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This contribution reviews scalar-tensor theories whose Lagrangian contains second-order
derivatives of a scalar field but nevertheless propagate only one scalar mode (in addition
to the usual two tensor modes), and are thus not plagued with the Ostrodradsky instability.
These theories, which encompass the so-called Horndeski and Beyond Horndeski theories, have
recently been fully classified up to cubic order in second-order derivatives. After introducing
these theories, I present a few phenomenological aspects. In cosmology, these theories can
be included in the unified effective description of dark energy and modified gravity. Finally,
neutron star solutions in some specific models are discussed.

1 Introduction

There have been numerous attempts to modify or extend general relativity, with either the
motivation to account for dark energy (and sometimes dark matter) or, more modestly, to
construct benchmark models that are useful to test general relativity quantitatively. Scalar-
tensor theories have often played a prominent role in these attempts and, lately, special attention
has been devoted to scalar-tensor theories whose Lagrangians contain second-order derivatives
of a scalar field.

Lagrangians of this type, which contain “accelerations”, are generically plagued by an insta-
bility due to the presence, in addition to the usual scalar mode and tensor modes, of an extra
scalar degree of freedom (unless the higher order terms can be treated as perturbative terms
in the sense of low energy effective theories). Until recently, it was believed that only theories
that yield second-order Euler-Lagrange equations were free of this dangerous extra degree of
freedom. In the last couple of years, it has been realized that there in fact exists a much larger
class of theories that satisfy this property.

2 From Horndeski to DHOST theories

2.1 Higher-Order Scalar-Tensor theories

In this section, we introduce scalar-tensor theories whose action is a functional of a metric g,
and of a scalar field ¢, allowing for a dependence not only on ¢ and its gradient ¢, = V¢
as usual, but also on its second derivatives ¢,, = V,V,¢. Restricting our investigation to
Lagrangians that depend on ¢, up to cubic order, we are interested by actions of the form

Slod) = [ ' y=g [foX.6) + Fi(X.0)06 + FoX.6) R+ Cl by Gyt
+f3 (X, QZ)) G,uuﬁi)'wj Cuupaaﬁ ¢/u/ ¢pa ¢o¢6] ) (1)



where the functions f; depend only on ¢ and X = ¢,¢*, while R and G, denote, respectively,
the usual Ricci scalar and Einstein tensor associated with the four-dimensional metric g,,,. The
tensors Co) and C(3) are the most general tensors constructed with the metric g,, and the
scalar field gradient ¢,,.

It is easy to see that the terms quadratic in ¢, can be rewritten as
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where the a4 are five arbitrary functions of X and ¢. Similarly, the cubic terms can be written
in terms of ten arbitrary functions b4, as
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Theories described by an action of the form (1) in general contain, in addition to the usual
scalar mode and two tensor modes, an extra scalar mode leading to the so-called Ostrogradsky
instability [1]. However, by imposing some restrictions on the functions fa, f3 and a4 and by,
it is possible to find theories that only one propagating scalar mode.

Historically, theories of this type were found in several steps. The starting point was the
construction of higher-order theories leading to at most second-order Euler-Lagrange equations
for the metric and for the scalar field, due to Horndeski [2]. Until recently, it was (wrongly)
believed that requiring at most second-order Euler-Lagrange equations was necessary to get rid
of the extra scalar degree of freedom and, as a consequence, Horndeski theories were considered
to be the most general theories without Ostrogradsky instability. This belief was challenged by a
new class of theories, now often called Beyond Horndeski (or GLPV), proposed in [3], extending
Horndeski’s theories and leading to higher-order equations of motion ¢. Beyond Horndeski
theories were finally superseded by a larger class of theories, the DHOST theories, once it was
understood that the crucial element that characterizes higher-order theories propagating a single
scalar degree of freedom is the degeneracy of their Lagrangian [5], rather than the order of their
equations of motion®. By using the degeneracy criterium, the quadratic DHOST theories were
first identified in [5], extending both quadratic Horndeski and Beyond Horndeski Lagrangians .
More recently, all DHOST theories up to cubic order have been systematically classified [9].

It is also worth noting that [4] had already pointed out the possibility to construct theories “beyond Horndeski”
by applying disformal transformations of the metric to the Einstein-Hilbert action.

