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A B S T R A C T 

One of the most promising probes to complement current standard cosmological surv e ys is the H I intensity map, i.e. the 
distribution of temperature fluctuations in neutral hydrogen. In this paper we present calculations of the two-point function 

between HI (at redshift z < 1) and lensing convergence ( κ). We also construct HI intensity maps from N -body simulations, and 

measure two-point functions between HI and lensing convergence. HI intensity mapping requires stringent removal of bright 
foregrounds, including emission from our Galaxy. The removal of large-scale radial modes during this HI foreground removal 
will reduce the HI-lensing cross-power spectrum signal, as radial modes are integrated to find the convergence; here we wish 

to characterize this reduction in signal. We find that after a simple model of foreground removal, the cross-correlation signal is 
reduced by ∼50–70 per cent; we present the angular and redshift dependence of the effect, which is a weak function of these 
variables. We then calculate S/N of κHI detection, including cases with cut sky observations, and noise from radio and lensing 

measurements. We present Fisher forecasts based on the resulting two-point functions; these forecasts show that by measuring 

κ�T HI correlation functions in a sufficient number of redshift bins, constraints on cosmology and HI bias will be possible. 

Key words: gravitational lensing: weak – large-scale structure of Universe – radio lines: general. 
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 I N T RO D U C T I O N  

he clustering of matter in the Universe provides an important insight
nto the origins and evolution of the cosmic structure. Inflation pre-
icts that early structure formation generates a near-Gaussian random
eld in o v erdensity; evolution due to gravity causes late-time large-
cale structures (LSSs) to exhibit non-Gaussian features. Two-point
tatistics of the density field at different redshifts capture information
bout the evolution of structures, and correlation functions between
ifferent pairs of cosmological probes can precisely constrain cosmo-
ogical parameters (Abbott et al. 2018 ; Upham, Whittaker & Brown
019 ; Fang et al. 2022 ; Pandey et al. 2022 ; Tr ̈oster et al. 2022 ).
wo-dimensional surv e ys of the cosmic microwave background
CMB) have been ef fecti vely carried out through the last few decades
Hinshaw et al. 2013 ; Planck Collaboration I 2020 ). The complement
o this is deep sky observations of the three-dimensional galaxy and
ark matter fields. While conventional optical and infrared surveys
ave high angular resolution, long integration times are needed
or these to obtain precise redshifts via spectroscopy. In contrast,
hotometric surv e ys pro vide faster redshift capture but less radial
esolution (Fernandez-Soto et al. 2001 ). 

To complement the low radial resolution of optical photometric
urv e ys, alternativ e techniques with higher radial resolution are
esirable; radio 21cm intensity mapping is a rapidly develop-
ng candidate for this purpose. Unlike most optical surv e ys, this
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echnique does not measure the brightness of individual objects,
ut focuses on the larger scale fluctuations in intensity of the
1cm radio signal from neutral hydrogen (HI). The temperature
uctuations can be used as a tracer for the underlying cosmic
ensity field. This intensity mapping is a complementary technique
o a photometric surv e y, with e xcellent redshift resolution but
ower angular resolution (Bull et al. 2015 ). Hence, combining HI
nd optical surv e ys is potentially valuable, as the two techniques
ompensate for each other’s limitations (Cunnington et al. 2019b ;
quare Kilometre Array Cosmology Science Working Group et al.
020 ). 
Recently, HI intensity mapping techniques have been actively

eveloped (Mao et al. 2008 ; Harker et al. 2010 ; Santos et al. 2010 ;
olz et al. 2016 ; The CHIME Collaboration 2022 ; Cunnington

t al. 2023a ). The Canadian Hydrogen Intensity Mapping Experiment
CHIME) (CHIME Collaboration 2023 ) has provided a detection of
I via cross-correlations with three probes of LSS, namely luminous

ed galaxies (LRGs), emission-line galaxies (ELG), and quasars
QSO) from the eBOSS clustering catalogues at high significant
evels, 7 . 1 σ (LRG), 5 . 7 σ (ELG), and 11 . 1 σ (QSO). Cunnington et al.
 2023a ) have detected the correlated clustering between MeerKAT
easurements of HI and galaxies from the WiggleZ Dark Energy
urv e y at 7 . 7 σ significance. Intensity mapping is therefore on its way

o becoming an independent observational probe, providing useful
nformation from low to high redshifts, via future surv e ys with radio
elescopes such as MeerKAT (Pourtsidou 2017 ; Pourtsidou, Bacon
 Crittenden 2017 ; Spinelli et al. 2022 ) and the Square Kilometre
rray, SKA (Santos et al. 2015 ). 
© The Author(s) 2024. 
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The major challenge for the intensity mapping technique is that 
he foreground signals are much stronger than the cosmic HI bright-
ess temperature, especially due to the galactic plane synchrotron 
adiation (Switzer et al. 2013 ; Spinelli, Bernardi & Santos 2018 ; Su
t al. 2018 ). Hence several studies of two-point functions between 
I and optical ( � HI δg ) have focused on the impact of foreground

emoval (Chapman et al. 2012 ; Cunnington et al. 2019b , 2020 ;
 admanabhan, Refre gier & Amara 2020 ; Spinelli et al. 2022 ). The
tudy by Cunnington et al. ( 2019b ) shows that the foreground
emov al af fects two-point function characteristics, especially when 
he redshift resolution is broad, as is the case in optical photometric
urv e ys. 

There are also numerous optical surv e ys measuring gravitational 
ensing shear ( γ ) which distorts the shape of galaxy images; this
s sensitive to density fluctuations of all the matter present along 
 line of sight, whether baryonic or dark matter. It is therefore of
nterest to consider the viability of the cross-correlation γ − δHI , 
hich will be able to be studied using a combination of lensing

nd IM surv e ys (Hu & Jain 2004 ; Abbott et al. 2018 ; Baxter et al.
019 ; The CHIME Collaboration et al. 2022 ; CHIME Collaboration 
023 ; Cunnington et al. 2023a ). The density projection along the
nperturbed light ray trajectory, also known as ‘lensing conver- 
ence’ κ , can be considered instead of γ as both share the same
tatistical properties. The two-point functions between the pairs 
f κ and HI could impro v e cosmological constraints and break 
egeneracies such as that between HI bias ( b HI ) and clustering
mplitude. 

Ho we v er, remo ving the HI fore ground potentially affects these
wo-point statistics, as the foreground remov al ef fecti vely subtracts
arge-scale radial modes to which lensing is sensitive. In this paper 
e will calculate the cross-correlation function between convergence 

nd 21cm intensity mapping, and will explore whether the foreground 
ubtraction significantly hampers the cross-correlation measurement. 
e also explore whether the foreground removal impacts the viability 

f cosmological constraints from HI–HI and κ–HI correlations. 
To achieve this, we will present theoretical and simulation ap- 

roaches for calculating the κ–HI signal. We will then consider 
he effect of fore ground remo val on the signal, showing that the
mpact is significant (approximately a factor of 2 in signal reduction) 
ut not lethal. We will then use the Fisher information matrix to
ake cosmological parameter forecasts for ideal and realistic surv e ys 

including cut sky and the inclusion of telescope-specific noise), 
eploying the cross-correlation between convergence and intensity 
apping, al w ays including the effect of foreground removal. We dis-

uss lensing convergence and HI simulation catalogues in Section 2 , 
ncluding modelling of the two-point functions. We describe the HI 
ore ground remo v al and its ef fect on κ–HI two-point functions in
ection 3 . We present our Fisher forecasts for surv e ys in Section 4 ,
ffects of instrumental noise in Section 5 , and present our conclusions
n Section 6 . 

