in Figure 3.1. Only for A = 0 is the flow different (as the purple
line in Figure 3.1). Also, it is straightforward to replace the deformation cos((;;) by COS(W(B) for
generic integer W. This breaks the U(1) winding symmetry to Zy,. Then the flow is as from

the orange curve in Figure 3.1, except that the Kosterlitz-Thouless point moves to R = \/Wi
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3.5.2 Appendix B.2: 2d Euclidean Zy clock model
Lattice models

The Zy clock model [114,119-123] can be obtained by restricting the phase variables € in
the XY-model (3.126) to Zy variables 2™/~ More generally, this model has | N/2| nearest-

neighbor couplings

L oM
E Jm E [1 — cos (TA“m)} : (3.160)
M=1  link

where | N/2] is the integer part of N/2. A particular one-dimensional locus in the parameter

space of {Jy} is given by the Villain action:

g (%)2 S (Am — Nn)? (3.161)

link

The integer fields m,n, are subject to a gauge symmetry with integer gauge parameter k

m~m-+ Nk ,
(3.162)

Ny~ 1y + Auk
This model (3.161) can be embedded in the XY-model of Appendix B.1. In general, we can

deform the action (3.131) to

g Z(AMQZ) —27mn,)? +i Z ON — X Z cos(Wo) — A Z cos(N¢) , (3.163)
link plaquette plaquette site
with integer N and W. The term with \ breaks the U (1) momentum global symmetry to Zy,
which is generated by ¢ — ¢ + %r Similarly, the term with A breaks the U(1) winding global
symmetry to Zyy.
The most commonly analyzed case is with W = 1 and A, A — oo. Then, gz~5 is constrained
to vanish and therefore the vortices are not suppressed. Similarly, ¢ is constrained to have the

values ¢ = 22 thus leading to (3.161).
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Kramers-Wannier duality

It is straightforward to repeat the analysis in Appendix B.1 and to dualize (3.163) to

20 25 Z (A, — 2m7,,)? —I—z’ZqﬁN— A Z cos(W¢) — S\Zcos(Ngb) ,

dual link site plaquette site (3 164)

N = A,y — Ayity |

where 7, is an integer-valued field on the dual links. The gauge symmetry of the theory is

pr~d+2mk, Ry~ Ak G~ P+ 2Tk (3.165)
We conclude that the action (3.163) is dual to a similar system with 5 < 2702 and N < W.

In the special case with W = 1 and A\, A — oo, (3.163) is dualized to

1 27rz .
2 Z ) m(Agiy — Ayity) (3.166)
ual 1 site
with the gauge symmetry

m~m+ Nk (3.167)

with integer k. We can find it either by substituting ¢ = %Tm, =0 in (3.164), or by directly
dualizing (3.161).

We see that unlike the modified Villain action for the XY-model (3.131), this theory is not
selfdual. Comparing with the general case (3.164), this follows from the fact that now W =1
and the duality there exchanges W <+ N.

How is this consistent with the known Kramers-Wannier duality of this theory [114,119-123]?

In order to answer this question we first add integer-valued fields /m and 7, to the action
(3.166) ‘

% Y (Aum— Niy, —7,)" + % m(Ayity — Ayiy) (3.168)

dual link site
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In addition to the gauge symmetry (3.167), this action has the gauge symmetry

m o~k
Ry~ iy — G s (3.169)

Ry ~ Ty, + Ak + NG, -

Here k is an integer zero-form gauge parameter and du is an integer one-form gauge parameter.
This new action (3.168) is equivalent to (3.166), as can be seen by completely gauge fixing (3.169)
by setting m = n, = 0.

Now, we can interpret (3.168) as follows. Locally, the Lagrange multiplier m sets i, to a
pure gauge and we can set it to zero. Then, (3.168) is the same as the Villain form of the Zy
action (3.161) with the replacement 5 <> %. This shows that locally, the Zy clock-model has
Kramers-Wannier duality.

However, globally, the Lagrange multiplier m in (3.168) does not set 7, to a pure gauge
and it allows configurations with nontrivial holonomies ), , . n, around closed cycles. In other
words, (3.168) is not a Zy clock-model but a Zy clock-model coupled to a topological lattice Zy
gauge theory [26,29]. The latter is described by the second term in (3.168) and will be further
discussed in Appendix C.2.

We conclude that the T-duality of the underlying XY-model (3.131) leads to the Kramers-
Wannier duality of the clock-model (3.161). In fact, while the T-duality is correct both locally
and globally, the Kramers-Wannier duality of the clock-model is valid also globally only when a

lattice topological theory is included in one side of the duality.

Long-distance limit

Here, we study the long-distance limit of the theory based on (3.163).
As in the discussion around Figure 3.1 we start with the theory with A = X\ = 0. It flows to
the compact-boson theory, which is represented by the blue line in Figure 3.1. Then, for small

enough A and ) we can perturb this conformal theory by these two perturbations. The momen-
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tum breaking operator cos(N¢) is irrelevant for R < \/ﬂg and the winding breaking operator is
irrelevant for R > \/WE Therefore, for NW > 4 there are values of R, or equivalently of § = RTZ,
such that the compact-boson conformal field theory is robust under deformations with small A

and . This happens for

N
V8 (3.170)

and then the long distance theory is gapless. Note that this is consistent with the duality
b+ m, which is accompanied with N < W.

In the most studied case of W = 1, the long distance theory of (3.163) is given by the compact
scalar CFT for N > 4. For N = 4 and R = /2 it is the CFT of the Kosterlitz-Thouless point.
And for N > 5 and

V8 (3.171)

it is the line of a CF'T with this value of R. For other values of R the theory is gapped. Note, as
a check that this is consistent with the R <> % duality of the local dynamics, which we discussed
in Appendix B.2.

For N = 2 and N = 3 the duality determines that the theory has two gapped phases separated
by a CFT at R=1and R = %, respectively. However, these CFTs are not the CF'T of the
compact boson, but are of the Ising and 3-states Potts model.

We should emphasize that this discussion of the clock-model is specific to the action (3.163).

For other actions, the gapless phase could be different or even absent. See the discussion in

[121,122,124)].

136



3.6 Appendix C: Modified Villain formulation of p-form
lattice gauge theory in diverse dimensions

In this appendix, we will study p-form gauge theories on a d-dimensional Euclidean space for
p < d—1 (see [125] for a review on these models). The models in Appendix A, correspond
tod =1 and p = 0 and perhaps do not deserve to be called gauge theories. The models in
Appendix B, correspond to d =2 and p = 0.

As above, the lattice spacing is a, and there are L* sites in the p direction. Throughout this
discussion, A® denotes a p-form field placed on the p-cells of the lattice, and B ) denotes a

(d — p)-form field placed on the dual (d — p)-cells.

3.6.1 Appendix C.1: U(1) gauge theory

Let us place U(1) variables ¢ on p-cells of the d-dimensional Euclidean lattice. The standard

action of this gauge field is

B> [1—cos(Aa®)], (3.172)

(p+1)-cell
where Aa® is a (p+ 1)-form given by the oriented sum of a® along the p-cells in the boundary

of the (p + 1)-cell, and a® is circle-valued with gauge symmetry

eia(p) N eia(p) +iAaP—1) (3173)

I

where a1 is circle-valued. At large /3, the action can be approximated by the Villain action
[126-128]

s

5 Z (Aa® — 2rnPt1)2 | (3.174)

(p+1)-cell
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where now a® is real and n**1 is integer-valued. We can interpret n®* as the Z gauge field

that makes a?) compact because of the gauge symmetry

a®) ~ a® 4 Aa®PV 4 27k®)
(3.175)
n®tY) o pe+) L AP

For p < d—2, nonzero An®*1) corresponds to monopoles or vortices. They can be suppressed

by modifying (3.174) to

g S (A — 2@ R i Y G DAeH) (3.176)

(p+1)-cell (p+2)-cell
where @(*7=2) is a real-valued (d—p—2)-form field, which acts as a Lagrange multiplier imposing
the flatness constraint of n®*1). We will refer to (3.176) as the modified Villain action of the

U(1) p-form gauge theory. In addition to (3.175), this theory also has a gauge symmetry
ald=7=2)  Gd=r=2) 4 AgU=P=3) 4 9rf(d-p-2) (3.177)

where @@ 73 is real-valued, and k(@72 is integer-valued.

For p = d — 1 we cannot write (3.176). Instead, in this case we can add another term

B (d—1) (N2 | (d)
B Z(Aa —2mn'Y)* + i Z n'“ . (3.178)

d-cell d-cell

This is a U(1) gauge theory of a (d — 1)-form gauge field with a @-parameter. (Compare with
(3.106) and (3.108), which corresponds to p = 0 and d = 1.) Note that this is a lattice version of
the gauge theory with §. Unlike the continuum presentation, here, the f-term is associated with
the integer-valued field. The topological charge >, . n@ is manifestly quantized and therefore

0~ 0+ 2.
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Duality

Using the Poisson resummation formula (3.6), we can dualize the modified Villain action (3.176)

of a p-form gauge theory to the modified Villain action of a (d — p — 2)-form gauge theory

1
2(2m)%8

S (a2 g1yt N DAL (3.179)
(p+1)-cell (pF1)-cell
where 72(4P~1 is integer-valued. We can interpret 7l®?~1 as a Z gauge field that makes a(4—?=2)

compact because of the gauge symmetry

ald=—p=2) o gld=p-2) 4 AGd—»=3) 4 o L(d-p—2) ’
(3.180)
pld=rp=1)  pld=p=1) 4 ALd=Pp=2)

The field a® is a Lagrange multiplier that imposes the flatness constraint of 72(4~?=1. When d
is even, and p = %, the model (3.176) is self-dual with § «+» m

Global symmetries

In all the three models, (3.172), (3.174), and (3.176), there is a p-form electric symmetry [5],
which acts on the fields as

a® s q® 4@ (3.181)

where AP) is a real-valued, flat p-form field. Due to the gauge symmetry (3.175), the electric

symmetry is U(1) rather than R. In (3.174) and (3.176), the Noether current of electric symmetry

iS19

(1)
27

Jép-irl) — iﬁ(Aa(”) _ Qﬂ-n(zﬂ-l)) - % (A&(d—p—Q) o (d—p— 1)) , (3.182)

which is conserved because of the equation of motion of a®. The electric charge is

Qe(MEP7Y) = > xJFH (3.183)

dual (d—p—1)-celleM(d=p=1)

19The Hodge dual AP is a (d — p)-form field on the dual (d — p)-cells of the lattice.
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where M2~ is a codimension-(p + 1) submanifold along the dual (d — p — 1)-cells of the

lattice. The electrically charged objects are the Wilson observables

WeM®P) =exp i > a®| (3.184)
p-celle M(P)
where M®) is a dimension-p submanifold along the p-cells of the lattice.
The theory (3.176) (but not (3.172) or (3.174)) also has a (d—p—2)-form magnetic symmetry

[5], which acts on the fields as

gld—p=2) _y g(d=p=2) 4 \(d—p—2) (3.185)

)

where A4 P=2) is a real-valued, flat (d — p — 2)-form. Due to the gauge symmetry (3.177), the

magnetic symmetry is U(1). The Noether current of magnetic symmetry is?

(1)
2w

Jld=p=1) — _ *x(Aal?P72 — opp(drb)y) = * (Aa®) — 271y | (3.186)

(2m)2p

which is conserved because of the equation of motion of a(*?=2). The magnetic charge is

Qu(MPTy = Y gl (3.187)

(p+1)-celle M (P+1)

where M@V is a dimension-(p + 1) submanifold along the (p + 1)-cells of the lattice. The

magnetically charged objects are the 't Hooft observables

Wiy (MUP2)) = exp | > P21 (3.188)

dual (d—p—2)—celle/\;t(dfpf2)

where M@ 72 is a codimension-(p + 2) submanifold along the dual (d — p — 2)-cells of the

lattice.

20Recall that «x AP) = (—1)P(d=p) A(P),
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Long-distance limit

In the continuum limit, the modified Villain model (3.176) becomes a gapless continuum p-form
gauge theory
1

2 dlz (daP)? . (3.189)

This can be derived, as above, by choosing a convenient gauge where most of the integer-valued
fields vanish and then redefining the real lattice variables appropriately.?!

An important question is whether the lattice gauge theory (3.172), or equivalently its Villain
version (3.174), flow at long distances to the same gapless theory (3.189). Unlike the modified
Villain model, these two lattice models have only the electric symmetry, but no magnetic sym-
metry. So without fine-tuning, the long-distance theory is generically deformed by the 't Hooft
operators. For the deformation to be possible, the 't Hooft operators have to be local, point-like
operators. This is the case only for p = d — 2. This is obvious in its dual version where the dual
field is a scalar and the monopole operator gives it a mass. This implies that without fine-tuning
a d-dimensional p-form lattice gauge theory can flow to a gapless p-form gauge theory at long
distance unless p = d — 2, in which case, the theory is generically gapped at long distance. This
is the famous Polyakov mechanism [93].

We conclude that for p = d — 2, where the standard U(1) lattice gauge theory is gapped, the

modification of the lattice gauge theory (3.176) keeps it massless.

3.6.2 Appendix C.2: Zy gauge theory

We now describe a d-dimensional Villain Zy p-form gauge theory [119,129]. On each p-cell,
there is an integer field m® and on each (p + 1)-cell, there is an integer field n®*1). The action

is

2 2
oY (Al Nar 2 (3.190)
(p+1)-cell

21The continuum theory can also have additional f-parameters associated with various characteristic classes of
the gauge field. Our lattice formulation leads to the term %da(p) for p = d—1, but not to the other #-parameters.
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with the integer gauge symmetry

m® ~m® 4+ A¢PD 4 NE@)
(3.191)
nPt) o e+ L AL®)

The theory has an electric Zy p-form global symmetry [5], which shifts m® by a flat integer
p-form field.
In the limit 8 — oo, the field strength obeys Am = 0 mod N [130,131], and we can replace

the action by

2me ~ (d—p—
~ m® Apd—r=1) (3.192)

p-cell

where (¥~ is an integer-valued field with the integer gauge symmetry
a1 pld=r=1) 4 Afld=r=2) 4 Ngld—p=1) (3.193)

This describes a topological Zy lattice gauge theory [26,29]. The action (3.192) is similar to the
one in [29] except that the fields there are Zy variables while here we use Z variables with NZ

gauge symmetry.

Duality

As in Appendix B.2, we can dualize the Zy p-form gauge theory (3.190) by dualizing the integer

field n®*Y to an integer field A(*P—1:

1 (e 2mi ~ (d—p—

dual (d —p — 1)-cell p-cell

For p < d — 1, we can introduce new gauge symmetries together with Stueckelberg fields, and

write the action as

1 (e e dep— 2mi dep—
73 Z (AP~ — Npld=p=1) _ pld=p=1)y2 4 ~ Zm(p)An(d p=1) (3.195)

dual (d —p — 1)-cell p-cell
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with the integer gauge symmetry

m@P=2) ~ g ldp=2) L Apd-P=3) 4 (d=p=2)

pld=p=1)  pld=—p=1) _ q(dfpfl) ’

(3.196)
pld=p=1)  pld=p=1) 4 AL(d=p=2) 4 Nq(d—p—l) :

m® ~ m® L A1) L NE®

2]’:[22'8 to a (d — p — 2)-form gauge

The duality maps a p-form gauge theory with coefficient

theory with coefficient % that couples to a topological Zy (d — p — 1)-form gauge theory.
For d = 2 and p = 0, this reduces to the Kramers-Wannier duality of the Zy clock model
reviewed in Appendix B.2. The duality of the d = 3 and p = 1 system is the famous duality
of the 3d clock model [132,125,133] and for d = 4 and p = 1 it is the famous self-duality

of [132,125,134,133,119,129).

Real BF-action and the continuum limit

This theory can be described using several different actions. Here we describe some actions using
real fields that are similar to various continuum actions.

We start with the integer BF-action (3.192) and replace the integer-valued gauge fields m(®)

(d—p—1

and n ) with real-valued gauge fields a® and 5@ =Y. We constrain these real-valued

fields to integer values by adding integer-valued fields (4~ and n»*!). Furthermore, since the
gauge fields a® and b@?=Y have real-valued gauge symmetries instead of integer-valued gauge

d—p—2

symmetries, we introduce Stueckelberg fields ¢~ and gz~5( ) for the gauge symmetries. We

end up with the action

N ~ -
b (r) (Ab(dfpfl) — 2 (dfp)) +i(—=1)PN (p+1) (d—p—1)
a m { n
27 p-cell ' ( ) (p%cell
(3.197)
—i(=1)" Z nPrOAHEP-2) 4y Z AP Dpd=p)
(p+1)-cell p-cell
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We will refer to this presentation of the model as the real BF-action, which uses both real and
integer fields.

As a check, summing over Mm@ ") and n®+Y constrains

L agrv = %Tm(p) jd-p-1) _ % AGld—=2) — %Tﬁ(d—p—n , (3.198)

» _
a N ,

where m® and 7(*P~1) are integer-valued fields. Substituting them into (3.197), we recover the
action (3.192).

The action (3.197) has the gauge symmetry

a® ~ a® £ Aa® Y 1 orE®
pld=—p=1)  pld=p=1) 4 Ag(d—p—Q) + Qﬂq(d p— 1)

Pt~ Pt 4 ARP)

(3.199)
M@ ~ pld=p) 4 Agld-r=1)

(=1  H—1) —2 (r—1) (p—1)
X PP+ AP+ NatP™ Y + 2k ,
Qg(d—p—Z) ¢(dp2+A’}/dp3+Nﬁdp2)—|—2 q(dPQ)’
where a®=1), gld=p=2) ~(~2) 5(d=p=3) are real-valued and k:ép_l), c]éd_p_z) are integer-valued.
nother action 1s obtained by replacing m'“"? by a real-valued fie 2(d=p) 1 Apld=P=1) an
Anoth ion is obtained b lacing (%P b l-valued field F(4=P) + Ap(@=P=1) and

adding an integer-valued field n® to constrain it. This leads to the action

_ Z (Ap@P=D — Na® — 275n@)Fld=p) 4 j(_1)? Z (An® 4 NpE+D)pld-r=1)

P cell (p+1)-cell

—i(=1)? Z nPTAHE—P=2)

(p+1)-cell

(3.200)

These fields have the same gauge symmetries as in (3.199). In addition, the gauge symmetries

also act on n(®

n® ~ p® 4 Akép—l) _ NE® (3.201)
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We can interpret the action (3.200) as Higgsing the U(1) gauge theory of a® to a Zy theory
using the fields ¢®~Y of charge N.

