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ABSTRACT

One of the most promising probes to complement current standard cosmological surveys is the HI intensity map, i.e. the
distribution of temperature fluctuations in neutral hydrogen. In this paper we present calculations of the two-point function
between HI (at redshift z < 1) and lensing convergence (k). We also construct HI intensity maps from N-body simulations, and
measure two-point functions between HI and lensing convergence. HI intensity mapping requires stringent removal of bright
foregrounds, including emission from our Galaxy. The removal of large-scale radial modes during this HI foreground removal
will reduce the HI-lensing cross-power spectrum signal, as radial modes are integrated to find the convergence; here we wish
to characterize this reduction in signal. We find that after a simple model of foreground removal, the cross-correlation signal is
reduced by ~50-70 per cent; we present the angular and redshift dependence of the effect, which is a weak function of these
variables. We then calculate S/N of xHI detection, including cases with cut sky observations, and noise from radio and lensing
measurements. We present Fisher forecasts based on the resulting two-point functions; these forecasts show that by measuring

k ATy correlation functions in a sufficient number of redshift bins, constraints on cosmology and HI bias will be possible.

Key words: gravitational lensing: weak —large-scale structure of Universe —radio lines: general.

1 INTRODUCTION

The clustering of matter in the Universe provides an important insight
into the origins and evolution of the cosmic structure. Inflation pre-
dicts that early structure formation generates a near-Gaussian random
field in overdensity; evolution due to gravity causes late-time large-
scale structures (LSSs) to exhibit non-Gaussian features. Two-point
statistics of the density field at different redshifts capture information
about the evolution of structures, and correlation functions between
different pairs of cosmological probes can precisely constrain cosmo-
logical parameters (Abbott et al. 2018; Upham, Whittaker & Brown
2019; Fang et al. 2022; Pandey et al. 2022; Troster et al. 2022).
Two-dimensional surveys of the cosmic microwave background
(CMB) have been effectively carried out through the last few decades
(Hinshaw et al. 2013; Planck Collaboration I 2020). The complement
to this is deep sky observations of the three-dimensional galaxy and
dark matter fields. While conventional optical and infrared surveys
have high angular resolution, long integration times are needed
for these to obtain precise redshifts via spectroscopy. In contrast,
photometric surveys provide faster redshift capture but less radial
resolution (Fernandez-Soto et al. 2001).

To complement the low radial resolution of optical photometric
surveys, alternative techniques with higher radial resolution are
desirable; radio 2lcm intensity mapping is a rapidly develop-
ing candidate for this purpose. Unlike most optical surveys, this
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technique does not measure the brightness of individual objects,
but focuses on the larger scale fluctuations in intensity of the
21lcm radio signal from neutral hydrogen (HI). The temperature
fluctuations can be used as a tracer for the underlying cosmic
density field. This intensity mapping is a complementary technique
to a photometric survey, with excellent redshift resolution but
lower angular resolution (Bull et al. 2015). Hence, combining HI
and optical surveys is potentially valuable, as the two techniques
compensate for each other’s limitations (Cunnington et al. 2019b;
Square Kilometre Array Cosmology Science Working Group et al.
2020).

Recently, HI intensity mapping techniques have been actively
developed (Mao et al. 2008; Harker et al. 2010; Santos et al. 2010;
Wolz et al. 2016; The CHIME Collaboration 2022; Cunnington
etal. 2023a). The Canadian Hydrogen Intensity Mapping Experiment
(CHIME) (CHIME Collaboration 2023) has provided a detection of
HI via cross-correlations with three probes of LSS, namely luminous
red galaxies (LRGs), emission-line galaxies (ELG), and quasars
(QSO) from the eBOSS clustering catalogues at high significant
levels, 7.10 (LRG), 5.70 (ELG), and 11.10 (QSO). Cunnington et al.
(2023a) have detected the correlated clustering between MeerKAT
measurements of HI and galaxies from the WiggleZ Dark Energy
Survey at 7.70 significance. Intensity mapping is therefore on its way
to becoming an independent observational probe, providing useful
information from low to high redshifts, via future surveys with radio
telescopes such as MeerKAT (Pourtsidou 2017; Pourtsidou, Bacon
& Crittenden 2017; Spinelli et al. 2022) and the Square Kilometre
Array, SKA (Santos et al. 2015).
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The major challenge for the intensity mapping technique is that
the foreground signals are much stronger than the cosmic HI bright-
ness temperature, especially due to the galactic plane synchrotron
radiation (Switzer et al. 2013; Spinelli, Bernardi & Santos 2018; Su
et al. 2018). Hence several studies of two-point functions between
HI and optical (Apid,) have focused on the impact of foreground
removal (Chapman et al. 2012; Cunnington et al. 2019b, 2020;
Padmanabhan, Refregier & Amara 2020; Spinelli et al. 2022). The
study by Cunnington et al. (2019b) shows that the foreground
removal affects two-point function characteristics, especially when
the redshift resolution is broad, as is the case in optical photometric
surveys.

There are also numerous optical surveys measuring gravitational
lensing shear (y) which distorts the shape of galaxy images; this
is sensitive to density fluctuations of all the matter present along
a line of sight, whether baryonic or dark matter. It is therefore of
interest to consider the viability of the cross-correlation y — g,
which will be able to be studied using a combination of lensing
and IM surveys (Hu & Jain 2004; Abbott et al. 2018; Baxter et al.
2019; The CHIME Collaboration et al. 2022; CHIME Collaboration
2023; Cunnington et al. 2023a). The density projection along the
unperturbed light ray trajectory, also known as ‘lensing conver-
gence’ k, can be considered instead of y as both share the same
statistical properties. The two-point functions between the pairs
of « and HI could improve cosmological constraints and break
degeneracies such as that between HI bias (by) and clustering
amplitude.

However, removing the HI foreground potentially affects these
two-point statistics, as the foreground removal effectively subtracts
large-scale radial modes to which lensing is sensitive. In this paper
we will calculate the cross-correlation function between convergence
and 21cm intensity mapping, and will explore whether the foreground
subtraction significantly hampers the cross-correlation measurement.
We also explore whether the foreground removal impacts the viability
of cosmological constraints from HI-HI and «—HI correlations.

To achieve this, we will present theoretical and simulation ap-
proaches for calculating the x—HI signal. We will then consider
the effect of foreground removal on the signal, showing that the
impact is significant (approximately a factor of 2 in signal reduction)
but not lethal. We will then use the Fisher information matrix to
make cosmological parameter forecasts for ideal and realistic surveys
(including cut sky and the inclusion of telescope-specific noise),
deploying the cross-correlation between convergence and intensity
mapping, always including the effect of foreground removal. We dis-
cuss lensing convergence and HI simulation catalogues in Section 2,
including modelling of the two-point functions. We describe the HI
foreground removal and its effect on k—HI two-point functions in
Section 3. We present our Fisher forecasts for surveys in Section 4,
effects of instrumental noise in Section 5, and present our conclusions
in Section 6.