 κ- H I  TWO-POINT  STATISTICS:  T H E O RY  

N D  SIM U LATIONS  

n this section we discuss the rele v ant two-point statistics. We
hall start with theoretical calculations of two-point functions of 
ensing convergence ( κ) and neutral hydrogen intensity maps (HI) 
n Section 2.1 . We will then discuss the generation of κ catalogues
nd HI modelling from simulations of the matter o v erdensity δ.
he comparison between theoretical calculations and simulations is 
hown in Section 2.2 . The simulated HI maps will be used in the next
ection 3 where the foreground removal will be discussed. 
.1 Modelling the two-point functions 

n this subsection, we describe the modelling of the two-point 
unctions. We begin by considering how to calculate the observable 
uantities, namely weak lensing convergence κ and HI temperature 
uctuations �T HI . We will then turn to the angular cross-power
pectra. We denote κκ as the power spectra between κ fields, 
I i HI j as the cross-power spectra between HI fields, and κHI as

he cross-power between κ and HI. The dummy indices i and 
 refer to the ith and j th redshift bins. We will calculate the
ensing convergence in an arbitrary direction on the sky ˆ n using 
he Born approximation, projecting the matter o v erdensity δ along 
n unperturbed ray direction. This can be computed by (Bartelmann 
 Schneider 2001 ) 

( χs , ̂  n ) = 

3 	m 

H 

2 
0 

2 c 2 

∫ χs 

0 
d χ ′ χ

′ ( χ − χ ) 

χ

δ( ̂  n , χ ′ ) 
a( χ ′ ) 

, (1) 

here χ is comoving distance, 	m 

is the matter density parameter 
t the present epoch, H 0 is the Hubble parameter today, and the
ubscript s refers to the source plane. For lensing of distributed
ources in redshift bins i, the integrand is modified by including a
ource distribution, so that the integration now becomes 

i ( ̂  n ) = 

∫ ∞ 

0 
d χ ′ q i κ ( χ ′ ) δ( ̂  n , χ ′ ) , (2) 

here the lensing weight is given by 

 

i 
κ ( χ ) = 

3 	m 

H 

2 
0 

2 c 2 

∫ χs 

0 

δ( ̂  n , χ ′ ) 
a( χ ′ ) 

∫ ∞ 

χ

d χ ′ χ − χ

χ

n i s ( z( χ ′ )) d z 
d χ ′ 

n̄ i s 
, (3) 

here n i s ( z) is the lensing source number density, and ̄n i s is its average
n the ith redshift bin. 

HI will be a biased tracer of matter o v erdensity, so we write
T HI ( ̂  n , z) = T̄ HI ( z) b HI ( z) δ( ̂  n , z), where b HI ( z) is the HI bias at a

iven redshift z and T̄ HI ( z) is the average temperature. The projected
emperature fluctuation at the ith redshift bin is then 

T i HI ( ̂  n ) = 

∫ χi 

0 
d χ ′ q i HI ( χ

′ ) δ( ̂  n , χ ′ ) , (4) 

here 

 

i 
HI ( χ ) = T̄ HI ( z( χ )) b i HI ( χ ) 

n i HI ( z( χ )) dz 
dχ

n̄ i HI 

, (5) 

here n i HI ( z) is the HI source number density, and n̄ i HI is its average
n the ith redshift bin. 

Battye et al. ( 2013 ) show that for a given redshift z , T̄ HI ( z ) can be
stimated by 

¯
 HI ( z) = 44 μK 

(
	HI ( z) h 

2 . 45 × 10 −4 

)
(1 + z) 2 

E( z) 
, (6) 

here E( z) = H ( z) /H 0 is the dimensionless Hubble function at
edshift z. The HI density parameter could be approximated to be

HI h = 2 . 45 × 10 −4 (Battye et al. 2013 ). Ho we ver, throughout this
esearch we shall follow the fitting formula for the SKA-MID I by
quare Kilometre Array Cosmology Science Working Group et al. 
 2020 ) 

HI ( z) = 0 . 00048 + 0 . 00039 z − 0 . 000065 z 2 . (7) 

onstraining the HI bias b HI ( z) will be discussed later in Section 4 . 
Using the Limber approximation, the angular power spectra 
 

XY ( 
 ) are given by 

 

XY ( 
 ) = 

∫ 

d χ
q X ( χ ) q Y ( χ ) 

χ2 
P δ

(

 + 1 / 2 

χ
, z( χ ) 

)
, (8) 
MNRAS 532, 996–1009 (2024) 
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M

Figure 1. Power spectra C 
 for HI and cross-power between HI and 
convergence, for radial HI width σχ = 50 and 150 h −1 Mpc. The effect of the 
width is less important for the cross-correlation. Different σχ corresponds to 
different frequency bandwidths, �ν of the radio data. 
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Table 1. The central redshifts for intensity and lensing conver- 
gence maps in our multiredshift bin analysis. For κ�T HI , we 
require that z HI < 0 . 7 z κ . 

z HI z κ

0.02 0.44 
0.08 0.78 
0.13 1.77 
0.18 
0.24 
0.29 
0.35 
0.41 
0.47 
0.54 
0.60 
0.68 
0.75 
0.83 
0.91 
0.99 

T  

N  

W  

a  

D  

t  

H  

r  

o  

s
 

l  

f  

i  

a  

a  

e  

C  

t
 

e  

t  

w
 

I  

c  

o

δ

w
a

b

S  

b  

1 https:// www.euclid-ec.org/ 
2 https:// www.desi.lbl.gov/ 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/532/1/996/7697164 by EM
BL user on 21 July 2024
here P δ

(

 + 1 / 2 

χ
, z( χ ) 

)
is the matter power spectrum (LoVerde &

fshordi 2008 ). We compute the non-linear power spectrum using
he Boltzmann code CAMB (Lewis & Bridle 2002 ) with the Halofit
xtension to non-linear scales (Takahashi et al. 2012 ). 

Since the ray-tracing simulations by Takahashi et al. ( 2017 ) which
e use below adopt a comoving bin size �χ = 150 h 

−1 Mpc (see
ection 2.2 ), we choose a radial selection function for n i HI ( z( χ )) / ̄n i HI 

s a normal distribution around a central comoving position with 3 σχ

 150 h 

−1 Mpc. This σχ corresponds to the frequency bandwidth
 �ν) selected. In practice, the frequency range and bandwidth will
epend on the particular radio telescope being used; for example,
INGO (Baryon Acoustic Oscillations in Neutral Gas Observations)
as operational frequency from 960 to 1260 MHz (Battye et al.
013 ; Wuensche & the BINGO Collaboration 2019 ) and MeerKAT’s
requency bandwidth lies in the ranges 900–1185 and 580–1000 MHz
or L band and UHF band, respectively (Wang et al. 2021 ; Cunnington
t al. 2023a ). 

We show examples for the first time of calculations of the
utopower and cross-power for HI and convergence in Fig. 1 using
quation ( 8 ). As expected, the autosignal depends on the radial HI
idth σχ , while the cross-power is insensitive to this. 

.2 Lensing conv er gence and HI intensity maps 

he full-sky gravitational lensing mock catalogues by Takahashi
t al. ( 2017 ) have been used throughout this work. They are based on
 multiple-lens ray-tracing approach through N -body cosmological
imulations. The data sets include weak lensing maps (convergence,
hear, and rotation data) up to redshift 5.3, and halo catalogues.
he catalogues provide 108 realizations of N -body simulations,
5 of which are used in this research (due to storage limitations).
he N -body simulations were produced with periodic boundary
onditions following dark matter gravitational evolution without
aryonic processes. 14 simulation boxes of side length L = 450,
00, 1350,..., 6300 h 

−1 Mpc are nested to represent a region of the
niverse in which lensing occurs; each box contains 2048 3 particles.
he κ fields are obtained by tracing the light ray path through planes
ith separation 150 h 

−1 Mpc. By calculating the Jacobian matrix A
long the light path, the lensing convergence κ , shear lensing γ1 , 2 

nd rotation angle ω can be obtained, via 

 = 

[
1 − κ − γ1 − γ2 − ω 

−γ2 + ω1 − κ + γ1 

]
. (9) 
NRAS 532, 996–1009 (2024) 
he convergence maps were created in the HEALPIX scheme with
SIDE of 4096 (G ́orski et al. 2005 ), which contain 200 me gapix els.
hile this resolution is appropriate to study non-linear structure

nd matches forthcoming galaxy surv e ys such as EUCLID 

1 and
ESI 2 , the cross-correlation between the lensing convergence and

he HI intensity map is limited by the lower angular resolution of
I intensity maps expected with real radio telescopes. Therefore the

esolution is reduced to NSIDE of 512; this is not only appropriate for
ur two-point function measurements but also decreases the storage
pace requirement and computational time. 

