LHCb 2001-054

COMP
27 April 2001

Revised C++ Coding Conventions

Olivier Callot

Laboratoire de I'Accélérateur Linéaire - Orsay

ABSTRACT

This document replaces the note LHCb 98-049 by Pavel Binko. After afew years of practice,
some simplification and clarification of the rules was needed. As many more people have now
some experience in writing C++ code, their opinion was also taken into account to get a
commonly agreed set of conventions.

Page 2 “Revised C++ Coding Conventions” LHCb 2001-054

Table of contents

1 INTRODUCTION. .. ottt e b sn s r s s sresre e sr e e renre s 3
2 ORGANISATION ..o e e ar e a e r e s b e e ar e sr e sne e n e e s 4
3 NAMING CONVENTIONS.... oottt e e e e e re e resre e e e snesneeneneens 5
4 HEADER FILES. ...ttt st n e e e he e s e sh e e e e n e sreenenresneenesneens 6
5 IMPLEMENTATION FILE ..ot 7
6 MEMBER FUNCTIONSAND ARGUMENTS ... 8
T CODING STYLE .. ettt e r st e e st e s e e b e e r e sr e e ae e b sre e e e e e sneenenreenes 9
7.1 L€ = Y I @ 11 PP 9
7.2 L@] = N 5T Q..
7.3 HOW TOWRITE A SAFER CODEitituuesittiieeeettseesstuseeeetanaeseataaeeeannaeeetaneeeetanaeeeannsaeeesnnsaeeennnaerenns 10
7.4 READABILITY AND MAINTAINABILITY 1ettutettttuteeeettteeeetieeseetaeesesnnseeeessnseasesssssessnsesessnseaeessnneesennns 12
8 EXAMPLES ... e s 13
8.1 L 7Y T I =P 13...

8.2 I Y 0 N1 14

LHCb 2001-054 “Revised C++ Coding Conventions” Page 3

1 Introduction

Working in a collaboration implies that the "products" are usable by many people. In the case of
software product, this means also that people who are not the authors will maintain them. A set
of rules and conventions is necessary to insure a minimal coherence and consistency. The
purpose of this document is to write such a set of rules.

One can discuss if all rules are at the same level, if some rules should be MANDATORY while
other are only RECOMMENDED. This means that code is always unacceptable if a mandatory
rule is violated. We all know that there are always exceptions, with good or less good reasons.
Having a mandatory rule implies also that there is a tool to check the rules, which we don't have.
| propose for the time being to have all the rules as is, making a difference by the phrasing of the
sentence: "must be", "is forbidden" indicate clearly mandatory rules, "should", "can be" mean
that this is recommended.

As we have no tool to check these rules, and as many people are able to commit their changes to
the CVS repository, it is quite difficult to install a policeman to enforce the rules. As in many

other areas in a collaboration, we rely on the goodwill of all contributors, who are working for

the success of the overall project.

Some of the rules are subject to strong personal views, in particular the coding style, as this
reflects aesthetic judgements and are based on personal experience. Common sense should be
used, and everyone should try to follow the majority's views. Here, rules should be seen as
guidelines, where exceptions are possible. Nobody will reject a source file with one line
containing 81 characters. However, having most lines with over 100 characters is totally
unacceptable, and shows that the meaning of collaboration, which means "working together",
has not been accepted by the author.

For several rules, a good working environment would help. In particular, a common LHCDb set-
up foremacs andvi sual St udi o could help writing code which follows the rules. Experts of
these tools are welcome to propose and develop such an environment.

Page 4

“Revised C++ Coding Conventions” LHCb 2001-054

2 Organisation

The LHCb software is organisedMACK AGES, which is a set of classes and the instructions

to build and use them. Packages can be released independently, but they usually depend on other
packages. The source files are maintained @ils and released in the LHCb release area. A
development area $LHCBDEV also exists. The documentation on the handling of packages
(getting the package, committing changes, releasing a new version) is available on the LHCb

web. This document concentrates on the content of a package, i.e. file organisation in the
package, and (mainly) contents of the source files.

R1

R2

R3

R4

R5

R6

R7

R8

Each package has aniqgue name, which should be written such thetich word starts
with an initial capital letter.