Alternatively, we can integrate out ¢®~1, ¢(4=7=2) which constrain n®*+V, m@P to be flat
gauge fields. Using the gauge symmetry of k® §(@P=1 we can gauge fix n®*tV) m(=P) to be
zero almost everywhere except at a few cells that capture the holonomy. The residual gauge
symmetry shifts a® and @71 by 27 multiples of flat integer gauge fields. Let us define two

new fields a®, b(@=P=1) guch that

Aa®? = Aa® — 9@+t

Y

(3.202)

AD=PD = ApUP=Y) o7y (d-p)

Y

and a® = q®, pld—r=1) = p@>=1) 4lmost everywhere. Although a®,b@P=1 are single-valued
fields, a®, b@7=1) can have nontrivial transition functions. In terms of the new variables, the
Euclidean action is

1N

(D) AR(d=p=1) | ;(_1\p (p+1)}(d—p—1)
o a‘P’ Ab +i(—=1)PN Z n b , (3.203)

p-cell (p+1)-cell
where n"*1) vanishes almost everywhere except at a few (p + 1)-cells, which encode the infor-
mation in the transition function of a®*V). For d = 1 and p = 0, the action (3.203) reduces to
the quantum mechanics action (3.120).
The real B F-action is closely related to the continuum field theory limit. In this gauge choice,

the continuum limit is

Al / a® gptd—r=1 (3.204)
2m

d=p=1) and rescaled them by appropriate powers of the

where we dropped the bars on a® and b
lattice spacing a. We also omitted here the terms that depend on the transition functions of a®
and b7~V Asin (3.117), these terms are actually essential in order to make (3.204) globally

well defined. Here a® is a U(1) p-form gauge field and @21 is a U(1) (d — p — 1)-form gauge
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field. This is the known continuum action of the Zy p-form gauge theory [32,33,29].

Relation to the toric code

We now review the well-known fact that the low-energy limit of the Zy toric code [135] is
described by the topological Zy lattice gauge theory [26,29], which in turn is given by the
continuum Zy gauge theory.

Consider the Zy toric code on a 2d periodic square lattice. On each link, there is a Zy
variable U and its conjugate variable V. They obey UV = e*™/NVU and UYN = V¥ = 1. The

Hamiltonian consists of two commuting terms G and L:

Htoric = _/Bl Z G — 62 Z L+cec ) (3205)

site plaq

where G is an oriented product of V and V' around a site and L is an oriented product of U
and U' around a plaquette.

The ground states satisfy G = L = 1 for all sites and plaquettes, while the excited states
violate some of these conditions. It is common to refer to the dynamical excitations that violate
only G =1 at a site as the electrically-charged excitations and those that violate only L =1 at
a plaquette as the magnetically-charged excitations.

The toric code has a large non-relativistic electric and magnetic Zy one-form symmetry
(in the sense of [79]). The symmetries are generated respectively by the closed loop operator
W, made of V and VT, and the closed loop operator W,, made of U and U'. Unlike the
relativistic one-form symmetry of [5], these symmetry operators are not topological, i.e., they
are not invariant under small deformations.

In the (1, s — oo limit, the Hilbert space is restricted to the ground states, which satisfy
G = L =1 for all sites and plaquettes. In the restricted Hilbert space, there are no electrically-
charged or magnetically-charged excitations. So, the closed loop operators W, and W,, are

topological, and they generate a relativistic electric and magnetic Zy symmetry, respectively.
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Consider the toric code in the £1, fo — oo limit in the Lagrangian formalism on a 3d Euclidean
lattice. For each spatial link along the ¢ = x,y direction, we introduce an integer field m;
for the Zy variable U = exp(3m;), and an integer field 7; for the conjugate Zy variable
V = exp(%ten;). The field 72; naturally lives on the dual links along the j direction.

To impose the constraints G = L = 1, we introduce two integer-valued Lagrange multiplier
fields. On each 7-link, we introduce an integer field m, to impose G = 1, or equivalently
€9A;n; = 0 mod N. On each dual 7-link (or equivalently each xy-plaquette), we introduce an
integer field 72, to impose L = 1, or equivalently €/A;m; = 0 mod N. In terms of these integer

fields, the Euclidean action of the system is precisely the topological Zy lattice gauge theory
(3.192) with d =3 and p = 1.
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Chapter 4

Anomalies in the Space of Coupling

Constants

4.1 Preliminary and Summary

't Hooft anomalies lead to powerful constraints on the dynamics and phases of quantum field
theory (QFT). They also control the properties of boundaries, extended excitations like strings
and domain walls, and various defects.

't Hooft anomalies do not signal an inconsistency of the theory. Instead, they show that some
contact terms cannot satisfy the Ward identities of global symmetries. More generally, they are
an obstruction to coupling the system to classical background gauge fields for these symmetries.

In this chapter we generalize the notion of 't Hooft anomalies to the space of coupling con-
stants. In addition to coupling the system to classical background gauge fields, we also make
the various coupling constants spacetime dependent, i.e. we view them as background fields.
The generalized 't Hooft anomalies are an obstruction to making the coupling constants and the
various gauge fields spacetime dependent.

As with the ordinary ’t Hooft anomalies, we use these generalized anomalies to constrain

the phase diagram of the theory as a function of its parameters and to learn about defects
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constructed by position-dependent coupling constants.

4.1.1 Anomalies and Symmetries

A useful point of view of 't Hooft anomalies is to couple a system with a global symmetry to
an appropriate background gauge field A. Here A denotes a fixed classical source and leads
to a partition function Z[A]. Depending on the context, A could be a standard background
connection for an ordinary continuous (0-form) global symmetry, or an appropriate background
field for more subtle concepts of symmetry such as a discrete gauge field for a discrete global
symmetry, a higher-form gauge field for a higher-form symmetry [5], or a Riemannian metric for
(Wick rotated) Poincaré symmetry. Additionally, the partition function may depend on discrete
topological data such as a choice of spin structure in a theory with fermions or an orientation
on spacetime. We will denote all this data by A.

Naively one expects that the resulting partition function Z|A] should be gauge invariant under
appropriate background gauge transformations. An 't Hooft anomaly is a mild violation of this
expectation. Denoting a general gauge transformation with gauge parameter A (or coordinate
transformation) as A — A%, the partition function Z[A] is in general not gauge invariant.
Instead, it transforms by a phase, which is a local functional of the gauge parameter A and the

gauge fields A
214 = Z[A] exp (—2m' /X a(\ A)) , (A1)

where X is our d-dimensional spacetime.

The partition function Z[A] is subject to a well-known ambiguity. Different regularization
schemes can lead to different answers. This ambiguity can be absorbed in adding local countert-
erms to the action. These counterterms can depend on the dynamical fields and on background
sources. This freedom in adding counterterms is the same as performing a redefinition in the
space of coupling constants. A special case of such counterterms are those that multiply the unit

operator, i.e. they depend only on classical backgrounds A. We refer to these terms as classical
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counterterms or sometimes simply as counterterms when the context is clear. An essential part
of our discussion will involve such classical counterterms. The 't Hooft anomaly for the global
symmetry is what remains of the phase in (4.1) after taking into account this freedom.!

Thus, the set of possible 't Hooft anomalies for a given global symmetry is defined by a
cohomology problem of local phases consistent with the equation (4.1) modulo the variation of
local functionals of the gauge field A.

It is convenient to describe anomalies using a classical, local action for the gauge fields A in
(d + 1)-spacetime dimensions. Such actions are also referred to as invertible field theories.? In
this presentation the d-dimensional manifold X supporting the dynamical field theory is viewed
as the boundary of a (d + 1)-manifold Y, and we extend the classical gauge field sources A to

the manifold Y. On Y there is a local, classical Lagrangian —2miw(A) with the property that

exp (zm /Y W(AY) — 2mi /Y Wx)) ~ exp <2m /X a(A,A)) | (4.2)

Thus on closed (d + 1)-manifolds the action w defines a gauge-invariant quantity, while on
manifolds with boundary it reproduces the anomaly.> We refer to w(A) as the Lagrangian of the

anomaly theory and we define the partition function of the anomaly theory as

A[A] = exp <2m' / W(A)> | (4.3)

1 As noted in [8], one can always remove the anomalous phase by adding a d-form background field A9 with
a coupling i [ x AD A can be thought of as a background gauge field for a “d — 1-form symmetry” that does
not act on any dynamical field. (Such couplings are common in the study of branes in string theory.) Then the
anomaly is removed by postulating that under gauge transformations of the background fields it transforms as
Ald) 5 A(d) 4 g\d=1) _ 2mic(\, A). The term with A(?~1) is the standard gauge transformation of such a gauge
field and the term with «, which cancels (4.1), reflects a higher-group symmetry. See e.g. [8-10] and references
therein.

In condensed matter physics, symmetry protected topological orders (SPTs) are also characterized at low
energies by such actions. Depending on the precise definitions and context, “SPT” may be synonymous with
“invertible field theory”, or may instead refer to the deformation class of an invertible field theory, i.e. the
equivalence class of invertible theories obtained by continuously varying parameters.

3In certain cases, there is no Y such that Y = X and A on X is extended into Y. Then, one can construct an
anomaly free partition function by assuming that X is a component of the boundary of Y and Y has additional
boundary components.
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Using these observations, we can present another point of view on the partition function of

a theory with a 't Hooft anomaly. We can introduce a modified partition function as follows:

Z|A] = Z[ A exp (27ri /Y w(A)) : (4.4)

In (4.4), the manifold Y is again an extension of spacetime. Using the transformation law (4.1)

and the definition (4.2) of w we conclude that the partition function is exactly gauge invariant
Z[AN = Z[A] . (4.5)

The price we have paid is that the partition function now depends on the extension of the classical
fields into the bulk. In some condensed matter applications, this added bulk Y is physical. The
system X is on a boundary of a space Y in a non-trivial SPT phase. The 't Hooft anomaly of
the boundary theory is provided by inflow from the nontrivial bulk Y. This is known as anomaly
inflow and was first described in [13]. (See also [136].)

Although the partition functions Z and Z are different, an essential observation is that, for
A = 0, they encode the same correlation functions at separated points. It is this data that we
view as the intrinsic defining information of a quantum field theory. However, one advantage
of the presentation of the theory using Z is that it clarifies the behavior of the anomaly under
renormalization group flow.

First, such a transformation can modify the scheme used to define the theory in a continuous
fashion. This means that in general, d-dimensional counterterms are modified along the flow.
Second, we can also ask about the behavior of the classical anomaly action w which resides
in (d + 1) dimensions. If we view this term as arising from the long distance behavior of
massive degrees of freedom (a choice of scheme) then along renormalization group flow we can
continuously adjust the details of these heavy degrees of freedom and hence w could evolve
continuously as well. Thus, a renormalization group invariant quantity is the deformation class

of the action w, i.e. all actions that may be obtained from w by continuous deformations.
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In the applications to follow, we therefore focus on physical conclusions that depend only on
the deformation class of w. (We will also see that theories related by renormalization group flow
can produce different expressions for w in the same deformation class). In particular, any theory
with an anomaly action w that is not continuously connected to the trivial action cannot flow at
long distances to a trivially gapped theory with a unique vacuum and no long-range degrees of
freedom.* It is this feature of 't Hooft anomalies that makes them powerful tools to study the
dynamics of quantum field theories.

In this chapter, we generalize the notions above to the space of parameters of a QFT. We
will describe how certain subtle phenomena can be viewed as a generalization of the concept of
anomalies from the arena of global symmetries to this broader class of sources. In particular
we will see how such anomalies of d-dimensional theories can also be summarized in terms of
classical theories in d+ 1-dimensions. We will use this understanding to explore phase transitions
as the parameters vary and properties of defects that are associated with spacetime dependent
coupling constants.

Our analysis extends previous work on this subject in [137-141]. (For a related discussion in
another context see e.g. [142].) Finally, we would like to point out that an anomaly in making
certain coupling constant background superfields was discussed in [143,144]. It would be nice to

phrase these anomalies and ours in a uniform framework.

4.1.2 Anomalies in Parameter Space: Defects

Instead of phrasing the analysis above in terms of background fields, it is often convenient to
formulate the discussion in terms of defects and extended operators. Indeed, an ordinary global
symmetry implies the existence of codimension one operators that implement the symmetry
action. This paradigm also extends to other forms of internal symmetry: for instance p-form

global symmetries are encoded in extended operators of codimension p + 1 [5]. Geometrically,

4A trivially gapped theory by definition has a gap in its spectrum of excitations and its long distance behavior
is particularly simple. In particular, it has a single ground state on any space of finite volume. This means that it
does not have even topological degrees of freedom at low energies. In this case the low-energy theory is a classical
theory of the background fields also referred to as an invertible theory.
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0 0 O(x)
0 > 0 >
—o00 X 400 —00 X +o00
(a) Smooth Interface (b) Sharp Interface

Figure 4.1: Interfaces defined by spatially varying coupling constant §(z). In (a), the variation
is smooth and the resulting interface dynamics are universal. In (b), the variation is abrupt.
The resulting worldvolume dynamics is not universal and can be modified by coupling to degrees
of freedom on the interface (schematically denoted O(z) above. As we will discuss, for certain
special choices of O(z), an abrupt interface can be made completely transparent.

these symmetry defects are Poincaré dual to the flat background gauge fields described above.
These extended operators have the property that they are topological: small deformations of
their positions do not modify correlation functions.

Many of the implications of 't Hooft anomalies are visible when we consider correlation
functions of these extended operators. In this context 't Hooft anomalies arise as mild violations
(by phases) of the topological nature of the symmetry defects. This perspective points the way
to a natural generalization of the concept of anomalies to the space of coupling constants in
quantum field theories. We promote the parameters of a theory to be spacetime-dependent and
explore the properties of the resulting topologically non-trivial extended objects.

An important example, which will occur repeatedly below, is a circle-valued parameter such
as a f-angle in gauge theory. This can be made to depend on a single spacetime coordinate x,
and wind around the circle as x varies from —oo to +oo (or around a nontrivial compact cycle
in spacetime). If the bulk theory is trivially gapped, i.e. does not even have topological order
(as in e.g. 4d SU(N) Yang-Mills theory), this leads to an effective theory in d — 1 spacetime
dimensions. Depending on the profile of the parameter variation there are several possibilities

for the physics (illustrated in Figure 4.1).

e [f the parameter variation is smooth, i.e. it takes place over a distance scale longer than

the UV cutoff, then the resulting interface dynamics is completely determined by the UV
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theory. It is universal.® In other words, these smooth interfaces are well defined observables
of the QFT. Such interfaces have been widely studied for instance recently in 4d QCD
and related applications to 3d dualities [28,145,1,146]. One of the main applications of
our formalism is to give a systematic point of view on the worldvolume anomaly of such
interfaces. In particular we will see how they may be obtained from inflow from the d + 1-
dimensional classical theory encoding the bulk anomaly in the space of parameters. We

will refer to such interfaces as “smooth interfaces” or simply interfaces.

e If the parameter variation is abrupt, more precisely, if it takes place over a distance scale
comparable to the UV cutoff, the dynamics on the interface depends on additional UV
data. It is not universal. For instance, such a sharp interface can always be decorated
by coupling it to a (d — 1)-dimensional QFT. To illustrate the difference more explicitly,
consider for instance including in the UV Lagrangian a term of the form

1
T AATLId

oL 0M0(x)V,(x) , (4.6)

where A is a UV cutoff scale, and V), is an operator of scaling dimension A. If A is
sufficiently large, and the gradients 0"6(z) are small compared to the cutoff scale then this
term is irrelevant at large distances. (Dangerously irrelevant operators should be treated
separately.) However, when the gradients 0*6(z) are large terms such as (4.6) become
relevant and the interface dynamics depends on their coefficients. We will refer to such

interfaces as “sharp interfaces” or as defects.

e A special case of such a sharp interface is the following. If the parameter variation is
completely localized and the discontinuity and (d — 1)-dimensional theory are chosen ap-
propriately, then the resulting interface can be made to be completely transparent. We

will refer to these as “transparent interfaces.” Such transparent interfaces will play a key

5Following standard terminology, universal properties of quantum field theories are independent of the details
of the UV theory at the cutoff scale.
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role below.

We should emphasize that these interfaces should be distinguished from domain walls. Do-
main walls are also codimension one objects. But unlike the interfaces, they are dynamical
excitations. They interpolate between two degenerate ground states and can move around. In
contrast, interfaces are pinned by the external variation of the parameters.

While real-valued parameters often lead to codimension one defects, complex-valued param-
eters are naturally associated with defects of codimension two. A characteristic example is a
4d Weyl fermion with a position dependent complex mass m(z,y) depending on two spacetime
coordinates and winding n times around infinity. This example is the essence of the phenomenon
investigated in [147,148,13]. The winding mass leads to two-dimensional Majorana-Weyl fermion
zero modes localized at the zeros of the mass.

Below we will explain how this example can be viewed as an instance of anomalies in the
space of masses. In particular, this means that the index theorem counting zero modes can be
obtained by integrating an appropriate anomaly six-form (related to the 5d classical anomaly

theory by descent):®

Ts = v(m) ATe(R A R) (m)Ap1, (4.8)

38472 T

where v(m) is a two-form on the mass parameter space with total integral one, and p; is the first
Pontrjagin class of the manifold.” For instance, it is often natural to take vy(m) = 6 (m)d*m.

One virtue of this presentation of the anomaly in the space of mass parameters is that they

6In general spacetime dimension d we can define an anomaly (d + 2)-form Z;,» by the property that the
anomalous variation of the action (a(\, A) above) is computed by

da(\, A) = dw , dw =Tg42 , (4.7)

and above ¢ denotes the gauge variation. However, it is also possible for the anomaly w(A) to be non-trivial and
yet nevertheless the (d + 2)-form Z,1 o vanishes.

"Compactifying the complex mass plane by adding the point at infinity, the parameter space is topologically
a two-sphere. This means that the free 4d Weyl fermion gives an elementary example of a field theory with an
effective two-cycle in the space of parameters. More complicated examples of such two-cycles in the parameter
space involving M5 branes or electric-magnetic duality were recently discussed in [149, 139, 140] in connection
with some earlier assertions in [150].
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are manifestly robust under a large class of continuous deformations. For instance, we can deform
the 4d free fermion by coupling it to any interacting theory preserving the large |m| asymptotics.
The anomaly (4.8) remains non-trivial and implies that in any such theory, 2d defects arising

from position-dependent mass with winding number n have chiral central charge, ¢, —cr = n/2.