We will first consider a convergence map at a specific optical
ensing catalogue source redshift, which we choose as z ≈ 0.78,
or which the lensing will significantly occur at the redshift of an
ntensity map at redshift � 0 . 3. This particular choice of redshift
llows us to compare our results to current and forthcoming optical
nd radial surv e ys (Santos et al. 2015 ; Pourtsidou et al. 2017 ; Baxter
t al. 2019 ; Euclid Collaboration 2020 ; Square Kilometre Array
osmology Science Working Group et al. 2020 ). We will then extend

o multiple lensing planes (see Table 1 ). 
We turn now to generating our IM maps. Crucially, we will

mulate removal of the IM foreground by removing the radial
emperature fluctuations on large scales. The fore ground remo val
ill be discussed in detail in Section 3 . 
First we need to make the pre-fore ground-remo val IM maps.

nstead of calculating the individual HI masses M HI from halo
atalogues, we assume that HI is a biased tracer of the total matter
 v erdensity field δ( θ, z)(see equations ( 4 ) and ( 5 )), 

HI ( ̂  n , z) ≡ T HI ( ̂  n , z) − T̄ HI ( z) 

T̄ HI ( z) 
= b HI ( z ) δ( ̂  n , z ) , (10) 

here b HI is a HI bias. For instance the parametric form for b HI 

dopted by Cunnington et al. ( 2019b ) is 

 HI ( z) = 0 . 67 + 0 . 18 z + 0 . 05 z 2 . (11) 

ince the neutral hydrogen signal is measured as the surface
rightness temperature, we shall refer to the HI intensity map as

https://www.euclid-ec.org/
https://www.desi.lbl.gov/


κHI cross-correlation 999 

t

�

W  

T  

s
f

m  

c

�

w  

fi  

2  

l  

H
a

C

w  

z

m
a  

c
2

a
a  

l  

m  

b
t
C  

b  

t  

F

w  

r  

m
r  

(

3
E

T
f
c  

w  

S  

m
r
s
r  

T  

i  

s

Figure 2. Top: the uncleaned intensity map, �T 
orig 

HI , at z = 0 . 3 from an 
example realization. The fluctuations were measured assuming b HI ( z) (see 
equations ( 12 ) and ( 17 )). Middle: the fore ground-remo v ed intensity map, 
�T clean 

HI , at the same redshift. The foregrounds were remo v ed by eliminating 
radial long wavelength modes up to redshift z max = 1. The NSIDEs of the 
fluctuation maps is reduced from 4096 to 512 to match the resolution of 
forthcoming radio surv e ys. Bottom: residual map of cleaned and uncleaned 
maps. Each of these detail maps has area 5 × 5 square degrees (a small patch 
of the entire sky maps). 
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he temperature fluctuation �T HI : 

T HI ( ̂  n , z) = T HI ( ̂  n , z) − T̄ HI ( z) = T̄ HI ( z) b HI ( z) δ( ̂  n , z) . (12) 

e apply this equation to the o v erdensity map obtained from
akahashi et al. ( 2017 ) catalogues to create HI intensity maps. Fig. 2
hows the uncleaned and cleaned intensity maps from one realization 
or the zoom-in patch with area 5 × 5 square degrees. 

As we are interested in the two-dimensional projection of cos- 
ological fields on the sky, together with their power spectra, it is

onvenient to describe these fields � ( ̂  n , z) in spherical harmonics: 

 ( ̂  n , z) = 

∞ ∑ 


 = 0 

m = 
 ∑ 

m =−
 

a 
m 

( z) Y 

m 


 ( ̂  n ) , (13) 

here Y 

m 


 ( ̂  n ) and a 
m 

( z) are spherical harmonics and their coef-
cients, respectiv ely (Heav ens 2003 ; Castro, Heav ens & Kitching
005 ; Pratten et al. 2016 ). � ( ̂  n , z) represents an arbitrary cosmo-
ogical field; in this work it can be either lensing convergence or
I temperature fluctuations. The angular power spectrum is then an 

verage of a 
m 

over m modes: 

 

XY ( 
 ) = 〈 a X 
m 

( z 1 ) a 
Y∗

m 

( z 2 ) 〉 , (14) 

here X and Y stand for the cosmological fields at given redshifts
 1 and z 2 , respectively. 

The cross-power spectrum for HI and lensing κ can be easily 
easured via HEALPIX’s anafast routine especially if the data 

re for the full sky [ho we ver, if the data have missing regions or a
ut sky, pseudo- C 
 methods are required (Brown, Castro & Taylor 
005 ; Upham et al. 2019 )]. 
Using this routine, we obtain cross-power measurements for the HI 

nd κ fields. We measure the cross-power spectra of 35 realizations 
nd e v aluate their mean; we sho w the results in Fig. 3 . Here the
ensing convergence is measured at the central redshift 0.78 and HI is
easured at the central redshift 0.3. Fig. 3 also displays a comparison

etween theoretical two-point statistics and the measurements from 

he mock catalogues. We then measure the covariance matrices 
OV ( C 

XY ) of two-point statistics from 35 realizations. The error
ars are the square root of the diagonal elements of COV ( C 

XY ) of
he estimators. The correlation matrix for COV ( C 

XY ) are shown in
ig. 6 . 
We see that the measurements from simulations agree very well 

ith our theory curves on this plot, which indicates that our theo-
etical calculation and selection function n i HI ( z( χ )) / ̄n i HI successfully
atch the simulations. Due to the lens shell approximation of the 

ay-tracing code, the measured C 
 is slightly affected at very high 

see red line on Fig. 3 ). 

 H I  F O R E G RO U N D  REMOVA L  A N D  ITS  

FFECT  O N  κH I  TWO-POINT  F U N C T I O N S  

he HI signal is small compared to its foregrounds such as free–
ree thermal emission, extragalactic radio sources, and Galactic syn- 
hrotron. F or e xample, the synchrotron ( T sync ) emission temperature,
hich can be modelled by T sysnc ∝ (1 + z) 2 . 7 [K] (Platania et al. 1998 ;
moot & Debono 2017 ), is approximately three to four orders of
agnitude larger than T HI at low redshift. Thus, 21cm foreground 

emoval is a major challenge for HI cosmology. Several studies 
uggest that the foreground spectrum appears to be smooth in the 
adial direction (Shaw et al. 2014 ; Cunnington et al. 2019a , b ).
his is equi v alent to being present in the long radial wavelengths

n Fourier space. We therefore remove such modes in the line-of-
ight background temperature fluctuations �T LoS 

HI ( ̂  n ). 
MNRAS 532, 996–1009 (2024) 
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Figure 3. Comparison between theoretical C 
 (see equation ( 8 )) and mea- 
sured C 
 from our simulations. Here the lensing convergence is measured at 
central redshift 0.78 and HI is measured at central redshift 0.3. 

Figure 4. The ratio between cleaned and uncleaned κ�T HI power spectra. 
Two maximum redshifts ( z max ) for foreground removal are considered; 
z max = 1 corresponds to current and imminent radio dishes, while z max = 3 
represents a future SKA surv e y. 

Figure 5. The average ratio A clean over 
 > 10 modes, as a function of 
redshift of HI slice used in the cross-correlation. 
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Since the calculation of lensing involves integration along the
ight path (equation ( 3 )), which will have a contribution from long-
avelength radial modes, the HI foreground removal is a concern for

he existence of the κ–HI cross-correlation (i.e. we have just removed
uch modes from the HI signal). In this section we therefore seek
o ascertain the degree to which the κ–HI cross-correlation survives
ore ground remo val. 

Here we follow the method for foreground removal emulation by
unnington et al. ( 2019b ). The cleaned intensity map �T clean 

HI can be
pproximated as 

T clean 
HI ( ̂  n , z) = �T 

orig 
HI ( ̂  n , z) − �T LoS 

HI ( ̂  n ) , (15) 

here �T 
orig 

HI ( ̂  n , z) is the uncleaned signal in direction ˆ n at redshift
. �T LoS 

HI ( ̂  n ) is defined by 

T LoS 
HI ( ̂  n ) = 

1 

N z 

∑ 

i 

T̄ HI ( z i ) b HI ( z i ) δ( ̂  n , z i ) , (16) 

o that �T LoS 
HI ( ̂  n ) is the mean surface brightness temperature fluctua-

ion along the entire line of sight. This is an initial very approximate
odel of principal component analysis foreground removal, as most

ominant components are included in the line-of-sight expectation
emperature fluctuations �T LoS 

HI ( ̂  n ). It is worth mentioning that this
lind foreground removal technique assumes the smoothness of the
oreground. Ho we ver, this smoothness can be hampered by non-
mooth features of the beam, e.g. beamwidth of the radio dish,
nd some oscillating features in all bands of MeerKAT. A simple
 /f dependence of the beam could generate artificial HI signals.
his leads to the conclusion in Spinelli et al. ( 2022 ) that it is

undamental to develop accurate beam deconvolution algorithms and
est data post-processing steps carefully before cleaning. This topic
f beam deconvolution is beyond the scope of our research; here we
hall assume that the 1 /f behaviour is sufficiently small. For more
ophisticated foreground cleaning methods we encourage the reader
o explore e.g. Cunnington et al. ( 2023b ). 

