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ABSTRACT: At small momentum transfer, the quark-gluon scattering cross section do /d¢
has a power-law divergence in the backward scattering region where the outgoing quark is
nearly collinear to the incoming gluon. In this Regge limit |¢| < s, the leading behavior of
the 2 — 2 amplitude can be described by the exchange of Glauber quarks. In Soft-Collinear
Effective Theory (SCET) at leading power, Glauber quark exchange is given by five non-
local Glauber quark operators, of which only one is generated at tree-level. We show that
at leading power the QCD amplitude for quark-gluon backscattering at one-loop can be ex-
actly reproduced by SCET using the tree-level Glauber operator. The agreement between
QCD and SCET of the ultraviolet, infrared, and rapidity divergences as well as all loga-
rithms, Glauber phases and finite parts for all polarizations of the external gluons is a strong
check on the effective theory. We find that the entire one-loop matching vanishes — there
is no correction to the operator generated at tree-level, and the coefficients of the other four
operators remain zero at one-loop. This suggests that SCET with Glauber operators may
be useful for uncovering new aspects of Regge physics in a systematically improvable way.
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1 Introduction

The scattering of quarks and gluons at small momentum transfer is one of the most chal-
lenging processes to completely understand. In this kinematical region, called the Regge
limit, two incoming quarks or gluons scatter into two outgoing jets moving in nearly the
same direction as the incoming partons. The power-law behavior of the scattering ampli-
tude, typically of the form s/t, makes the Regge limit dominate the cross sections. The
s/t behavior is present already at tree-level; at higher orders in perturbation theory it is
supplemented by logarithms of the form In(s/t). When the logarithms are resummed, the
amplitude scales like (s/t)” where ~ is called the Regge trajectory [1-7]. The structure
of scattering amplitudes in the Regge limit is of interest in a wide variety of applications,
including the total cross sections at colliders [8], unitarity constraints, integrability [9, 10],
factorization-violation [11-14], and bootstrapping scattering amplitudes in N' = 4 super-
Yang Mills theory [15-20].

To study the Regge limit, the traditional approach has been essentially diagrammatic.
One considers all the possible Feynman diagrams that could contribute, expands them
in the Regge limit in some particular gauge, and looks for patterns and relationships
among the contributions. This method allows one to extract the all-orders structure of the
Regge limit and leads to the Balitsky—Fadin—-Kuraev-Lipatov (BFKL) equation [21, 22].
A number of textbooks describe this procedure in detail [23, 24].

An alternative approach to studying the Regge limit is with effective field theory.
Soft-Collinear Effective Theory (SCET) [25-30] is a powerful tool which has been shown to
reproduce the leading infrared singular behavior of QCD away from the Regge region. If
none of the outgoing particles are collinear to any of the incoming particles, then scattering
processes factorize into a number collinear sectors, one associated with each incoming
parton or outgoing jet, plus a single global soft sector. It has been proven that all of
the infrared divergences of QCD are reproduced by SCET in such configurations, and for
infrared-safe cross sections, the leading power behavior is entirely reproduced. Applications
of SCET to collider physics are diverse and in a number of cases resummation at the next-
to-next-to-next-to-leading logarithmic level (N3LL) is possible.

In the Regge limit, soft and collinear modes are insufficient to describe the leading
power behavior of scattering amplitudes. Instead, one must supplement the SCET La-
grangian with a set of non-local potential operators, heuristically of the form O, 005 /t,
where O,, and Op encode the collinear scattering in the n and n directions, and Oy en-
codes the soft scattering. The explicit 1/t dependence comes from integrating out the
tree-level Glauber exchange [31]. We refer to this theory as Glauber-SCET. Unlike in the
hard-scattering case, where the Regge region is avoided, there are no rigorous proofs that
SCET supplemented with Glauber potential operators of this type will indeed reproduce
the leading power behavior of full QCD. Thus it is important to perform as many checks
as possible. Calculations with Glauber-SCET are significantly more challenging than those
in SCET without Glauber modes due to the presence of rapidity divergences.

In the forward scattering region for quark-gluon scattering qg — qg with the outgoing
quark collinear to the incoming quark, the Regge region is dominated by the exchange of



Glauber gluons. These gluons have spacelike momentum ¢ with 0 < —¢? = —qi < Q2
where () is the center-of-mass energy of the collision. Including spin effects, the qg — qg
forward scattering amplitude in the Glauber region scales like (—¢? /Q?)~! [31].! In this
paper, we instead focus on the backward scattering region. In this region, the Regge limit
is described by Glauber fermion exchange and the amplitude scales like (—q2 / Q*)~Y2,
Thus Glauber fermion exchange is power suppressed compared to Glauber gluon exchange.
However, the two exchanges contribute in different kinematical regions; Glauber fermion
exchange describes the leading power behavior in the backward scattering region. Moreover,
Glauber gluon exchange is necessarily non-Abelian whereas Glauber-fermion exchange is
not: in QED, the amplitude for e™y — e~y is non-singular in the forward scattering region,
but is singular for backward-scattering.

Thus to make progress on some challenging foundational questions in quantum field
theory, such as how to define the S-matrix for charged particles [32-34], a problem even in
QED, it helps to have a better understanding of singularities present in QED, such as in
the backward scattering region.

In this paper, we focus on quark-gluon backscattering in the Regge limit at one-loop
order. We compute the full one-loop 2 — 2 scattering amplitude in QCD and then expand
in the Regge limit. We also compute the full one-loop 2 — 2 scattering amplitude in
Glauber-SCET including only the leading order operator required for tree-level matching.
We find that the two calculations agree exactly.

2 Glauber SCET

This section reviews the general construction of SCET, and describes the additional terms
that need to be included in the Lagrangian to accommodate Glauber quark exchanges. It
also serves to define the notation we use.

2.1 SCET

Soft-Collinear-Effective Theory is an effective theory that was developed to better under-
stand the soft and collinear limit of gauge theories like QCD, systematize the concept of
factorization, and successfully apply these ideas to collider physics. In order to describe
soft and collinear modes, one sets up a light cone momentum basis, where the lightlike ele-
ments of the basis are taken to align with the jet axis in a collider process. For any lightlike
direction n* = (1,7) one can define the backwards lightlike direction n* = (1, —7) and two
transverse directions denoted by L that are orthogonal to n* and n*. Any four-vector p#
can be decomposed into lightcone and perpendicular components,
= Mnﬂ + wﬁﬂ +p‘i, (21)
2 2
where n-n = 2 and
n-n=n-n=n-p, =n-p; =0. (2.2)

'Here we are using the scaling for the spinors and not for the quark fields. The spinors power count as
1
0O((—q% /Q*)°), while the quark field power counts as O((—q¢3 /Q?)2).



Sometimes the p* notation is also used for the lightcone components,

pt=n-p, p =n-p. (2.3)

SCET describes scattering process in an expansion in a power counting parameter
A < 1. For jet physics, the parameter might be the ratio of the mass of an outgoing jet
to the center-of-mass energy, A ~ m/Q. For Regge physics, the power counting parameter
is the transverse momentum of the scattered particles (relative to the incident direction),
divided by the center-of-mass energy, A\* ~ @5 /Q* Modes in the effective theory are
defined by the scaling of their lightcone momentum components with respect to the power
counting parameter. Using the notation

P~ (@ponep fpil) = 7,07 i), (2.4)
the various soft and collinear modes are
n collinear : p" ~ @Q (1, A2 )\)
n collinear : p" ~ Q ()\2, 1, )\)
soft : p# ~ QN A\ A)
ultrasoft : p* ~ Q(A%, A%, \?).

(2.5)

Whether soft or ultrasoft modes are relevant depends on the particular problem one is
interested in. Ultrasoft modes only affect the smallest lightcone component of collinear
momenta, but not the transverse components. For most hard-scattering jet physics pro-
cesses, ultrasoft modes are sufficient. SCET with ultrasoft but not soft modes is called
SCET;. For Regge physics, we will need to account for recoil of the transverse components
of collinear fields from soft emissions. For such physics, soft rather than ultrasoft modes are
relevant. SCET with soft modes is called SCETy;. The invariant mass of collinear modes
is A2, of soft modes is A2, and of ultrasoft modes is A*. The invariant mass of ultrasoft
modes in SCET7 is much smaller than that of collinear modes, whereas soft and collinear
modes in SCETy; have the same invariant mass.