Each package belongs t@ackage group, a short name like detector name, software
product, etc. This is sometimes called "hat". The Gaudi packages are an exception, as they
are in a different area and are not LHCb specific.

Several directories are mandatory in the package:

= cmt for the requirement files and the makefiles.

= grc for the private source files. A sub-directory level may exist in this directory, in
case the package builds a static and a dynamic library.

doc for the documentation on the package.

options for Brunel option files, if the package contains algorithms.

<package> for the public files of the package, typically header files

<hinary> for the compiled and possibly linked files. One directory per operating
system and debug version, e.g. i386_linux22, Linuxdbx, Win32, Win32Debug.

Each class should have a header file and an implementation file, the name of the files
should be the name of the class. There should be no"othan the filename, due to
nmake limitations.

C++ include (header) files should have the extensidm' and C++ implementation
files should have the extensibncpp” . No other filetypeis allowed.

The first line of every file should contain the C\#$feader : $ macro, which CVS
translates into the responsible and date of the most recent CVS commit.

Exanpl e: // $Header: $

For including standard files, use : #i ncl ude <fil enane>
For user files, use the syntax #i ncl ude "Package/ Fi | eNane. h"
Never use a relative path for include file.

For private header files which are in the same directory as the source file, you should use
#i ncl ude "Fil eNane. h"

The syntax of th8cnt / r equi renment s” file has limitations due to nmake. In
particular:

= Macro names must not contain the minus sign "-"
= Macro definitions must be enclosed in round brackets "()"
= The use of curly brackets "{}" is not allowed, excepsit statements.

LHCb 2001-054 “Revised C++ Coding Conventions” Page 5

3 Naming conventions

Naming is something difficult to check by an automated tool, and everybody has his own feeling
of what is a good name for an entity. However one should follow some guidelines, so that
everyone understands what sort of entity is behind the name. Names should be meaningful, but
not too long so that statements are not too long!

R9 Names are usually made of several words, written togefitieout under score, each
first letter of a word beingppercased. The case of the first letter is specified by other
rules, but is usually lowercadgon't use special characte@nly alphanumeric
charactersareallowed.

Exanpl e : next H ghVol t age

R10 Names are case sensitive. However, do not create names that differ only by the case.
Exanpl e : track, Track, TRACK

R11 Avoid single character, or meaningless names Jikg " except for local loop or array
indices.

R12 Classnames must be nouns, aroun phrases. The first letter is capital.

R13 Data Member names should be private variables and start with"'followed by a
lower case |etter.

= Protected variables may be used for base classes.
= Never use public data members. Instead you should use accessors functions.

R14 Staticvariables should start by s " to distinguish them clearly.

R15 Avoid global variables. They cause problems with shared images. Their function is
better replaced by a class with mainly accessor methods. Avoid global functions and
operators. The only case where you can use them is symmetric binary operators and
mathematical functions.

R16 Accessor functions are named from the variable they control. The "get" accessor is
mainly the variable name, the set accessor has a "set" prefix.

Ex: trackH ts() /1l Get the value of m TrackHits
setTrackH ts(nnn) // Set the val ue.

R17 Other functions must beerb or verb phrases. Like all member functions (excluding
creators) they start with a lowercase letter.

R18 Functions that create or make a new object should start with thé wedat e" or
mn rrake" .

Page 6 “Revised C++ Coding Conventions” LHCb 2001-054

4 Header files

Header files with extensionH". contain the description of the class. They may contain some
implementation, but only in the case this is inline code. The rest of the code is in the
implementation file, with extensioncpp".

R19 A header file should contaite definition of a single class. If this class defines and uses
internally another class, they can be both defined in the same file.

R20 Every header file contairssmechanism to prevent multipleinclusion. The file
"Package/File.h" starts and ends by the following lines:

#i f ndef PACKAGE_FI LE_H
#define PACKAGE FILE H 1

... body of the header file ...
#endif // PACKAGE_FILE_H

R21 One should minimise the number of header files included, to avoid too complex
dependencies. In particular, if one uses only a pointer or reference to a class, one can just
do aforward declar ation, without including the class header file:

class Line; I/ forward declaration, this is enough
class Point {

public:

Number distance(const Line& line) const; // distance

I3

R22 The class declaration starts with the "public " members first, thisincludes the
constructors and destructors. Then the "protected " and the"private " sections. One
may use typedef to clarify the typing, they should be at the beginning of the public
section of the class declaration.

