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We analyze the nonlinear classical effects of the X=� radiation produced by Thomson/Compton

sources. We confirm the development of spectral fringes of the radiation on axis, which comports

broadening, shift, and deformation of the spectrum. For the nominal parameters of the SPARC-LAB

Thomson scattering and of the European Proposal for the gamma source ELI-NP, however, the radiation,

when collected in the suitable acceptance angle, does not reveal many differences from that predicted by

the linear model and the nonlinear redshift is subdominant with respect to the quantum recoil. An

experiment aimed to the study of the nonlinearities is proposed on the SPARC-LAB source.

DOI: 10.1103/PhysRevSTAB.16.030706 PACS numbers: 41.60.Ap

I. INTRODUCTION

The availability of high-intensity laser pulses and high-
brightness electron beams generated by linear accelerators
has given impulse to the project and development of
Thomson/Compton [1–4] sources, which rely on the back-
scattering between the laser light and the relativistic parti-
cle bunch. The radiation obtained in this way is in the range
of x and � rays and has properties of wide tunability, high
spectral density, ultrashort time duration, and large degree
of transverse coherence. These characteristics rend the
Thomson/Compton sources suitable for several applica-
tions such as advanced imaging techniques [5,6] and nu-
clear resonant fluorescence, resulting in a valid alternative
to synchrotrons [7], free-electron lasers [8–11], and high-
order harmonic generation in gases [12].

The Thomson/Compton X-source PlasmonX SPARC-
LAB [13–15] at the National Laboratory of Frascati
(INFN-LNF) is based on the backscattering of the light
pulse of the intense Ti:sapphire laser FLAME [16] with the
high-brightness electron beam produced by the photoin-
jector SPARC [17]. The final electron beam energy Ee at
the exit of the linac ranges between 30 and 270 MeV,
thereby permitting the production of Doppler blueshifted
hard x rays with wavelength �T � �L=ð4�2Þ (�L ¼
800 nm is the wavelength of FLAME and the Lorentz
factor of the electrons � � 60) well below 1 Å, corre-
sponding to photon energies Eph ¼ hc=�T (h is the

Planck constant) between 20 and 500 KeV.
Since the radiation of Thomson/Compton sources covers

a large frequency range, within the framework of the
Extreme Light Infrastructure (ELI) project, a Compton �
rays source is foreseen. The first possible electron working

points studied by the European Proposal for ELI-NP [18]
will be between 360 and 750 MeV. Colliding with laser
photons of 2.4 eV, these beams will generate � photons of
wavelengths shorter than 10�13 m with energies up to
20 MeV.
In all X=� source implementations, a particularly im-

portant issue is the dimension of the spectral bandwidth.
While in the biomedical imaging field relative bandwidths
of few per cent are considered viable, in the nuclear
applications of � rays the requirements are much more
demanding and this value drops down to the order of 10�3,
so that the maximum care must be payed in taking under
control the band enhancement. The most important factors
that contribute to enlarge the spectrum are acceptance,
electron emittance, and energy spread as well as diffrac-
tion, natural bandwidth, and time duration of the laser
pulse, while, instead, collective effects tend to decrease it
[19]. Nonlinear effects are another significant cause of
bandwidth broadening. When the laser intensity is in-
creased, various nonlinear phenomena emerge in the de-
scription of the electron trajectories and the consequent
radiation. Nonlinear effects will therefore play key roles in
future tabletop devices and x=�-ray sources, where several
Joules of laser energy will be focused on spot sizes of few

wavelengths, with normalized laser parameters a0 ¼ �LeE0

2�mc2

close or beyond one (E0 is the peak value of the electric
field, e and m the electron charge and rest mass, and c the
speed of light).
At electron energies below 1 GeV several characteristics

of the radiation can be evaluated by means of the well-
known classical procedure [20–22].
Classical nonlinear effects concur with the quantum

recoil in changing the resonant wavelength. They induce
shifts and deformations of the spectrum on the fundamen-
tal frequency and the growth of harmonics. They can be
calculated in closed form under the hypothesis that the
laser is a plane wave [13,23]. The presence of a well
defined longitudinal amplitude modulation [24,25]
has been introduced to evaluate the distortions on the
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fundamental and the rise of harmonics. Other approaches
consist in evaluating the shift by means of the decrease in
velocity of the electron due to the ponderomotive action of
the laser field [26], or in calculating numerically the tra-
jectories and inserting them into the classical radiation
integral [25,27,28].