In addition to the scaling of the momentum components, fields and states in the theory
also have scaling which can depend on spin. A Dirac spinors u(p) can always be decomposed
into two lightcone spinors u = &, + ¢, using the projectors fst/4 and 97 /4,

7/L4ﬁu =&n, iZ/Lu = Qn - (2.6)
Due to the equations of motion pu(p) = 0, the ¢, spinor is power suppressed compared to
the &, spinor, ¢, ~ A and &, ~ A°.? Thus SCET integrates out ¢, using the equations
of motion, so that fermions are described by the spinor &,, which has two independent
components. This amounts to replacing

— (1 + p_j;) &n, u— & <1 + L ) . (2.7)

4n dn-p

2Note that the collinear quark fields, &, (z) and ¢, () on the other hand scale as A and A? respectively.



Similarly, gluon polarization states have scaling determined by consistency with collinear
gauge invariance. The components of the polarization scale proportionally to the momenta,

1
)\’

n-en~ A, e ~ A\, n-en~ (2.8)
for an n-collinear gluon. Using the equations of motion p - e = 0 for an on-shell gluon, the
small polarization component can be integrated out analogously to the fermion case,

. 2
nf—)—Qﬁ-f——poL. (2.9)

Since the equations of motion are used to simplify the SCET Lagrangian (or equivalently,
the SCET and QCD amplitudes only agree on-shell), we must consistently use these sub-
stitutions to see agreement between QCD and SCET. That is, we must eliminate the small
components of the spinors and polarization vectors in QCD to extract the leading power
behavior.

Operators in SCET are usually written in terms of gauge invariant building block,
constructed from the leading power spin components of the fields wrapped in Wilson lines.
For collinear quarks and gluons these combinations are [35]

@) = W@a@]. Bl = [W@idiw@], 210

Here, W, (z) denotes a collinear Wilson line, representing the source of radiation from all
charged particles other than the collinear field in the n direction. Similarly, the gauge
invariant soft gluon field is given by
B = ; [SHiD%, S - (2.11)

where S,, denotes a soft Wilson line generated by the soft gluon fields. Analogous definitions
hold for n-collinear and soft fields. Explicit forms of the Wilson lines and their origin is
discussed in appendix A.1.

Equation (2.11) are gluon fields for soft outgoing radiation. One could alternatively
define the gauge-invariant soft gluon fields in terms of Wilson lines representing incoming
radiation:

—nu

Byl == [SLiD4, 5] . (2.12)

1
g
S, differs from S,, in whether the Wilson line is from —oo to  or = to oo, i.e. the +i0%
prescription in the eikonal propagators (see appendix A.1). The quark-gluon scattering
amplitude in our Glauber-SCET problem is independent of which Wilson lines are chosen.
We choose outgoing Wilson lines as in eq. (2.11). If one uses incoming Wilson lines,
the soft graphs come out differently, but there is a non-vanishing soft-Glauber zero-bin
subtraction [36] which restores equivalence to the outgoing case. This issue is discussed
in [31] and we reproduce their observation in sections 4.2.4 and appendix B.

$We use the sign convention D, = 9, — igA,.



2.2 Glauber operators

In the Regge limit, the exchanged Glauber gluon or quark couples different collinear sectors
to each other. For a Glauber particle to couple to the n collinear sector, it must have
subdominant scaling to the n-collinear scaling, i.e. pg < Q(1, 2, \). For the same Glauber
particle to couple to the fi-collinear sector, it must have pg < Q(A?,1,\). Thus we have

Glauber : pfy ~ Q(A2, A% )\) (2.13)

for the momentum scaling of Glauber particles. Since p?> = (7 - p)(n - p) + p? and the
two terms scale like \* and A? respectively, it is impossible for a Glauber particle to be
on-shell. Thus Glauber exchange in SCET is described by non-propagating potentials.
Glauber potential operators were introduced in ref. [31] for Glauber gluon exchange, and
ref. [37] for Glauber fermion exchange.

In the fermionic Glauber case, the operator required for tree-level matching is [37]

1 1
Or = XnﬁnLﬂOsﬁﬁﬁiXﬁ , (2.14)

where P is a label operator that picks out the transverse momenta of the fields it acts on.
The operator Oy involves soft fields:

Oy = —2mas [SESuP L +PLSLSw — SLSugBsy — gB51SLS] - (2.15)

The coefficients of the various terms in this operator were derived in [37] by matching onto
QCD in the Regge limit with additional soft gluons emitted.

To describe soft-collinear scattering in the Regge limit, soft-collinear Glauber operators
are necessary [31, 37]:

1 o . 1 s -
Og, = (—47ra8)>2n$nJ_7P—L$SJ_1/JS+h.C., Ogm = (—4ﬂas)xﬁ$ﬁl7p—l$5lws+h.c., (2.16)

where

Y% =Slvs,  vi=Shvs. (2.17)
Here 15 is a soft quark field, and the label (n/n) denotes the direction of the Wilson line
that dresses the field. As with Op and O, the structure of these operators has been fixed
to reproduce the leading-power behavior of the full QCD amplitudes at tree level. As
shown in [37] at one-loop, the interference between emission from these two operators in a
time-ordered product contributes to collinear-collinear scattering at one-loop (see eq. (4.27)
below).

The leading-order collinear-collinear Glauber gluon operators take the form
1 1
GGO _ mb b
O = (’)m—Pi (9;—7)i 055 (2.18)

where O% arises from a Glauber gluon exchange and can be found in [31]. The collinear
operators (’)Zn and Of; are labelled by the scattering entities i and j (which could be
quarks ¢ and gluons g), and have the following structure -

_ i n
Oh = xnT béxn, o, = [Qf’”dls’c : (2.19)

Sy - (PP B




The structure and normalization of these operators are fixed at tree-level from matching
to quark-quark scattering in the forward limit in QCD. As with the soft-collinear operator,
the operators (’)?QGO, (’)gfo, OgGGO, O%GO will contribute to quark-gluon backscattering at
one loop. In this case, it is through interference with the collinear-collinear Glauber quark
operator in box diagrams (see eq. (4.34) below).

In addition to the above operators, all of which were discussed in [37], there are ad-
ditional leading-power collinear-collinear Glauber operators that could be relevant beyond
tree-level. We can write the full Fermionic Glauber content of the Glauber-SCET La-

grangian as

Org = CrOr + Cr10101 + Cr2012 + Cr3013 + CraOpy (2.20)
where
1
Or1 = XnBri = 7 Xi (PL-Brl) , (2.21)
7/%
_ 1 1
Or2 = Xn (PL - Bn1) =5 Os =B xn » (2.22)
PL ’PJ_
_ 1 1
Orz = Xn (PL-By1) 73720 P (PL-Bay) X s (2.23)
1 1
1 1
Ors = xuBY | =—0Oy— By, i 2.24
L4 Xnky, | 7PJ_ ?J_ 1uX ( )

The soft operators appearing with these collinear-collinear Glauber operators could have
different linear combinations of the operators in (2.15). In general [37]

O, = —4may {51 (9B1.585n + S1SaghT,) + =% (SLSnghs + 9B ShSn)

053 (S55aP 1 +PLS}Sn) + 054 5" (S1SuPL +P.SkS)

(2.25)

At tree-level Cg1 = 0,Cg9 = —1,Cg3 = 0 and Cgqy = 1 so that eq. (2.25) reduces to
eq. (2.15). Since quark-gluon backscattering at one-loop is not sensitive to the higher
order structures in Oy, we write O, for all the soft operators within the Op; for simplicity.
Similarly, additional soft-collinear Glauber operators could be present, but they do not
contribute to one-loop quark-gluon backscattering. Thus, at one-loop, there are 5 possible
operators that could receive corrections, as indicated in eq. (2.20).

2.3 Rapidity regulator

One distinguishing feature of SCETy; is that all modes in the effective theory sit on the
same mass (or virtuality) hyperbola and are distinguished by their rapidities alone. This
is in contrast to SCETy, where the ultrasoft modes have a distinct virtuality compared
to the collinear modes. Thus, in SCETy;, one could in principle boost a collinear mode
into a soft mode and vice-versa. This indistinguishability in terms of boosts shows up
in divergences at the loop level in the EFT that are not regulated by regulators such as
dimensional regularization. Such divergences are called rapidity divergences [38], and are a
result of demanding strict factorization into modes that live on the same mass hyperbola.



Rapidity divergences can be regulated, and the regulator must drop of out physical
quantities, just like with ultraviolet or infrared divergences. In this paper, we use the 7
regulator introduced in [38]. Alternative regulator choices include the exponential reg-
ulator [39], and the delta regulator [40, 41]. All such regulators explicitly break boost
invariance (RPI-III symmetry) between the different modes in the EFT.

