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Abstract Our primary goal is to compare the analytic prop-
erties of hydrodynamic series with the stability and causal-
ity conditions applied to hydrodynamic modes. Analyticity,
in this context, serves as a necessary condition for hydro-
dynamic series to behave as a univalent function. Stability
and causality adhere to physical constraints, ensuring that
hydrodynamic modes neither exhibit exponential growth nor
travel faster than the speed of light. Through an examina-
tion of various hydrodynamic models, such as the Miiller—
Israel-Stewart (MIS) and the first-order hydro models like
the BDNK (Bemfica-Disconzi—-Noronha—Kovtun) model,
we observe no new restrictions stemming from the univa-
lence limits in the shear channels. However, local univalence
is maintained in the sound channel of these models despite the
global divergence of the hydrodynamic series. Notably, dif-
ferences in the sound equations between the MIS and BDNK
models lead to distinct limits. The MIS model’s sound mode
remains univalent at high momenta within a specific transport
range. Conversely, in the BDNK model, the univalence of the
sound mode extends to intermediate momenta across all sta-
ble and causal regions. Generally, the convergence radius is
independent of univalence, and the given dispersion relation
predominantly influences their correlation. For second-order
frequency dispersions, the relationship is precise; i.e., within
the convergence radius, the hydro series demonstrates uni-
valence. However, with higher-order dispersions, the hydro
series is locally univalent within certain transport regions,
which may fall within or outside the stable and causal zones.

1 Introduction

Collisions of heavy ions in contemporary nuclear labora-
tories have created a deconfined and many-body phase of
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quarks and gluons which is known historically as the quark-
gluon plasma (QGP) [1-3]. Despite its name, this state of
quark matter exhibits collective behaviors that are more
appropriately described using a fluid-like approach [4]. Rel-
ativistic hydrodynamics (RH) is a fluidal description having
high-energy requirements that is highly useful in explain-
ing lead+lead collision experiments [5—7]. RH’s applicability
extends beyond equilibrium situations, as it is believed to be
effective in far-from-equilibrium scenarios [8—11]. The RH
has been proposed for use in collisions of smaller particles,
such as proton+proton interactions [ 12—14]. This remarkable
versatility has led to the notion of the “unreasonable effec-
tiveness of the RH” [15], emphasizing its broad applicability
and impact on understanding high-energy particle collisions.

In high-energy systems, such as heavy-ion collisions
(HIC), ensuring good performance is crucial since otherwise,
the dynamic theory becomes uncontrollable, and we gain no
meaningful information about the dynamics. In HIC, stabil-
ity and causality serve as essential conditions that help us
to constrain the physical space to obtain well-defined results
[16]. Although the implications of these conditions on the RH
series remain a debated and unsolved problem, they must still
be applied. In the realm of theoretical approaches, some argue
that verifying Im w (k) < 0, where w and k represent the fre-
quency and momentum of small fluctuations, is sufficient to
ensure stability. For causality, this condition is said to be met
when v = klim dRe(w)/dk < 1 [17]. Others suggest that

— 00

implying Im w (k) < Im(k) on each complex momentum is
enough to have a stable and causal theory [18-20].
Additionally, a new trend inspired by the information cur-
rent paradigm has emerged, which posits that having a non-
negative divergence of the entropy current is a necessary and
sufficient condition for dealing with a stable and causal the-
ory [21-23]. This ongoing research aims to provide a bet-
ter understanding of the conditions required for maintaining

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-024-13474-2&domain=pdf
http://orcid.org/0000-0002-3223-7999
mailto:rheydari@ipm.ir
mailto:ftaghinavaz@ipm.ir

1134 Page 2 of 20

Eur. Phys. J. C (2024) 84:1134

stability and causality in high-energy systems like heavy-ion
collisions.

From a mathematical perspective, the RH series is a func-
tion of small momenta, which represents a solution of a spec-
tral curve defined by the equation F (w, k) = 0. As a series, it
raises various questions, such as convergence or divergence,
obtaining finite results, exploring its analytical properties,
and more. Each of these questions is important and even more
intriguing when considering their relationships with physical
constraints.

In recent years, researchers have been investigating var-
ious aspects of relativistic hydrodynamics (RH) to better
understand its properties and applications in heavy-ion col-
lisions (HIC). One such area of study involves examining
the radius of convergence of the RH series by solving the
simultaneous equations F'(w, k) = 0 and 0 F(w, k) /9w =0
[24,25]. This approach has been successfully applied to
numerous models [26-31]. Another line of inquiry focuses
on the analytical properties of the RH series in the context
of univalent functions [32]. Univalence is a property that
pertains to an analytic function, ensuring it is an injective or
one-by-one function. Although this definition may seem sim-
ple, it imposes stringent constraints on the function. Among
these constraints are the area theorem, the Bieberbach con-
jecture, the Littlewood limit, the growth and distortion the-
orem, and many others [33,34]. These constraints guarantee
that the analytic function is bounded and yields finite results.
By applying these limits to the transport spaces, which con-
tain information about the underlying microscopic theory,
we can better understand the constraints and properties of the
RH series in high-energy systems [35]. Moreover, the impli-
cations of these bounds are studied in the Quantum Field
theory framework [36]. This ongoing research aims to pro-
vide a deeper understanding of the mathematical foundations
and properties of the RH series and its implications on the
physical behavior of QGP and other high-energy phenomena.

Investigating the link between physical constraints like
stability and causality with univalence, a mathematical limit,
can provide valuable insights into the mathematical prop-
erties of the RH series and demonstrate the practical sig-
nificance of these abstract limits. In this work, we explore
the univalence properties of the RH series for two hydro
models including the Miiller—Israel-Stewart (MIS) [37] and
the first-order hydro model, known as the BDNK (Bemfica—
Disconzi—-Noronha—Kovtun) model [38,39]. Both models
exhibit stability and causality in certain transport regions,
making them suitable for studying the interplay between
these properties and univalence. For our analysis, we focus
on the Bieberbach conjecture, which bounds the size of the
Taylor coefficients of the RH series and, consequently, the
physical space. This conjecture can be compared with stabil-
ity and causality depending on the spectral equations and the
dimension of the transport space.