In this paper, we study the occurrence of the nonlinear
effects in the classical Thomson electron-photon interac-
tion. We have investigated realistic situations, covering the
case of PlasmonX, where the Ti:sapphire laser (5 J, 6 ps)
interacts with electron beams of relatively low energy and
the case of the European proposal for ELI-NP [29], where
the electrons are significantly more energetic. The depen-
dence of the nonlinear terms on the intensity of the laser
pulse and the consequent spectral distortions on axis, ap-
pearing in the form of a sequence of fringes, have been
analyzed. We have applied the stationary phase method to
the integral expression of the double differential spectrum
and given a closed form of it in terms of standard tran-
scendental functions. With the aid of this analytical for-
mula, we have connected the occurrence of the fringes to a
chirp in the emission due to the variation of the electron
Lorentz factor along the trajectory. We have provided the
X=� spectral distributions, weighted the importance of
the nonlinear effects on the bandwidth, and compared the
nonlinear shift in wavelengths to the quantum shift due to
the electron recoil. The shape of the radiation spectrum
produced on axis by a single electron appears affected by
nonlinearities, as already presented in Ref. [3]. We show,
on the contrary, that the integration over the acceptance
angle and the extension to realistic electron beams permit
one to exclude a substantial enhancement of the bandwidth
in the range of parameters of both PlasmonX and ELI-NP
sources, ensuring that a very thin bandwidth can be
achieved. This conclusion is very important in view of
the future applications of this kind of source. Since the
problem of the nonlinear enhancement of the bandwidth is
important in Thomson/Compton sources, and since the
commissioning of PlasmonX is imminent, at the end of
the paper, we propose and quantify a determinant experi-
ment on the SPARC-LAB source for studying the non-
linear characters of the radiation spectrum.

II. THE MODEL EQUATIONS

The double differential energy spectrum vs the fre-
quency ! and solid angle�, as well as the photon number
at all points of the collector, are given by the well-known
radiation integral [20]:

d2W

d!d�
¼ @!

d2N

d!d�

¼ e2

4�2c

��������
Z þ1

�1
dtei!t

n� f½n� �ðt0Þ� � _�ðt0Þg
½1� n � �ðt0Þ�3

��������
2

;

(1)

where n is the unit vector of the emitted radiation (i.e., the
direction of the observer), � is the normalized electron

velocity, _� its acceleration, t0 ¼ t� 1
c jnr� rðt0Þj the re-

tarded time and cgs units are used throughout. Equation (1)
permits the calculation of the total number of photons
collected on the screen vs frequency

dN

d!
¼

Z
d�

d2N

d!d�
(2)

as well as the (overall) photon number in one interaction:

N ¼
Z

d!d�
d2N

d!d�
: (3)

The laser pulse is described by the usual complete paraxial
form [30]. The classical radiation reaction is considered
negligible and is not taken into account in the equations of
motion.
We consider the case of one electron subject to the laser

action in the backscattering situation and in a head-on
collision with the laser pulse. The equations of motion
have the form

dpx

dt0
¼ �Kgðt0Þ

�
1þ pz

�

�
;

dpy

dt0
¼ 0;

dpz

dt0
¼ Kgðt0Þpx

�
;

(4)

where p ¼ �� and K ¼ eE0=mc. The electron starts at

t0 ¼ 0 from a point of coordinates xð0Þ ¼ 0, yð0Þ ¼ 0 and
zð0Þ a (large) negative number. The initial value of the
electron momentum is p¼ð0;0;p0Þ with p0 ¼ �0�z0 > 0,

where �z0 ¼ �zð0Þ and �0 ¼ �ð0Þ. The function gðt0Þ
appearing in Eq. (4) is directly connected to the form of
the laser pulse which is supposed to be polarized along the
x axis and to move with velocity c on the (negative) z axis.
The laser electric field is written as

