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1 Introduction

The scattering of quarks and gluons at small momentum transfer is one of the most chal-
lenging processes to completely understand. In this kinematical region, called the Regge
limit, two incoming quarks or gluons scatter into two outgoing jets moving in nearly the
same direction as the incoming partons. The power-law behavior of the scattering ampli-
tude, typically of the form s/t, makes the Regge limit dominate the cross sections. The
s/t behavior is present already at tree-level; at higher orders in perturbation theory it is
supplemented by logarithms of the form ln(s/t). When the logarithms are resummed, the
amplitude scales like (s/t)γ where γ is called the Regge trajectory [1–7]. The structure
of scattering amplitudes in the Regge limit is of interest in a wide variety of applications,
including the total cross sections at colliders [8], unitarity constraints, integrability [9, 10],
factorization-violation [11–14], and bootstrapping scattering amplitudes in N = 4 super-
Yang Mills theory [15–20].

To study the Regge limit, the traditional approach has been essentially diagrammatic.
One considers all the possible Feynman diagrams that could contribute, expands them
in the Regge limit in some particular gauge, and looks for patterns and relationships
among the contributions. This method allows one to extract the all-orders structure of the
Regge limit and leads to the Balitsky–Fadin–Kuraev–Lipatov (BFKL) equation [21, 22].
A number of textbooks describe this procedure in detail [23, 24].

An alternative approach to studying the Regge limit is with effective field theory.
Soft-Collinear Effective Theory (SCET) [25–30] is a powerful tool which has been shown to
reproduce the leading infrared singular behavior of QCD away from the Regge region. If
none of the outgoing particles are collinear to any of the incoming particles, then scattering
processes factorize into a number collinear sectors, one associated with each incoming
parton or outgoing jet, plus a single global soft sector. It has been proven that all of
the infrared divergences of QCD are reproduced by SCET in such configurations, and for
infrared-safe cross sections, the leading power behavior is entirely reproduced. Applications
of SCET to collider physics are diverse and in a number of cases resummation at the next-
to-next-to-next-to-leading logarithmic level (N3LL) is possible.

In the Regge limit, soft and collinear modes are insufficient to describe the leading
power behavior of scattering amplitudes. Instead, one must supplement the SCET La-
grangian with a set of non-local potential operators, heuristically of the form OnOsOn̄/t,
where On and On̄ encode the collinear scattering in the n and n̄ directions, and Os en-
codes the soft scattering. The explicit 1/t dependence comes from integrating out the
tree-level Glauber exchange [31]. We refer to this theory as Glauber-SCET. Unlike in the
hard-scattering case, where the Regge region is avoided, there are no rigorous proofs that
SCET supplemented with Glauber potential operators of this type will indeed reproduce
the leading power behavior of full QCD. Thus it is important to perform as many checks
as possible. Calculations with Glauber-SCET are significantly more challenging than those
in SCET without Glauber modes due to the presence of rapidity divergences.

In the forward scattering region for quark-gluon scattering qg → qg with the outgoing
quark collinear to the incoming quark, the Regge region is dominated by the exchange of
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Glauber gluons. These gluons have spacelike momentum q with 0 ≤ −q2 = −q2
⊥ � Q2,

where Q is the center-of-mass energy of the collision. Including spin effects, the qg → qg

forward scattering amplitude in the Glauber region scales like (−q2
⊥/Q

2)−1 [31].1 In this
paper, we instead focus on the backward scattering region. In this region, the Regge limit
is described by Glauber fermion exchange and the amplitude scales like (−q2

⊥/Q
2)−1/2.

Thus Glauber fermion exchange is power suppressed compared to Glauber gluon exchange.
However, the two exchanges contribute in different kinematical regions; Glauber fermion
exchange describes the leading power behavior in the backward scattering region. Moreover,
Glauber gluon exchange is necessarily non-Abelian whereas Glauber-fermion exchange is
not: in QED, the amplitude for e−γ → e−γ is non-singular in the forward scattering region,
but is singular for backward-scattering.

Thus to make progress on some challenging foundational questions in quantum field
theory, such as how to define the S-matrix for charged particles [32–34], a problem even in
QED, it helps to have a better understanding of singularities present in QED, such as in
the backward scattering region.

In this paper, we focus on quark-gluon backscattering in the Regge limit at one-loop
order. We compute the full one-loop 2→ 2 scattering amplitude in QCD and then expand
in the Regge limit. We also compute the full one-loop 2 → 2 scattering amplitude in
Glauber-SCET including only the leading order operator required for tree-level matching.
We find that the two calculations agree exactly.

2 Glauber SCET

This section reviews the general construction of SCET, and describes the additional terms
that need to be included in the Lagrangian to accommodate Glauber quark exchanges. It
also serves to define the notation we use.

2.1 SCET

Soft-Collinear-Effective Theory is an effective theory that was developed to better under-
stand the soft and collinear limit of gauge theories like QCD, systematize the concept of
factorization, and successfully apply these ideas to collider physics. In order to describe
soft and collinear modes, one sets up a light cone momentum basis, where the lightlike ele-
ments of the basis are taken to align with the jet axis in a collider process. For any lightlike
direction nµ = (1, ~n) one can define the backwards lightlike direction n̄µ = (1,−~n) and two
transverse directions denoted by ⊥ that are orthogonal to nµ and n̄µ. Any four-vector pµ

can be decomposed into lightcone and perpendicular components,

pµ = n̄ · p
2 nµ + n · p

2 n̄µ + pµ⊥ , (2.1)

where n·n̄ = 2 and
n · n = n̄ · n̄ = n · p⊥ = n̄ · p⊥ = 0 . (2.2)

1Here we are using the scaling for the spinors and not for the quark fields. The spinors power count as
O((−q2

⊥/Q
2)0), while the quark field power counts as O((−q2

⊥/Q
2) 1

2 ).
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Sometimes the p± notation is also used for the lightcone components,

p+ = n · p, p− = n̄ · p . (2.3)

SCET describes scattering process in an expansion in a power counting parameter
λ � 1. For jet physics, the parameter might be the ratio of the mass of an outgoing jet
to the center-of-mass energy, λ ∼ m/Q. For Regge physics, the power counting parameter
is the transverse momentum of the scattered particles (relative to the incident direction),
divided by the center-of-mass energy, λ2 ∼ ~q2

⊥/Q
2. Modes in the effective theory are

defined by the scaling of their lightcone momentum components with respect to the power
counting parameter. Using the notation

pµ ∼ (n̄ · p, n · p, |p⊥|) ≡ (p−, p+, |p⊥|) , (2.4)

the various soft and collinear modes are

n collinear : pµ ∼ Q
(
1, λ2, λ

)
n̄ collinear : pµ ∼ Q

(
λ2, 1, λ

)
soft : pµ ∼ Q(λ, λ, λ)

ultrasoft : pµ ∼ Q(λ2, λ2, λ2) .

(2.5)

Whether soft or ultrasoft modes are relevant depends on the particular problem one is
interested in. Ultrasoft modes only affect the smallest lightcone component of collinear
momenta, but not the transverse components. For most hard-scattering jet physics pro-
cesses, ultrasoft modes are sufficient. SCET with ultrasoft but not soft modes is called
SCETI. For Regge physics, we will need to account for recoil of the transverse components
of collinear fields from soft emissions. For such physics, soft rather than ultrasoft modes are
relevant. SCET with soft modes is called SCETII. The invariant mass of collinear modes
is λ2, of soft modes is λ2, and of ultrasoft modes is λ4. The invariant mass of ultrasoft
modes in SCETI is much smaller than that of collinear modes, whereas soft and collinear
modes in SCETII have the same invariant mass.

In addition to the scaling of the momentum components, fields and states in the theory
also have scaling which can depend on spin. A Dirac spinors u(p) can always be decomposed
into two lightcone spinors u = ξn + ϕn using the projectors /̄n/n/4 and /n/̄n/4,

/n/̄n

4 u = ξn,
/̄n/n

4 u = ϕn . (2.6)

Due to the equations of motion /pu(p) = 0, the ϕn spinor is power suppressed compared to
the ξn spinor, ϕn ∼ λ and ξn ∼ λ0.2 Thus SCET integrates out ϕn using the equations
of motion, so that fermions are described by the spinor ξn, which has two independent
components. This amounts to replacing

u→
(

1 + /p⊥ /̄n

4n̄ · p

)
ξn, ū→ ξ̄n̄

(
1 +

/n/p⊥
4n̄ · p

)
. (2.7)

2Note that the collinear quark fields, ξn(x) and ϕn(x) on the other hand scale as λ and λ2 respectively.
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Similarly, gluon polarization states have scaling determined by consistency with collinear
gauge invariance. The components of the polarization scale proportionally to the momenta,

n · ε ∼ λ, ε⊥ ∼ λ0, n̄ · ε ∼ 1
λ
, (2.8)

for an n-collinear gluon. Using the equations of motion p · ε = 0 for an on-shell gluon, the
small polarization component can be integrated out analogously to the fermion case,

n · ε→ −n · p
n̄ · p

n̄ · ε− 2
n̄ · p

p⊥ · ε⊥ . (2.9)

Since the equations of motion are used to simplify the SCET Lagrangian (or equivalently,
the SCET and QCD amplitudes only agree on-shell), we must consistently use these sub-
stitutions to see agreement between QCD and SCET. That is, we must eliminate the small
components of the spinors and polarization vectors in QCD to extract the leading power
behavior.

Operators in SCET are usually written in terms of gauge invariant building block,
constructed from the leading power spin components of the fields wrapped in Wilson lines.
For collinear quarks and gluons these combinations are [35]3

χn(x) =
[
W †n(x)ξn(x)

]
, Bµn⊥(x) = 1

g

[
W †n(x)iDµ

⊥Wn(x)
]
, (2.10)

Here, Wn(x) denotes a collinear Wilson line, representing the source of radiation from all
charged particles other than the collinear field in the n direction. Similarly, the gauge
invariant soft gluon field is given by

BnµS⊥ = 1
g

[
S†niD

µ
S⊥Sn

]
. (2.11)

where Sn denotes a soft Wilson line generated by the soft gluon fields. Analogous definitions
hold for n̄-collinear and soft fields. Explicit forms of the Wilson lines and their origin is
discussed in appendix A.1.