The n-regulator can be systematically included by modifying the soft and collinear
Wilson lines. This is easiest to do in momentum space, where the rapidity-regulated
outgoing soft and collinear Wilson lines take the form [31, 42]

z —77/2
Sp = Z exp (_9’2’P|n . A5> , (2.26)

perms n-P y—ﬂ/2

n - -1
W= 3 exp (—_gwﬁ-An> . (2.27)

. -n
perms n-P v

Here v is a new scale that is analogous to p in dimensional regularization. It must drop
out of physical quantities at fixed order. A given sector has only a single rapidity scale, so
one can choose v equal to that scale to remove the logarithms in each sector separately.
However, different sectors can have different rapidity scales. Then the rapidity renormal-
ization group can be used to resum the rapidity logarithms by evolving all sectors to their
individual scales, starting from a common rapidity scale. Systematization of such rapidity
RGEs was first done in [38, 42]. Later work (ref. [31] and then ref. [37]) formulated the
BFKL equations as rapidity RGEs in the language of SCET. We will not attempt to resum
any large logarithms in this paper.

Care needs to taken while using the n-regulator. Since one encounters rapidity diver-
gences, UV divergences and IR divergences, a prescription for order of limits is required.
In order to remain on the mass hyperbola while sending the rapidity cutoff to it limit. The
correct order of limits is to first take n — 0, so that n/e" — 0 for any n, and only then
take the € — 0 limit of dimensional regularization [38].

The sum of the soft and collinear contributions at fixed order are 1 and v independent.
This follows from the observation that rapidity divergences arise from a strict delineation
of modes in SCET. If SCET is to reproduce the full QCD amplitude at leading power,
which is rapidity finite, it must therefore be rapidity finite as well.

3 Tree-level matching

We begin with matching at tree-level between SCET and QCD. That is, we demonstrate
that the entire QCD amplitude is reproduced by SCET at leading power in the Regge limit.
This will establish the procedure and notation we use for matching at one-loop in the next
section. We follow the analysis in ref. [37].

3.1 Kinematics of backwards scattering

We denote the incoming quark and gluon momenta as p; and k; and the outgoing quark and
gluon momenta as py and kg, as indicated in figure 1. We work in the centre of mass frame
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Figure 1. Quark-gluon scattering at small ¢g7. The incoming quark and outgoing gluon are aligned
close to the n* direction and the incoming gluon and outgoing quark are alighned close to the n*
direction.

and split the momentum transfer evenly between the incoming and outgoing particles:

Q 1 il Q_, 1
% op B = Zpp_ C
P = 2n + qJ‘—i_SQ 1 9 ql+8Q
7
oo Q—u = Qu 1., 4@ Al 3.1
P2 =5 + qL+8Q 2 =50 ql+8Q (3.1)
In this case,
¢ =py —kh=ph—k'=4q|. (3.2)

An advantage of these coordinates is that the momentum transfer is purely transverse. In a
different frame, where p;;, = 0 for example, the Glauber momentum ¢ would have to have
a nonzero n - ¢ component to keeping the external particle momenta on-shell. The results
for the matching are frame-independent, but the choice eq. (3.1) makes the calculation
marginally simpler. We also write

P=¢ =-¢2=t<0. (3.3)

We will use qi and ¢ interchangeably.
To integrate out the small spin and polarizations we use the equations of motion

prup1) = pyu(p2) =ki-e1 =k €2 =0, (3.4)

which allows us to substitute
u(p1) = ( gg) éns u(p2) =& (1 + ﬁ%) (3.5)

s 2 . 2
_ o gL €11 q] _ qL € q
n-€ =———-— — —5N" €1, n‘eg——T 4Q2n

Q 4Q?

The scaling of the remaining objects that can appear in matrix elements is

€. (3.6)

Q~1, gL~ A, €n ~ & ~ A, €11 ~ €9y ~ A, n-ep ~ii-ea ~ AL (3.7)

Despite the anticipated 1/t ~ A~2 kinematic behavior and the A\~! scaling of the nearly-
forward polarized gluons, the matrix elements for quark-gluon scattering in the Regge limit



will scale at most like A~!. The possible O(A~!) matrix elements with these ingredients are

= —&ng, T A =51 6n (3.8)

Mua = ~Eaf 1 6n ”QE“’, —«sn;fufn%, (3.9)
M= —&afy G, Mo =~ Gafy & 715, (310)
My = g & (qyeié)nfl’ Y (qu- 615)71 © 311
Mz = —wgnm'“g?g“”, Maia) = mﬁf“ = (3.12)
Magq = —End &n (q1 'Gul)tg(u‘ﬁu) . (3.13)

For the amplitude to satisfy the Ward identity, only certain linear combinations of these
operators are allowed. For example, the tree-level matrix element of the gauge-invariant
operator Or in eq. (2.14) is g M7,

1
Mrp = Mo+ S (Mln + May,) + 4Mq12 (3.14)
n-e n-e
= —n ¢u ku ! 5]; ¢u ku 2} (3~15)

It is easy to see that upon replacing €; — k1 or €2 — ks this amplitude vanishes. The matrix
element combinations corresponding to the other gauge invariant operators in eqgs. (2.21)
to eq. (2.24) are

Mp =M+ 5 (Mln + Maq) + Mqu, (3.16)
Mpes = Mo+ (Mgn + Mg2) + Mq12, (3.17)
Mz = Mgal + % (Mg + Mg2) + qum? (3.18)
Mis = Mgy + 5 (Mg + M) + 1 Mgro. (3.19)

Note that if we consider only €, polarizations, only the first term in any of these combina-
tions contributes. However, it is important to check the matching for all polarizations as
it elucidates additional aspects of the effective theory (such as the need for non-vanishing
zero-bin subtractions) as we will see in the next section.

3.2 Tree-level graphs

In QCD, at tree-level, three graphs contribute. The t-channel graph is (a is the incoming
gluon color and b is the outgoing gluon color)

ab
T, - K = —ig o) — H)ghu(p). (3.20)

~10 -




To expand at leading power we apply eq. (3.5) and eq. (3.6), and keep only terms at leading
power in \.* This leads to

I, = g*TT" [My — Min — M) - (3.21)

The s-channel graph gives

ba
iLy = H = —ig? TQI; [2(192 -€2)ufyu+ Wz%ﬁ“} ;

> P TT* [Min + May] . (3.22)

The u-channel graph is

g ifabch - -
T [(/@ + p1 — p2)-erufyu — (k1 — p1 + p2) - e2ufd u+ er-e2(fy + %2)“] ,

>~ ig?(TT® — T°T?) [My5 + May] , (3.23)
so that the total tree-level amplitude is
Lop =Ta+ Ty + Lo = g*T°T" Mr . (3.24)

Note that all 3 diagrams contribute at leading power, although only the t-channel fermion
exchange diagram contributes to the production of € .

At tree level, we have a single diagram in the EFT given by the matrix element of
operator Or in eq. (2.14). The contributions are

&(p1) e (k2)

— 0000 )
o n-e€
<fg‘ By xn |&n) = v =T <¢u - un-ki) &n s (3.25)
0y |
(0] Os |0) = ’ = —192%, (3.26)
v
e n-e
GlBuld) = oy =T (f, B ). (3.27)
>
€t (k1) &a(p2)

4 At tree-level the small polarizations 72+ €; and n-e2 do not contribute at leading power, so using eq. (3.6)
in this case is not needed.

- 11 -



The tree-level amplitude is then

1 | : |
Z.:ZgCET = <§n7 62‘ Xnﬁnj_? ? $nJ_Xn ’fn, 61> ‘MY
n WW - [

1

f1, — %u TL fo — kuneﬂfm

= ig*T* T M7, (3.28)

= —ig*T"T"; L

in perfect agreement with QCD for all polarizations, so that Cr = 1 in eq. (2.20) at
tree-level.

4 One-loop matching

Now we proceed to matching at one-loop. We use Feynman gauge throughout, and dimen-
sional regularization in d = 4 — 2¢ dimensions for both UV and IR divergences. Techniques
for separating UV and IR divergences, at least at one-loop, are standard. In QCD, the sep-
aration of UV and IR can be automated — it is an option in Package X [43], for example.
The SCET graphs can have rapidity divergences which we regulate with the n-regulator,
as discussed in section 2.3. We always expand in 7 before expanding in €. Our analysis
extends that of [37], where only My was considered.