In this work we adopt the same bias model as Cunnington et al.
 2019a ): 

 HI ( z) = α( b 0 + b 1 z + b 2 z 
2 ) , (17) 

here α, b 0 , b 1 , and b 2 are set to 1, 0.67, 0.18, and 0.05, respectively.
unnington et al. ( 2019a ) obtained this parameter set by investi-
ating HI as a biased tracer of the LSS via HI intensity map and
ptical galaxy number density cross-correlations (see eq. 39 from
unnington et al. 2019a ). We use this as a fiducial model since

he HI redshift range in our work is similar to Cunnington et al.
 2019a , b ). Note that in this model, we solely account for the redshift
volution of HI bias and assume any transverse scale dependence of
he bias is negligible. Martin et al. ( 2012 ) show that this is a good
pproximation for scales > 10 h 

−1 Mpc, which are our main interest.
We measure �T LOS 

HI with two choices of maximum redshift, z max 

 1 and 3. z max = 3 corresponds to futuristic HI-galaxy surv e ys
Square Kilometre Array Cosmology Science Working Group et al.
020 ). On the other hand z max = 1 is an approximate limit for
I maps with SKA1-MID and MeerKAT (Square Kilometre Array
osmology Science Working Group et al. 2020 ; Cunnington et al.
023a ). 
We use these intensity maps with remo v ed fore ground to calculate

he autopower spectra of the intensity map ( �T HI �T HI ), and the
ross-power spectra between HI and κ ( κ�T HI ). We compare the
ignal of remo v ed and unremo v ed κ�T HI , resulting in Fig. 4 and
ig. 5 . From Fig. 4 , we note that foreground removal strongly affects

he signal on large scales. Ho we ver we find that on smaller scales,
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Figure 6. The correlation matrices of C 

XY 

 measured from 35 realizations for the cleaned HI signal at central redshift z = 0 . 3 and κ signal at z = 0 . 78. Left: 

κκ , middle: �T HI �T HI , and right: κ�T HI . 
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t 
 > 10, the fore ground remo val does not erase the κ�T HI power
pectrum; the signal is scaled down by a factor ( A clean ) which is
lose to constant o v er a range of 
 modes from 10 to 1000. Hence,
n Section 4 , when cosmological constraints following foreground 
emoval are considered, the estimation of cosmological parameters 
s based on the signal where 
 > 10. We describe the mean signal
rop A clean by 

 clean ( z HI , z κ , z max ) ≡
〈

κ�T uncleaned 
HI 

κ�T cleaned 
HI 

〉
10 <
< 1500 

. (18) 

rom Fig. 4 , we see that the higher the maximum redshift of the
urv e y in which we remo v e the LOS signal, the less is the effect
n the cleaned cross-correlation signal, as more radial modes are 
reserved in the removal process. Figs 4 and 5 further indicate that
he signal in the κHI two-point correlations drops by approximately 
he same factor A clean across a wide redshift range, if we remo v e
he background noise up to a particular redshift z max , when cross-
orrelating to the κ field at a fixed redshift. Fig. 5 also implies
hat A clean ( z HI , z κ , z max1 ) < A clean ( z HI , z κ , z max2 ) if the maximum
edshifts z max1 > z max2 . 

 FISHER  F ORECAST  

n the previous sections, we have presented the theoretical two-point 
tatistics for the HI-lensing cross-correlation, and have examined 
he impact of HI foreground removal on the cross-power spectrum. 
he results indicate that foreground removal reduces the two-point 
tatistics by a modest factor. 

Here we begin the exploration of κ–HI correlations as a tool 
or cosmological constraints. In particular we will make a Fisher 
nformation matrix forecast of this correlation in the case of low 

nstrument noise (but including our foreground subtraction model); 
his will assess the best-case capacity of this probe to constrain 
osmology, when one is dominated by LSS fluctuations in the HI 
nd lensing fields. We will then examine more realistic cases with 
ut sky and the inclusion of instrumental noise. 

.1 The Fisher matrix 

he Fisher information matrix is a useful tool to estimate the expected
ncertainty in cosmological parameters for forthcoming experiments 
Tegmark, Taylor & Heavens 1997 ; Heavens 2003 ). Assuming that 
he model parameters θi are distributed by a multi v ariate Gaussian 
ikelihood L , the Fisher matrix can be calculated as 

F ij ≡
〈

∂ 2 L 

∂ θi ∂ θj 

〉
, (19) 
here L = − ln L . The Fisher matrix can be used to obtain the mini-
um uncertainty ( σi ) in parameter estimation due to the Cram ́er–Rao

nequality (Kamionkowski, Smith & Heavens 2011 ; Mendez et al. 
014 ), 

i � 

√ 

F 

−1 
ii , (20) 

hich is equi v alent to a 68 per cent confidence lev el. F or a data
et where the uncertainties are Gaussian, the Fisher matrix can be
alculated by (Tegmark et al. 1997 ) 

F ij = 

1 

2 
Tr [ A i A j + C 

−1 M ij ] , (21) 

here C denotes the covariance matrix of the data, A i ≡ C 

−1 C ,i , the 
eri v ati ve data matrix M ij ≡ μ,i μ

T 
,j + μ,j μ

T 
,i , and μ is an expecta-

ion value of the data vector x . The comma symbol means the partial
eri v ati ve operator with respect to the parameter, μ,i ≡ ∂ μ/ ∂ θi . Note
hat all deri v ati ves are performed at the maximum likelihood point. 

As we expect only small changes in the covariance matrix 
OV ( C 

XY ) under a modest change in cosmological parameters (see
ections 2 and 3 ), the first term on the right-hand side in equation
 21 ) will be negligible. Then the Fisher matrix can be written 

F ij = 

∑ 

XY 

∂ C 

XY 

∂ θi 

T 

COV ( C 

XY ) −1 ∂ C 

XY 

∂ θj 

. (22) 

e calculate the cross-power spectra C 

XY ( 
 ) using equation ( 8 ) with
lanck 2018 cosmological parameters (Planck Collaboration I 2020 ). 
e calculate the covariance matrices of κκ , κHI and HIHI from mea-

ured cross-power spectra of 35 realizations of the N -body simulation
y Takahashi et al. ( 2017 ). All the HI temperature fluctuation maps
hich we use take into account foreground removal. We also cal-

ulate the correlation matrices CORR ij = COV ij / 
√ 

COV ii COV jj 

nd show these in Fig. 6 ; these do not indicate significant correlations
etween 
 bins. 

.2 Cosmological constraints for single-slice cr oss-corr elations 

n this section, the cosmological constraint viability of κ and 
I cross-correlations is explored. We first start with the simplest 
bservational configuration, considering only one redshift slice of 
I and κ . We further assume that the b HI ( z) behaves as in equation

 17 ). We use the Planck 2018 cosmological parameters as the fiducial
osmology (Planck Collaboration I 2020 ). The fiducial cosmological 
arameters are h = 0.67, 	m 

= 0.3, σ8 = 0.82, 	k = 0, 	� 

= 0.7, τ
 0.06, and n s = 0.96. To make a covariance matrix of cross-power

pectra for the Fisher matrix (equation ( 22 )), we combine 
 modes
nto 15 bins; each bin contains 101 
 modes with 11 ≤ 
 ≥ 1527 and
MNRAS 532, 996–1009 (2024) 
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M

Figure 7. Left: Likelihood contours for the data set described in Section 4.2 ; contours show 68 per cent and 95 per cent confidence levels. Right: zoom-in of 
likelihood contours of 3 ×2-point functions and their marginalizations from the left panel. 
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v erages o v er 35 realizations. We first consider the 3 ×2 functions
or a joint analysis of κ(0 . 78) κ(0 . 78), �T HI (0 . 3) �T HI (0 . 3), and
(0 . 78) �T HI (0 . 3), where the numbers in brackets are the central
edshifts. We choose these central redshifts as examples of current
I and lensing surv e ys’ central redshifts. The ‘2 ×2’ functions refer to

he same combination but exclude the weak lensing-HI cross-power
pectrum. 