Equation (2.11) are gluon fields for soft outgoing radiation. One could alternatively
define the gauge-invariant soft gluon fields in terms of Wilson lines representing incoming
radiation:

BnµS⊥ = 1
g

[
S
†
niD

µ
S⊥Sn

]
. (2.12)

Sn differs from Sn in whether the Wilson line is from −∞ to x or x to ∞, i.e. the ±i0+

prescription in the eikonal propagators (see appendix A.1). The quark-gluon scattering
amplitude in our Glauber-SCET problem is independent of which Wilson lines are chosen.
We choose outgoing Wilson lines as in eq. (2.11). If one uses incoming Wilson lines,
the soft graphs come out differently, but there is a non-vanishing soft-Glauber zero-bin
subtraction [36] which restores equivalence to the outgoing case. This issue is discussed
in [31] and we reproduce their observation in sections 4.2.4 and appendix B.

3We use the sign convention Dµ = ∂µ − igAµ.
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2.2 Glauber operators

In the Regge limit, the exchanged Glauber gluon or quark couples different collinear sectors
to each other. For a Glauber particle to couple to the n collinear sector, it must have
subdominant scaling to the n-collinear scaling, i.e. pG . Q(1, λ2, λ). For the same Glauber
particle to couple to the n̄-collinear sector, it must have pG . Q(λ2, 1, λ). Thus we have

Glauber : pµG ∼ Q(λ2, λ2, λ) (2.13)

for the momentum scaling of Glauber particles. Since p2 = (n̄ · p)(n · p) + p2
⊥ and the

two terms scale like λ4 and λ2 respectively, it is impossible for a Glauber particle to be
on-shell. Thus Glauber exchange in SCET is described by non-propagating potentials.
Glauber potential operators were introduced in ref. [31] for Glauber gluon exchange, and
ref. [37] for Glauber fermion exchange.

In the fermionic Glauber case, the operator required for tree-level matching is [37]

OT = χ̄n/Bn⊥
1
/P⊥
Os

1
/P⊥

/Bn̄⊥χn̄ , (2.14)

where Pµ⊥ is a label operator that picks out the transverse momenta of the fields it acts on.
The operator Os involves soft fields:

Os = −2παs
[
S†n̄Sn /P⊥ + /P⊥S

†
n̄Sn − S

†
n̄Sng/B

n
S⊥ − g/B

n̄
S⊥S

†
n̄Sn

]
. (2.15)

The coefficients of the various terms in this operator were derived in [37] by matching onto
QCD in the Regge limit with additional soft gluons emitted.

To describe soft-collinear scattering in the Regge limit, soft-collinear Glauber operators
are necessary [31, 37]:

OSn = (−4παs)χ̄n/Bn⊥
1
/P⊥

/BnS⊥ψnS+h.c., OSn̄ = (−4παs)χ̄n̄/Bn̄⊥
1
/P⊥

/Bn̄S⊥ψn̄S+h.c., (2.16)

where
ψnS = S†nψS , ψn̄S = S†n̄ψS . (2.17)

Here ψS is a soft quark field, and the label (n/n̄) denotes the direction of the Wilson line
that dresses the field. As with OT and Os the structure of these operators has been fixed
to reproduce the leading-power behavior of the full QCD amplitudes at tree level. As
shown in [37] at one-loop, the interference between emission from these two operators in a
time-ordered product contributes to collinear-collinear scattering at one-loop (see eq. (4.27)
below).

The leading-order collinear-collinear Glauber gluon operators take the form

OGG0
ij = Obi,n

1
P2
⊥
Obcs

1
P2
⊥
Ocj,n̄ (2.18)

where Obcs arises from a Glauber gluon exchange and can be found in [31]. The collinear
operators Obi,n and Ocj,n̄ are labelled by the scattering entities i and j (which could be
quarks q and gluons g), and have the following structure -

Obq,n = χ̄nT
b /̄n

2χn, Obg,n =
[
i

2f
bcdBcn⊥µ

n̄

2 ·
(
P + P†

)
Bdµn⊥

]
. (2.19)
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The structure and normalization of these operators are fixed at tree-level from matching
to quark-quark scattering in the forward limit in QCD. As with the soft-collinear operator,
the operators OGG0

qg ,OGG0
gq ,OGG0

gg ,OGG0
qq will contribute to quark-gluon backscattering at

one loop. In this case, it is through interference with the collinear-collinear Glauber quark
operator in box diagrams (see eq. (4.34) below).

In addition to the above operators, all of which were discussed in [37], there are ad-
ditional leading-power collinear-collinear Glauber operators that could be relevant beyond
tree-level. We can write the full Fermionic Glauber content of the Glauber-SCET La-
grangian as

OFG = CTOT + CL1OL1 + CL2OL2 + CL3OL3 + CL4OL4 (2.20)

where

OL1 = χ̄n/Bn⊥
1
/P⊥
Os

1
P2
⊥
χn̄ (P⊥ · Bn̄⊥) , (2.21)

OL2 = χ̄n (P⊥ · Bn⊥) 1
P2
⊥
Os

1
/P⊥

/Bn̄⊥χn̄ , (2.22)

OL3 = χ̄n (P⊥ · Bn⊥) 1
P2
⊥
Os

1
P2
⊥

(P⊥ · Bn̄⊥)χn̄ , (2.23)

OL4 = χ̄nBµn⊥
1
/P⊥
Os

1
/P⊥
Bn̄⊥µχn̄ . (2.24)

The soft operators appearing with these collinear-collinear Glauber operators could have
different linear combinations of the operators in (2.15). In general [37]

Os = −4παs
[
CS1

2
(
g/Bn⊥sS†nSn̄ + S†nSn̄g/B

n̄
⊥s

)
+ CS2

2
(
S†n̄Sng/B

n
S⊥ + g/Bn̄S⊥S

†
n̄Sn

)
+CS3

2
(
S†nSn̄ /P⊥ + /P⊥S†nSn̄

)
+ CS4

2
(
S†n̄Sn /P⊥ + /P⊥S

†
n̄Sn

)]
(2.25)

At tree-level CS1 = 0, CS2 = −1, CS3 = 0 and CS4 = 1 so that eq. (2.25) reduces to
eq. (2.15). Since quark-gluon backscattering at one-loop is not sensitive to the higher
order structures in Os, we write Os for all the soft operators within the OLj for simplicity.
Similarly, additional soft-collinear Glauber operators could be present, but they do not
contribute to one-loop quark-gluon backscattering. Thus, at one-loop, there are 5 possible
operators that could receive corrections, as indicated in eq. (2.20).

2.3 Rapidity regulator

One distinguishing feature of SCETII is that all modes in the effective theory sit on the
same mass (or virtuality) hyperbola and are distinguished by their rapidities alone. This
is in contrast to SCETI, where the ultrasoft modes have a distinct virtuality compared
to the collinear modes. Thus, in SCETII, one could in principle boost a collinear mode
into a soft mode and vice-versa. This indistinguishability in terms of boosts shows up
in divergences at the loop level in the EFT that are not regulated by regulators such as
dimensional regularization. Such divergences are called rapidity divergences [38], and are a
result of demanding strict factorization into modes that live on the same mass hyperbola.
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Rapidity divergences can be regulated, and the regulator must drop of out physical
quantities, just like with ultraviolet or infrared divergences. In this paper, we use the η
regulator introduced in [38]. Alternative regulator choices include the exponential reg-
ulator [39], and the delta regulator [40, 41]. All such regulators explicitly break boost
invariance (RPI-III symmetry) between the different modes in the EFT.

The η-regulator can be systematically included by modifying the soft and collinear
Wilson lines. This is easiest to do in momentum space, where the rapidity-regulated
outgoing soft and collinear Wilson lines take the form [31, 42]

Sn =
∑

perms
exp

(
− g

n · P
|2Pz|−η/2

ν−η/2
n ·As

)
, (2.26)

Wn =
∑

perms
exp

(
− g

n̄ · P
|n̄ · P|−η

ν−η
n̄ ·An

)
. (2.27)

Here ν is a new scale that is analogous to µ in dimensional regularization. It must drop
out of physical quantities at fixed order. A given sector has only a single rapidity scale, so
one can choose ν equal to that scale to remove the logarithms in each sector separately.
However, different sectors can have different rapidity scales. Then the rapidity renormal-
ization group can be used to resum the rapidity logarithms by evolving all sectors to their
individual scales, starting from a common rapidity scale. Systematization of such rapidity
RGEs was first done in [38, 42]. Later work (ref. [31] and then ref. [37]) formulated the
BFKL equations as rapidity RGEs in the language of SCET. We will not attempt to resum
any large logarithms in this paper.

Care needs to taken while using the η-regulator. Since one encounters rapidity diver-
gences, UV divergences and IR divergences, a prescription for order of limits is required.
In order to remain on the mass hyperbola while sending the rapidity cutoff to it limit. The
correct order of limits is to first take η → 0, so that η/εn → 0 for any n, and only then
take the ε→ 0 limit of dimensional regularization [38].

The sum of the soft and collinear contributions at fixed order are η and ν independent.
This follows from the observation that rapidity divergences arise from a strict delineation
of modes in SCET. If SCET is to reproduce the full QCD amplitude at leading power,
which is rapidity finite, it must therefore be rapidity finite as well.

3 Tree-level matching

We begin with matching at tree-level between SCET and QCD. That is, we demonstrate
that the entire QCD amplitude is reproduced by SCET at leading power in the Regge limit.
This will establish the procedure and notation we use for matching at one-loop in the next
section. We follow the analysis in ref. [37].

3.1 Kinematics of backwards scattering

We denote the incoming quark and gluon momenta as p1 and k1 and the outgoing quark and
gluon momenta as p2 and k2, as indicated in figure 1. We work in the centre of mass frame

– 8 –
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~n −~n

qT

ξn(p1) ε2(k2)

ξn̄(p2) ε1(k1)

Figure 1. Quark-gluon scattering at small qT . The incoming quark and outgoing gluon are aligned
close to the nµ direction and the incoming gluon and outgoing quark are alighned close to the n̄µ
direction.

and split the momentum transfer evenly between the incoming and outgoing particles:

pµ1 = Q

2 n
µ + 1

2q
µ
⊥ + ~q2

⊥
8Qn̄

µ, kµ1 = Q

2 n̄
µ − 1

2q
µ
⊥ + ~q2

⊥
8Qn

µ ,

pµ2 = Q

2 n̄
µ + 1

2q
µ
⊥ + ~q2

⊥
8Qn

µ, kµ2 = Q

2 n
µ − 1

2q
µ
⊥ + ~q2

⊥
8Qn̄

µ . (3.1)

In this case,
qµ = pµ1 − k

µ
2 = pµ2 − k

µ
1 = qµ⊥ . (3.2)

An advantage of these coordinates is that the momentum transfer is purely transverse. In a
different frame, where p1⊥ = 0 for example, the Glauber momentum q would have to have
a nonzero n · q component to keeping the external particle momenta on-shell. The results
for the matching are frame-independent, but the choice eq. (3.1) makes the calculation
marginally simpler. We also write

q2 = q2
⊥ = −~q 2

⊥ = t < 0 . (3.3)

We will use q2
⊥ and t interchangeably.

