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Abstract

We investigate the efficacy of topological quantum error-correction in corre-
lated noise model which permits collective coupling of all the codeword qubits to
the same non-Markovian environment. In this noise model, the probability dis-
tribution over set of phase-flipped qubits, decays sub-exponentially in the size of
the set and carries non-trivial likelihood of the occurring large numbers of qubits
errors. We find that in the presence of noise correlation, one cannot guarantee
arbitrary high computational accuracy simply by incrementing the codeword size
while retaining constant noise level per qubit operation. However, if instead, per-
operation qubit error probability in an n-qubits long codeword is reduced O(y/n)
times below the accuracy threshold, arbitrarily accurate quantum computation
becomes feasible with acceptable scaling of the codeword size. Our results sug-
gest that progressively reducing noise level in qubits and gates is as important
as continuously integrating more qubits to realize scalable and reliable quantum
computer.

1 Introduction

Vast literature on fault-tolerant quantum computing has convincingly established the
principle effectiveness of quantum error correction [48, 50, 33, 31, 35] in combating
the noise which causes qubits (and gates) fail independently due to decoherence [23].
In the independent noise model, a sizable quantum computational algorithm can be
executed with arbitrarily low inaccuracy provided that noise level p, defined as failure
probability per operation, is kept below certain constant accuracy threshold value
ie. p < pw [1, 5]. Once threshold constraint is satisfied, efficiently reducing the
execution inaccuracy becomes a matter of modestly enlarging size of error-correcting
codeword. For some constant ¢ > 0, the execution inaccuracy € ~ n(p/py )™
decreases exponentially in the error-correcting code overhead cost f(n) defined as
monotonically increasing function of n: the number of codeword qubits. Most re-
markably, f(n) highlights manageable overhead cost by growing no faster than the
poly-logarithmic function of n and 1/e i.e. O(poly(log(n/e))) [1]. This landmark
result envisions reliable quantum computing hardware which will feature both the



(i) scalability: because progressively large-scale computation can be executed with
acceptable scaling of the codeword qubits overhead and (ii) fault-tolerance: because
vanishingly small inaccuracy can be achieved with fixed noise level. The entire foun-
dation of fault-tolerant quantum computation is rooted in the following interpretation
of the threshold-theorem: that the existence of constant noise threshold suffices both
the scalability and fault-tolerance for independent noise model.

In this work we show that the fulfillment of threshold condition alone may not yield
fault-tolerance in a more general and realistic noise model that correlates the failure
of qubits (and gates) in time and space. Our conclusion is founded on the detailed
simulation based performance analysis of surface error-correcting code [9] subject to
correlated noise. In this noise model, all the codeword qubits jointly interact with
the same non-Markovian environment [10, 34] which is not refreshed until single trial
of syndrome measurement is completed. The entanglement, among codeword qubits
states, enables an overall constructive interference among the temporally and spatially
correlated fault-paths leading to larger number of errors in the codeword. In contrast
to its independent counterpart which assigns exponentially small (in n) probability to
the uncorrectable errors [1], the correlated noise significantly elevates the likelihood
of more codeword qubits in error than those can be perfectly corrected by the surface
code. More frequent occurrence of these many-qubit errors severely limits the sharp
decline in the overall execution inaccuracy unless noise correlations are sufficiently
curtailed in physical quantum device which may in turn pose complex engineering
challenges [28, 4].

At this point our investigation crucially reveals that in the sub-threshold region
(p < pen), the noise level in the individual qubit is directly proportional to the accu-
mulated failure probability of the qubit due to correlated errors in gate/measurement
operation. Therefore, by tuning the metric per-operation qubit error probability, the
strength of noise correlation can be proportionally and precisely controlled. The
metric not only provides an appropriate scale to measure the magnitude of both inde-
pendent and correlated noise model but also enables fair comparison of surface-code
performance between the two models. Our simulations show that the attainment of
arbitrarily low inaccuracy is contingent not only upon increasing the surface-code
codeword size equal to that for the independent noise case, but also reducing noise
level per qubit (or gate) by O(y/n) where n is the number of codeword qubits.

Although our findings clearly indicate the non-compliance of correlated noise
model with the standard pre-requisite of quantum fault-tolerance, these do not pre-
clude the possibility of large-scale quantum computation if experimental efforts do
not settle with constant noise level just below threshold! Considering that realis-
tic noise in quantum hardware may have correlated character, progressively larger
and reliable quantum computing device can be built if, in addition to integrating
more component qubits and gates in the system, experimentalists concurrently strive
to steadily lower noise levels in these components. Therefore by bringing the impor-
tance of high quality qubits to the surface, our work provides crucial design guidelines



to the experimentalist community trying to realize scalable quantum computer.

In order to systematically explicate our results, we first introduce background
knowledge and relevant prior work to the unfamiliar audience in Section-2. Next, we
summarize salient contribution of our work in Section-3. Finally, rest of the paper
is organized as follows: Section-4 describes correlated noise model while Section-5
provides an overview of surface error-correcting code. The simulation results are
provided in Section-6 , discussed in Section-7. The gist of this work is compiled and
concluded in Section-8.

2 Contextual motivation behind this work

2.1 Noise and fault-tolerance in quantum computing

In real-life applications, the quantum speedup comes from growing and sustaining
a fragile Hilbert space spanned by the superposition of qubits states. During the
execution of algorithm on intrinsically noisy hardware, the quantum mechanical ori-
entation of superposition state decays over time and eventually reduces to statistical
representation of classical information bits [23]. This process is termed decoherence
and it prohibits scalable quantum computation unless noise accumulation is confined
to acceptable limits [48]. In the paradigm of independent noise [42], the decoherence
of a given qubit state is assumed completely oblivious to its quantum mechanical cor-
relations (e.g. entanglement) with other qubits in the system and its past interaction
with the unwanted surroundings called environment. Fortunately, this type of deco-
herence can be treated by encoding each logical qubit into several constituent qubits
using suitable quantum error correcting codes and repeatedly purifying its state from
errors arising from noisy operations [36]. Using multiple layers of encoding [33, 12] or
increasing the size of error correcting code [45, 31], arbitrary gain in fault-tolerance
is attainable, provided that the magnitude of independent noise (failure probability
per operation) is below constant threshold (a.k.a accuracy threshold) value [1]. The
information recovering ability of quantum error correction has been successfully vali-
dated [15] using commercially available small-scale quantum processors (e.g. IBM 5
or 16 qubits processor). It should be noted that once qubit is encoded, fault-tolerance
quantum computation proceeds by applying gate(s) directly on the encoded qubit.
Such a gate is called encoded or logical gate.

The threshold value indirectly quantifies noise margin in quantum computing
device; should the noise level in component qubits (and gates), exceeds the thresh-
old, errors accumulate faster than they are corrected [48]. These errors enact unde-
tectable unwanted logical gate on the encoded qubit, irrevocably altering its state.
Consequently, the probability of recovering the uncorrupted state of encoded qubit
can no longer acquire value arbitrarily close to unity. On contrary, it will approach
zero [36] with the increase in encoding layers or code-distance, defeating the very
purpose of fault-tolerance. Hence the error correcting code with higher threshold



value, can tolerate higher noise levels by eliminating more combinations of errors in
the qubits and gates. Such codes have historically been considered the holy grail
of fault-tolerant quantum computing; their quest [33, 6] was initiated soon after the
inception of pioneering work on quantum error correction [48]. Among broad classes
of different techniques proposed and investigated for high threshold error correction
[33, 6, 31, 45], the surface code [9] has specifically received considerably higher atten-
tion. By virtue of its simpler error decoding scheme, surface code decomposes complex
decoherence patterns into orthogonal sets of errors distribution that can efficiently de-
coded and corrected along time and space axes with high accuracy. The procedure
for extracting error syndrome comprises quantum gates which translate into spatially
local physical operations in the quantum hardware. By obviating inherently noisy
and resource consuming long-distance gates, the error correction procedure manifests
elegant performance through greater efficiency and reliability. Vast literature on the
fault-tolerance analysis of surface code can be found in Refs [20, 18, 51, 53, 14] and
briefly reviewed in Section-5.
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Figure 1: The gray-scale map of a 13-qubits surface code density matrix p(t), colors
each |z)(y| coherence according to its noise reduced amplitude. The noise strength
L(t,d; ) (defined in Section-4) is set to 0.04 for both the noise models.

2.2 Brief review of correlated noise

In a realistic quantum hardware the architectural constraints inevitably house block of
qubits in the same environment and invalidate the independent noise assumption [16].
For example, the qubits mapped to the linear array of trapped-ions will couple to the
common vibrational modes of the chain of ions [30]. The quantum dot qubits are



localized in the same lattice along with sharing same phonon bath [40], and single
resonator connects multiple qubits in the superconductor quantum computer [21].
Naturally, the perturbation induced in the target qubits by the imperfect gates, may
propagate to the neighboring qubits and produce spatial correlation in noise. Likewise,
when a qubit interacts with the same apparatus (e.g. an ion excited by same laser)
multiple times for the sequence of gates operations, the errors may also correlate with
each other in time due to the inherent memory of the environment [29]. These spatial-
temporal noise correlations cause certain qubits states disappear more prominently
than the others. For example, when multiple qubits collectively interact with the same
environment [16, 56], their mutual pairwise-entanglement causes higher attenuation
of the non-diagonal elements of the density matrix [42] than that in case of each qubit
interacting with the different environment. Therefore, the states containing higher
disparity between the number of 1’s or 0’s become more vulnerable to the spatially
correlated noise. Similarly, for highly entangled states, temporal correlations allow
errors to accumulate faster [41] than they are corrected, unless some of these are
canceled by flipping qubit state between |0) and |1) periodically [57, 47].