4.1.3 Anomalies in Parameter Space: Families of QFTs

Another significant application of our techniques is to constraining the properties of families of
QFTs. A typical situation we will consider is a family of theories labelled by a parameter such
that at generic values of the parameter the theory is trivially gapped. An anomaly in the space
of coupling constants can then imply that somewhere in the parameter space the infrared must
be non-trivial.

An illustrative example that we describe in section 4.4 is two-dimensional U (1) gauge theory
coupled to N scalar fields of unit charge. At long distances the theory is believed to generically
have a unique ground state. However, this conclusion cannot persist for all values of the coupling
constants: for at least one value 6, € [0, 27) the infrared must be non-trivial, and hence there is
a phase transition as 6 is dialed through this point.

We will argue for this conclusion by carefully considering the periodicity of 8. Placing the
theory on R? in a topologically trivial configuration of background fields, i.e. all those necessary to
consider all correlation functions of local operators in flat space, the parameter 6 has periodicity
2m. However when we couple to topologically non-trivial background fields the 27-periodicity is
violated.

Specifically, this gauge theory has a PSU(N) = SU(N)/Zy global symmetry. In the presence
of general background fields A for this global symmetry group the instanton number of the
dynamical U(1) gauge group can fractionalize. This means that in such configurations the
periodicity of # is enlarged to 2wrN. This violation of the expected periodicity of # in the
presence of background fields is conceptually very similar to the general paradigm of anomalies

described in section 4.1.1. As in the discussion there, we find that the 27 periodicity of € can be
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restored by coupling the theory to a three-dimensional classical field theory that depends on 6.

Its Lagrangian is®

L9 Ay (4.9)

W =

where wq(A) € H?*(X,Zy) is the second Stiefel-Whitney class? measuring the obstruction of
lifting an PSU(N) bundle to an SU(N) bundle. In particular, this non-trivial anomaly must
be matched under renormalization group flow now applied to the family of theories labelled by
6 € [0,2m). A trivially gapped theory for all # does not match the anomaly and hence it is
excluded.

We can also describe the anomaly and its consequences somewhat more physically as follows.
The theories at # = 0 and # = 27 differ in their coupling to background A fields by a classical
function of A (a counterterm) 2Xw,(A) [27]. However, since the coefficient of this counterterm
must be quantized, this difference cannot be removed by making its coefficient #-dependent in
a smooth fashion. This means that at some 6, € [0, 27) the vacuum must become non-trivial so
that the counterterm can jump discontinuously. For instance in the special case N = 2 with a
potential leading to a CP' sigma model at low energies, the theory at § = 7 is believed to be a
gapless WZW model. For larger N, the CPY~! model is believed to have a first order transition
at 0 = 7 with two degenerate vacua associated to spontaneously broken charge conjugation
symmetry.

This example is emblematic of our general analysis below. We discuss QFTs with two es-
sential properties. First, parameters can change continuously between two points with the same
local physics. (In this example we shift the #-parameter by 27.) Second, the counterterms of
background fields after the change are different. (In this example, the coefficient of the coun-
terterm wq(A) is different.) Furthermore, if the coefficient of the counterterm is quantized, this

difference cannot be eliminated by making its coefficient parameter-dependent in a continuous

8 A non-expert physicist can think of the cup product as a version of a wedge product of differential forms
appropriate for cohomology classes valued in finite groups.

9In the mathematics literature the Stiefel-Whitney classes are defined for principal O(N)-bundles. The char-
acteristic class which measures the obstruction to lifting a projective bundle to a vector bundle could be called
a “Brauer class”.
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fashion. We interpret this as a 't Hooft anomaly in the space of parameters and other background
fields.

Then, the low-energy theory must saturate that anomaly. If it is nontrivial, i.e. gapless
or gapped and topological, it should have the same anomaly. And if it is gapped and trivial
for generic values of the parameters, there must be a phase transition for some value of the
parameters. The fact that discontinuities in counterterms require phase transitions is widely
known and applied, here we see how to phrase this idea in terms of 't Hooft anomalies.*”

The example of U(1) gauge theories described above is also a good one to illustrate the
relation of our discussion to previous analyses of anomalies of discrete symmetries such as time-
reversal, T, and charge conjugation, C, in these models discussed in [27,158,159]. These theories
are T (and C) invariant at the two values § = 0 and § = 7. For even N when 6 = 7, there is
a mixed anomalies between T (or C) and the PSU(N) global symmetry, and hence the long-
distance behavior at § = 7 cannot be trivial in agreement with the general discussion above. For
odd N the situation is more subtle. In this case there is no anomaly for € either 0 or 7, but it is
not possible to write continuous counterterms as a function of # that preserve either T or C in the
presence of background A fields at both 6 = 0, 7 [27]. (This situation was referred to in [160-162]
as “a global inconsistency.”) Again this implies that there must be a phase transition at some
value of # in agreement with our conclusion above.

Our conclusions agree with previous results and, significantly, extend them in new directions.
Indeed, the focus of the previous analysis is on subtle aspects of discrete symmetries, while in
the anomaly in the space of parameters (4.9) T and C play no role. This means that the anomaly
in the space of parameters, and consequently our resulting dynamical conclusions, persists under
T and C-violating deformations. We illustrate this in a variety of systems below. This example
is again characteristic. By isolating an anomaly in the space of parameters of a QFT we are able

to see that the conclusions are robust under a large class of deformations, and apply to other

10For instance in the study of 3d dualities the total discontinuity in various Chern-Simons levels for background
fields as a parameter is varied is independent of the duality frame and provides a useful consistency check on
various conjectures [56,57,31,58,151-153,59,154-157].
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theories.

4.1.4 Synthesis via Anomaly Inflow

We have now described two general physical problems of interest:

e Anomalies on the worldvolume of topologically non-trivial interfaces and defects created

by position-dependent parameters.

e Discontinuous counterterms in a family of QFTs and consequences for the long-distance

behavior.

One of the basic points of our analysis to follow is that the solution of these two conceptually
distinct problems is unified via anomaly inflow. Indeed the same (d + 1)-dimensional classical
theory can be used as a tool to analyze both phenomena. The difference between the applications
is geometric. To describe a defect, the coupling constants vary in the physical spacetime. To
describe a family of QFTs the coupling constants vary in the ambient directions extending the
physical spacetime.

To illustrate this essential point, let us return again to the example of two-dimensional U (1)
gauge theory coupled to N scalars. The same anomaly action (4.9) introduced to restore the 27
periodicity of 6 in the presence of a background A field can be used to compute the worldvolume
anomaly of an interface, where 6 varies smoothly from 0 to 27n, for integer n. In the first
application the two spacetime dimensions have nonzero wy(A) and in the second, they have

nonzero df. In the latter case we simply integrate the anomaly to find

n
Winterface = NwQ(A) s (410)

Since the bulk physics is trivially gapped for generic €, we can interpret the above result as
the anomaly of the effective quantum mechanical degrees of freedom localized on the interface.

We deduce that the ground states of this quantum mechanics are degenerate and they form a
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projective representation of the PSU (V) symmetry (i.e. a representation of SU(N)) with N-ality
n.
Thus we see that these two distinct physical applications are synthesized via anomaly inflow

in the space of coupling constants.

4.1.5 An Intuitive Interpretation in Terms of —1-Form Symmetries

Unlike ordinary 't Hooft anomalies, our anomalies are not associated with global symmetries of
the system. They describe subtleties in the interplay between global symmetries and identifica-
tions in the parameter space. However, in some cases we can make our anomalies look more like
ordinary anomalies in global symmetries. The examples with the periodicity of the #-parameter

4

can be thought of, somewhat heuristically, as related to a “—1-form global symmetry.”

The #-parameter is coupled to the instanton number. Borrowing intuition from string theory,
we can view the instantons as —1-branes. More precisely, instantons are not branes. They are
not well-defined excitations in spacetime. Yet, for many purposes they can be viewed as branes.
Since they are at a point in spacetime, these are —1-branes. Extending this view of instantons,
we can think of them as carrying —1-form charge. Clearly, this is an abuse of language — this
charge is not a well-defined operator acting on a Hilbert space.

By analogy with ordinary charges, we can view 6 as a background classical “gauge field”
for this —1-form symmetry. Since it is circle valued, it can have transition functions where it
jumps by 277, but its “field-strength” df is single-valued. Then, all our anomaly expressions
are similar to ordinary anomalies, except that they involve also these kinds of “gauge fields”.

We should stress, however, that as far as we understand, this intuitive picture of the anomaly

associated with # cannot be extended to other situations where the topology of the parameter

space is different. For example, we do not know how to do it for the examples in section 4.3.
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4.1.6 Examples and Summary

Let us now summarize the examples analyzed below. We begin in section 4.2 with the elementary
example of a quantum particle moving on a circle. This system is exactly solvable and exhibits
a mixed anomaly between the circle-valued parameter 6 and the U(1) global symmetry or its
Zy subgroup. This example also gives us an opportunity to illustrate the various subtleties that
occur when we make parameters position dependent.

In section 4.3 we discuss theories of free fermions in various spacetime dimensions as a
function of the fermion mass. We start with the pedagogical example of a complex fermion in
quantum mechanics. For 3d fermions we discuss how the index theorem of [163] explaining the
discontinuity in the Chern-Simons level in the low-energy theory as real masses are varied from
—0o0 to 0o encodes an anomaly. For 4d Weyl fermions we describe the anomaly involving the
complex fermion mass and explain its relationship to previous work [147,13,148] on fermions
with position-dependent masses.

In section 4.4 we study 2d U(1) gauge theory coupled to charged scalar fields. This includes
Coleman’s original paper [164] and the CP" non-linear sigma model as special cases. These
theories have a circle-valued coupling ¢ and we describe the resulting anomaly in the space of
parameters. Here we extend the recent results of [27,158,159], which focused on the charge
conjugation (C) symmetry of these models at 6 = 0, 7 to variants of these theories without this
symmetry.

In section 4.5 we study four-dimensional Yang-Mills theories with a simply-connected gauge
group G and determine the anomaly (summarized in Table 4.1). Using the logic discussed
above, we also determine the worldvolume anomaly of interfaces interpolating between 6 and
0 + 2rk for some integer k. The anomaly constraints on the interfaces can be satisfied by the
corresponding Chern-Simons theory with level k, Gj. However, as emphasized in [1], there are
other options for the theory on the interface, all with the same anomaly. These generalized
anomalies are invariant under deformations that preserve the center one-form symmetries. For

instance, by adding appropriate adjoint Higgs field we show that the long distance theory can
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Gauge group G One-Form Sym. (Z(G)) Anomaly w
SU(N) Zy 2L [d9P(B)

Sp(N) Zs & [d9P(B)

Eq Zs 2 [d9P(B)

E; Zy 3 [doP(B)

Spin(N), N odd Zsy L[doP(B)
Spin(N), N =2mod 4 Zy X [d0P(B)

Spin(N), N =0mod 4 Ly X Ly 2 [dOP(BL+ Br)+ 4 [df B, UBpg

Table 4.1: The anomaly involving the f-angle in Yang-Mills theory with simply connected gauge
group GG. These QFTs have a one-form symmetry, which is the center of the gauge group, Z(G).
(In particular, the omitted groups G, F}y, Es have a trivial center and hence their corresponding
Yang-Mills theories do not have a one-form symmetry.) The anomaly w depends on the back-
ground gauge field B for these one-form symmetries. (P(B) is the Pontryagin square operation
defined in footnote 24.)

flow to a conformal field theory or a TQFT. These long-distance theories also reproduce the
same generalized anomaly.

In section 4.6 we extend our analysis to four-dimensional SU(N) and Sp(IN) gauge theories
with massive fundamental fermion matter. We will show that, depending on the number of
fundamental flavors NN¢, these theories have a mixed anomaly involving ¢ and the appropriate
zero-form global symmetries. A new ingredient is that there can be nontrivial counterterms with
smoothly varying coefficients which can potentially cancel the putative anomalies. For SU(N)
we find that the anomaly is valued in Zj; with L = ged(N, N¢). In particular the anomaly is
non-trivial if and only if ged(N, Ny) > 1. For Sp(N) we find a Z, anomaly, which is non-trivial
if and only if N is odd and Ny is even. As in the pure gauge theory, the discussion of these
anomalies extends previous analyses that rely on time-reversal symmetry.

We also use these generalized anomalies to constrain interfaces. These anomaly constraints
can be saturated by an appropriate Chern-Simons matter theory. Our analysis extends the
recent results about interfaces in 4d QCD in [28] and explains the relation between them and

the earlier results about anomalies in 3d Chern-Simons-matter theory in [151].
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4.2 A Particle on a Circle

In this section we begin our generalization of the notion of anomalies to families of quantum
systems. We present a simple and well-known example of a particle on a circle. This theory has
a coupling constant # and, as we show, exhibits an anomaly in this parameter space.

The dynamical variable in the theory is a periodic coordinate ¢ ~ q + 2w. The Euclidean

action 1s:

m 9 1 .
= — - — . 4.11
S 5 /qu 27r/dT 04 (4.11)

In the above, 0 is a coupling constant. Since the integral of ¢ is quantized, the effect of 8 is
to weight different winding sectors with a phase. So defined, the parameter 6 appears to be an
angular variable with 6 ~ 6 + 27. For instance the partition function, Z, viewed as a function
of 6 obeys

Z[0+ 27 = Z[60] . (4.12)

Our goal in the following analysis is to clarify the circumstances where this periodicity of 8 is
valid. A distinguished role is played by the global shift symmetry under which ¢ — ¢ + x. We

will see that the 27 periodicity of € is subtle in two related ways:

e [f we try to make € a non-constant function on the circle, the shift symmetry of ¢ can be

broken.

e In certain special correlation functions, related to adding background fields for the shift

symmetry, the 2m-periodicity of € is broken.

We elucidate these points and then discuss their dynamical consequences.

4.2.1 Spacetime Dependent Coupling 6

Let us first attempt to promote the coupling constant € to depend on Euclidean time (which

we assume to be periodic). Thus, we wish to make sense of the functional integral with action

163



(4.11), where now exp(if(7)) is a given function to S!'. Note that unlike the variable ¢(7) in
(4.11) which is summed over, the function exp(if(7)) is a fixed classical variable.
Our first task is to clarify the meaning of the integral:

exp (QL / dr 9<T)q'(7)) | (4.13)

T

In general for a periodic variable such as ¢ or 8, the derivative is always a single-valued function.
Hence when 6 was a constant the integral above was well-defined. However, when we allow 6 to
be position dependent it may wind in spacetime and the integral requires clarification.

A systematic way to proceed is to divide the spacetime circle into patches U;, wherei =1,---n
labels the patches, and each patch is an open interval. (For simplicity we assume that the patches
only intersect sequentially so U; N U; is non-empty only when ¢ = j & 1. We also treat i as a
cyclic variable.)

In each patch we can choose a lift 8; : U; — R. On the non-empty intersections U; N U, the
lifts are related as

Qi = 91'+1 -+ 27TTLZ' s n; € 7z . (414)

The collection of lifts and transition functions yields a well-defined function to the circle. However

it is redundant. If we adjust the data as
(91' — 91 + 2mm; , n; — Ny +m; — miy1 (415)

we obtain the same function exp(i6(7)).
We now define the integral (4.13) using the collection of lifts 6;. In each intersection U; NU;

we choose a point 7;. We then set

¢ : _ i~ [T _ &
exp <% /dT 9(7’)(](7’)) = exp <§ ZZI /Ti1 dr 0;(T)q(1) — i Z1217%(1(7-1)) , (4.16)
It is straightforward to verify the following properties of this definition:
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e If the points 7; defining the limits of the definite integrals are changed, the answer is

unmodified.

e If the lifts 6; and transitions n; are redefined preserving the function exp(if(7)) as in (4.15),

the integral is unmodified.
e [f the patches are refined, i.e. a new patch is added, the integral is unmodified.

e If we change the choice of lift of ¢, for instance if we replace ¢(7;) — ¢(7;) + 27, the integral

is unmodified.
e In the special case of constant #, it reduces to the obvious definition.

Thus, the prescription (4.16) allows us to explore this quantum mechanics in the presence of
spacetime varying coupling constant . More formally, the above may be viewed as a product in
differential cohomology.

It is important to stress that although the definition (4.16) privileges the points 7;, there is
no physical operator inserted at these points. Rather, (4.16) is merely a way to define an integral
in the case where ¢ has non-trivial winding number.

More physically, the varying coupling constant (7) allows us to illustrate the general com-
ments on interfaces from section 4.1.2. When studying a problem with varying coupling constant
0(7) the simplest situation is that 6 varies smoothly. In this case, the long distance behavior
is intrinsic to the theory. We can generalize these situations where 6 varies discontinuously
with a sharp jump at some point 7, so 0(7, — €) = 0(7. + €) + a for some constant a. Such a
configuration is commonly referred to as a sharp interface or defect. In this case the dynamics
are not universal, as any defect may be modified by dressing it by an operator O(7.). What
the definition (4.16) shows, is that in the special case where the discontinuity a is 27n for some
integer n, and the operator O(7,) is taken to be exp(—ing(7.)) then the defect is trivial.

We can now explore aspects of the physics of varying coupling constant. Of particular interest

is the interplay with the global symmetries of the problem. Consider a background 6(7) with
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non-zero winding number

L= % O(r)dr = an (4.17)

around the circle. We claim that in such a configuration the global shift symmetry is broken.

To see this, we shift ¢(7) — ¢(7) + x where x is a constant. We then have from (4.16)

exp (% / dr e(T)q‘(r)) 5 exp (% / dr 0(r)q(7) —z’LX) . (4.18)

Since the remainder of the action (4.11) is obviously invariant under this shift, we can promote

the above to a transformation of the full partition function under shifting ¢ — ¢ + x

Z00(7)] = exp (—% / dr émx) 200(7)] . (4.19)

Since the zero mode of ¢ is integrated over, the above in fact means that correlation functions
vanish unless the insertions are chosen to cancel this transformation. Specifically, consider
inserting [[; exp(if;q(7;)) together with other operators depending only on ¢. From (4.19) we
see that these correlation functions are non-zero only if > it =1L.

As emphasized in section 4.1.1, equation (4.19) is characteristic of phenomena typically re-
ferred to as anomalies. By activating a topologically non-trivial configuration for the background

field 6(7), in this case a non-zero winding number, the global U(1) shift symmetry is violated.