To integrate out the small spin and polarizations we use the equations of motion

/p1u(p1) = /p2u(p2) = k1 · ε1 = k2 · ε2 = 0 , (3.4)

which allows us to substitute

u(p1) =
(

1 + /q⊥ /̄n

4Q

)
ξn, ū(p2) = ξ̄n̄

(
1 +

/n/q⊥
4Q

)
, (3.5)

n̄ · ε1 = −~q⊥ · ~ε1⊥
Q

− ~q 2
⊥

4Q2n · ε1, n · ε2 = −~q⊥ · ~ε2⊥
Q

− ~q 2
⊥

4Q2 n̄ · ε2 . (3.6)

The scaling of the remaining objects that can appear in matrix elements is

Q ∼ 1, q⊥ ∼ λ, ξn ∼ ξ̄n̄ ∼ λ0, ε1⊥ ∼ ε2⊥ ∼ λ0, n · ε1 ∼ n̄ · ε2 ∼ λ−1 . (3.7)

Despite the anticipated 1/t ∼ λ−2 kinematic behavior and the λ−1 scaling of the nearly-
forward polarized gluons, the matrix elements for quark-gluon scattering in the Regge limit
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will scale at most like λ−1. The possible O(λ−1) matrix elements with these ingredients are

M0 = −ξn̄/ε1⊥
/q⊥
t
/ε2⊥ξn , (3.8)

M1n̄ = −ξn̄/ε1⊥ξn
n̄·ε2
Q

, M2n = −ξn̄/ε2⊥ξn
n·ε1
Q

, (3.9)

M1 = −ξn̄/ε1⊥ξn
q⊥ ·ε2⊥
t

, M2 = −g2 ξn̄/ε2⊥ξn
q⊥ ·ε1⊥
t

, (3.10)

Mq1 = −ξn̄/q⊥ξn
(q⊥ ·ε2⊥)n·ε1

tQ
, Mq2 = −ξn̄/q⊥ξn

(q⊥ ·ε1⊥)n̄·ε2
tQ

, (3.11)

Mq12 = −ξn̄/q⊥ξn
(n·ε1)(n̄·ε2)

Q2 , Mq12⊥ = −ξn̄/q⊥ξn
ε1⊥ ·ε2⊥

t
, (3.12)

Mqqq = −ξn̄/q⊥ξn
(q⊥ ·ε1⊥)(q⊥ ·ε2⊥)

t2
. (3.13)

For the amplitude to satisfy the Ward identity, only certain linear combinations of these
operators are allowed. For example, the tree-level matrix element of the gauge-invariant
operator OT in eq. (2.14) is g2MT ,

MT ≡M0 + 1
2 (M1n̄ +M2n) + 1

4Mq12 (3.14)

= −ξn̄
[
/ε1⊥ − /k1⊥

n·ε1
n·k1

]
/q⊥
t

[
/ε2⊥ − /k2⊥

n̄·ε2
n̄·k2

]
ξn . (3.15)

It is easy to see that upon replacing ε1 → k1 or ε2 → k2 this amplitude vanishes. The matrix
element combinations corresponding to the other gauge invariant operators in eqs. (2.21)
to eq. (2.24) are

ML1 ≡M1 + 1
2 (M1n̄ +Mq1) + 1

4Mq12, (3.16)

ML2 ≡M2 + 1
2 (M2n +Mq2) + 1

4Mq12, (3.17)

ML3 ≡Mq12⊥ + 1
2 (Mq1 +Mq2) + 1

4Mq12, (3.18)

ML4 ≡Mqqq + 1
2 (Mq1 +Mq2) + 1

4Mq12 . (3.19)

Note that if we consider only ε⊥ polarizations, only the first term in any of these combina-
tions contributes. However, it is important to check the matching for all polarizations as
it elucidates additional aspects of the effective theory (such as the need for non-vanishing
zero-bin subtractions) as we will see in the next section.

3.2 Tree-level graphs

In QCD, at tree-level, three graphs contribute. The t-channel graph is (a is the incoming
gluon color and b is the outgoing gluon color)

iIa = = −ig2T
aT b

t
ū(p2) /ε1( /p2 − /k1) /ε2u(p1) . (3.20)
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To expand at leading power we apply eq. (3.5) and eq. (3.6), and keep only terms at leading
power in λ.4 This leads to

Ia ∼= g2T aT b [MT −M1n̄ −M2n] . (3.21)

The s-channel graph gives

iIb = = −ig2T
bT a

Q2

[
2(p2 · ε2)ū/ε1u+ ū/ε2/k2/ε1u

]
,

∼= g2T bT a [M1n̄ +M2n] . (3.22)

The u-channel graph is

iIc =

= ig2 if
abcT b

−Q2 − t

[
(k2 + p1 − p2)·ε1ū/ε2u− (k1 − p1 + p2) · ε2ū/ε1u+ ε1 ·ε2(/k1 + /k2)u

]
,

∼= ig2(T aT b − T bT a) [M1n̄ +M2n] , (3.23)

so that the total tree-level amplitude is

I0
QCD = Ia + Ib + Ic = g2T aT bMT . (3.24)

Note that all 3 diagrams contribute at leading power, although only the t-channel fermion
exchange diagram contributes to the production of ε⊥.

At tree level, we have a single diagram in the EFT given by the matrix element of
operator OT in eq. (2.14). The contributions are

〈
εb2

∣∣∣ /Bn⊥χn |ξn〉 = q

ξn(p1) εb2(k2)

= T b
(
/ε2⊥ − /k2⊥

n̄ · ε2
n̄ · k2

)
ξn , (3.25)

〈0| Os |0〉 =
q

q
= −ig2

/q⊥ , (3.26)

〈ξn̄| /Bn⊥χn |εa1〉 = q⊥

εa1(k1) ξn̄(p2)

= T aξ̄n̄

(
/ε1⊥ − /k1⊥

n · ε1
n · k1

)
. (3.27)

4At tree-level the small polarizations n̄ ·ε1 and n ·ε2 do not contribute at leading power, so using eq. (3.6)
in this case is not needed.
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The tree-level amplitude is then

iI0
SCET =

〈
ξn̄; εb2

∣∣∣ χ̄n/Bn⊥ 1
/P⊥
Os

1
/P⊥

/Bn̄⊥χn̄ |ξn; εa1〉 = q⊥

n̄

n

n̄

n

= −ig2T aT bξn̄

[
/ε1⊥ − /k1⊥

n·ε1
n·k1

]
/q⊥
t

[
/ε2⊥ − /k2⊥

n̄·ε2
n̄·k2

]
ξn ,

= ig2T aT bMT , (3.28)

in perfect agreement with QCD for all polarizations, so that CT = 1 in eq. (2.20) at
tree-level.

4 One-loop matching

Now we proceed to matching at one-loop. We use Feynman gauge throughout, and dimen-
sional regularization in d = 4−2ε dimensions for both UV and IR divergences. Techniques
for separating UV and IR divergences, at least at one-loop, are standard. In QCD, the sep-
aration of UV and IR can be automated — it is an option in Package X [43], for example.
The SCET graphs can have rapidity divergences which we regulate with the η-regulator,
as discussed in section 2.3. We always expand in η before expanding in ε. Our analysis
extends that of [37], where onlyMT was considered.

4.1 QCD

The QCD calculation involves standard methods. In fact, the one-loop matrix elements for
quark-gluon scattering are well known (for example, see refs. [44, 45]). For completeness,
we reproduced the result from scratch. We generated the diagrams using FeynArts [46], and
evaluated them using Feyncalc [47] and Package X [43] with the Feynhelpers interface [48].
The diagrams are shown in figure 2. We first computed the exact matrix element, then
substituted in eq. (3.5) and eq. (3.6) and expanded to leading power in the Regge limit.
The result for the one-loop amplitude (excluding external leg corrections) is

I1
QCD= g4

16π2CF

 1
εUV
− 2
ε2
IR
−

4+2ln µ2

Q2

εIR
−2ln µ

2

Q2 lnµ
2

−t
+ln2 µ

2

−t
−3lnµ

2

−t
+7π2

6 −9

MT (T aT b)ij

+ g4

16π2CA

 2
εUV
− 2
ε2
IR
−

2+2lnµ
2

−t
εIR

−ln2 µ
2

−t
+π2

6 +2

MT (T aT b)ij

− g4

16π2 (CA−CF )(2ML1+2ML2)(T aT b)ij

+ g4

16π2 δ
abδij

[
1
εIR

+lnµ
2

−t

]
(iπ)MT . (4.1)

for an SU(N) gauge theory with quarks in the fundamental representation, such as QCD.
Here i is the color of the outgoing quark, j the color of the incoming quark, b the color of
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9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31

Figure 2. Amputated one-loop diagrams for qg → qg in QCD. Diagrams 10, 11 and 30 involve
ghosts.

the outgoing gluon, and a the color of the incoming gluon. Eq. (4.1) is valid for any color
representation of a generic gauge group if one replaces

δabδij → 2facgfbch
{
T g, T h

}
ij
− CA

{
T a, T b

}
ij
, (4.2)

(see ref. [45]). The result for QED is given by the replacements T aT b → 1 and δabδij → 0.
The renormalized on-shell S-matrix element is given by including the renormalization

counterterms, and the renormalized on-shell external-leg corrections needed in the LSZ
reduction formula. The MS wavefunction renormalization counterterms for the quark Zψ
and the gluon ZA in Feynman gauge are

Zψ = 1− g2

16π2
CF
εUV

, ZA = 1 + g2

16π2εUV

[5CA
3 − 4

3nfTF
]
. (4.3)

The counterterm Zg for the coupling constant g is,

Zg = 1− g2

32π2εUV

[11CA
3 − 4

3nfTF
]
. (4.4)

The counterterm contribution arises from two insertions of the vertex counterterm δg+δψ+
δA/2 at each vertex, and −δψ from the fermion wavefunction counterterm for the internal
fermion propagator, resulting in a net counterterm contribution

I1
ct = (2δg + δψ + δA) g2T aT bMT , (4.5)

where Zi = 1 + δi. These counterterms exactly cancel the UV divergences in I1
QCD.