In addition to the incongruent decoherence of different qubits state, the capri-
cious nature of environment may also characterize the correlated noise. Its usual role
of sinking the leaked qubit information may suddenly reverse to further complicate
the noise process. This role reversal may recover a component of lost information
from environment, returns it to the qubit and partially revive the coherence [22] at
some point during the joint evolution of qubit and its environment. Such flickering
noise behavior not only complicates the accurate book keeping of the probability dis-
tribution of errors but also marks variegated information loss across qubits Hilbert
space [32]. This problem particularly accentuates for the long-lasting joint evolution
of qubit-environment wave-function based on the memory span of the environment,
typical of several quantum devices technologies [38, 52, 17, 25, 8]. Longer memory
span unearths the non-Markovian nature environment that increases the covariance
(or correlation) of the failure rates of the sequential noisy operations. Hence both
the qubits mutual entanglement and the environment memory contribute to the com-
plex nature of correlated noise. Since noise correlations tend to leave heterogeneous
imprints of amplitude decay in the qubits Hilbert space [32]; the noise-reduced ampli-
tudes of the density matrix elements depict substantially higher variance in a typical
correlated model when compared with its independent counterpart as illustrated by
an example in Figure-1. This varying amplitude loss across the Hibert space features
one of the defining attributes of correlated noise and seems to undermine the efficacy
of fault-tolerant techniques proposed for the independent noise model.

The design of error-correcting code depends upon the probability distribution of
errors which is inversely proportional to the fidelity of the encoded qubits state. The
fidelity metric which finds the closeness between the noiseless and the noisy qubits
state, is calculated by averaging the amplitude decay over the entire density matrix.
Unfortunately, calculation of fidelity becomes intractable as the size of Hilbert space



grows exponentially in the number of qubits. Alternatively, a conservative approx-
imation of errors probability distribution is efficiently obtained by considering only
the worst case amplitude decay which maps to (lowest fidelity) darkest regions in
Figure-1. By lending itself to the worst-case analysis, the correlated model gathers
non-trivial likelihood of uncorrectable errors (many-qubits errors) which remains ex-
ponentially small otherwise [23]. For this reason, correlated noise is often cited as one
of strongest impediment of achieving large-scale quantum computation [4, 26, 27] in
a realistic noisy hardware. However, because the conclusions based on the worst-case
behavior often yield pessimistic performance estimates, more sophisticated theoret-
ical and experimental analysis techniques are required for the precise quantification
of performance degradation. Hence, even though the existence of correlated noise
has been established through environment engineering based proof-of-concept exper-
iments [10, 34, 38, 37, 13, 8], the detailed characterization and profound implications
on fault-tolerant quantum computation have remained an unexplored frontier and
deserve careful investigation.

2.3 Prior work on correlated noise

Prior studies on correlated noise fall into the broader spheres of non-Markovian and
adversarial noise in and were conducted in framework of qualitative performance
analysis. The adversarial noise models [28] hypothesize specific correlations among
qubits errors which exploit inherent limitations of the fault tolerant protocols. The
encoded Hilbert space is transformed in a way which complicates the detection of
errors and recovery of original logical state, for example, by changing the amplitude of
individual codewords in the superposition in proportion to their Hamming weights [43,
7]. Adversarial models are often leveraged by skeptics of quantum computation to
posit intricate ways in which the Hilbert space may irreversibly decohere [28, 4].
However such models are comparatively premature as their foundation in a realistic
quantum hardware seeks credible justification [49].

In contrast, the non-Markovian models [22, 11, 10, 34] portray more quantum
mechanical picture of correlated noise: a time-dependent Hamiltonian describing
interaction between system and the environment [54, 5]. The joint evolution of
the system-environment wave-function generates entanglement between the two sub-
systems which acts a source of memorizing the noise-induced changes in system state
over time and space. The collapse of wave-function projects accumulated noise onto
spatially and temporally correlated errors in the system qubits. By upper bound-
ing the norm of evolving Hamiltonian, accuracy thresholds for various settings of
system-environment coupling have been established [2, 44, 5, 54]. The non-Markovian
models generally provide adequate holistic overview of correlated noise process. Un-
fortunately, the Hamiltonian descriptions in the prior studies tend to abstract deeper
insights into the transformation of system Hilbert space which can aid in engineering
error correcting codes which are resistant to noise correlation.

It is important to note that the aforementioned accuracy threshold results con-



sider system-environment Hamiltonian models which fulfill local noise condition. The
qubits errors herein, can interfere constructively or destructively over the memory
span of the environment, yet the net amplitude of k faulty qubits in the error-
correction circuit, declines exponentially in k. The amplitude reduces to the classical
probability in a special case of local noise called independent noise. It assigns expo-
nentially small probability to the occurrence many qubits errors (large k), without
their mutual interference. On contrary, our correlated noise lowers this probability
only sub-exponentially in k¥ and accumulates non-negligible weight of many qubits
errors. In this sense, the correlated noise in this study may be best characterized
non-local in the context of prior work. We highlight the dichotomy between local and
non-local noise to properly situate our work within prior studies [2, 44, 5, 54] primar-
ily based on concatenated code fault-path counting techniques. On the other hand,
the relevant surface-code literature [20, 53, 51, 14] reflects similar dichotomy viz., in-
dependent versus correlated noise. Since our work is specific to surface code, we shall
purposely avoid the use of terms: local and non-local, and remain consistent with
the independent and correlated noise terminology in order to dispel nomenclature
confusion.

In a fault-tolerant quantum computer design, constant accuracy threshold de-
termines noise margin of component devices and acts as canonical yardstick of reli-
able computation [1, 5]. While constant threshold has been shown for several non-
Markovian noise models [54, 2, 44], it is often precluded by certain types of adversarial
noise which permit highly correction-proof errors (e.g. synchronized or controlled-
phase flips [7, 26, 27]). Although, these conflicting findings and other similar re-
sults [46] adequately explore multifaceted implications for the fault-tolerant quantum
computing [49], the concrete performance evaluation of error correcting code (quan-
tified as probability of misinterpreting the logical state of qubit after error-correction
or logical failure probability) remains a difficult task due to the following reasons:

e Computational intractability impedes the efficient translation of the (in)fidelity
of exponential size noisy Hilbert space to the probability distribution of errors
in correlated model

e Noise correlations complicate the application of standard fault-path counting
techniques when the probability of large number of errors is non-trivial

e It is difficult to quantitatively juxtapose correlated noise with its independent
counterpart for the comparison on the same scale of noise strength

e The analysis of effective correction of adversarial error patterns, when the
strength of correlated noise is below accuracy threshold (sub-threshold region),
has thus far remain elusive

Our study makes humble attempt to fill in these crucial gaps and aims at advancing
ongoing investigations on this vast and complex topic.
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Figure 2: (Color online) Block diagram of surface code error correction consisting
of ¢d (code distance) number of syndrome extraction cycles. Each cycle comprises
three trials of syndromes measurement shown in the dotted box. The spatial noise
correlations span all the qubits while the temporal correlations are confined to the
duration of single syndrome measurement trial



3 Salient technical features of this work

In this work we present a realistic correlated noise model which maps to the known
quantum device technologies and befits the structure of proposed error correction
schemes. A computationally efficient technique is derived which translates noisy
qubits density matrix into probability distribution of errors. We adopt a quanti-
tative approach by statistically comparing together the logical failure probability for
correlated and independent noise models using single comparative scale: per-operation
qubit error probability. Being applicable to both noise models, the scale can be exper-
imentally obtain by familiar quantum state tomography techniques [58, 39]. Using
this scale, we explore the noise sub-threshold region to evaluate the performance of
topology-centric quantum error correction subject to the noise which exploits the
topological correlation among the qubits. In particular, the paper technically con-
tributes along four specific directions:

e Neat picture of a parameterizable spatial-temporal correlated noise model which

1. presents quantum circuit based more intuitive description of correlated
noise

2. conforms to the conventional understanding of the decoherence process

3. provides single parameter knob to precisely control the strength of noise
correlation in the sub-threshold region

4. enables us to zoom in the system density matrix and to selectively observe
the element-wise amplitude decay of non-diagonal terms

e Detailed performance analysis of the error correction including the fidelity of
ancillary (or ancilla) qubits state used in extracting syndromes of correlated
errors

e Insightful performance comparison of error correcting code between correlated
and independent noise models on the same scale of noise strength in the sub-
threshold region

e Efficient and accurate performance simulation of complete error correction pro-
tocol processing the Hilbert space of up to 1000 qubits

Our spatial-temporal correlated noise model is inspired by the recent experimental
advances in general purpose trapped-ion quantum hardware [30]. Its basic building
block contains several ions whose spins (system) jointly couple to the common phonon
field (environment) which facilitates local execution of multi-qubits gates. The spa-
tially correlated decoherence arises from the collective entanglement of ionic qubits
to the field modes and is quantified as average amplitude decay of the non-diagonal
terms of the traced-out system density matrix. Moreover, the experimentally estab-
lished non-Markovian nature of the phonon field [11] introduces memory into the



environment and accounts for the temporal noise correlation. The overall infidelity is
described by a flat-ended, sub-exponentially decaying probability distribution curve
assigning non-negligible likelihood to the occurrence of many-qubits errors in time
and space.