4.2.2 Coupling to Background U(1) Gauge Fields

Another approach to the same problem is to study the particle on the circle, to begin with at
constant coupling 6, in the presence of a background U(1) gauge field A = A.dr for the global

U(1) shift symmetry. The action is modified to

l

S = %/df(q' — A - o /dT (g — A,) (4.20)
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and is invariant under gauge transformations ¢ — ¢ + A(7) and A, — A, + A(7). (Note that
since A(7) transforms the classical field A,, it should be viewed as classical, and as such it cannot
be used to set the dynamical degree of freedom ¢ to zero.) The path integral over ¢ now yields
a partition function Z[f, A] depending on a parameter ¢ and a gauge field A. However, it is no

longer 27-periodic in . Instead:

Z[0 + 2, A] = Z[0, A] exp (—i / dTAT(T)) . (4.21)

One possible reaction to the equation above is simply that the 2m-periodicity of the parameter
0 is incorrect. Instead, more precisely, when discussing the coupling to background gauge fields A
we should take care to also specify the counterterms, i.e. the local functions of the background
fields that may be added to the action. In this case the counterterm of interest is a one-
dimensional Chern-Simons term for the background gauge field A. Thus more precisely we can

write the action

S = %/dT(q' —A)? - QL/dT 0(G— A;) — ik/dTAT(T) : (4.22)
i
where k must be an integer to ensure gauge invariance. Including such a term in the action we

arrive at a partition function Z[f, k, A]. Then (4.21) means that
Z0+2m, kAl =Z[0,k—1,A] . (4.23)

Thus, in this interpretation the true parameter space is a helix that we may view as a covering
space of the circle (where 6 ranges from 0 to 27). The different values of k index the different
sheets in the cover. Said differently, if we demand that two values of the coupling constant are
only considered equivalent if all observables agree, including the phase of the partition function
in the presence of background fields, then there is, by definition, no such thing as an anomaly

in the space of coupling constants.
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4.2.3 The Anomaly

There is however, an alternative point of view, which is also fruitful. Instead of enlarging the
parameter space, we can retain the 2m-periodicity of 6 as follows. We pick a two-manifold Y
with boundary the physical quantum mechanics worldvolume of our problem. We extend the
classical fields # and A into the bulk Y. Then, we define a new partition function as

710, k, Al = Z[0, k, A exp (2miw[0, A]) = Z[0, k, A] exp (% /Y GF) : (4.24)

This modified partition function now obeys the simple 27w-periodicity of 6 even in the presence
of background fields
70+ 27, k, Al = Z[0,k, A] . (4.25)

The price we have paid is that Z now depends on the chosen extension of the classical fields into
the bulk Y.

We can now easily extend our analysis to allow for a non-constant function 6(7). The integral
over Y is defined similarly to (4.16). We divide the manifold Y into patches in each patch we
integrate a lift of 6 times the curvature F'. We add to this integral a boundary contribution,
which in this case is a line integral of the gauge field A weighted by the transition function
0; — 0;. On a closed two-manifold this results in a well-defined action independent of trivializa-
tion: moving the boundary of a patch U; to encompass a new region W formerly contained in
U, leads to a new integral exp (5= [, (6, — 0u,)F) together with a compensating contribution
exp (=5 [op (O, — 0u,)A) .

To see the interplay with the boundary action (4.16) consider now a patch U that terminates
on the boundary. The result is now U(1) gauge invariant even in the presence of general 6().
Indeed, the Wilson lines on the edge of each bulk patch now terminate on the insertions of
exp(—in;q(r;)) and hence are gauge invariant. Thus, the result is a partition function Z[f(r), A]

that is a well-defined function of a circle-valued field exp(i6(7)) and gauge invariant as a function

of A.
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For some purposes it is also useful to apply the descent procedure again to produce an anomaly
three-form. Such a two-step inflow is in general possible when discussing infinite order anomalies
(classified by an integer) such as those computed by one-loop diagrams in even-dimensional

QFTs. In this case we find:
1

Ty =dw =
=T @y

doAF (4.26)

which encodes the anomaly action in (4.24).!1

4.2.4 Dynamical Consequences: Level Crossing

We can use our improved understanding of the behavior of the theory as a function of the #-angle
to make sharp dynamical predictions about the particle on a circle. Specifically, we claim that
for at least one value 6, € [0, 27), the system must have a non-unique ground state.

To argue for this, suppose on the contrary that we have a unique ground state for all . We
can focus on this state by scaling up all the energies in the problem. At each 6, the low-energy
partition function is then that of a trivial system with a single unique state. However, a single
unique state cannot produce the jump (4.21) in the one-dimensional Chern-Simons level. Here it
is crucial that the coefficient of this level is quantized. In particular, this prohibits a continuously
variable phase of the partition function interpolating between the value at 6 = 0 and 6 = 2.

Of course, the free quantum particle on the circle is an exactly solvable system for any 6
and its behavior is well-known. There is a single unique ground state for all § # 7. However for
0 = 7w, where there is an enhanced charge conjugation symmetry, C, acting as ¢ — —q, there
are two degenerate ground states. Thus, the conclusions above are indeed correct, though the
highbrow reasoning is hardly necessary. In terms of anomalies one may derive the degeneracy at
0 = r, following [27], by noting that for this value of 6, there is a mixed anomaly between U(1)

and C and hence a unique ground state is forbidden.

1We can also change the precise representative of the cohomology class appearing in (4.26) without modifying
the essential consequences in (4.25). This means that we can replace df by d(6 + f(0)) with f(#) a 27 periodic
function. In fact as we will see in section 4.3.1, the low-energy theory near 8 = 7 produces a different anomaly
action w related by continuously varying the form df/27 to a periodic delta function §(8 — )d6.
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The advantage of the more abstract arguments is that they are robust under a large number of
possible deformations of this system. It is instructive to proceed in steps. We can first consider
deforming the system by a potential breaking U(1) to Zy and preserving the other discrete

symmetries

5= /dT (%q? — b0+ U(q)> .

e.g. U(q) = cos(Nq). Here, U(q) = U(q + %) guarantees the Zy symmetry and U(q) = U(—q)
guarantees that the C and 7 symmetries are as in the problem without the potential. For
even N, there is a mixed anomaly at 6 = m between C and Zy leading again to ground state
degeneracy.!? For odd N there is no anomaly, but it is impossible to define continuous 6-
dependent counterterms to preserve C at both # = 0 and # = = [27]. This lack of suitable
counterterms was referred to as a global inconsistency in [160,162], also implies a level crossing.
In this theory our anomaly in the space of couplings persists and yields the same conclusion
though it does not single out § = 7 as special.

Finally, we can consider deformations breaking all symmetries, and in particular C and T,
except the Zy symmetry. For instance, we can introduce a real degree of freedom X and consider

the action:

S = /dT (Tq'? ~ i)+ L 4 ixg+ V(X))
21 T on 2
, (4.28)
T
Ulg) =Ula++7)

with generic U(q) (subject to 2F periodicity) and V(X). Note that unlike (4.27), we do not
impose that U(q) is even and therefore we break C and T for all 6. The free particle on a circle
is obtained in the limit U(q) — 0 and M — co. The condition U(q) = U(q + 3F) guarantees
that the Zy symmetry remains, however there is no special value of § with enhanced symmetry.

Nevertheless as we vary 6 from zero to 27 the phase of the partition function changes by the

12The anomaly action is exp (i7r JCUK ) where C is the Zy charge conjugation gauge field and K is the Zy
gauge field. Note that this is only non-trivial when N is even. (Although charge conjugation acts non-trivially
on the Zy symmetry with gauge field K, this action is trivial once we reduce modulo two.)
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insertion of a Zy Wilson line, and thus the anomaly in the space of couplings persists. Hence if
N > 1 we again deduce that somewhere in # we must have level crossing for the ground state
and hence ground state degeneracy.

To deduce how the anomaly action in (4.24) reduces in this more complicated situation, it is
helpful to integrate the action there by parts and express it as

Alf, A] = exp (—i /Y deA) . (4.29)

27

On a closed two-manifold Y this defines the same anomaly action. On a manifold Y with
boundary, (4.29) and (4.24) differ by a choice of boundary counterterm (in this case A.) In the
following, we mostly use expressions such as (4.29) with the understanding that we may need to
add suitable boundary terms.

Using (4.29), we can describe the anomaly action in the deformed theory (4.28) more precisely
as follows. The U(1) background gauge field A is now replaced by a Zy gauge field K. (Our
convention is that the holonomies of K are integers modulo N.) Concretely, we can embed K
in a U(1) gauge field A as A = 2X K. Then we find that (4.29) reduces to the anomaly action

A9, K] = exp (_% /Y a0 UK) . (4.30)

o

This anomaly is non-trivial and implies the level-crossing of that system.!?
In fact even in the general system (4.28), we can give a straightforward argument for level
crossing using a canonical quantization picture. The wavefunctions of states of definite charge &

mod N under the Zy symmetry can be expanded in a Fourier series as

Vg, X)= Y eFFx) (4.31)

j=—o00

130One can also construct a direct analog of the i fY OF anomaly action even in the case of a discrete Zy
symmetry. To do so, we lift the Zx gauge field to a U(1) gauge field and evaluate the integral using the
differential cohomology definition in section 4.4.1.
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theory without C with C at 0 =0, 7
generic symmetry G | #-G anomaly | C-G anomaly at 6 = 7 | no continuous counterterms
q
G —U) v v v

q + potential (4.27) v/ even N v even N v

G=Zn, N>1 odd N X odd N v
q +X system (4.28)

G—TZy. N>1 v No C symmetry No C symmetry

Table 4.2: Summary of anomalies and existence of continuous counterterms preserving C (“global
inconsistency”) in the hierarchy of theories considered above. The left-most column shows the
theory and its symmetry at generic values of . Without using the charge conjugation symmetry;,
all these theories exhibit a mixed 't Hooft anomaly in # and G. The anomaly implies that the
theories cannot have a unique ground state for all values of 6 € [0, 27). For the simpler theories
there is also a charge conjugation symmetry at § = 7, which may suffer from a 't Hooft anomaly.
We have also indicated when the theories lack a continuous counterterm that can preserve C at
both 6 =0, 7.

Let 1 above be the ground state at § = 0. We can track this state as a function of 6. The

Hamiltonian is

1 0 S
H=—|P-—-X — Py +V(X)+U(q) . 4.32
o (P ge = X) gy P VOO + U (432
In canonical quantization, the momentum operator is P, = —i%. From this we see that the

ground state at 6 = 27 is not (g, X), but rather is e'%)(q, X). Physically, this means that as
we dial # from zero to 27, the Zy charge of the ground state wavefunction increases by one unit.

In particular, at some value of 6, level crossing for the ground state must occur.

4.3 Massive Fermions

In this section we consider free fermions in various spacetime dimensions as a function of their
mass parameters. We will see that this gives simple examples of systems with anomalies in their
parameter space. We will also see how these models can be deformed to interacting theories

with the same anomaly.
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4.3.1 Fermion Quantum Mechanics

Consider the quantum mechanics of a complex fermion with a real mass m. Anomalies in

fermionic quantum mechanics were first discussed in [165]. The Euclidean action is

S = / dr (i oy + myty) . (4.33)

This theory has a two-dimensional Hilbert space spanned by two energy eigenstates |+) of energy

E =+m/2. On a Euclidean time circle of length § the partition function is
Z[m] = e Pm/2 4 efm/2 (4.34)

At vanishing mass m the theory has two degenerate ground states, while for non-zero mass, one
or the other state becomes energetically favorable. As we will see, this means that this fermion
quantum mechanics is identical to the theory of a particle on a circle described in section 4.2
where we have isolated the two nearly degenerate states at 6 = m. (See e.g. [166].)

Of particular interest to us is the asymptotic behavior of the theory for large |m|. Regardless
of the sign of m we see that in this limit there is a single ground state and an infinite energy
gap to the next state. Thus, the physics in these two limits is identical. Effectively we can say
that the parameter space of masses is compactified to S*.

This simple free fermion theory has a U(1) global symmetry and can be coupled to a back-

ground gauge field A = A,dr, which modifies the action to

S = / dr (110 — iA )Y + mply — ikA;) (4.35)

Here we have included in the action a counterterm depending only on A, whose coefficient k is
integral. Since we transition between the two states by an action of the ¢ operator, they differ

in their U(1) charge by one unit. Therefore the partition function including A = A, dr is (below
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we have shifted the Hamiltonian so that the energies are £m/2)
Z[m, k, A] = e*$ 4 <e*ﬁm/2 + ePm/2-if A) . (4.36)

Now we see that the theories at large positive and negative mass differ by a local counterterm

. Zim,k, Al .

Note crucially that since k is quantized, there is no way to modify the result (4.37) by adding
a continuous m-dependent counterterm for the background gauge field A. This means that we
can interpret (4.37) as an anomaly involving the mass parameter and the U(1) global symmetry.
Specifically, we define a new partition function by extending the backgrounds, in this case the

gauge field A and the mass m, into a 2d bulk Y. We then define a new partition function by

Z[m, k, Al = Z[m, k, A] exp (z/p(m)F) ) (4.38)
where F' = dA is the curvature and the function p(m) satisfies

lim p(m)=0, lim p(m)=1. (4.39)

m——00 m—+00
The modified partition function Z now has a manifestly uniform limit as |m| becomes large:

lim 2 kAL (4.40)
m—+too Z[—m k, A

This anomaly persists under arbitrary deformations of the theory that preserve the U(1) symme-
try. (For instance it persists under deformations that violate the charge conjugation symmetry,
C, which acts as C(v)) = T.)

How shall we interpret the arbitrary function p(m) above? One way to understand the ambi-

guity in the function p(m) is that it reflects the fact that in general systems without additional
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symmetry there is no preferred way to parameterize the space of masses. Under a redefinition
m — h(m) where h(m) is any bijective function with h(+o00) = +00 modifies the precise function
p above but preserves the properties (4.39). This is similar to the general counterterm ambi-
guities that are always present when discussing anomalies, and in fact parameter redefinitions
occur along renormalization group trajectories.

It is the rigid limiting behavior of the function p(m) above that means that the deformation
class of the anomaly we are describing is preserved under any continuous deformation of the
theory. As in section 4.2.3, we can make the cohomological properties more manifest by applying
the descent procedure again to produce an anomaly three-form (see footnote 6). In this case we
find:

T, — % fm)dm A F | (4.41)

where f(m)dm is a one-form with the property that

+oo
flm)dm =1. (4.42)
In this free fermion problem, it is natural to take f(m) = d(m), such that the anomaly is

supported only at m = 0 where we have level crossing. This is in accord of the discussion in
footnote 11. Below we will also discuss other options. Such a one-form represents a non-trivial
cohomology class on the real line, once one imposes a decay condition for |m| — oo. (Here
we have in mind a model such as compactly supported cohomology see e.g. [167]). The form
f(m)dm is non-trivial because it cannot be expressed as the derivative of any function tending to
zero at m = 4oo. Alternatively as suggested above, one can compactify the real mass line to a
circle in which case f(m)dm represents the generator of H'(S',Z). Viewed as such a cohomology
class the anomaly is rigid because the integral is quantized. This feature is preserved under any

continuous deformation of the theory.

175



4.3.2 Real Fermions in 3d

As our first example of a quantum field theory (as opposed to a quantum mechanical theory)
with an anomaly in parameter space we consider free fermions in three dimensions. We will
see how some familiar properties of fermion path integrals can be reinterpreted as anomalies
involving the fermion mass. We focus on the theory of a single Majorana fermion 1, though
our analysis admits straightforward extensions to fermions in general representations of global
symmetry groups.

The Euclidean action of interest is

S = / &z (i + imyy) | (4.43)

where m € R above is the real mass. Our goal is to understand properties of the theory as a
function of the mass m. As above it is fruitful to encode these in a partition function Z[m].

As in our earlier examples, we first consider the free fermion theory in flat spacetime. At
non-zero m, the theory is gapped with a unique ground state and no long range topological
degrees of freedom. As the mass is increased the gap above the ground state also increases
and we isolate the ground state. In particular the partition function, as well as the correlation
functions of all local operators, become trivial in this limit'*

lim Z[m]= lim Z[m]=1. (4.44)

m——00 m——+00

Like the fermion quantum mechanics problem of section 4.3.1, one can interpret the above in
terms of the effective topology of the parameter space. The space of masses is a real line, and
we can formally compactify it to S! by including m = oo.

The situation is more subtle if we consider the theory on a general manifold with non-trivial

metric g, and hence associated partition function Z[m, g]. Fixing g but scaling up the mass again

14The partition function Z[m] is subject to an ambiguity by adding counterterms of the form [ d3z h(m) for
any function h(m). Below we assume that these terms are tuned so that (4.44) is true.
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leads to a trivially gapped theory, however now the theories at large positive and negative mass
differ in the phase of the partition function. Locality implies that the ratio of the two partition
functions in this limit must be a well-defined classical functional of the background fields. In

this case the APS index theorem [163] implies that the ratio is'®

i ZHm9) — exp (z / ngm) , (4.45)
X

m——+00 Z[—m, g]

where C'Sgy,y is the minimally consistent spin gravitational Chern-Simons term for the back-

6 Thus in the presence of a background metric, the identification between

ground metric.
m = £oo is broken. (For early discussion of this in the physics literature, see [169,170].)

Notice that in (4.45) we have focused only on the ratio between the partition functions. In
fact since the theories at large |m| are separately trivially gapped, each theory separately gives
rise to a local effective action of the background metric. However in general, one may adjust the
UV definition of the theory by adding such a local action for the background fields. Physically
this is the ambiguity in adjusting the regularization scheme and counterterms. By considering
the ratio of partition functions we remove this ambiguity. Thus while the effective gravitational
Chern-Simons level is individually scheme-dependent for large positive and large negative mass,
the difference between the levels is physical. (See also footnote 15.)

In fact, the jump in the gravitational Chern-Simons level (4.45) is a manifestation of the time-
reversal (T) anomaly of the free fermion theory. At vanishing mass the system is time-reversal

invariant, but the mass breaks this symmetry explicitly with T(m) = —m. The gravitational

Chern-Simons term is also odd under T and hence a fully time-reversal invariant quantization of

15As in footnote 14, below we use the freedom to tune counterterms. However, as we discuss the right-hand
side of (4.45) cannot be modified by any such tuning.
16 As usual, it is convenient to define this term by an extension to a spin four-manifold Y. Then for any integer

k we have v "
exp <zk/X C’Sgrav) = exp (2m'k . p14(8 )> = exp (1;27T /Y Tr(R A R)) , (4.46)

where p;(Y') is the Pontrjagin class and we have used [, p1(Y") € 48Z for any closed spin manifold Y. Although
this term is called a gravitational ‘Chern-Simons term’ in the physics literature, it is not covered by the work of
Chern-Simons [168]. Rather, it is an exponentiated n-invariant.
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the theory in the presence of a background metric would require the effective levels at large pos-
itive and negative masses to be opposite. The jump formula (4.45) means that this is impossible
to achieve by adjusting the counterterm ambiguity.