41 QCD

The QCD calculation involves standard methods. In fact, the one-loop matrix elements for
quark-gluon scattering are well known (for example, see refs. [44, 45]). For completeness,
we reproduced the result from scratch. We generated the diagrams using FeynArts [46], and
evaluated them using Feyncalc [47] and Package X [43] with the Feynhelpers interface [48].
The diagrams are shown in figure 2. We first computed the exact matrix element, then
substituted in eq. (3.5) and eq. (3.6) and expanded to leading power in the Regge limit.
The result for the one-loop amplitude (excluding external leg corrections) is

4 4+21n 2 2
g 1 2 2# M 7 b
9 @ o B g T 9| My (TOT?),,
QCD~ 612 FLUV €IR - mQ2 n +n - — + 6 7( )w
4 u? 2
O 2o 2 G o 7o (T,
+167r2 A P o n t+ 5 + 7( )ij
4
1g S(Ca—Cr) @M p1+2M o) (T°T") ;5
1 2
g 26905, l It | (im) Mo (4.1)
16 €IR -

for an SU(V) gauge theory with quarks in the fundamental representation, such as QCD.
Here i is the color of the outgoing quark, j the color of the incoming quark, b the color of
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Figure 2. Amputated one-loop diagrams for qg — ¢gg in QCD. Diagrams 10, 11 and 30 involve
ghosts.
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the outgoing gluon, and a the color of the incoming gluon. Eq. (4.1) is valid for any color
representation of a generic gauge group if one replaces

5815 = 2facy foon {4, T"} = Ca{T. T} . (4.2)

]

(see ref. [45]). The result for QED is given by the replacements 7%T” — 1 and §%°;; — 0.

The renormalized on-shell S-matrix element is given by including the renormalization
counterterms, and the renormalized on-shell external-leg corrections needed in the LSZ
reduction formula. The MS wavefunction renormalization counterterms for the quark Z,
and the gluon Z, in Feynman gauge are

2 2
9° Cp g 5Cs 4 }
Zy=1-— Za=14+——|— — —n¢TF| . 4.3
¢ 1672 epy AT TenZegy | 3 3 (4.3)
The counterterm Z, for the coupling constant g is,
2
g 11C4 4 }

Z,=1-— — -nfTp| . 4.4
g 32m2eyy { 3 3nf F (44)

The counterterm contribution arises from two insertions of the vertex counterterm d,+d,, +
da/2 at each vertex, and —d,, from the fermion wavefunction counterterm for the internal
fermion propagator, resulting in a net counterterm contribution

Tl = (265 + 6y +64) T T" M, (4.5)

where Z; = 1 4+ d;. These counterterms exactly cancel the UV divergences in Z&QCD.
To use the amplitude for an S-matrix element, we must convert to the on-shell scheme.
The MS-renormalized external-leg correction is

Ik = (0Ry + 0RA) g*T T M7, (4.6)
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where R; is the renormalized residue of the pole of the particle i propagator, and R; =
1+ 0R;. Since the on-shell self-energy graphs are scaleless, the R; are

2 2 dn T
g- Cr Ri=1__9 [52.4_ ngF}

Ry =1
* 16a2 1672 e 16m2eR

(4.7)
The renormalized on-shell S-matrix amplitude is then given by

S(lQCD,ren ::Z‘-(lQCD +Z t+IR

2 34+2InL 2 2 2
g 2 Q2 [N o 11 p? T arb

- — @ o 2 s T 9| Mo (TOT?),
167T2 r E%R €IR HQ2 n—t+ —1 + 6 T( )”

B Ao I W 12“2+7T 2 M (TOT) 5+ 9" AnsTE g cpert)
[ —_— — J— ni ..
1672 | 2, em\3 | —t 6 g 1672 Beg " g

2
g
~ 167 (Ca—Cp)(2Mp1+2Mp2)(TT);;
1 2
g 26906, | —+In | (i) Mo, (4.8)
16 €IR —t

and is UV finite. Since eq. (4.3) and eq. (4.4) are the same in QCD and SCET, we can
compute the matching condition between the two theories using the on-shell amplitude
eq. (4.1) without the renormalization and external-leg factors.

4.2 SCET

For the SCET calculation we need to compute 6 collinear graphs. Four of them were
discussed in [37]

(4.9)

In [37] only the rapidity dlvergent parts of these graphs were computed, and only for the
€| polarizations. For the matching we need the entire amplitude, including UV and IR
divergent pieces and finite terms. There are two additional collinear graphs (“T graphs”),

(4.10)

Just the n-collinear graphs are shown. The n-collinear graphs are identical with n < n
and must also be included. We also need two soft graphs

n u@ggm n n gg@§§@ n
iIﬂOWGI‘ — @% 9 iIeye = % . (4 1 1)

n n n n

In addition, we have to include appropriate zero bin subtractions. As we will see, the zero
bin subtractions are rapidity-finite and nonvanishing in this case, and critical to getting
agreement with QCD.
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4.2.1 Collinear graphs

The first collinear graph is

_ drparpb g . n-er i,,gg d’k v n 1
=TT k“n-kl]ﬂ” | Gy (%) 2+ 07 ][(p1 + )2 + 07]

Ca\ [1+4 2 q, _ 24+ (d—2)z (24, —2F .\ _
X{(C —2) z(2¢2J‘+QJ_n'€2)+ 2, LQ n- ey
d, d—2 (24, —2k.\]_ }
Cyl=—= . n 4.12
+Cal gt o n-ey o€ (4.12)
where®
n-k
0 (4.13)
The graph is scaleless, but being careful to separate UV and IR, it evaluates to
4
g armb C’A> < 1 1 > {1 v ]
Iwon = ™| Cp——)|——— ] |—+In—=+1| 2M
Wen = 1672 <F 2 ) \evv  ER 77+HQ+ g
4
9" ragb 1 1 )( 1 )
TT°Cp | — — — At = . 4.14
+ 167‘(2 4 <5UV €IR Ml + 2Mq12 ( )
The gluon Wilson line graph is
1, b_[ n-€1 1~2/ddk: 1 1
— —_gtTo - _ R 4
29 T | = by g ) em) R (ke + k)2 2(1+ 2)
42243z +24, _ 22+ 1, _
x Cy (22+Z+1>¢2L+Z42%7’L-62+ 22 %n-eg]un(pl). (4.15)

The factor of 1/2 out front is a symmetry factor. This graph is also scaleless and evaluates to

4
g b 1 1 > {1 v 1}
IVV = TT°C _—— —4+In—+-| Mp. 4.16

Gin 1672 4 <€UV €IR n Q 2 T ( )

®Here, we have defined %€ = u€ exp(eyg)(4m) ™.
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The remaining two collinear graphs are significantly more complicated. The quark V graph
is

" p+k "
iLyQm = k kg
— n-e 1
= —g'T T, ¢, — e L N (4.17)
(C’ _ a4) ~26/ ddk NVQ é-
ET ) ) @n)d k2 + 0t [(pr + k)2 + i0H][(k + q)2 + 0] "

where the numerator Ny is given by®

2k% +2k ¢ d—4 7\2 [(d—6 d—8
Nig= | P (B ) (7 4 )
o R a1\ R
+ - (lu+q ) 5-# 0 €2+(1+z) <k1+2<u> 0 n-€2
6— 2—d .
+( 1 )qikln€2+[ k?L—f-(jl)Q'f‘T Cﬁ_—qu_l] %H.EQ
+[@=3)2 g, 6k, 2 +[(12- 24 (d-2)2)g, —2d- 2k 21k
+[d_2 z+1)(2¢, —2F)) Q ne (4.18)

Note that this graph produces the small n - €2 polarization. Evaluating the graph, and
eliminating the n- ey term using equations of motion in eq. (3.6), we find that it evaluates to

g b Ca
Ivon=— T - — 4.1
VQ, = (CF 2> (4.19)
1/ 2 2\ 3+2mn% 2 gp2
x{ om0 o lnz+3ln——l+8 MT—QMM}
n \ euv —t EUV Q —t 3

Note that this graph is IR finite.
The final collinear graph is

(4.20)

n-eq

n-k1

1L, o [ d% Nav
g Cal’ /(27r)d [k2+i07][(p1 + k)2 +i0T][(k+q)? 4+ i0F]

&n,
1,

= _94TaTb£ﬁ [¢1 —

50One can replace %lfh — -k, - ¢ in the integrand.
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where

NGV:E (EE-FELQL)+<—ELC]1— K2+ ( k)Qz —(322_2) ) fol
. :1532—25’3 P05 [@-8) Q] %w
+';§§3+ZM 11‘@ lJr20+§;—dzcﬁ+(2+2z—dz)(n_k)Q %nez
+_( 3-18), 22:—38dz+4gL e+ (d_2)%L+W¢L kLea)
. -(Qd_4)j+d_6ki+ (4—2d)z24é(6—d)2—4%] Q (n-e3). (4.21)

As with the quark V graph, we use the gluon equation of motion to replace the n - ey term.
The result is

4 2) In¥ 2+Inks 2
g arb L)1 H g, 1 stn5 2 K~ pov
T°Cy|—¢ —+In— — 4 —— —1 In—In—
VGn 16 2 77{5U'\/+ — }+5UV+512R €IR Ty —t +n —t nQ
M 57 g4CA arpb
In————+3 T
+ = 12 +3 | Mp— 1672 M1
9 Chgaqe| 31 1y (M Yy ) (4.22)
1672 4EUV €IR 4 —t 1 2 a1z - ’

Note that, in contrast to the quark V graph, this graph is not IR finite.

