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Abstract

The matter particles which are observed in nature, called fermions, come in three copies
that are also referred to as flavours. The properties of the different fermion flavours and
their implications constitute the flavour structure of nature. The occurrence of neutrino
oscillations is unambiguous proof that the Standard Model of particle physics cannot
fully account for this flavour structure. Furthermore, several experiments have revealed
hints towards further deviations from the predictions of the Standard Model, especially
regarding violations of lepton-flavour universality.

This sets the ground for my thesis which can be split into three parts. Firstly, I scrutinise
the hypothesis that neutrino masses are generated via a singly-charged scalar particle
which is a singlet under weak interactions, and study its phenomenological implications. As
a minimal extension of the Standard Model, this scenario can be very predictive and is in
particular not sensitive to the details of how the breaking of lepton-number conservation is
achieved. Secondly, I thoroughly analyse existing data on several b → sνν decay channels,
as well as the prospective sensitivity of the Belle-II experiment regarding a measurement
of these decays. The results are fully general and can be matched onto any model in
which new degrees of freedom are introduced at or above the electroweak scale. Thirdly, I
investigate a concrete new-physics model which aims to explain anomalous experimental
data in the lepton-flavour universality ratios R(D) and R(D⋆) and in the magnetic moment
of the muon with the help of a scalar leptoquark. An essential feature of the model is the
fact that the interactions between the leptoquark and the Standard-Model fermions are
completely fixed in terms of a discrete flavour symmetry.

Altogether, in this thesis I highlight different possible approaches towards an improved
understanding of the flavour structure of nature, both model-based and model-independent
ones.
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Chapter 1

Introduction

This thesis is set in flavour physics which is a sub-discipline of the much broader field

of particle physics. The modern framework to make quantitative predictions for particle

physics is the Standard Model (SM). As a theory, it has been very successful in describing

the interactions involving the known fundamental particles, that is, the Higgs boson, the

gauge bosons and the fermions. Whereas the former two might be dubbed “interaction”

or “force-carrier” particles, the latter constitute the matter particles or “building blocks”

of the universe. Fermions come in three different copies which are also commonly called

“flavours”. The properties of the different fermion flavours as a whole then constitute what

is called the “flavour structure” of nature.

Fermions can be separated into quarks and leptons, distinguished by the fact that the

former participate in strong interactions while the latter do not. As mentioned above

already, three copies, or flavours, of both quarks and leptons have been observed. Fur-

thermore, there are two types of particles for each generation which are distinguished

by isospin: up-type quarks and down-type quarks on the one hand, and neutrinos and

charged leptons on the other hand.1 As spin-1
2 particles, fermions constitute the simplest

nontrivial representation of the Lorentz group, composed of Weyl spinors which are either

1One might further notice that each fermion comes with its antiparticle. In the case of
neutrinos, particles and antiparticles could be identical.

1



CHAPTER 1. INTRODUCTION

left-handed (LH) or right-handed (RH).

The SM does not treat quarks and leptons on equal footing, which can be traced back

to the fact that it features RH up-type quarks, but lacks RH neutrinos. An obvious

reason for this asymmetry is that the existence of RH up-type quarks is well-established,

whereas RH neutrinos have never been (conclusively) seen. This is not surprising, given

that RH neutrinos are predicted not to participate in gauge interactions, and would thus

communicate with the SM only via gravitational or Yukawa interactions. Furthermore,

the existence of RH neutrinos is not strictly required by any theoretical argument.

The presence of three fermion generations implies the presence of three physical mixing

angles which parametrise the mismatch between the particle states which participate in

gauge and/or Yukawa interactions and the physically propagating states. Furthermore,

the mixing matrix which translates between the two associated bases features a complex

phase, signaling that the symmetry of charge parity (CP) can be violated. This phase

as well as the three mixing angles have been measured with percent-level accuracy in the

quark sector [29]. In general, the physics of the quark sector as described by the SM is by

now fairly well understood.

As a consequence of the absence of RH neutrinos, the lepton sector featuring electrons,

muons and tau leptons together with their respective associated neutrinos is less rich in

structure in the SM. In fact, it exhibits a symmetry which predicts lepton flavour to be

conserved, that is, no net change in the number of particles carrying electron, muon and

tau flavour, respectively, can be generated. Still, many experiments, among them those

performed at Super-Kamiokande [43] and SNO [44,45], have provided conclusive evidence

that neutrinos undergo oscillations and thus lepton flavour is definitely not conserved in

nature. Furthermore, at least two neutrinos must be massive, in conflict with the SM.