We would now like to reinterpret the jump (4.45) in terms of an anomaly involving the fermion
mass viewed now as a background field. Analogous to our examples in quantum mechanics, we
introduce a new partition function Z [m, g], which depends on an extension of the mass m and

metric g into a four-manifold Y with boundary X:

Z[m, g] = Z[m, g exp (—i/yp(m)dCSgrav) = Z[m, g]exp (— 19227r /Yp(m)Tr(R/\ R)) :
(4.47)
where above p(m) satisfies the same criteria as in the anomaly in the fermion quantum mechanics
theory (4.39). (And as in the discussion there, in the free fermion theory it is natural to take
p(m) a Heaviside theta-function.) This partition function now retains the identification between
m = do0o even in the presence of a background metric g at the expense of the extension into
four dimensions.
In fact, using time-reversal symmetry we can say more about the function p(m) above. Since
m is odd under T and time-reversal changes the orientation of spacetime, demanding that the

4d anomaly action in (4.47) is T invariant leads to the additional constraint
p(m)+p(—=m)=1. (4.48)

In particular we can use this to recover the T anomaly of the theory at m = 0: using p(0) = 1/2,
the anomaly becomes a familiar gravitational f,-angle at the non-trivial T-invariant value of
0, =m.

However, the virtue of viewing the anomaly (4.47) as depending only on the parameters
m and g is that it is manifestly robust under T violating deformations. This means that the

anomaly (4.47) has implications for a much broader class of theories. For example, consider
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coupling the free fermion to a real scalar field ¢ so the action is now

5= / @ (i) + (09)? +i(m + 9)ow + V() | (4.49)

where V(p) is any potential. For generic V' (¢) this system does not have T symmetry. Nev-
ertheless the arguments leading to the anomaly involving the fermion mass m and the metric
g still apply. In this more general context, the constraint (4.48) does not hold, and only the
general constraint (4.39) is applicable.
As in section 4.2.3, we can also apply the descent procedure again to find an anomaly five-
form:
1

T, = g fm)dm A TH(R A R) = —4% F(m)dm Ap | (4.50)

where p; is the first Pontrjagin class of the manifold, and f(m)dm = dp(m) has unit total

integral.

Dynamical Consequences

We now apply the anomaly (4.50) to extract general lessons about the physics. As described in

section 4.1, there are broadly speaking two lessons that we can learn.

e Existence of non-trivial vacuum structure: Consider any QFT with the anomaly (4.50).
Such a theory cannot have a trivially gapped vacuum (i.e. a unique ground state and an
energy gap with no long-range topological degrees of freedom) for all values of the mass
m. To argue for this we assume on the contrary that the theory is trivially gapped for all
m. Then at long-distances Z[m] — 1 for all masses m, which of course does not have the

anomalous transformation required by the bulk anomaly action.

Thus, we conclude that somewhere in the space of mass parameters the vacuum must
be non-trivial. In other words, either the gap must close or a first order phase transition
(leading to degenerate vacua) occurs. Of course for the free fermion this is hardly surprising

since at m = 0 the fermion is massless. However for more general interacting systems such
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as that in (4.49), this conclusion is less immediate.

Non-trivial physics on interfaces: Consider for instance a situation where for sufficiently
large |m| the theory is gapped. We activate a smooth space-dependent mass m(x) depend-
ing on a single coordinate x which obeys m(+o00) = +00. At low-energies in the transverse
space we find an effective theory, which is necessarily non-trivial. The anomaly of this
theory can be computed by integrating the anomaly action over the coordinate z. Using

the property (4.42) this leads to

2/ ngrav, (4.51)
Y3

where now Y3 is an extension of the effective two-dimensional theory. In particular, the
anomaly (4.51) implies that the theory on the interface is gapless with chiral central charge
fixed by the anomaly theory ¢, — cg = 1/2. This result is well-known in the condensed
matter literature: the classical action (4.51) describes a 3d topological superconductor

without a global symmetry, which is known to have a gapless chiral edge mode.

Again for the free fermion this conclusion is obvious. At the special locus in x where m = 0,
the 3d fermion becomes localized and leads to a massless 2d Majorana-Weyl fermion.

However, for more general interacting systems with the same anomaly, the conclusion still

holds.

In general, the basic idea encapsulated by the above example is that for any one-parameter

family of generically gapped systems with symmetry G (either unitary internal or spacetime) we

can track the long-distance G counterterms as a function of the parameter. The discontinuity in

these counterterms as the parameter is varied from —oco to oo is an invariant of the family.

Such tracking of the jump in gravitational and other Chern-Simons terms in background

gauge fields was a powerful consistency check on various conjectures about 3d dynamics and

dualities [56, 57,31, 58, 151153, 59, 154-157]. Here, we see that this idea is formalized into an

anomaly in the space of coupling constants and this consistency check is unified with standard

anomaly matching.
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4.3.3 Weyl Fermions in 4d

We now consider free fermions in 4d. We will again find mixed anomalies in the space of mass
parameters and background metrics. A qualitatively new feature is that in this case the anomaly
is present only if we study the full two-dimensional complex m-plane. Effectively, this means
that the m-plane is a non-trivial two-cycle in parameter space. Other examples with two-cycles
in parameter space are discussed in [149, 139, 140]. We focus below on the simplest case of a
minimal free Weyl fermion. Extensions to fermions in general representations of global symmetry
groups are straightforward.

Our starting point is the partition function Z[m] of a free Weyl fermion ¢ viewed as a function
of the complex mass parameter m. The massless theory has a chiral U(1) symmetry under which
1 has unit charge. A non-zero mass parameter entering the Lagrangian as mi) + c.c breaks this
symmetry and we can view m as a spurion of charge minus two. This means that the partition

function in flat space obeys (with an appropriate choice of counterterms):
Z [em] = Z [m] . (4.52)

In particular, the above equation holds for large |m| where the theory is trivially gapped. Thus
it is consistent to compactify the mass parameter space to a sphere S? by viewing all masses of
large absolute value as a single point.

We now couple the theory to a background metric g and reexamine the above conclusions.
As in our example in 3d, we will see that the large |m| behavior of the partition function is now
more subtle. Recalling that for m = 0 the U(1) chiral symmetry participates in a mixed anomaly

with the geometry, the partition function is modified under a chiral rotation as:

Z [em, g] = Z [m, g] exp (—%qu;/XTr(R/\R)) = Z [m, g| exp (—iqb/xf%g()) . (4.53)

The dependence on the argument of m above means that the topological interpretation of the
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space of masses as a sphere is obstructed in the presence of a background metric.

The Anomaly

We can, however, restore the identification of the points at infinite |m| by introducing a suitable

bulk term. Specifically we define a new partition function as

Z[m, g] = Zm, g exp (27r7l/y)\(m) A ’%;/)) : (4.54)

where above A(m) is any one-form which asymptotically approaches an angular form for large
ml:
d
lim A(m) = 280 (4.55)

|m|—o0 2

The partition function Z[m, g is then invariant under phase rotation of m for large |m/| and the
topological interpretation of the spaces of masses as S? is restored.

Observe that the anomaly (4.54) is supported by the non-trivial effective two-cycle of masses.
In other words, if we restrict to any one-parameter slice of masses the anomaly trivializes. For
instance along a circle of constant non-zero |m| we can add to the Lagrangian a counterterm of

the form change in the equation
iarg(m)

T Tr(RAR) , (4.56)

and cancel the spurious transformation in (4.53). However, it is impossible to extend this coun-
terterm to a smooth local 4d function of m and g on the entire two-dimensional m plane. This
obstruction is the anomaly.

As in the case of the 3d free fermion, we can also write the anomaly by applying the descent

procedure a second time to obtain an anomaly six-form. In this case it is

(4.57)

where v = d\ is a two-form with total integral one on the mass-plane. (As above, in the free
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fermion theory it is natural to take v(m) = §®(m)d?m, but below we will also discuss other
natural forms.) This anomaly is similar to that found in the space of marginal coupling constants
in [149,139,140].

The fact that v above has quantized total integral means that the anomaly is cohomologically
non-trivial and hence it is preserved under continuous deformations of the theory including
renormalization group flow. As with our discussion in previous sections, this also means that
the same anomaly is present for more general interacting theories. For instance, analogously to

(4.58) we can consider a theory with an additional real scalar ¢

S = /d4x (i@ + (09)* + [(m+ @)y + c.c] + V(p)) . (4.58)

This theory still has the anomaly (4.57) and hence the consequences discussed below.

Dynamical Consequences

We now apply the anomaly (4.57) to deduce general physical consequences. As always, we can

consider a family of theories labelled by m or a spacetime-dependent coupling m(x).

e Non-trivial vacuum structure in codimension two: Consider the family of theories labelled
by m with an anomaly (4.57). Then, in order for the anomaly to be reproduced at long

distances the theory cannot be trivially gapped for all m.

Notice that unlike the discussion in sections 4.2 and 4.3.2, the non-trivial vacuum structure
need only to occur in codimension two. In particular, this is the situation for the free
fermion, which is everywhere trivially gapped except at the point m = 0. Thus, there is a

non-trivial vacuum in the m-plane, but not necessarily a phase transition.

e Non-trivial strings: We can also consider space-dependent couplings where a two-cycle in
spacetime wraps the S? of mass parameters. For simplicity we consider a situation where

the bulk is trivially gapped for generic m. In this case the anomaly (4.57) implies that there
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is a non-trivial effective string in the transverse space.'” Specifically, by integrating the
anomaly polynomial we find that wrapping n times leads to an anomaly for the effective

theory along the string
m/ CSgrav - (4.59)
Y3

Thus, the 2d theory on the string is gapless with chiral central charge ¢, — cgp = n/2.

In the special case of the free fermion this conclusion can be readily verified by solving the
Dirac equation in a background with position dependent mass as in [147,148, 13|, where
one finds that the string supports n Majorana-Weyl fermions in agreement with the general

index theorems of [171,172].

As a simple special case of these general results, consider the mass profile
m(r,0) = are” (4.60)

where (r,0) parameterize a plane in radial coordinates and the string is localized along
r = 0. We can split the 4d Weyl fermion into a left-moving 2d fermion ¢y and a right-
moving 2d fermion 5. Then one can check that in the mass profile (4.60) the field ¢ has

no normalizable solutions and 1/, has only one normalizable solution
Y = ce~im/tez0r? , (4.61)

with a real coefficient c¢. Quantizing ¢ leads to one Majorana-Weyl fermion on the string

worldvolume with chiral central charge 1/2 as expected.

ITFollowing our discussion in the introduction, these are smooth external disturbances of the system, which
are universal. These are not dynamical strings. If m becomes a dynamical field, then, depending on the details
of the theory, these strings could be stable dynamical objects.
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4.4 QED,

In this section we explore the coupling anomalies in 2d U(1) gauge theories. These models have

a f-parameter and accordingly our analysis is similar to section 4.2.

4.4.1 2d Abelian (Gauge Theory

We begin with 2d U(1) gauge theory without charged matter. The Euclidean action is:

1 1
= [ — - — . 4.62
S /2g2da/\*da 27T/Hdoz (4.62)

Since the integral of da is quantized, the transformation 6§ — 6-+27 does not affect the correlation
functions of local operators at separated points. However, below we will show that the theories
at # and 0 4 27 are only equivalent up to an invertible field theory.

The theory has a U(1) one-form global symmetry associated to the two-form current J ~ da.
This symmetry acts on the dynamical variable as a — a + ¢ where € is a flat connection. We can

turn on a two-form background gauge field B for this symmetry leading to the action

S:/%QQ(da—B)/\*(da—B)—%/6(da—B)—ik/B, (4.63)

where the coefficient k of the counterterm is an integer. This action is invariant under background
gauge transformation

a—a+A, B— B+dA, (4.64)

where A is a U(1) one-form gauge field. As in the comment following (4.20), we cannot use the
classical A to set the dynamical field a to zero.

In the presence of nontrivial background gauge field B, the partition function Z[6, B] is not
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invariant under 6§ — 6 + 27. Instead, it satisfies

% ~ exp (—z’ / B> . (4.65)

This difference can be interpreted as an anomaly between the coupling § and the U(1) one-form
global symmetry.

One can understand the anomaly more physically in terms of pair creation of probe particles,
as in [164]. Adding to the action a 6 term with coefficient 27 is equivalent to adding a Wilson
line describing a pair of oppositely charged particles, which are created and then separated and
moved to the boundary of spacetime. These particles screen the background electric field created
by 6, which is the physical reason for the 27 periodicity. However, when we take into account
the one-form charge, the particle pair can be detected and this gives rise to the anomaly.

Extending the backgrounds # and B into a 3d bulk Y we can introduce a new partition

function

Z[0, Bl = Z|[0, B] exp (1/9 d—B) : (4.66)

2T

which is invariant under 6 — 6 + 27.

Spacetime Dependent 6

The anomaly can also be detected by promoting the coupling constant € to be a variable function
from spacetime to a circle. As in the discussion in section 4.2, our first task is to define more
precisely the integral of fda (and also the integral in (4.66)).

Here, we can proceed as in section 4.2.1 and define the integral using patches. (This discussion
seems more awkward than in section 4.2.1, but it is essentially the same as there.) Explicitly, we
first cover spacetime by a collection of patches {U;}. The circle-valued function 6 can be lifted

to real-valued functions on patches and transition functions between the patches:
{QIZU]—)R} and {n[JZU[ﬂUJ%Z}7 with 9[—0J227Tn[JOHU[ﬂUJ. (467)
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This data is redundant. If we modify
91—>91+27rm1, nryy—»nyy+my—my, (468)

with integer m;, we describe the same underlying circle-valued function 6. Similarly the U(1)

gauge field a can be lifted into the following data
{a]IU[%Ql(U])}, {¢1]CUIHUJ—>R} and {nUK:UfﬂUJﬂUJ%Z}, (469)

where Q'(U;) is the space of real differential one-forms on U;. The lifts satisfy the following

consistency conditions

UnNUj:ar—ay=dopy,
(4.70)

UnNnU;NUk : ¢y + Oxr + ¢r5 = 211K,

and there is a redundancy coming from gauge transformation
ar = ar +d\r,  ¢rg = ¢y +Ar— A+ 2mmpy, Nk — gk + Mok +mgr+mpy, (4.71)

where \; are real functions on U; and my; are integers.
To define the integral, we need to pick a partition of spacetime into closed sets {0} with the
properties: oy C Uy, 075 = (aU[ﬂan) cUNUjand oy = (aauﬂ&aﬂ(ﬂaam) c UNU;NU.

We define the integral of da in terms of the lifted data and the partition {o;} as

exp (%/Hda) =exp (%Z/ Orday
1 Jor

—ZZ/ nrjay +1 Z nU%K’aux) :

(4.72)

I<Jvors I<J<K

The first term in the right hand side is the naive expression. The second term is analogous to
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the similar term in (4.16) and the last term is needed to make the answer invariant under gauge
transformations of a. One can check that this integral is independent of the choice of partitions
{o;} and the lifts of § and A.
Similarly, the integral (4.66) should be defined more carefully when 6 varies in spacetime.
In a configuration where # has non-trivial winding number along some one-cycle the resulting
integral breaks the one-form global symmetry. As an illustration, consider a simple situation
where spacetime is a torus with one-cycles x and y and 6 has winding number m around x and

is independent of y. If we restrict to a sector with fTQ da = 0 then we have

oo (1 [ i) = (i ) ar

The Wilson line on the right-hand side above is charged under the one-form symmetry (4.64)
thus illustrating the breaking. One way to think about this breaking is to note that for this
configuration of spacetime dependent 6 nonzero correlation functions must involve an appropriate
net number of Wilson lines circling the y-cycle.

As in our previous discussion, we can restore the invariance under the one-form symmetry by
coupling to a bulk using the partition function Z in (4.66). For instance, in the torus example
above we can extend the background fields to a three-manifold Y which is a solid torus with the

cycle y filled in to a disk D. We then evaluate the anomaly'®

o (1[0 o [ 5) s

The combination of (4.73) and (4.74) is then invariant under the one-form gauge transformations
(4.64).

We can also express this violation of the one-form symmetry and the anomaly (4.65) in terms

18The equation (4.74) is correct up to a boundary term exp (i sz QB) which cancels against a similar term
in the action (4.63).
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of a four-form using the descent procedure

1
- _ 4.
7, ; QW)QdHAdB (4.75)

We remark that as discussed above, df can be replaced by d(6 + f(#)) with an arbitrary 27-
periodic function f().
Dynamics

The 2d U(1) gauge theory has no local degrees of freedom — it is locally trivial. In the spirit of
the 't Hooft anomaly matching the non-trivial anomaly in (4.66) or equivalently (4.75) must be
reproduced by its effective description. As a result, the theory cannot be completely trivial for
all values of 6. Indeed, as we will now review, it has a first order phase transition at 6 = 7.

We can say more about the dynamics using charge conjugation C, which is a symmetry when

6 = 0 or # = 7. This symmetry acts as
C(a) =—a, C(B)=—-B. (4.76)

At 6 = 7, the charge conjugation symmetry is accompanied by a 27-shift of 6 and this leads to
a mixed anomaly between C and the one-form symmetry [27,158]. Indeed, using (4.65) we see

that when 8 = 7, a C transformation acts on the partition function as

Zlr, B = Zlr, —B| = Z[—r, —B] exp <@ / B) — Zlr, Blexp ((1 — 9k)i / B) @

and we cannot choose k to remove this transformation since k is required to be integral. This

obstruction characterizes the C anomaly. As above, this anomaly can be written using inflow as

A(C, B) = exp (% /Y B+ C'U B) | (4.78)
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where C is a Z, gauge field for charge conjugation (with holonomies 0, ).

The anomaly involving C at § = 7w implies that the long-distance theory for this value of ¢
cannot be trivially gapped. This agrees with the fact that the charge conjugation symmetry C at
0 = 7 is spontaneously broken. The U(1) one-form symmetry cannot be spontaneously broken
in 2d and the theory is gapped at long distance. Thus, the anomaly can only be saturated by
the spontaneously broken charge conjugation symmetry. The anomalies and their consequences
are summarized in Table 4.3.