We choose surface error-correcting code for its ability to correct appreciable combi-
nations of many-qubits errors, high accuracy threshold and regular 2-D grid-topology
conducive to hardware implementation. During error correction, although each full
round (shown as rectangle in Figure-2) of syndromes extraction involves all the qubits
in the codewords, the periodic discretization of errors, through the ancilla measure-
ments, naturally limits the span of temporal noise correlation (dotted box in Figure-2).
Thus when surface code is subjected to short duration non-Markovian and long-range
spatially correlated noise, we find that constant accuracy threshold exists and is 3x
lower than that in case of independent noise. However, in the sub-threshold region, the
logical failure probability decays exponentially slower compared to the independent
noise. We show that by reducing per-operation qubit error probability ~ n%5 times
in an n-qubits long surface code, the logical failure probability becomes sufficiently
small to enable scalable quantum computation.

4 Correlated Noise Model

The noise process considered in this work is of type T2 decoherence [23] described by
the gradual disappearance of qubit superposition state contained in the non-diagonal
terms (or coherences) of its density matrix. The process involves joint unitary evo-
lution of the qubit and its environment which increases the orthogonality among the
environment basis states over time and entangles these with the qubit coherences.
When the environment is traced out, the vanishing overlap among its states is re-
flected as shrinking coherence amplitude in the qubit density matrix [42]. In case
of multi-qubits system, the configuration of qubits-environment coupling determines
the nature of noise. The qubits will independently decohere if their corresponding
coupling environments are quantum mechanically uncorrelated in time and space.
Otherwise, depending upon their interaction with the environment, qubits are gener-
ally subject to the correlated noise [22].

Our selection of the correlated noise model is driven by the proposals of quantum
computer architectures which advocate local execution of gates in the hardware. The
local gates which are naturally fast, less noisy and resource efficient, entail high degree
of spatial proximity among the qubits when mapped to the quantum hardware [55, 3].
When spatial locality is increased the qubits tend to share and collectively couple
to the same environment and fall victim to the spatially correlated noise. Unlike
several prior studies which model such type of noise using spin-boson Hamiltonian
abstraction [42], we present quantum circuit based intuitive snapshot of collective
decoherence. Nevertheless, the Hamiltonian description will be leveraged to highlight
the physical interpretation of our model parameters.
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4.1 Circuit model description

A quick intuition into the collective decoherence can be obtained by considering a
relatively simple case of two qubits (1,2), both influenced by the same environment(E')
in Figure-3. Each qubit ¢ applies controlled-phase operation CR; g := [0;)(0g| +
e10;)(1g|+]1;)(0g|+€|1;) (15| on the environment. For a single qubit decoherence,
the initially uncoupled qubit and environment tensor product state |[¢) = |+;) ®
+E) = [+i)[+E) (where [+) := %\(D + 1)) will be transformed by CR; g as follows:

L0 + 1) © L(105) + 150 T 1[(10) (108) +e L)) + 1) (108) +¢|1)

The amplitude of qubit coherences pg 1 = |0)(1] in the reduced density matrix becomes
the %(<OE\OE> + eQiH(lE\lE)) = cos(f). By Taylor Series expansion, for small 6,
cos(f) ~ 1 —62/2! ~ e /2 which quantifies infidelity incurred in the single qubit
state (Figure-3). However, when both qubits jointly couple with the environment,
the their collective decoherence depends upon the pre-existing entanglement between
the two qubits. For example when both the qubits apply controlled-phase gate (with
same ) on the environment, the state |¢p~) = %(|01 12)+]1102)) remains disentangled,

while [¢pT) = %(\0102> +|1112)) entangles with the environment:

CRy,p.CR,,
75(10102) + [1112)) F5(105) + [15)) ————

S

50(10102) (105) + [1£)) + [1112)(|08) + €*?[15))]
In this case the amplitude of two-qubits coherence pgp11 = [0102)(1112| becomes
e=—49°/2  For the general case of n-qubits system, coherence p4 p defined as pg, asas...an bibobs...bn =

lajazas...an)(b1babs...by,|, the coherent state of each qubit (i.e. when a; = |1) and
b; = |0) or vice versa) adds factor (a; — b;)0 to the hitherto accumulated rotation in
|+£). The same factor squared, reflects back into the amplitude of coherence upon
tracing out the environment. Hence the aggregate rotation: > . ; (a;—b;)@ contributed
by all n-qubits, leaves p4 p amplitude decaying exponentially in | > 7 (a; — b;)[?6?
same as shown in Ref[42].

A remarkable feature of this model is the neat geometric interpretation of the
correlated noise shown in Figure-5. Each qubit depending upon its [0), |1) state,
rotates the environment state vector: |vg) = |+g) by angle /2, —0/2 about z-axis of
the Bloch sphere respectively. In case of multi-qubits system, each qubit state in the
coherence contributes to the aggregate rotation in |vg). The collective decoherence
of |A)(B]|, is quantified by the projection of |A) rotated |vg) on the |B) rotated |vg).
In an example of a two-qubits state [¢~) we see the rotation caused by one qubit is
canceled by the other, resulting in no decoherence. On contrary, the state |¢*) con-
structively adds the two rotations which ensues quadratically enlarged decoherence.

12



The constructive and destructive interference among the rotations naturally amplifies
decay of certain coherences while leaving others completely unchanged. The large
variation in coherence decay sharply contrasts with the monotonous decline in case
of the independent noise.
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Figure 5: (Color online) Geometric interpretation of correlated decoherence. The
initial environment state |vg) becomes |v4) and [v2) and when rotated by state
qubits coherence |A) and |B) respectively. The overlap between |v#) and |[vE) is
shown as projection length d. Note that |—g) = %(|0> —|1)).

4.2 Spin-Boson Hamiltonian description

The physical interpretation of 6 can obtained by utilizing Hamiltonian based alter-
native description of correlated decoherence. The noise process, governed by the
joint-evolution of the system of qubits and the environment is expressed by the sum
of three Hamiltonians H = Hg + Hg + H;p:. The Hyy,y describes evolution of qubits-
environment coupling, Hg represents independent evolution of environment whose
details will be briefly discussed shortly, while Hg realizes ideal quantum circuit which
maps to syndrome measurement cycle in our study. Now if error propagation is treated
separately from the physical noise model, CNOT gate evolution component, respon-
sible for qubit-qubit interaction, can be safely dropped from Hg. This is because
ideal CNOT gate, between data and ancilla qubits, only accounts for the X-stabilizer
measurement which acts trivially on the joint Hilbert space of the operand qubits.
The resulting simplified Hg has been extensively studied [23, 42, 41, 10] and allows
us to (i) explicitly specify Hamiltonian with relevant physical parameters (ii) develop
closed-form solution expressing decoherence due to qubits collective coupling to the
environment (iii) find probability distribution of errors due to the correlated noise.
In the spin-boson model, a two-level spin-1/2 particle represents a qubit whose
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initial state is an +1 eigenstate of operator o,. For single qubit case Hg = 5o, where
constant e signifies Zeeman’s energy. The environment is a quantized (magnetic) field
consisting of k modes, each modeled as quantum harmonic oscillator associated with
frequency wg. The evolution of environment follows Hg = >, wkb;f(bk where by and

b;r( are creation and annihilation operation respectively. The qubit decoherence arises
from its coupling with the field modes, the parameter gy accounts for its coupling
strength with mode k, then H;p, = ) ) az(gkb}C + g;bi). The complete Hamiltonian
H = Hg + Hg + H;yy will be written as:

H = S0, + Y wibbbr + Y 02 (gbL + gbr)

The environment temperature T describes the magnitude of its thermal fluctuations
which exchange energy with the qubit. The coherence decay contributed by mode k
for time ¢ has a known closed-form expression: exp{—| gk|21_%‘fj’é“ﬂ coth(g%)} [23]. In
the limit of continuum wy, the subscript k is dropped and gy is conveniently expressed
as its spectral density function G(w) of continuous variable w of the form G(w) =
wie w/we [42], where positive valued s and the cut-off frequency w, are device specific
constants. For ohmic environment (s = 1), the amplitude of single qubit coherence
decays as e~ () [23], where time dependent parameter L(t) in (1) is obtained by
integrating the decoherence contribution from all field modes (i.e. w € [0,00]) in
thermal equilibrium state.

/e I —cos(wt w

The underlying physics of decoherence process is driven by the timescale ¢ [42] which
depends on device parameters (7, w.) in (1). The qubit exposed to the environment
for short enough time: ¢ < w !, suffers from negligible decoherence since environment
rarely oscillates at high frequency. However when qubit-environment interaction spans
over very longer time scale: ¢t > T!, the intrinsic thermal oscillation allows environ-
ment to actively exchange spin energy with the qubit causing T type decoherence [23]
(e.g. amplitude damping noise). We assume no change in the population (diagonal
elements of density matrix) thus 7) decay irrelevant. Instead, the increasing gate
speed [30] and rapidly improving qubit shielding techniques [24] shown in the recent
quantum device technologies, naturally motivate us to restrict our model to realis-
tically shorter timescale. Hence we choose the regime w;! < t < T~! of T type
decoherence which diminishes the off-diagonal terms only.