To use the amplitude for an S-matrix element, we must convert to the on-shell scheme.
The MS-renormalized external-leg correction is

I1
R = (δRψ + δRA) g2T aT bMT , (4.6)
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where Ri is the renormalized residue of the pole of the particle i propagator, and Ri =
1 + δRi. Since the on-shell self-energy graphs are scaleless, the Ri are

Rψ = 1 + g2

16π2
CF
εIR

RA = 1− g2

16π2εIR

[5CA
3 − 4nfTF

3

]
. (4.7)

The renormalized on-shell S-matrix amplitude is then given by

S1
QCD,ren=I1

QCD+I1
ct+I1

R

= g2

16π2CF

− 2
ε2
IR
−

3+2ln µ2

Q2

εIR
−2ln µ

2

Q2 lnµ
2

−t
+ln2 µ

2

−t
−3lnµ

2

−t
+7π2

6 −9

MT (T aT b)ij

+ g2

16π2CA

[
− 2
ε2
IR
− 1
εIR

(
11
3 +lnµ

2

−t

)
−ln2 µ

2

−t
+π2

6 +2
]
MT (T aT b)ij+

g2

16π2
4nfTF
3εIR

MT (T aT b)ij

− g2

16π2 (CA−CF )(2ML1+2ML2)(T aT b)ij

+ g4

16π2 δ
abδij

[
1
εIR

+lnµ
2

−t

]
(iπ)MT , (4.8)

and is UV finite. Since eq. (4.3) and eq. (4.4) are the same in QCD and SCET, we can
compute the matching condition between the two theories using the on-shell amplitude
eq. (4.1) without the renormalization and external-leg factors.

4.2 SCET

For the SCET calculation we need to compute 6 collinear graphs. Four of them were
discussed in [37]

iIWQ,n =
n̄

n

n̄

n

, iIWG,n =
n̄

n

n̄

n

,

iIV Q,n =
n̄ n̄

n n

, iIV G,n =
n̄ n̄

n n

(4.9)

In [37] only the rapidity divergent parts of these graphs were computed, and only for the
ε⊥ polarizations. For the matching we need the entire amplitude, including UV and IR
divergent pieces and finite terms. There are two additional collinear graphs (“T graphs”),

iIT1,n = n n

n̄ n̄

n n

, iIT2,n =
n

nn

n̄ n̄

n n

. (4.10)

Just the n-collinear graphs are shown. The n̄-collinear graphs are identical with n ↔ n̄

and must also be included. We also need two soft graphs

iIflower =

n̄ n̄

n n

, iIeye =

n̄ n̄

n n

. (4.11)

In addition, we have to include appropriate zero bin subtractions. As we will see, the zero
bin subtractions are rapidity-finite and nonvanishing in this case, and critical to getting
agreement with QCD.
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4.2.1 Collinear graphs

The first collinear graph is

iIWQ,n = p1 + k

k

= −g4T aT bξ̄n̄

[
/ε1 − /k1⊥

n·ε1
n·k1

] 1
/q⊥
µ̃2ε

∫
ddk

(2π)d
(
ν

n̄·k

)η 1
[k2 + i0+][(p1 + k)2 + i0+]

×
{(

CF −
CA
2

)[1 + z

z

(
2/ε2⊥ + /q⊥

Q
n̄·ε2

)
+ 2 + (d− 2)z

2z

(
z/q⊥ − 2/k⊥

Q

)
n̄ · ε2

]

+ CA

[
/q⊥
Q

+ d− 2
4

(
z/q⊥ − 2/k⊥

Q

)]
n̄·ε2

}
ξn (4.12)

where5

z = n̄ · k
Q

. (4.13)

The graph is scaleless, but being careful to separate UV and IR, it evaluates to

IWQ,n = g4

16π2T
aT b

(
CF −

CA
2

)( 1
εUV

− 1
εIR

)[1
η

+ ln ν

Q
+ 1

]
2MT

+ g4

16π2T
aT bCA

( 1
εUV

− 1
εIR

)(
M1n̄ + 1

2Mq12

)
. (4.14)

The gluon Wilson line graph is

iIWG,n = k2 + k

k

n̄

n

n̄

n

= −1
2g

4T aT bξ̄n̄

[
/ε1 − /k1⊥

n·ε1
n·k1

] 1
/q⊥
µ̃2ε

∫
ddk

(2π)d
1

k2(k2 + k)2
1

z(1 + z)

× CA
[
(z2 + z + 1)/ε2⊥ + 4z2 + 3z + 2

4
/q⊥
Q
n̄·ε2 + 2z + 1

2
/k⊥
Q
n̄·ε2

]
un(p1) . (4.15)

The factor of 1/2 out front is a symmetry factor. This graph is also scaleless and evaluates to

IWG,n = g4

16π2T
aT bCA

( 1
εUV

− 1
εIR

)[1
η

+ ln ν

Q
+ 1

2

]
MT . (4.16)

5Here, we have defined µ̃2ε = µ2ε exp(εγE)(4π)−ε.
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The remaining two collinear graphs are significantly more complicated. The quark V graph
is

iIV Q,n =

p1 + k

k k + q

n̄ n̄

n n

= −g4T aT bξ̄n̄

[
/ε1 − /k1⊥

n·ε1
n·k1

] 1
/q⊥

(4.17)

×
(
CF −

CA
2

)
µ̃2ε

∫
ddk

(2π)d
NV Q

[k2 + i0+][(p1 + k)2 + i0+][(k + q)2 + i0+]ξn

where the numerator NV Q is given by6

NV Q =
[

2~k2
⊥+2~k⊥ ·~q⊥

z
− d−4

1+z

(
~k⊥+ ~q⊥

2

)2
+
(
d−6

4 z+ d−8
4

)
~q2
⊥

]
/ε2⊥

+ 1
z

−2
(
~k⊥+~q⊥

)2 /k⊥
Q

+
~k2
⊥/q⊥+~q2

⊥/k⊥
Q

 n̄·ε2 + (4−d)
(1+z)

(
~k⊥+ 1

2~q⊥
)2 /q⊥+/k⊥

Q
n̄·ε2

+ (6−d)
4 ~q2

⊥
/k⊥
Q
n̄·ε2 +

[
d−2

2
(
~k⊥+~q⊥

)2
+ 2−d

4 ~q2
⊥−~k⊥·~q⊥

]
/q⊥
Q
n̄·ε2

+
[
(d−3)z /q⊥−6/k⊥

]
ε2⊥·q⊥+

[
(12−2d+(d−2)z)/q⊥−2(d−2)/k⊥

]
ε2⊥·k⊥

+
[
d−2

2 z+1
]

(z/q⊥−2/k⊥) Q n·ε2 (4.18)

Note that this graph produces the small n · ε2 polarization. Evaluating the graph, and
eliminating the n·ε2 term using equations of motion in eq. (3.6), we find that it evaluates to

IV Q,n = − g4

16π2T
aT b

(
CF −

CA
2

)
(4.19)

×
{[1

η

(
2
εUV

+ 2 ln µ2

−t

)
+

3 + 2 ln ν
Q

εUV
+ 2 ln µ2

−t
ln ν

Q
+ 3 ln µ2

−t
− 2π2

3 + 8
]
MT − 2ML1

}

Note that this graph is IR finite.
The final collinear graph is

iĨV G,n =

p1 +k

k q+k

n̄ n̄

n n

(4.20)

=−g4T aT bξ̄n̄

[
/ε1−/k1⊥

n·ε1
n·k1

] 1
/q⊥
CAµ̃

2ε
∫

ddk

(2π)d
NGV

[k2 + i0+][(p1 +k)2 + i0+][(k+q)2 + i0+]ξn,

6One can replace /k⊥/q⊥ → −
~k⊥ · ~q⊥ in the integrand.
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where

NGV =
[1
z

(
~k 2
⊥+~k⊥·~q⊥

)
+
(
−~k⊥·~q⊥−

1
2
~k 2
⊥+ 1

2(n·k)Qz− (3z+2)
4 ~q 2

⊥

)]
/ε2⊥

+
[
~k 2
⊥−~q 2

⊥
2z + (10+d)

16 ~q 2
⊥+ (d−3)

2 (n·k) Q
]
/k⊥
Q
n̄·ε2

+
[
~k2
⊥+~k⊥·~q⊥

z
− 1

2
~k⊥·~q⊥+ 20+2z−dz

32 ~q2
⊥+ (2+2z−dz)

4 (n·k) Q
]
/q⊥
Q
n̄·ε2

+
[(3d−18)

4
/k⊥+ 2z−3dz+4

8 /q⊥

]
q⊥·ε2⊥+

[
(d−2)/k⊥+ 2z−dz+8

2 /q⊥

]
k⊥·ε2⊥

+
[

(2d−4)z+d−6
4

/k⊥+ (4−2d)z2 +(6−d)z−4
8 /q⊥

]
Q (n·ε2). (4.21)

As with the quark V graph, we use the gluon equation of motion to replace the n · ε2 term.
The result is

IV G,n=− g4

16π2T
aT bCA

[
1
η

{
1
εUV

+lnµ
2

−t

}
+

ln ν
Q

εUV
+ 1
ε2
IR

+
3
2+lnµ

2

−t
εIR

+1
2ln2

(
µ2

−t

)
+lnµ

2

−t
ln ν
Q

+3
2lnµ

2

−t
−5π2

12 +3
]
MT−

g4CA
16π2 T

aT bML1

−g
4CA

16π2 T
aT b

[
3

4εUV
− 1
εIR
−1

4lnµ
2

−t
−1
](
M1n̄+1

2Mq12

)
. (4.22)

Note that, in contrast to the quark V graph, this graph is not IR finite.