Next, consider the T graphs Zr1 y,Z72 p:

1~2€/ dk 1
i, ] Crl R0t g— k)2 + i07]

{ (o3 -0 (75 mt Hime)

n-k n-k 4, ne
+Cr(2—4d) (ﬁq’gﬂ_nplnq 5 )}fn (4.23)

arb ¢
— T [y by
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and

iITQ,TL =

n- 61 'u / ddk Cr
sll )4 (k2 +i07][(g— k)2 +i0+]qT

N <2 —d)quml) e

2(n-p1)(71-q)

+(2—d)(7-k) qL(n-ez)—i-q_i((d 2)7”; (1—‘21)7;’; +d— 4>¢M

—2—d)fy b, +(d—2) (QJéL - Z';;h) €101 —2(d—2)gL(k5L-€2L)} (4.24)

The kT = n - k integral in both of these graphs is

/dk* ——— ! — —
[ktk— — B2 4+ i0t][kThk— — qThk— — (L — k.)2 + i0+]

(4.25)

Since the kT poles are on the same side of the real axis these graphs vanish upon contour
integration,

Irin =Zr2n =0. (4.26)

More generally, T graphs of this form, where only Glauber momentum ¢ and no collinear
momentum flows through a collinear loop, have no large momenta scale for the loop de-
nominators to depend on. Since ¢~ = n-¢q = 0, the only large momentum component that
can ever multiply £ in any of the denominators is k¥, and so the poles in the k' integral
will always be on the same side of the real axis and these graphs will always vanish.

The sum of the n-collinear graphs is

Z'n,coll :IVQ,TL +IVG,n +IWG,n +IWQ,n +IT1,n +IT2,n

! 2 24+2In% 2 o
J b 2) 1 K 1 Q v T
—— 2 TTCp| S — 4= E— ) —1 3t 2T L8 My
1672 Fln{Eer n—t}+6Uv+ p— +2In nQ—l— — 3 +
4 1+Ine 1 2 x2
g arb 1 1 —t o M ™
- TT°Cp | ——+—— | Ci_C
1672 UV+€%R+ w2 12 16772 (Ca=Cp)Mp
g b 1 1 2 ( 1 )
31104 =L (Mantsg : 4.27
o2 [4 o A —t+ Muntg Moz (4.27)

Excluding the terms on the last line, the collinear contribution by itself satisfies the Ward
identity. The last line is troublesome, and does not satisfy the Ward identity. However, as
we will see in section 4.2.4, it is precisely canceled by zero bin subtractions.

The n-collinear graphs give the same results with the replacements Mp; — Mo and
Mlﬁ — Mgn.
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4.2.2 Soft graphs

The soft flower graph arises from Wilson line emissions from both collinear directions. It
takes the following form

n m n
iIﬁower - @ k
Pevevirever A
n n
= n-€e1 1
= 20 TTCrGs [, — b L] ¢

o[ dE v\ d, +k.
< B [/ (2m)d (\2@) (ﬁ~k:)(n-Lk) (k2+¢o+)1

The graph is scaleless and evaluates to

4 4 2 1 1 2 2
Thower = J D) TbOF - + 2In % ( - ) + 2 M. (429)
167 v UV CIR ehv  Eir

The eye graph Zeye arises from a time ordered product of the soft-Glauber operators
Ogsp and Ogy, in (2.16),

-
iZeye k+fI<::%k
ﬁm’ﬁ
— =g T TCrbe |y~ 1 ;
< V (;ljrl;d (\22 \)n (K21 i07) [(11+q)2+i0+] ('YW”WW” 2 %(/}i)t%)hﬂ
gll fo %unQ] (4.30)

Evaluating the graph, we find that

2
2g* b 1 2 2 1 In &5 3 1, o p? /ﬂ v?
Teye = TT°Cp|— | — +2In— | — - —r ——In*—+In—In—
eye 1671’2 F |:7] ( + n EUV Euv + 25UV 2 + —t . —t

Mr. (4.31)
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The full analytic form for the soft eye graph is given in appendix C.2. The sum of the two
soft graphs is

Z'soft = Ieye + Iﬂower

22Cr, . 1 ( 2 12 1 Wl 3 1,2 2 2

= 2TT[ — 42— | - & - + — =4I ln—

167 n \ €IR —1 IR IR 25UV 2 —t —t —t
3. 0w w7

e AR . 4.32

+olh = -5 +2]MT (4.32)

As a non-trivial check on our results, we find that the soft sector of SCETy; is gauge
invariant on its own, as should be the case.

4.2.3 Glauber boxes

Next, we consider Glauber box diagrams. Since Glauber fermion exchange flips quark <«
gluon, there must be an odd number of fermionic Glauber exchanges in the Regge limit
(backwards scattering) for gg — gg. So at one-loop the box graphs must have one fermionic
Glauber and one gluonic Glauber. The allowed graphs are

n ' ' m m . . m n
° ° ° ° %% ° > ﬁﬁoz
: : : . ., B L
o o o o o o
S | vy X kA (4.33)
o o o o o o o [}
n RO QQ@ m SoaAvATASZ m SoaAvATASZ m SoaAvATASZ QQ@ n

Although these graphs are not rapidity divergent, one still must use a rapidity regulator
like the 7 regulator to evaluate the graphs. The 7 regulator inserts factors of % in
the loop integrand which makes the integrals well defined.

The last two (crossed-box) graphs vanish using the 7 regulator. The first two graphs
have been worked out in [37] and contribute pure imaginary pieces, and we simply restate

the result here:
1 wrl
— +In—| (im). (4.34)

94 b
Iboxes === 5ij IR 4

1672

That the Glauber box graph give a purely imaginary contribution is consistent with general
observations about Glauber gluons: the i7 is present even in QED for processes like vy —
ete™, where it represents the leading order expansion of the Coulomb phase. For a crossed
process where only one incoming and one outgoing particle is charged, like ye~ — ~e™
the phase is absent. Because the im disappears upon crossing, in order for graphs like the
Glauber boxes to give the pure phase, they must have a non-analytic integrand, as imposed
by the |2k, | factor in the n-regulator (this is not true in full QCD where the i comes with
an associated logarithm). A further discussion of the essential non-analyticity of rapidity
regularization can be found in [49].

4.2.4 Zero bin subtractions

Finally, we have to consider the overlap between soft, collinear, and Glauber regions. For
SCET; problems, with just collinear and ultrasoft modes,the method of regions works
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without explicit zero bin subtractions in pure dimensional regularization because the soft-
collinear zero bin integrals are always scaleless and thus formally vanish. However, even for
SCET] problems, one cannot establish the agreement of IR divergences between the full and
effective theories without careful consideration of the soft-collinear overlap region. Indeed,
factorization requires such zero-bin subtractions to get agreement between full and effective
theories at the integrand level [36]. Such subtractions appear, for example, as eikonal jet
functions [50], or soft-collinear matrix elements [51] In Glauber SCET however, pure dimen-
sional regularization cannot be used, as it does not regulate the rapidity divergences. Thus
even the method-of-regions approach of ignoring the separation of UV and IR and dropping
scaleless integrals cannot be used. One must explicitly consider the zero-bin overlap region.
For quark-gluon scattering, we must subtract the zero-bin overlap between the collinear
region and the soft and Glauber regions. The full subtracted collinear contribution will

then be
Ipurc coll = Leoll — I([:il]l - I(Egl]l + I([:ﬂl[G} . (435)

Here, Z.on is the collinear contribution, including possible overlaps with the soft and

Glauber region, Ic[fl]l is the collinear-soft zero bin, Ic[fl]l is the collinear-Glauber zero bin,
781G

and coll

is the collinear-soft-Glauber zero bin. Each contribution is computed starting
from the original collinear graph and then power expanding in the secondary scaling.
Let us begin with the n-collinear quark Wilson line graph Zy ¢ 5 in eq. (4.12). Power

expanding in the soft limit, it becomes

d n _
—[S] __ _Adrargb ~2e CA / dk < v ) 2 n-p1
7, =g T°T - — .
Hwon=9 . (CF 2 ) i \ak) o [Gpn k) 0t 7k T
(4.36)
One can perform the k™ integration by contours, picking up the pole from the second

propagator. This leaves an integral of the form

0 dk~ 1 1
/ <V> Loy (4.37)

—o0o kKT \k~ non
Thus with the n-regulator, Il[,g}Qn = 0. This is a general property of the n regulator:
the rapidity divergent part of the soft-collinear zero bin will always vanish, as first noted

in [31, 38]. Note however, that rapidity-finite terms can have non-trivial zero bins, although
for Zw ¢, there are none.