@ Springer

In the shear channel of the MIS and BDNK models, we
observe that univalence is insignificant since the conformal
map’s region lies within the radius of convergence, and the
original RH series remains univalent for all points within the
convergence zone. However, in the sound channel, the situa-
tion is more complex. In the MIS model, with transports like
shear viscosity, relaxation time, and momentum as variables,
we observe that univalence holds locally in the momentum
space, even with the global divergence of the RH series. This
local univalence is specified by constraint on the variable
X=-1+ ys/(Scfwr), where w = ¢ + p is the enthalpy,
cs2 = 0g/dp is the speed of sound, y; = 4n/3 is the shear
viscosity, and t is the relaxation time. The interplay between
this limit and stability and causality depends on the value of
Cs.

For the BDNK model, due to its higher-dimensional trans-
port space and complex equations, analyzing univalence is
not a straightforward process. We choose to fix the transports
and vary the momentum to study where univalence occurs
within stable and causal regions. Our results indicate that
univalence takes place in intermediate momenta, regardless
of the value of c¢s. Nevertheless, for low and high momenta,
univalence is found in the unstable and acausal zones. In con-
clusion, we propose that for the RH series, univalence holds
locally, even though the RH series is globally divergent. This
new paradigm can be further explored in other models or for
different quantities of the RH series, such as energy density,
pressure, and so on.

This work is structured as follows: In Sect. 2, we begin by
providing a comprehensive review of the fundamental con-
cepts of univalence and its important limits. This serves as
a foundation for understanding the subsequent discussions.
Moving on to Sect. 3, we briefly introduce the background of
quasihydro models, such as the MIS model, which is a spe-
cific example of systems with weakly broken symmetries.
This section sets the stage for a more detailed analysis of
these models in the following sections. In Sect.4, we delve
into the investigation of the relationship between stability,
causality, and univalence, which is established through the
Bieberbach conjecture. This section primarily focuses on the
MIS model and sheds light on the interplay between these
physical constraints and the mathematical limit of univa-
lence. Section5 extends our analysis to the BDNK model,
considering its unique features and the challenges posed by
its higher-dimensional transport space. In Sect. 6, we discuss
the relationship between the radius of convergence and univa-
lence, emphasizing the local notion of univalence. Finally, in
Sect.7, we summarize the key findings and outline potential
avenues for future research.
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2 Univalent functions

A function is said to be univalent when it is analytic on
a domain D € C, and injective. Injectivity means that if
f(&1) # f(&), then ¢ # ¢ for two distinct points of the
domain D € C. This property refers to the global univa-
lent function. In contrast, a local univalent function exhibits
the same behavior within the neighborhood of a point, say
Zo € D. By construction, univalent functions are conformal
mappings due to their angle-preserving properties. The con-
dition f'(¢p) # 0ensures the local univalence of the point &y.
In contrast, a global univalent function is defined on a convex
domain iff Ref’(¢) > 0 for every point in the domain [33].

Within the vast category of univalent functions, we focus
on the class “S” due to its resemblance to the hydro series
expansion. The domain of the S class is the unit disk D} =
{¢ :|¢] < 1}, with normalization conditions f({ = 0) =0
and f’(¢ = 0) = 1. There exists a general argument that for a
given univalent function f(z) defined on a simply connected
domain U € C, a reversible map such as { = ¢(z) can be
defined that entails smooth transformation of any z € U to
¢ € Dy and consequently f(z) — g(¢) = f(p~'(0)) in
which g(¢) € S. This transformation is achieved using the
Riemann mapping theorem. A general series expansion for
the S class univalent function f(¢), can be represented as
follows:

fO=c+) ant", lZl<1. (1)

n=2

The univalence of a function imposes stringent constraints
on the size of its Taylor coefficients. These constraints orig-
inate from the well-known area theorem [33]

e¢]

D onlb* <1, )

n=1

where b,, are the coefficients for a function 4 (¢) belonging to
the class X of univalent functions, which can be represented
as follows

h@)=¢+bo+ Yy bag ™" 3)

n=1

The class X functions are defined on the exterior domain of
the unit disk D; and map a region, say A, to the complement
of a compact, connected set. The relationship between the
class ¥ and S can be established through a suitable inverse
transformation.

Inspired by the area theorem provided in Eq. (2), Bieber-
bach conjectured that the expansion coefficients of univalent
S functions in Eq. (1) are bounded

la,| <n, n>2. 4

Long before de Branges’ proof in the 1980s [40], the Bieber-
bach conjecture had been proven for certain classes such
as the starlike class (S* class), the close-to-convex class
(K class), and univalent functions S with real coefficients
[33]. De Branges’ proof of the Bieberbach conjecture estab-
lishes the stronger Milin conjecture regarding logarithmic
coefficients. This was already known to entail the Robert-
son conjecture about odd univalent functions, which in turn
was known to imply the Bieberbach conjecture for Schlicht
functions. Besides the Bieberbach conjecture, other theorems
exist with simpler proofs. For instance, Littlewood’s theorem
states that for each f € S, we have [33]

lap| <en, n=>2. )
The area theorem has far-reaching consequences, including
the “growth theorem” for each function f € § [33]

9 <1
—(1+|§|)2Slf(§)|§—(1—|§|)2' (6)

This theorem demonstrates that the absolute value of any uni-
valent S function on each point of the unit disk is bounded,
implying that the series in Eq. (1) converges for all points
within the unit disk. The area theorem also yields other
results, such as the “distortion theorem,” which can be
derived from the derivatives of Eq. (6). It is worth mentioning
that both conditions (4) and (6) are saturated by the so-called
Koebe function

oo

¢ n
o @

n=1

f&) =

This function conformally maps D to C\(—o0, —1/4) and
is of great importance in univalent studies.

Having provided the necessary background, we now aim
to apply the aforementioned process to relativistic hydro
models. To achieve this, we must follow several steps:

1. Analyze the analytical properties of the hydro series in the
complex z = k? plane. We need to determine whether the
univalence condition is satisfied by ensuring Re f'(z) >
0.

2. Construct a conformal map ¢ = ¢(z) that transforms
the region U to Dj. This step is crucial, as it requires
a thorough understanding of the complex z analytical
structure, including poles, branch points, branch cuts, and
other relevant features.

3. Apply the map derived in step 2 to the original hydro
series to obtain the a,, coefficients in Eq. (1) and examine
the constraints given by Egs. (4) or (5).