Next, consider the T graphs IT1,n, IT2,n:

iIT1,n = q − k k

n̄ n̄

n n

= g4T aT bξ̄n̄

[
/ε1 − /k1⊥

n·ε1
n·k1

] 1
/q⊥
µ̃2ε

∫
ddk

(2π)d
1

[k2 + i0+][(q − k)2 + i0+]

×
{(

CF −
CA
2

)
(d− 4)

(
n̄·k

n̄·(p1 − k)/ε2⊥ + /q⊥ − /k⊥
n̄·(p1 − k) n̄·ε2

)

+ CF (2− d)
(
n̄·k
n̄·q /

ε2⊥ −
n̄·k
n̄·p1

/q⊥
n̄·q

n̄·ε2
2

)}
ξn (4.23)
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and

iIT2,n =

p1 k2

p1−k2

n̄ n̄

n n

= g4T aT bξ̄n̄

[
/ε1−/k1⊥

n·ε1
n·k1

] 1
/q⊥
µ̃2ε

∫
ddk

(2π)d
CF

[k2 + i0+][(q−k)2 + i0+]q2
⊥

×
{(

4−d
2 ~q2

⊥
/q⊥
n̄·p1

+
(2−d)~q2

⊥(n̄·k)/q⊥
2(n̄·p1)(n̄·q)

)
n̄·ε2

+(2−d)(n̄·k) /q⊥(n·ε2)+~q2
⊥

(
(d−2) n̄·k

n̄·q
+
(

1− d2

)
n̄·k
n̄·q

+d−4
)
/ε2⊥

−(2−d)/ε2⊥/k⊥/q⊥+(d−2)
(

2/k⊥−
n̄·k
n̄·p1

/q⊥

)
ε2⊥·q⊥−2(d−2)/q⊥(k⊥·ε2⊥)

}
(4.24)

The k+ = n · k integral in both of these graphs is∫
dk+ 1

[k+k− − ~k2
⊥ + i0+][k+k− − q+k− − (~q⊥ − ~k⊥)2 + i0+]

. (4.25)

Since the k+ poles are on the same side of the real axis these graphs vanish upon contour
integration,

IT1,n = IT2,n = 0 . (4.26)

More generally, T graphs of this form, where only Glauber momentum q and no collinear
momentum flows through a collinear loop, have no large momenta scale for the loop de-
nominators to depend on. Since q− = n̄ · q = 0, the only large momentum component that
can ever multiply k+ in any of the denominators is k−, and so the poles in the k+ integral
will always be on the same side of the real axis and these graphs will always vanish.

The sum of the n-collinear graphs is

In,coll=IV Q,n+IV G,n+IWG,n+IWQ,n+IT1,n+IT2,n

=− g4

16π2T
aT bCF

[
2
η

{
1
εIR

+lnµ
2

−t

}
+ 1
εUV

+
2+2ln ν

Q

εIR
+2lnµ

2

−t
ln ν
Q

+3lnµ
2

−t
−2π2

3 +8
]
MT

− g4

16π2T
aT bCA

− 1
εUV

+ 1
ε2
IR

+
1+lnµ

2

−t
εIR

+1
2ln2 µ

2

−t
−π

2

12−1

MT −
g4

16π2T
aT b2(CA−CF )ML1

+ g4

16π2T
aT bCA

[
1

4εUV
+1

4lnµ
2

−t
+1
](
M1n̄+1

2Mq12

)
. (4.27)

Excluding the terms on the last line, the collinear contribution by itself satisfies the Ward
identity. The last line is troublesome, and does not satisfy the Ward identity. However, as
we will see in section 4.2.4, it is precisely canceled by zero bin subtractions.

The n̄-collinear graphs give the same results with the replacementsML1 →ML2 and
M1n̄ →M2n.
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4.2.2 Soft graphs

The soft flower graph arises from Wilson line emissions from both collinear directions. It
takes the following form

iIflower = k

n̄ n̄

n n

= −2g4T aT bCF ξ̄n̄

[
/ε1 − /k1⊥

n·ε1
n·k1

] 1
t

× µ̃2ε
[∫

ddk

(2π)d
(

ν

|2kz|

)η /q⊥ + /k⊥
(n̄ · k)(n · k) (k2 + i0+)

] [
/ε2 − /k2⊥

n̄·ε2
n̄·k2

]
ξn . (4.28)

The graph is scaleless and evaluates to

Iflower = g4

16π2T
aT bCF

[(
−4
η

+ 2 ln µ
2

ν2

)( 1
εUV

− 1
εIR

)
+ 2
ε2
UV
− 2
ε2
IR

]
MT . (4.29)

The eye graph Ieye arises from a time ordered product of the soft-Glauber operators
OSn and OSn̄ in (2.16),

iIeye = k+q k

n̄ n̄

n n

=−g4T aT bCF ξ̄n̄

[
/ε1−/k1⊥

n·ε1
n·k1

] 1
/q⊥

× µ̃2ε
[∫

ddk

(2π)d
(

ν

|2kz|

)η 1
(k2 + i0+) [(k+q)2 + i0+]

(
γµ⊥(/k+/q⊥)γµ⊥+

2 /k⊥(/k+/q⊥)/k⊥
(n̄ ·k)(n ·k)

)]

× 1
/q⊥

[
/ε2−/k2⊥

n̄·ε2
n̄·k2

]
ξn . (4.30)

Evaluating the graph, we find that

Ieye = 2g4

16π2T
aT bCF

[1
η

(
2
εUV

+ 2 ln µ2

−t

)
− 1
ε2
UV
−

ln µ2

ν2

εUV
+ 3

2εUV
− 1

2 ln2 µ
2

−t
+ ln µ2

−t
ln ν2

−t

+ 3
2 ln µ2

−t
− π2

12 + 7
2

]
MT . (4.31)
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The full analytic form for the soft eye graph is given in appendix C.2. The sum of the two
soft graphs is

Isoft = Ieye + Iflower

= 2g2CF
16π2 T aT b

[1
η

(
2
εIR

+ 2 ln µ2

−t

)
− 1
ε2
IR
−

ln µ2

ν2

εIR
+ 3

2εUV
− 1

2 ln2 µ
2

−t
+ ln µ2

−t
ln ν2

−t

+ 3
2 ln µ2

−t
− π2

12 + 7
2

]
MT . (4.32)

As a non-trivial check on our results, we find that the soft sector of SCETII is gauge
invariant on its own, as should be the case.

4.2.3 Glauber boxes

Next, we consider Glauber box diagrams. Since Glauber fermion exchange flips quark ↔
gluon, there must be an odd number of fermionic Glauber exchanges in the Regge limit
(backwards scattering) for qg → qg. So at one-loop the box graphs must have one fermionic
Glauber and one gluonic Glauber. The allowed graphs are

n̄ n̄

n n

n̄ n̄

n n

n̄ n̄

n n

n̄ n̄

n n

(4.33)

Although these graphs are not rapidity divergent, one still must use a rapidity regulator
like the η regulator to evaluate the graphs. The η regulator inserts factors of

(
ν
|2kz |

)η
in

the loop integrand which makes the integrals well defined.
The last two (crossed-box) graphs vanish using the η regulator. The first two graphs

have been worked out in [37] and contribute pure imaginary pieces, and we simply restate
the result here:

Iboxes = g4

16π2 δ
abδij

[
1
εIR

+ ln µ2

−t

]
(iπ) . (4.34)

That the Glauber box graph give a purely imaginary contribution is consistent with general
observations about Glauber gluons: the iπ is present even in QED for processes like γγ →
e+e−, where it represents the leading order expansion of the Coulomb phase. For a crossed
process where only one incoming and one outgoing particle is charged, like γe− → γe−

the phase is absent. Because the iπ disappears upon crossing, in order for graphs like the
Glauber boxes to give the pure phase, they must have a non-analytic integrand, as imposed
by the |2kz| factor in the η-regulator (this is not true in full QCD where the iπ comes with
an associated logarithm). A further discussion of the essential non-analyticity of rapidity
regularization can be found in [49].

4.2.4 Zero bin subtractions

Finally, we have to consider the overlap between soft, collinear, and Glauber regions. For
SCETI problems, with just collinear and ultrasoft modes,the method of regions works
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without explicit zero bin subtractions in pure dimensional regularization because the soft-
collinear zero bin integrals are always scaleless and thus formally vanish. However, even for
SCETI problems, one cannot establish the agreement of IR divergences between the full and
effective theories without careful consideration of the soft-collinear overlap region. Indeed,
factorization requires such zero-bin subtractions to get agreement between full and effective
theories at the integrand level [36]. Such subtractions appear, for example, as eikonal jet
functions [50], or soft-collinear matrix elements [51] In Glauber SCET however, pure dimen-
sional regularization cannot be used, as it does not regulate the rapidity divergences. Thus
even the method-of-regions approach of ignoring the separation of UV and IR and dropping
scaleless integrals cannot be used. One must explicitly consider the zero-bin overlap region.

For quark-gluon scattering, we must subtract the zero-bin overlap between the collinear
region and the soft and Glauber regions. The full subtracted collinear contribution will
then be

Ipure coll = Icoll − I [S]
coll − I

[G]
coll + I [S][G]

coll . (4.35)

Here, Icoll is the collinear contribution, including possible overlaps with the soft and
Glauber region, I [S]

coll is the collinear-soft zero bin, I [G]
coll is the collinear-Glauber zero bin,

and I [S][G]
coll is the collinear-soft-Glauber zero bin. Each contribution is computed starting

from the original collinear graph and then power expanding in the secondary scaling.
Let us begin with the n-collinear quark Wilson line graph IWQ,n in eq. (4.12). Power

expanding in the soft limit, it becomes

iI [S]
WQ,n = g4T aT bµ̃2ε

(
CF −

CA
2

)∫
ddk

(2π)d
(

ν

n̄ ·k

)η 2
[k2 + i0+] [(n̄·p1)(n·k)+ i0+]

n̄ ·p1
n̄ ·k

MT .

(4.36)
One can perform the k+ integration by contours, picking up the pole from the second

propagator. This leaves an integral of the form∫ 0

−∞

dk−

k−

(
ν

k−

)η
= 1
η
− 1
η

= 0 . (4.37)

Thus with the η-regulator, I [S]
WQ,n = 0. This is a general property of the η regulator:

the rapidity divergent part of the soft-collinear zero bin will always vanish, as first noted
in [31, 38]. Note however, that rapidity-finite terms can have non-trivial zero bins, although
for IWQ,n there are none.