*In [6], after showing that the equations of motion of Beyond Horndeski theories, written in an arbitrary gauge,
can be reformulated as a system of equations with at most second-order time derivatives, it was suggested that
this property could provide a characterization of theories with a single scalar DOF. However, one can notice that
this reformulation also applies to theories that are not degenerate (and thus propagate an extra scalar DOF),
therefore invalidating this diagnostic. Note that, for scalar-tensor theories, the presence of redundant variables,
due to the diffeomorphism invariance, makes it difficult to count the number of degrees of freedom just from the
order of the equations of motion; instead, one needs to identify the number of independent initial conditions that
are physically relevant.

°The name DHOST was not coined in the original paper but later in [7]. Note that the very same (quadratic)
theories were also dubbed “Extended Scalar-Tensor” in [8].



2.2  Degeneracy of the Lagrangian

As mentioned above, the crucial ingredient that singles out higher-order theories with a single
scalar degree of freedom is the degeneracy of their Lagrangian [5]. To better understand this
notion of degeneracy, it is instructive to present a very simple toy model based on classical point
dynamics. Let us consider the Lagrangian
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where a, b and ¢ are constant coefficients and V (¢, ¢) is some potential. This Lagrangian involves
the acceleration of ¢ but not that of q. If a # 0, one gets fourth-order equations of motion,
whereas, if a = 0 but b # 0, one obtains third-order equations of motion.

In order to work with a more familiar Lagrangian containing only velocities, let us introduce,
following [5], the auxiliary variable

Q=9¢, (7)
leading to the new (and equivalent) Lagrangian
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which does not include any acceleration.

Let us now try to identify the number of independent physical degrees of freedom in the
system. Equivalently, one can count the number of initial conditions that are needed to fully
determine the system at some initial time. From the equations of motion, it is easy to see that
two cases arise, depending on the nature of the Hessian matrix, defined by
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where the symbol v® denotes the velocities, i.e. v* = {Q, ¢}.
In the generic case where M is invertible, one finds that six initial conditions are needed,
which corresponds to the existence of three degrees of freedom. While the variable g describes

as usual one degree of freedom, the variable ¢ is associated with two degrees of freedom. By
contrast, in the particular cases where M is degenerate, i.e.

det M = ac—b* =0, (10)

only four initial conditions are necessary, which means that only two degrees of freedom are
present. The extra mode associated with ¢ is eliminated when M is degenerate. By extension,
it can be said that the initial Lagrangian (6) is degenerate in this situation.

The number of degrees of freedom can also be determined by resorting to a Hamiltonian
analysis. When the Lagrangian is degenerate, the conjugate momenta satisfy a (primary) con-
straint. By writing down the time evolution of this constraint, one finds that it leads to a
secondary constraint in phase space. These two constraints eliminate one degree of freedom, in
agreement with the analysis based on the equations of motion.

The above discussion can be generalised to the case of n variables similar to ¢. In order
to get rid of all of the n extra degrees of freedom that arise in general, one must not only
impose a degeneracy of order n of the Hessian matrix, which guarantees the existence of n
primary constraints, but also require additional constraints to ensure the presence of n secondary
constraints [10,11].



2.8 Horndeski and Beyond Horndeski theories

Well-known particular examples of DHOST theories are Horndeski’s theories. They are char-
acterized by four arbitrary functions of ¢ and X, corresponding to the four functions f4 that
appear in the general action (1). The other functions a4 and b4 are then completely determined
in terms of fo and f3, respectively. The quadratic part of the Horndeski action, which it is
convenient to denote Lg) [f2], is thus fully determined by the function fo, with the quadratic
coefficient a4 given by
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Similarly, the cubic part of Horndeski theories, Lg) [f3], depends only on the functions f3, while
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The so-called Beyond Horndeski (or GLPV) theories, introduced in [3], extend Horndeski the-
ories by including two additional Lagrangians, each characterized by a single arbitrary function.