@ Springer
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This procedure has been studied for normal hydro expan-
sions in [32] and for a specific holographic model [35]. Our
goal is to apply these methods to particular models, such
as the MIS or BDNK models. Both of these models share
a common characteristic: they are causal and stable in cer-
tain regions of transport space. Investigating the interplay
between univalence, stability, and causality constraints can
reveal both the mathematical and physical properties of the
hydro series. Moreover, this comparison will help us to under-
stand the significance of the univalence limits.

3 Review of hydrodynamic models
3.1 Quasihydrodynamic models

Quasihydro models, or “systems with weakly broken symme-
tries,” refer to systems where the conserved current dynamics
alone are insufficient to describe the entire system’s dynam-
ics. Hydrodynamics is a theory applicable to length and time
scales that are long compared to the mean free time 7,7, and
mean free path £, 7, [37]. So, the gradient expansion is valid
for scales beyond these quantities

Tmflat < 1, emfpax < 1. )
In these regimes, conserved currents are responsible for
describing long-range thermal excitations

3 (p)+ 8 =0. )

Now, suppose there exists a non-conserved operator P in the
theory’s spectrum, with a lifetime of order 7;. Other non-
conserved operators P; with lifetimes 7; can exist in the
system. We assume that the time scales of non-conserved
operators obey a hierarchy such as t; > (12, 73,...) and
71 S Ty In such a setting, the hydro series loses its valid-
ity when 719; ~ 1, as on these time scales, other modes
contribute, including low-lying modes of P or the first non-
hydro modes. The typical equations for this setup are

3 (o) + ;" =0,
: P
3 (P) + & Jp = —<T—>. (10)
1

The first equation represents the conservation equations,
while the second demonstrates how non-hydro modes relax to
equilibrium values through a relaxation equation. If 7, were
the next smallest relaxation time, Eq. (10) would be valid
up to 729, < 1. In time scales of order 10, ~ 1, the next
non-hydro mode comes into play, and so on. Indeed, non-
conserved operators serve as regulator fields to compensate
for the incompleteness of conserved operators.

@ Springer

The simplest quasihydro model is the diffusion-to-sound
model, which interpolates from Fick’s law at small momen-
tum to a propagating sound mode at large momentum [37].
Traditional Fick’s law for the diffusion of a locally conserved
current S can be written as

8S=Da>s. (1)
The dispersion relation of this model is given by w =
—i D k?, which violates stability and causality. To overcome
this issue, we introduce an auxiliary field J, which plays a
regulatory role
S+ 0,J =0,
D J
hJ + —0,S=——. (12)
T T

The dispersion relation of the modes is given by

Fl, k) = 0’4+ — - =—=0, (13)
T
which has the solutions
Wp = —— (1 +V1— 4Dtk2) . (14)
2T

It is easy to show that the small and large momentum limits
of the modes are obtained as

Smallk, w,=——+iDk>+---, & —=—iDk>+-.-,
T

=
Large k, wi =+, —k — 2L +O1/k). (15)
T T

At small k, we get two damping modes, while the large k
features the propagating behavior. This demonstrates that at
a certain point, k., the diffusive modes turn into propagating
ones. This change occurs at kg = 1/(4t D). The causality
criteria at large k are given by Eq. (16) [17]

oR /D
v = lim e(w) =,/— <1, leadsto 0<D <.
k—o00 ok T

(16)

Using the Routh—Hurwitz criteria for stability in any k
ensures non-negative transports. This limitis also obtained by
low k studies. Itis noteworthy to mention that the point k. rep-
resents the location of mode collision, where F (w-, k2) =0

F (w,k?)
and Y

= 0 [24,37]. Many examples lie within
w=wi+
the quasihydro model context, such as the Muller—Israel—

Stewart (MIS), Magnetohydrodynamics, or systems with
broken symmetries, which can be studied similarly to the
diffusion-to-sound model.



Eur. Phys. J. C (2024) 84:1134

Page 50f20 1134

3.2 BDNK model

The essence of the BDNK or first-order hydro model is to not
use the regulator fields [38,39]. Instead, we restrict ourselves
to the hydro fields (u*, T, u), but a modification is made
in the constitutive relations. This process works as follows.
Generally, the energy-momentum tensor and charge currents
of an out-off-equilibrium fluid are written as

TH = Eulu’ — PAM + O*u” 4+ QVut 4+ THY,
JH = Nut + JH, (17)

where A" = nt*¥ — y'u" is the projection tensor onto the
perpendicular surface of u* and u”u, = 1. The Q" and
JH vectors as well as the 7V tensor are transverse to u*.
The dynamical equations are conservation laws of energy,
momentum, and U (1) charge density

39, T"" =0,
I =0. (18)

At zeroth order of derivatives, £, P, N/, O¥, J* and THV
equal to their equilibrium values. In higher orders of deriva-
tives, they get some corrections due to the out-off-equilibrium
fluctuations. The BDNK approach gives these corrections to
the hydro fields profiles or their derivatives up to a desired
level by considering the symmetries of functions [39]

I
=
+
I MEZ I
i M» I
=

ook
=ZZ T (19)

The index n counts the derivative order and the index i runs
through the available and independent sets of scalar s’ , vector
vl and tensor #”" bases. Lists of these bases can be found
in [41]. The new transport coefficients (¢;, 7, v;, o;, Vis Ni)
quantify the amounts of getting away from zeroth order. The
interesting feature of this model is that the redefinition of
hydro fields

T—T+68T, u"*— u*+66u”, u—u+du, (20)
can be recast as changes of the transports [39]. Likewise, to
implement this model, it is crucial to impose the constraints

results from having a well-defined thermodynamic state as
follows [41]

0T +Ta, =0,
Oup + pay = Ey,
Vyuuy +uyay = oy, 20
where
V,uy, — Vyu
ay =u"Vouy, Vi=»27,40% wu = pv 3 el
(22)

E, = F,,yu" is the electric field in the reference frame of the
fluid, a,, is the acceleration vector, V, is the perpendicular
derivative and w,,, is the vorticity. Having well-defined ther-
modynamics that is parameterized in Eq. (21) will reduce the
number of transport coefficients and keep only the indepen-
dent ones [41]. By considering the relations (17) and (19)
and plugging into the Eq. (18), we establish a mathematical
basis to analyze the stability and causality of hydro modes
for a particular system with a definite equation of state. The
outcomes of these analyses are limits on the parameter space
of independent transports [39,42,43].