Consequently, we can be certain that the flavour structure of the lepton sector of nature

must be more involved than what is implied by the SM.

Another unsatisfactory aspect of the SM is related to the Yukawa sector which describes

the interactions between the fermions and the Higgs field. Not accounting for lepton mixing

2



and non-zero neutrino masses, one finds that the Yukawa sector features thirteen physical

parameters: three lepton masses and six quark masses as well as three mixing angles and

the CP-violating phase in the quark sector. Data on neutrino oscillations evidences the

need to introduce at least two non-zero masses in the neutrino sector, together with three

mixing angles and one CP-violating phase in the lepton sector. Still, all of these quantities

are entirely free parameters which can only be determined from experiment. In particular,

there is no explanation for the strong hierarchy among the masses of the charged fermions,

the large gap of scales between the electron mass and the largest neutrino mass, or the

fact that quark mixing is sizeable only for the first two generations, while there are two

large mixing angles in the lepton sector. It is expected that only new physics (NP) can

provide insight into the mechanism which gives rise to the flavour structure exhibited by

the SM Yukawa interactions.

Besides the large number of unexplained parameters in the SM flavour sector, there is

also growing evidence for deviations between the results of specific measurements and the

relevant predictions in the SM which depend on (some of) these parameters. In particular,

the prediction of lepton-flavour universality (LFU), according to which the masses of the

members of the three lepton generations can be the only source of differences in their

behaviour, becomes increasingly challenged. This is exemplified by the so-called LFU

ratios R(D) and R(D⋆),

R(D(⋆)) = Γ(B → D(⋆)τν)
Γ(B → D(⋆)ℓν)

(1.1)

with ℓ = e, µ. A combined fit to the data on R(D) and R(D⋆) reveals a tension with the

SM prediction at the level of 3.4σ [10]. Furthermore, the measurement of the anomalous

magnetic moment (AMM) of the muon aµ = (g − 2)µ/2 at Brookhaven National Lab-

oratory [46] has revealed a significant discrepancy with the SM which further solidified

with the announcement of the results from the Muon g − 2 experiment at Fermilab [18].

According to the combined fit to the data, the anomaly currently stands at a significance

of 4.2σ in the quantity ∆aµ = aexp
µ − aSM

µ if the data-driven approach to determine the

leading-order hadronic vacuum polarisation is employed; see for instance ref. [19]. Further

experimental anomalies have manifested in recent years, for instance in various observables

3
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related to b → s quark transitions.

Let me get back to neutrino masses now, and recall that several questions regarding their

nature remain unanswered. For instance, it is still unknown whether neutrinos are Dirac

or Majorana particles. The former necessitate the simultaneous existence of (light) RH

and LH neutrino fields, whereas for the latter only the known LH neutrinos need to present

at low energies. While a Dirac nature of neutrinos is still a perfectly viable possibility,

Majorana neutrinos may be seen as more compelling from a theoretical point of view. If

induced in a gauge-invariant manner, Majorana neutrino masses are associated with the

breaking of the conservation of lepton number which is a symmetry in the SM on the

perturbative level. The size of Majorana neutrino masses is set by the (large) scale of

lepton-number breaking and thus naturally suppressed, which can be seen explicitly in

the context of the non-renormalisable Weinberg operator [47] if the SM is considered an

effective field theory (EFT).

Over several decades, many explicit models which give rise to the Weinberg operator have

been studied; see for instance the review articles [48–50]. Their sheer number necessitates

proper means of classification in order to enable an efficient comparison of the models

amongst each other and with experimental data. There are many viable avenues to do

so, notably via effective operators which violate the conservation of lepton number by two

units (∆L = 2); see e.g. refs. [51–58]. Still, the relation between contributions to processes

which respect the conservation of lepton number and to those which violate it may be

very model-dependent, and the former typically constrain the available parameter space

more efficiently than the latter. Furthermore, there is an enormous number of possible

ultraviolet (UV) completions of effective ∆L = 2 operators.

