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In this work we study the “ungravity” modifications to the Friedmann equations. The “ungravity”
contributions are encoded in a modified entropy-area relation. To derive the modified Friedmann 
equations we use the first law of thermodynamics and the new entropy-area relationship. From the 
modified Friedmann equations (in the late time regime) we find an effective cosmological constant. 
Therefore, this simple model can provide an “ungravity” origin to the cosmological constant �.
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1. Introduction

The discovery of the late time acceleration of the Universe has 
deeply impacted our understanding of fundamental physics. If we 
propose a solution in the context of general relativity (GR) we ei-
ther assume the existence of a primordial energy density or a new 
type of matter (not contained in the SM) with the property of 
having a negative pressure. In the standard model of cosmology 
(�CDM), the late time acceleration is attributed to a cosmolog-
ical constant �. Although the �CDM model is compatible with 
observations there are some serious problems. Recently there is a 
growing tension between the Planck observations of the cosmic 
microwave background anisotropies and the local measurement 
of the Hubble constant [1–5]. Moreover, there are inconsisten-
cies with traditional quantum field theory [6,7] (these problems 
have been addressed by different approaches [8]). Also, there is 
no known mechanism that guarantees a zero or nearly zero value 
for � in a stable vacuum, no explanation of the similar value be-
tween the associated energy density of � and the energy density 
of present day matter. Finally, one of the biggest issues, is the 120 
orders of magnitude discrepancy between the predicted vacuum 
energy density derived from QFT and the energy density associated 
to �. Of course, if we entertain the possibility that the problems 
related to � and the current acceleration are consequence of the 
poor understanding of gravity and therefore a reformulation of 
gravity is warranted.
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A recent approach for understanding the incompatibility of 
gravity with quantum mechanics, is to consider the gravitational 
interaction as an emergent phenomenon. Starting with an entropy 
proportional to the area, in [9] Einstein’s equations are derived, 
verifying that one can consider GR as an entropic force. Interest 
on the entropic origin of gravity was rekindled by Verlinde [10]. 
He explored an entropic origin to Newtonian gravity and also pro-
posed that gravity is an entropic forces.1 Considering that in this 
formulation Newtonian gravity has an entropic origin, by introduc-
ing changes to the Bekenstein-Hawking entropy-area relation one 
can induce modifications to Newtonian gravity (see [11] and ref-
erences therein). In a more recent paper [12], Verlinde claims that 
the dark matter and dark energy problems can be simultaneously 
solved in the emergent formulation of gravity. The dark matter 
predictions for this theory have been put to test in several works 
[13,14]. Even if Verlinde’s proposal is not a rigorous formulation, 
it has some intriguing ideas that warrant a more detailed explo-
ration. One interesting idea is the connection of entropic gravity to 
the dark matter and dark energy problems, giving a new approach 
to study dark sector of the Universe.

In the last decade, the presence of “unparticle” degrees of free-
dom in low energy physics was extensively explored in the con-
text of particle physics. These “unparticles” are originated from a 
UV scale invariant sector that couples to the SM. Scale invariant 
QFT’s represent massless particles, if we extend the notion of scale 
invariance to include a new kind of “particle”, it will have a contin-

1 In this context, gravity is similar to the emergent forces that are present in 
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uous mass spectrum and therefore no definite mass, for this reason 
this extension is known as “unparticle” sector [15]. The effects of 
the “unparticle” sector are easily calculated and can be probed in 
current accelerators, unfortunately the search for these effects has 
been negative. Nonetheless, one can explore this new sector in the 
context of gravity. There have been attempts to study “unparticle”
effects in connection to Newtonian gravity. The analysis is based on 
scalar modifications [16] to the gravitational potential. Also in [17], 
the authors study the effects of a scalar “unparticle” in the cos-
mological scenario. This approach introduces an “unparticle” scalar 
field. Because they do not consider an “unparticle” to the graviton 
field, they are not extensions to GR (we do have to clarify that 
in [15] they are working with extension to Newtonian gravity so 
the modifications can be considered extensions to gravity). If we 
want to consider “unparticle” extension to GR we need to assume 
the existence of “ungravitons”. In [18], the authors find an effec-
tive action that allows the study of gravitational effects beyond 
the weak field approximation. Moreover, in [19] using an effec-
tive action that incorporates “unparticle” effects to GR, the authors 
study the ungravity effects to Schwarzschild black hole and derive 
its temperature and entropy. They find that the entropy area rela-
tionship [19], is given by