The first of these Lagrangians, which can be written as L?g [g2], is quadratic and characterized
by the coefficients
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The second new Lagrangian, which is cubic and will be denoted L%’zg[gg], depends on a single

arbitrary function gs and its non vanishing coefficients b4 are given by
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In the original paper [3]|, it was not yet fully clear whether arbitrary sums of the four
Horndeski Lagrangians and of the two new Lagrangians LE’% [g2] and LF?S [g3] were viable. It was
first pointed out in [12] that some Beyond Horndeski theories could be related to Horndeski
theories via (invertible) conformal-disformal transformations, in which case they should have
the same number of degrees of freedom as their Horndeski counterparts ®. But it was only with
the concept of degeneracy that this question was finally settled, with the results of [5] and [13].

Let us briefly summarize these results, by stressing that the sum of two degenerate La-
grangians is not necessarily degenerate. Moreover the terms fy and f10¢ can always be added
in the action without modifying the degeneracy of the total Lagrangian, so we do not need
to worry about these terms any further. For the remaining terms, the following combinations
involving Beyond Horndeski terms are degenerate: Lg) + Ll(’g, L%) + Ll(’?g and L?g + Ll(’:g. By

contrast, the following combinations are not degenerate: Lg) + Ll()g + Lg), Lg) + L}’g + L?BP)I.

2.4 DHOST theories

As discussed above, the crucial element that characterizes higher-order theories with a single
scalar degree of freedom is the degeneracy of their Lagrangian, hence their name DHOST €.

DHOST theories were originally identified at quadratic order in ¢, (i.e. with the functions
f2 and a4 only) in [5] and a complete Hamiltonian analysis in [14] soon confirmed that they
indeed contained only one scalar degree of freedom. Quadratic DHOST theories were further
studied in [7,8,15]. More recently, the identification of DHOST theories has been extended up
to cubic order, i.e. by including the second line of (1), in [9] and the interested reader will find
the full classification there.

?Note that the calculation in the final part of [12], directly inspired by a similar calculation in [4], does not lead
to a manifestly second-order system, as originally claimed. But the main point of the paper, based on disformal
transformations, remains valid.

¢ Amusingly, this acronym can be obtained by substituting the initial of ’ghost’ with 'D’ of ’degeneracy’.



In summary, DHOST theories include seven subclasses of quadratic theories (four classes
with fo # 0 and three classes with fo = 0) and nine subclasses of cubic theories (two with
f3 # 0 and seven with f3 = 0). These quadratic and cubic subclasses can be combined to yield
degenerate hybrid theories, involving both quadratic and cubic terms, but all combinations are
not possible: only 25 combinations (out of 63) lead to degenerate theories, often with extra
conditions on the functions a4 and by in the Lagrangian (see [9] for details and for the explicit
form of the functions in each subclass).

2.5 Disformal transformations

A legitimate question about this classification is whether seemingly different DHOST theories
could correspond the same theory in different guises, in other words whether some theories could
be identified via field redefinitions . Since the Lagrangian depends on a metric and on a scalar
field, natural field redefinitions of the metric involve disformal transformations [16]
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Via this transformation, any action S given as a functional of g and ¢ induces a new action S
for g, and ¢, when one substitutes the above expression for g, in S:

S[¢a .g,ul/] = S [(b: g,ul/ = Cg,ul/ + D ¢,u¢y] . (16)

The actions S and S are then said to be related by the disformal transformation (15). The
disformal transformations of all quadratic DHOST theories have been investigated in [7], where
it was shown that all seven subclasses are stable under the action of disformal transformations.

Interestingly, there is a nice correspondence between the type of disformal transformations
and the extent of the corresponding stable class of theories:

e Horndeski theories are stable under disformal transformations characterized by C(¢) and
D(¢), i.e. conformal and disformal factors that depend only on ¢, but not on X [17].

e Beyond Horndeski theories are stable under disformal transformations characterized by
C(¢) and D(¢, X) [12].

e Finally, DHOST theories are stable under the most general disformal transformations
where C and D depend on both ¢ and X [7].

3 Cosmology and astrophysics

After the short introduction to DHOST theories given in the previous section, let us now discuss
briefly some phenomenological consequences of these theories in the context of cosmology and
of astrophysics.

3.1  Cosmology

In order to study the cosmology of DHOST theories, it is very convenient to resort to the unified
formalism that has been developed for an effective description of Dark Energy and Modified
Gravity (see e.g. [18] for a review).