Of course, this system is exactly solvable and this analysis of its symmetries and anomalies
does not lead to any new results. However, as we will soon see, the same reasoning leads to new
results in more complicated systems, which are not exactly solvable.

The second class of consequences is associated with defects where 6 varies in space. Let us
first place the theory on S! x R with a constant §. The effective quantum mechanics is the
particle on a circle studied in section 4.2 with ¢ = ¢ A the holonomy of A along the circle. The
anomaly involving 6 discussed above reduces to the anomaly (4.24) between 6 and the U(1)
global symmetry in the quantum mechanics.

Next, we also let 6 vary along the S' direction and insert Wilson lines exp(i [ k;A(x;)) along

the R direction. In Lorentzian signature, the path integral over A, imposes the Gauss constraint

00 = g7 (3 koo — ) - 29 (1.79)

and therefore 9,0 can be interpreted as a space-dependent background charge density. Integrating

the constraint we learn that the total background charge density has to vanish

2y kr - /axe =0. (4.80)

This implies that the theory is not consistent on a compact space where 6 has a nontrivial

T ¢ — Y is the double cover defining the Zy gauge field, then because of the twisting (4.76) the characteristic
class of B lies in twisted cohomology: [B] € H3(Y;Z¢). The partition function is the value of the mod 2 reduction

[B] € H3(Y;Z3) on the fundamental class of Y.
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theory without C with C at § =0, 7
symmetry G 0-G anomaly | C-G anomaly at § = 7w | no smooth counterterm
U(1) gauge theor

T v v v
with 1 charge p scalar 4 even p Ve even p v
g:Zél),p>1 odd p X odd p v
with N charge 1 scalar 4 even N v even N v
G=PSUN)®  N>1 odd N X odd N v

Table 4.3: Summary of anomalies and existence of continuous counterterms preserving C (“global
inconsistency”) in various 2d theories. The superscripts of the symmetries label the ¢’s of ¢g-form
symmetries. All these theories have a charge conjugation symmetry, C, at § = 0, 7. Without
using the charge conjugation symmetry, all these theories exhibit a mixed anomaly involving the
coupling # and some global symmetry G. The anomaly implies that the long distance theory
cannot be trivially gapped everywhere between 6 and 6 + 27. By including C we see that the
theories can have a mixed anomaly between C and some global symmetry G at § = 7. Such
an anomaly forbids the long distance theories to be trivially gapped at # = w. Even if the
theories have no mixed anomaly at 8 = 7, there may be no smooth counterterms that preserve
C simultaneously at # = 0 and # = 7. Finally, we can deform these systems and break C. Then
the results in the “without C” column are still applicable. The only difference is that we do not
know at what value of 6 the transition takes place.

winding unless there are Wilson lines inserted to absorb the charge.

4.4.2 QED, with one charge p scalar

We now add to the theory a scalar of charge p. (See [173-176] for early discussion of this theory.)

The Euclidean action becomes

/ —da A xda — —/9da+/d2 (|1 Dyt + V(10%)) - (4.81)

The charge p scalar breaks the U(1) one-form symmetry to a Z, one-form symmetry [5]. As
before, we can activate the background gauge field K € H?*(X,Z,) for this symmetry and the

modified action includes

(4.82)

33——/ (da——K) 27”""/1;(,
p
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where the coefficient of the counterterm £ is an integer modulo p.

The theory has a mixed anomaly between the coupling 6 and the Z, one-form symmetry.

A, ) = exp <—27m' / d95> , (4.83)

2r p

The 3d anomaly is

(see the discussion below (4.29) for comments on boundary terms.) The anomaly forces the long
distance theory to be nontrivial for at least one-point between 6 and 6 + 2.
The same conclusion can be drawn from Hamiltonian formalism. We can decompose the

Hilbert space of the theory into superselection sectors according to the Z, one-form symmetry

[176]

p
H=EH.. (4.84)
n=1

Intuitively, transitions using Coleman’s pair-creation mechanism [164] using the dynamical quanta
can change 0 by 27p and hence they take place within one of the subspaces in (4.84). But tran-
sitions between states in different subspaces labeled by different values of n in (4.84) can take
place only using probe particles. As a result, all the subspaces in (4.84) are in the same theory
but time evolution preserves the subspace [176].

The Hilbert spaces at # and 6 + 27 are isomorphic but the superselection sectors are shuffled.
In particular this means that the vacuum at # is no longer the vacuum at 6 + 27 and therefore
the long distance theory cannot be trivial everywhere between 6 and 6 + 2.

For smooth interfaces interpolating between ¢ and 6 + 27n, the bulk anomaly (4.83) yields

the effective anomaly of the interface

A(K) = exp (—2m'n / 5) | (4.85)

p
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Implications of C Symmetry

The discussion above did not make use of the charge conjugation symmetry C at # = 0,7, and

as usual we can say more using this additional symmetry. C acts as

Cla) = —a, Cl¢)=¢", C(K)=-K, (4.86)

and at § = m, the partition function transforms as

Z[r, K] = Z[r, K] exp <27m'1 _p% /K) . (4.87)

Since the coefficient of the counterterm is an integer modulo p, the partition function transforms

non-anomalously if there is an integer k that solves
2k =1 mod p. (4.88)

For even p, there are no solutions and the charge conjugation symmetry has a mixed anomaly
with the Z, one-form symmetry at § = 7.2 The anomaly enforces non-trivial long distance
physics at 0 = 7.

For odd p, the condition (4.88) can be solved by k = 21 so there is no anomaly at 6 = 7. We
can however make a weaker statement by noticing that the counterterm that preserves charge
conjugation symmetry at 6 = 0, has coefficient £ = 0 and it differs from the choice of counterterm
at § = m. Similar phenomena have been discussed in [27,158,160]. In [160, 162], this situation
was referred to as a “global inconsistency.” Concretely it means that there is no continuously
varying (f-dependent) counterterm that preserves C at both § = 0 and § = 7. This again implies
that the long-distance theory is non-trivial for at least one value of 6 in [0, w]. This discussion is

summarized in Table 4.3.

20The anomaly is A(C, K) = exp (ir [ C'UK) where C is the Zy charge conjugation gauge field. Note that
this is meaningful only when p is even.
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All these constraints are saturated by spontaneously broken charge conjugation symmetry
at 6 = m. The special value p = 1 deserves further comment. In this case, there is no one-form
symmetry so the constraints described above no longer hold. If the scalar is very massive, the
theory is effectively a pure U(1) gauge theory so the theory is gapped for generic § and the
charge conjugation symmetry is spontaneously broken at 6 = 7 leading to a first order phase
transition. On the other hand, if the scalar condenses, the gauge field is Higgsed and the theory
is trivially gapped for all §.2! Therefore, the line of first order phase transitions at § = 7 must

end at some intermediate value of the mass where the theory is gapless.

4.4.3 QED, with N charge 1 scalars

We now add N charge 1 scalars into the U(1) gauge theory. The Euclidean action is

| i al -
5:/2—92da/\*da— %/Qda—l—/d% [;|Da¢1|2+v <;|¢1|2>] . (4.89)

If the potential V(3" |¢;|*) has a minimum at ) |¢;|* # 0 and is sufficiently steep, the above

U(N)

122
U(N-1)xU(1) :

theory flows to a CPY ! = non-linear sigma mode

The U(1) one-form symmetry is now completely broken. Instead the theory has a PSU(N) =
SU(N)/Zy zero-form global symmetry that acts as ¢; — Gry¢;. The reason the symmetry is
PSU(N) and not simply SU(N) is that the Zy transformation ¢; — €™/ ¢; coincides with a
U(1) gauge transformation and hence acts trivially on all gauge invariant local operators.

Let us consider the system in the presence of a background gauge field A for the PSU(N)

global symmetry. The correlation of center of SU(N) with the dynamical U(1) gauge group

21Tn the limit of large scalar expectation value the smooth #-dependence of various observables is reliably
computed using instanton methods. These techniques are not reliable in the opposite limit of large mass for the
scalar. And indeed, in that limit the #-dependence is not smooth.

2ZWe can easily generalize our analysis below to systems with several U(1) gauge fields and various charged
scalars. In that case the systems have several §-parameters. Recently studied examples include systems that flow

to 2d sigma-models whose target space is the flag manifold m [177,161,178,179].
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means that a and A combine to a connection for the group

U(N) = SU(N%; v (4.90)

Crucially this means that in a general PSU(N) background, @ is no longer a U(1) connection

with properly quantized fluxes. Instead we have

o gy o

where wy(A) € H*(X,Zy) is the second Stiefel-Whitney class of the PSU(N) bundle. Equiva-
lently, in the presence of general PSU(N) backgrounds there are fractional instantons.
Because of these fractional instantons, the partition function is no longer invariant under
0 — 0+ 27. Rather, 6 has an extended periodicity of 2w N [27,158,159]. This represents a mixed
anomaly between the 27-periodicity of § and the PSU(N) global symmetry. The corresponding

3d anomaly is
A(6, A) = exp ( 2mi / &0y (4.92)
) - p 27T N ) .

(see the discussion below (4.29) for a comment on the boundary terms). The anomaly implies
that the long distance theory cannot be trivially gapped everywhere between 6 and 6 + 2.

Like the discussion in sections 4.4.1 and 4.4.2, we can understand this anomaly physically in
terms of particle pair creation following [164]. The f-term with coefficient 27 can be screened
to @ = 0 by pair creation of dynamical quanta. (Note that in the discussion in section 4.4.1 we
used probe particles, and in section 4.4.2 we discussed the effects of both dynamical and probe
quanta.) These quanta transform projectively under PSU(N) and hence the screening leads
to such projective representations at the boundary of space. More mathematically, this is the
meaning of the selection rule (4.91).

It is interesting to compare this discussion with the anomaly between #-periodicity and the

one-form global symmetry in section 4.4.2. The role of the background two-form Z, gauge field
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K there is played here by the background ws associated with the zero-form PSU(N) global

symmetry.

Implications of C Symmetry

We can further constrain the long distance theory using the charge conjugation symmetries C at

6 = 0,7, which acts as
Cla) = —a, Clér) =6}, C(A)=—A, Cluws(A)) = —un(A). (4.93)
We can add to the theory a counterterm
SO —2m’£ /w (4.94)
N 9. .

At 0 = 7, the charge conjugation symmetry involves a 27-shift of  and it transforms the partition

function as

Z|r, A] = Z[r, Al exp (2m1 ;v% wg) : (4.95)
Similar to the example of QEDy with one charge p scalar discussed in the last subsection, the
above means that charge conjugation symmetry has a mixed anomaly with the PSU(N) global
symmetry for even N.23 Meanwhile for odd N, there is no continuous counterterm preserving C
at both # = 0 and § = w. For even N, the anomaly forces a non-trivial long distance theory at
0 = m, while for odd N we find a non-trivial theory for at least one value of 6.

These constraints agree with the common lore. For N > 2, the theory is believed to be
gapped at generic 0 except at § = w. For N = 2, the model at § = 7 flows to the SU(2); WZW
model [180]. For N > 2, the charge conjugation symmetry is believed to be spontaneously

broken at § = 7 [181]. (The model with N = 1 was discussed above.)

Finally, we can consider a smooth interface between 6 and 6 + 27mn. Assuming the theory

23The anomaly is exp (i7r f cu wg) where C' is the charge conjugation gauge field. This is meaningful only
when N is even.
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is gapped for generic 0, at long distances there is then an isolated quantum mechanics on the
interface. The anomaly (4.92) implies that the quantum mechanical model has a non-trivial

anomaly for the PSU(N) global symmetry encoded by

A(A) = exp <2m' / n%) . (4.96)

This means that the ground states of the quantum mechanics are degenerate, and they form a
projective representation of the PSU(N) symmetry (i.e. a representation of SU(N)) with N-
ality n. Intuitively, the interface is associated with n ®; quanta. But since they are strongly

interacting we cannot determine their precise state except their N-ality.

4.5 4d Yang-Mills Theory

In this section we compute the anomaly of 4d Yang-Mills theories with simply connected and
simple gauge groups. We use our results to compute the anomaly on interfaces with spatially

varying 6.

4.5.1 SU(N) Yang-Mills Theory

We begin with the 4d SU(N) gauge theory with the Euclidean action

S = —4—22 Te(F A F) — 82—7?2 / Te(F A F). (4.97)
Since the instanton number is quantized, the transformation § — 6427 does not affect correlation
functions of local operators at separated points, but it may affect more subtle observables such
as contact terms involving surface operators.

The theory has a Zy one-form symmetry that acts by shifting the connection by a Zy
connection [5]. We can turn on a background Zy two-form gauge field B € H?*(X,Zy) for this

one-form symmetry. In the presence of this background gauge field, the SU(N) bundle is twisted
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into a PSU(N) bundle with fixed second Stiefel-Whitney class wq(a) = B [29,5].
The instanton number of a PSU(N) bundle can be fractional. Therefore with a nontrivial

background B the partition function at  + 27 and 6 can be different [29,5,27]

% — exp (QWiJ\;J;l P(B)) , (4.98)

where P is the Pontryagin square operation.?* Thus, the theories at § and 6 + 27 differ by
an invertible field theory, which can be detected by the contact terms of the two-dimensional
symmetry operators of the Zy one-form symmetry [29].

We can also add to the theory a counterterm

S5 —2mi / %P(B). (4.99)

The coefficient p is an integer modulo 2N for even N and it is an even integer modulo 2N for
odd N. The difference between 6 and 6 + 27 in (4.98) can be summarized into the following
identification [29,5,27,28|

0,p) ~(@+2m,p+1—N). (4.100)

This means that 6 has an extended periodicity of 47N for even N and 27N for odd N.
As discussed in detail in [3], the above phenomenon can be interpreted as a mixed anomaly
between the 27-periodicity of 6 and the Zy one-form symmetry. The corresponding anomaly

action is
N -1
2N

A(0, B) = exp (2m’ ;—iP(B)) : (4.101)

This anomaly implies that the long distance theory cannot be trivially gapped everywhere be-
tween 6 and 6 + 2.
We can further constrain the long distance theory using the time-reversal symmetry T at

0 = 0,7 following [27]. In a nontrivial background B, the time-reversal symmetry transforms

%For odd N, P(B) = BUB € H*(X,Zy). For even N, P(B) € H*(X, Zan) and reduces to BU B modulo N.
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theory without T with Tat 0 =0, 7
symmetry G 0-G anomaly | T-G anomaly at § = 7w | no smooth counterterms
SU(N) gauge theory 4 even N v even N v
G=12V odd N X odd N v
with adjoint scalars no T symmetry no T symmetry
_ 0 v . |
G=1Zy in general in general

Table 4.4: Summary of anomalies and existence of continuous counterterms in various 4d theories.
The superscripts of the symmetries label the ¢’s of ¢-form symmetries.

the partition function as

Z[r, Bl = Z|r, Bl exp (QM#/P(B)) : (4.102)

A T anomaly occurs if there is no value of p such that the partition function is exactly invariant
i.e. only if

1 — N —2p=0mod 2N (4.103)

has no integral solutions p. This is the case for even N, and hence for even N there must be
non-trivial long distance physics at § = 7 [27].?> For odd N, we can solve the equation above
with p even by taking

LN N =1 mod4,

2

p= (4.104)

BN N =3 mod4.
Therefore, for odd N there is no T anomaly. However, for odd N the counterterm that preserves
time-reversal symmetry at § = 0 has coefficient p = 0 mod 2N and it is different from the one at
0 = m. This means that there is no continuous counterterm that preserves T at both 8 = 0 and
7 [27]. (Such reasoning was named a “global inconsistency” in [160,162].) This again implies

non-trivial long distance physics for at least one value of 6.

These results agree with the standard lore about Yang-Mills theory. For all values of 8 the

25In this case the anomaly w is %1111 U P(B), where @, € H'(Y, Z) denotes the natural integral uplift of the
Stiefel-Whitney class wy with twisted integral coefficients. For further recent discussion of time-reversal anomalies
in Yang-Mills theories see also [182,183].
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theory is confined (so the Zy one-form symmetry is unbroken [5]) and gapped. For 6 # 7 there
is a unique vacuum. While at # = 7 the T symmetry is spontaneously broken leading to two
degenerate vacua and hence a first order phase transition.

We can also use the anomaly (4.101) to constrain the worldvolume of interfaces where 6
varies. Consider a smooth interface between 6 and 6 + 27k. Assuming that the SU(N) gauge
theory is gapped at long distances, the interface supports an isolated 3d quantum field theory.
The anomaly (4.101) implies that the interface theory has an anomaly associated to the Zy

one-form symmetry described by [5,28,1]

A(B) = exp (2m'k; / %P(B)) | (4.105)

The anomaly can be saturated for instance, by an SU(N );, Chern-Simons theory or a (Zx) - n(n—1)k

discrete gauge theory [1].

4.5.2 Adding Adjoint Higgs Fields

The mixed anomaly between the 2m-periodicity of # and the Zy one-form symmetry is robust
under deformations that preserve the one-form symmetry. Note that such deformations generally
break the time-reversal symmetry at § = 0, 7. Below, we present two examples with different
infrared behaviors that also saturate the anomaly by adding charged scalars in the adjoint
representation.

As in [1], we can add one adjoint scalar to Higgs the SU(N) gauge field to its Cartan torus
U(1)V~! with gauge fields a;. The U(1) gauge fields are embedded in the SU(N) gauge field

through
N-1
_ J J _ q; .. —_ R
a= a;T7, T’ =diag(0,---,0, +1,—1,0,---,0). (4.106)
J=1 Jth entry

In the classical approximation, the low energy U(1)¥~! gauge theory is described by the Eu-
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clidean action

N-1 . N—-1
1 10
=—— Kpjday N xday — — Kpyd d 4.1
S 492/121 rJaar /\ xaay 871'2/];1 rjaar N\ ay, ( 07)

where K is the Cartan matrix of SU(N). Small higher order quantum corrections renormalize
the gauge coupling g and 6, but do not affect our conclusions.

The low-energy theory exhibits a spontaneously broken U(1)N~1 x U(1)¥~1 one-form global
symmetry. Most of it is accidental. The exact one-form symmetry is the symmetry in the UV,

which is Zy. It acts on the infrared fields as

2nJ
a(;—)a{;—i—%e, (4.108)

where € is a flat connection with Zy holonomies. Activating the background gauge field B €
H?*(X,Zy) for the one-form symmetry modifies the Euclidean action by replacing da; with
da; — %B. This means that when 6 is shifted by 27, the partition function of the infrared

theory transforms as

200 + 27, B] = Z[0, B] exp <2mN2 ;[1 / P(B)) | (4.100)

which agrees with the anomaly in the ultraviolet theory.