Having reviewed the necessary models, we proceed to
analyze the interplay between constraints derived from sta-
bility and causality with the univalence bounds in the MIS
and the BDNK model. We aim to explore whether these con-
straints overlap, shedding light on the significance of univa-
lence bounds in the generation of new physical constraints.
We will discover that univalence holds locally, meaning that
in specific regions of momentum space, bounded results can
be achieved. This observation is achieved for series that are
not globally convergent.

4 Interplay of bounds in the MIS model

In the context of the MIS model, we refer to an uncharged
conformal system with the following constitutive relation

T = eutu” — pA*” + 1", (23)
where I[T"Y = —2no™¥ with n denoting the shear viscosity
and o’ = (V“u" + VVult — %A’“’V : u) represents the
shear-stress tensor. The governing equations are given by

I—

9, T =0,
tu’ 0, " + " = —2no™’, 24)
where T is the relaxation time associated with IT#" approach-

ing its on-shell value, —2no*’. Equation (24) resemble the
Eq. (10) and IT*" serves as a regulator field with the lifetime

@ Springer
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7, being the first non-conserved operator in the thermal spec- 0.0 — 18
trum. Solving Eq. (24) for small perturbations and decom- 7B+
posing them into the shear and sound channel will yield the -02
following dispersion equations )
-0.4 TB= -3
o) z S T
Shear: o?4+i2 15—, 25 @ = 0
T wr —0.
3 w? 2 Vs i c% Z
Sound: @’ + & _ <cs + —) wz—55_0. (26 o8
T wTt
cf = d¢e/dp denotes the speed of sound, y; = 4n/3,z = kz2 -10
and w = ¢ + p is enthalpy. In this section, we will metic- 00 02 04 B 06 08 10
ulously analyze the aforementioned equations to examine Z

their analytical properties and compare them with the require-
ments of stability and causality.

4.1 Shear channel

In the shear channel given by Eq. (25), to derive the stability
constraints, we apply the Routh—Hurwitz criterion, assum-
ing w(z) = iB(z). The resulting coefficients must satisfy
the Routh—Hurwitz conditions, which leads to the following
dynamical stability conditions

>0 1n>0. 27
Additionally, we require w > 0 as a thermodynamic stabil-
ity condition. The causality constraint is given by the large
momenta behaviors mentioned in Eq. (16), and results in
n < wrt. These constraints ensure the model’s behavior
adheres to the principles of stability and causality.

To derive the univalence bound, we must verify the con-
dition Re(B’(z)) > 0, which is necessary and sufficient for a
function to be univalent. Applying this condition to Eq. (25),
the following expression for the derivative is obtained

n

/3 (Z) = _w(1+—21’,3(z))'

(28)

For the function to be univalent, we need solutions with
B(2) < —%. In Eq. (28), the B(z) are solutions of Eq. (25)

1 4
Bi(x) = — <—1i |- Z”’). (29)
2t

w

In Fig. 1, we plot these solutions in terms of dimensionless
quantities, namely A7t in terms of z/z.. From this figure,
we infer that the blue branch or 74_ always satisfies 8(z) <
- % Thus we must take this solution as a univalent function.
The red dashed line represents 78 = —1/2 which is a border
between the univalent and non-univalent solutions. The point
Z¢ = w/(4nt) marks where the modes intersect, setting a
maximum bound for applying the hydro series to the S(z)
solutions.

@ Springer

Fig. 1 Plot of modes in terms of Z given in Eq. (29). The red
dashed line indicates the upper limit for which the univalence condition
Re(B'(z)) > 0 holds

To further analyze the shear channel, we apply areversible
and conformal map ¢ = ¢(z) to transform the z space into
the unit disk ;. The solutions in Eq. (29) exhibit a branch
cut along [z., 00). According to the prescriptions given in
[32], the map is provided as follows

4zc.¢

—_— 30
(1-2¢)? G0

2= Ppeard) = —
By substituting this map into the t8_ from Eq. (29), we
obtain

1
fshear(€) = T B(pgL () = -7 31)

This function is unrelated to the transports and remains uni-
valent for all points within the unit disk ID;. Consequently,
the Bieberbach conjecture cannot impose constraints on the
model’s transports in the shear channel. This observation
leads us to conclude that, in this channel, all constraints stem
from stability and causality, while univalence does not intro-
duce any additional conditions. This phenomenon is expected
because the radius of convergence and the map’s domain are
equivalent in the shear channel. For further details, look at
Sect. 6.

4.2 Sound channel

The dispersion relation for the sound channel is given in
Eq. (26). The Routh—Hurwitz limits ensure the stability of
perturbations at each z. It demands Re (w) > 0 for each z
and results to

>0, n>0. (32)

The causality criterion is obtained by examining the large k,
expansion of the dispersion relation. Plugging w = vk, into
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Eq. (26) and setting the coefficient of the dominant power of
k to zero, we arrive at

R
o= tim [PRE@_ Jo My B2
ok S owr wTt ’

(33)

To investigate the univalence bounds, we first need to
check the validity of Re (8’(z)) > 0 which can be obtained
from Eq. (26) as follows

=28 __ LFOF8OPD L a4
0z O+8X)z+ B2+ 3B8(2)

where

Vs

e i=qtn f=rp G9)
N

=-—1+

To proceed, we must evaluate the Eq. (34) on the solutions
of Eq. (26). These solutions are given by

339+ 8X) — 1

(VOI® + 926 +4%) - 1)”3

~ 1
B1(2) = —3 1+

~(Va@+uatan-1)" |,

~ 1 1 . 5 1
5. = L[y (ksiv3) (ZO+8X) — 1)

173
6 (VOI® +9:6+4x) 1)

1/3
+(1 — 5iv/3) (x/Q1(Z)+9Z(3+4X) — 1) ,

(36)
where
01(G) = 329+ 8X) — D>+ (923 +4X) — 1D>.  (37)

and s = =. Out of the solutions in Eq. (36), only B1(%)
satisfies the condition Re(B’(Z)) > 0. Other solutions lead
to negative values or yield no result in the physical region.
In Fig. 2, we plot the Re(B’(%)) by substituting 1 (%) from
Eq. (36) for X = 0 and X = 1. For other choices of X, we
always have Re(,g’(Z)) > 0. The significant advantage of
the dimensionless equation using the notations in (35) is that
there is only one parameter X = —1 + SC]Z/L) — to label the
solutions. It is worth mentioning that stabilisty conditions in
Eq. (32) require X > —1.