The collective dephazing of the multi-qubits system containing n-qubits also de-
pends upon spatial location d; of I, qubit. If o ; is the Z-stabilizer for the It qubit,
the n-qubits collective dephazing Hamiltonian is reshaped after Ref[42] as follows:

H=3 S e+ Dk wkblbk + 2k o (gre™d b;i + gre~diby,)
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The expression of closed-form solution involves qubits pairwise coupling to the en-
vironment. Let d; and d,, are the corresponding positions of qubit [ and m with
respect to the environment, then using previously defined frequency domain snapshot
of the coupling gi: G(w) = w¥e /¥, Ly in (1) will become also a function of qubits
pairwise-distance dj ,, = |d; — dp,| [32]

Ly(t,dpm) =A fOOO we—w/wclflcfii(z"-”f) Coth(%)wdw

wdy m

Thus if p(0) = Zm,yezg |z)(y| is the initial state of n-qubits system then after
decohering for time ¢ the final state p(t) can be found in (2)

p(t) = 5 3 Ol 2)

TYELY

Cy,y captures the decay of |z)(y| coherence in time and space, and is expressed as
Coy =22 j(zi — y;)|2L(t, dy ). Thus 0 in our model maps to /L(t, dy,) in spin-
boson case [42, 32]. We can alternatively express C, , in more simplification friendly
form:

Cfcvy = Zl,m(wl - yl)(xm - ym)L(ta dl,m)

Note that in case of independent noise, C, does not depend on d and reduces to
> ler—yi|L(t) [42]. At this point we refer back to the gray-scale map of a 13-qubits
surface code density matrix in Figure-1. The map whitens each coherence |z)(y| in
proportion to its amplitude decay and reveals insightful comparison of fidelity loss
governed by correlated noise with that by its independent counterpart. In former
model, higher fluctuations in amplitude decay, indicated by distinguishable black
and white sub-regions, sharply contrasts with nearly homogeneously gray trends of
fidelity in the latter. This example clearly establishes that noise correlations lead to
significantly larger variations in the amplitude of coherences.

4.3 Probability distribution over correlated errors in single opera-
tion

In order to find expression of probability distribution over correlated errors, we sim-
plify the correlation parameter L(t,d;,,) under reasonable assumptions. We set t
in C;, equal to the time taken by the single operation such as state preparation,
CNOT or Measurement (assuming each takes single time-step for execution) in a sin-
gle trial of surface code syndrome measurement shown in the dotted box of Figure-2.
Therefore by assigning code specific constant to ¢, both L(d;,,) and C,, become
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functions of qubits’ pairwise separation. We further assume qubit-environment inter-
action falls in the superdecoherence regime [42] in which all the qubits in the logical
block to couple with the environment with the approximately same strength. Since
coupling strength is position sensitive, for superdecoherence regime to hold for in-
creasing number of qubits, the separation d; ,, between any qubits pair is essentially
upper-bounded by constant distance d. This allows us to holistically adjust mag-
nitude of noise spatial correlation by working with single parameter Ly = L(d). In
Section-6, we analyze a worst-case scenario which tests quantum error correction with
maximal spatial noise correlation occurring in the limit d = 0. To further simplify
(2), we rewrite Cuy = >, (21 — Y1) (@m — Ym) La + D1z (@1 — Y1) (Tm — Ym) La- The
first term in the summation becomes |z @ y|Lg (here |.| denotes the hamming weight),
while second term reduces to (|z| — |y|)?(La — Lo). Therefore Cy, simplifies to the
form in (3).

Cuy = |2 ® y|(Lo — La) + (|z] — [y])*La (3)
We choose the n-qubits state in (2) containing superposition of codewords and non-
codewords in order to evaluate Kalai’s skepticism [26] of fault-tolerant quantum com-
putation; that the presence of non-codewords should fail the error correction. How-
ever, we assume that when the logical qubit is projected into the code basis states
during error correction, the non-codewords translate into bit-flip errors. This enables
us to analyze the performance of dephasing noise averaged over all patterns of bit-flip
errors. The dephasing noise also discretizes into a specific set of k-qubits in phase-
flip (Z) errors, with probability Pry obtained from projective quantum measurement
expression: Pry = Tr(XkXZ,p(t)). Here X}, := 5~ Zx7yezg(_1)k-(x@y)|x><y| represents
X-syndrome measurement operator (explained in Section-5) which identifies a set of
k-qubits in Z-errors. Note that the operator X} also represents density matrix of the
pure superposition state of the n-qubits containing known k-phase flip errors. In this
sense, the projection can also be interpreted as the square of fidelity between p(t) and
X.. Next, since all possible syndrome measurement outcomes are mutually exclusive
and exhaustive, by completeness >, XX }; = [. It is straightforward to verify that
X}, is symmetric by definition: X] = o Zy,mezg<—1)k'(y@x)‘y> (x| which is same as
X}, by swapping x with y. More importantly X, is also idempotent shown as follows:

XX, = 4% Zx’yezg(_l)k.(m@y”x> (| Zx’,y’ezg(_l)k'(m/@y/)‘x/> .

=k T (Lol ) )

x?y7$/7y,€Z£L
, !
=3 ¥ (DW= X (- )y
x,x’,y’EZ;Z x,y’EZ?

By renaming 3’ to y, we obtain X X = XkX,i = X}, as claimed above. Next, we find
Tr(XkX);p(t)) where XkX};p(t) resolves to
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XeXipl) =g X (~)MEEe i)y
e RYIVAS

The trace of the resulting matrix becomes

(X X[p(t) = &= 5 (LR Conlal|a) (yla)
mlvxvyezg

After simplification, we finally obtain Prj = Tr(XkX;ip(t))

1 _
PI‘]€ = 4—n Z (71)k'($@y)6 Cay (4)
RVISVAS

The calculation of Pry using summation over Z§ in (4) incurs computational
intractability due to exponential increase in n, the size of Hilbert space. Alter-
natively, the summation can be decomposed into the n-product terms over GF(2)
for each of n-qubits in equal superposition of |0) and |1) state. Similarly, if the
terms (—l)k'(x@’) and e~%»v can be decomposed into bitwise products, the overall
computational workload involving only n-tensor products can be handled efficiently.
While the factorization of (—1)%®®¥) into bitwise products can be easily attained:
H?Zl(—l)kl'(xl@yl), the product resolution of e~“+v entails algebraic simplification of
e~(z1=1vD*La We note that e~ (#1=1¥D*La i5 a moment generating function obtained
from solving E[e~2#I=1¥D?] where Z ~ N/(0, %) Expanding the function integral

22 .
yields 7:-Ld [ e Tae=2=(zl=lvD gz, Thus (4) becomes:

2

_z . )
Pr, = 4% ffooo e Laq Z (_l)k.(a,‘@y)67|:c€9y|(Ldeo)+2zz|x\721z|y\dz
ERTISYAS

Substituting bitwise n-fold product over Zs for the summation over Z3 gives

2
z
— 1 (% TI;T17I" ki.(x; —|z1®y;|(Lqg—Lo)+2iz|z;|—2iz
Pry = Ff—ooe a [T, ZGZ (-1) 1 (@@y1) o — |z @yl (La—Lo)+2iz|wi | —2izly| g,
xLY1€22

If we define q(k;) = 30 (_1)kz~($l®yl)e—|ﬂfl€9yz|(Ld—L0)+2iZ\fBz\—2iz|yl\, then
T,y €22

q0)= 3 e lm®ulLa—Lo)j+2izlu|=2izlul = 9(1 4 ¢~(Lo—La) cos(22))
T,y €42

Similarly g(1) = 2(1 — e~(Lo~La) cos(22)). By letting j, = (1 — e~ (Lo~La) cos(22))
then 1¢(1) = p. while $¢(0) = 1 — p,. Since there are |k| product terms of p, for
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each of the k-qubits in error and the remaining (1 —p,) product terms for each of the
n — |k| error free qubits, the probability Prj simplifies to (5)

22
Pry, e i plHl(1 = p.)"Mdz (5)

1 o0
VTLq /—oo
The integral of (5) conveniently expresses probability of spatially correlated errors
using the expectation of independent probability of errors acting as a function of a
normal random variable z. Since the complexity of solving the integral scales only
linearly with the number of qubits i.e. n, the expression (5) is crucial to scale our
statistical analysis to higher distance surface code. The Figure-6 plots Pr; against
|k|]: the number of qubits in error for different values of correlation parameter Ly
for distance nine (cd = 9) surface code. The curve for L; = 0 (independent noise)
gradually departs from uniformly exponential decline and shows the flatter tail with
increasing Lgy. The flat ended correlated noise curve assigns significantly higher prob-
ability to the occurrence of many-qubits errors. This is evident from the exponentially
increasing gap between the probability of any |k|-qubits errors for both the correlated
(for Ly = Lp) and the independent noise curves in Figure-7. The widening gap indi-
cates that the probability of |k|-qubits errors decreases sub-exponentially (in |k|) in
spatially correlated noise.