Eðx; y; z; tÞ ¼ E0gðx; y; z; tÞex
¼ E0Gðx; y; z; tÞ

�
sin�� z

zR
cos�

�
ex; (5)

where

Gðx;y;z;tÞ¼
Aðzþctþzð0Þ

�z0
Þ

1þ z2

z2R

e��2
?fðx2þy2Þ=½1þðz2=z2RÞ�g; (6)

�ðx; y; z; tÞ ¼ kL

�
zþ ctþ zð0Þ

�z0

�
þ �2

?ðx2 þ y2Þ zzR
z2 þ z2R

(7)

and kL and !L ¼ ckL are the laser wave number and
angular frequency. The function gðt0Þ appearing in (4) is
gðt0Þ � g½xðt0Þ; yðt0Þ; zðt0Þ�, where xðt0Þ, yðt0Þ, zðt0Þ give the
instantaneous position of the electron, zR ¼ k=2�2

? is the

Rayleigh length, and �? ¼ 2
w0
, w0 being the rms spot
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diameter. The function A > 0 is an arbitrary, slowly vary-
ing function which depends on the form of the longitudinal

laser pulse modulation. In the Gaussian case Aðzþ ctþ
zð0Þ
�z0

Þ ¼ e��2
kfzþctþ½zð0Þ=�z0�g2 , where �k ¼

ffiffi
2

p
c�� and �� is the

pulse rms time duration. We are assuming, as can be seen
from (6), that the laser waist is at z ¼ 0, while the peak

value of the pulse at the initial time is at z ¼ � zð0Þ
�z0

, so that

the interaction with the electron is taking place around

z ¼ 0 at the somewhat later time t0 ¼ � zð0Þ
c�z0

> 0 with

the laser at its maximum focusing. As in Ref. [24], we
shall consider the spectrum only on the z axis, i.e., the unit
vector n in (1) is n ¼ ez.

A. Explicit form of the spectrum

The equations of motion (4) are more conveniently
integrated by using the phase

’ðt0Þ ¼ kL½zðt0Þ þ cðt0 � t0Þ� (8)

as the new independent variable, with ’ð0Þ ¼ ’0 ¼
kL½zð0Þ � ct0�. Likewise, if we change from the laboratory
time t to the retarded time t0 and then again to the variable
’ in the integral (1), we can write the double differential
spectrum in the closed form:

d2W

d!d�
¼ e2a20

16�2c�2
0

jIþ þ I�j2; (9)

where a0 ¼ eE0=mc!L is the laser parameter, �0 ¼
�0ð1þ �z0Þ and

I� ¼
Z 1

�1
d’uð’Þ

�
z

zR
� i

�
Gð’Þeði=!linÞ��ð’Þ; (10)

where

uð’Þ ¼ 2� 2�0�ð’Þ þ �2
0

½2�ð’Þ � �0�2
; (11)

�ð’Þ ¼ �0 þ a20F
2ð’Þ

2�0

; (12)

�� ¼ ð!�!linÞ’þ a20!Hð’Þ

� �2
?!lin

x2ð’Þzð’Þ=zR
1þ z2ð’Þ=z2R

; (13)

Hð’Þ ¼
Z ’

’0

d’0F2ð’0Þ; (14)

Fð’Þ ¼
Z ’

’0

d’0gð’0Þ; (15)

the last two transcendental functions depending on the
form of the laser pulse modulation along the direction
of propagation and xð’Þ and zð’Þ are known from the
electron trajectory. The frequency

!lin ¼ !L

1þ �z0

1� �z0

¼ !L�
2
0 (16)

is the usual Doppler shifted resonant frequency on axis.

B. Gaussian laser pulse with w0 � �L

In the case of a Gaussian laser pulse with a very large
spot diameter w0 � �L (and therefore very long Rayleigh
length zR), the integrals in (9) assume the form

I� ¼ �i
Z 1

�1
d’uð’Þe��2’2þði=!linÞ½ð!�!linÞ’þa2

0
!Hð’Þ�;

(17)

while the transcendental function F becomes

Fð’Þ ¼
Z ’

’0

d’0 sin’0e��2’02
(18)

with � ¼ ffiffiffi
2

p
=!L��. If � 	 1 and ’0 ! �1 the function

F assumes the approximate expression:

Fð’Þ � � cos’e��2’2

and therefore

Hð’Þ� 1

4�

ffiffiffiffi
�

2

r
½1þerfð ffiffiffi

2
p

�’Þ�þ1

4
sin2’e�2�2’02

: (19)

The function uð’Þ can be approximated with its linear
value u0:

u0 ¼ 1þ �z0

1� �z0

¼ �2
0 (20)

and, by changing to the slow variable y ¼ �’ and using the
Bessel identity

eix sin	 ¼ X
n¼�1;...1

JnðxÞein	; (21)

we get

I� ffi u0
�

X
n¼�1;...1

=�;n; (22)

where

=�;n ¼ �i
Z 1

�1
dye�y2Jn

�
a20!