0.0008} X=0
— 0.0006} X=1
i\z/
=y
= 0.0004f
~
0.0002}
0.0000 ‘ ‘ : ; .
0 2 4 6 8 10

z

Fig. 2 Plot of Ref'(2) from Eq. (34) for £ (Z) solution provided in
Eq. (36). The red (blue) plot refers to the choice X = 1(X = 0)

To derive the conformal map relating z to the & plane, we
need to understand the analytical structure of the solutions.
The singularity pattern is a collection of branch cuts due to
the square root appearance of Q1 (z).! The branch points are
roots of Q1(z) = 0 which are given as follows

9B +4X)+8X? +8/X3(1+X)
N (9 +8X)3 ’

20=0, 2zt

(38)

ét =2 we get ,51(20) = E_ (Zo) = 0,~at zZ = Z_~we get
p1(z-) = B—(Z-),and atz =z we get B_(Z4) = B4 (Z4).
In Fig. 3, the analytical structure of solutions in the Eq. (36)
is sketched in the complex Z plane. There are two branch cuts
one in 0 < 7 < Z_ and the other in Z > Z;. Due to these
disjoint cuts, it is impossible to introduce a unique conformal
map from Z to the & plane. So we break the z plane into the
HM (High Momentum) z > z_, and LM (Low Momentum)
Z < z_ regions which are separated by a vertical solid line.
In the HM region, the following map is chosen

Z ¢

_ 424
TiG_zn a-or 7

a+0)?*
(39)

z= ¢(_HIM)(§) =

This map is obtained by first sending the branch-cut 7 > 7
into the (—o0, — %] and then using it as the range of the Koebe
function. In the LM region, we employ the following map

it
a0

Z_(1-2¢)?

Z= ¢ (©) =— v

(40)

where the branch-cut 0 < Z < Z_ sends to the (—o0, —3]
and then uses it as the range of the Koebe function. Each

! Indeed, the branch cuts are determined by line segments where below
and above them, there is a “x” phase difference.
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Im Z
1 n=2
? O / ]
LM HM s

Z
S -1

B daitel A

Zo| E-|  Z+ Re 7 2 ]

Fig. 3 Singularity pattern of solutions in complex z plane for Eq. (26).
The HM (High Momentum) and LM (Low Momentum) regions are sep-
arated by a vertical solid line on z_. The dashed lines on the horizontal
Re 7 line refer to the branch cuts. The black dots mention the symbolic
locations of Zp and z4 given in Eq. (38)

map has to be inserted in B;(Z) and expanded to check the
univalence condition.

In the HM Region, the map (39) is inserted into the ,51 )
and after a bit of calculation we get the following series

FEME) = Br(dgi @) = ¢ +a) ™% + {3

+a{"™ ¢t 1 0@, (41)

(HM)
as

where

1 2
L) _ 404 +ay) +a

(HM) _ ~
a =81+ X)i_,
2 ¢ ) 9 +8X)>

9477 +a{" + a{?
(9+8X)07_
al = 128(X (X + 1)¥22X + DX +9)2,

a™ = 1601 + x)

af?) = 8X (4X (8X (X (16X (4X + 41) + 2345) + 4104)
+30753) + 59535),

a{? = 8,/X3(X + EX@X + 18X +9) —27),

al?) = 4X 2X 8X (4X (8X + 79) + 859) + 8397) + 9963).
(42)

In Fig. 4 the conditions a,(lHM) — n are plotted in terms of

X for n = 2, 3, 4 which are represented by the correspond-
ing colors. Checking the Bieberbach conjecture specified by
an < n,will give rise to the condition X < 0.853 and ensures
all plots remain below the zero line. We restrict ourselves to
z > 0 and therefore the LM region has no significance for
results.

@ Springer

0.0 | 0.5 1.0 1.5 2.0 2.5 3.0
X

Fig. 4 Plot of the Bieberbach conjectures, a,(,HM) — n for various n in

terms of X = —1 + y;/ (8c?w7:) in the HM region of the analytical
plane. For X < 0.853 the Bieberbach conjecture, a, < n is satisfied
for all curves

In Fig. 5 we combine the univalence and causality con-
ditions to obtain the space in which all constraints are sat-
isfied. Stability is already satisfied in each plot and the ¢
value by which plots are produced is shown inside. The blue
line denotes the causality boundary, below (above) which the
causality preserves (violates). The magenta line defines the
univalence boundary, below (above) which the univalence
preserves (violates). At small ¢y, the causality bound lies
above the univalence and there is a region where the theory
is causal but is not univalent. At ¢; = 0.25, these two bounds
meet, and for ¢; > 0.25 the univalence is above the causal-
ity. In this case, there is a univalent region in the middle, but
causality is missed.

5 Interplay of bounds in the BDNK model

We employ the BDNK model for an uncharged and confor-
mal fluid, which has constitutive relations given in Eq. (17).
The relations involve transport coefficients that absorb frame
change effects, similar to gauge parameters

"o, T

€=s+61u + e2d,u” + 01?),

+ mduut + O,

uta, T
P=p+m TM

[y

AWV, T
O* = 0 u”dut + eva + 0(d%),

TH = —2no™ 4+ O(3%),
N=0, J'=0. 43)

In the conformal limit and under thermodynamic consistency
conditions, the transport coefficients are related as [39]

2 2
T = ¢ (€2+7T1 —CS€1> s
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Fig. 5 Acceptable region for transports (ys, T) by combining the
causality condition in Eq. (33) and univalence bounds in Eq. (4). In
each plot, the blue (magenta) lines denote the boundary of causality

01 = 0,. (44
This results in five transports (€1, €2, 71, 01, 1) to determine
the fluid’s behavior in the first order of derivatives. Equation
(18) yields the following result for small hydro perturbations
in the shear and sound channels

Shear: cuz-i-i%—E =0,
[ [

Sound: c3610w4 +iw (ch + 9) o’

(45)

—izw (ys + C?q + 030) w

_ <w2+zc3(cfe]2+ysel+(ez+nl)(9 —cZe)) + ezm)>w2
+ zcsz (w2 + 20(63(62 +7 — cszel) — Vs)) —0. (46)
Hereafter, we take 0 = 6.