R23 Header files should not have any method bodies inside the class definition. The
"inline" functionsshould go at the end of thefile, after the class definition. The
other functions should all bein the implementation file. Inline function should NOT call
something externa to the class. One could however put a very simple accessor on the
declaration line, to make the header file more readable.

class Point {
public:
Number x() const {return m_x; }
void setX(const Numberx) {m_x=x; }
Private
Number m_x;

J§

LHCb 2001-054 “Revised C++ Coding Conventions” Page 7

5 Implementation file

The implementation file contains the non-trivial member functions. They should hold the
definition of a single class, they may contain auxiliary (private) classes if needed.

R24 A constructor should initialise all variables and internal objects which may be used in
the class. Variables may also be initialised by their declaration in the header file.

R25 A copy constructor is mandatory, together with an assignment oper ator, if a class
has built-in pointer member data.

class Line {

publi c:
Line (const Line &); /'l copy constructor
Line & operator= (const Line & ; // Assignnent operator

Note that the arguments shoulddmnst ref er ence. If you want to prevent copy
and/or assignment, you should providera vat e declaration of the copy and
assignment constructors. The object can no longer be copied.

R26 Declarea"virtual" destructor for every class

class Line {
publi c:
virtual ~Line(); /1 virtual destructor

b

R27 Virtual functions should be re-declared "virtual" in derived classes, just for clarity. And
also to avoid mistakes when deriving a class from this derived class...

Page 8

“Revised C++ Coding Conventions” LHCb 2001-054

6 Member functions and arguments

R28

R29

R30

R31

R32

R33

Functions without side effects are by far beffdre use of the" const " specifier is
strongly encouraged, to make clear that a function doesn't change the object, or that the
arguments are not changed.

class Point {

public:

Nunber di stance(const Line& line) const; //
voi d transl ate(const Vectoré& vector); [//

b

The 'distance’ function hasanst argument, as the line is not modified, and is
"const " as the point is not affected. The 'translate’ method is also not affecting its
argument, but the object is modified and the method can natdrest .

di st ance
transl ate

Pass abjects by constant reference. Passing by value is also acceptable for small objects.

The use of default arguments is strongly discouraged. This reduces the risk of forgetting
an argument...

Do not declare functionswith unspecified (". .. ") arguments.

Thereturned value of afunction should always betested. A function that does not
have avoi d type should always return a meaningful value.
"St at usCode: : SUCCESS" is a good return value, this is used in the Algorithm class.

The exception mechanism should be used only to trap "unusual” problems.

LHCb 2001-054

“Revised C++ Coding Conventions” Page 9

7 Coding style

This area is usually the most debated, as some aesthetic considerations are involved. There are
sometimes also 'religious' issues, because there is no way to convince each other that this is
better than that. It's only something one can believe, but can't prove!

But it is important to try to get a similar look, for an easier maintenance, as most code writers
will be replaced during the lifetime of the experiment.

7.1 General lay-out

R34

R35

R36

The length of any line should bienited to 80 characters.

Each block isndented by two spaces. It starts by an opening braoe theline of the
control statement, and end by a closing brace alone on its line, with optionally a comment
indicating which block is closed. In case'off () {" statement, the closing brace
may be followed on the same line by"agl se {" or"else if () {" clause.
if (1<x)
log << MG : I NFO << "x>1" << endreq;
} // x greater than 1

One can also put a short single line statement on the same line, like:

if (1<x){x=1 }

When declaring a function, try to put one argument per line, this allows inline comments,
and helps to stay in the 80 column limit

int myFunction(int i nt VAl ue,
std::string aString,
MyCl ass* myCl assPoi nt er Val ue) ;

7.2 Comments

Comments should be abundant, and must follow the following rules to allow an automatic
documentation by the DOXYGEN tool:

R37

Every header file should have a comment block to describe the class, in the format
appropriate for the tool, just before the class declaration:
/** @l ass Cl assNanme O assNane. h Package/ Cl assNane. h

*
The first sentence will be used as a sunmary. The rest of

the text is a conplete, free format description. It
should end with author and date in the format:

@ut hor Your Nane

@ut hor A col | eague hel ped al so
* @late 08/03/2001
*/

cl ass O assNanme {

*
*
*
*
*
*

Page 10 “Revised C++ Coding Conventions” LHCb 2001-054

R38 Every method should have a description beforeit, either in a single line with/ / /" :

/1l single |line description of the nethod
St at usCode Met hod();

Or with a block, again starting with/ **" and ending with" */ " . Arguments and
parameters can be indicated by special tags:

/** A method with argunents to be docunented on
* several lines if needed.
* @eturn status code
* @aramargl this is the neaning of this argunent
* @ar am bl abl a anot her reason
*
/
virtual int method2(Typel argl, Type2 blabla);

R39 For comments that you don't want in the documentation, use a Sifiple The C-like
syntax is discouraged, except in the DOXYGEN formatted blocks. Use blank lines to
separate blocks of statements, but don't use blank comment lines, i.e. a line which
contains only'/ /" and nothing else is more a nuisance for the code clarity.

7.3 How to write a safer code

R40 Comparison between a variable and a constant should have the constant first, the
compiler will then spot it if you forgot one of the equal signs in

if (0 ==value) {
By comparison,
if (value = 0) {

is a valid statement, but is not what you usually want !
If you are doing an assignment is a comparison, make it explicit by using parenthesis:

Wiile (0 != (ptr = iterator())) {

R41 Comparison between floating point values should not test for equality. In case this is what
you want, test that the difference is smaller than a small number.

R42 Totest that a pointer isvalid, compareit to the value zero, do not treat it as having a
Boolean value:

if (0!=ptr) {

R43 In"swi t ch" statementsgach choice must have a closing br eak, or a clear comment
indicating that the fall-through is the desired behaviour.

R44 Constants should NOT be defined by #def i ne pre-processor statements. One
should usenumfor integer, orconst declaration. They are best put inside a
nanmespace block to avoid naming conflicts.

nanespace Cal oNane {
static const unsigned int nBits = 6;
}

LHCb 2001-054 “Revised C++ Coding Conventions” Page 11

and use them like that :
if (CaloNane::nBits == value) {

R45 Re-use existing classes. STL should be exploited. Old C habits should be changed...

Usest d:: string instead ofchar *.

Don't use built-in arrays. Use one of the STL containersslila : vect or.

Use standard classed likélep3Vect or " rather thari doubl e v[3]"

Do notusestruct, use a class to hold your data.

Do not usé' uni on" types

Use" bool " type for logical values.

Use the MsgSt r eant' for all your outputs

Explicitly put "st d: : ", this is mandatory for Windows, even if it works without it on
Linux.

R46 Avoid overloading operators, unless there is a clear improvement in the clarity of the
code.

R47 Avoid complicated implicit precedencerules, use parentheses to clarify your wishes.

R48 Use cast operators for data-type conversion . You should gsati c_cast or
dynami c_cast , but notr ei nt er pret _cast orconst _cast. The best is to provide
the appropriate cast operator inside the class.

R49 All C++ entities should bdefined only in the smallest scope they are needed.
Unfortunately there is a problem of inconsistency between Linux and Windows for the
scope of a loop variable.

for (int j =0; 5<j;: ++) {
,

Windows extends the scope of "j" outside the loop! It is better to declare "j" explicitly
before the loop:

int j;
for (j =0; 5<j; ++) {
,

R50 Every invocation of new' should be matched with exactly oneinvocation of
"del et e", and they should be clearly related if they are more than 5 lines apart. This
doesn’t apply for objects created on the Transient Store: This is the case you want the
object to persist longer that the code which created it !

R51 A function must not use tHedel et e" operator to any pointer passed to it as argument.
R52 Use"new' and"del et e" inplaceof'mal oc()" and"free()".

R53 Any pointer to automatic objects should have the same or a smaller scope than the object
it points to.

Page 12

“Revised C++ Coding Conventions” LHCb 2001-054

7.4 Readability and maintainability

R54

R55

R56

R57

R58

R59

R60

Functorsare discouraged. They hide the real work in another source file. They may be
needed, in particular to use thed: : sort algorithms. For simpler operation, an
explicit loop is by far clearer for the reader of the code.