2 k-HI TWO-POINT STATISTICS: THEORY
AND SIMULATIONS

In this section we discuss the relevant two-point statistics. We
shall start with theoretical calculations of two-point functions of
lensing convergence (k) and neutral hydrogen intensity maps (HI)
in Section 2.1. We will then discuss the generation of « catalogues
and HI modelling from simulations of the matter overdensity &.
The comparison between theoretical calculations and simulations is
shown in Section 2.2. The simulated HI maps will be used in the next
Section 3 where the foreground removal will be discussed.

kHI cross-correlation 997

2.1 Modelling the two-point functions

In this subsection, we describe the modelling of the two-point
functions. We begin by considering how to calculate the observable
quantities, namely weak lensing convergence « and HI temperature
fluctuations ATy;. We will then turn to the angular cross-power
spectra. We denote kk as the power spectra between k fields,
HI'HI’ as the cross-power spectra between HI fields, and «HI as
the cross-power between k and HI. The dummy indices i and
J refer to the ith and jth redshift bins. We will calculate the
lensing convergence in an arbitrary direction on the sky 7 using
the Born approximation, projecting the matter overdensity 6 along
an unperturbed ray direction. This can be computed by (Bartelmann
& Schneider 2001)

3QmHg ("X G = 308G, X))

2@ Jo T e
where x is comoving distance, €2, is the matter density parameter
at the present epoch, Hj is the Hubble parameter today, and the
subscript s refers to the source plane. For lensing of distributed
sources in redshift bins i, the integrand is modified by including a
source distribution, so that the integration now becomes

k(Xs: ) = (€]

() = /0 dx'ql (XSG, X)), @

where the lensing weight is given by

(3)

. 3QuHZ [T 8, x) [ ., x —x M)
qi(x) = 0 / d RV
0
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where 1! (z) is the lensing source number density, and 71’ is its average
in the ith redshift bin.

HI will be a biased tracer of matter overdensity, so we write
ATui(7, 7) = Tu(z)bui(z)8(AA, z), where byi(z) is the HI bias at a
given redshift z and Tjy(z) is the average temperature. The projected
temperature fluctuation at the ith redshift bin is then

. XI B
AT = /0 X gin (X3 1), @

where

i (200) 4

2l = Tl () , )

g
where niy (z) is the HI source number density, and iy, is its average
in the ith redshift bin.
Battye et al. (2013) show that for a given redshift z, Ty;(z) can be
estimated by

2
Qui(z)h ) (1+2) ’ ©)

2.45 x 104 E(z)

where E(z) = H(z)/H, is the dimensionless Hubble function at
redshift z. The HI density parameter could be approximated to be
Qirh = 2.45 x 107* (Battye et al. 2013). However, throughout this
research we shall follow the fitting formula for the SKA-MID I by
Square Kilometre Array Cosmology Science Working Group et al.
(2020)

THI(Z) = 44MK(

Qui(z) = 0.00048 + 0.00039z — 0.000065z>. @)

Constraining the HI bias by;(z) will be discussed later in Section 4.
Using the Limber approximation, the angular power spectra
C*Y(¢) are given by

CXY () = /dx qX(X;ZY(X)Pa( +X1/2’Z(X)>’ ®
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Figure 1. Power spectra C, for HI and cross-power between HI and
convergence, for radial HI width o, = 50 and 150 h~'Mpc. The effect of the
width is less important for the cross-correlation. Different o, corresponds to
different frequency bandwidths, Av of the radio data.

where Pjs (“XJ, z( X)) is the matter power spectrum (LoVerde &

Afshordi 2008). We compute the non-linear power spectrum using
the Boltzmann code CAMB (Lewis & Bridle 2002) with the Halofit
extension to non-linear scales (Takahashi et al. 2012).

Since the ray-tracing simulations by Takahashi et al. (2017) which
we use below adopt a comoving bin size Ay = 150 h~'Mpc (see
Section 2.2), we choose a radial selection function for ni_u(z( X))/ ﬁi—u
as a normal distribution around a central comoving position with 3o,
= 150 h~'Mpc. This o, corresponds to the frequency bandwidth
(Av) selected. In practice, the frequency range and bandwidth will
depend on the particular radio telescope being used; for example,
BINGO (Baryon Acoustic Oscillations in Neutral Gas Observations)
has operational frequency from 960 to 1260 MHz (Battye et al.
2013; Wuensche & the BINGO Collaboration 2019) and MeerKAT’s
frequency bandwidth lies in the ranges 900-1185 and 580-1000 MHz
for Lband and UHF band, respectively (Wang et al. 2021; Cunnington
et al. 2023a).

We show examples for the first time of calculations of the
autopower and cross-power for HI and convergence in Fig. 1 using
equation (8). As expected, the autosignal depends on the radial HI
width o, while the cross-power is insensitive to this.

2.2 Lensing convergence and HI intensity maps

The full-sky gravitational lensing mock catalogues by Takahashi
et al. (2017) have been used throughout this work. They are based on
a multiple-lens ray-tracing approach through N-body cosmological
simulations. The data sets include weak lensing maps (convergence,
shear, and rotation data) up to redshift 5.3, and halo catalogues.
The catalogues provide 108 realizations of N-body simulations,
35 of which are used in this research (due to storage limitations).
The N-body simulations were produced with periodic boundary
conditions following dark matter gravitational evolution without
baryonic processes. 14 simulation boxes of side length L = 450,
900, 1350,..., 6300 2~'Mpc are nested to represent a region of the
Universe in which lensing occurs; each box contains 20483 particles.
The « fields are obtained by tracing the light ray path through planes
with separation 150 #~'"Mpc. By calculating the Jacobian matrix A
along the light path, the lensing convergence «, shear lensing y; »
and rotation angle w can be obtained, via

l—k-y-n-o

A= .
—rtol—k+n

C)]
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Table 1. The central redshifts for intensity and lensing conver-
gence maps in our multiredshift bin analysis. For « ATy, we
require that zpy < 0.7z.

ZHI ke

0.02 0.44
0.08 0.78
0.13 1.77
0.18
0.24
0.29
0.35
0.41
0.47
0.54
0.60
0.68
0.75
0.83
0.91
0.99

The convergence maps were created in the HEALPIX scheme with
NSIDE of 4096 (Gorski et al. 2005), which contain 200 megapixels.
While this resolution is appropriate to study non-linear structure
and matches forthcoming galaxy surveys such as EUCLID' and
DESI?, the cross-correlation between the lensing convergence and
the HI intensity map is limited by the lower angular resolution of
HI intensity maps expected with real radio telescopes. Therefore the
resolution is reduced to NSIDE of 512; this is not only appropriate for
our two-point function measurements but also decreases the storage
space requirement and computational time.

We will first consider a convergence map at a specific optical
lensing catalogue source redshift, which we choose as z &~ 0.78,
for which the lensing will significantly occur at the redshift of an
intensity map at redshift>~ 0.3. This particular choice of redshift
allows us to compare our results to current and forthcoming optical
and radial surveys (Santos et al. 2015; Pourtsidou et al. 2017; Baxter
et al. 2019; Euclid Collaboration 2020; Square Kilometre Array
Cosmology Science Working Group et al. 2020). We will then extend
to multiple lensing planes (see Table 1).

We turn now to generating our IM maps. Crucially, we will
emulate removal of the IM foreground by removing the radial
temperature fluctuations on large scales. The foreground removal
will be discussed in detail in Section 3.