Fig. 7 shows the joint likelihood obtained via Fisher matrices
see equation ( 22 )). We see that single redshift slice correlations of
− κ(green) and HI-HI(grey) provide relatively weak constraints,
hile 2x2pt and particularly 3x2pt are more promising, with few-

o 10-per cent constraints available on parameters in this low noise
ase. The zoom-in version of 3 × 2 pt functions is shown on the
ight-hand side of Fig. 7 ; these likelihood contours, which include the
ross-correlation, show a significant impro v ement in cosmological
onstraints compared to κκ or �T HI �T HI constraints alone. There-
ore in the next section, we will examine a joint likelihood between
ore redshift bins, and where the HI bias ( b HI ( z)) is taken into

ccount. 

.3 HI bias and multiredshift bin joint likelihood analysis 

t is well known that there is a de generac y between galaxy bias, 	m 

nd σ8 in parameter constraints, since these parameters all affect the
mplitude of the power spectrum (see equation ( 8 )). Ho we v er, the y
ontribute differently to the evolution of the power spectrum with
ime; hence by measuring the power spectra in various redshifts we
an break the degeneracies between them. From equation ( 8 ), we
an see that while �T HI �T HI measures b 2 HI ( z), κ�T HI additionally
easures b HI ( z). Combining the cross-bin intensity mapping power

pectra with the κ�T HI cross-spectra we can therefore tighten our
onstraints on bias and cosmological parameters. 

In this section we consider two different bias models, with
istinct parameter sets. The first, more restricted model explores
ias amplitude variation via the α parameter in equation ( 17 ), setting
he rest of the parameters to the best-fitting values (Cunnington et al.
019b ). In the second model, b 0 , b 1 , and b 2 are the bias parameters
NRAS 532, 996–1009 (2024) 
ith α set to equal 1. We include these parameters when e v aluating
he Fisher matrices (equation ( 22 )). Note that both b HI models are
cale-invariant and depend only on z. We will consider both full-sky
nd 300 de g 2 surv e ys to e xplore the viability of HIHI and κHI in
osmological constraints. 

F or the full-sk y case, as we include more parameters for b HI ,
e also examine more redshift bins for both HI and κ to obtain

he best possible results. We consider the redshift range for �T HI 

hich would be measured by pre-SKA and SKA-MID experiments
Santos et al. 2015 ; Pourtsidou et al. 2017 ; Square Kilometre Array
osmology Science Working Group et al. 2020 ). Table 1 shows the
entral redshifts we consider for �T HI and κ bins; the width of each
in is 150 h 

−1 Mpc, �z ≈ 0.05. Table 1 lists both HI and κ central
edshifts. As we have 16 z HI , we shall refer to ‘16-HIHI’ which
orresponds to 16 pairs of HI autocorrelation functions; we cross-
orrelate HI intensity maps to κ fields at z κ = 0.44, 0.78, and 1.77,
espectively. We refer to 16-HIHI + 1- κ as the joint analysis for 16-
IHI and κHI two-point statistics at which z κ = 0.44. We add further
 κ bins and label joint data as 16-HIHI + 2- κ and 16-HIHI + 3- κ . We
alculate both the futuristic case where HI can be measured with high
 max ≥ 1000 and the current state of art where 100 < 
 max < 400. 

We further calculate the figure of merit (FoM) for the 	m 

− σ8 

onstraint. The FoM is the inverse of the area of the 	m 

− σ8 

ontours; in this case we calculate the FoM at 95 per cent confidence
evel. Fig. 8 shows the FoM of the 	m 

− σ8 constraints. The blue
ots show the FoM from 16HIHI, where we consecutively add HI
utocorrelations for the redshift bins in the order listed in Table 1 .
e see that all redshift bins contribute to an impro v ed signal, with

 nearly linearly increasing contribution (for this experiment, we
ssume that only z < 1 HI slices are available). The green, red, and
lack dots in Fig. 8 show the FoM for 
 max = 1530 when we further
dd the cross-correlations between consecutive HI slices and the κ
lices at z = 0.44, 0.78, and 1.78, respectively. We see that these
ross-correlations significantly impro v e the F oM, and appear to be
onverging to a maximal constraint when including all slices. 

We now present Fisher forecast results for the first bias model,
sing the redshift bins in Table 1 . Fig. 10 shows the utility of
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Figure 8. FoM for σ8 − 	m constraints; the horizontal axis is the number 
of redshift bin pairs for cosmological constraints. We show cumulative 
FoM when including increasing numbers of HI autocorrelation redshift bins 
(green); then increasing numbers of cross-correlations with convergence bins 
(grey, red, blue). Here 
 max = 1530. 

Figure 9. FoM for σ8 − 	m constraints; the horizontal axis is the number 
of redshift bin pairs for cosmological constraints. We show cumulative 
FoM when including increasing numbers of HI autocorrelation redshift bins 
(green); then increasing numbers of cross-correlations with convergence bins 
(grey, red, blue). Here 
 max = 375. 
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Figure 10. The likelihood contours for our multibin analysis with HI bias 
model 1 with 
 max = 1530; the contours show 68 per cent and 95 per cent 
confidence levels. The cosmological parameter uncertainties at 95 per cent 
are measured and reported in Table 2 . 

Table 2. Cosmological forecast from Fisher analysis for 16-HIHI + 3- κ
correlations; the uncertainties on cosmological parameters and HI bias are 
quoted at 95 per cent confidence level. HI bias model 1 considers only the 
re-scaling parameter α. In contrast the second model considers quadratic 
parameters; b 2 is poorly constrained, while all other parameters are able to 
be measured well (see Fig. 12 ). 

Parameters HI bias model 1 HI bias model 2 

� h 0 ± 0.02 ± 0.02 
� 	m 

± 0.01 ± 0.02 
� σ8 ± 0.03 ± 0.04 
� n s ± 0.04 ± 0.05 
�α ± 0.04 - 
� b 0 - ± 0.04 
� b 1 - ± 0.03 
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ultiredshift bin power spectra measurements with HI and κ . With 
he appropriate redshift bin size of HI ( �z HI ) for 
 max = 1530, we can
chieve tight cosmological constraints (in this low noise case) which 
re comparable to the optical and CMB probes of Alam et al. ( 2017 ),
bbott et al. ( 2018 ), Planck Collaboration I ( 2020 ), and Abbott

t al. ( 2019 ). By including more κ redshift slices, the constraints
re impro v ed significantly especially for 	m 

and α. Ho we ver, this
lso makes the contours more elliptical, as there are remaining 
egeneracies among parameters. The uncertainties on parameters 
re measured at 95 per cent confidence level and reported in 
able 2 . 
We next consider the current state-of-the-art case, where, since 

he typical angular resolution is ∼ 1 ◦, we set 
 max = 375 (we choose
his particular value as it is convenient to consider the �
 bins as 15
ins with �
 = 25). Fig. 9 shows the cumulative FoM in this case,
hile Fig. 11 illustrates the likelihood contours for cosmological 
arameters with this maximum multipole. Comparing with Fig. 10 , 
here 
 max = 1530 we can see that there is a substantial difference in
he 16-HIHI contours. Ho we ver, we notice the significant impro v e-
ent in parameter constraints when we add 3 κ bins to 16-HIHI

green shade) in 
 max = 375. We are therefore seeing that by joining
HI two-point statistics to HIHI autocorrelations, we can impro v e
osmological constraints significantly. 

For bias model 2, we find that the second-order coefficient of HI
ias b 2 is very poorly constrained. Marginalizing over this parame- 
er does not significantly affect the other cosmological parameter 
onstraints ( h 0 , 	m 

, σ8 , and n s ). We set this parameter to 0.05
ollowing Cunnington et al. ( 2019b ). Fig. 12 shows the likelihood
onstraints for this model. We can see that by adding more κ slices,
he h 0 constraints do not impro v e much but the impro v ement in
he 	m 

− σ8 constraint can be easily noticed. The uncertainties on 
ur HI bias models and cosmological parameters are reported in 
able 2 . Comparing the parameter constraints from both b HI models
see Table 2 ), we notice that model 1 gives slightly better (but very
omparable) cosmological constraints. 
MNRAS 532, 996–1009 (2024) 
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Figure 11. The likelihood contours for our multibin analysis with HI bias 
model 1 with 
 max = 375; the contours show 68 per cent and 95 per cent 
confidence levels. Compared to Fig. 10 , we can see the difference in 16-HIHI 
constraint. Ho we ver, when combining the κHI -correlation the constraints are 
similar to those in Fig. 10 . 