Next, consider the difference between I [G]
WQ,n and I [S][G]

WQ,n,

I [G]
WQ,n − I

[S][G]
WQ,n = g2T aT bµ̃2ε

(
CF −

CA
2

)∫
ddk

(2π)d
(

ν

n̄ · k

)η 2
~k2
⊥

n̄·p1
n̄·k

(4.38)

×
[

1
n̄·p1 n·(k + p1)− (~k⊥ + ~p1⊥)2 + i0+

− 1
(n̄·p1) (n·k1) + i0+

]
MT .

Since the n ·k poles in the integrands lie on the same side of the contour, this difference
vanishes upon contour integration. Combining with eq. (4.37),

I [S]
WQ,n + I [G]

WQ,n − I
[S][G]
WQ,n = 0 . (4.39)
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A similar analysis shows that the net zero-bin subtraction for the gluon Wilson line graph
is also zero,

I [S]
WG,n + I [G]

WG,n − I
[S][G]
WG,n = 0 , (4.40)

and similarly for the quark V graph,

I [S]
V Q,n + I [G]

V Q,n − I
[S][G]
V Q,n = 0 . (4.41)

In contrast to the rest of the collinear graphs, the zero bin subtractions for the gluon
V graph IV G,n are non-zero. Its soft-collinear zero bin is

iI [S]
V G,n = −g4T aT bξ̄n̄

[
/ε1 − /k1⊥

n·ε1
n·k1

] 1
/q⊥
CAµ̃

2ε

×
∫

ddk

(2π)d
N [S]
V G

[k2 + i0+][(n̄ · p1)(n · k) + i0+][(k + q⊥)2 + i0+]ξn, (4.42)

where the numerator is

N [S]
V G = 1

z

(
~k2
⊥ + ~k⊥ · ~q⊥

)
/ε2⊥ +

[(
~k2
⊥ − ~q2

⊥
2z

)
/k⊥
Q

+
(
~k2
⊥ + ~k⊥ · ~q⊥

z

)
/q⊥
Q

]
n̄·ε2

+
[(d− 3)

2
/k⊥ + (2 + 2z − dz)

4 /q⊥

]
(n·k)(n̄·ε2) . (4.43)

The terms in the first line of the numerator are rapidity divergent and yield zero due to
the η regulator, in an identical manner to the zero bin subtractions for IWQ,n. The rest of
the terms give a nonzero, rapidity finite integral

I [S]
V G,n = g4

16π2T
aT bCA

[
1

4εUV
+ 1

4 ln µ2

−t
+ 1

](
M1n̄ + 1

2Mq12

)
. (4.44)

The rapidity divergent parts of the collinear-Glauber and collinear-Glauber-soft zero bins
for IV G,n vanish, and the rapidity-finite parts are power suppressed,

I [G]
V G,n − I

[S][G]
V G,n = 0 . (4.45)

The total zero bin contribution for the gluon V graph is

I [S]
V G,n + I [G]

V G,n − I
[S][G]
V G,n = I [S]

V G,n 6= 0 . (4.46)

A simplified calculation that illustrates how the zero-bin for the gluon V graph can be
nonvanishing is provided in appendix B. This is exactly what is needed to restore the
Ward identity when subtracted from the collinear contribution in eq. (4.27).

One must also consider soft-Glauber zero bin contributions. For a general soft graph,
the zero bin subtractions take the form

Ipure soft = Isoft − I [G]
soft , (4.47)

where I [G]
soft is the soft-Glauber zero bin. In [31] it was argued that whether the rapidity-

divergent parts of soft-Glauber zero bin integrals vanish depends on the convention one
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chooses for the i0± prescription in the soft Wilson lines. Different choices shift a con-
tribution between Isoft and I [G]

soft, but their difference is independent of convention. We
illustrate this for the flower graph in appendix B.2. In the natural convention where the
eikonal propagators inherit +i0+ terms from the full-theory graphs, the rapidity-divergent
parts of the zero bin vanish. One must also compute the rapidity-finite parts of the soft-
Glauber zero bin contribution. As with the gluon V graph soft-Glauber contribution, the
rapidity-finite part of the soft graph zero bins are all power suppressed or vanish. Hence,
all the soft graphs do not receive any soft-Glauber zero bin subtractions:

I [G]
eye = I [G]

flower = 0 . (4.48)

In summary, almost all of the zero bin subtractions give zero. The only non-vanishing
contribution comes from the collinear-soft zero bin of the gluon V graph, so the total zero
bin contribution is

Izero bin = −I [S]
V G,n = − g4

16π2T
aT bCA

[
1

4εUV
+ 1

4 ln µ2

−t
+ 1

](
M1n̄ + 1

2Mq12

)
. (4.49)

4.3 Final result

Adding up the results from eqs. (4.27), (4.32), (4.34) and (4.49), and including the n̄-
collinear contribution as well, we get

I1
SCET=Icoll,n+Izerobin,n+Icoll,n̄+Izerobin,n̄+Isoft+Iboxes

= g4

16π2CF

 1
εUV
− 2
ε2
IR
−

4+2ln µ2

Q2

εIR
−2ln µ

2

Q2 ln µ
2

−t
+ln2 µ

2

−t
−3ln µ

2

−t
+ 7π2

6 −9

MT (T aT b)ij

+ g4

16π2CA

 2
εUV
− 2
ε2
IR
−

2+2ln µ2

−t
εIR

−ln2 µ
2

−t
+π2

6 +2

MT (T aT b)ij

− g4

16π2 (CA−CF )(2ML1+2ML2)(T aT b)ij+
g4

16π2 δ
abδij

[
1
εIR

+ln µ
2

−t

]
(iπ). (4.50)

Comparing to the leading-power expansion of the full QCD amplitude in eq. (4.1) we find
perfect agreement. Thus there are no matching corrections at 1-loop:

CT = 1 , CL1 = CL2 = CL3 = CL4 = 0 . (4.51)

Although we cannot rule out contributions to these Wilson coefficients at order α2
s and

above, there is good reason to suspect such contributions will also vanish.

5 Conclusions

In this paper, we have studied quark-gluon backscattering in the Regge limit, where the
outgoing quark is close to the direction of the incoming gluon. We work to leading power
in λ = |q⊥|/Q, with q⊥ the transverse momentum of the outgoing quark relative to the
incoming gluon and Q its energy. We computed the one-loop amplitude in QCD in this limit
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as well as the one-loop contribution to the amplitude using Glauber-SCET. We find that
the same operators OT , Osn,Osn̄ and OGG0 required for tree-level matching also reproduce
all of the UV divergences, IR divergences, large logarithms and all the finite parts of QCD.

Our result in eq. (4.51) is very surprising. In principle, five different operators could
have been needed at one-loop. Indeed, we did find that the Dirac tensor structures corre-
sponding to OL1 and OL2 do appear at one-loop. However, loop corrections from insertions
of OT generate these tensor structures, so that OL1 and OL2 are not needed in the Glauber-
SCET Lagrangian at one-loop. We find that the only operator needed is OT , the same one
needed for tree-level matching, but even for this operator, the one-loop matching correction
vanishes.

That there is no one-loop correction can be anticipated from general arguments, such
as those in [31]. Indeed, for quark-quark forward scattering in the Regge limit, Stewart
and Rothstein found that not only was the leading power behavior of QCD reproduced
at one-loop by Glauber-SCET, but that even the finite correction to the gluonic Glauber
operator vanished. General arguments given in [31] forbid dependence on the hard scale,
so that terms like ln

(
p1 · p2/µ

2) should not appear in the Wilson coefficient. This can
explain the absence of logarithms in the matching, both for gluonic Glauber exchange and
fermionic exchange, but does not forbid a correction which is a function of αs. We find that
just as the Glauber gluonic operator, the Glauber fermionic operator in SCET reproduces
the entire leading power Regge behaviour in QCD, including the finite terms, so there is
no αs correction.

The one-loop matching for the Glauber gluon case enters the analysis of the two-
loop gluonic Regge trajectory [52], and the computation is simplified because the matching
vanishes. The one-loop matching for the Glauber quark case computed in this paper (which
also vanishes) can be similarly used to compute the two-loop quark Regge trajectory.7 The
calculational method requires the eye graph, to order ε, which is given in appendix C.2.
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A Glauber SCET expansion

In this appendix we discuss some subtleties in expanding the Glauber SCET operators and
give the Feynman rules explicitly.

A.1 Wilson lines

For n-collinear fields, the Wilson lines Wn represent n-collinear radiation from everything
else in the event, i.e. from other particles in the collision which are not in the n direction.

7We thank Ian Moult for discussions on [52] prior to publication.
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This radiation can come from incoming or outgoing particles, but the n-collinear field is
only sensitive to the net effect which can be treated as coming from a coherent source of
radiation from a single outgoing particle propagating in the n̄ direction, and with color
charge conjugate to the n-collinear field. The Wilson line takes the form8

W †n(x) = P

{
exp

[
igT a

∫ ∞
0

ds n̄·Aan(xν + n̄νs)e−0+s
]}

(A.1)

where P denotes path-ordering. Under a gauge transformation W †n transforms as

W †n(x)→ U(∞)W †n(x)U †(x) . (A.2)

The exp−0+s factor is required to make the Wilson line convergent at infinity. It generates
the i0+ factors in the propagator denominators. Note that W †n(x) contains n-collinear
gauge fields, and the integral is in the n̄ direction. For n̄-collinear fields one uses Wilson
lines pointing in the n direction.

W †n̄(x) = P

{
exp

[
igT a

∫ ∞
0

ds n·Aan̄(xν + nνs)e−0+s
]}

. (A.3)

Soft Wilson lines represent soft radiation from the collinear particles, and point in the
direction of those particles (in contrast to collinear Wilson lines which represent radiation
from everything else except the collinear particle of interest). For the soft operators, we
need Wilson lines pointing both in the n and n̄ direction. These Wilson lines have identical
structure to the collinear Wilson lines, but comprising soft rather than collinear gluon
fields, and conventionally indexed with the direction of the Wilson line path rather than
the direction backwards to the Wilson line path. Explicitly, for outgoing radiation

S†n(x) = P

{
exp

[
igT a

∫ ∞
0

ds n·AaS(xν + nνs)e−0+s
]}

, (A.4)

S†n̄(x) = P

{
exp

[
igT a

∫ ∞
0

ds n̄·AaS(xν + n̄νs)e−0+s
]}

, (A.5)

which transform as

S†n(x)→ U(∞)S†n(x)U †(x) , S†n̄(x)→ U(∞)S†n̄(x)U †(x) . (A.6)

under gauge transformations. Since forward scattering involves incoming as well as out-
going particles, we should also consider soft operators using Wilson lines representing
incoming radiation:

Sn(x) = P

{
exp

[
igT a

∫ 0

−∞
ds n·AaS(xν + nνs)e0+s

]}
, (A.7)

Sn̄(x) = P

{
exp

[
igT a

∫ ∞
0

ds n̄·AaS(xν + n̄νs)e0+s
]}

, (A.8)

which transform as

S
†
n(x)→ U(−∞)S†n(x)U †(x) , S

†
n̄(x)→ U(−∞)S†n̄(x)U †(x) . (A.9)

under gauge transformations. The difference between S and S is +i0+ → −i0+ in the
eikonal propagators. One uses S or S depending on whether the QCD field ψ represents
an incoming quark or an outgoing antiquark.