4!lin

e�2y2
�
eði%�;n=�!linÞ (23)

with

%�;nðyÞ ¼
�
½!þ ð2n� 1Þ!lin�yþ a20!

4

ffiffiffiffi
�

2

r
erfð ffiffiffi

2
p

yÞ
�
:

(24)

When � 	 1, the integrals in the previous equation (24)
can be approximated by using the method of stationary
phase, applied to those phases %�;n that possess stationary

values over the range of integration. We can write at last
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d2W

d!d�
¼ e2a20�

2
0

16�2c�2

��������
X

n¼1;...;1
<nð!Þ

��������
2

; (25)

where

<nð!Þ ¼ ð�Þn
Z 1

�1
dy�nðyÞe�y2þ½ið%þ;n�4n!linyÞ=�!lin�;

(26)

and

�nðyÞ ¼ Jn

�
a0!

4!lin

e�2y2
�
þ Jn�1

�
a0!

4!lin

e�2y2
�
: (27)

The integrals <nð!Þ assume large values only within the
frequency bands:

!lin

ð2n� 1Þ
1þ a20=2

<!< ð2n� 1Þ!linðn ¼ 1; 2; . . .Þ: (28)

C. The fundamental frequency interval n¼ 1

If the frequency bands around the single odd harmonic
frequencies !n ¼ ð2n� 1Þ!lin do not superpose, or the
superposition is unimportant, the double differential spec-
trum within the fundamental frequency region can simply
be written as

d2W

d!d�
¼ e2a20�

2
0

16�2c�2
j<1ð!Þj2; (29)

where

<1 ¼
Z 1

�1
dy½J0 þ J1�e�y2þið%þ;1�4!linyÞ=�!lin (30)

and the argument of the Bessel functions is ð!�!linÞ=
ð2!linÞ. In the linear limit (a0 	 1), the double differential
spectrum becomes

d2W

d!d�
¼ e2a20�

2
0ð1þ �z0Þ2
16�c�2

e���2ð!�!linÞ2=4�4
0
ð1þ�z0Þ4 :

(31)

If a0 is a very small number, the spectrum has a purely
Gaussian form around the linear resonance frequency !lin

as given in (16). The other two basic quantities determining
the form of the spectrum are �0 and the paraxial large
number !L��. When �0 increases, !lin increases as �2

0

and the spectrum moves toward higher frequencies, while
the width and the peak value of the Gaussian increase.
Likewise, when the time duration �� of the laser pulse
increases, the Gaussian spectrum becomes more and more
narrow with its peak value increasing. It is worth noting
that, according to (31), the two parameters a0 and !L��
act with contrary trend. We therefore should expect non-

linear effects not only in those cases when a0 ¼ eE0

!Lmc ¼
4:3 �L

w0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ �z0Þ2 EðJÞ

��ðpsÞ
q

is of the order of or larger than 1,

but also when a0 < 1 and the paraxial number !L�� is

sufficiently large, to compensate at least partially for the
smallness of a0 [26]. The stationary values of the phase in
Eq. (30) ystð!Þ are given by

e�2y2st ¼ !lin �!

!a20=2
; (32)

where ! must satisfy relation (28) with n ¼ 1.
For each value of the frequency inside this range, the

phase presents two stationary values. They tend to super-
pose when ! approaches the limit value !lin=ð1þ a20=2Þ
from the right, thereby giving rise to a stationary value of
higher order [31,32].
Considering only the frequency interval where the two

stationary points �ystð!Þ are well separated, we can write
the following expression:�

d2W

d!d�

�
approx

¼ e2�2
0

4�c�
Mð!Þcos2½c ð!Þ� (33)

with

Mð!Þ ¼ !lin

!