S = kB c3

4h̄G

(2
√

π R)2−2dU

dU �U
AdU . (1)

Inspired in these ideas, we explore the late time behavior of the 
Friedmann-Robertson-Walker (FRW) universe in the context of en-
tropic gravity, by considering the effects of the “ungravity” sector. 
For this, we will calculate the modification to Friedmann equations 
and analyze it late time behavior. In order to calculate the modi-
fications to the Friedmann equations, we will use the first law of 
thermodynamics [20,21] in conjunction with a modified entropy-
area relationship. The modified entropy-area relationship, was de-
rived from the “ungravity” effective action for the Schwarzschild 
black hole. Finally, analyzing the late time behavior we find an 
effective cosmological constant in terms of to the “ungravity” pa-
rameters.

The paper is organized as follows. In section 2, we briefly re-
view the ungravity modification to gravity and the new entropy 
area relationship and derive the modified Friedmann equations. 
Section 3, is devoted for discussion and final remarks.

2. The ungravity Friedmann equations

As is well known the Friedmann equations together with the 
continuity equation, is all that is needed to study the dynamics of 
the universe. Using the Clausius equation and a linear relationship 
between the entropy and the area, one can derive Friedmann equa-
tions [20]. To study modifications to the Friedmann equations, we 
can start from a modified entropy-area relationship and derived 
the modified equations [21]. In this approach the “new physics”
are encoded in the entropy-area expression. The ungravity effec-
tive action is composed by the actions for classical matter, classical 
gravity and “quantum” ungravity. In [19], the authors consider this 
model as a perturbation of Einstein gravity. The effective action 
for the ungravitons extends Einstein-Hilbert action to include un-
graviton dynamics. Nonetheless, when solving the field equations, 
we can leave the l.h.s. to have the usual form for Einsteins equa-
tions and put the ungravity terms together with the usual matter. 
Therefore they can solve the model as usual gravity coupled to ex-
otic matter.

To explore the effects of the “ungravity sector to cosmology, 
we use an entropy-area relationship that includes the “ungrav-
ity” degrees of freedom [18]. From the effective action for the 
2

Schwarzschild black hole, the “ungravity contributions to the tem-
perature and entropy of the black-hole are calculated [19]. The 
temperature for the Schwarzschild black hole after incorporating 
the “ungravity effects is

TU = h̄c

4πkBr̃h

⎡
⎢⎣1 + 2(2dU − 1)�U

1 + �U

(
R
r̃h

)2dU −2

(
R

r̃h

)2dU −2

⎤
⎥⎦ , (2)

where �U is defined as

�U = 2

π2dU −1

�(dU − 1/2)�(dU + 1/2)

�(2dU )
, (3)

and R is

R = 1

λU

(
MPl

MU

)1/(dU −1)

. (4)

The constant, MU is the “ungravity” coupling constant and is re-
lated to the interaction between the “ungraviton” and the usual 
matter. Also, λU is the critical energy scale at which the scale 
invariant properties of “ungraviton” emerge. Finally, dU is the scal-
ing parameter2 that labels the continuous mass spectrum of the 
“ungraviton” and can take values 1 < dU < 2. The thermodynamic 
energy of the system as a function of the horizon is