Figure 12. Constraints on cosmological parameters and b HI ( z) for our second 
bias model, for two-point functions at 68 per cent and 95 per cent levels 
of confidence (for our 16HIHI redshift slice case). The κHI correlation 
functions do not significantly impro v e the h 0 , n s , b 0 , and b 1 constraints. 
For this figure, we marginalized over b 2 as it is poorly constrained. Ho we ver, 
we see significant impro v ement in 	m 

and σ8 constraints. The parameter 
uncertainties at 95 per cent level are reported in Table 2 . 
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.4 The effect of sky co v erage 

ow let us consider the effect of sk y co v erage area on two-point
tatistics of both HIHI auto and κHI cross angular power spectra.
e now consider a combined surv e y area 300 deg 2 of lensing and
I observations, comparable to current pathfinder intensity mapping

urv e ys. As this area is much smaller than the full-sky case, we
herefore now need to use the pseudo angular power ( ̃  C 
 ) as an
stimator of C 
 . 

Suppose the surv e y footprint of the observations can be expressed
sing the weight function W ( ̂  n ). Normalized by the sky factor f sky 

the fraction of the sk y co v ered by the data), the weight moments are
iven by 

 sky w i = 

1 

4 π

∫ 

d ̂  n W 

i ( ̂  n ) , (23) 

here w i represents the i-th moment of weighting. The power
pectrum of the window function is 

 
 = 

1 

2 
 + 1 

∑ 

m 

| w 
m 

| 2 . (24) 

or a spin-0 field ζ ( ̂  n ) weighted by W ( ̂  n ), a spherical harmonic
oefficient ˜ a 
m 

can be expressed as (Kim & Naselsky 2010 ; Kim
011 ) 

˜  
m 

= 

∫ 

d ̂  n ζ ( ̂  n ) W ( ̂  n ) Y 

∗

m 

( ̂  n ) ≈ 	p 

∑ 

p 

ζ ( p ) W ( p ) Y 

∗

m 

( p ) , (25) 

here we approximate the integration over sky factor by the summa-
ion o v er pix el area with the surface density 	p . The pseudo power
pectrum estimator, ˜ C 
 , is then 

˜ 
 
 = 

1 

2 
 + 1 

∑ 

m 

| ̃ a 
m 

| 2 . (26) 

imilarly for spin-2 fields ( γ1 , γ2 ), we can obtain the coefficients,
˜  ±2 ,
m 

, by 

˜  ±2 ,
m 

= 

∫ 

[ ̃  γ1 ( ̂  n ) ± i ̃  γ2 ( ̂  n )] ±2 Y 

∗

m 

( ̂  n )d ̂  n , (27) 

here 

˜ 1 ( ̂  n ) ± i ̃  γ2 = W ( ̂  n )[ γ1 ( ̂  n ) ± iγ2 ( ̂  n )] . (28) 

imilarly to the full-sky case, ˜ a E 
m 

and ˜ a B 
m 

are then 

˜  E = −( ̃ a 2 ,
m 

+ ˜ a −2 ,
m 

) / 2 , (29) 

˜  B = i( ̃ a 2 ,
m 

− ˜ a −2 ,
m 

) / 2 . (30) 

he pseudo power spectra for E and B modes are 

˜ 
 

E , B 

 = 

1 

2 
 + 1 

∑ 

m 

| ̃ a E , B 
m 

| 2 . (31) 

he pseudo power spectra ˜ C 
 and true C 
 are related by the mode–
ode coupling resulting from masking ( M 

 ′ ): 

 ̃

 C 
 〉 = 

∑ 


 

M 

 ′ 〈 C 
 〉 . (32) 

his kernel depends solely on the geometry of a cut-sky W 
 and
lays a crucial role in the pseudo- C 
 method. For details concerning
he mode–mode coupling, see Hivon et al. ( 2002 ) and Alonso et al.
 2019 ). 

We utilize NAMASTER (Alonso et al. 2019 ), which is a software
ackage to calculate pseudo- C 
 for any spin fields, to e v aluate HIHI
nd κHI pseudo- C 
 for 300 deg 2 of our simulations above, within a
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Figure 13. Constraints on cosmological parameters and b HI ( z) for two-point 
functions at 68 per cent and 95 per cent levels of confidence, for the small 
area 300 deg 2 case. This plot indicates that the feasibility of κHI (pseudo) 
two-point statistics in cosmological constraints is heavily affected by the 
statistical incompleteness due to having a small-sky survey. 
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asked region RA = [0, 30] deg and Dec. = + [0,10] deg, for the same
edshift bins (see Table 1 ). We choose the same 
 bins as before up
o 
 < 375 with θbeam 

= 1 de g convolution, and calculate the cut-sk y
ovariance matrix using NAMASTER . Fig. 13 shows the cosmological 
onstraints feasible of this scenario. Comparing the results to the full-
ky case (Fig. 11 ), we can see that the statistical incompleteness due
o having a cut-sky survey reduces the feasibility; with 300 de g 2 sk y,
e cannot detect the HIHI cosmic signal. Ho we ver, incorporating 

he cross-correlation with weak lensing impro v es the significance of
he joint statistics (Fig. 13 ). 

 INSTRU M ENT  NOISE  

n this section we consider the instrument noise for both lensing and
I surv e ys for the current state-of-the-art case. We will consider the

xpected thermal noise for a single-dish survey for HI measurement. 

.1 Single dish thermal noise 

e begin by examining the noise on 3D measured power spectra for
he HI autocorrelation ( P ). This discussion is based on the works
f Battye et al. ( 2013 ), Bigot-Sazy et al. ( 2015 ), and Santos et al.
 2015 ). Subsequently, we derive the root mean square (rms) thermal
oise expected on IM maps from the power spectra, which we will
se to assess the effect of realistic noise on the ability to detect the
ensing-HI cross-correlation. 

The expected uncertainty ( σp ) on the power spectrum P can be
stimated by e v aluating its expected second moment. By calculating 
he ratio between σp and P averaging over the radial wavenumber 
in size �k, we can estimate the uncertainty in the IM map
easurements. Following this procedure the error on P can be 

stimated by the following expression (Feldman, Kaiser & Peacock 
994 ; Seo et al. 2010 ; Battye et al. 2013 ): 

σp 

P 

= 2 

√ (
2 π

3 

)
V sur 

1 

4 πk 2 �k 

(
1 + 

σ 2 
pix V pix [

T ( z) 
]2 

W ( k) 2 P 

)
, (33) 

here V sur is the volume of surv e y, W ( k) is windows function, T̄ ( z)
s the average temperature at given redshift z, and V pix is the pixel
olume. In this work we shall ignore the contribution of shot noise
nd only consider the contribution from pixel (thermal) noise σpix . 
hese parameters are discussed in detail in the following paragraphs. 
It is essential to pick the proper size of �k to optimize the viability

f a single dish. As we focus on the cosmic signal the acoustic scale
hould be an aim. That means we require �k/k A < 1, where k A is
he wavenumber of acoustic scale. The volume of the surv e y V sur can
e computed by 

 sur = 	sur 

∫ z max 

z min 

d z 
d V 

d zd 	
, (34) 

here 

d V 

d zd 	
= 

cr 2 ( z) 

H 0 E( z) 
, (35) 

here we assume a flat universe. The window function W ( k) is set
y the instrument’s specification. As we map the δHI from multiple 
edshift bins, we can ignore the contribution of radial directions 
n W ( k). Ho we ver for the angular direction, this is not the case.
mportantly, the angular resolution of the radio beam will define the
oise level. We can model W ( k) by 

 ( k) = exp 

[
− 1 

2 
k 2 r 2 ( z) 

θFWHM 

8 ln (2) 

]
, (36) 

here θFWHM 

is the full width at half-maximum of angular resolution. 
ealistically, θFWHM 

depends on frequency ( ν). Ho we ver, in this
nalysis we assume the variation of θFWHM 

is small and negligible. 
The pixel volume, V pix , can be determined by 

 pix = 	pix 

∫ z c + �z 

z c −�z 

d z 
d V 

d zd 	
, (37) 

here z c is the central redshift and �z corresponds to frequency
idth ( �ν) and 	pix is the pixel solid angle. 
In radio astronomy we normally measure the signal in terms of

ower. The antenna temperature then generates the thermal noise; 
he pixel noise σpix can be approximated by (Seo et al. 2010 ; Santos
t al. 2015 ), 

pix ≈ T sys 

ε 
√ 

t p 2 �ν
, (38) 

here t p represents the observation time per pointing, ε (approx- 
mately 1) signifies the efficiency of the telescope, meaning that 
lmost no signal is lost when radio radiation is transmitted to the
ntenna. T sys represents the system temperature, which includes 

 sys = T rx + T spl + T CMB + T gal , (39) 

here we ignore the contribution from the Earth’s atmosphere. T spl 

s the spill o v er from ground radiation (approximately 3 K), T CMB ≈
.73 K and galactic temperature T gal ≈ 25K (408 MHz/ ν) 2 . 75K 

Square Kilometre Array Cosmology Science Working Group et al. 
020 ). The observing time per pointing t p relates to the total
bservation by t p = t tot ( θB ) 2 /	sur , where θB is an angular pixel
ize. 

