ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012058 doi:10.1088/1742-6596/1525/1/012058

CernVM-FS Container Image Integration

Simone Mosciatti, Jakob Blomer, Gerardo Ganis, Radu Popescu
CERN, Espl. des Particules 1, 1211 Meyrin

E-mail: simone.mosciatti@cern.ch

Abstract. Linux containers have gained widespread use in high energy physics, be it for
services using container engines such as containerd/kubernetes, for production jobs using
container engines such as Singularity or Shifter, or for development workflows using Docker
as a local container engine. Thus the efficient distribution of the container images, whose size
usually ranges from a few hundred megabytes to a few tens of gigabytes, is becoming a pressing
concern. Because container images show similar characteristics than scientific application
stacks, unpacking the images in CernVM-FS can remedy the distribution issues provided that
the container engine at hand is able to use such unpacked images from CernVM-FS. In this
contribution, we willl report on recent advances in the integration of Singularity, Docker, and
containerd with CernVM-FS. We show improvements in the publishing of container images from
a Docker registry that rely on new means of directly ingesting image tarballs. Well also show a
repository file system structure for storing container images that are optimized for storing both
container engines using flat root file systems (Singularity) as well as container engines using
layers (containerd, Docker). To evaluate the benefits of our approach, we show concrete use
cases and figures for production and development images from LHC experiments stored in the
recently created unpacked.cern.ch repository.

1. Introduction

Containers orchestration tools, such as kubernetes, provide a solution to the problem of managing
runtime dependencies of complex software stacks. They are in widespread use in industry and
quite attractive also in the high energy physic field. The great size of HEP software stacks,
routinely bigger than 1 GB, however, makes difficult to deploy containers on a large number
of machines. Indeed a standard solution in this case, especially in HEP, is to use CernVM-FS
[2] to deploy the software to a central server and lazily load only the strictly necessary pieces
needed to run the computation. The singlularity.opensciencegrid.org CernVM-FS repository
has successfully shown how to distribute singularity containers at Worldwide LHC Computing
Grid scale. For layer-based container engines, such as docker and containerd, previous work
introduced the concept of a thin-image [1], blending together the container layer abstraction with
the efficient file-level distribution provided by CernVM-FS. A thin-image is a small JSON file
that contains the location of the docker layers, previously stored in CernVM-FS. The container
runtime can access the files in the layers directly from CernVM-F'S without the need to download
big files from a central repository. Our contribution is to provide a container publishing service
to serve both Singularity and Docker thin-images containers in a completely automatic way,
starting from a standard Docker images. This allows HEP researchers to run their containerized
computing jobs even on big clusters with ease. The design of the container publishing service
aims at supporting thousands of images per year, summing up to billions of files.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
BY of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOIL.
Published under licence by IOP Publishing Ltd 1

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012058 doi:10.1088/1742-6596/1525/1/012058

2. Our approach

The container publishing service is based on the assumption that the initial container
development and the maintenance of user containers is done with Docker. The new service
provides a declarative interface for the users to specify which Docker images they desire to
provide on CernVM-F'S for large-scale deployment. Upon specification, the Docker source image
is converted to both a Singularity compatible directory tree (a flat root file system) and a Docker
compatible directory structure (a set of directories each containing part of the whole filesystem)
and published into a CernVM-FS repository. The declarative interface consists of a simple
YAML file, the wishlist, that specifies:

e The target Docker registry for storing the CernVM-FS thin image
e The credentials of the target Docker registry

e The naming scheme for the thin images

The list of the Docker images to convert

The use of such declaration file was inspired by the successful experience reported by Open
Science Grid, indeed, the wishlist can be stored in git so that multiple stakeholders can visualize
it and request modifications. The modifications are rejected and accepted by the owner of the
repository. To convert the regular Docker source image into a Docker thin images we begin
by ingesting every Docker layer into CVMFS, after each layer has been ingested we proceed
to create the thin-images descriptor [1]. Finally, the thin-image descriptor is pushed as Docker
images into the Docker registry specified in the wishlist. To convert the Docker source image
into a Singularity image we exploit the capability of Singularity to run images directly from
a simple directory containing the root file system. Hence we unpack the whole image into a
directory that is then published in CVMFS.