Note that this gapless U(1)V~! gauge theory reproduces the anomaly (4.101), without a
phase transition.

Following [1], we can also add more adjoint scalars to Higgs the theory to a Zy gauge theory.
The Zy gauge field ¢ is embedded in the SU(N) gauge field through (we work in continuous

notation, i.e. ¢ is a flat U(1) gauge field with holonomies in Zy)

a=cT, T=dag(l, ---,1,—(N—-1)). (4.110)
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The infrared theory is a topological field theory with Euclidean action

N 0
=" b/\dc—N(N—l)SZ—/dc/\dc, (4.111)

2 2

where b is a dynamical U(1) two-form gauge field and ¢ is a dynamical U(1) one-form gauge
field. b acts as a Lagrange multiplier constraining ¢ to be a Zy gauge field. The equation of
motion of b constrains ¢ to be a Zy gauge field that satisfies Nc = d¢. The original Zy one-form
symmetry is spontaneously broken in the infrared. If we activate the background gauge field B

for the Zy one-form symmetry. The Euclidean action becomes

IN 2 10 21 21

As the coupling constant 6 shifts by 27, the partition function of the infrared theory trans-
forms anomalously and agrees with the anomaly in ultraviolet theory. As in the gapless U(1)V~!
theory discussed above, the anomaly is saturated in the IR without a phase transition.

We can also simplify the above Zy gauge theory by shifting b — b+ %Qdc. The Euclidean
action then becomes that of a standard Zy gauge theory [32,33]

iN
S=— [ bAdec. 4.113
2m ¢ ( )
The dependance on 6 now appears in the coupling of these fields to the background B and the
partition function again transforms anomalously when 6 — 6 + 27 in agreement with (4.98) and

the ultraviolet anomaly (4.101). Again, this is achieved in the IR without a phase transition.

4.5.3 Other Gauge Groups

We now discuss similar mixed anomalies involving the 27-periodicity of § and the center one-
form symmetries in 4d Yang-Mills theories with other simply-connected gauge groups GG. These

anomalies constrain the long distance physics of these theories as well as smooth interfaces
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separating two regions with different 6’s. As we will see, unlike the case of SU(N), which we
studied above, typically 27 shifts of 8 do not allow us to scan all the possible values of the
coefficient p of the P(B) counterterm.

The one-form global symmetry of any of these simply connected groups G is its center Z(G).
We couple it to a two-form gauge field B. This twists the gauge bundles to G/Z(G) bundles
with second Stiefel-Whitney (SW) class wy = B. These bundles support fractional instantons.
Following [184], we will determine the relation between the fractional instantons and the back-
ground gauge fields B by evaluating the instanton number on a specific G/Z(G) bundle. We will
take it to be of a tensor product of various SU(n)/Z, bundles, for which we already know the
answer, and untwisted bundles of simply connected groups. We will generalize the discussion
in [184] to non-spin manifolds.

We will discuss Sp(N), Spin(N), Eg and E; gauge groups. The other simple Lie groups Go,
F;, and Eg have trivial center and therefore the corresponding gauge theories do not have similar

anomalies.

Sp(N) Gauge Theory

We start with a pure gauge Sp(N) theory.? The theory has a Z, one-form symmetry. We want
to construct a Sp(IN)/Zsy bundle with second SW class B. We do that by using the embedding
SU(2)N c Sp(N) and then an Sp(N)/Z, bundle is found by tensoring N PSU(2) bundles each
with second SW class B. Then the anomaly (4.101) implies that the Sp(N) gauge theory has

an anomaly

(4.114)

21 4

[ dONP(B
Aspvy (0, B) = Asuz)(0, B)N = exp (2m/— ( )> _

This means that a shift of § by 27 shifts the coefficient p of the counterterm 2wip [ @ by N.
Note that for even N not all the possible values of p = 0, 1,2, 3 are scanned by shifts of # by 2.

The anomaly becomes trivial when N = 0 mod 4 (on spin manifolds it is trivial when N =0

mod 2).

26We use the notation Sp(N) = USp(2N). Specifically Sp(1) = SU(2) and Sp(2) = Spin(5).
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FEs Gauge Theory

The theory has a Zsz one-form symmetry. Here we use the embedding SU(3)? C Es. We can
construct a Eg/Zs bundle with second SW class B by tensoring an SU(3) bundle, a PSU(3)
bundle with second SW class B, and a PSU(3) bundle with second SW class —B. Then the

anomaly (4.101) implies that the Eg gauge theory has an anomaly

(4.115)

2 3

Ap (0, B) = Agy) (0, B)? = exp (Qm / 9 27><B>) |

The anomaly is nontrivial and all possible values of p in the counterterm are scanned by shifts

of 6 by 2.

FE; Gauge Theory

The theory has a Zy one-form symmetry. Here we use the embedding SU(4) x SU(4) x SU(2) C
E;. We can construct a E7/Zs bundles with second SW class B by tensoring an SU(4) bundle,
a PSU(2) bundle with second Stifel-Whitney class B, and an SU(4)/Zy bundle with second SW
class B (which can be thought of as SU(4)/Z, bundle with second SW class 2B where the tilde
denotes a lifting to a Z, cochain and 2B is independent of the lift). Then the anomaly (4.101)

implies that the F; gauge theory has an anomaly

(4.116)

= do 3P(B
AE7<97 B) - ASU(Q) (9, B)ASU(4) (0, 2B) = exp (27-(-@/_ ( )) )

2 4

Again, the anomaly is nontrivial and all possible values of p in the counterterm are scanned.

Spin(N) = Spin(2n + 1) Gauge Theory

For N = 3 this is the same as SU(2), which was discussed above. So let us consider N > 5.
The theory has a Zy one-form symmetry. Here we use the embedding SU(2) x SU(2) x

Spin(N — 4) C Spin(N) (where the last factor is missing for N = 5). We can construct

a Spin(N)/Zs bundle with second SW class B by tensoring two PSU(2) bundles each with
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second SW class B and a Spin(N — 4) bundle. Then the anomaly (4.101) implies that the
Spin(N) = Spin(2n + 1) gauge theory has an anomaly

19 P(B)

Aspin(ny (0, B) = Asu2)(0, B)? = exp <2m'/ 5o

) for N =1mod 2. (4.117)

The anomaly is always nontrivial (but it is trivial on spin manifolds). A shift of 6 by 27 shifts

p by 2 and hence not all values of p are scanned by such shifts.

Spin(N) = Spin(4n + 2) Gauge Theory

For N = 6 this is the same as SU(4) which was discussed above. So we will discuss here N > 10.

The theory has a Z4 one-form symmetry. We will use the embedding Spin(6) x Spin(4)"~ C
Spin(N). We can construct a Spin(N)/Z4 bundle with second SW class B by tensoring (n — 1)
SU(2) bundles, (n—1) PSU(2) bundles each with second SW class B mod 2 and a PSU(4) bundle
with second SW class B. Then the anomaly (4.101) implies that the Spin(N) = Spin(4n + 2)

gauge theory has an anomaly?’

Aspin(n) (0, B) =Asv (0, B)Asv ) (0, B)"

dd NP(B
:exp(Qm'/— P )) for N =2mod4.
2r 16

(4.118)

The anomaly is always nontrivial (even on spin manifolds). A shift of # by 27 shifts p by % and
hence all values of p are scanned by such shifts.

If B = 2B is even, we study SO(N) bundles and the anomaly is

exp (2%@/%@) = exp <2m/£@) . (4.119)

*TThe instanton number of a Spin(4n + 2)/Z4 bundle with second SW class B is [ %@ mod 1. On spin
manifolds @ € H*(X,Z4) so for N = 4n + 2 = 2 mod 8 the instanton number is f%@ mod 1 and for
N = 4n + 2 = 6 mod 8 the instanton number is — iLB) mod 1. For N = 6 mod 8, our determination of the
fractional instanton number differs from [184] by a sign, which does not affect the conclusions of [184]. This sign

change reverses the direction of the action of the modular T-transformation in Fig. 6 of [34] for N = 6 mod 8.

205



This is useful, e.g. when we add dynamical matter fields in the vector representation and the
one-form global symmetry is only Z, C Z,, which is coupled to B. In that case the anomaly
vanishes on spin manifolds and a shift of # by 27 shifts the coefficient p of the counterterm
2mip [ @ by 2 and hence not all possible values of p are scanned. This is the same conclusion

as for odd N (4.117).

Spin(N) = Spin(4n) Gauge Theory

The theory has a ZéL) X ZéR) one-form symmetry. Here we use the embedding SU(2)?" C
Spin(N).

For odd n we can construct a Spin(N)/ (ZS x ZgR)) bundle with second SW class By, and Bpg
by tensoring n PSU(2) bundles with second SW class By, and n PSU(2) bundles with second
SW class Bg. Then the anomaly (4.101) implies that the Spin(N) = Spin(4n) gauge theory for

odd n has an anomaly

Aspin(ny (0, Br, Br) = Asu2) (0, Br)" Asu2) (0, Br)"

N(P(B B (4.120)
—exp <2m/s—9 (P L)lg Pl R))> for N =4 mod 8.
s

For even n we can construct the Spin(N)/ (ZéL) X ZgR)) bundle by tensoring an SU(2) bundle,
a PSU(2) bundle with second SW class By, + Br, n — 1 PSU(2) bundles with second SW class
By, and n — 1 PSU(2) bundles with second SW class Bg. Then the anomaly (4.101) implies

that the Spin(N) = Spin(4n) gauge theory for even n has an anomaly

Aspin(vy (0, Br, Br) = Asu2)(0, Br)" ' Asv2) (0, Br)" ' Asu2) (0, B, + Bg)

4.121
= exp (27Ti/d—0 (N(P(BL) +P<BR)) + Bru BR)) for N =0 mod 8. ( )

2m 16 2
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The two cases can be summarized as

Aspin(ny (0, Br, Br)

=exp 27ri/ﬁ NP(BL+BR)+BLUBR for N =0 mod 4.
2T 16 2

(4.122)

The anomaly is always nontrivial (even on spin manifolds). A shift of 6 by 2x shifts the
coefficients of the counterterm 2mip;, [ @4—2#2’pr @—FQT(’LPLRJ\ BLYBR by (pr,, pryPLR) —
(pr+ %pr‘}' %,puﬁ- 1+ %) and hence not all values of (pr, pr, prr) are scanned by such shifts.

As above, if we limit ourselves to SO(N) bundles (as is the case, e.g. when we add dynamical

matter fields in a vector representation), we study backgrounds with By = Bg = B. Then, the

exp (2%@/%@) (4.123)

and it vanishes on spin manifolds. A shift of 6 by 27 shifts the value the coefficient p in 27ip f %ﬁ)

anomaly is

by 2 and again, not all values of p are scanned. This is the same conclusion as for odd N (4.117)

and for N =2 mod 4 (4.119).

A Check Using 3d TQFT or 2d RCFT Considerations

One way of viewing our anomaly is as the anomaly in a one-form global symmetry in the theory
along interfaces separating 6 and 6 + 27k. General considerations show that in this case of a
simple and semi-simple gauge group this anomaly can always be saturated by a Chern-Simons
theory with gauge group G and level k. In 3d TQFT's, the anomaly of one-form symmetries can be
determined by the spins of the lines generating the symmetry [1]. The one-form symmetries and
the spins of the generating lines of various Chern-Simons theories with level 1 are summarized in
Table 4.5. These results can be found by studying the 3d TQFT or by studying the corresponding
2d Kac- Moody algebra.

We can use these to check the anomaly we determined using 4d instantons above. When the

one-form symmetry is Z, it is generated by a line a such that a’* = 1. The coefficient of the
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Gauge group G | Center Z(G) Spins Anomaly
SU(N) Zn h, = 854 5~ [dOP(B)
Sp(N) Zs he =% X [doP(B)

Fi Zs he = 2 2 [d6P(B)
E; L hy =3 3 [doP(B)
(Nsiigflj\z ) Z, he =1 1 [d9P(B)
(NSZQZS\:L) ) Zy Z;::% £ [doP(B)
Spin(N) 7, % Z, ha:hb—l—]\é I—J\éfdQP(BL—I—BR)
(N = 4n) hap = +1 [d0 B, U By

Table 4.5: Summary of the center one-form symmetries and the spins of the generating lines in
various 3d Chern-Simons theories. (See the discussion in [1].) Here the gauge group is G and
the level is k = 1, i.e. this is the TQFT G;. When the center is Z,, the symmetry lines are
{1,a,--- ,a""'} generated by the generating line a. When the center is Zy X Z,, the symmetry
lines are {1, a,b,ab}. The spins of these lines are denoted by h,, h, and hgyp. In the case Spin(N)
with N = 2 mod 4 we also included the spin of the line a?, which is used in the text. Note that
in the context of 3d TQFT only the spin A modulo one is meaningful. The values in the table
are those of the conformal dimensions of the corresponding Kac-Moody representation.
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anomaly is the spin of the line a, h, mod 1. Indeed, for SU(N), Sp(N), Eg, E7, Spin(2n + 1),
Spin(4n + 2), where the one-form symmetry is Z, for some ¢, the anomaly is (4.101), (4.114),
(4.115), (4.116), (4.117), (4.118) respectively, in agreement with the entries in Table 4.5. In the
case of Spin(4n), the global symmetry is Zs X Zy and it is generated by two lines a and b. In this
case we have more kinds of anomalies. If either B or By vanishes, we can match the coefficient
of P(Bg) and of P(By) in (4.122) with the spins of the lines. The coefficient of the mixed term
can be checked by comparing the spin of the line ab with the anomaly for B;, = Bpg.

We can also focus on the Zy subgroup of the one form symmetry for Spin(N) for even N

that we discussed above. Its generating line, a® for N = 4n + 2 or ab for N = 4n, has spin 3
mod 1, which is the same as the Z, generating line for Spin(N) with odd N. This is consistent

with the fact that the anomaly for this symmetry (4.117), (4.119), (4.123) is the same for all N.

4.6 4d QCD

In this section we consider 4d QCD with fermions. Specifically, we will study SU(N) and Sp(NN)
with matter in the fundamental representation. This means that these theories do not have any
one-form global symmetry.

Despite the absence of a one-form symmetry, these systems can still have a mixed anomaly
between the f-periodicity and its global symmetry. The reason is that even without a one-form
global symmetry, twisted bundles of the dynamical gauge fields can be present with appropriate
background of the gauge fields of the zero-form global symmetry.?® These bundles do not have
integer instanton numbers and hence they lead to our anomaly.

As we will see, even when all possible bundles of the dynamical fields can be present, the
anomaly is not the same as in the corresponding gauge theory without matter in section 4.5.

Some of that putative anomaly can be removed by adding appropriate counterterms.

28Many people have studied twisted bundles of the dynamical fields using a twist in the flavor to compensate
it. For an early paper, see e.g. [185]. For more recent related discussions in 4d see [186,187,28,188-192] and in
3d see [58,151] and references therein.
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This discussion extends the results about interfaces in 4d in [28] and explains the relation
between them and the earlier results about anomalies in 3d Chern-Simons-matter theory in [151].
To briefly summarize our results, we will find that the SU(N) theory with Ny fundamental
quarks has a non-trivial anomaly (4.140) if and only if L = ged(N, Ny) > 1. Meanwhile the
Sp(N) theory with N; fundamental quarks has a non-trivial anomaly (4.161) if and only if IV is
odd and Ny is even. We interpret these results in terms of the dynamics of the Chern-Simons

matter theories that reside on their interfaces.

4.6.1 SU(N) QCD

We begin with 4d SU(N) QCD with N; fermions in the fundamental representation. The

Euclidean action is

= / ‘fqﬂr(f Axf) — ;%Tr(f A )+ B + i D+ (bt ), (4124)

where f is the field strength of the SU(NN) gauge field a. Here we suppressed the color indices
and used the standard summation convention for the flavor indices I. The theory only depends
on the complex parameter me*/Ns, so without lost of generality we will take m to be a positive
real parameter. Since the theory contains fermions, we will limit ourselves to spin manifolds,
even though with an appropriate twist the theory can be placed on certain non-spin manifolds.

With equal masses the global symmetry of the system that acts faithfully is

_ Uy
G = ZNf . (4.125)

To see that, note that locally the fermions transform under

G . =SU(N)x SUN;) x U(1) . (4.126)

where the first factor is the gauge group, the second factor is the flavor group, and the U(1) is
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!
maicro

the baryon number normalized to have charge one for the fundamental quarks. However, G

does not act faithfully on the quarks. The group that acts faithfully on them is

_ g;m'cro _ SU(N) X U(Nf)
N ZN X ZNf N ZN

. (4.127)

gmicro

Here G/ is represented by (v € SU(N),v € SU(Ny),w € U(1)) and the quotient is the

micro

identification

(w,v,w) ~ (¥ Ny, v, e Ny ~ (u, XNy, 2N (4.128)

Finally, the global symmetry G = U(Ny)/Zy (4.125) is obtained by moding out Gicro by the

SU(N) gauge group.

Anomalies Involving #-periodicity

In order to study the anomaly, we should couple the global symmetry G = U(Ny)/Zy (4.125) to
background gauge fields. We will do it in steps. First, we couple the theory to SU(Ny) x U(1)
background gauge fields (A, C) (the fundamental fermions have charge one under the U(1)).
Together with the dynamical SU(N) gauge fields a these gauge fields represent G/ ..~ (4.126).
Next, we would like to perform the quotient leading to G icro (4.127). We do that by letting
a be a PSU(N) gauge field, A be a PSU(Ny) gauge field, and C = KC with K = lem(N, Ny)

be a U(1) = U(1)/Zx gauge field. Then, the gauge fields (a, A, C) are correlated through

]{ g _ 74 (%wg(a) 4 %wgm)) mod K . (4.129)

where F = dé,
NNy

K =lem(N, Ny), L = ged(N, Ny) = e

(4.130)

and ws is the second Stiefel-Whitney class of the corresponding bundles.