8A reminder that our sign convention for the covariant derivative is Dµ = ∂µ − igAµ.
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A.2 Collinear gluon operators

SCET n-collinear gluons are created and annihilated by the gauge invariant operator Bµn⊥,
which is defined by

Bµn⊥ =
[
in̄ν
n̄ · P

W †nG
νµ⊥
n Wn

]
, (A.10)

where Gνµn is the gluon field-strength tensor for n-collinear gluons, Gνµ⊥n projects the
µ index to the ⊥ directions, and the label operator P is the total label momentum of
W †nG

νµ⊥Wn. The square brackets are a reminder that P picks out the label momentum
of the fields inside the brackets. The one-gluon matrix element of Bµn⊥ for a gluon with
polarization ε and incoming momentum k is(

εµ − n̄ · ε
n̄ · k

kµ
)
T a , (A.11)

so that Bµn⊥ acts like a gauge-invariant version of Aµ.
There is an alternate definition of Bµn⊥, gB

µ
n⊥ = W †niD

µ
⊥Wn which is equivalent to

eq. (A.11). Equation (A.11) is more convenient for our purposes because it simplifies the
computation of the gluon matrix elements.

The n-collinear operator we need in the Glauber theory is

Bµn⊥χn =
[
in̄ν
n̄ · P

W †nG
νµ⊥
n Wn

] [
W †nξn

]
, (A.12)

where the label momentum P only acts on the fields within the first square brackets. The
matrix element of Bµn⊥χn with an incoming fermion and one incoming gluon is(

εµ − n̄ · ε
n̄ · k

kµ
)
T aξ . (A.13)

For one incoming fermion and two incoming gluons, the matrix element is

g
n̄·ε2
n̄·k2

ε1νT
a2T a1ξ+g n̄·ε1

n̄·k1
ε2νT

a1T a2ξ−g(n̄·ε1)(n̄·ε2)
n̄·(k1+k2) (k1ν+k2ν)

[ 1
n̄·k2

T a2T a1+ 1
n̄·k1

T a1T a2

]
ξ

(A.14)
where ξ is the fermion spinor, and the gluons have momenta ki and color ai. These results
are used in the next section to get the Glauber-SCET Feynman rules.

A.3 Feynman rules

In this appendix we summarize the Feynman rules of Glauber-SCET that we use for the
calculations in this paper. These are mostly well known, and we simply copy them from [25–
31, 37]. The only new vertex is the 2 collinear gluon emission off the Glauber operator in
eq. (A.17). This was not given in [37], and moreover, we disagree with eq. (A.5) of [37]
which gives the second order terms in the expansion of the collinear operator. We find the
second order terms in the expansion of Bµn⊥ are

− g [T a1 , T a2 ]
[(n̄ · ε1)(n̄ · ε2)
n̄ · (k1 + k2)

(
k2ν
n̄ · k1

− k1ν
n̄ · k2

)
+ ε1ν(n̄ · ε2)

n̄ · k2
− ε2ν(n̄ · ε1)

n̄ · k1

]
. (A.15)
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The Glauber SCET Feynman rules used in this paper are as follows. The n-collinear
Glauber vertex with one collinear gluon emission is

k

µ, a

= T a
(
γµ⊥ − /k⊥

n̄µ

n̄ · k

)
. (A.16)

With two collinear gluons it is

k2

k1

ν, b

µ, a

=
− g (/k1⊥ + /k2⊥)

(
T aT b

n̄ · k1
+ T bT a

n̄ · k2

)
n̄µn̄ν

n̄ · k1 + n̄ · k2

+ gT aT b
n̄µ

n̄ · k1
γν⊥ + gT bT a

n̄ν

n̄ · k2
γµ⊥ .

(A.17)

The vertex for a single soft emission is [37]

k

q′⊥

q⊥

µ, a = g3T a
(
γµ⊥ + /q

′
⊥
nµ

n·k
− /q⊥

n̄µ

n̄·k

)
. (A.18)

For two soft emissions:

k1

k2

q′⊥

q⊥

µ, a

ν, b

=
g4T aT b

(
nνγµ⊥
n·k2

−
n̄νγµ⊥
n̄·k1

+ /q′⊥n̄
µn̄ν

2n̄·(k1 + k2)n̄·k1
− /q⊥n

µnν

2n·(k1 + k2)n·k1

−
(/q⊥ + /k1⊥)n̄µnν

n̄·k1n·k2

)
+ (k1, µ, a)↔ (k2, ν, b) .

(A.19)

The soft-quark/soft-gluon Glauber vertex (from OSn) is

k

µ, a

= −g2T a
(
γµ⊥ − /k⊥

n̄µ

n̄·k

)
us(p) . (A.20)
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The 3-point collinear-quark/collinear-gluon vertex in SCET is

p p′

a, µ

= igT a
[
nµ +

γµ⊥/p⊥
n̄·p

+ /p′⊥γ
ν
⊥

n̄·p′
− /p′⊥/p⊥

(n̄·p)(n̄·p′) n̄
µ

]
/̄n

2 . (A.21)

The 4 point collinear-quark/collinear-gluon vertex in SCET is

p p′

ka,µ b,ν

= ig2 T aT b

n̄·(p−k)

[
γµ⊥γ

ν
⊥−

γµ⊥/p⊥
n̄·p

n̄ν− /
p′⊥γ

ν
⊥

n̄·p′
n̄µ+ /p′⊥/p⊥

(n̄·p)(n̄·p′) n̄
µn̄ν

]
/̄n

2 (A.22)

+ig2 T bT a

n̄·(k+p′)

[
γν⊥γ

µ
⊥−

γν⊥/p⊥
n̄·p

n̄µ− /
p′⊥γ

µ
⊥

n̄·p′
n̄ν+ /p′⊥/p⊥

(n̄·p)(n̄·p′) n̄
ν n̄µ

]
/̄n

2

The 3-point collinear gluon vertex is the same as that of QCD,

p

q

k

ν, b

ρ, c

µ, a

= gfabc [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ] . (A.23)

Finally, we also need the leading power collinear quark propagator,

p = i
n̄·p

p2 + i0+
/n

2 . (A.24)

B Zero bin toy calculation

In this appendix, we provide some illustrative calculations relevant for the zero-bin sub-
tractions needed in this paper.

B.1 Collinear-soft zero bin

Consider the collinear integral

Ĩtoy = µ̃2ε
∫

ddk

(2π)d
(n · k) (n̄ · p1)

[k2 + i0+][(k + p1)2 + i0+][(k + q⊥)2 + i0+] . (B.1)

This is a standard one-loop integral with quadratic denominators. It evaluates to

Ĩtoy = i

16π2

 1
4ε2

IR
+

2 + ln µ2

−t
4εIR

+ 1
8 ln2 µ

2

−t
+ 1

2 ln µ2

−t
− π2

48 + 1

 . (B.2)
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Its soft-collinear zero bin I [S]
toy results from power expanding the integrand using kµ ∼ Qλ.

This gives

I
[S]
toy = µ̃2ε

∫
ddk

(2π)d
(n · k) (n̄ · p1)

[k2 + i0+][(n · k)(n̄ · p1) + i0+][(k + q⊥)2 + i0+]

= µ̃2ε
∫

ddk

(2π)d
1

[k2 + i0+][(k + q⊥)2 + i0+] , (B.3)

which can be evaluated to obtain

I
[S]
toy = i

16π2

[
1
εUV

+ ln µ2

−t
+ 2

]
. (B.4)

This is an example of the soft-collinear zero bin not being scaleless.
The Glauber and soft-Glauber-collinear zero bins for eq. (B.1) are

I
[G]
toy = µ̃2ε

∫
ddk

(2π)d
(n · k) (n̄ · p1)

[~k2
⊥ + i0+][n · (k + p1)(n̄ · p1)− (~k⊥ + ~p1⊥)2 + i0+][(~k⊥ + ~q⊥)2 + i0+]

∼ O(λ2), (B.5)

I
[S][G]
toy = µ̃2ε

∫
ddk

(2π)d
(n · k) (n̄ · p1)

[~k2
⊥ + i0+][(n · k)(n̄ · p1) + i0+][(~k⊥ + ~q⊥)2 + i0+]

∼ O(λ2) . (B.6)

Both of these zero bins are power suppressed relative to Ĩtoy and thus can be ignored at
leading power. Thus, we find that the zero-bin subtracted toy integral is

Itoy = Ĩtoy − I [S]
toy (B.7)

= i

16π2

 1
4ε2

IR
− 1
εUV

+
2 + ln µ2

−t
4εIR

+ 1
8 ln2 µ

2

−t
− 1

2 ln µ2

−t
− π2

48 − 1

 . (B.8)

Thus, the toy example shown here is an instance of a non-trivial zero bin subtraction that
is essential to correctly match Glauber-SCET onto QCD.

B.2 Soft-Glauber zero bin

In this section we review the argument from [31] about the zero-bin and regularization
of the eikonal propagators. For the sake of concreteness, we illustrate this using the soft
flower graph in eq. (4.28). Stripping away the prefactors, the soft flower graph reduces to

I = µ̃2ε
∫

ddk

(2π)d
1

(n̄·k ± i0+)(n·k ± i0+)(k2 + i0+) . (B.9)

The ±i0+ refers to the choice for the poles of the eikonal propagators, depending on the
choice of S or S for the soft Wilson lines.