As σpix is the rms thermal noise, by definition its square is the
ower per pixel volume ( P N /V pix ). Therefore, the 3D noise power
MNRAS 532, 996–1009 (2024) 
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Table 3. MeerKAT pilot surv e y specifications (Wang et al. 2021 ). 

�ν 0.2 MHz 
N �ν [200,250] 
T rx 7 . 5 × 10 3 + 10 3 ( ν[ MHz ] / 1000 − 0 . 75) 2 [mK] 
t tot 10.5 h 
z [0.3885, 0.4623] 
N dish 64 
T sys 16 ×10 3 mK 

N pix 87 500 
θFHWM 

1.48 deg 
	sur 200 deg 2 
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pectrum ( P N ) is then (Battye et al. 2013 ; Santos et al. 2015 ) 

 N = σ 2 
pix V pix = r 2 y 

T 2 sys 	sur 

2 ε 2 t tot 
, (40) 

here 

 = cH ( z) −1 (1 + z) 2 

ν21 
. (41) 

f we have N d dishes where each dish has N b beams, we can take
ess time for each pointing area. The noise power spectrum is then
educed to 

 N ( N d , N b ) = 

r 2 yT 2 sys 	sur 

2 ε 2 t tot N b N d 
. (42) 

o determine the optimization of a surv e y strate gy, we can estimate
he suitable θFWHM 

and 	sur that minimizes δk A /k A for acoustic scale
 A . This acoustic scale k A can be estimated by following the work of
lake & Glazebrook ( 2003 ) and Battye et al. ( 2013 ), 

P ( k) 

P ref 
= 1 + Ak exp 

[
−

(
k 

0 . 1 h Mpc −1 

)1 . 4 ]
sin (2 πk/k A ) , (43) 

here A is the o v erall amplitude which can be marginalized. The
ubscript ‘ref’ refers to reference cosmological parameters. 

We now calculate the thermal noise of a MeerKAT-like instrument
MK 
pix = σT . In this case we consider a single dish telescope consisting
f 64 dishes of 13.5m diameter, operating in UHF, L , and S band.
he MeerKAT pilot surv e y by Wang et al. ( 2021 ) focuses on L band

rom 856 to 1712 MHz with 4096 frequency channels. This pilot
urv e y has 10.5 h observation time with approximately ∼200 deg 2 

bservation field (Wang et al. 2021 ; Cunnington et al. 2023a ). The
ummary statistics of this MeerKAT pilot surv e y are listed in Table 3 .
ang et al. ( 2021 ) show that for inte grated frequenc y channels, the y

an achieve thermal noise σT ≈ 2 mK. 
If we use equations (( 38 )) and (( 39 )) together with Table 3 , the

xpected σpix for a single frequency channel of MeerKAT pilot surv e y
s 

pix ( �ν = 0 . 2; 10 hr ) ≈ 15 mK , (44) 

here we assume each dish has equal efficiency ε = 1 and consider
nly a single frequency channel �ν = 0.2 MHz. If we consider the
hole frequency range like (Wang et al. 2021 ) the σT ≈ 2mK. 
We now consider the case where the total observation time t tot =

000 h and 250 frequency channels with �ν = 0.2 MHz. 

.2 S/N of κHI 

n Section 5.1 we have estimated the rms thermal noise for MeerKAT-
ike surv e ys similar to the current state of the art. In this section we
xplore the future case, where the observation time t tot can take longer
han MeerKAT’s pilot surv e y, and we assume a full-sky survey to
NRAS 532, 996–1009 (2024) 
stimate the best possible S/N for weak lensing-intensity mapping
 κHI) two-point statistics. The estimate σ T 

pix from equation ( 44 ) is
5mK for one frequency channel, which is based on the specification
f the current MeerKAT surv e y in Table 3 and equation ( 38 ); to detect
he cross-correlation we should find ways to reduce the σ T 

pix as far as
ossible. 
We first model the S/N of κHI. We can consider the zero lag noise

evel for 〈 κ�T 〉 , i.e. where κ and �T are measured in the same
ixel. There is no reason why the statistical noise of κ should be
orrelated with �T . The noise for the cross-correlation will therefore
e proportional to the product of σT and σn 

e , where σT is HI thermal
oise which can be estimated by equation ( 44 ). The rms noise for
eak lensing σn 

e can be estimated by 

n 
e = 

σe √ 

n gal 
, (45) 

here σe is the variance of intrinsic galaxy ellipticities and n gal is
alaxy number per pix el. F or KiDS and DES-like surv e ys, σe ≈
.3. The KiDS DR4 ef fecti ve galaxy number density is n eff = 0.325
rcmin −2 for the whole redshift range (Giblin et al. 2021 ; Heymans
t al. 2021 ). For a pixel size 0.25 2 deg 2 , we find σn 

e ≈ 0.03. 
The S/N of 〈 κHI 〉 then can be estimated by 

/N = 

σHI σκ

σT σn 
e 

√ 

N pix , (46) 

nd we find that the rms lensing convergence signal σκ is similar to
he rms noise σn 

e on 0.25 deg scales (Gatti et al. 2021 ; Amon et al.
022 ). 
To estimate the signal of HI intensity mapping, we first recall that

he HI brightness temperature fluctuations δT HI can be expressed by 

T HI = T̄ HI ( z ) b HI ( z ) δm 

( θ, z ) , (47) 

here T̄ HI ( z) is an average temperature over angular position ( θ ) for
 given z and b HI ( z) is HI bias. As the power spectrum P HI is the
ower of the temperature fluctuation δT HI , the square root of P HI per
olume V sur is ef fecti vely the root mean square of the HI true signal
 σHI ), 

HI = 

√ 

P HI /V sur . (48) 

We consider a surv e y similar to the MeerKAT pilot surv e y (0.39 <
 < 0.46) o v er a moderately thick �z = 0.075 redshift bin, with 0.25 2 

e g 2 pix el size, V sur ∼ 4000 Mpc 3 h 

−3 . Assuming the foregrounds and
edshift-space distortions have been appropriately dealt with, we can
se 

 HI = T̄ 2 HI b 
2 
HI P m 

(49) 

e assume an ef fecti ve redshift of the surv e y z eff = 0.42, b HI = 1, and
¯
 HI = 0.07 mK (Santos et al. 2015 ; Wang et al. 2021 ; Cunnington
t al. 2023a ). In this case, the estimation of HI rms is then 

HI ( k = 0 . 1 , z = 0 . 42) = 5 μK, (50) 

here we estimate at the k = 0.1 h 

−1 Mpc scale. This estimation
enerally agrees with table I in Santos et al. ( 2015 ) with slightly
etter signal rms, because Santos et al. ( 2015 ) use smaller channel
ins than the thick redshift bin we have here. 
σT is approximately 15 mK for a single frequency channel given

able 3 . If we stack o v er 200 �ν channels and assume 10 h observing
ime, then 

T ≈ 1 . 1 mK . (51) 

hen using equation (( 46 )), the estimation of S/N for κHI two-point
tatistics for KiDS-like lensing surv e ys and MeerKAT for k = 0.1
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Figure 14. The likelihood contours for our multibin analysis with HI bias 
model 1 with 
 max = 375 for full-sky case including the instrument noise 
contributions; the contours show 68 per cent and 95 per cent confidence 
levels. Comparing to Fig. 11 where we ignore instrument noise contributions, 
we can see that h 0 is now poorly constrained. 
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Figure 15. FoM for σ8 − 	m constraints including instrument noise; the 
horizontal axis is the number of redshift bin pairs for cosmological constraints. 
We sho w cumulati v e F oM when including increasing numbers of HI autocor- 
relation redshift bins (green); then increasing numbers of cross-correlations 
with convergence bins (grey, red, blue). Here 
 max = 375. Comparing this 
figure to Fig. 9 , we find that the FoM is lower by one order of magnitude. 