First we need to make the pre-foreground-removal IM maps.
Instead of calculating the individual HI masses My; from halo
catalogues, we assume that HI is a biased tracer of the total matter
overdensity field §(6, z)(see equations (4) and (5)),

Tii(A, 2) — Tn(2)
Tii(2)

where by; is a HI bias. For instance the parametric form for by
adopted by Cunnington et al. (2019b) is

Sm(A, z) = = bu(2)8(#, z), 10)

bii(z) = 0.67 4 0.18z + 0.057%. an

Since the neutral hydrogen signal is measured as the surface
brightness temperature, we shall refer to the HI intensity map as

Uhttps://www.euclid-ec.org/
Zhttps://www.desi.lbl.gov/
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the temperature fluctuation ATy :
AT(#, 2) = TR, 2) — Tm(z) = Tm(2)bm(2)8(A, 2). (12)

We apply this equation to the overdensity map obtained from
Takahashi et al. (2017) catalogues to create HI intensity maps. Fig. 2
shows the uncleaned and cleaned intensity maps from one realization
for the zoom-in patch with area 5 x 5 square degrees.

As we are interested in the two-dimensional projection of cos-
mological fields on the sky, together with their power spectra, it is
convenient to describe these fields ®(71, z) in spherical harmonics:

oo m=L

O, )= Y am@Y" ), (13)

=0 m=—¢

where Y;"(7) and ay,(z) are spherical harmonics and their coef-
ficients, respectively (Heavens 2003; Castro, Heavens & Kitching
2005; Pratten et al. 2016). ©(1, z) represents an arbitrary cosmo-
logical field; in this work it can be either lensing convergence or
HI temperature fluctuations. The angular power spectrum is then an
average of a,, over m modes:

CH () = (agh,(z1)ag,(22)), (14)

where X and Y stand for the cosmological fields at given redshifts
z1 and z,, respectively.

The cross-power spectrum for HI and lensing « can be easily
measured via HEALPIX’s anafast routine especially if the data
are for the full sky [however, if the data have missing regions or a
cut sky, pseudo-C, methods are required (Brown, Castro & Taylor
2005; Upham et al. 2019)].

Using this routine, we obtain cross-power measurements for the HI
and « fields. We measure the cross-power spectra of 35 realizations
and evaluate their mean; we show the results in Fig. 3. Here the
lensing convergence is measured at the central redshift 0.78 and HI is
measured at the central redshift 0.3. Fig. 3 also displays a comparison
between theoretical two-point statistics and the measurements from
the mock catalogues. We then measure the covariance matrices
COV(C*Y) of two-point statistics from 35 realizations. The error
bars are the square root of the diagonal elements of COV(C*Y) of
the estimators. The correlation matrix for COV(C*Y) are shown in
Fig. 6.

We see that the measurements from simulations agree very well
with our theory curves on this plot, which indicates that our theo-
retical calculation and selection function niy(z(x))/fly; successfully
match the simulations. Due to the lens shell approximation of the
ray-tracing code, the measured C; is slightly affected at very high ¢
(see red line on Fig. 3).

3 HI FOREGROUND REMOVAL AND ITS
EFFECT ON «HI TWO-POINT FUNCTIONS

The HI signal is small compared to its foregrounds such as free—
free thermal emission, extragalactic radio sources, and Galactic syn-
chrotron. For example, the synchrotron (7y,.) emission temperature,
which can be modelled by Tiygne o (1 + 2)*7[K] (Platania et al. 1998;
Smoot & Debono 2017), is approximately three to four orders of
magnitude larger than Ty at low redshift. Thus, 21cm foreground
removal is a major challenge for HI cosmology. Several studies
suggest that the foreground spectrum appears to be smooth in the
radial direction (Shaw et al. 2014; Cunnington et al. 2019a, b).
This is equivalent to being present in the long radial wavelengths
in Fourier space. We therefore remove such modes in the line-of-
sight background temperature fluctuations A 7S ().

kHI cross-correlation 999

ATz

. » RV *
. , -3

5

'3

(0,0)

mK

015 0.15
clean
AT

| g P
/‘?’ w@' Q

-~

-

Figure 2. Top: the uncleaned intensity map, ATI_(;;'g, at z = 0.3 from an
example realization. The fluctuations were measured assuming byy(z) (see
equations (12) and (17)). Middle: the foreground-removed intensity map,
Alelf“", at the same redshift. The foregrounds were removed by eliminating
radial long wavelength modes up to redshift zmax = 1. The NSIDEs of the
fluctuation maps is reduced from 4096 to 512 to match the resolution of
forthcoming radio surveys. Bottom: residual map of cleaned and uncleaned
maps. Each of these detail maps has area 5 x 5 square degrees (a small patch
of the entire sky maps).
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Figure 3. Comparison between theoretical C, (see equation (8)) and mea-
sured C, from our simulations. Here the lensing convergence is measured at
central redshift 0.78 and HI is measured at central redshift 0.3.
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Figure 4. The ratio between cleaned and uncleaned x ATy power spectra.
Two maximum redshifts (zmax) for foreground removal are considered;
Zmax = 1 corresponds to current and imminent radio dishes, while zmax = 3
represents a future SKA survey.
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Figure 5. The average ratio Agjean Over £ > 10 modes, as a function of
redshift of HI slice used in the cross-correlation.
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Since the calculation of lensing involves integration along the
light path (equation (3)), which will have a contribution from long-
wavelength radial modes, the HI foreground removal is a concern for
the existence of the k—HI cross-correlation (i.e. we have just removed
such modes from the HI signal). In this section we therefore seek
to ascertain the degree to which the k—HI cross-correlation survives
foreground removal.

Here we follow the method for foreground removal emulation by
Cunnington et al. (2019b). The cleaned intensity map AT can be
approximated as

ATES (2, 2) = AT 8(, 2) — AT (), (15)

where AT}(I’Iﬁg(ﬁ, 2) is the uncleaned signal in direction 7 at redshift
7. AT*S(7) is defined by

1 -
AT () = = D Tin(@)bin(z)d(, 22), (16)

so that ATx°S(#) is the mean surface brightness temperature fluctua-
tion along the entire line of sight. This is an initial very approximate
model of principal component analysis foreground removal, as most
dominant components are included in the line-of-sight expectation
temperature fluctuations AT;-05(72). It is worth mentioning that this
blind foreground removal technique assumes the smoothness of the
foreground. However, this smoothness can be hampered by non-
smooth features of the beam, e.g. beamwidth of the radio dish,
and some oscillating features in all bands of MeerKAT. A simple
1/ f dependence of the beam could generate artificial HI signals.
This leads to the conclusion in Spinelli et al. (2022) that it is
fundamental to develop accurate beam deconvolution algorithms and
test data post-processing steps carefully before cleaning. This topic
of beam deconvolution is beyond the scope of our research; here we
shall assume that the 1/ f behaviour is sufficiently small. For more
sophisticated foreground cleaning methods we encourage the reader
to explore e.g. Cunnington et al. (2023b).

In this work we adopt the same bias model as Cunnington et al.
(2019a):

bui(z) = a(by + b1z + byz%), an

where «, by, by, and b, are setto 1, 0.67, 0.18, and 0.05, respectively.
Cunnington et al. (2019a) obtained this parameter set by investi-
gating HI as a biased tracer of the LSS via HI intensity map and
optical galaxy number density cross-correlations (see eq. 39 from
Cunnington et al. 2019a). We use this as a fiducial model since
the HI redshift range in our work is similar to Cunnington et al.
(2019a, b). Note that in this model, we solely account for the redshift
evolution of HI bias and assume any transverse scale dependence of
the bias is negligible. Martin et al. (2012) show that this is a good
approximation for scales >10 4~'Mpc, which are our main interest.