If we choose both sides to be the same, +i0+, (i.e. pick Sn and Sn̄), the integral
evaluates to

I++ = i

16π2

[
−2
η

( 1
εUV

− 1
εIR

)
+ ln

(
µ2

ν2

)( 1
εUV

− 1
εIR

)
+ 1
ε2
UV
− 1
ε2
IR

]
, (B.10)
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and the soft-Glauber zero bin is

I
[G]
++ = µ̃2ε

∫
ddk

(2π)d
1

(n̄·k + i0+)(n·k + i0+)(k2
⊥ + i0+)

= 0 . (B.11)

The last line follows from the fact that the poles in k0 are on the same side of the integration
contour. Thus, for this choice of the signs of i0+ in the eikonal denominators, the soft
Glauber zero-bin explicitly vanishes.

If one chooses opposite signs (i.e. pick Sn and Sn̄)

I+− = µ̃2ε
∫

ddk

(2π)d
1

(n̄·k − i0+)(n·k + i0+)(k2 + i0+) , (B.12)

and the integral is different:

I+− = I++ + i

∫
dd−2~k⊥
(2π)d−2

∫ ∞
−∞

dkz
2π

(
ν

|2kz|

)η 1
(2kz + i0+) (~k2

⊥ − i0+)
. (B.13)

The Glauber-soft zero bin in this case does not vanish:

I
[G]
+− = µ̃2ε

∫
ddk

(2π)d
1

(n̄·k − i0+)(n·k + i0+)(k2
⊥ + i0+)

(B.14)

= i

∫
dd−2~k⊥
(2π)d−2

∫ ∞
−∞

dkz
2π

(
ν

|2kz|

)η 1
(2kz + i0+) (~k2

⊥ − i0+)
, (B.15)

where the last line follows from contour integration in k0. Thus, we see that

I++ − I [G]
++ = I+− − I [G]

+− , (B.16)

and the zero-bin subtracted integrals are the same. The soft-Glauber zero-bins allow one
to be agnostic about the signs of the i0+ in the eikonal denominators. The simplest choice
is to have all the signs +i0+ so that the soft-Glauber zero-bins vanish.

C Useful loop integrals

In this appendix, we discuss how some of the rapidity divergent integrals can be computed,
and give an example of an exact result with the soft eye graph.

C.1 General formulas

Rapidity divergent integrals from the collinear Wilson line graphs generally take the form

IW =
∫

ddk

(2π)d
(
ν

n̄·k

)η f(n̄·k,~k⊥)
[k2 + i0+][(p+ k)2 + i0+] (C.1)

where the numerator f(n̄·k,~k⊥) depends only on n̄ · k and ~k⊥, and is independent of n · k.
We first do the k+ = n·k integral by contours. The poles in the k+ plane are at

k+ =
~k2
⊥ − i0+

n̄·k
, and k+ = −n · p+ (~k⊥ + ~p⊥)2 − i0+

n̄·(p+ k) . (C.2)
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Only when −n̄·p < n̄·k < 0 do the poles lie on opposite sides of the integration contour. If
we close the contour in the upper half plane, we pick up the first pole. Changing variables
to z = −(n̄ · k)/(n̄ · p) gives

IW = i

4π

(
ν

n̄ · p

)η ∫ 1

0
dz 1

zη

∫
dd−2~k⊥
(2π)d−2

f(−zn̄ · p,~k⊥)
~k2
⊥ + 2~k⊥ · ~p⊥z + ~p2

⊥z − p+p−z(1− z)

= i

4π

(
ν

n̄ · p

)η ∫ 1

0
dz 1

zη

∫
dd−2~k⊥
(2π)d−2

f(−zn̄ · p,~k⊥)
~k2
⊥ + 2~k⊥ · ~p⊥z + ~p 2

⊥z
2
, (C.3)

using the on-shell condition p2 = 0. Shifting the integration momentum gives

IW = i

4π

(
ν

n̄ · p

)η ∫ 1

0
dz 1

zη

∫
dd−2~k⊥
(2π)d−2

f(−zn̄ · p,~k⊥ − z~p⊥)
~k2
⊥

. (C.4)

The remaining computation, performing the k⊥ integration and then the z integration,
depends on the particular integrand, but is generally straightforward. The result is pro-
portional to 1/εUV − 1/εIR.

Diagrams with triangle topology such as the collinear V graphs give rise to integrals
of the form

IV =
∫

ddk

(2π)d
(
ν

n̄·k

)η f(n̄·k,~k⊥)
[k2 + i0+][(p+ k)2 + i0+][(k + q⊥)2 + i0+] . (C.5)

There are now three poles in n·k given by

k+ =
~k2
⊥ − i0+

n̄·k
, (C.6)

k+ = −n·p+

(
~k⊥ + ~p⊥

)2
− i0+

n̄·(p+ k) , (C.7)

k+ = (~k⊥ + ~q⊥)2 − i0+

n̄·k
. (C.8)

Two of these poles are on opposite sides of the integration contour from the other only for
the region −n̄·p < n̄·k < 0. One can then close the contour in the lower half plane picking
up the second pole, and change variables to z = −(n̄ · k)/(n̄ · p) giving

IV = − i

4π

(
ν

n̄ · p

)η ∫ 1

0
dz 1− z

zη

∫
dd−2~k⊥
(2π)d−2

f(−zn̄ · p,~k⊥)
~k2
⊥ + 2~k⊥ · ~p⊥z + ~p⊥z − p+p−z(1− z)

× 1
(~k⊥ + ~q⊥)2(1− z) + (~k⊥ + ~p⊥)2z + ~p⊥z − p+p−z(1− z)

. (C.9)

Combining denominators using Feynman parameters, using the on-shell condition p2 = 0,
and shifting the integration momentum

IV = − i

4π

(
ν

n̄ · p

)η ∫ 1

0
dx
∫ 1

0
dz 1− z

zη

∫
dd−2~k⊥
(2π)d−2

× f(−zn̄ · p,~k⊥ − z~p⊥ − x(1− z)~q⊥)[
~k2
⊥ + ~q2

⊥x(1− x)(1− z)2 − (2~p⊥ − ~q⊥) · ~q⊥xz(1− z)
]2 . (C.10)
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Finally, with our choice of kinematics, 2~p⊥ = ~q⊥, and the last term in the denominator
vanishes. Thus, (C.10) can be used to evaluate rapidity divergent loop integrals coming
from V graphs. All rapidity divergent integrals in this paper can be performed using (C.10)
and (C.4). In more generality the numerator could depend also on n · k = k+. In that case
one simply substitutes the value of k+ at the pole at which the residue is evaluated, after
confirming that the integral is convergent as k+ →∞.

Using these formulas, we can compute the result of various representative terms in the
V -graphs.

With a k2
⊥ numerator (Q = n̄ · p1):

µ̃2ε
∫

ddk

(2π)d
n̄·p1
n̄·k

k2
⊥

[k2 + i0+][(k + p1)2 + i0+][(k + q⊥)2 + i0+]

= i

16π2

[1
η

( 1
εUV

− 1
εIR

)
+ 1
εUV

(
1 + ln ν

Q

)
− 1

4ε2
IR
− 1
εIR

(
1
2 + 1

4 ln µ2

−t
+ ln ν

Q

)

− 1
8 ln2 µ

2

−t
+ 1

2 ln µ2

−t
+ π2

48 + 1
]
, (C.11)

With a constant numerator:

µ̃2ε
∫

ddk

(2π)d
n̄·p1
n̄·k

q2
⊥

[k2 + i0+][(k + p1)2 + i0+][(k + q⊥)2 + i0+]

= i

16π2

[
− 2
η

(
1
εIR

+ ln µ2

−t

)
− 1
ε2
IR
− 1
εIR

(
ln µ2

−t
+ 2 ln ν

Q

)

− 1
2 ln2 µ

2

−t
− 2 ln µ2

−t
ln ν

Q
+ 3π2

4

]
. (C.12)

With a numerator linear in k⊥

µ̃2ε
∫

ddk

(2π)d
n̄·p1
n̄·k

k⊥ ·q⊥
[k2 + i0+][(k + p1)2 + i0+][(k + q⊥)2 + i0+]

= i

16π2

[1
η

(
1
εIR

+ ln µ2

−t

)
+ 1

2ε2
IR

+ 1
εIR

(
ln ν

Q
+ 1

2 ln µ2

−t

)

+ 1
4 ln2 µ

2

−t
+ ln µ2

−t
ln ν

Q
− 3π2

8

]
. (C.13)

C.2 Eye graph

As an example, we give the complete analytic result for the soft eye graph eq. (4.30). Before
expanding in η or ε we find

Ieye = 2g4

16π2T
aT bCFMT

(
µ2eγE

−t

)ε
22επ

[Γ
(

1
2 −

η
2

)
(4− η − 8ε) csc

(
π
2 (η + 2ε)

)
2η(η + 2) Γ

(
3
2 − ε−

η
2

) (
ν2

−t

)η/2

+ π1/2(2− 3ε) csc(πε)
4Γ
(

3
2 − ε

) ]
, (C.14)
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Note that the η regulator is not needed for the first term of the integrand, but included
only for completeness. Expanding in η to order η0 gives

Ieye = 2g4

16π2T
aT bCFMT

(
µ2eγE

−t

)ε
22επ3/2 csc(πε)

{
1
η

2
Γ
(

1
2 − ε

) (C.15)

+ 1
4Γ
(

3
2 − ε

)[−1 + ε+ (2− 4ε)
(
−π cot(πε) +H 1

2−ε
+ ln 4ν2

−t

)]}

where Hn is the harmonic number. Expanding eq. (C.15) in ε gives

Ieye = 2g4

16π2T
aT bCFMT

{
1
η

[
2
εUV

+2ln µ
2

−t
+ε

(
ln2 µ

2

−t
− π

2

6

)]
− 1
ε2
UV

+ 1
εUV

(
− ln µ

2

ν2 + 3
2

)

− 1
2 ln2 µ

2

−t
+ln µ

2

−t
ln ν

2

−t
+ 3

2 ln µ
2

−t
− π

2

12 + 7
2 +ε

(
−1

6 ln3 µ
2

−t
+ 1

2 ln2 µ
2

−t
ln ν

2

−t
(C.16)

+ 3
4 ln2 µ

2

−t
− π

2

12 ln µ
2

−t
+ 7

2 ln µ
2

−t
− π

2

12 ln ν
2

−t
− π

2

8 −
14
3 ζ3 +7

)
+ . . .

}
,

keeping terms to order ε.
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