10’ .
EmmEEm Ld: 0
» —+—Ld=L0
10 ¢ s Ld=0.25L0 |
===Ld=0.12L0
0 " == 1.d=0.06L0
he! ”::;?"h
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A -60 "*:"‘"'.h"""--.
10 | v, ., 1
.%. l-,."
‘.
10" | e, ]
10-100 . . .
0 20 40 60 80

Number of qubits in error (|Kkj)

Figure 6: (Color online) The probability of given |k|-qubits errors: Pry plotted against
|k| for various strengths of correlated noise parametrized by Lg. The correlation
strength increases from Ly = 0 for independent noise to Ly = Lo for maximal noise
correlation
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It should be noted that Pry is invariant under unitary operation U on the qubits.
Therefore both the density matrix p(¢) and projection operators Xy, X ,Z and trans-
formed into Up(t)UT, UX,UT and UTX,ZU respectively. The entire product Xlel'p(t)
is transformed as:

UXpX[p(OUT = & ¥ (-)FE e Crajal) (y Ut

' x,yezy

whose trace is

Tr(UXpX[p(OUN) = & Y (~1)kE@)e=Cow 2/ |UTU") (y|UTU )
x/7x7yezg
=& X (—)FEEReCr (o) (y|a')
:Jc’,gc,yGZ;

= Tr(XpX]p(t))

which gives Pry same as in (4). During syndrome measurement cycle the only uni-
tary operation U is the CNOT gate between data and the ancilla qubits. Therefore
its exclusion from the physical noise model leaves probability distribution over er-
rors unchanged. Finally, note that the ideal non-unitary operations, such as state-
preparation and Measurement, do not map to Hamiltonian evolution and thus can be
safely ignored in the physical noise model.

4.4 Per-operation qubit error probability

Next we show that the two physical quantities Ly and Ly can be subsumed under
single quantity called per- operation qubit error probability adequately captures the
noise strength in both the models. We first define this scale for independent noise
and then extend it applicability to the correlated model. In the former model, the
correlation parameter Ly remains naught throughout i.e. Ly = 0, whereas in latter
L4 > 0, while Ly > 0 always. The disappearance of Ly in the independent noise case,
can be interpreted both physically and mathematically. The physical interpretation of
this limiting case Ly = 0 can be explained by (3). There are two components of noise
appearing as exponent Cj,; one component that accounts for the individual qubit
interaction with the distinct environment represented by the co-efficient of Ly and the
other one is the qubits pair-wise (correlated) interaction with the same environment
contained in the co-efficient of L;. Naturally as Ly = 0, the correlated component
disappears, leaving us with decoherence due to independent noise only: Cy, = |z @®
y|Lo.

Mathematically when L; = 0, the probability density function z ~ N(0, %)
shrinks entirely to its mean value i.e. z =0. Then Pr = ;3';“'(1 — ﬁz)n—\k\ |.—0 where
Dzlz=0 = %(1 — e~ 10) defines the probability that k out of n qubits independently
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fail. Notice that p, which was originally a function of random variable z ~ A/ (0, %)
in (5), is now reduced to a deterministic function of L. Thus when L4 = 0, p, can
account for the magnitude of independent noise. When Ly > 0 in case of correlated
noise, p, assumes its general form of a random variable which warrants its statistical
characterization. The expected value of p, calculated w.r.t z, describes mean ampli-
tude decay (4) of coherences in p(t) subject to the correlated noise. Let p, = E,[p.],
then by substituting 5, = 1(1 — cos(2z)) for maximal noise correlation (i.e. when

Lg = Lo > 0), we obtain basic expression of p, as follows:

2

Dy = 2\/71% f_oooo(l —cos(22)) e Lo dz|p—r,

In sub-threshold region the expected noise strength Lg is a small value, usually less
than 0.05 [20]. Hence the bulk of area under z ~ A/(0, £2) curve is concentrated near
z = 0. In this limit, the low order Taylor Series approximation cos(2z) ~ 1 — 222
simplifies the integral and reduces it to the variance of z. In algebraic terms:

2
oL [ 2 Ty gy = Lo
T f_ooz e todz=2|r=1,

After recognizing that %(1 —e lo) ~ % when L is small, we write the final expression
of p, in (6)

1 _
p: = 5(1 —¢€ LO)’L0=Ld (6)

Conclusively, we have found single scale which can weigh noise magnitude in both
models and facilitates fair quantum error correction performance comparison. The
scale p, can be interpreted as per-operation probability of the phase-flip error in the
qubit, independent of the other qubits in the quantum computer. The identification of
a suitable scale plays pivotal role in the faithful evaluation of quantum error correction
under noise correlation. Following subsection summarizes crucial merits of p,.

4.4.1 Crucial merits of per-operation qubit error probability: p,

1. It quantifies the strength of noise in both the independent and correlated noise
models in the sub-threshold region where noise level remains low. In this region,
any change in the noise strength due to either independent (Lg; = 0) or corre-
lated (Lgy = Lo > 0) interaction with the environment, will faithfully reflects
proportional change in p,. Hence, instead of tweaking two variable separately,
changing single variable p, to vary noise strength suffices. This scale defines
the horizontal axis of the threshold region logical failure probability plots and
substantially simplifies our fault-tolerance analysis.
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2. By quantifying L4, it obviates cumbersome task of directly measuring noise
correlation in the physical quantum device. When Ly translates into p, in (6),
correlation magnitude can be feasibly obtained from the experimental knowledge
of the failure rate of the qubit.

3. It also maps to one of the most generic and widely used metric of decoher-
ence: the (in)fidelity. By definition, the fidelity F' between the noisy state

p and pure(noiseless) state |¢) is given by F = /(¢|p|¢). In our case F =
4% waezg e v or F' = /Prg. The Prg depends only on Ly and Lg, which

in turn can be derived from p, using (6).

4. By virtue of its mapping on fidelity, it can be applied to variety of quantum
computing devices. Since fidelity can be measured from wide range of known to-
mography techniques [58, 39], one can obtain p, using off-the-shelf experimental
methods already designed for several quantum device technologies. Therefore
p, can be deployed to evaluate fault-tolerance properties across several candi-
dates of fault-tolerant quantum hardwares subject to correlated noise, without
explicitly measuring the subtle correlation strength!

4.5 Probability distribution over correlated errors in multiple oper-
ations

We conclude this section by expanding our model to incorporate temporal noise corre-
lation among multiple operations on the qubits during error correction. As it stands,
Prj, defined in (5) describes the probability of k out of n qubits-errors during single
operation. In order for Prj to include the probability distribution of time-correlated
errors, it will be helpful to first understand the nature of time-correlated noise using
Figure-4. Each time an operation is performed, the operand qubit ¢ is exposed to
the environment F; the errors due to faulty gate operations are attributed solely to
the qubit-environment interaction. A noisy gate translates into noiseless gate (not
shown) immediately followed by C'R; i gate shown in Figure-4.

Next, we define the length of temporal correlation called environment memory
span as the number of qubit operations time-steps for which qubit-environment joint
wave-function continues to evolve unitarily before its eventual collapse by the Mea-
surement. The Figure-4 depicts N qubit-operations long environment memory span
leads to the same number of qubit-environment interactions. The coherence of qubit
i naturally decays as a function of n. It is straightforward to show that if the qubit is
assumed to be shielded from the bit-flip, it constructively accumulates the N-phase
displacements (i.e. N@) till the Measurement. Under this assumption, we find that
the amplitude of the non-diagonal term of the qubit density matrix decays cos(N®)
(= exp(—%NQOQ) when N6 is small). By substituting N6 for 6 and repeating the
entire algebra from (3) to (5), we derive the probability that k out of n qubits in error

during NN sequential operations denoted by Pr,gN) in (7).
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N 1 TN ik - e

Pry ):(N)/ e " PL(|N)(1—PZ(N)) Mz (7)
wLy -

In (7), L((iN) = N2Lg, pyn) = (1 - e NV?*(Lo~La)cos(2z)).  Along these lines, we

can define quantity: per N-operations qubit error probability p,(ny which is obtained
by substituting N2Lg for Ly in (6) for the case of multiple operations. Therefore,
P-(n) can be interpreted as p, accumulated over N sequential operations on qubit ¢
of Figure-4. This accumulation which is linear (N Lg) in independent noise, becomes
quadratic(N2Lg) due to time-correlated errors. Consequently, the probability of indi-
vidual qubit error rises quadratically in the number of sequential operations suffering
from temporal noise correlation.

The convoluted spatial-temporal noise Pr](cN) in (7) describes probability of k < n
qubits in errors by the end of N-operations. However, it should be cautioned that

PréN) only describes probability distribution of errors, not the spatial or temporal

identity of errors. Omnce dissolved into single parameter LEIN), the time and space
connotation of noise becomes less distinguishable; a given qubit error may have oc-
curred due to spatial, temporal or joint spatial-temporal noise correlation. Therefore,
one cannot easily decompose set of k-errors into non-overlapping sets space and time-
correlated errors. The choice of our environment memory span is dictated by the
structure of the quantum error correction; it is set equal to three operation time-
steps i.e. N = 3 to execute single trial of syndrome extraction terminating in the
measurement of |Ancilla) as shown in Figure-2. Note that the environment memory
span allows single operation on |Data) and three operations on |Ancilla) respectively.