We measure A58 with two choices of maximum redshift, zmax
= 1 and 3. zyx = 3 corresponds to futuristic HI-galaxy surveys
(Square Kilometre Array Cosmology Science Working Group et al.
2020). On the other hand zn,x = 1 is an approximate limit for
HI maps with SKA1-MID and MeerKAT (Square Kilometre Array
Cosmology Science Working Group et al. 2020; Cunnington et al.
2023a).

We use these intensity maps with removed foreground to calculate
the autopower spectra of the intensity map (ATyATy;), and the
cross-power spectra between HI and « (x ATy;). We compare the
signal of removed and unremoved « ATy, resulting in Fig. 4 and
Fig. 5. From Fig. 4, we note that foreground removal strongly affects
the signal on large scales. However we find that on smaller scales,
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Figure 6. The correlation matrices of Cf ¥ measured from 35 realizations for the cleaned HI signal at central redshift z = 0.3 and « signal at z = 0.78. Left:
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at £ > 10, the foreground removal does not erase the x ATy power
spectrum; the signal is scaled down by a factor (Acesn) Which is
close to constant over a range of £ modes from 10 to 1000. Hence,
in Section 4, when cosmological constraints following foreground
removal are considered, the estimation of cosmological parameters
is based on the signal where ¢ > 10. We describe the mean signal
dl’Op Aclean by

A K ATﬁ?cleaned 18
clean(ZHI,> Zk > Zmax) < KATIglleaned >10<(<1500. (18)
From Fig. 4, we see that the higher the maximum redshift of the
survey in which we remove the LOS signal, the less is the effect
on the cleaned cross-correlation signal, as more radial modes are
preserved in the removal process. Figs 4 and 5 further indicate that
the signal in the ¥ HI two-point correlations drops by approximately
the same factor A across a wide redshift range, if we remove
the background noise up to a particular redshift z,,,,, when cross-
correlating to the « field at a fixed redshift. Fig. 5 also implies
that Aciean(ZHI, Zics Zmax1) < Actean(ZHI, Zi> Zmaxz) if the maximum
redshifts Zmax1 > Zmaxa-

4 FISHER FORECAST

In the previous sections, we have presented the theoretical two-point
statistics for the Hl-lensing cross-correlation, and have examined
the impact of HI foreground removal on the cross-power spectrum.
The results indicate that foreground removal reduces the two-point
statistics by a modest factor.

Here we begin the exploration of «—HI correlations as a tool
for cosmological constraints. In particular we will make a Fisher
information matrix forecast of this correlation in the case of low
instrument noise (but including our foreground subtraction model);
this will assess the best-case capacity of this probe to constrain
cosmology, when one is dominated by LSS fluctuations in the HI
and lensing fields. We will then examine more realistic cases with
cut sky and the inclusion of instrumental noise.

4.1 The Fisher matrix

The Fisher information matrix is a useful tool to estimate the expected
uncertainty in cosmological parameters for forthcoming experiments
(Tegmark, Taylor & Heavens 1997; Heavens 2003). Assuming that
the model parameters 6; are distributed by a multivariate Gaussian
likelihood L, the Fisher matrix can be calculated as

°L
F; = , 19
/ <ae,-ae,> (19)

where £ = — In L. The Fisher matrix can be used to obtain the mini-
mum uncertainty (o;) in parameter estimation due to the Cramér—Rao
inequality (Kamionkowski, Smith & Heavens 2011; Mendez et al.
2014),

o >4/ F3, (20)

i

which is equivalent to a 68 per cent confidence level. For a data
set where the uncertainties are Gaussian, the Fisher matrix can be
calculated by (Tegmark et al. 1997)

1
Fij = STrlA:A; + c'M;;, 1)

where C denotes the covariance matrix of the data, A; = C~'C i»the
derivative data matrix M;; = p;pu”; + p ;p’;, and p is an expecta-
tion value of the data vector x. The comma symbol means the partial
derivative operator with respect to the parameter, 4 ; = 0p/06;. Note
that all derivatives are performed at the maximum likelihood point.

As we expect only small changes in the covariance matrix
COV(C*") under a modest change in cosmological parameters (see
Sections 2 and 3), the first term on the right-hand side in equation
(21) will be negligible. Then the Fisher matrix can be written

acXYT dCxY
F; = cov( 1 —, 22
=2 06 ™ 00, @)

XY i

We calculate the cross-power spectra C*” (£) using equation (8) with
Planck 2018 cosmological parameters (Planck Collaboration 1 2020).
We calculate the covariance matrices of x k', k HI and HIHI from mea-
sured cross-power spectra of 35 realizations of the N-body simulation
by Takahashi et al. (2017). All the HI temperature fluctuation maps
which we use take into account foreground removal. We also cal-
culate the correlation matrices CORR;; = COV,;;/,/COV;;COV j;
and show these in Fig. 6; these do not indicate significant correlations
between ¢ bins.

4.2 Cosmological constraints for single-slice cross-correlations

In this section, the cosmological constraint viability of « and
HI cross-correlations is explored. We first start with the simplest
observational configuration, considering only one redshift slice of
HI and «. We further assume that the by;(z) behaves as in equation
(17). We use the Planck 2018 cosmological parameters as the fiducial
cosmology (Planck Collaboration I 2020). The fiducial cosmological
parameters are h = 0.67, 2, = 0.3, 03 =0.82, Q2 =0, 2, =0.7, 7
= 0.06, and n; = 0.96. To make a covariance matrix of cross-power
spectra for the Fisher matrix (equation (22)), we combine £ modes
into 15 bins; each bin contains 101 £ modes with 11 < £ > 1527 and
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Figure 7. Left: Likelihood contours for the data set described in Section 4.2; contours show 68 per cent and 95 per cent confidence levels. Right: zoom-in of
likelihood contours of 3 x2-point functions and their marginalizations from the left panel.

averages over 35 realizations. We first consider the 3x2 functions
for a joint analysis of x(0.78)x(0.78), ATy (0.3)ATy(0.3), and
k(0.78)ATy1(0.3), where the numbers in brackets are the central
redshifts. We choose these central redshifts as examples of current
HI and lensing surveys’ central redshifts. The ‘2x2’ functions refer to
the same combination but exclude the weak lensing-HI cross-power
spectrum.

Fig. 7 shows the joint likelihood obtained via Fisher matrices
(see equation (22)). We see that single redshift slice correlations of
k — k(green) and HI-HI(grey) provide relatively weak constraints,
while 2x2pt and particularly 3x2pt are more promising, with few-
to 10-per cent constraints available on parameters in this low noise
case. The zoom-in version of 3 x 2 pt functions is shown on the
right-hand side of Fig. 7; these likelihood contours, which include the
cross-correlation, show a significant improvement in cosmological
constraints compared to kx or ATy ATy constraints alone. There-
fore in the next section, we will examine a joint likelihood between
more redshift bins, and where the HI bias (by;(z)) is taken into
account.

4.3 HI bias and multiredshift bin joint likelihood analysis

It is well known that there is a degeneracy between galaxy bias, 2,
and oy in parameter constraints, since these parameters all affect the
amplitude of the power spectrum (see equation (8)). However, they
contribute differently to the evolution of the power spectrum with
time; hence by measuring the power spectra in various redshifts we
can break the degeneracies between them. From equation (8), we
can see that while ATy ATy measures blzﬂ(z), k ATy additionally
measures byj(z). Combining the cross-bin intensity mapping power
spectra with the k ATy cross-spectra we can therefore tighten our
constraints on bias and cosmological parameters.