5.1 Shear channel

For the shear channel equation given in Eq. (45), the stability
and causality conditions are

Not causal and not univalent

Univalent, not causal

Causal and univalent

6 8 10
T

(univalence) conditions that in below (above) which the conditions are
satisfied (violated). Each plot is produced by a certain c; which is shown
inside

Stability , n >0, 6 > 0,

Causality , n < 6. a7

Likewise, solutions of the imaginary frequency to Eq. (45)
are

w 4nz0
B+(z) = % (—1 +./1— 7) . (48)

. 2, .. .
The point z, = 4“”7—9 is the collision point, and the modes’

plot is similar to Fig. 1. The univalence bound goes in the
same way as the MIS model and gives no new conditions on
transports.

5.2 Sound channel

In the sound channel identified by Eq. (46), the Routh—
Hurwitz stability criteria provide us the following conditions

€00, §>0, n>0, —1+c2(@E—é +7a) >0,

@ Springer
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2 +CS(€1 — &) (€ +0)%(& — 1)

+ (6 +0)26°% — (& +71) + @ + &)@ + 1)) > 0,
(49)

where the bar notation represents the dimensionless quanti-
ties as follows

2
C. €
é] - 2 17
Vs
€ _ 0 T
=2, =", 7= (50)
Vs Vs Vs

The causality condition comes from the large k solutions of
the Eq. (46). Using the ansatz w = vgouuqk; in large k, and
keeping only the dominant terms, the following constraint is
obtained for the ultimate speed of fluctuations’ propagation

| dRe(w)
= lim
Usound kl>oo 9k

S+ S +\/4c39'281 + (S1 + &)? . 1)
B 2é10 -

where
S =¢€; (l+c§(€| —Ez—ﬁ])), S =Cy (97‘[] +€2(9+7‘[1))
(52)

To determine the physical zone of transports, the conditions
(49) and (51) have to be considered simultaneously and their
common region is identified as the allowable region. The
solutions are depicted in the right part of Fig. 3 in [39] with
the choices (€ = 0,71 = 3 /cf) and for different cy.

To derive the univalence bounds, it is essential to verify
Re(B'(z)) > 0. After replacing w = if(z) in Eq. (46), we
obtain

B no + n1B () + n2f(z)?

02 do+d1B(Z) +d2f(Z)?+d3B(2)3
(53)

B =

with the following definitions

0z (A-m+a - +1)-1),

—(ck( é+e1)+ 1),

— (2 — e (1 + &) + 2 Om + &0 + 7)) + &),
dozz(c @+en+1),
d1=2(Z (GG —cGa(@m+a)+c; @7 + &0 + 7)) + &) + 1),
dy=30+¢&), d;=40¢. (54)

@ Springer

and the bar notations define dimensionless quantities

(55)

IS\

Il

2
S |3
SIS

f=pL,
w

To evaluate Eq. (53) using the solutions of Eq. (46), we must
first rewrite the latter in terms of dimensionless quantities.
By applying the replacements from Eqgs. (50) and (55), the
solutions can be expressed as

_ 1 { a2 28, 21/3¢
(2 Y2=—f+ 5 73_7—1—7
(B2 FERRE <4ag 3a;  3as(D+G)'?
D®+6\
2173 % 3a,

213¢
33, (D+6)'3

1/2
_@+9'P F
21/3 « 3ay 13% 2y e 1/2
N 5 T oo
(56)
where
C = 12apas — 3aas + a,
D = —72a0azas + 27aoas + 27aias — 9a\aras + 2a;,
G? = D? —4C3,
8a) 4ama; a3
=1+ 22— ;. (57)
asq a; a

and (s1, s2) take either . The a; denote the coefficients of
B! fori =0, 1,2, 3,4 in the Eq. (46), and they are provided
as follows

as = €0,

=& +0,

a=1 +z<c§g1(a — 7 — &)+ 2@ + &0 + 7)) —I—E]),
=z (1+C (€1 +9))

ao Ecsz(ez (3 —& +&)—1)+1). (58)

We derived the real part of the derivative, Re(B’(Z)), using
the solutions given by Eq. (56). The condition Re(,B_/ () >0
holds only for (8%)_. In Fig.6, we sketch the Re(B'(2))
for different values of ¢, = (0.1, 0.25, —= f’ 0.7), each cor-

responding to (€, = 0,7 = 3/ cf). The identified colors
represent distinct choices of (€1, §). These choices are made
to ensure they belong to the stable and causal regions accord-
ing to Fig. 3 of [39]. The observed bumps in Fig. 6 correspond
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Fig. 6 Plot Re(ﬁ/ (z)) in terms of z with é, = 0, and 71 = 3/ cf,. The top left (right) panel corresponds to ¢; = 0.1(cs; = 0.25), and the bottom
left (right) panel addresses ¢y = 1/ «/§(cs = 0.7). Identified colors stand for specific choices of (€, 6) as shown

to the locations where the denominator of ,B_ (z) in Eq. (53)
becomes zero.

To derive the univalent series of (5, (2))~ = (B« (¢~ 1 (£)))_,
we first require the appropriate conformal map based on the
analytical solutions of Eq. (46), as provided in Eq. (56). This
map contains information about the singularity structures
originating from the absolute values of the roots of G(z) = 0
in Eq. (57)

6
0=0@) =) 2" (59)
n=0

where the g, coefficients are expressed in Appendix A. Gen-
erally, Eq. (59) has six roots but the number of distinct roots
varies depending on the transports. Additionally, one root is
always z = 0 due to go = 0. Since there is no analytical
solution for Eq. (59), we resort to a numerical approach to
solve it for given transports. Consequently, the procedure to
obtain the map and univalent series is carried out point by
point in the transport space (€1, 0).

It is crucial to note that the desired conformal map’s prop-
erties and behavior are highly dependent on the number of
roots, as the branch cut locations differ for each case. In
Fig.7, we illustrate the branch cut structures, which vary with

the number of roots. These structures are divided into HM
(High Momentum), IM (Intermediate Momentum), and LM
(Low Momentum) zones separated by vertical solid lines.
This partitioning is essential because constructing a global
map for each set is not feasible. In Table 1, we explain the
possibilities of having different types of expansions. HME
(High Momentum Expansion) and LME (Low Momentum
Expansion) exist for all root numbers, while IME (Interme-
diate Momentum Expansion) exists only for the root numbers
n = 5 and n = 6. We disregard regions where the branch
cut lies on Re(z) < 0, as in such cases, that part does not
represent an analytic section.