Next, consider the difference between I‘[/IcﬂQ,n and II[/Ii]c[)C;]w
d n —
(G] [SIG] _ 2rparb ~2¢ Ca dk (v 2 n-py
IWQ,n _IWQ,n =g TT"[ (CF T ) / (27_(_)(1 -k % n-k (4.38)

1 1
X = — — - Mr.
[n'pl n-(k+p1) — (kL +p10)2+i0+  (2-p1) (n-kp) +i0F

Since the n-k poles in the integrands lie on the same side of the contour, this difference
vanishes upon contour integration. Combining with eq. (4.37),

Tivom + Tvgm — Tpon = 0. (4.39)
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A similar analysis shows that the net zero-bin subtraction for the gluon Wilson line graph
is also zero,

Tivn + Tivon — Divtn = 0. (4.40)
and similarly for the quark V' graph,
T8+ IS, — TEA = 0. (4.41)

In contrast to the rest of the collinear graphs, the zero bin subtractions for the gluon
V graph Zy g, are non-zero. Its soft-collinear zero bin is

8] dqagbg |, g el 1o
2 =0 TG |1y~ b ] SO
d [5]
X / d’k Al €n (4.42)
(2m)® [k? +i0T][(R - p1)(n - k) +90T][(k + g1)* + 40T

where the numerator is
5] Lz o o
Ny = > (kL +hi ‘M) for +

d—3 242z —dz
P [y, 2t

B -at h—i— B +kqu q, e
2z Q z Q

(n-k)(fi-e) . (4.43)

The terms in the first line of the numerator are rapidity divergent and yield zero due to
the 1 regulator, in an identical manner to the zero bin subtractions for Zy g ,. The rest of
the terms give a nonzero, rapidity finite integral

4 2
5] _ 9 TeTbC 1 1 1 o 1
VGn 1672 A 45UV * 4 . —t +

1
(./\/lln + 2Mq12) . (4.44)

The rapidity divergent parts of the collinear-Glauber and collinear-Glauber-soft zero bins
for Zy G ,, vanish, and the rapidity-finite parts are power suppressed,

G S|G
Tt —Titg =0 (4.45)
The total zero bin contribution for the gluon V graph is
S G S|G S

A simplified calculation that illustrates how the zero-bin for the gluon V graph can be
nonvanishing is provided in appendix B. This is exactly what is needed to restore the
Ward identity when subtracted from the collinear contribution in eq. (4.27).

One must also consider soft-Glauber zero bin contributions. For a general soft graph,
the zero bin subtractions take the form

G
Ipure soft = Lsoft — Is[of]t ) (4.47)
where Is[on]t is the soft-Glauber zero bin. In [31] it was argued that whether the rapidity-
divergent parts of soft-Glauber zero bin integrals vanish depends on the convention one
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chooses for the 0% prescription in the soft Wilson lines. Different choices shift a con-
tribution between Zg.r and Zs[of]t, but their difference is independent of convention. We
illustrate this for the flower graph in appendix B.2. In the natural convention where the
eikonal propagators inherit +i0" terms from the full-theory graphs, the rapidity-divergent
parts of the zero bin vanish. One must also compute the rapidity-finite parts of the soft-
Glauber zero bin contribution. As with the gluon V graph soft-Glauber contribution, the
rapidity-finite part of the soft graph zero bins are all power suppressed or vanish. Hence,
all the soft graphs do not receive any soft-Glauber zero bin subtractions:

7lG) — I[G]

eye flower

=0. (4.48)

In summary, almost all of the zero bin subtractions give zero. The only non-vanishing
contribution comes from the collinear-soft zero bin of the gluon V graph, so the total zero
bin contribution is
1 1, p?

g4
+omE
1672 MNiggy T2

1
Izero bin = —I‘[}%,n = (Mlﬁ + 2Mq12> . (449)

4.3 Final result

Adding up the results from eqs. (4.27), (4.32), (4.34) and (4.49), and including the n-
collinear contribution as well, we get

1
ISCET =-Lcoll,n +Izerobin,n +Icoll,ﬁ +Izerobin,ﬁ +Zsott +ZLboxes

4 4491n 12 u2 2 2
g 1 2 @ 2 W pr Tn arpb
=——-Cp|——————"2-21 A2 3 T o M (1T,
1672 LUV el EIR HQQ n + ¢ + 6 7( )ij
4
g 2 2 24+2In 2/,5 b
_—— 1 2| Mp(TT?);
+167T2 [6[}\/ E%R EIR, " + 6 + o )
g' 9* b p
——(Cy—Cr)(2 2 ToT? (5“5 In—| (27). 4.50
G (Ca=CR) @M+ 2Mu) T )+ 106 |+ m). (@50

Comparing to the leading-power expansion of the full QCD amplitude in eq. (4.1) we find
perfect agreement. Thus there are no matching corrections at 1-loop:

CTZI, CL1=CL2=CL3:CL4=0. (4.51)

Although we cannot rule out contributions to these Wilson coefficients at order a? and
above, there is good reason to suspect such contributions will also vanish.

5 Conclusions

In this paper, we have studied quark-gluon backscattering in the Regge limit, where the
outgoing quark is close to the direction of the incoming gluon. We work to leading power
in A = |q1|/Q, with g, the transverse momentum of the outgoing quark relative to the
incoming gluon and @ its energy. We computed the one-loop amplitude in QCD in this limit
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as well as the one-loop contribution to the amplitude using Glauber-SCET. We find that
the same operators Or, O, Osn and Ogao required for tree-level matching also reproduce
all of the UV divergences, IR divergences, large logarithms and all the finite parts of QCD.

Our result in eq. (4.51) is very surprising. In principle, five different operators could
have been needed at one-loop. Indeed, we did find that the Dirac tensor structures corre-
sponding to O and Op9 do appear at one-loop. However, loop corrections from insertions
of Op generate these tensor structures, so that Orq and Op9 are not needed in the Glauber-
SCET Lagrangian at one-loop. We find that the only operator needed is Or, the same one
needed for tree-level matching, but even for this operator, the one-loop matching correction
vanishes.

That there is no one-loop correction can be anticipated from general arguments, such
as those in [31]. Indeed, for quark-quark forward scattering in the Regge limit, Stewart
and Rothstein found that not only was the leading power behavior of QCD reproduced
at one-loop by Glauber-SCET, but that even the finite correction to the gluonic Glauber
operator vanished. General arguments given in [31] forbid dependence on the hard scale,
so that terms like In(p; - p2/u?) should not appear in the Wilson coefficient. This can
explain the absence of logarithms in the matching, both for gluonic Glauber exchange and
fermionic exchange, but does not forbid a correction which is a function of ;. We find that
just as the Glauber gluonic operator, the Glauber fermionic operator in SCET reproduces
the entire leading power Regge behaviour in QCD, including the finite terms, so there is
no oy correction.

The one-loop matching for the Glauber gluon case enters the analysis of the two-
loop gluonic Regge trajectory [52], and the computation is simplified because the matching
vanishes. The one-loop matching for the Glauber quark case computed in this paper (which
also vanishes) can be similarly used to compute the two-loop quark Regge trajectory.” The
calculational method requires the eye graph, to order €, which is given in appendix C.2.
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A Glauber SCET expansion

In this appendix we discuss some subtleties in expanding the Glauber SCET operators and
give the Feynman rules explicitly.

A.1 Wilson lines

For n-collinear fields, the Wilson lines W,, represent n-collinear radiation from everything
else in the event, i.e. from other particles in the collision which are not in the n direction.

