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Fig. 1. Time evolution of the electron-positron pairs, the
results calculated by the computational quantum field the-
ory and the first-order time-dependent perturbation theory
are represented by the solid line and the dashed line, re-
spectively. The electron-positron pairs created by double os-
cillating filed is represented by blue line, the electron-
positron pairs created by single oscillating field is represen-
ted by black line, and the twice of the pairs created by
single oscillating field is represented by the red dotted line.
Here, V; = Vo, =0.75¢%, Wy = Wy, =3/c, d =8/c, w = 2.5¢,
T =2n/w.
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Fig. 2. Momentum spectra of the created electron-positron
pairs, the results calculated by CQFT and the first-order
time-dependent perturbation theory are represented by the
solid line and the dashed line, respectively. Here, V| = V, =
0.75¢%, Wy = Wy = 3/¢, d = 8/c, w = 2.5, t = 20T =
40m/w.
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perturbation theory.
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Fig. 3. Time evolution of the created electron-positron pairs
for different distances between the two fields (d), the res-
ults calculated by CQFT and the first-order time-depend-
ent perturbation theory are represented by the solid line
and the dashed line, respectively. Here, V, = V, = 0.75¢2,
Wy = Wy=3/c,w=25c T=2n/w.
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Fig. 4. Momentum spectra of the electron-positron pairs for
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calculated by CQFT and the first-order time-dependent
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the dashed line, respectively. Here, V; = V, = 0.75¢2, W, =
Wy =3/c,w=25ct=20T = 40n/w.

RS, IS XA B RS B cos?
[(p+n)d/2) RFHil, BEE TR d 7281k, HEh
W IR R I S B2 . X T d = 8¢,
11/c, 14/ c, HB #5341 B4 37 J& 191 53 51 o 53.8,
39.1, 30.7. A SR AR (WK 4), FH
PB d=8/c, 11/c, 14/ c W BNt 50 A1 4R 3 J5 10 o
B4 50.3, 37.7, 31.4, PiE T AT W& Rl
d W3R, TE S HL X5 Bl oA B 9R 3 S 912 /N,
XU 57 R Sl R Y SR S sE 78, JF HFE 7
L 7 AR SR L R A (WL 3), X R
PR RS 22 ) B —fig i 1Y IE BRI RE.
T E B i B B A PR T B AN B
THEZME R EMAE. B2, X T4XERT
103.7 B sh il (34 d = 8/c, 11/c, 14/cit, 3l
IG5 p = £138.2, £131.9, +£128.8) I A
T34 cos?[(p+n)d/2] I BT 45 i ) Sl i 3 J5 10,
RITE S L XS A IE (1) shi s AR T ah &
p = 103.7(p = —103.7) X FR43Aa ). i AL ERIE
HH, M d=8/c, 11/¢, 14/c I, S35 K
p = +157.8, £143.1, £134.7, {HiX BE g 40K
RIS EIEAE, WA 4 TR, O T 2500 HriE i
L X i Bl o3 A e AN RN 35, AR B 1 3
mRAR E,= \/m, M E=\&+2n2, iR
TR T R A R . R ILIE XY
PR A AL P A RPRERIT A R AR X AR BRI i
L d =8/c i, MIGREESFIHER E, =

B tw, MK EA 1.252 = (-1.252)+2.5¢,
B RER B, = -1.25¢2 (n = £103.7) LAYH FI%
A F IR BGERERES E, = 1.25¢ (p =
+103.7); M dE X FRERGE L FE v, Bh i (H p =
+53.4 XF N O fE R 1.08¢2, AR LA F AE B <7 IE ¢
R, XUk A TRER N E, = -1.42¢ (n =
+138.2) A REA. AN, EER E, = -1.08¢
(n = £53.4) i AT U — A4S ) 7 BR A 2] 1F 5 &
B, = 1.42¢ (p = £138.2), KT HERTE p =
+138.2 Zb HH BN IGAE . F T i 5% A& B 1k Bl E X AR R
T B R R AN L 3 1 A R AR 38 A0 1 19, FRATT A
FHRRUIRZ Fo 5 Z RIFEAEAR BAE T, 754X FRER
IR — gl NS e, PR A TR
TXFR A LT Bl (BmsR) Fish
A (e, Bk, i p = £103.7 FHFR
H TXFRERGTE S, HAghit B2k A TAEXT
FRERIEAT . sl p = £103.7 FHFHEITR
THAW S, BEHIXTREGE A R A 5 A