For the HM region (the red parts in Fig. 7) we employ the
following map

42Max§
(1+0%
(60)

B Z S
4Z —2ma) (1 =02

= =00 =

where Zpmax 1S the largest root in each plot. For the IM region
(the green parts in Fig. 7) which exists forn = 5 orn = 6,
we benefit from the following map

. Zn—l - Zn—Z _ ‘5
4Z—Zp2) (=87

= =g @)
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%0l 21 22 Re z

Im z
LM IM HM
i yi \ -
Zo| Z1| Z2 Z3| Z4 Re z

Fig. 7 Analytical structure of solutions for dispersion relation of
BDNK model in the sound channel. The dashed lines on the horizon-
tal lines refer to the branch cuts and vertical solid lines separate them
into the HM (High Momentum), IM (Intermediate Momentum), and

I+ D -z E - 1P
- e .

For the LM region (the blue parts in Fig. 7) withn = 3 or
n = 5 distinct roots, we impose the following map

(61)

oz & N Z:¢(—L1M)(§):_

o & = 1%
42 a-g

46
(62)

while the LM map for n = 4 or n = 6 distinct roots, is

obtained as follows

B 22 — 21 _ &
4z—-z21) (1=8%
R+ D -0E - 1)?
= 1E .

)

(63)

@ Springer

Im 2z
LM HM
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—¢—-——¢ o
20 zZ1 ZR2 z3 Re z
Im Zz
LM IM HM
Vi \ A
Not acceptable region € N 7 >
Zol Z1 zd Z3 Z4| Z5 Re 7z

LM (Low Momentum) regions. The black dots stand for the absolute
values of roots of Eq. (5§9). Different momentum zones are separated
by vertical solid lines

In each region, we obtain the conformal map by the following
procedure:

e Initiate by sending the branch cut to the interval (—oo,
1/4]. This can be achieved in two ways for each branch
cut: either by moving the head (tail) of the branch cut to
—oo or 1/4, or vice versa.

e Examine the condition |£(z)| < 1 and determine which
map lies within the starting zone.

The chosen map that satisfies this criterion will serve as our
desired conformal map for that specific region.

In each momentum zone (HM, IM, and LM), we must
insert the corresponding map into the expression
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Bu@)” = Bu@™ ONT = £+ bug". (64)

n=2

Then, we must verify the Bieberbach conjecture, which states
that b, < n. To do this, we computed the series separately
for each region (HM, IM, and LM) up to the n = 100. We
performed these calculations for various points in the (€1, 6)
space and different values of ¢y, with €, = 0 and 71 = 3/ cg.

In Fig. 8, which belongs to €, = 0 and 7 = 3/05 for the
LM region, we illustrate the blue points in the transport space
that satisfy the Bieberbach conjecture. The top left (right)
panels represent the data for ¢; = 0.1 (¢; = 0.25), while
the bottom left (right) panels correspond to the data for ¢y =
1/ V3 (¢s = 0.7). Each plot distinguishes between stable
and causal zones as well as non-stable and acausal zones.
Notably, there are no shared points between the univalent
zone and the stable and causal region in the LM part. At
lower speeds, there are only a few blue points, but as the
speed increases, the number of blue points also grows in
acausal and unstable regions.

In contrast, in the IM region with €, = 0 and 71 = 3 /csz,
the scenario changes. Figure 9 displays the green points in the
transport space, representing the points where the Bieberbach
conjecture is satisfied in the IM region. In this case, all points
within the stable and causal zone adhere to the b, < n con-
dition for n ranging from 2 to 100. Unlike the LM case, the
IM region features a significant number of univalent points
at each c;.

In Fig. 10, the red points depicted in each panel represent
the points satisfying the univalent bounds in the HM region.
From this data, we infer that the causal and stable region is
distinct from the univalent zone. Furthermore, the number
of univalent points in the HM case is considerably fewer
compared to the IM or LM situations. Additionally, the value
of ¢ has arelatively minor impact on the number of red points
observed.

6 Relation between univalence and radius of
convergence

The radius of convergence for a series representation of a
spectral curve, represented by the function F(w, k) in the
complex k plane, is determined by the distance between the
origin and the closest point where both F(w, k) = 0 and
d0F (w,k)/dw = 0 hold simultaneously, as stated in [24].
In this section, we aim to explore the relationship between
univalence and the radius of convergence.

In the shear channel of the MIS model, as described by Eq.
(25), the conditions Fghear (@, k) = 0and 0 Fypear (@, k) /0w =
0 lead to the validity of the series expansion up to the point

Ze = 4771 On the other hand, the map in Eq. (30) can be

solved for ¢ as follows

— 27 £2/7:(z¢ —
o) = =% ZZ@ 2 (65)

Given that || < 1, it follows z < z.. Consequently, the map
in Eq. (30) is always contained within the validity region
of the hydro expansion. This observation explains why uni-
valence does not introduce any additional constraints in the
shear channel. The same conclusion applies to the shear chan-
nel of the BDNK model, as described in Eq. (48).

However, the sound channels present a contrasting sce-
nario, primarily due to the order of dispersion relation. In the
sound channel of the MIS model, as represented by the fol-
lowing equation (which is the dimensionless version of Eq.
(26)):

FMS B.5) =B+ B> +2BO+8X)+7=0, (66)

and the solutions provided in Eq. (36), we obtain

M%M&a

=38>4+28+2(9+8X) =0, 67)
where solutions take the following form

o/ 1 =
(B =3 (1£V1=320+8%)). (68)

Comparing Eqs (36) and (68) reveals that at 7 = Zp and 7 =
Z_wehave f;(2) = B/ (%), whileatZ = Z, wehave B, () =

,5; (z). Asaresult, (Zg, z+) are collision points, and the radius
of convergence for a series expansion in this context is zero.
This is why we obtain the sound mode dispersion relation as

©=vk+Y c,(k)?, (69)

n=2

and the branch cut patterns take the form shown in Fig. 3.
Consequently, univalence has no direct relation to the con-
vergence in the sound channel. However, univalence serves
as a new constraint to obtain a finite series in each section
of the complex 7z plane. For example, if X < 0.853, we can
achieve a bounded series in the HM region. In this manner,
we can say that hydro series is locally univalent in certain
transport regions.