In terms of these gauge fields, the background fields for G = U(Ny)/Zy are A and C in
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PSU(Ny) x U(1) constrained to satisfy

L [F N
Bl S S A) mod 1 . 4131
fo{% N, wz(4) mo (4.131)

Arbitrary values of these gauge fields, subject to (4.131), allow us to probe arbitrary values
of wy(a) for the dynamical gauge fields. It is determined by a class wéN) € H*(X,Zy) of the
G = U(Ny)/Zy gauge fields A and C, which represents the obstruction to it being a U(Ny)

gauge field. Specifically,

%wz(a) - j{wgm _ (N%f{g - % wQ(A)> mod N | (4.132)

Note that w2 depends only on the background fields.
Now that we can use the background fields to induce arbitrary wy(a) we can repeat the

analysis in section 4.5 to find that under shifting 8 — 6 + 27 the action is shifted
2 2
i / Plw i / P ) od omi, (4.133)

where in the last expression we expressed it in terms of the background fields A and C as in
(4.132), showing that it is an anomaly.
We might be tempted to interpret (4.133) as a Zy anomaly. However, this is not the case.

To see that, we proceed as follows. Using (4.129) and (4.132) it is straightforward to check

(524 (i)
/

, JENE  NJP(wy(A))
R S B R i Sy

that

(4.134)
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where R and J are integers satisfying
JNy — RN =L . (4.135)

(Different solutions of this equation for (J, R) lead to the same value in (4.134).) The significance
of the apparently unmotivated expression (4.134) will be clear soon.

Given that we have background fields A and C, we can add some counterterms to the action.
Two special terms are

10 10
A [ re(Fy A Fy) + 22€ /FC A Fe . (4.136)

812 82
The normalization here is such that for an SU(Ny) x U(1) background (A, C') the coefficients
©4 and O¢ are 2m-periodic.
The new crucial point is that when we study the anomaly in the shift of # we can combine
this operation with continuous shifts of © 4 and ©¢. In other words, we can think of © 4 and O¢

as being #-dependent?”

O4=00 440, ©6c=02 +ncb. (4.137)

In order to preserve the 2m-periodicity of 6 for SU(Ny) x U(1) background fields we take n4, ne €
7. Then, under 6 — 0 + 27 the expression (4.136) is shifted by (recall that C = KC)

27ri/<nATr(FA/\FA) n F/\F> :27Ti/<—nAM+ FAF) mod 27i .

n Nne ————
82 “Rr2 K2 2N} “8n2K?
(4.138)
Comparing this with (4.134) we see that by choosing
N
nAsz, nC:JK (4.139)
29We could have added to (4.136) another linearly independent counterterm % 79(%51‘”) However, since its

coefficient p is quantized, it cannot depend on # as here and therefore it cannot be used to remove the variation
in (4.134). This counterterm will be important in section 4.6.1.
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(note that N/L is an integer) we can cancel the second factor in (4.134). This leaves us with
an anomaly only because of the first factor in (4.134). As in all the examples above, it can be

written as a Hhd anomaly action

’ (V)
A0, A, C) = exp (? / % (R% + JuwM U m(A))) . (4.140)

It is crucial that unlike the variation (4.133), which appears to be a Zx anomaly, this expression
is only a Z; anomaly.

Finally, we show that using the freedom in (4.137), we cannot remove this Z; anomaly. In
other words, we show that there are no integer shifts of n4 and n¢ in (4.138) that can make the

partition function invariant under 6 — 6 + 27r with » # 0 mod L. We try to satisfy

r P(wéN))_ s t ~
N/T— 87r2/Tr(FA/\FA> 87T2K2/F/\F mod 1
(s P(wa(A)) t /~ ~
_< Nf/ 5 +87T2K2 FAF) modl.

with integer s and t. Clearly, we must have t € KZ. Then, using (4.129) it becomes

(t — SN P(w t P wiv) t
< i / +W/ (22 >+NNf/w2(A)Uw§N>> mod 1.  (4.142)

Comparing with (4.141), we find that the coefficients (s, ¢,r) should satisfy

(4.141)

t—sN;yeN?Z, t—rNeN*Z, teNN/L. (4.143)

These conditions can be satisfied only if » = 0 mod L. These manipulations are identical to the
discussion in section 2.2 in [151]. The reason for this relation will be clear soon.

We conclude that our theory has the anomaly (4.140). As a result, the theory is invariant
only under § — 0 4 2L and the anomaly is absent when L = ged(N, Ny) = 1.

When L = ged(N, Ny) # 1, the anomaly prohibits the long distance theory to be trivially
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gapped everywhere between ¢ and 6 + 27. For small enough N; the theory is believed to be
trivially gapped at generic 6 and nonzero mass. Therefore, the anomaly implies at least one
phase transition when 6 varies by 27. This is consistent with [28], where it was argued for
different behavior depending on Ny and the value of the mass.

The anomaly also constrains smooth interfaces between regions with different 6. Suppose
the two regions have 6 and 6 + 2wk for some integer k. The theory on the interface then has an

ordinary 't Hooft anomaly of the zero-form global symmetry U(Ny)/Zy

- (N)
exp (27;k / (R% + Jwq(A) U wéN)>> . (4.144)

It is trivial when & = 0 mod L.

Clearly, this anomaly does not uniquely determined the theory on the interface (see e.g. the
related discussion in [1] and the comments below). One possible choice for the theory on the

interface is the 3d Chern-Simons-matter theory?°

SU(N)r-n,/2 + Ny fermions (4.145)
or its dual theories
U(k)_n + Ny scalars kE>1
(4.146)
U(Ny — k)n + Ny scalars k < Ny

with a U(Ny) invariant scalar potential. The fact that there are two dual scalar theories for
1 <k < Ny was important in [152]. See the discussion there for more details about the validity
of these dualities. All these theories have a U(Ny)/Zy global symmetry with the anomaly
(4.144) [151]. In deriving this anomaly the freedom to add Chern-Simons counterterms of the
background gauge fields was used. These Chern-Simons counterterms can be thought of as being

induced by the continuous counterterms (4.136) in the 4d theory. This explains the relation

30The special case of k = 1 was discussed in detail in [28]. The generalization to larger k was explored in
appendix A of that paper.
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between the computation of the anomaly under shifts of # above with the computation of the
anomaly in the 3d theory in section 2.2 in [151].

Further information about the theory along the interface can be found by considering the
limits of large and small fermion masses. For 1 < Ny < Nepp (with Nepp the lower boundary of
the conformal window) the analysis of [28] showed that for 1 < k < N the theories (4.145)(4.146)

indeed capture the phases of the interface theory. We will not repeat this discussion here.

Implications of Time-Reversal Symmetry

As we did in the previous examples, we would like to compare our discussion using the anomaly
in shift of # to what can be derived using ordinary anomalies of global symmetries involving
time-reversal symmetry T (or equivalently a CP symmetry) at 6 = 0, 7.

First we discuss the possible counterterms that we can add to the theory. They are parame-

terized by>!
s mit ~ ~ 2rip [P
ez | TFaAF) + s /F N+ = 5

(4.147)

All the other counterterms can be expressed as linear combinations of these three counterterms
using (4.132). As in section 4.6.1, these counterterms have a redundancy which can be removed
if we limit ourselves to p mod L.

Now we discuss the T-symmetry at # = 7. In order to preserve the T-symmetry in SU(Ny) x
U(1) backgrounds (as opposed to more general U(Ny)/Zy backgrounds), s and t have to be

integers. Under the T-symmetry, the partition function transforms by

IN 872 © 8m2K?
(4.148)

(V) I
Z[0, A, C) — Z[0, A, C] exp <2m/ <(1 B 2p)P(wz ) T(FaAFa)  FA F)

Using the results in section 4.6.1, the transformations can be made non-anomalous with an

appropriate choice of s and t if

1 —2p=0mod L. (4.149)

. (N)
31The discrete counterterm 2”—]\;’" % was not included in [28]. Its significance will be clear below.

216



theory without T with T at 0 =0, 7
symmetry G 0-G anomaly | T-G anomaly at # = 7 | no continuous counterterms
even L even L even L
SU(N) QCD
G = U(N,)/Z oddL#1 v oddL#1 X oddL#1 v
JIEN L=1 X L=1 X L=1 X

Table 4.6: Summary of anomalies and existence of continuous counterterms preserving time-
reversal symmetry T in 4d QCD. Here L = ged(N, Ny).

This equation has integer solutions for p if L is odd. Therefore, we conclude that the theory at
6 = 7 has a mixed anomaly involving the time-reversal symmetry and the U(Ny)/Zy zero-form
symmetry only when L = gcd(N, Ny) is even. In that case, the theory at § = 7 cannot be
trivially gapped.

If L = ged(N, Ny) is odd, the counterterms that preserve the T-symmetry at ¢ =0 and § = 7
are different. In particular, we need to have p = 0 mod L at § = 0 and p = (L + 1)/2 mod L
at # = m. As with our various examples above, even though there is no anomaly for odd L, the
fact that we need different counterterms at # = 0 and at § = 7 can allow us to conclude that in
that case the theory cannot be trivially gapped between § = 0 and § = 7. There is an exception
when L = 1. There we can choose p = 0 mod L and find a continuous conterterm that preserves
the T-symmetry at 6 =0, 7

, J FAF Tr(Fa A Fj)
e TAT Ny RTARTA) 4.1
0 / (NNf sz TNV T (4.150)

with an integer J satisfying JN; = 1 mod N.
The existence of continuous counterterms preserving the time-reversal symmetry T at 8 = 0, 7

are summarized in Table 4.6.

4.6.2 Sp(N) QCD

Consider Sp(N) QCD with 2Ny Weyl fermions in the fundamental 2/N-dimensional represen-

tation. Note that the theory is inconsistent with odd number of fermion multiplets due to a
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nonperturbative anomaly involving m4(Sp(N)) = Zy [193]. The Euclidean action includes the

kinetic terms and

) —;—i/Tr(f/\f) +/ (mQIJQij¢j¢j+c.c.) , (4.151)

where Qs and Q¥ are the invariant tensors of S p(Ny) and Sp(N) respectively and we used the
standard summation convention for the flavor indices I, .J and the color indices 7, j. Note that
we took equal masses m for all the quarks. Because of the chiral anomaly, the theory depends
only on the complex parameter me?/?Ns so without lost of generality we will take m to be a
positive real parameter. For simplicity, we will limit ourselves to spin manifolds.

With the Sp(Ny) invariant mass term the faithful global symmetry of the system is

G = _Spgjf) , (4.152)

To see that, note that locally the fermions transform under
g;m'cro = Sp(N> X Sp<Nf)7 (4153>

where the first factor is the gauge group and the second factor is the flavor group. However the

group that acts faithfully on the quarks is

Crntero = 22) 2 Py (4.154)
2

Here G’

micro

is represented by (u € Sp(N),v € Sp(Ny)) and the quotient is the identification

(u,v) ~ (—u, —v). (4.155)

Finally the global symmetry G = Sp(Ny)/Z, (4.152) is obtained by moding out G,icro by the

Sp(N) gauge group.
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Anomalies Involving #-periodicity

In order to study the anomaly, we couple the global symmetry G = Sp(Ny)/Zs (4.152) to
background gauge field. We do it in steps. First, we couple the theory to Sp(INy) gauge field A.
Together with the dynamical gauge field a, these gauge fields represent G/ ..., (4.153).

Next we perform the quotient leading to G, i (4.154), This promotes a to be an Sp(N)/Zs

gauge field and A to be an Sp(Ny)/Zs gauge field. They are correlated via
wa(a) = wa(A), (4.156)

where wy is the second Stiefel-Whitney class of the corresponding bundle.
As in the case of SU(N) gauge theories above, we can use the background fields to induce

arbitrary ws(a). Then, using (4.114), we find that shifting 6 — 6 + 27, the action is shifted by
N N A
2m§:/29%92=am§:/E&%Lﬁ»mﬂ2m. (4.157)

It is tempting to interpret this as a Z, anomaly when N is odd and as no anomaly when N is
even. However, we can add a continuous counterterm to the action
10

The normalization here is such that for Sp(Ny) background A the coefficient © is 27-periodic.
We let © be #-dependent
0=004+n0, (4.159)

with integer n to preserve the 2m-periodicity of 6 in Sp(Ny) background. Then, under § — 6427

the expression (4.158) is shifted by

Tr(FaNF N A
2Win/w = 27ri/ anP(w;( ) mod 273 . (4.160)
™
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When Ny is odd, we can use these counterterms to cancel the shift of the action (4.157). The
theory only has an anomaly when N is odd and Ny is even.

As in all the examples above, it can be written as a 5d action

A0, A) = exp (% / %w) with L = ged(N — 1, Ny, 2) . (4.161)

As a result, the theory is invariant under 6 — 6 + 47 when N is odd and Ny is even, and in all

other cases it is invariant under § — 6 + 2m.

Interfaces

The anomaly constrains smooth interfaces between regions with different 6. Suppose the two
regions have ¢ and 6 + 27k for some integer k. The theory on the interface then has an ordinary

't Hooft anomaly of the zero-form global symmetry Sp(Ny)/Zs
exp (2m’% / @) with L =ged(N —1, Ny, 2). (4.162)

One possible choice for the theory on the interface is the 3d Chern-Simons-matter theory

Sp(N)r—n, 2 + Ny fermions (4.163)
or its dual theory
Sp(k)-n + Ny scalars kE>1
(4.164)
Sp(Ny — k)n + Ny scalars k < Ny

with an Sp(Ny) invariant scalar potential. (See [152] for more details on the validity of these
dualities.) All these theories have an Sp(Ny)/Z, global symmetry with the anomaly (4.162) [151].

Further information about the theory along the interface can be found by considering the
limits of large and small fermion masses.

When the fermions are heavy, the 4d theory is effectively an Sp(IN) pure gauge theory and
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there expects to be an Sp(N); Chern-Simons theory on the interface, or another TQFT with
the same anomaly [1].

When the fermions are massless, for 1 < Ny < Nepp (with Nepp the lower boundary of
the conformal window), the low-energy theory of the 4d theory is a sigma model based on

SU(2Ny)/Sp(Ny) [194]. The target space can be parametrized in two different ways:
SU(2N;)/Sp(N;) = {z — Q4" ] ge SU(QNf)} (4.165)
with Q the Sp(Ny)-invariant tensor, or
SU(2N;)/Sp(N;) = {2 e SU(2Ny) ) ¥ =37 and PEX) = 1} (4.166)

with Pf(3) the Pfaffian of the anti-symmetric matrix 3. The kinetic term is the obvious SU(2Ny)
invariant one. Adding a small Sp(Ny)-preserving mass term for the fermions in (4.151) corre-

sponds to adding a potential to the chiral Lagrangian. The potential is proportional to
—m (PN Tr(8Q) + c.c.) . (4.167)

It has a minimum at ¥ = e~ 2"*/2NsQ) when 0 = 27k.
We are interested in the interfaces that interpolate between the vacuum at ¢ = 0 and ¢ = 2nk.
For simplicity we restrict to the interfaces with 1 < k < Ny. Following the similar analysis in [28§],

the interface configuration, up to symmetry transformations, is

_ 0 €. 0
Y = diag R _ : (4.168)
—elr () —"Nr 0
The phases are divided into two groups a; = -+ = a3 and a1 = -+ = ay, that satisfy

the constraint Pf(¥X) = exp(i(a1 + az--- + an;)) = 1. The first group varies continuously

from 0 to 2m(Ny — k)/Ny and the second group varies continuously from 0 to —27k/N;. The
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other configurations of the interface can be obtained by an Sp(N;) transformation ¥ — gXg”.
This shows that the theory along the interface is a sigma model based on the quaternionic

Grassmannian
Sp(Ny)

Gr(k, Ny, H) = Sp(k) x Sp(N; — k)

(4.169)

We conclude that for 1 < Ny < Negpr, the interfaces that interpolate between the vacuum
at @ =0 and § = 27k with 1 < k < Ny has at least two phases. One is described by an Sp(N)j
Chern-Simons theory and the other one is described by a nonlinear sigma model based on the
quaternionic Grassmannian Gr(k, Ny, H). These two phases are captured by the theory (4.163)
and its dual theory (4.164) [152].

4.7 Appendix A: Axions and Higher Group Symmetry

Throughout our analysis, we have discussed the usual presentation of anomalies via inflow. There
is however another presentation of the same results by including additional higher-form gauge
fields with atypical gauge transformation properties.

To carry this out for ordinary anomalies we proceed following [8]. We couple an anomalous
d-dimensional field theory to a new d-form background field A with a coupling i S x Ald) A
can be thought of as a background gauge field for a “d — 1-form symmetry” that does not act
on any dynamical field.?? The anomaly of the d-dimensional theory is then formally removed by
postulating that under gauge transformations of the background fields the new field transforms
as A — AD 1 dA\@-D — 27q (N, A) with a(A, A) as in (4.1). The term with A~V is the
standard gauge transformation of such a gauge field and the term with «, which cancels (4.1),
reflects a higher-group symmetry (see e.g. [8-10] and references therein).

We can apply a similar technique to our generalized anomalies involving coupling constants.

Focusing on the case of the f-angle in 4d gauge theory, we couple our system to a classical

32Guch couplings are common in the study of branes in string theory.
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background three-form gauge field A® through3?

i (1 —N)

—0(dA®) + ———2P(B) ] . 4.170
0 (049 + * () (4.170)
Now, the lack of invariance of the original system under § — 6 + 27 is cancelled by this term.
However, this term seems ill-defined. As in the general discussion above, this can be fixed by

postulating that A®) is not an ordinary three-form background field, but it transforms under

the gauge transformation of B, such that the combination F¥) = dA®) + WP(B) is gauge
invariant.>* This means that the mixed anomaly between the periodicity of § and the one-

form Zy global symmetry is cancelled at the cost of making the background field B participate
together with A®) in a higher group structure [8-10].

Note that the quantum field theory does not have a conserved current that couples to this
new background gauge field A®). In fact, this classical background field does not couple directly
to any dynamical field. Yet, such a coupling allows us to cancel the anomaly.

The use of the background three-form gauge field A®® above might seem contrived. However,
when 6 is a dynamical field (an axion) the treatment of the anomaly involving A®) is required
so that there are no bulk 5d terms involving dynamical fields. Moreover, in this case A®) is
also natural from another perspective as it couples to a conserved current for a two-form global
symmetry %d@ [140]. Following our rule of coupling all global symmetries to background gauge

fields, in this case we must introduce A®).

33The following discussion is similar to Appendix B of [140]. Below we explain the relation between them.

34A lowbrow way to think about this is to express B = %B in terms of a U(1) two-form field B. Then,
B transforms under a one-form gauge transformation B — B + dA®) and FW = dA®) 4 WP(B) =
dA®G) + WB’ A B is invariant provided A®) transforms as

(N-1)

AB 5 A® 4 ga@ 4 N A A B NN D)

T 47

AL AdAD (4.171)
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