By extending environment induced time dependent decoherence to our initially
spatially correlated noise, the final version of the model (7) can be categorized long-
range non-Markovian in the context of prior work on correlated noise (summarized
in Section-2). Long-range behavior can be attributed to the coupling of all, including
distant codeword qubits, to the same environment during each operation time-step.
It is non-Markovian because it allows errors to correlate across multiple operations
time-steps during syndrome extraction trial. Such error-correction-centric correlated
model has not received adequate attention in the prior studies and features novel
contribution of this work.

It is reminded that for the comparative performance analysis, we employ same
definition of independent noise as that in the prior studies on surface code fault-
tolerance. We define independent noise model as a type of noise which permits no
spatial or temporal noise correlations among errors or fault-paths. This model can be
realized by allocating unique environment for each codeword qubit. The environments
of different qubits are forbidden to interact with each other and are periodically
refreshed after each operation time-step. Consequently, the environment exhibits
only short-term memory and ascribes Markovian behavior to the noise. The fault-
tolerance proofs of surface code [9, 18, 51, 53, 14] are all based on this definition of
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independent noise.
To highlight its sharp contrast with independent noise, we summarize salient at-
tributes of our correlated noise model below:

1. A noisy quantum operation couples operand qubit(s) to the same non-Markovian
environment.

2. The qubit-environment interaction results in the phase-flip errors on the qubits.
Our analysis of fault-tolerance concerns the detection and correction of only
phase-flip error.

3. The CNOT gates in the syndrome measurements propagate phase-flips only
from data to ancilla which is tracked in line-5 of our decoding algorithm (Algorithm-
1). There is no propagation of errors from ancilla to data.

4. The execution of noisy operation U on qubit ¢ is modeled as the application of
noiseless operation Ujgeq; followed by qubit-environment interaction CR; g (Figure-
4). Therefore U = CR; gUigeqr The errors resulting from this interaction
CR; i are separately handled, propagated and tracked in the decoding algo-
rithm (Algorithm-1). Then Usgeq will act trivially on the (joint Hilbert space
of data and ancilla) qubits state without altering the probability distribution of
errors.

5. A faulty Measurement of qubit 7 is modeled as the application of C'R;  followed
by the ideal Measurement.

6. Environment memory span lasts for three operations during single trial of syn-
drome measurement which culminates in the Measurement of ancilla. Since
environment and ancilla qubits are synchronously Measured and refreshed, a
specific set of correlated errors on ancilla qubits (or on data-ancilla qubits) is
unlikely to survive [57, 41] multiple trials of syndrome measurements. Such low
probability correlated errors are ignored due to the ephemeral role of the ancilla
in error-correction and concomitantly short-lived environment assumed in the
noise model.

7. During syndrome measurement cycle, qubits acquire spatial and temporal errors
whose probability mass function is given by (7).

5 Brief Overview of Surface Code Error-Correction

Surface code is hailed one of the most celebrated breed of topological quantum error
correcting codes [9] and is known for high threshold [45, 19, 51] as well as hardware
implementation-friendly geometry [18]. A block of logical qubit connects information
bearing qubits (called data qubits) in a 2-D nearest-neighbor architecture compatible

23



10 e T T r 1
’ -
s ‘\‘\ .
5 107 N {08 £
> Correlated | Vo 3 E
% Noise o 2
= 7 . 4| __ _Independent \\\ E
s =z Noise . st -
- = E o
:f E, : -36 \ ; o
= v S 043 =
2 . <
: N\ £
= 48 \ ]
2 10 lo2 €
= N 8
~ y £
10" . ‘ , o
0 20 40 60 80

Number of erroneous qubits ( k| )

Figure 7: (Color online) [Left vertical axis| Probability mass function of |k|-qubits
errors for maximally correlated (Ly = Lo) and independent (Lg; = 0) noise cases
selected from Figure-6. [Right vertical axis| The fraction f,, ;| of uncorrectable |k|-
qubits errors. The error-bars quantify variance in the data

with the device-level connectivity constraints of several quantum hardware technolo-
gies. Once logical qubit is prepared in desired state, a chronological three-step error
correction proceeds as follows (1) Error-detection measures parity-check operators on
data qubits located in the neighborhood of ancillary qubit which stores syndrome.
(2) Error-decoding maps the obtained set of syndromes to the most likely set of er-
roneous data qubits. (3) Recovery of logical qubit state applies appropriate Pauli
gates to cancel the errors in qubits. In case of incorrect decoding, the application of
the gates produces a chain of undetectable errors connecting opposite boundaries of
the code block, resulting in the logical error. The performance of the surface code
is mainly dictated by the length of uncorrectable chain of data-qubits errors. Higher
performance can be achieved when longer chain of errors are needed to connect the
opposite boundaries. This is accomplished by increasing the distance (the number
of qubits) between the opposite boundaries of the code block by adding more qubits
along both horizontal and vertical axes. This characteristic distance, labeled with cd,
is the known as the code-distance of the surface error correcting code. The increased
code-distance stipulates longer, therefore, less probable chains of errors causing log-
ical failures. For example, if an error independently hits each data-qubit error with
small probability p, the occurrence of logical failure to the lowest order in p becomes
O(p?) [18] where d = “4=L for odd values of cd. Hence the fault-tolerance in sur-
face code can be achieved by exponentially lowering the logical failure probability by
nominally incrementing the code distance [19, 51, 53, 14].
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The precise quantification of the logical failure probability entails exhaustive
counting of all possible combinations of errors which directly or indirectly produce
logical error. Such brute force counting becomes computationally intractable due to
exponentially increasing combinations for the larger code-distance surface codes. Al-
ternatively, a more practical approach can be applied; by sampling from the set of
the most relevant combinations of errors. These are usually short in size (e.g. errors
combinations of size around L;'l) and comprise significant component of the logical
failure probability. The resulting low order approximation of the logical failure proba-
bility suffices for the analysis of the sub-threshold (p < ps,) region of the independent
noise model [19].

We modify this approach in the light of correlated noise; by caring for sampling
from longer combinations of errors. Our scheme samples errors set from the dis-
tribution that matches correlated noise curve in Figure-7 so that many-qubit errors
combination properly enter the logical failure probability computation. Each ran-
domly selected combination (now called set) B of error is tested for the logical error
according to Algorithm-1. The set B is hidden from the decoding procedure and acts
as a yardstick for the correct identification of errors. Then without any knowledge of
B, the syndromes information is decoded into the most likely set of errors M using
minimum weight perfect matching algorithm similar to Ref [19] shown in line 8 (of
Algorithm-1). The two sets are compared and merged together to construct new set
B=(B\BNM)U(M\Mn B) (line 17). The success or failure of error-correction
depend upon the composition of set B for three cases: (i) B = {} indicates cor-
rect decoding of errors, thus no logical failure (ii) B contains chain of errors which
commutes with all X-Stabilizers but does not belong to the linear combinations of
Z-Stabilizer (line 23). This results in the logical error as shown Figure-8. (iii) B
is neither empty nor contains logical error but maps to the benign chain of errors
as shown in Figure-9. The existence of such chain is confirmed by matching errors
to the linear combination of Z-stabilizers and it involves solving a system of linear
equations of the form Az = b over GF(2) (line 19). Here A is the 2n + 1 x n binary
matrix whose non-zero elements of column 4 correspond to the qubits indices of it"
Z-Stabilizer. The 2n+ 1-bits long column vector b encodes indices of erroneous qubits
at its non-zero entries, while n-bits solution vector z will reveal the linear combination
of Z-Stabilizers that constructs the error set B. If solution exists, then B comprises
benign chain of errors which is not counted towards logical error event. Otherwise,
the entire procedure reiterates by finding syndromes for the updated set B (line 5)
until any one of the aforementioned three terminating conditions is satisfied (line 4).

Apart from the data-qubits errors, faulty syndrome extraction can also lead to
logical error. The syndromes are stored and processed by the ancilla-qubits denoted
by X in Figure-8. The syndrome extraction steps, depicted in Figure-8, subject
data-qubits to Stabilizer measurement and culminate in syndrome registering its vote
(error or no-error) in the final state (|0) or |1)) of corresponding ancillary qubit
X. A single trial of syndrome measurement may probabilistically fail due to errors
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Chain of Errors leading to Logical Error
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Figure 8: (Color online) Surface code architecture and error-detection procedure. An
error on data qubit D3 can be correctly detected while the chain of errors on D1, D4,
D7 and D12 result in undetectable logical error
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Figure 9: (Color online) The method of confirming the existence of benign errors by
solving binary linear equations
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in the qubit X during |+) state preparation, CNOT gates or Measurement. The
reliability of syndrome is increased by thrice repeating Stabilizer measurement trial
and obtain majority vote registered by each copy of X. These repetitions reduce the
logical failure probability from ancilla errors, to O(p?) (when per-operation ancilla-
qubit error probability is also p). To lower this logical failure probability sufficiently
below O(pcal%), the entire syndrome extraction procedure (which includes three trials
of Stabilizer measurement) is repeated CdTH times. This prevents ancilla errors from
becoming the performance bottleneck of the error correction.