In this section we consider two different bias models, with
distinct parameter sets. The first, more restricted model explores
bias amplitude variation via the o parameter in equation (17), setting
the rest of the parameters to the best-fitting values (Cunnington et al.
2019b). In the second model, by, by, and b, are the bias parameters
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with o set to equal 1. We include these parameters when evaluating
the Fisher matrices (equation (22)). Note that both by; models are
scale-invariant and depend only on z. We will consider both full-sky
and 300 deg? surveys to explore the viability of HIHI and «HI in
cosmological constraints.

For the full-sky case, as we include more parameters for by,
we also examine more redshift bins for both HI and « to obtain
the best possible results. We consider the redshift range for ATy
which would be measured by pre-SKA and SKA-MID experiments
(Santos et al. 2015; Pourtsidou et al. 2017; Square Kilometre Array
Cosmology Science Working Group et al. 2020). Table 1 shows the
central redshifts we consider for ATy and « bins; the width of each
bin is 150 2~'Mpc, Az = 0.05. Table 1 lists both HI and « central
redshifts. As we have 16 zy;, we shall refer to ‘16-HIHI’ which
corresponds to 16 pairs of HI autocorrelation functions; we cross-
correlate HI intensity maps to « fields at z, = 0.44, 0.78, and 1.77,
respectively. We refer to 16-HIHI+-1-« as the joint analysis for 16-
HIHI and « HI two-point statistics at which z, = 0.44. We add further
Z, bins and label joint data as 16-HIHI4-2-«x and 16-HIHI4-3-«x. We
calculate both the futuristic case where HI can be measured with high
Lmax > 1000 and the current state of art where 100 < £,,,x < 400.

We further calculate the figure of merit (FoM) for the Q,, — o3
constraint. The FoM is the inverse of the area of the Q, — oy
contours; in this case we calculate the FoM at 95 per cent confidence
level. Fig. 8 shows the FoM of the 2, — og constraints. The blue
dots show the FoM from 16HIHI, where we consecutively add HI
autocorrelations for the redshift bins in the order listed in Table 1.
We see that all redshift bins contribute to an improved signal, with
a nearly linearly increasing contribution (for this experiment, we
assume that only z < 1 HI slices are available). The green, red, and
black dots in Fig. 8 show the FoM for £,,x = 1530 when we further
add the cross-correlations between consecutive HI slices and the «
slices at z = 0.44, 0.78, and 1.78, respectively. We see that these
cross-correlations significantly improve the FoM, and appear to be
converging to a maximal constraint when including all slices.

We now present Fisher forecast results for the first bias model,
using the redshift bins in Table 1. Fig. 10 shows the utility of
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Figure 10. The likelihood contours for our multibin analysis with HI bias
model 1 with £p,x = 1530; the contours show 68 per cent and 95 per cent
confidence levels. The cosmological parameter uncertainties at 95 per cent
are measured and reported in Table 2.

Table 2. Cosmological forecast from Fisher analysis for 16-HIHI + 3-«
correlations; the uncertainties on cosmological parameters and HI bias are
quoted at 95 per cent confidence level. HI bias model 1 considers only the
re-scaling parameter «. In contrast the second model considers quadratic
parameters; by is poorly constrained, while all other parameters are able to
be measured well (see Fig. 12).

# of redshift pairs

Figure 9. FoM for o3 — 2, constraints; the horizontal axis is the number
of redshift bin pairs for cosmological constraints. We show cumulative
FoM when including increasing numbers of HI autocorrelation redshift bins
(green); then increasing numbers of cross-correlations with convergence bins
(grey, red, blue). Here £1,,x = 375.

multiredshift bin power spectra measurements with HI and «. With
the appropriate redshift bin size of HI (Azyy) for £, = 1530, we can
achieve tight cosmological constraints (in this low noise case) which
are comparable to the optical and CMB probes of Alam et al. (2017),
Abbott et al. (2018), Planck Collaboration I (2020), and Abbott
et al. (2019). By including more « redshift slices, the constraints
are improved significantly especially for €, and o. However, this
also makes the contours more elliptical, as there are remaining
degeneracies among parameters. The uncertainties on parameters
are measured at 95 per cent confidence level and reported in
Table 2.

We next consider the current state-of-the-art case, where, since
the typical angular resolution is ~ 1°, we set £, = 375 (we choose
this particular value as it is convenient to consider the A¢ bins as 15
bins with A¢ = 25). Fig. 9 shows the cumulative FoM in this case,
while Fig. 11 illustrates the likelihood contours for cosmological
parameters with this maximum multipole. Comparing with Fig. 10,

Parameters HI bias model 1 HI bias model 2
Ahg + 0.02 +0.02
AQm +0.01 +0.02
Aoy + 0.03 +0.04
Ang +0.04 +0.05

Ao +0.04 -

Abg - +0.04
Ab - +0.03

where £,.x = 1530 we can see that there is a substantial difference in
the 16-HIHI contours. However, we notice the significant improve-
ment in parameter constraints when we add 3 « bins to 16-HIHI
(green shade) in £,,,x = 375. We are therefore seeing that by joining
«xHI two-point statistics to HIHI autocorrelations, we can improve
cosmological constraints significantly.

For bias model 2, we find that the second-order coefficient of HI
bias b, is very poorly constrained. Marginalizing over this parame-
ter does not significantly affect the other cosmological parameter
constraints (hg, Qm, 0s, and ng). We set this parameter to 0.05
following Cunnington et al. (2019b). Fig. 12 shows the likelihood
constraints for this model. We can see that by adding more « slices,
the Ay constraints do not improve much but the improvement in
the ©,, — oy constraint can be easily noticed. The uncertainties on
our HI bias models and cosmological parameters are reported in
Table 2. Comparing the parameter constraints from both by; models
(see Table 2), we notice that model 1 gives slightly better (but very
comparable) cosmological constraints.
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Figure 11. The likelihood contours for our multibin analysis with HI bias
model 1 with £, = 375; the contours show 68 per cent and 95 per cent
confidence levels. Compared to Fig. 10, we can see the difference in 16-HIHI
constraint. However, when combining the x HI-correlation the constraints are
similar to those in Fig. 10.

A 7 . =1530 . 16-HHI

f\ max — 16-HIHI 1k
\ . 16-HIHI+2%

- 16-HIHI+ 3

0.35
go30 Sy

025

085 1 N
conl (@) | N

0.75 A

Lol e |

@ N -

oot — 1 ; f N

o700 [ 1 2
< 0.65 ‘ 1 ’ \

024 I i 1\
N0 WA Y. YW AN
) \ \3 -

016 @ { ’ /

0.68 0.72 027 033 0.5 0.85 0.9 1.0 0.62 0.70 0.17 U,‘23
ho Qm oy ns bo by

Figure 12. Constraints on cosmological parameters and by (z) for our second
bias model, for two-point functions at 68 per cent and 95 per cent levels
of confidence (for our 16HIHI redshift slice case). The «HI correlation
functions do not significantly improve the hq, ng, bg, and b; constraints.
For this figure, we marginalized over b, as it is poorly constrained. However,
we see significant improvement in Q2 and og constraints. The parameter
uncertainties at 95 per cent level are reported in Table 2.
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4.4 The effect of sky coverage

Now let us consider the effect of sky coverage area on two-point
statistics of both HIHI auto and «HI cross angular power spectra.
We now consider a combined survey area 300 deg? of lensing and
HI observations, comparable to current pathfinder intensity mapping
surveys. As this area is much smaller than the full-sky case, we
therefore now need to use the pseudo angular power (C;) as an
estimator of C,.