"We thank Tan Moult for discussions on [52] prior to publication.
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This radiation can come from incoming or outgoing particles, but the n-collinear field is
only sensitive to the net effect which can be treated as coming from a coherent source of
radiation from a single outgoing particle propagating in the n direction, and with color
charge conjugate to the n-collinear field. The Wilson line takes the form®

Wi(z) =P {exp [z’gT“/ ds n-Ap(x¥ + ﬁ"s)e‘ms} } (A.1)
0
where P denotes path-ordering. Under a gauge transformation W,! transforms as
Wi (z) = U(co)W,(z)U(z). (A.2)

The exp_0+5 factor is required to make the Wilson line convergent at infinity. It generates
the 0% factors in the propagator denominators. Note that W (z) contains n-collinear
gauge fields, and the integral is in the n direction. For n-collinear fields one uses Wilson
lines pointing in the n direction.

Wi(z)=P {exp [igT“ /OOO ds n-Aj(x” + n”s)e_OJré} } . (A.3)

Soft Wilson lines represent soft radiation from the collinear particles, and point in the
direction of those particles (in contrast to collinear Wilson lines which represent radiation
from everything else except the collinear particle of interest). For the soft operators, we
need Wilson lines pointing both in the n and n direction. These Wilson lines have identical
structure to the collinear Wilson lines, but comprising soft rather than collinear gluon
fields, and conventionally indexed with the direction of the Wilson line path rather than
the direction backwards to the Wilson line path. Explicitly, for outgoing radiation

St(zx)=P {exp [igTa /OOO ds n-Ag(z" + n”s)e‘ms} } , (A.4)
Slx)="P {exp [z’gTa /OOO ds n-Ag(z"” + ﬁ”s)ews} } , (A.5)

which transform as
Sh(x) = U(c)Sh(@)U (), Sk(x) = U(o0)Sk(@)U  (x). (A.6)

under gauge transformations. Since forward scattering involves incoming as well as out-
going particles, we should also consider soft operators using Wilson lines representing

incoming radiation:

Su(z) =P {exp [igT“ /_OOO ds n-Ag(z"” + n”s)60+5] } , (A.7)
Sa(z) =P {exp [igT“ /Ooo ds n-A%(z" + ﬁ”s)60+s]} , (A.8)

which transform as
Sh(z) =+ U(-00)Sh(2)Ut(z),  Sh(x) = U(=00)Sh(2)U (). (A.9)

under gauge transformations. The difference between S and S is +i0" — —i0" in the
eikonal propagators. One uses S or S depending on whether the QCD field ¢ represents
an incoming quark or an outgoing antiquark.

8 A reminder that our sign convention for the covariant derivative is D, = 9, — igA,.
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A.2 Collinear gluon operators

SCET n-collinear gluons are created and annihilated by the gauge invariant operator B |
which is defined by .

By = | WG W | (A.10)
where G}F is the gluon field-strength tensor for n-collinear gluons, G}#L projects the
p index to the 1 directions, and the label operator P is the total label momentum of
W;[G” #LW,,. The square brackets are a reminder that P picks out the label momentum
of the fields inside the brackets. The one-gluon matrix element of B for a gluon with
polarization e and incoming momentum k is

n-e
et — k)T, A1l
(e - 2ew) (A1)
so that B! acts like a gauge-invariant version of A,,.

There is an alternate definition of BY , gB% = W]}iD' W, which is equivalent to
eq. (A.11). Equation (A.11) is more convenient for our purposes because it simplifies the
computation of the gluon matrix elements.

The n-collinear operator we need in the Glauber theory is
iny,

n-P

By xn = [ WJLG;MWn] [Wflfn} ; (A.12)

where the label momentum P only acts on the fields within the first square brackets. The
matrix element of BY | x,, with an incoming fermion and one incoming gluon is

<e# - ZZk”) To¢ . (A.13)

For one incoming fermion and two incoming gluons, the matrix element is

n-€y n-€; g(n-€1)(n-e) [ 1 1
VT(ZQT(ZI VTa1Ta2 _ k y k )| = TazTa1 - TalTGQ
I ks ! S Rtk Fwtken)| 25 T ¢

(A.14)
where £ is the fermion spinor, and the gluons have momenta k; and color a;. These results
are used in the next section to get the Glauber-SCET Feynman rules.

A.3 Feynman rules

In this appendix we summarize the Feynman rules of Glauber-SCET that we use for the
calculations in this paper. These are mostly well known, and we simply copy them from [25—
31, 37]. The only new vertex is the 2 collinear gluon emission off the Glauber operator in
eq. (A.17). This was not given in [37], and moreover, we disagree with eq. (A.5) of [37]
which gives the second order terms in the expansion of the collinear operator. We find the
second order terms in the expansion of BY  are

g T {(ﬁ-q)(ﬁ-@) < kay k1 >+ 611;2(71262) 621;1(7'7];161) . (A15)

’ﬁ'(k‘l—i-kQ) ﬁ'kl_ﬁ'kQ

— 96 —



The Glauber SCET Feynman rules used in this paper are as follows. The n-collinear
Glauber vertex with one collinear gluon emission is

1, a
y L (ki) (A.16)
With two collinear gluons it is
il a
4,_%% K b b -
% % v,b _ —g (kL ‘Hiu) (:“71;1 + :?:) 7. k:ﬁfn ko (A1)
: + gT“TbﬁLklvi + gTbTaﬁ%erﬁ .

The vertex for a single soft emission is [37]
3 " , nu /ﬁiu'
o AQQQW ma =g T“<7L+¢Ln_k,—fhn.k)- (A.18)

For two soft emissions:

qL ﬁv v, b g4TaTb(”V’Yi . ﬁyVﬁ %lﬁuﬁy . %Ln“ny
i {%i _ n-ko n-ky 275-(16‘1 + kg)ﬁ'kl 2?7,'(]{71 + kQ)n'kl (A 19)
(Ill ¥ 2., S }éu)n“n”) + (k1, p,a) <> (k2,v,b) |
h Ai-kink H S

The soft-quark/soft-gluon Glauber vertex (from Ogy,) is

Sk . M
= —¢°T (’YL - kj_nk> us(p) - (A.20)
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The 3-point collinear-quark/collinear-gluon vertex in SCET is

a,
= igT® n“+7ﬁp¢+p/¢ﬂ— Vi nH # (A.21)
n-p  nept o (nep)(nep) |2
Iz P
The 4 point collinear-quark/collinear-gluon vertex in SCET is
a, /k, b,v
TaTb M / 14 /
=ig? ———— ﬁ’yi—vfmﬁ”—pﬁfﬁw AN e i (A.22)
n-(p—k) n-p n-p (n-p)(n-p') 2
., - TbTa v ! M /
P P +i927 , W i_prLﬁ#—p}VILﬁy_F fﬂ}ﬁ / AV ﬁ
n-(k+p') n-p n-p (n-p)(n-p') 2
The 3-point collinear gluon vertex is the same as that of QCD,
(A.23)
Finally, we also need the leading power collinear quark propagator,
S L (A.24)

P pZyiote’

B Zero bin toy calculation

In this appendix, we provide some illustrative calculations relevant for the zero-bin sub-
tractions needed in this paper.

B.1 Collinear-soft zero bin

Consider the collinear integral

-y [ dk (n-k) (n-p1)
Tioy = i° / (2m)d [k2 4 i0+][(k 4 p1)2 + i0T)[(k + ¢ )2 +40F] (B.1)

This is a standard one-loop integral with quadratic denominators. It evaluates to

2
1
— 2 s T ) (B.2)
s

o | +2+1n’j—2t 1 u?
oy 42, deg 8 —t 2 —t 48
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Tts soft-collinear zero bin I'°) results from power expanding the integrand using k" ~ Q.

toy
This gives
s — ~2e/ d'k (n-k) (n-p1)
toy (2m)d [k2 4-30F][(n - k) (0 - p1) + 30F][(k + g1 )2 + i0T]
dk 1
_ 2 B.3
| G oG o (B3)
which can be evaluated to obtain
s _ i |1 w
I = — +In—+2] . B4
toy 167T2 [5UV o —t + ] ( )

This is an example of the soft-collinear zero bin not being scaleless.
The Glauber and soft-Glauber-collinear zero bins for eq. (B.1) are

116 _ ~2e/ d'k (n-k) (n-p1) _
o @m)4[k2 +i0H][n - (k + p1) (7 p1) — (kL + p1o)? +i0F][(kL + qL)2 +i07]
~ O(\?), (B.5)
SIG) _ ~oc [ A%k (n-k) (7-p1) a2
oy = / (2m)? (k3 +i0+][(n - k) (R - p1) +i0F][(kL + ¢L)2 +i07T] o0 (B0

Both of these zero bins are power suppressed relative to ftoy and thus can be ignored at
leading power. Thus, we find that the zero-bin subtracted toy integral is

F S
Itoy = Itoy - It[ogl <B7)
2
i 1 1 2+InL 1 2 1 2 2
S . Spom o T g (B.8)
1672 defr  euv 4e1R 8 -t 2 —t 48

Thus, the toy example shown here is an instance of a non-trivial zero bin subtraction that
is essential to correctly match Glauber-SCET onto QCD.