In contrast to the case of data qubits, the logical failure probability due to ancilla
errors can be calculated all analytically. During each trial of syndrome measurement,
the temporal noise correlation spans three operations on the ancillary qubit, therefore
the failure probability of each such trial can be calculated by letting n =1, N =3
and £ =0 in (7) to obtain Pré3). Then the probability pr of the successful execution

of trial involving single ancillary qubit is: pyr =1 — Pr[()3). The correlation parameter

L&g) is found by substituting p, for p and L&g)(: L((]g)) for Ly in (6) and solving
for LEIB)' Since three such trials comprise single round of syndrome measurement,
their majority vote registers incorrect syndrome when two or more trials fail, the
entire round then fails with probability pg = 3p2T + pST. Each round of syndrome
extraction is executed cd times (Figure-2) and the logical failure is declared if it fails
majority of times, which occurs with probability pp = Z;':i(cd—i-l)/Q pg. By taking into
consideration the spatial correlations among syndromes carrying n-ancilla qubits, we
first solve (6) for Ly when p, = pg. Then using Lg = Lo, the logical failure probability
of entire syndrome extraction process involving n-ancilla qubits is computed by (5)
as 1 — Prg.

The next section compares the logical failure probability trends in the sub-threshold
region of the two noise models for both data and ancilla qubits errors and highlights
the most important contribution of this study.

6 Simulation Results

As discussed earlier, the logical failure probability P, due to data-qubits errors, is
estimated statistically and each statistic which determines the occurrence of logical
failure using Algorithm-1, involves four-steps procedure (i) obtaining probability Pry
of occurrence of specific set k of errors from (5) (ii) applying stabilizer measurements
to map k to the syndrome set Sy (iii) executing minimum-weight perfect matching
algorithm to decode most likely errors from Sy (iv) comparing decoded errors with
actual error set (i.e. k) and establishing the outcome (logical success or failure) of the
error correction. The Py, is then computed by multiplying Pry with the statistically
calculated parameter f, x| € [0,1]: the fraction of all possible combinations of [k
errors ensuing the logical error. Hence for a code distance cd, the (8) expresses Py, as
weighted sum of Pry.
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Algorithm 1: Our Surface Code Error Decoding Algorithm

1

Input: (i) A 2n+ 1 x 2n + 1 surface code grid R which maps data-qubits to
the grid vertices. The 2n + 1 data(qubits) vertices and n ancilla vertices for
phase-flip syndromes are contained in sets D and S respectively (ii) Surface
code (2n 4+ 1 x n) Z-Stabilizer binary matrix A (as shown in Figure-9) (iii)
Surface code X-Stabilizer operators set {X;}7 ; (iv) The set B of
data-qubits errors

2 Output: Logical Error € {True, False}
3 initialization BenignError «— False, Logical Error <— False, 8" <+— {}
4 while = Benign Error &— Logical Error &B # {} do
5 S’ «— Syndromes of B obtained by propagating errors from data to
ancilla qubits
6 Vi jels d?j” +— All pairs shortest path (S’)
7 Construct a complete graph G(S’, E) such that V4,5 € " Ae;j € E,
leij| = ™
8 Smaten, = { (4, j)|i, j — matched vertices in S’} «—
Minimum-weight matching(G)
9 M «+—{}
10 while S, # {} do
11 (i,7) < next pair in Spatch
12 Find shortest path p;; on grid R that connects i and j
13 M’ < ¥ data vertices ¢’ € p;;
14 M +— MuUM
15 Smatch = Smatch\(i7j>
16 end
17 B+— (B\BNM)U(M\MnB)
18 Define b € {0}?"*! indexed by data vertices Vq' € B, b[¢/] = 1
19 if 32 | Az =b then
20 BenignError <— True
21 else
22 B < Operator(b)
23 if [B,X;]=0Vie{l,2,..,n} then
24 ‘ Logical Error <— True
25 end
26 end
27 end
28 end
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P = Z fn,|k|<|Z|>Prk (8)

k| >ed

For p, = 0.05 and cd = 9 an example f, 5 is plotted against |k| on the right vertical
axis of the graph in Figure-7. The curve which gradually rises from zero and eventually
saturates to 0.5 for |k| > 25, clearly indicates that approximately half of many-qubits
errors become logical errors. The small error bars show statistical variance in the
data point of f, ;| and hint at accumulation of statistical error while estimating P,
from (8). Since f,, || is the only statistically calculated component of each product
term, the accumulated error is naturally dictated by the number of statistics and the
confidence interval chosen for f,, ;. The accurate quantification of P, requires that
statistical error due to f,, 5 in each term of (8) is confined to acceptable limits. For
a well-founded estimate, we choose 99% confidence interval whose width is at least
two-orders of magnitude smaller than the value f, /. In our simulations, we noted
that only the terms in the range: % < |k|] < ed meaningfully contribute to Pr. Thus
an overly circumspect choice of first hundred terms in (8), defines for Pr, a 95%

confidence interval whose length is only 2% 1.96 % 1/100(5%2%-)2 = 0.066 (6.6%) of the

2+2.96
Py, value. Hence, we can say with 95% confidence that the error in our estimated Py,

is 6.6%.
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Figure 10: (Color online) The logical failure probability due to independent data-
qubits errors, plotted against per-operation qubit error probability for increasing code-
distances cd
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Figure 12: (Color online) The ratio between correlated and independent noise logical
failure probability due to data-qubits errors. The graph (a) plots the ratio against
code distance for various p, while (b) plots the ratio against p, for selected code-
distances cd
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6.1 Logical failure probability trends in the noise sub-threshold re-
gion

The performance of surface code error correction is quantified by the fraction of
incorrect decodings of error events due to (i) uncorrectable data-qubits errors (ii)
faulty syndromes in the erroneous ancilla qubits. The correction procedure splits any
arbitrary error event into sets of error which can be decoded into space and time sep-
arately [18]. The spatial-decoding, prescribed by the nearest-neighbors parity checks,
determine the data-qubits errors, while temporal-decoding powered by repeated syn-
drome measurement identifies ancilla qubits errors. We leverage this bifurcation to
partition our analysis into the logical failure incurred due to errors in data and ancilla
qubits independently.

6.1.1 Logical failure probability due to data-qubits errors

The Figure-10 plots P against per-operation data qubit error probability for the
selected code-distance 3 < cd < 19. The curves converge at p, ~ Pr, whereat threshold
value: py, =~ 0.05 falls within a factor of 3 of the previously known estimate [20]. 1
the sub-threshold region (i.e. p, < pw), the curves expectedly decay and dlverge
rapidly with the decreasing p, and closely follow the known analytical expression
P = ( ]Z " )Cd2+ ' [20] upto a small pre-factor. Overall, these trends can be closely
compared with recent work on surface code fault-tolerant analysis [51].

In contrast, the correlated noise curves meeting at py, ~ 0.02, decay and di-

verge contrastingly slower as they enter the sub-threshold region in Figure-11. Con-

Corr

sequently, the ratio between correlated and independent Pp, (i.e. %) increases

monotonically, not only with the decreasing p, in Figure-12(b), but also with the
increasing code-distance in Figure-12(a). The considerably higher P, in case of the
correlated noise can be generally explained using Figure-7, that error-correction fails
to adequately curtail the logical errors resulting from the non-trivial probability Pry
of many-qubit errors (i.e. larger |k| values). Since considerable fraction (f,, jx =~ 0.5)
of many-qubits errors remain uncorrectable, the exponentially higher Pry; yields pro-

Corr

portionally enlarged Pr. The increasing —47 ratio can be explained by the expanding
L

gap between correlated and independent curves shown in Figure-13. The increasing
separation between the Figure-13(a) curves representing probability of many-qubits

C’o
errors for the two noise models, indicates that and ratio rises with the decreasing

.. Similarly, a flatter tail logical failure probablhty trend is consistent with the ex-
ponentlally increasing gap between the Pj, curves in Figure-13(b) and confirms the
analytically derived trends of P, for the general CSS codes in Ref [32]. Our analysis
shows that because logical failure probability cannot be efficiently lowered by increas-
ing code distance only, the quantum threshold theorem no longer remains directly
applicable to the correlated noise.
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6.1.2 Logical failure probability due to ancilla-qubits errors

The error correction procedure also fails due to faulty syndrome caused by ancilla
qubits errors. As before, when the P; curves for the two noise models are mutu-
ally contrasted (Figure-14 versus Figure-15), we find that the ancilla curves decline

slowly but diverge rapidly in the presence of correlated noise. As a result, while the
PCor'r

Jma ratio rises exponentially with the code distance (similar to the case of data
L

qubits) in Figure-16(a), it slowly increases and eventually flattens out at higher p, as
shown in Figure-16(b). The flattening behavior can be explained by analyzing ancilla
qubit error probability in each trial of syndrome extraction whose duration is equal
to the environment memory span. During each trial, the three sequential operations
cause ancilla-qubits thrice interact the same environment and induce temporal noise
correlation. According to Figure-4, the temporal noise correlation quadratically de-
grade fidelity of qubit which explains higher probability of error in the ancilla qubit.
Table-1 lists the probability of ancilla error in each of the three trials of syndrome
measurement for different p,. The ratio between the ancilla error probabilities for the
correlated and independent noise remains bounded and approaches constant value,
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Figure 16: (Color online) The ratio between correlated and independent noise logical
failure probability due to ancilla-qubits errors. The graph (a) plots the ratio against
code distance for various p, while (b) plots the ratio against p, for selected code-
distances cd