U (r̃h) = r̃h
c4

2G

⎛
⎜⎝ 1

1 + �U

(
R
r̃h

)2du−2

⎞
⎟⎠ , (5)

from which we obtain

dSU = d(A)
kB c3

4h̄G

⎛
⎜⎝ 1

1 + �U

(
R
r̃h

)2dU −2

⎞
⎟⎠ . (6)

Finally, integrating the previous equation we get Eq. (1), the “un-
gravity” entropy. This new entropy-area relationship was used to 
obtain the “ungravity” modifications to Newtonian gravity [22]. The 
correction was derived using the entropic approach and is consis-
tent with the result obtained by only considering the “unparticle”
contribution [23]. This gives confidence that the contributions de-
rived from an entropic formulation are encoded in the modified 
entropy-area relationship. Going back to Eq. (1), this expression in-
cludes the “ungravity” effects. Although for dU = 1 the entropy and 
temperature have the same functional form as in GR,3 dU = 1 is 
not valid value for this theory (for example, Eq. (4) is not defined). 
Therefore, dU = 1 is a not regular limit for the theory.

To derive the “ungravity” Friedmann equations we will follow 
the approach in [20], where the Friedmann equations are calcu-
lated using the Clausius equation and the entropy-area relation-
ship evaluated at the apparent horizon. This approach allows us 
to introduce modifications to the Friedmann equations from the 
entropy-area relationship.

We start with the FRW metric,

ds2 = −dt2 + a2(t)

(
dr2

1 − κr2
+ r2d�2

)
, (7)

comparing with ds2 = habdxadxb + r̃2d�2, we can identify hab . Fol-
lowing the procedure in [20], we introduce the work density W
and the energy-supply vector �

2 Although we are restricting to 1 < dU < 2, higher values can’t be dismissed.
3 For dU = 1, the temperature is T = h̄c

2πkB r̃H
and the entropy is S = kB c3

4h̄G A. Al-
though these expressions have the correct functional form, we must remember that 
dU = 1 is not valid.
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W = −1

2
T abhab, �a = T b

a ∂br̃ + W ∂ar̃, (8)

where r̃ = a(t)r and Tab is the projection of Tμν in the normal 
direction of the 2-sphere. Using the energy-momentum tensor for 
a perfect fluid, the work density and the energy supply vector are

W = 1

2
(ρ − P ), (9)

�a =
(

−1

2
(ρ + P )Hr̃,

1

2
(ρ + P )a

)
.

The amount of energy δQ crossing the apparent horizon during 
the time interval dt is given by

δQ = −A� = A(ρ + p)Hr̃hdt, (10)

where A = 4π r̃2
h is the area of the apparent horizon and r̃h is the 

radius of the apparent horizon

r̃h = 1√
H2 + κ/a2

, (11)

the apparent horizon is obtained from hab∂ar̃∂br̃ = 0.
From this point forward we will use the area-entropy relation-

ship defined at the apparent horizon, this area-entropy relation-
ship is analogous to one we get at the black hole horizon. Before 
deriving the Friedman equations that include the ungravity contri-
bution, we will derive the Friedmann equations from the Hawking-
Bekenstein entropy.

From the Clausius relation δQ = TU dS and the continuity equa-
tion for a perfect fluid ρ̇ = −3H(ρ + p), we get

8πG

3c4

∂ρ

∂t
= d(4π/A)

dt
. (12)

After integrating both sides of the equation and substituting the 
radius of the apparent horizon Eq. (11), we recover the Friedman 
equation.

H2 + κ

a2
= 8πG

3c4
ρ. (13)

This is the usual Friedmann equation one derives from GR, more-
over, to have a cosmological constant it has to be introduced by 
hand. To study the effects of the ungravity contribution, we follow 
the same procedure for arbitrary dU (as already mentioned we will 
restrict for 1 < dU < 2). As before, using the Clausius relation and 
the entropy area relationship, we now get

8πG

3

∂ρ

∂t
= (14)

c4

2

[
1 + 2(2dU − 1)

1 + �U (R2(4π/A))dU −1
�U

(
R2 4π

A

)dU −1
]

×
[

1

1 + �U (R2(4π/A))dU −1

]
d(4π/A)

dt
.