The situation in the sound channel of the BDNK model is
quite similar. The dimensionless equation of motion is given
by

BDNK
sound

Xyn"=, (70)

n=0
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Table 1 Table of allowable
. n=3 n=4 n=>5 n==~6
HME (High Momentum
Expansion), IME (Iptermedlate HME v v v v
Momentum Expansion), and
LME (Low Momentum IME X X v v
Expansion) for distinct root LME v v 4 v
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Fig. 8 Comparing the stability and causality with univalence in the
LM region for the BDNK model with €, = 0 and 71 = 3 /cf. The top
left (right) panels mention the ¢; = 0.1(¢; = 0.25) data, and the bot-

where the a; coefficients are presented in Eq. (58), and the
corresponding solutions can be found in Eq. (56). From the
latter equation, it can be easily demonstrated that

9 FBDNK (3 = 3 _
%(ﬁ@ = Z(n + Dap1 B" =0. (71)
n=0

The solutions to this equation are related to the branch cut
patterns and the convergence properties in the sound channel
of the BDNK model

R K
(ﬂ)l——ﬁ<a3+m

oL/ (I+5iV3K
(B)s = —@<2a3 - W

—(H+I>1/3>,

+ (1 —siv3) (H+I)'/3>,
(72)
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€1

tom left (right) panels refer to the ¢, = 1/ V/3(cs = 0.7) data. The blue
dots represent the points of transport space on which the Bieberbach
conjecture is satisfied

where
_ 8aras  _,
= 3 asz,
= —a3 + 4arazas — 8a1a3 = F a3,
> =H>+ @G (73)

At the points where G(z) = 0, or at the points depicted
in Fig. 7, the solutions in Eq. (72) coincide with those in
Eq. (56). This implies that the black dot points in Fig. 7
are collision points, and as a result, the sound channel of
the BDNK model has zero radius of convergence. However,
univalence allows for situations where, in each section of the
momentum region, we can obtain a finite and bounded series
representation. Due to the higher power of f = —i a)%j and
the increased degrees of freedom in this model compared to
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Fig. 9 Comparing the stability and causality with univalence in the IM
region for the BDNK model with €, = 0 and 71 = 3/ csz. The top left
(right) panels mention the ¢ = 0.1(c; = 0.25) data, and the bottom

the MIS model, the univalence constraints can be studied in
multiple ways. For instance, we can fix the momentum and
examine which transports could lead to an univalent series
or fix the transports and investigate the role of momentum
in creating a bounded series. For our purposes, we choose
the former approach since we aim to compare these findings
with stability and causality, which are conditions that do not
depend on the momentum value.

7 Conclusion

Stability and causality are crucial conditions in the study
of high-energy dynamical systems, as they impose limita-
tions on transport coefficients containing valuable informa-
tion about the underlying microscopic theory. Relativistic
hydrodynamics, as an effective description of high-energy
systems, is valid in both near-equilibrium and far-from-
equilibrium scenarios. In this study, we explore the relation-
ship between stability, causality, and univalence bounds to
better understand the physical implications of univalence.
Our analysis focuses on two quasihydrodynamic models: the
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left (right) panels refer to the ¢ = 1/ V3 (cs = 0.7) data. The green
dots represent the points of transport space on which the Bieberbach
conjecture is satisfied

MIS and the first-order hydro, also known as the BDNK
model. These models are significant because they allow us
to identify regions in their transport space where stability and
causality are satisfied, making them suitable for implemen-
tation in hydrodynamic codes.

Our research reveals that the interplay between stability,
causality, and univalence bounds depends significantly on
the fluctuation propagation channel. In the shear channel, we
demonstrate that the radius of convergence is non-zero, and
the hydrodynamic series is univalent within this radius. Con-
sequently, univalence offers no additional information for
the shear channel of these models, as the univalence region
coincides with the radius of the convergence zone.

In contrast, the sound channels present another scenario.
Higher frequency powers and specific mathematical situ-
ations, such as a zero radius of convergence, give dis-
tinct meaning to univalence. In the MIS theory, univalence
imposes a constrainton X = —1 4 y;/ (8c3wr) in the high
momentum region, ensuring that the hydrodynamic series
maintains a bounded value despite being globally divergent.
For the BDNK model, the radius of convergence is zero, and
univalence does not hold globally for the series. However, due
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Fig. 10 Comparing the stability and causality with univalence in the
HM region for the BDNK model with €, = 0 and 7; = 3/c52. The
top left (right) panels mention the ¢, = 0.1(c; = 0.25) data, and the

to the presence of more transports and a complex dispersion
relation, univalence conditions can be examined in various
ways for this model. We fix the transports and the speed of
sound and analyze the role of momentum regions. Our find-
ings reveal that in intermediate momentum regions, all stable
and causal zones fit within the univalent zone. However, in
low and high-momentum regions, the stable and causal parts
are separated from the univalent parts. This can be interpreted
as follows: Locally in momentum space, we can equate sta-
bility, causality, and univalence. That is why we refer to “local
univalence” in this context.

This study can be extended in several directions fur-
ther to explore the implications of univalence in hydrody-
namic models. Firstly, it would be valuable to investigate
the local univalence in other hydrodynamic models, partic-
ularly those with a non-vanishing parameter space for sta-
bility and causality conditions. This would help in under-
standing the generality of the observed local univalence phe-
nomenon. Secondly, examining the impact of univalence
bounds on the underlying microscopic theories is an intrigu-
ing avenue for future research. Investigating the connection
between univalence and many-body properties of Quantum
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Field Theory could provide new insights into the relationship
between macroscopic and microscopic descriptions of high-
energy systems. Lastly, understanding the role of univalence
in far-from-equilibrium scenarios is crucial. By exploring the
extent to which the hydrodynamic series can produce limited
values in regions far away from equilibrium in both momen-
tum and transport space, we can further refine our compre-
hension of the applicability and limitations of hydrodynamic
descriptions in such regimes. These intriguing research direc-
tions will be pursued in our future works.
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Appendix A: The coefficients g,
The g, coefficients of Eq. (59) are expressed as follows
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