This approach is based on a 3 + 1 decomposition of spacetime, in which the spatial slices
coincide with uniform scalar field hypersurfaces. In this particular gauge, sometimes called
unitary gauge, the action of DHOST theories is of the form

S = /dgmdtN\/EL[N,Kij,gRij;t], (17)

fThe coupling to matter is ignored here. If, after a redefinition of the metric, two related theories are minimally
coupled to matter, then they are physically distinct.



where N is the lapse function [which appears in the 3 + 1 form of the spacetime metric ds? =
—N?2dt? + h;j(dz’ + N'dt)(da? + N7dt), N* being the shift vector, h;; the spatial metric]; K;; is
the extrinsic curvature tensor and 3Rij the intrinsic curvature tensor.

The Friedmann equations associated with a spatially flat Friedmann-Lemaitre-Robertson-
Walker (FLRW) spacetime ds? = —N?(t)dt* + a?(t)d;;dz'dx?, are then simply derived from the
homogeneous action
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To study the dynamics of linear perturbations, one needs to write down the action at quadratic
order in perturbations. These perturbations are associated with the three basic ingredients of
the action:
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where H = a/Na is the Hubble parameter, and 3R§- is already a perturbation since it vanishes
in the background. The Lagrangian at quadratic order is then obtained via a Taylor expansion,
which is formally written as
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where ¢* = {N, KJZ:,:)’R;-}.
All (quadratic and cubic) DHOST theories lead to a Lagrangian quadratic in linear pertur-
bations of the form [19]
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where d2°R denotes the second order term in the perturbative expansion of *R, where the param-
eters M, a1, aT, ag, ag, ay, 51, B2 and B3 are time-dependent functions. Moreover, one finds
that these parameters, for DHOST theories, are restricted to satisfy either one of the following
sets of conditions:

Cr: ap, =0, By = =667, Bs = =281 2(1 + an) + S1(1 + aT)] , (22)
or
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The category Cr contains the subclass of Horndeski theories and of those related to Horndeski
via disformal transformations.
In the static linear regime around Minkowski, one can define an effective Newton’s constant
given by [19]
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which diverges for theories satisyfing Crr.

The coupling to matter can be minimal or nonminimal. One can derive the transformation of
the parameters that describe the matter coupling at linear level under disformal transformations
(15). Similar transformations exist for the parameters of (21). See [19] for details.



3.2 Stars in Beyond Horndeski theories

Even if the main motivation for modified gravity arises from the observed acceleration of the
cosmological expansion, it is indispensable to verify that any viable theory remains compatible
with astrophysical observations and solar system constraints.

As part of this programme, let us concentrate on Beyond Horndeski theories. In these models,
it has been noticed that the Vainshtein mechanism is partially broken inside matter [20]. For
spherical bodies, a new term appears in the gravitational law,

dd GnM(r) Y, d*M(r)
bl A T On—— 25
dr 2 TN (25)
where @ is the gravitational potential and M (r) is the mass inside a sphere of radius r. This
leads to a modified profile of Newtonian stars [21,22].

Following the recent works [23] and [24], let us discuss neutron stars in a specific model
described by the action
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where kg, k2, ¢ and g9 are assumed to be constant. By writing the Friedmann equations for this
model, one can easily find de Sitter solutions where the Hubble parameter H is constant. In
order to embed a spherical object within such cosmological spacetime, it is useful to rewrite the
de Sitter solution in Schwarzschild-like coordinates,

dr?
1— H2y?
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One can then insert a spherical symmetric object in this cosmological solution by trying to solve
the Einstein equations for a metric of the form

ds? = —e"Mdt? + X0 dr? + 2 (d6? + sin? 0dg?) | (29)

going asymptotically to (27). The energy-momentum tensor receives a contribution from the
scalar field as well as a contribution from a perfect fluid which is assumed to model the neutron
star’s matter. Remarkably, one can find an exact solution outside the star, corresponding to
a Schwarzschild-de Sitter geometry. Inside the star, the equations of motion can be solved
numerically, assuming some equation of state, in order to determine the matter density profile
and the internal geometry.

