
LHCb 2001-054

COMP
27 April 2001

Revised C++ Coding Conventions

Olivier Callot

Laboratoire de l’Accélérateur Linéaire - Orsay

ABSTRACT

This document replaces the note LHCb 98-049 by Pavel Binko. After a few years of practice,
some simplification and clarification of the rules was needed. As many more people have now
some experience in writing C++ code, their opinion was also taken into account to get a
commonly agreed set of conventions.

 Page 2 “Revised C++ Coding Conventions” LHCb 2001-054

Table of contents

1 INTRODUCTION.. 3

2 ORGANISATION.. 4

3 NAMING CONVENTIONS.. 5

4 HEADER FILES.. 6

5 IMPLEMENTATION FILE ... 7

6 MEMBER FUNCTIONS AND ARGUMENTS .. 8

7 CODING STYLE... 9

7.1 GENERAL LAY-OUT... 9
7.2 COMMENTS ... 9
7.3 HOW TO WRITE A SAFER CODE.. 10
7.4 READABILITY AND MAINTAINABILITY.. 12

8 EXAMPLES ... 13

8.1 HEADER FILE... 13
8.2 IMPLEMENTATION FILE ... 14

 LHCb 2001-054 “Revised C++ Coding Conventions” Page 3

1 Introduction

Working in a collaboration implies that the "products" are usable by many people. In the case of
software product, this means also that people who are not the authors will maintain them. A set
of rules and conventions is necessary to insure a minimal coherence and consistency. The
purpose of this document is to write such a set of rules.

One can discuss if all rules are at the same level, if some rules should be MANDATORY while
other are only RECOMMENDED. This means that code is always unacceptable if a mandatory
rule is violated. We all know that there are always exceptions, with good or less good reasons.
Having a mandatory rule implies also that there is a tool to check the rules, which we don't have.
I propose for the time being to have all the rules as is, making a difference by the phrasing of the
sentence: "must be", "is forbidden" indicate clearly mandatory rules, "should", "can be" mean
that this is recommended.

As we have no tool to check these rules, and as many people are able to commit their changes to
the CVS repository, it is quite difficult to install a policeman to enforce the rules. As in many
other areas in a collaboration, we rely on the goodwill of all contributors, who are working for
the success of the overall project.

Some of the rules are subject to strong personal views, in particular the coding style, as this
reflects aesthetic judgements and are based on personal experience. Common sense should be
used, and everyone should try to follow the majority's views. Here, rules should be seen as
guidelines, where exceptions are possible. Nobody will reject a source file with one line
containing 81 characters. However, having most lines with over 100 characters is totally
unacceptable, and shows that the meaning of collaboration, which means "working together",
has not been accepted by the author.

For several rules, a good working environment would help. In particular, a common LHCb set-
up for emacs and Visual Studio could help writing code which follows the rules. Experts of
these tools are welcome to propose and develop such an environment.

 Page 4 “Revised C++ Coding Conventions” LHCb 2001-054

2 Organisation

The LHCb software is organised in PACKAGES, which is a set of classes and the instructions
to build and use them. Packages can be released independently, but they usually depend on other
packages. The source files are maintained with CVS and released in the LHCb release area. A
development area $LHCBDEV also exists. The documentation on the handling of packages
(getting the package, committing changes, releasing a new version) is available on the LHCb
web. This document concentrates on the content of a package, i.e. file organisation in the
package, and (mainly) contents of the source files.

R1 Each package has an unique name, which should be written such that each word starts
with an initial capital letter.

R2 Each package belongs to a package group, a short name like detector name, software
product, etc. This is sometimes called "hat". The Gaudi packages are an exception, as they
are in a different area and are not LHCb specific.

R3 Several directories are mandatory in the package:

� cmt for the requirement files and the makefiles.
� src for the private source files. A sub-directory level may exist in this directory, in

case the package builds a static and a dynamic library.
� doc for the documentation on the package.
� options for Brunel option files, if the package contains algorithms.
� <package> for the public files of the package, typically header files
� <binary> for the compiled and possibly linked files. One directory per operating

system and debug version, e.g. i386_linux22, Linuxdbx, Win32, Win32Debug.