½J0 þ J1�2
yst

; (34)

c ð!Þ ¼ 1

�

��
!

!lin

� 1

�
yst þ a20!

4!lin

ffiffiffiffi
�

2

r
erfð ffiffiffi

2
p

ystÞ
�
� �

4
;

(35)

ystð!Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� ln

�
!lin �!

!a20=2

�
1=2

s
> 0: (36)

III. NUMERICAL DATA

A. Broadening and deformation of the spectrum

With increasing nonlinearity, the spectrum on axis
changes its form starting with more or less visible distor-
tions of the initial linear Gaussian distribution and ending
with the appearance of a whole series of secondary maxima
at the lower frequency side with modulated amplitude,
according to what is shown in Refs. [24,28,33]. Figure 1

FIG. 1. (left) d2W
d!d� as a function of!=!lin with increasing laser

parameter: (a) a0 ¼ 0:015 (W ¼ 0:05 J), (b) a0 ¼ 0:0466 (W ¼
0:5 J), (c) a0 ¼ 0:066 (W ¼ 1 J). (right) d2W

d!d� as a function of

!=!lin with increasing laser duration �� and constant value of
a0 ¼ 0:0722: (a) �� ¼ 0:25 ps (W ¼ 0:2J, � ¼ 1:5� 10�3),
(b) �� ¼ 1:5 ps (W ¼ 1:2 J, � ¼ 2:5� 10�4), (c) �� ¼ 3 ps
(W ¼ 2:4 J, � ¼ 1:25� 10�4). Other parameters: �ð0Þ ¼ 200,
w0 ¼ 27 
m, !L=2� � 6� 1014 s�1.
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shows examples of the broadening and continuous down-
shifting of the spectrum in the case of a Gaussian laser
pulse. In Table I, we report a comparison between the data
that can be deduced by Fig. 5a of Ref. [24], blue curve, and
a similar calculation made with our code, showing that the
results are in good agreement. The left part of the figure
shows the case regarding the increasing of the laser pa-
rameter from a0 ¼ 0:015 (W ¼ 0:05 J) to a0 ¼ 0:066
(W ¼ 1 J). While curve (a) presents a quasi-Gaussian
shape, several fringes develop as the energy increases
[(b) and (c)], together with an evident redshift and spectral
enlargement of the radiation.

Increasing the time duration of the laser at fixed a0,
instead, gives rise to interference fringes whose number
depends linearly on ��, but the overall width and average
position of the spectral line do not change, as is shown in
Fig. 1 (right).

Figure 2 gives the increase of the relative bandwidth as a
function of a0 for the same parameters as in Fig. 1. The
broadening due to nonlinear effects reaches the level 10�3

for values of a0 larger than 0.5.
From the expression (35) of the phase c , one can see

that the oscillations in the spectrum come from the modu-
lation of the laser field and increase linearly in number with
the laser time duration. The width and the shift of the
spectrum, instead, are governed by the function M, which
depends on a0 but is independent of ��.

Figure 3 presents the dependence of the differential
spectrum on both frequency and polar angle 	 and shows

the correlation between these variables in the nonlinear
regime.
The details of the fringes, however, are almost com-

pletely absorbed by the broadening of the spectrum con-
nected to the frequency-angular correlation typical of the
Thomson/Compton scattering, when integrated over the
polar angle 	 from 0 to a final value 	acc. Figure 4 shows
the nonlinear and the linear spectra integrated on a solid
angle. The small differences occurring at the edges of the
spectrum are further diminished by the integration over the
electron beam, with realistic energy spread and emittance,
as shown in Ref. [29].

B. Shift of the spectrum

From Eq. (31) one can see that in the linear case the
spectrum is centered around the frequency !lin given in
Eq. (16). When nonlinear effects are present, the peak of
the spectrum moves backward toward frequencies lower
than !lin (redshift), as shown in Fig. 5.
Quantum effects arising from the recoil of the electron in

the scattering with the laser photon [3,4,26,29] lead to a
spectral redshift that can be neglected for relatively low
electron energies or in applications where the required

TABLE I. Comparison between the intensity IR deduced by
Fig. 5a (blue curve) of Ref. [24] and that calculated by our code I
for some points, showing a good agreement.