When T < 0, one finds that stars with fixed mass have a larger radius than their GR coun-
terparts. Moreover, for the same equation of state, the maximum mass can increase significantly
with respect to GR [23]. Modified gravity could thus provide a solution to the hyperon puzzle.
Moreover, one can derive a relation between the dimensionless moment of inertia Ic/G2M? and
the compactness GM/Rc?, which is robust in the sense that it weakly depends on the equation
of state and which can discriminate between modified gravity and GR [24].

Acknowledgments

I would like to thank my numerous collaborators, especially Karim Noui and Filippo Vernizzi,
for their contributions to the works I have presented here.



References

W N =

10.

11.
12.

13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.

24.

R. P. Woodard, Scholarpedia 10, no. 8, 32243 (2015) [arXiv:1506.02210 [hep-th]].

G. W. Horndeski, Int. J. Theor. Phys. 10, 363 (1974).

J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, Phys. Rev. Lett. 114, no. 21, 211101
(2015) [arXiv:1404.6495 [hep-th]].

. M. Zumalacarregui and J. Garcia-Bellido, Phys. Rev. D 89, 064046 (2014) [arXiv:1308.4685

jgr-ac]].

D. Langlois and K. Noui, JCAP 1602, no. 02, 034 (2016) [arXiv:1510.06930 [gr-qc]].

C. Deffayet, G. Esposito-Farese and D. A. Steer, Phys. Rev. D 92, 084013 (2015)
[arXiv:1506.01974 [gr-qc]].

J. Ben Achour, D. Langlois and K. Noui, Phys. Rev. D 93, no. 12, 124005 (2016)
[arXiv:1602.08398 [gr-qc]].

M. Crisostomi, K. Koyama and G. Tasinato, JCAP 1604, no. 04, 044 (2016)
[arXiv:1602.03119 [hep-th]].

J. Ben Achour, M. Crisostomi, K. Koyama, D. Langlois, K. Noui and G. Tasinato, JHEP
1612, 100 (2016) [arXiv:1608.08135 [hep-th]].

H. Motohashi, K. Noui, T. Suyama, M. Yamaguchi and D. Langlois, JCAP 1607, 007
(2016) [arXiv:1603.09355 [Lep-th]].

R. Klein and D. Roest, JHEP 1607, 130 (2016) [arXiv:1604.01719 [hep-th]].

J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, JCAP 1502, 018 (2015)
[arXiv:1408.1952 [astro-ph.CO]].

M. Crisostomi, M. Hull, K. Koyama and G. Tasinato, JCAP 1603, no. 03, 038 (2016)
[arXiv:1601.04658 [hep-th]].

D. Langlois and K. Noui, JCAP 1607, no. 07, 016 (2016) [arXiv:1512.06820 [gr-qc]].

C. de Rham and A. Matas, JCAP 1606, no. 06, 041 (2016) [arXiv:1604.08638 [hep-th]].
J. D. Bekenstein, Phys. Rev. D 48, 3641 (1993) [gr-qc/9211017].

D. Bettoni and S. Liberati, Phys. Rev. D 88, 084020 (2013) [arXiv:1306.6724 [gr-qc]].

J. Gleyzes, D. Langlois and F. Vernizzi, Int. J. Mod. Phys. D 23, no. 13, 1443010 (2015)
[arXiv:1411.3712 [hep-th]].

D. Langlois, M. Mancarella, K. Noui and F. Vernizzi, JCAP 1705, no. 05, 033 (2017)
[arXiv:1703.03797 [hep-th]].

T. Kobayashi, Y. Watanabe and D. Yamauchi, Phys. Rev. D 91, no. 6, 064013 (2015)
[arXiv:1411.4130 [gr-qc]].

K. Koyama and J. Sakstein, Phys. Rev. D 91, 124066 (2015) [arXiv:1502.06872 [astro-
ph.COJ].

R. Saito, D. Yamauchi, S. Mizuno, J. Gleyzes and D. Langlois, JCAP 1506, 008 (2015)
[arXiv:1503.01448 [gr-qc]].

E. Babichev, K. Koyama, D. Langlois, R. Saito and J. Sakstein, Class. Quant. Grav. 33,
no. 23, 235014 (2016) [arXiv:1606.06627 [gr-qc]].

J. Sakstein, E. Babichev, K. Koyama, D. Langlois and R. Saito, Phys. Rev. D 95, no. 6,
064013 (2017) [arXiv:1612.04263 [gr-qc]].