3.3 HIBEEXNIERRFI=EZIT

LA B B —2, B W =W, =
W,. BEE WL SERE WIREE K, RS % i 7 A=
R FEW L, WK 5 PR, XFF Sauter HY ) HL
HH 58 B By =0V (z2,1)/02]z = 20 = V/(2W).
HL 3 BE DRSNS, F b0 32 i R, 37 B B ) 15 DR

0.50
— Num. W=2/¢ R
045F _ Num. W=3/c 7
0.40 F — Num. W=4/c B
----Pert. W=2/c o
0.35 -
---- Pert. W=3/c o
. 0.30 F ---- Pert. W=14/c 7
% 0.25 - ? )
0.20 AT e
015} =
0.10
0.05
0

0 é 4'1 (IS é 1IO 1I2 1I4 1I6 1I8 20
/T
5 AN WON IE X R BE T AR Ak,
S 2R I 2k 43 0] 3R R BT T 3 10 1 A SRR — B I
WHIL LR, Hrp V= V, = 0.75¢%, d = 14/c, w = 2.5¢,
T=2n/w
Fig. 5. Time evolution of the created electron-positron pairs
for different widths of electric field (W), the electron-
positron pairs calculated by CQFT and first-order time-
dependent perturbation theory are represented by the solid
line and the dashed line, respectively. Here, V; = V, =
0.75¢%, d = 14/¢, w = 2.5, T = 2njw.

044201-6


http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1
http://wulixb.iphy.ac.cn/CN/volumn/home.shtml#1

) 32 % 3R Acta Phys. Sin. Vol. 73, No. 4 (2024) 044201

BN, T O 67 X0 1 7 A 3R L i B 1Y) O
IEL O B Fec B2, R, 4 HL 37 58 BE S ORI, 1E 7
LI DO VRS TE W\

AL EI Y (12) M (13) 23R B HL b 98 B
Wil i W 2esch?[n W(p+n)] B F 5 i LR 35
HIE B 6 P AR B R Rl i AL O TS
W 2esch?[n W(p-+n)] PRI-F- UMl s i SR 2 3 h e 41
HL X7 A, it — 2000 i T NIRRT 1Y T
T F X s sr . A 6 P, B #5585
3R, BRI p = +£103.7 A IE A LT
X B SZ SR, (B A B B (X I AL 2
R E DN, TS T 1 S 0 A ) SR,
FWIN. WAL, BIGTEREE W = 2/c I, TEhE p =
+147.7 ARSI REE, TSRS 9E W = 4/c B,
AP EE. @ ERen (13) XL, E
T T X RS W 2esch?[n W(p-+n)] T IE
te. M WHERES, W 2csch?[n W(p+n)] Hil
Bl Z k)N, BB b IE B HL R ARt R
b (Bl 6). W2csch?mnW(p+n)] AFAUBE T IE
L X I Bl A AT W 1 B, IR UAE T Bl oy
fifESE. HIt, fEshit p = £147.7 &b, B Y
TERE W RIS K, TE 57 L0t i 43 A A I (128 VT
2. 1M 3.2 5 T2 B cos?((p+n) d/2] WUTT Fil
(4 48 RHEL R T 103.7 1Y 3l I (R A H I 2 A
R W 2esch?[n W(p+n)] TR FT . R, #4598