B.2 Soft-Glauber zero bin

In this section we review the argument from [31] about the zero-bin and regularization
of the eikonal propagators. For the sake of concreteness, we illustrate this using the soft
flower graph in eq. (4.28). Stripping away the prefactors, the soft flower graph reduces to

o [ Ak 1
1= /(%)d (-k % 07) (n-k = i0%) (k2 + i07) (B.9)

The £i0" refers to the choice for the poles of the eikonal propagators, depending on the
choice of S or S for the soft Wilson lines.

If we choose both sides to be the same, +i0", (i.e. pick S, and Sj), the integral
evaluates to

j 2/ 1 1 2 1 1 1 1
[_H_ziz2 —(—)—i—ln % (—)+2_2 ’ (B.lO)
167 N \€UV €IR v €UV €IR €ov  CIR
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and the soft-Glauber zero bin is

d’k 1
716 ~2e/ =0. B.11
HEE ] G k=0 (nk 00 (K2 £ i0%) (B-11)

The last line follows from the fact that the poles in k? are on the same side of the integration
contour. Thus, for this choice of the signs of i0" in the eikonal denominators, the soft
Glauber zero-bin explicitly vanishes.

If one chooses opposite signs (i.e. pick S,, and S5)

dk 1
I._ = ~26/ B.12
== H (2m)d (n-k — i0+)(n-k 4 30+) (k2 + i0T)’ ( )

and the integral is different:

A2k, (o dk, [ v \" 1
om e [ A i vy e
i o (2m)4=2 oo 2m \[2k2|/) (2K, +i0%) (K2 —i0%) (B.13)
The Glauber-soft zero bin in this case does not vanish:
d
G] _ -2 [ A°K 1
I = B.14
=T H / 2m)d (n-k —i0t)(n-k + i0+)(ki +1i07T) ( )
_i/dd_%l /mdkz( v )" 1 (B.15)
(2m)42 Joo 2m \|2k:|/)  (2k, +i0F) (K2 —i0+)’ '

where the last line follows from contour integration in k°. Thus, we see that
G G
Ly—19—r_ -1 (B.16)

and the zero-bin subtracted integrals are the same. The soft-Glauber zero-bins allow one
to be agnostic about the signs of the 0" in the eikonal denominators. The simplest choice
is to have all the signs +i0" so that the soft-Glauber zero-bins vanish.

C Useful loop integrals

In this appendix, we discuss how some of the rapidity divergent integrals can be computed,
and give an example of an exact result with the soft eye graph.

C.1 General formulas
Rapidity divergent integrals from the collinear Wilson line graphs generally take the form

o d v\ f(nk, kL)
T = [ Gy (5%) W v - 07 (C.1)

where the numerator f(n-k, k 1) depends only on 7 - k and k 1, and is independent of n - k.
We first do the k* = n-k integral by contours. The poles in the k™ plane are at

k3 —i0* and k= —n-p+ (k1 +ﬁ¢)2_i0+. 2

kT =
nk n-(p+ k)
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Only when —n-p < n-k < 0 do the poles lie on opposite sides of the integration contour. If
we close the contour in the upper half plane, we pick up the first pole. Changing variables
toz=—(n-k)/(n-p) gives

1 v \" [l 1 ddiQEJ_ f(—ZfL - P, EJ_)
Iy = — | — / dz —/ i =
Am \n-p/) Jo 2 ) (2m)*2 R 42k, P2+ —prp2(1 - 2)

) s AR f(==nep k) (€.3)

S dm \n-p ) 2252 ok, - pre 4 p2e?]

using the on-shell condition p? = 0. Shifting the integration momentum gives

_z‘( v )ﬂ/ldzl d%ky f(=2n-p, kL — 2pL)
S dx \n-p) Jo T 2] (2m)d-2 k2

Iw . (C.4)
The remaining computation, performing the k£, integration and then the z integration,
depends on the particular integrand, but is generally straightforward. The result is pro-
portional to 1/eyy — 1/eR.

Diagrams with triangle topology such as the collinear V graphs give rise to integrals
of the form

A% [ v \" f(n-k, k)
2m)d \n-k) [k2 4 i0%][(p + k)2 + i0+][(k + g1 )% +i07]
There are now three poles in n-k given by
k2 —i0t
—, ()
- 2
. N (Fi+p1) —io* o
- np+k) '
EJ_ + C.TJ_)Z — 0"
g = . C.8
P (C.8)

Two of these poles are on opposite sides of the integration contour from the other only for
the region —n-p < n-k < 0. One can then close the contour in the lower half plane picking
up the second pole, and change variables to z = —(n - k)/(n - p) giving

i v \"7 1 1—2 dd_2/a_ f(=zn-p, EJ_)
IV:—I P /dz p /2 d—2 79 = S N
m\n-p/ Jo z (m)42 k2 2k, - pra+piz—ptpz(1—2)
1

X — - - — - . (C.9)
(kL +q1)?(1—2)+ (kL +P1)*2+ Pz —ptp2(1—2)

Combining denominators using Feynman parameters, using the on-shell condition p? = 0,
and shifting the integration momentum

) v norl 1 1—2 dd72]a_
Ty=—(2) [ azf a
v 4 <np) /0 x/o S /(277)d2

fl=2-p, kL —2pL — (1 = 2)q1)
[Ei + @ el —a)(1-2)? = (20L —q1) - raz(l - z)]

X

- (C.10)
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Finally, with our choice of kinematics, 2p| = ¢, and the last term in the denominator
vanishes. Thus, (C.10) can be used to evaluate rapidity divergent loop integrals coming
from V graphs. All rapidity divergent integrals in this paper can be performed using (C.10)
and (C.4). In more generality the numerator could depend also on n -k = k™. In that case
one simply substitutes the value of k* at the pole at which the residue is evaluated, after
confirming that the integral is convergent as k* — oo.

Using these formulas, we can compute the result of various representative terms in the
V-graphs.

With a k% numerator (Q =7 - p1):

%/ Ak 7-py k2
o) @n)d 7k (k2 + 307k + p1)2 + 07][(k + q1)2 + i0+]

i [1<1 1>+1 (1+1 ,,) 1 1 1+11u2+1y

= -\ — — n—-|———-——|z+-n— n—

1672 [n \evv e/ euv Q) 4defy em \2 47 —t Q
2

1 p? 1. u?
B 11
g T +48+] (C.11)

With a constant numerator:

~26/ dk n-pp (ﬁ_
2m)e n-k [k2 +i0H][(k + p1)2 + i0F][(k + q1)% + i0F]

j 2 (1 2 1 1 2
R e B e (L ya
1672 N \ €IR —1 €R €IR —1 Q

1 2 2 3 2
—1n2“—21n“1n+”] (C.12)

With a numerator linear in k|

ﬂgg/ d n-py ki-q1
(2m)® n-k [k24i0F][(k + p1)? +i0H][(k + q1)% + i0+]

2 2 372
2 £ nm? W}. (C.13)

C.2 Eye graph

As an example, we give the complete analytic result for the soft eye graph eq. (4.30). Before
expanding in n or € we find

: I (L—2)4—n—8)csc(Z(n+2e 2\ 1/2
Leye = 20" ooy My (“e ) 22%[ (5-3) (4—n—8e)ese(5n+20)) (;/)
t 2(n+2) T (8-~ 1) —t

1672

T/2(2 — 3¢) csc(ws)]

ar (3 —e)
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Note that the n regulator is not needed for the first term of the integrand, but included
only for completeness. Expanding in 7 to order n° gives

Tuye = (C.15)

E 1 2
TaTb p-e 92¢ 3/2
67 C MT< — ) /% ese(me) 771“(

1 41/2
—1+e+ (2 —4e) | —mcot(me) —I—H%_6 —i—ln—t

where H,, is the harmonic number. Expanding eq. (C.15) in ¢ gives

2g* b 1] 2 p? T 1 1 u? 3
Ieye:167T2TaT C’F./\/l’]"{?7 [w+21n4+8 In“— — — _T+7 —1[1—2—{—7

2 2 2 7 1 2 1 2 2
—71 2 1 i ” i ”—+f1 “—t—”—+ +s(—1n3”+1n2“1n”t (C.16)
3 pro owoop? T op? o owovr o on? 14
2 Ty L NN N L P, ) I
T S gty g g g et )+ ’

keeping terms to order e.
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