Suppose the survey footprint of the observations can be expressed
using the weight function W(#). Normalized by the sky factor fyy
(the fraction of the sky covered by the data), the weight moments are
given by
fasw = o [ @i, 23)

4r

where w; represents the i-th moment of weighting. The power
spectrum of the window function is

1 2
- a2 24
We= 5, ]%|w| 24)

For a spin-0 field ¢(77) weighted by W(7), a spherical harmonic
coefficient d,, can be expressed as (Kim & Naselsky 2010; Kim
2011)

i = [ SC@WANG,0)~ 2, S CPW PP (25)
P

where we approximate the integration over sky factor by the summa-
tion over pixel area with the surface density €2,. The pseudo power
spectrum estimator, Cy, is then

~ 1
Cr=—— om |2 26
¢ %+1§]w| (26)

m

Similarly for spin-2 fields (y, y»2), we can obtain the coefficients,
d+2 ¢m, DY

Axo0m = /[371(ﬁ) +ip(A)] 1Y, (R)dA, 27
where
@A) £ iy, = WAy @) £ iya(i)]. (28)

Similarly to the full-sky case, af, and a2, are then

a® = —(@,om + a-2,0m)/2, (29)
a® = i@m — a-2,m)/2. (30)
The pseudo power spectra for E and B modes are

- 1

EB _ ~E.B2
C} _%H;mmy 31)

The pseudo power spectra C; and true C; are related by the mode—
mode coupling resulting from masking (M,):

(Coy = Mu/(Cy). 32)
4

This kernel depends solely on the geometry of a cut-sky W, and
plays a crucial role in the pseudo-C, method. For details concerning
the mode-mode coupling, see Hivon et al. (2002) and Alonso et al.
(2019).

We utilize NAMASTER (Alonso et al. 2019), which is a software
package to calculate pseudo-C, for any spin fields, to evaluate HIHI
and «HI pseudo-C, for 300 deg” of our simulations above, within a
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£,0x = 375 300 deg? = 16-HIHI 1994; Seo et al. 2010; Battye et al. 2013):
max m 16-HIHI+1k
m 16-HIHI+ 2K 2 v
. 16-HIHI+ 3% % _» (2777) v 1 (1 n Tpix Vpix > (33)
- sur — 5
P 3 4mk> Ak [T(2)]* WkyP
1 : ‘ where Vi, is the volume of survey, W (k) is windows function, T(z)
2 @\ ) . . o .
g o \‘ ) is the average temperature at given redshift z, and Vi, is the pixel
1 : volume. In this work we shall ignore the contribution of shot noise
- and only consider the contribution from pixel (thermal) noise opix.
4 I These parameters are discussed in detail in the following paragraphs.
g ) L Itis essential to pick the proper size of Ak to optimize the viability
=3 of a single dish. As we focus on the cosmic signal the acoustic scale
should be an aim. That means we require Ak/ks < 1, where k4 is
5 | .
P -~ == \ the wavenumber of acoustic scale. The volume of the survey Vg, can
S :‘ \‘\h‘; : || be computed by
| Zmax dv
Var = Qur dz——, 34
5 sui su /Zmin Z dZdQ ( )
CHE ‘w ) ﬁ . \s‘ where
-5 ]\ dv cr’(z)
=30 3 -101 -40 4 0 5 50 5 dzdQ ~ HoE(z)’ (35)
ho Qm Og Ns [+

Figure 13. Constraints on cosmological parameters and by (z) for two-point
functions at 68 per cent and 95 per cent levels of confidence, for the small
area 300 deg? case. This plot indicates that the feasibility of xHI (pseudo)
two-point statistics in cosmological constraints is heavily affected by the
statistical incompleteness due to having a small-sky survey.

masked region RA = [0, 30] deg and Dec. = +[0,10] deg, for the same
redshift bins (see Table 1). We choose the same ¢ bins as before up
to £ < 375 with Bpeam = 1 deg convolution, and calculate the cut-sky
covariance matrix using NAMASTER. Fig. 13 shows the cosmological
constraints feasible of this scenario. Comparing the results to the full-
sky case (Fig. 11), we can see that the statistical incompleteness due
to having a cut-sky survey reduces the feasibility; with 300 deg? sky,
we cannot detect the HIHI cosmic signal. However, incorporating
the cross-correlation with weak lensing improves the significance of
the joint statistics (Fig. 13).

5 INSTRUMENT NOISE

In this section we consider the instrument noise for both lensing and
HI surveys for the current state-of-the-art case. We will consider the
expected thermal noise for a single-dish survey for HI measurement.

5.1 Single dish thermal noise

We begin by examining the noise on 3D measured power spectra for
the HI autocorrelation (P). This discussion is based on the works
of Battye et al. (2013), Bigot-Sazy et al. (2015), and Santos et al.
(2015). Subsequently, we derive the root mean square (rms) thermal
noise expected on IM maps from the power spectra, which we will
use to assess the effect of realistic noise on the ability to detect the
lensing-HI cross-correlation.

The expected uncertainty (o,) on the power spectrum P can be
estimated by evaluating its expected second moment. By calculating
the ratio between o, and P averaging over the radial wavenumber
bin size Ak, we can estimate the uncertainty in the IM map
measurements. Following this procedure the error on P can be
estimated by the following expression (Feldman, Kaiser & Peacock

where we assume a flat universe. The window function W (k) is set
by the instrument’s specification. As we map the §y; from multiple
redshift bins, we can ignore the contribution of radial directions
in W(k). However for the angular direction, this is not the case.
Importantly, the angular resolution of the radio beam will define the
noise level. We can model W (k) by

W (k) = exp [_ 1k2r2(z) Orwhm 6

2 8In(2) |’
where Opwnw is the full width at half-maximum of angular resolution.
Realistically, 8gwym depends on frequency (v). However, in this
analysis we assume the variation of Opwyy is small and negligible.

The pixel volume, V,ix, can be determined by

Vs = @ /Zcmd av (37)
pix = Népix A ZdZdQ’

where z. is the central redshift and Az corresponds to frequency
width (Av) and 2, is the pixel solid angle.

In radio astronomy we normally measure the signal in terms of
power. The antenna temperature then generates the thermal noise;
the pixel noise oy can be approximated by (Seo et al. 2010; Santos
et al. 2015),

Tsys
€4 /thAI/
where 1, represents the observation time per pointing, & (approx-
imately 1) signifies the efficiency of the telescope, meaning that

almost no signal is lost when radio radiation is transmitted to the
antenna. Ty represents the system temperature, which includes

(33)

Opix ~

Tsys =T+ Tspl + Tems + Tgalv (39)

where we ignore the contribution from the Earth’s atmosphere. Ty
is the spill over from ground radiation (approximately 3 K), Tems &~
2.73 K and galactic temperature Ty ~ 25K (408 MHz/v)>"¥
(Square Kilometre Array Cosmology Science Working Group et al.
2020). The observing time per pointing , relates to the total
observation by 7, = fy(6p)*/ Qsur» Where 0p is an angular pixel
size.