6.2 Reducing logical failure probability in correlated noise model

The comparison of Figures-11 and Figure-15 clearly reveals that data qubits errors
define the performance bottleneck of quantum error correction. Due to the limited ap-
plicability of threshold theorem in our correlated noise model, the performance cannot
be appreciably recuperated by increasing the code distance unless p, is also curtailed.
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Table 1: The ratio between the correlated and the independent noise logical failure
probability due to ancilla-qubits errors, is listed against per-operation qubit failure
probability (p,). With decreasing p., the increase in the ratio gradually declines and
eventually saturates to a value just above 3. This explains the trends of Figure-16(b)

Probability of Ancilla Error per
Per Operation Syndrome Extraction Trial
An;‘l:,l;u?: bit Indepe'ndent Corre‘lated Corrl:lz?eod: Noise
Probability Noise Noise m

1 2.08x 10! 4.0x10! 4.96 x 10! 1.24
2 1.03 x 10! 2.5x10! 4.37x10! 1.75
3 5.6 x 102 1.5x 101 3.28x 101! 2.19
4 2.82x10? 8x10?2 2.04x10! 2.54
5 1.37 x 102 4x10? 1.11 x 10! 2.77
6 6.68 x 103 2x 10?2 5.7x10? 2.85
7 3.4x103 1x10? 2.98 x 102 2.98
8 1.7x103 5x103 1.51 x 102 3.02

If ngRR and pIZN D denote per- operation qubit error probability for correlated and

IND
independent noise respectively, then we can define factor R := ]% by which cor-
Z

related p, must to be reduced in order to achieve Pr, on par with that achievable in
the independent noise model. In the latter case, P, < 10~ has shown to be suffi-
ciently low to allow the reliable execution of large-scale quantum algorithms [3] (e.g.
1,024 bits integer factorization). Thus, if we wish to obtain the same P, in correlated
model, the factor R provides the desired reduction in ngRR. For P; ~ 107'%, the
Figure-17 plots p§O%f pIND (left vertical axis) R (right vertical axis) for increasing
code distances. The dark black line necessitates R increases linearly, thus, p, should
decrease linearly with the code-distance.

Since the linear increase in the code distance amounts to the quadratic raise in
the number of data-qubits n comprising surface code logical qubit, the curve bends
sub-linearly when R is plotted against n. The Figure-18 plots three prominently
overlapping curves, for each of the P, = 107,1072° and 10725. We find that the
function R = 0.28n%% +0.73 grows slightly faster than the curve for P;, = 10715 but
closely fits to the curves for P;, = 10720 and 1072, Since R increases no faster than

n%? therefore, once the code distance is selected to achieve target P with péN D

the presence of noise correlation stipulates that ngRR = O(ﬁ)pIZN D Thus, per-

operation qubit error probability may be reduced by the factor O(y/n) for correlated
noise model if we wish to accomplish progressively lower logical failure probability.
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7 Discussion

Our O(y/n) result denies the foundational advantage promised by the Quantum
Threshold Theorem [1, 5]; that the constant noise level below certain threshold suf-
fices both fault-tolerant and scalable computation while incurring modest resources
overhead. However, in order to obtain deeper insight into the consequence of this re-
sult, we carefully parse threshold theorem along the following interpretation of fault-
tolerance and scalability. A quantum circuit is said to be fault-tolerantly executed
when logical failure probability reduces to arbitrarily low value with constant noise
level per operation. This is different from scalability which primarily seeks acceptable
scaling of codeword qubits (resource overhead) to achieve progressively lower logical
failure probability. This bifurcation motivated us to distinguish between the logical
failure probability Pr, curves (2-D Figures-10 through 16) plotted with respect to p,
and those graphed against cd.

We used independent noise model as benchmark case which enabled surface error
correcting code to achieve both fault-tolerance and scalability [18]. This was vali-
dated by the Pr, decreasing (i) super exponentially with respect to p, (Figure-10)
and (ii) exponentially decreasing with ¢d (Ind curves in Figure-13(b)). These trends
(consistent with the prior works on surface code fault-tolerance, see Section-6) set
benchmark of fault-tolerance and scalability for the correlated noise model. However,
we noted that Py, declined sub-exponentially with both p, (Figure-11) and c¢d (Corr
curves in Figure-13(b)) in the correlated model. In the latter plot, we noted that Pr,
became nearly flat with cd indicating that resource overhead would not benefit ap-
preciable reduction in Pr, unless p, was also reduced proportionally. This asymptotic
flatness may also be validated analytically [32] using (5) and (8). We note that logical
failure occurs when number of errors (k| in (5)) exceed d = L. Thus Py, can be
expressed as Z&‘:d Jn |k Pri-The Figure-7 shows that f, ;| gradually saturates to 0.5
and that is generally true also for all cd considered in this work. Therefore, by letting
fn, k) = 0.5 and commuting summation inside integral of (5), we obtain

2
~ L I ~|k| < \n—|k
Py~ = [Te e Yh—a () P2 (1= 52)" *dz

In the limit n — oo, the component of summation approaches 0 for p, < d/n, while
it converges to 1 when p, > d/n [32]. After simplification, we find that

22

Pr " Ladz

~ 1
~ 2\/7rLd f~zzd/n €

In the sub-threshold region, the variance L4, of zero-mean normal random variable
z, is small, then p, = 17%8(22) = sin?(z) ~ 22. The integral limits can then be
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transformed into |z| > y/d/n. Hence we obtain following Py, expression:

1 / _Z2 d
e Ladz = erfe(y| —— 9
VLa Jizi> v/ Yoz, o

L~

The (9) shows that Pj, approaches non-trivial constant ~ erfc(4/ #il) when n — 0.

Since increasing surface code size failed to sufficiently attenuate Pr, we proposed
conditional scalability criterion based on lowering correlation strength L, indirectly
by reducing p.. Thus, in order for correlated noise to achieve some low target Pr, which
the benchmark noise achieves with efficient resource scaling, we defined ratio: R as
the factor by which correlated p. should be reduced (compared to the corresponding
p in independent noise) to achieve target Pr for given cd. The dark black line in
Figure-17 described linear relationship between R and cd, while Figure-18 showed
that R increased O(y/n) against the size n (number of qubits in the) codeword for
each progressively smaller value of Pr: (1071%, 10720 and 10~2%). Hence we required
p. scale down O(v/size of codeword) times below the threshold to achieve arbitrarily
low Py,. These results are summarized as follows:

1. Our conditional scalability criterion requires that correlated noise model has
same logical failure probability as that of independent noise model, for given
code distance.

2. For given size n of surface error correcting codeword, the logical failure proba-
bility in case of correlated noise model can match that of the benchmark noise
model for the same code distance, provided that noise level per-operation is also
reduced by the factor O(y/n) in the sub-threshold region. However, this result
on conditional scalability assumes maximal noise correlation strength.

3. Since code distance remains same in both the models, the error-correction in
correlated model does not incur surplus resource overhead compared to the
benchmark noise model.

4. If the decreasing noise level condition is met, then according to the aforemen-
tioned interpretation, we can say that conditional scalability can be achieved
by the correlated noise.

5. On contrary, the condition of decreasing physical noise levels in sub-threshold
region, clearly denies fault-tolerance in case of correlated noise.

These results hint at redirecting ongoing experimental efforts rooted in the premise
that larger and more reliable quantum computers can be built with each of its com-
ponent qubit or gate failing with some fixed probability below certain threshold. This
prevalent belief is founded on the assumption that failure of components bear no mu-
tual correlation i.e. each component fails independently. Recent advancements in the
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characterization of noise in real quantum hardware have established noise correlations
and invalidate independent failure assumption. Given that the noise in realistic quan-
tum hardware may have correlated nature as proposed and evaluated in this work,
experimentalists should not expect to achieve scalability only through the integration
of more components whose failure probability is upper bounded by some constant
accuracy threshold. Instead, they should also strive for increasing noise margin; by
reducing failure probability as far below the accuracy threshold as possible.

8 Conclusion

In this study, we proposed and presented quantum circuit based intuitive snapshot
of a more realistic correlated noise model which decoheres the qubits by coupling
them to the same environment. The model was parametrized by the strength of noise
correlation as well as short-term memory and long-range spatial correlations. We
leveraged prior studies to interpret the physical significance of our model parameters
and highlighted their role in testing the efficacy of the structure of surface code error
correction scheme. We investigated the detrimental effects of noise correlation on the
performance of the error-correction by comparing it with the independent noise case.
We showed that the likelihood of error correction failure was significantly higher and
evidently deviated from the trends anticipated by the quantum threshold theorem
primarily proposed for the independent noise model. The overall statistical error in
the data was confined to acceptable limits, validating our simulation results within
95% confidence interval.

The insightful performance comparison was facilitated by efficient computation
of error probability distribution and single scale for measuring the strength of both
types of noise. The scale quantified the qubit error probability resulting from each
gate operation and became a crucial scalable design constraint of the fault-tolerant
quantum computation. We concluded our analysis by showing that increasing code-
distance did not yield desired level of logical failure probability unless per-operation
qubit error probability was also concurrently reduced.
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