Integrating both sides of the equation we get

8πG

3
ρ = c4 v

2�α
u R2

F (2)
1

(
1,α;1 + α;−v1/α

)
− c4(2dU − 1)

�α
u R2

αv

(1 + v1/α)

+ αc4(2dU − 1)ν

�α
u R2

F (2)
1

(
1,α;1 + α;−v1/α

)
, (15)

where α = 1/(dU − 1) and v = 4π�α R2 A−1.
U

3

F (2)
1 (a, b; c; z) is the hypergeometric function, for |z| < 1 is de-

fined by the series expansion

F (2)
1 (a,b; c; z) =

∞∑
n=0

�(a + n)�(b + n)�(c)

�(a)�(b)�(c + n)�(n + 1)
zn. (16)

Using the area of apparent horizon is A = 4π/(H2 + k/a2) we fi-
nally arrive at

8πG

3
ρ = − c4(2dU − 1)

dU − 1

H2 + κ
a2

1 + �U

[
R2

(
H2 + κ

a2

)](dU −1)
(17)

+ c4(5dU − 3)

2(dU − 1)

∞∑
n=0

(−1)n�n
U R2n(dU −1)

(dU − 1)(n + 1
dU −1 )

(
H2 + κ

a2

)n(dU −1)+1
.

To study the dynamics of the Universe we need to introduce 
the appropriate matter content, (i.e., radiation, dust, scalar field, 
etc.) and solve the resulting equations. As we are interested in a 
more generic result that does not depend on the particular type 
for the matter density and pressure we don’t give a particular type 
of matter. Because Eq. (17) is very complicated, we will make some 
assumption and approximations.

We will take dU = 3/2, as for this case the entropy will scale 
with the volume. Entropy terms that scale on the volume are re-
lated to non gravitational degrees of freedom and are not present 
in GR (it is worth mentioning that volumetric corrections to the 
entropy of black holes have been derived in loop quantum gravity 
[24]). Moreover, in [12] it is argued that volumetric contributions 
to the entropy term can be related to dark energy. After taking 
dU = 3/2 we have

8πG

3
ρ = 9c4

2

∞∑
n=0

2(−1)nπ−2n Rn

n + 2

(
H2 + κ

a2

) n
2 +1

− 4c4
H2 + κ

a2

1 + π−2
[

R2
(

H2 + κ
a2

)]1/2
. (18)

This modified Friedmann equation was originally derived in terms 
of the hypergeometric function, therefore the convergence of r.h.s. 
of Eq. (15) is guaranteed for |vdU −1| < 1, therefore �U R2(dU −1)(H2 +
k/a2)dU −1 < 1.

For dU = 3/2, the constraint takes the form π−2 R(H2 +
k/a2)1/2 < 1, from here on the units we are employing we have 
c = 1. In this approximation, to leading order we get

8πG

3
ρ = 9

2

⎛
⎜⎝(

H2 + κ

a2

)
−

2R
(

H2 + κ
a2

)3/2

3π2

⎞
⎟⎠ − 4

(
H2 + κ

a2

)
.

(19)

Now we solve for 
(

H2 + κ
a2

)
and get

H2 + κ

a2
= π2(π2 + 3

√
M2 + M3)

108R2
− M1

8748π2 R2 3
√

M2 + M3
,

(20)

where M1, M2, M3 are defined as follows

M1 = 93312π5 gρR2 − 81π8, (21)

M2 = 497664g2ρ2 R4 − 1728π3 gρR2 + π6

M3 = 13824
√

1296g4ρ4 R8 − π3 g3ρ3 R6.
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As we are interested in the late time evolution,4 we analyze the 
limit t → ∞, this is equivalent to the limit ρ → 0,

H2 + κ

a2
= π4

36R2
, (22)

from this equation in this limit, we can define an effective cosmo-
logical constant.