R4 Each class should have a header file and an implementation file, the name of the files
should be the name of the class. There should be no other "." in the filename, due to
nmake limitations.

R5 C++ include (header) files should have the extension ".h" and C++ implementation
files should have the extension ".cpp". No other file type is allowed.

R6 The first line of every file should contain the CVS $Header:$ macro, which CVS
translates into the responsible and date of the most recent CVS commit.

Example: // $Header: $

R7 For including standard files, use : #include <filename>
For user files, use the syntax #include "Package/FileName.h"
Never use a relative path for include file.

For private header files which are in the same directory as the source file, you should use
#include "FileName.h"

R8 The syntax of the "cmt/requirements" file has limitations due to nmake. In
particular:

� Macro names must not contain the minus sign "-"
� Macro definitions must be enclosed in round brackets "()"
� The use of curly brackets "{}" is not allowed, except in set statements.

 LHCb 2001-054 “Revised C++ Coding Conventions” Page 5

3 Naming conventions

Naming is something difficult to check by an automated tool, and everybody has his own feeling
of what is a good name for an entity. However one should follow some guidelines, so that
everyone understands what sort of entity is behind the name. Names should be meaningful, but
not too long so that statements are not too long!

R9 Names are usually made of several words, written together without underscore, each
first letter of a word being uppercased. The case of the first letter is specified by other
rules, but is usually lowercase. Don't use special characters. Only alphanumeric
characters are allowed.

Example : nextHighVoltage

R10 Names are case sensitive. However, do not create names that differ only by the case.

Example : track, Track, TRACK

R11 Avoid single character, or meaningless names like "jjj" except for local loop or array
indices.

R12 Class names must be nouns, or noun phrases. The first letter is capital.

R13 Data Member names should be private variables and start with "m_" followed by a
lowercase letter.

� Protected variables may be used for base classes.
� Never use public data members. Instead you should use accessors functions.

R14 Static variables should start by "s_" to distinguish them clearly.

R15 Avoid global variables. They cause problems with shared images. Their function is
better replaced by a class with mainly accessor methods. Avoid global functions and
operators. The only case where you can use them is symmetric binary operators and
mathematical functions.

R16 Accessor functions are named from the variable they control. The "get" accessor is
mainly the variable name, the set accessor has a "set" prefix.

Ex: trackHits() // Get the value of m_TrackHits
 setTrackHits(nnn) // Set the value.

R17 Other functions must be verb or verb phrases. Like all member functions (excluding
creators) they start with a lowercase letter.

R18 Functions that create or make a new object should start with the verb "create" or
"make".

 Page 6 “Revised C++ Coding Conventions” LHCb 2001-054

4 Header files

Header files with extension ".h" contain the description of the class. They may contain some
implementation, but only in the case this is inline code. The rest of the code is in the
implementation file, with extension ".cpp".

R19 A header file should contain the definition of a single class. If this class defines and uses
internally another class, they can be both defined in the same file.

R20 Every header file contains a mechanism to prevent multiple inclusion. The file
"Package/File.h" starts and ends by the following lines:

#ifndef PACKAGE_FILE_H
#define PACKAGE_FILE_H 1

 … body of the header file …

#endif // PACKAGE_FILE_H

R21 One should minimise the number of header files included, to avoid too complex
dependencies. In particular, if one uses only a pointer or reference to a class, one can just
do a forward declaration, without including the class header file :

class Line; // forward declaration, this is enough
class Point {
public:
 Number distance(const Line& line) const; // distance
};

R22 The class declaration starts with the "public " members first, this includes the
constructors and destructors. Then the "protected " and the "private " sections. One
may use typedef to clarify the typing, they should be at the beginning of the public
section of the class declaration.