As oyx is the rms thermal noise, by definition its square is the
power per pixel volume (Py/V;ix). Therefore, the 3D noise power

MNRAS 532, 996-1009 (2024)

%20z AInf Lz uo yasn TgINT Aq ¥91 269./966/1/2€S/2101ME/SEIU/WOD dNO"DlWSpEdE//:SA)Y W4 PapEOjUMO(Q



1006  A. Sangka and D. Bacon

Table 3. MeerKAT pilot survey specifications (Wang et al. 2021).

Av 0.2 MHz

Na, [200,250]

Tix 7.5 x 103 + 103(v[MHz]/1000 — 0.75)> [mK]
tiot 10.5h

z [0.3885, 0.4623]

Ndish 64

Teys 16 x10® mK

Npix 87500

QFHWM 1.48 deg

Qeur 200 deg?

spectrum (Py) is then (Battye et al. 2013; Santos et al. 2015)

T2 Q;
P o Asysnasur
Py =05 Voix =17y 26 (40

where

1 2
y = CH(Z)71 ﬁ
V21

(41

If we have Ny dishes where each dish has N, beams, we can take
less time for each pointing area. The noise power spectrum is then
reduced to

2y T ur
282ttothNd '
To determine the optimization of a survey strategy, we can estimate
the suitable Ogwyn and gy, that minimizes §ka /ka for acoustic scale

ka. This acoustic scale ko can be estimated by following the work of
Blake & Glazebrook (2003) and Battye et al. (2013),

k.
0.1hMpc—!

Pn(Ng, Np) = (42)

P(k)

ref

1.4
=1+ Akexp {— ( ) } sin 2k /ky), (43)
where A is the overall amplitude which can be marginalized. The
subscript ‘ref” refers to reference cosmological parameters.

We now calculate the thermal noise of a MeerK AT-like instrument
oMK = o7, In this case we consider a single dish telescope consisting
of 64 dishes of 13.5m diameter, operating in UHF, L, and S band.
The MeerKAT pilot survey by Wang et al. (2021) focuses on L band
from 856 to 1712 MHz with 4096 frequency channels. This pilot
survey has 10.5 h observation time with approximately ~200 deg?
observation field (Wang et al. 2021; Cunnington et al. 2023a). The
summary statistics of this MeerKAT pilot survey are listed in Table 3.
Wang et al. (2021) show that for integrated frequency channels, they
can achieve thermal noise o &~ 2 mK.

If we use equations ((38)) and ((39)) together with Table 3, the
expected oy for a single frequency channel of MeerKAT pilot survey
is
opix(Av = 0.2; 10hr) ~ 15 mK, 44)

where we assume each dish has equal efficiency ¢ =1 and consider
only a single frequency channel Av = 0.2 MHz. If we consider the
whole frequency range like (Wang et al. 2021) the o ~ 2mK.

We now consider the case where the total observation time #,,; =
1000 h and 250 frequency channels with Av = 0.2 MHz.

5.2 S/N of kHI

In Section 5.1 we have estimated the rms thermal noise for MeerKAT-
like surveys similar to the current state of the art. In this section we
explore the future case, where the observation time #,,, can take longer
than MeerKAT’s pilot survey, and we assume a full-sky survey to

MNRAS 532, 996-1009 (2024)

estimate the best possible S/N for weak lensing-intensity mapping
(«HI) two-point statistics. The estimate apTix from equation (44) is
15mK for one frequency channel, which is based on the specification
of the current MeerK AT survey in Table 3 and equation (38); to detect
the cross-correlation we should find ways to reduce the a;x as far as
possible.

We first model the S/N of xHI. We can consider the zero lag noise
level for (k AT), i.e. where k and AT are measured in the same
pixel. There is no reason why the statistical noise of « should be
correlated with AT'. The noise for the cross-correlation will therefore
be proportional to the product of ot and o', where ot is HI thermal
noise which can be estimated by equation (44). The rms noise for
weak lensing o' can be estimated by

n Oe
O, N (45)
where o, is the variance of intrinsic galaxy ellipticities and ng, is
galaxy number per pixel. For KiDS and DES-like surveys, o, &
0.3. The KiDS DR4 effective galaxy number density is n.s = 0.325
arcmin~2 for the whole redshift range (Giblin et al. 2021; Heymans
et al. 2021). For a pixel size 0.25% deg?, we find o ~ 0.03.

The S/N of («HI) then can be estimated by

SN = % /N (46)

oro}

and we find that the rms lensing convergence signal o, is similar to
the rms noise o' on 0.25 deg scales (Gatti et al. 2021; Amon et al.
2022).

To estimate the signal of HI intensity mapping, we first recall that
the HI brightness temperature fluctuations & 7y; can be expressed by

0Ty = THI(Z)bHI(Z)(Sm(97 2), 47

where Ty(z) is an average temperature over angular position () for
a given z and by;(z) is HI bias. As the power spectrum Py is the
power of the temperature fluctuation § Ty, the square root of Py per
volume V, is effectively the root mean square of the HI true signal
(onn),

OHI = / PHI/Vsur~ (48)

We consider a survey similar to the MeerKAT pilot survey (0.39 <
7 < 0.46) over a moderately thick Az = 0.075 redshift bin, with 0.252
deg? pixel size, Vi, ~ 4000 Mpc®h~3. Assuming the foregrounds and
redshift-space distortions have been appropriately dealt with, we can
use

Pur = T3 b3 P (49)

We assume an effective redshift of the survey zey = 0.42, by; =1, and
T = 0.07 mK (Santos et al. 2015; Wang et al. 2021; Cunnington
et al. 2023a). In this case, the estimation of HI rms is then

om(k = 0.1,z =0.42) = 5K, (50)

where we estimate at the k = 0.1 2~'Mpc scale. This estimation
generally agrees with table I in Santos et al. (2015) with slightly
better signal rms, because Santos et al. (2015) use smaller channel
bins than the thick redshift bin we have here.

or is approximately 15 mK for a single frequency channel given
Table 3. If we stack over 200 Av channels and assume 10 h observing
time, then

or ~ 1.1 mK. 51

Then using equation ((46)), the estimation of S/N for x HI two-point
statistics for KiDS-like lensing surveys and MeerKAT for k = 0.1
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Figure 14. The likelihood contours for our multibin analysis with HI bias
model 1 with £y, = 375 for full-sky case including the instrument noise
contributions; the contours show 68 per cent and 95 per cent confidence
levels. Comparing to Fig. 11 where we ignore instrument noise contributions,
we can see that g is now poorly constrained.

h~! Mpc with a pixel size 0.25% deg? covering ~ 200 deg? sky, is
then

S/N ~ 0.24. (52)

This means that by the current state of the art, we expected to
observe more instrument noise than cosmic signal from «HI cross-
correlations at zero lag. By including cross-correlations at different
angular separations, we expect a higher total signal-to-noise ratio.

Note that this estimation is based on the pilot survey by MeerKAT
which only contains 64 dishes of 13m diameter and only observes
for 10 h; for the full operation of MeerKAT or SKA-Mid, we will
have more dishes, longer observation time, and more frequency
channels. If we assume a longer observation time such as 1000 h
(as is recommended by Zhang et al. 2023) and increase the number
of frequency channels to 250, the estimation of oy is then

o 2 0.01 mK. (53)

Now we have better S/N by one order of magnitude for a 3000 pixel
sky. [If we use the pilot survey footprint (~200 deg?), then S/N =
2.4 for zero lag.]