Finally, the cosmological constant (for the case dU = 3/2) in 
terms on the “ungravity” parameters is

�ef f ∼ λ2
U

(
MU

Mpl

) 2
du−1

. (23)

3. Discussion and final remarks

In this work, we consider the “unparticle” effects in the cos-
mology. This is done in order to try to answer the question, is 
“unparticle” physics relevant at the cosmological scale?. The result 
of the previous section point to a positive answer. In particular 
it gives insight on a possible origin to the cosmological constant 
from the “ungravity” sector. So let us take seriously this possibility 
and consider that the cosmological constant is originated from the 
“ungravity” sector.

We can impose the current value of � and find a relationship 
between MU and λU . In Fig. 1, the lines represent the values of λU
and MU that give the correct value for the cosmological constant 
�. For the values of dU considered in Fig. 1 we can rewrite the 
effective cosmological constant as �ef f ∼ 1

R2 . Then for the case 
dU = 3

2 we have can conclude that the degrees of freedom give an 
effective cosmological constant.

Now we can ask, is Eq. (23) is valid for other values of dU ? If 
the answer is positive, then this result is more or less general for 
the “ungravity” sector, if the answer is negative, at least it is con-
sistent with the fact the volumetric contributions to the entropy 
are related to the dark energy sector.

For dU = 4
3 Eq. (23) holds, but for arbitrary values of dU an 

analytical solution for �ef f in terms of MU and λU can not be 
found. Nonetheless, if we consider that for dU = 3

2 + ε with ε a 
small number the functional behavior of �ef f as a function of R is 
the same (we know it holds for dU = 4

3 ), therefore we can argue 
that the cosmological constant from the “ungravity” sector is

�ef f ∼ 1

R2
. (24)

Of course there are couple of caveats to consider. First, MU and λU
are not necessarily the same that appear in the “unparticle” exten-
sions of the standard model or the “unparticle” scalar extensions 
to Newtonian gravity and we have to be careful as we are lack-
ing a fully consistent formulation of “unparticle” physics and the 
problems are inherited by the “ungravity” theory.

Therefore, if we want to attribute the dark energy sector of the 
Universe to the gravitational interaction, we need gravitational de-
grees of freedom whose entropy scales as S ∼ Am with m > 1. 
Unfortunately this necessary implies a violation of the holographic 
principle, this is rather reasonable principle and systems domi-
nated by gravity are expected to fulfill it [25]. Therefore one way 
out of this conundrum is to consider the “ungravity” sector. This 
sector can violate the holographic principle and has an entropy 
that scales5 as S ∼ AdU with 1 < dU < 2. With this in mind we can 

4 In this model, there is a transition between the matter dominated area and the 
dark energy (or ungravity) dominated area (for late times there is an effective cos-
mological constant). The early time evolution will not differ much from the results 
of �C DM .

5 The expression for the entropy is obtained by integrating Eq(6).
4

Fig. 1. Valid region of parameters λU and MU for different values of dU in order to 
have the values for the cosmological constant.

argue that in the context of an “ungravity” theory, we can obtain 
an effective cosmological constant that depends on the “ungravity”
coupling constant MU and the critical energy scale λU that is the 
scale were invariant properties of “ungraviton” emerge.

In summary, we have found an effective cosmological constant 
in the late time limit. As we are interpreting the effects from the 
ungravity sector as “dark energy”. This “dark energy” (or ungravity 
effects) are only constant in the asymptotic limit, but in general 
is a dynamical dark energy. Consequently, it will have effects on 
the H0 tension. Can this model solve the H0 tension? To answer 
this question, we can follow a similar approach as in [1]. We will 
need to analyze the perturbations starting from the full effective 
theory because it is not clear how derive them from the formalism 
we have used. This is an interesting line of research and will be 
reported elsewhere.
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