R23 Header files should not have any method bodies inside the class definition. The
"inline" functions should go at the end of the file, after the class definition. The
other functions should all be in the implementation file. Inline function should NOT call
something external to the class. One could however put a very simple accessor on the
declaration line, to make the header file more readable.

class Point {
public:
 Number x() const {return m_x; }
 void setX(const Number x) {m_x = x; }
Private
 Number m_x;
};

 LHCb 2001-054 “Revised C++ Coding Conventions” Page 7

5 Implementation file

The implementation file contains the non-trivial member functions. They should hold the
definition of a single class, they may contain auxiliary (private) classes if needed.

R24 A constructor should initialise all variables and internal objects which may be used in
the class. Variables may also be initialised by their declaration in the header file.

R25 A copy constructor is mandatory, together with an assignment operator, if a class
has built-in pointer member data.

class Line {
public:
 Line (const Line &); // copy constructor
 Line & operator= (const Line &); // Assignment operator

Note that the arguments should be const reference. If you want to prevent copy
and/or assignment, you should provide a private declaration of the copy and
assignment constructors. The object can no longer be copied.

R26 Declare a "virtual" destructor for every class

class Line {
public:
 virtual ~Line(); // virtual destructor
};

R27 Virtual functions should be re-declared "virtual" in derived classes, just for clarity. And
also to avoid mistakes when deriving a class from this derived class…

 Page 8 “Revised C++ Coding Conventions” LHCb 2001-054

6 Member functions and arguments

R28 Functions without side effects are by far better. The use of the "const" specifier is
strongly encouraged, to make clear that a function doesn't change the object, or that the
arguments are not changed.

class Point {
public:
 Number distance(const Line& line) const; // distance
 void translate(const Vector& vector); // translate
};

The 'distance' function has a const argument, as the line is not modified, and is
"const" as the point is not affected. The 'translate' method is also not affecting its
argument, but the object is modified and the method can not be "const".

R29 Pass objects by constant reference. Passing by value is also acceptable for small objects.

R30 The use of default arguments is strongly discouraged. This reduces the risk of forgetting
an argument…

R31 Do not declare functions with unspecified ("...") arguments.

R32 The returned value of a function should always be tested. A function that does not
have a void type should always return a meaningful value.
"StatusCode::SUCCESS" is a good return value, this is used in the Algorithm class.

R33 The exception mechanism should be used only to trap "unusual" problems.

 LHCb 2001-054 “Revised C++ Coding Conventions” Page 9

7 Coding style

This area is usually the most debated, as some aesthetic considerations are involved. There are
sometimes also 'religious' issues, because there is no way to convince each other that this is
better than that. It's only something one can believe, but can't prove!

But it is important to try to get a similar look, for an easier maintenance, as most code writers
will be replaced during the lifetime of the experiment.

7.1 General lay-out

R34 The length of any line should be limited to 80 characters.

R35 Each block is indented by two spaces. It starts by an opening brace on the line of the
control statement, and end by a closing brace alone on its line, with optionally a comment
indicating which block is closed. In case of "if () {" statement, the closing brace
may be followed on the same line by an "else {" or "else if () {" clause.

 if (1 < x) {
 log << MSG::INFO << "x>1" << endreq;
 } // x greater than 1

One can also put a short single line statement on the same line, like:

 if (1 < x) { x = 1; }

R36 When declaring a function, try to put one argument per line, this allows inline comments,
and helps to stay in the 80 column limit

int myFunction(int intVAlue,
 std::string aString,
 MyClass* myClassPointerValue);

7.2 Comments

Comments should be abundant, and must follow the following rules to allow an automatic
documentation by the DOXYGEN tool:

R37 Every header file should have a comment block to describe the class, in the format
appropriate for the tool, just before the class declaration:

/** @class ClassName ClassName.h Package/ClassName.h
 *
 * The first sentence will be used as a summary. The rest of
* the text is a complete, free format description. It
* should end with author and date in the format:

 *
 * @author Your Name
 * @author A colleague helped also
 * @date 08/03/2001
 */
class ClassName {

 Page 10 “Revised C++ Coding Conventions” LHCb 2001-054

R38 Every method should have a description before it, either in a single line with "///":

/// single line description of the method
StatusCode Method();

Or with a block, again starting with "/**" and ending with "*/". Arguments and
parameters can be indicated by special tags:

/** A method with arguments to be documented on
 * several lines if needed.
 * @return status code
 * @param arg1 this is the meaning of this argument
 * @param blabla another reason
 */
virtual int method2(Type1 arg1, Type2 blabla);

R39 For comments that you don't want in the documentation, use a simple "//". The C-like
syntax is discouraged, except in the DOXYGEN formatted blocks. Use blank lines to
separate blocks of statements, but don't use blank comment lines, i.e. a line which
contains only "//" and nothing else is more a nuisance for the code clarity.

7.3 How to write a safer code

R40 Comparison between a variable and a constant should have the constant first, the
compiler will then spot it if you forgot one of the equal signs in

if (0 == value) {

By comparison,

if (value = 0) {

is a valid statement, but is not what you usually want !
If you are doing an assignment is a comparison, make it explicit by using parenthesis:

While (0 != (ptr = iterator())) {

R41 Comparison between floating point values should not test for equality. In case this is what
you want, test that the difference is smaller than a small number.

R42 To test that a pointer is valid, compare it to the value zero, do not treat it as having a
Boolean value:

if (0 != ptr) {

R43 In "switch" statements, each choice must have a closing break, or a clear comment
indicating that the fall-through is the desired behaviour.

R44 Constants should NOT be defined by #define pre-processor statements. One
should use enum for integer, or const declaration. They are best put inside a
namespace block to avoid naming conflicts.

namespace CaloName {
 static const unsigned int nBits = 6;
}

 LHCb 2001-054 “Revised C++ Coding Conventions” Page 11

and use them like that :

if (CaloName::nBits == value) {

R45 Re-use existing classes. STL should be exploited. Old C habits should be changed…

� Use std::string instead of char*.
� Don't use built-in arrays. Use one of the STL containers like std::vector.
� Use standard classed like "Hep3Vector" rather than "double v[3]"
� Do not use struct, use a class to hold your data.
� Do not use "union" types
� Use "bool" type for logical values.
� Use the "MsgStream" for all your outputs
� Explicitly put "std::", this is mandatory for Windows, even if it works without it on

Linux.

R46 Avoid overloading operators, unless there is a clear improvement in the clarity of the
code.

R47 Avoid complicated implicit precedence rules, use parentheses to clarify your wishes.

R48 Use cast operators for data-type conversion . You should use static_cast or
dynamic_cast, but not reinterpret_cast or const_cast. The best is to provide
the appropriate cast operator inside the class.

R49 All C++ entities should be defined only in the smallest scope they are needed.
Unfortunately there is a problem of inconsistency between Linux and Windows for the
scope of a loop variable.

for (int j = 0; 5 < j; ++j) {
 ..
}
Windows extends the scope of "j" outside the loop! It is better to declare "j" explicitly
before the loop:

int j;
for (j = 0; 5 < j; ++j) {
 ..
}

R50 Every invocation of "new" should be matched with exactly one invocation of
"delete", and they should be clearly related if they are more than 5 lines apart. This
doesn’t apply for objects created on the Transient Store: This is the case you want the
object to persist longer that the code which created it !

R51 A function must not use the "delete" operator to any pointer passed to it as argument.

R52 Use "new" and "delete" in place of "malloc()" and "free()".

R53 Any pointer to automatic objects should have the same or a smaller scope than the object
it points to.

 Page 12 “Revised C++ Coding Conventions” LHCb 2001-054

7.4 Readability and maintainability

R54 Functors are discouraged. They hide the real work in another source file. They may be
needed, in particular to use the std::sort algorithms. For simpler operation, an
explicit loop is by far clearer for the reader of the code.