0.030
— Num. W=2/c¢
n — Num. W=3/c 4
0.025F — Num. W=4/c
----Pert. W=2/c
0.020 | --=- Pert. W=3/c
_ : ---- Pert. W=4/c
L 00151
Y
0.010
0.005

0 1 I 1 1
—200—-150-100 =50 O 50 100 150 200

6 ANFHZTE (W) FIEG AT 0 R, 4L
H M £ 43 ) s IH B B T 500 00 45 R0 — B & B R e B
W, Hh V= Vo, = 075, d = 14/c, w = 2.5¢, t =
207 = 40m/w

Fig. 6. Momentum spectra of the created electron-positron
pairs for different widths of electric field (W), the results
calculated by CQFT and the first-order time-dependent
perturbation theory are represented by the solid line and
the dashed line, respectively. Here, V, = V, = 0.75¢%, d =
14/c,w =25 t=20T = 40n/w.
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Table Al. Mean relative error of the particle num-

ber created by the CQFT and the first-order time-
dependent perturbation theory.

BLIARR SFAARRT B v PR B PRI ARRT
(&) ®E/%  (¢hH B’E/N (A B’E/%

1.6 6.04 0.5 12.54 0.5 5.32
1.7 674 0.6 11.52 0.6 5.79
1.8 8.76 0.7 10.56 0.7 6.33
1.9 18.11 0.8 9.71 0.8 6.96
2.0 27.41 0.9 8.95 0.9 7.68
2.1 19.24 1.0 8.30 1.0 8.48
2.2 11.29 1.1 7.76 1.1 9.36
2.3 8.07 1.2 7.31 1.2 10.33
2.4 6.97 1.3 6.94 1.3 11.38
2.5 6.64 1.4 6.66 1.4 12.51
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Abstract

We investigate an important aspect of electron-positron pair creation from vacuum in the presence of a
strong background field, where the combined field plays a key role in the pair creation process. By utilizing
computational quantum field theory, we explore electron-positron pair creation induced by double-located
oscillating electric fields by numerically solving the Dirac equation in full spacetime dimensions. We
demonstrate theoretically that computational quantum field theory is equivalent to the first-order time-
dependent perturbation theory for single-photon transition pair creation in a spatially inhomogeneous and time-
dependent electric field, and verify their equivalence through numerical simulations of pair creation in double-
located oscillating fields. We show some interesting results about the periodic oscillation of the momentum
spectrum structure of the created particle and the asymmetric multi-photon pair creation process due to the
interference between two fields. By using first-order time-dependent perturbation theory, we find that the
periodic oscillation in the momentum distribution of the created particle is affected by the field width, the field
frequency and the distance between two fields. The period of the oscillation of momentum spectrum structure is
changed by the distance between two fields, while the field width has an influence on both the difference
between the peak and valley of the momentum spectra and the width of the momentum space available to the
created particle. Increasing the frequency of the electric field results in larger momentum for the created particle

pairs, while correspondingly reducing the coupling matrix element (p|V|n) and diminishing the probability of
electron-positron pair creation.

The interference between two fields significantly enhances the yield of pair numbers for small distances
between two fields. When the distance is too large, the number of pairs created by double oscillating fields is
twice that created by a single field, and the enhancement is vanished. When the distance between two fields
increases, the period of oscillation decreases. In turn, the creation of electron-positron pairs can become more
monochromatic in momentum (energy), while the number of pairs created remains almost constant. As the
electric field broadens, the yield of the created pairs decreases for constant potential height. Increasing the field
width will reduce the number of particles for each momentum and narrow the momentum space of the created

particle. Increasing the field frequency leads to the reduction of the coupling matrix element (p|V|n) and
subsequently reduces the total number of electron-positron pairs created. The field profile parameters such as
frequency, width, and distance between two fields can be utilized to select a specific momentum (energy) of
particles in future electron-positron pair creation experiments.

Keywords: electron-positron pair creation, computational quantum field theory, high field physics
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