3. Scalability

The container publishing service is designed with the assumption to support a large number of

images, in the order of one image for every physic analysis. In order to support the anticipated

scale, the directory tree of the CernVM-FS repository hosting the images is carefully crafted.
In particular, we exploit the sub-catalogs of CernVM-FS and its deduplication capability.

3.1. Deduplication

Images typically share a lot of identical files. For instance, the same operating system is easily
shared between a lot of different images, but also some basic software and configuration files can
be identical between different images. This peculiarity is accentuated by the fact that Docker
images tend to be built on top of identical base images in order to exploit the Docker cache
capabilities. Moreover, the Singularity version of the image contains the same files than the
Docker version. These identical files are automatically deduplicated by CernVM-FS using its
internal Content Addressable Storage engine, in this way we avoid storing multiple times the
same file.

3.2. Sub-catalogs and directory tree structure
The directory tree is structured to make effective use of the CernVM-FS sub-catalogs.

There are two conflicting constraint to consider while designing the filesystem structure to
make efficient use of CernVM-FS sub-catalogs. From on side we want to maximize the amount
of catalogs, so that each sub-catalog contains the least number of entries and it is small in size.
From the other side we want to minimize the amount of catalogs necessary to access a file, in
this way fewer round-trip connection to the server are necessary but the catalogs grow in size.

ACAT 2019 IOP Publishing
Journal of Physics: Conference Series 1525(2020) 012058 doi:10.1088/1742-6596/1525/1/012058

We decide to create a sub-catalog for each Singularity filesystem and one for each Docker
layer. While this approach is not perfect it strikes a good balance between the two constraints.
With this approach we also avoid the need to download additional catalogs during the runtime
of the container.

If we stored all the Docker layers in the same directory, the size of the sub-catalog in such
directory would grew too big for most practical purposes. In order to mitigate this problem we
decide to partition the docker layers in different directories. We decide to partition the docker
layer using the first two characters of their hexadecimal hash as partition key, this create 256
partition slots. This amount of slots is a good balance between the size of each catalog and the
number of catalogs.

3.83. Metadata and garbage collections

When the original Docker images are updated, the container publishing service will download
the new images and replace the old one. Hence some layer of the previously published images
will become obsoletes and it will be possible to remove them. In this case, two problems arise:

e Users could still rely on old versions of image that use obsolete layers.

e Some unrelated image could still be using those layers.

Unfortunately is not possible to know what version of the image the users have downloaded
locally, so it is impossible to know with certainty if an old layer is still required by some users,
hence we decide to provide a grace period of 30 days. After the grace period, the layer is
removed. A similar policy is applied to the Singularity root file-system.

For what concerns layers shared between different images, we keep metadata about each
layer. The metadata consists of a list of images that use such layer, when we delete an image,
we delete also the reference of that image from each layer metadata. As soon as a layer is not
referenced by any image, the layer can be deleted after the grace period.

4. Summary

In this work we introduce a container publishing service to automatically manage the distribution
of containers using CVMFS. We show how we addressed the challenges related to the anticipated
scale in terms of the number of distributed container images. The service has been released in
cvimfs 2.6, and a first working prototype deployment has been set up as the unpacked.cern.ch
repository.

References

[1] N Hardi and J Blomer and G Ganis and R Popescu 2018Journal of Physics: Conference Series Making
containers lazy with Docker and CernVM-FS

[2] Blomer, Jakob and Buncic, Predrag and Fuhrmann, Thomas 2011CERN-THESIS-2011-251DecentralizedData
Storage and Processing in the Context of the LHC Experiments at CERN