R55 User defined operators are discouraged. If used, they should behave 'naturally', i.e. as
they behave for usual numbers and objects:

� The assignment operator function should return a reference to their left operand.
� The "+" operator should do something like an addition.
� The "[]" operator should be an access by a sort of index.
The only purpose of an operator is to save typing. But their use tends to make the code
cryptic for anyone else than the author. Member functions are as good, and carry a
description of their purpose in their name.

R56 Macro are discouraged for producing code. They make the code more difficult to
understand and to maintain, and are impossible to debug.

R57 Use spaces to separate the operators from their operands:

m_x = x; is more readable than m_x=x;

R58 A function should have a single return statement. One may use return statements when
checking the arguments as the beginning of a function, but one should avoid a return
statement in the middle of nested loop and if blocks.

R59 One should avoid using goto statements. They make the code structure more confused.

R60 The conditional operator "condtion ? true : false" is discouraged. It is
acceptable only for very simple statements and never nested. A simple "if" block is
preferred, it is by far more readable, and as efficient.

 LHCb 2001-054 “Revised C++ Coding Conventions” Page 13

8 Examples

8.1 Header file

//$Header: $
#ifndef PACKAGENAME_CLASSNAME_H
#define PACKAGENAME_CLASSNAME_H 1

// Include files
#include <string>
#include <list>
#include <map>
#include "Package/AnotherClassName.h"

// Forward declarations
class NeededClass;

/** @class ClassName ClassName.h Package/ClassName.h
 *
 * The first sentence is used as a summary description by the
 * documentation tool. The description of a class is expected
 * to be found before the class declaration in the .h file.
 * The code is documented following the JavaDoc style. Using
 * the multi-line documentation block or the simple line
 * documentation as is shown in this example.
 * The cvs keyword in the first line of the file will be
 * expanded by the code management tool to include the
 * file path name, revision number, the author and the state.
 *
 * @author Author Name
 * @author Another Name
 * @date 20/11/2000
 */

class ClassName : virtual public AnotherClass,
 virtual public OtherClasses {
public:
 // typedefs and local class declarations
 typedef std::list<IService*> ListSvc;
 typedef std::map<const std::string, const ISvcFactory*> MapFactory;

 /// default creator
 ClassName(Type1 argument1, Type2 argument2);
 /// virtual destructor
 virtual ~ClassName();

 /** Description of the method. Again the first sentence
 * is used as a summary by the documentation tool. It is
 * also expected to find comments before the method
 * declaration.
 */
 virtual void method1();

 /** Another method with some arguments. The arguments can be
 * documented as normal inline comments
 *
 * @return status code
 * @param argument1 this is the first argument
 * @param argument2 this is the second argument which goes

 Page 14 “Revised C++ Coding Conventions” LHCb 2001-054

 * after the first argument
 */
 virtual int method2(Type1 argument1, Type2 argument2);

 /// Yet another method of this class.
 StatusCode method3();
protected:

private:
 int m_refcount; ///< Reference counter
 Type1* m_member2; ///< Pointer to an object of type Type1
 Type2& m_member3; ///< Reference to an object of type Type2
};

#endif // PACKAGENAME_CLASSNAME_H

8.2 Implementation file

//$Header: $

// Include files
#include <string>
#include <list>
#include <map>
#include "Package/ClassName.h"

// method1 (the description will be taken from the .h file)
void ClassName::method1() {
 // Implementation of method1. In order to not take unnecessary
 // width we should use 2 spaces for each identation.
 if (bla & bla) {
 int i;
 for (i = 0; i < n; i++) {
 // do something useful here
 ...
 }
 } // if
}

// method2
int ClassName::method2(Type1 argument1, Type2 argument2) {
 int i;
 float f;
 for (i = 0; i < 1000; i++) {
 // something here
 }
 return i;
}

// method3
StatusCode ClassName::method3() {
 return StatusCode::SUCCESS;
}