!=!lin IR I

1 �1900 1823

0.99982 �4500 4421

0.9996 �0 0.027

0.9992 �10200 10083

0.9988 �0 0.12

0.99807 �17100 16998

0.997 �1500 1425

FIG. 2. Rms spectral bandwidth�!=! on axis as a function of
the laser parameter a0. Other parameters have the same values as
in Fig. 1.

FIG. 3. d2W
d!d� sin	 as a function of !=!lin (abscissa) and 	ðradÞ

(ordinate) for � ¼ 300 and a0 ¼ 0:125, w0 ¼ 27 
m.

FIG. 4. Angle-integrated spectrum dW=d! vs !=!lin for
� ¼ 200, 	acc ¼ 500 
rad, a0 ¼ 0:06, w0 ¼ 27 
m. Black
curve: nonlinear calculation; red curve: linear calculation.
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bandwidth is large. However, when the shift is larger than
the bandwidth, as in the case of ELI-NP, they have to be
taken into account even if they do not seem to affect
substantially the shape of the spectrum and the number
of photons emitted [24,29]. Figure 6 shows the comparison
between the nonlinear shift at different values of a0, based
on the position of the main peak of the spectrum, and the
quantum shift derived through the Compton formula and
evaluated in the impact between an electron and the photon
of a laser at 500 nm.

As can be seen, for small values of � (less than 100),
classical nonlinear effects are comparable and even domi-
nant with respect to the quantum shift. In the intermediate
regime, for values of � between 100 and 1000 (i.e., the case
of ELI [18]), nonlinear effects are important only when a0
has values larger than 0.1, corresponding to highly com-
pressed laser pulses (which are in general not suitable for
Compton experiments) or large laser energy, well beyond
the state of the art. For � * 1000 the quantum shift is
always dominant.

C. A possible experiment on PlasmonX SPARC-LAB

The occurrence of the nonlinear spectral broadening
can be tested on the facility PlasmonX at SPARC-LAB at

� ¼ 300. Operating with the laser pulse at total energy of
5 J and duration �� ¼ 6 ps, the laser parameter has
the value a0 ¼ 0:1 and the nonlinearities do not substan-
tially alter the spectrum, when collected inside an accep-
tance angle of 1 mrad. A compression of the laser pulse up
to 1 order of magnitude and in this same condition pro-
duces a broadening of the spectrum with a consistent
enhancement of the bandwidth. These experimental con-
ditions can be reproduced at SPARC due to the possibility
of compressing the laser FLAME [16] reaching in this way
powers of 50 TW, operating at 5 J in the range from 10 ps
up to 100 fs, with values of the laser parameters a0 from 0.1
to 0.36, as shown in Fig. 7. The use of a value of the
electron Lorentz factor of about � ¼ 300 will permit also
the control of the validity of the classical model.

IV. CONCLUSIONS

The nonlinear effects have been analyzed by means of a
numerical analysis and of analytical expressions of the
double differential spectrum based on the stationary phase
method. While the on-axis spectrum for a single electron
may in some cases be very different from the linear
Gaussian shape, when the contributions are summed on
the solid angle, modest variations have been found for
energetic electron beams in the cases considered, with
shifts of the wavelength amply inside the bandwidths and
small enlargement of the spectrum.
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FIG. 6. Comparison between the nonlinear classical redshift
and the quantum linear one (black curve): (a) a0 ¼ 0:0081,
(b) a0 ¼ 0:081, and (c) a0 ¼ 0:18:.

FIG. 7. Angle-integrated spectrum in the case of the experi-
ment PlasmonX at SPARC-LAB for different values of a0,
obtained by compressing the laser pulse. � ¼ 300, 	acc ¼
0:5 mrad, EL ¼ 5J, (a) a0 ¼ 0:1 (�� ¼ 6 ps), (b) a0 ¼ 0:15
(�� ¼ 3 ps), (c) a0 ¼ 0:25 (�� ¼ 1 ps), and (d) a0 ¼ 0:35
(�� ¼ 0:5 ps).

FIG. 5. Position of the peak as a function of a0, for the same
parameters as Fig. 1. The red curve is the curve 2=ð2þ a20Þ.
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