We confirm this calculation by generating Gaussian random fields
for the instrument noise for both ¥ and HI fields and add these noise
maps using (equations 44 and 45) to the simulations described in
Section 4. We utilize the full sky maps with NSIDE=128. The pixel
number for this resolution is Nyix = 196 608. Hence the estimation
of S/N for this configuration is then

S/NY0 ~ 22, (54)

However, when we take the LoS foreground subtraction into account,
the signal would be reduced by a factor of ~ 3. This means

S/NO —s~ 7. (55)
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Figure 15. FoM for o3 — ,, constraints including instrument noise; the
horizontal axis is the number of redshift bin pairs for cosmological constraints.
We show cumulative FoM when including increasing numbers of HI autocor-
relation redshift bins (green); then increasing numbers of cross-correlations
with convergence bins (grey, red, blue). Here £max = 375. Comparing this
figure to Fig. 9, we find that the FoM is lower by one order of magnitude.

Table 4. Cosmological forecast from Fisher analysis including instrument
noise contributions for 16-HIHI + 3-x correlations; the uncertainties on
cosmological parameters and HI bias are quoted at 95 per cent confident
level. Here we consider only HI bias model 1.

Parameters HI bias model 1
Ahgy +0.28
AQm +0.09
Aog +0.32
Ang +0.17
Aa +0.34

This estimation indicates that we would expect to observe the true
signal at zero lag for 1000 h exposure and large sky surveys such as
SKA.

5.3 Fisher analysis

We now consider the feasibility of k HI and HIHI two-point statistics
for cosmological constraints in the presence of these current noise
levels. In the S/N analysis of xHI (Section 5.2), we only considered
the case where Avm = 250 x 0.2 MHz. However to compare
results in Section 4.3, we will adjust Av to match zy; in Table 1.

We generate Gaussian white noise fields for both « and HI using
the previous subsection’s calculated amplitudes. We note again thatin
this analysis, we consider only the full-sky case. The marginalizations
of cosmological parameters are illustrated by Fig. 14. Comparing
this result to the no-noise case (see Fig. 11) we can see that the
cosmological feasibility of HIHI and «HI are reduced significantly.
We also show the resulting FoM in Fig. 15 and 2o -constraints in
Table 4. We note that the 2,,, constraint shows a precise estimation,
although it is degenerate with . Considering Fig. 15, we can see that
the maximum of FoM when considering instrument noise is one order
of magnitude less than the no-noise case (see Fig. 8). Nevertheless,
all FoM plots (see Figs 8, 9, and 15) indicate that by combining «HI
likelihoods with HIHI, we can significantly enhance the feasibility
of cosmological constraints from the HI intensity maps.
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6 CONCLUSIONS

In this paper we have studied the two-point statistics of lensing
convergence and HI intensity mapping.

We first presented the theoretical framework for calculating
convergence-intensity mapping cross-correlations. Next, using re-
alizations from an N-body simulation we have emulated HI intensity
maps, and have shown that their cross-correlation with convergence
maps from these simulations agree with our theoretical cross-
correlation calculations.

We proceeded to study the effect of HI foreground removal on
the two-point functions. We model the effect of foreground removal
by removing the mean along each line of sight, which effectively
represents the largest radial mode, from our HI maps, following
the method of Cunnington et al. (2019b). We then measure the
post-removal cross-power; we find that the foreground removal
modestly reduces the xHI power spectrum signal, by a factor
Aclean(zZHI> 2k, Zmax)- In the case of forthcoming HI experiments that
will measure HI at z,,,x < 1, Acjean(zar < 0.5, 2, = 0.78, Zmax = 1)
is approximately 2.5 for our catalogues.

In the following section, we utilized the Fisher matrix formalism to
forecast best-case cosmological constraints for the convergence-HI
probe, for the maximal case of full sky and subdominant telescope
noise, but while including foreground removal. We calculated the
Fisher matrix for x«, HIHI, and «HI two-point functions using the
measured covariance matrices from Section 3.

We find that a single redshift slice of the HI intensity map and x can
constrain cosmological parameters for known bias (see Fig. 7), but
when by is a further parameter (or several), the few-slice 3 x 2 point
functions do not sufficiently constrain the cosmological parameters
compared to current cosmological surveys such as Planck and DES
(Abbott et al. 2019; Planck Collaboration I 2020).

Hence, several cross-bin correlations are required in order for this
probe to be of interest. In Section 4.3, we have explored the use of
several redshift bins for HI and convergence, together with the effect
of by on cosmological constraints. We consider both the current
state of art where £,,,x < 400, and the futuristic case where £,,x >
1000. Both cases show that a set of two-point functions constrains the
uncertainty in cosmological parameters to a comparable level with
current experiments. All FoMs show that by including the cross-
correlation of a lensing survey with the 21cm signal, we can improve
the HI auto constraints.

We then examined the impact of a cut-sky survey. In this analysis,
we evaluated the two-point statistics based on a 300 deg? observed
patch of sky. Due to the statistical incompleteness, detecting cosmic
signals becomes marginal in this context.

In Section 5.1, we explore the instrument noise affecting lensing
and HI galaxy surveys. The thermal noise of a single-dish survey
was calculated. In this study, we focus on instruments similar to
MeerKAT for radio observations and KIDs-like surveys for optical
counterparts. Our analysis demonstrates the feasibility of detecting
the «HI cross-correlation, provided we have sufficient sky coverage
and long exposure times for the radio measurements.

Even though we have shown positive results for two-point statistics
between the « field and HI intensity map, there are important caveats
that remain to be explored further:

(i) In this study we have created HI intensity maps based on the
assumption that they are linearly biased in relation to overdensity
Sm- A more realistic study should construct HI intensity maps by
assigning HI mass My to simulated halo catalogues. Also in future
work the generated HI maps will be compared in detail to real data.

MNRAS 532, 996-1009 (2024)

(ii) We have approximated the foreground cleaning by removing
the mean fluctuation along the line of sight, which effectively
represents the largest radial mode. More detailed emulation of the
foreground cleaning will be studied in future.

(iii) The cosmological and by; constraint predictions have been
obtained using the idealized Fisher matrix analysis; for real data,
Markov Chain Monte Carlo methods are required to deal with non-
Gaussian likelihoods and realistic degeneracies between parameters.

(iv) Only the ACDM model is considered in these parameter
constraints. Further extensions (e.g. wCDM) should be considered
in further work.

(v) Only two-point statistics have been explored in this research.
However the study by Schmit, Heavens & Pritchard (2019) shows
that combining the bispectrum and power spectrum can reduce the
error of cosmological parameters by an order of magnitude compared
to Planck.

(vi) This study has only explored the low-redshift two-point
functions. The high-redshift probes at the time of the Epoch of
Reionization and the CMB are not taken into account. It is an
interesting matter for future work to consider whether two-point
statistics between the EOR HI and CMB weak lensing can also be
measured.

In conclusion, k—HI cross-correlations are an intriguing additional
probe for cosmology, which are not destroyed by foreground removal.
This probe will be available for measurement with forthcoming HI
and lensing surveys this decade.
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