User defined operatorsarediscouraged. If used, they should behave 'naturally’, i.e. as
they behave for usual numbers and objects:

= The assignment operator function should return a reference to their left operand.

= The" +" operator should do something like an addition.

= The"[]" operator should be an access by a sort of index.

The only purpose of an operator is to save typing. But their use tends to make the code
cryptic for anyone else than the author. Member functions are as good, and carry a
description of their purpose in their name.

Macro ar e discouraged for producing code. They make the code more difficult to
understand and to maintain, and are impossible to debug.

Use spacesto separate the operators from their operands:
mx = X; is more readable than m x=x;

A function should have singlereturn statement. One may use return statements when
checking the arguments as the beginning of a function, but one should avoid a return
statement in the middle of nested loop and if blocks.

One should avoid usingot o statements. They make the code structure more confused.

The conditional operatocondti on ? true : fal se"is discouraged. It is
acceptable only for very simple statements and never nested. A simple "if* block is
preferred, it is by far more readable, and as efficient.

LHCb 2001-054 “Revised C++ Coding Conventions”

Page 13

8 Examples

8.1 Header file

/] $Header: $
#i f ndef PACKAGENAME CLASSNAME H
#def i ne PACKAGENAME CLASSNAME H 1

/1 Include files

#i ncl ude <string>

#i nclude <list>

#i ncl ude <map>

#i ncl ude "Package/ Anot her C assNane. h"

/] Forward decl arations
cl ass Neededd ass;

/** @l ass Cl assNanme O assNane. h Package/ Cl assNane. h
The first sentence is used as a sunmary description by the
docunent ation tool. The description of a class is expected
to be found before the class declaration in the .h file.
The code is docunmented follow ng the JavaDoc style. Using
the multi-line docunentation block or the sinple line
docunentation as is shown in this exanple.
The cvs keyword in the first line of the file will be

expanded by the code managenent tool to include the

@ut hor Aut hor Nane
@ut hor Anot her Nane
@lat e 20/ 11/ 2000

* ok k% ok ok kX Ok ok * * K ok * *

~

class CassNane : virtual public Anotherd ass,
virtual public OQherd asses {

publi c:
/'l typedefs and | ocal class declarations
typedef std::list<lService*> ListSvc;

file path nane, revision nunber, the author and the state.

typedef std::nmap<const std::string, const |SvcFactory*> MapFactory;

/1l default creator

Cl assNanme(Typel argunentl, Type2 argunent2);
/1] virtual destructor

virtual ~C assName();

/** Description of the nmethod. Again the first sentence
* is used as a summary by the docunentation tool. It is
* also expected to find conments before the nethod
* decl arati on.

*/
virtual void nethodl();

/
docunented as normal inline comments

@eturn status code
@aram argunment1l this is th
@aram argunment2 this is th

* %k F ok ok

e first argunent

e second argurent which goes

* Anot her nmethod with sonme argunents. The argunents can be

Page 14 “Revised C++ Coding Conventions” LHCb 2001-054

* after the first argunent
*/
virtual int method2(Typel argunentl, Type2 argunment2);

/1] Yet another nethod of this class.
St at usCode et hod3() ;
pr ot ect ed:

private:
i nt mrefcount; ///< Reference counter
Typel* m nenber?2; /1] < Pointer to an object of type Typel
Type2& m nenber 3; /1< Reference to an object of type Type2

#endi f // PACKAGENAME_CLASSNAME_H

8.2 Implementation file
/| $Header: $

/1 Include files

#i ncl ude <string>

#include <list>

#i ncl ude <map>

#i ncl ude "Package/ Cl assNane. h"

/1 methodl (the description will be taken fromthe .h file)

void C assNane: : met hodl() {

/1 1nmplenmentation of methodl. In order to not take unnecessary
/1 width we should use 2 spaces for each identation
i f

(bla &bla) {
int i;
for (1 =0; i <n; i++) {
/1 do sonething useful here
Yoo
Y o/ if
}
/1 method2
int CassNane:: nmethod2(Typel argunentl, Type2 argunment2) {
int i;
float f;
for (i =0; i <1000; i++) {
/1 sonething here
}
return i;
}
/1 method3

St at usCode C assNane: : et hod3() {
return StatusCode: : SUCCESS;

}