Table 4. Cosmological forecast from Fisher analysis including instrument 
noise contributions for 16-HIHI + 3- κ correlations; the uncertainties on 
cosmological parameters and HI bias are quoted at 95 per cent confident 
level. Here we consider only HI bias model 1. 

Parameters HI bias model 1 

� h 0 ± 0.28 
� 	m 

± 0.09 
� σ8 ± 0.32 
� n s ± 0.17 
�α ± 0.34 
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−1 Mpc with a pixel size 0.25 2 deg 2 covering ∼ 200 deg 2 sky, is
hen 

/N ≈ 0 . 24 . (52) 

his means that by the current state of the art, we expected to
bserve more instrument noise than cosmic signal from κHI cross- 
orrelations at zero lag. By including cross-correlations at different 
ngular separations, we expect a higher total signal-to-noise ratio. 

Note that this estimation is based on the pilot surv e y by MeerKAT
hich only contains 64 dishes of 13m diameter and only observes 

or 10 h; for the full operation of MeerKAT or SKA-Mid, we will
ave more dishes, longer observation time, and more frequency 
hannels. If we assume a longer observation time such as 1000 h
as is recommended by Zhang et al. 2023 ) and increase the number
f frequency channels to 250, the estimation of σMK is then 

1000 
MK ≈ 0 . 01 mK . (53) 

Now we have better S/N by one order of magnitude for a 3000 pixel
ky. [If we use the pilot survey footprint ( ∼200 deg 2 ), then S/N ≈
.4 for zero lag.] 
We confirm this calculation by generating Gaussian random fields 

or the instrument noise for both κ and HI fields and add these noise
aps using (equations 44 and 45 ) to the simulations described in
ection 4 . We utilize the full sky maps with NSIDE = 128. The pixel
umber for this resolution is N pix = 196 608. Hence the estimation
f S/N for this configuration is then 

/N 

1000 
full ≈ 22 . (54) 

o we ver, when we take the LoS foreground subtraction into account,
he signal would be reduced by a factor of ∼ 3. This means 

/N 

1000 
full −→� 7 . (55) 
his estimation indicates that we would expect to observe the true
ignal at zero lag for 1000 h exposure and large sky surveys such as
KA. 

.3 Fisher analysis 

e now consider the feasibility of κHI and HIHI two-point statistics
or cosmological constraints in the presence of these current noise 
evels. In the S/N analysis of κHI (Section 5.2 ), we only considered
he case where �νtotal = 250 × 0 . 2 MHz. Ho we ver to compare
esults in Section 4.3 , we will adjust �ν to match z HI in Table 1 . 

We generate Gaussian white noise fields for both κ and HI using
he previous subsection’s calculated amplitudes. We note again that in 
his analysis, we consider only the full-sky case. The marginalizations 
f cosmological parameters are illustrated by Fig. 14 . Comparing 
his result to the no-noise case (see Fig. 11 ) we can see that the
osmological feasibility of HIHI and κHI are reduced significantly. 
e also show the resulting FoM in Fig. 15 and 2 σ -constraints in
 able 4 . W e note that the 	m 

constraint shows a precise estimation,
lthough it is degenerate with α. Considering Fig. 15 , we can see that
he maximum of FoM when considering instrument noise is one order 
f magnitude less than the no-noise case (see Fig. 8 ). Nevertheless,
ll FoM plots (see Figs 8 , 9 , and 15 ) indicate that by combining κHI
ikelihoods with HIHI, we can significantly enhance the feasibility 
f cosmological constraints from the HI intensity maps. 
MNRAS 532, 996–1009 (2024) 
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 C O N C L U S I O N S  

n this paper we have studied the two-point statistics of lensing
onvergence and HI intensity mapping. 

We first presented the theoretical framework for calculating
onvergence-intensity mapping cross-correlations. Next, using re-
lizations from an N -body simulation we have emulated HI intensity
aps, and have shown that their cross-correlation with convergence
aps from these simulations agree with our theoretical cross-

orrelation calculations. 
We proceeded to study the effect of HI fore ground remo val on

he two-point functions. We model the effect of foreground removal
y removing the mean along each line of sight, which ef fecti vely
epresents the largest radial mode, from our HI maps, following
he method of Cunnington et al. ( 2019b ). We then measure the
ost-remov al cross-po wer; we find that the fore ground remo val
odestly reduces the κHI power spectrum signal, by a factor
 clean ( z HI , z κ , z max ). In the case of forthcoming HI experiments that
ill measure HI at z max < 1, A clean ( z HI < 0 . 5 , z κ = 0 . 78 , z max = 1)

s approximately 2.5 for our catalogues. 
In the following section, we utilized the Fisher matrix formalism to

orecast best-case cosmological constraints for the convergence-HI
robe, for the maximal case of full sky and subdominant telescope
oise, but while including foreground removal. We calculated the
isher matrix for κκ , HIHI, and κHI two-point functions using the
easured covariance matrices from Section 3 . 
We find that a single redshift slice of the HI intensity map and κ can

onstrain cosmological parameters for known bias (see Fig. 7 ), but
hen b HI is a further parameter (or several), the few-slice 3 × 2 point

unctions do not sufficiently constrain the cosmological parameters
ompared to current cosmological surv e ys such as Planck and DES
Abbott et al. 2019 ; Planck Collaboration I 2020 ). 

Hence, several cross-bin correlations are required in order for this
robe to be of interest. In Section 4.3 , we have explored the use of
everal redshift bins for HI and convergence, together with the effect
f b HI on cosmological constraints. We consider both the current
tate of art where 
 max < 400, and the futuristic case where 
 max >

000. Both cases show that a set of two-point functions constrains the
ncertainty in cosmological parameters to a comparable level with
urrent experiments. All FoMs show that by including the cross-
orrelation of a lensing surv e y with the 21cm signal, we can impro v e
he HI auto constraints. 

We then examined the impact of a cut-sky survey. In this analysis,
e e v aluated the two-point statistics based on a 300 de g 2 observ ed
atch of sky. Due to the statistical incompleteness, detecting cosmic
ignals becomes marginal in this context. 

In Section 5.1 , we explore the instrument noise affecting lensing
nd HI galaxy surv e ys. The thermal noise of a single-dish surv e y
as calculated. In this study, we focus on instruments similar to
eerKAT for radio observations and KIDs-like surv e ys for optical

ounterparts. Our analysis demonstrates the feasibility of detecting
he κHI cross-correlation, provided we have sufficient sky coverage
nd long exposure times for the radio measurements. 

Even though we have sho wn positi ve results for two-point statistics
etween the κ field and HI intensity map, there are important caveats
hat remain to be explored further: 

(i) In this study we have created HI intensity maps based on the
ssumption that they are linearly biased in relation to o v erdensity
m 

. A more realistic study should construct HI intensity maps by
ssigning HI mass M HI to simulated halo catalogues. Also in future
ork the generated HI maps will be compared in detail to real data. 
NRAS 532, 996–1009 (2024) 
(ii) We have approximated the foreground cleaning by removing
he mean fluctuation along the line of sight, which ef fecti vely
epresents the largest radial mode. More detailed emulation of the
oreground cleaning will be studied in future. 

(iii) The cosmological and b HI constraint predictions have been
btained using the idealized Fisher matrix analysis; for real data,
arkov Chain Monte Carlo methods are required to deal with non-
aussian likelihoods and realistic degeneracies between parameters.
(iv) Only the � CDM model is considered in these parameter

onstraints. Further extensions (e.g. wCDM) should be considered
n further work. 

(v) Only two-point statistics have been explored in this research.
o we ver the study by Schmit, Heavens & Pritchard ( 2019 ) shows

hat combining the bispectrum and power spectrum can reduce the
rror of cosmological parameters by an order of magnitude compared
o Planck. 

(vi) This study has only explored the low-redshift two-point
unctions. The high-redshift probes at the time of the Epoch of
eionization and the CMB are not taken into account. It is an

nteresting matter for future work to consider whether two-point
tatistics between the EOR HI and CMB weak lensing can also be
easured. 

In conclusion, κ–HI cross-correlations are an intriguing additional
robe for cosmology, which are not destroyed by foreground removal.
his probe will be available for measurement with forthcoming HI
nd lensing surv e ys this decade. 
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