Building on an approach laid out in ref. [59] which in a way proceeds along an intermediate

avenue between EFT and complete models, I investigate a scenario in which Majorana

neutrino masses might be generated via a singly-charged scalar singlet which transforms as

h ∼ (1, 1, 1) under the SM gauge group. It is a case study for “simplified models” in which

the SM particle content is enlarged by a single particle which is charged under lepton

number, together with a source of lepton-number breaking. The singly-charged scalar

4



singlet plays a vital role in several UV-complete models, including the Zee model [60–62],

the Zee-Babu model [63–65] and the Krauss-Nasri-Trodden model [66] and their respective

variations. The coupling yh of h to two LH lepton doublets is antisymmetric in flavour

space and thus allows for the derivation of a constraint on the elements yijh in terms of

neutrino parameters, which sets the ground for a comprehensive numerical study.

Taking a step back, we find ourselves in a situation in which the need to introduce NP

is established, while its nature remains elusive. In this light, the odds that a particular

model, or even a class of models, correctly describes nature in its entirety might be regarded

as relatively small. Thus, interpreting experimental data in a more general and model-

independent way is equally important for guiding the search for NP. In this thesis, I

thoroughly analyse existing data on and prospective enhanced sensitivities to the decay

process B → K(⋆) plus neutrinos at the Belle-II experiment [7]. A recently presented

simple weighted average BR(B+ → K+νν) = (1.1±0.4)×10−5 [1,8] supersedes previously

established upper bounds and indicates a possible enhancement with respect to the SM.

The underlying process b → sνν̄ is suppressed in the SM due to the so-called Glashow-

Iliopoulos-Maiani mechanism which may thus increase the chances of detecting a contribu-

tion from NP. Besides additional ways to mediate the decay, extensions of the SM may also

feature sterile particles, that is, those which do not participate in gauge interactions, that

could be produced in the final state and escape without detection. Furthermore, the the-

oretical description of b → sνν̄ processes is very clean. Earlier model-independent studies

of the decay B → K(⋆) plus neutrinos in terms of EFT can be found in refs. [67–77]. In

this thesis, all relevant dimension-6 operators in low-energy effective theory for arbitrar-

ily many neutrino generations are considered, including the possibility of massive sterile

neutrinos. The results of the study can be applied to any model of NP introduced at or

above the electroweak scale.

Slightly shifting the focus once more, I now turn to the concept of symmetries which have

proven extraordinarily successful in describing the gauge interactions of the SM particles.

Therefore, it appears reasonable to consider a similar hypothesis for the flavour sector,

that is, assume a symmetry which acts on the space of flavours (or generations). It has

5



CHAPTER 1. INTRODUCTION

been demonstrated that the hierarchies among the masses of the charged fermions can be

appropriately predicted via an abelian symmetry group, such as U(1) [78], under which

the different fermion species carry non-identical charges. Still, in order to accommodate

the observed features of mixing in the quark sector and lepton sector and to potentially

predict specific patterns, a non-abelian symmetry seems to be preferred.

In ref. [79], a scalar leptoquark (LQ) has been proposed as an explanation of the anomalies

in R(D), R(D⋆) and in the AMM of the muon which were introduced above. This sce-

nario was then further studied in subsequent works by different authors, e.g. in ref. [80].

Combining the two aforementioned approaches, I study a model which makes use of a

discrete symmetry acting on flavour space to explain the masses of the charged fermions

together with quark mixing as well as R(D), R(D⋆) and ∆aµ. The employed symmetry

completely determines the interactions among the SM fields in the Yukawa sector as well

as those between the SM fermions and the LQ. Similar existing studies may be found in

refs. [81–86].

This thesis is structured as follows. In chapter 2, I review some aspects of the SM and

possible extensions, as well as effective field theory and current experimental indications

of NP. The publication [87] together with the published erratum [88] are used in lieu of

chapter 3 wherein I study the simplified model involving the singly-charged scalar sin-

glet, under the assumption that it generates neutrino masses together with an unspecified

source of lepton-number violation. Then, I continue in chapter 4 in lieu of which the

publication [89] is used. Therein, I provide a model-independent analysis of existing and

forecast data on several b → sνν decay channels, and the derivation of constraints on dif-

ferent operators contributing to them. Lastly, I scrutinise the above-mentioned concrete

NP model which provides an explanation for the measured charged fermion masses and

quark mixing parameters, as well as currently observed anomalies in R(D), R(D⋆) and

the AMM of the muon. The presentation in chapter 5 has been extensively edited and

adapted from ref. [90]. Lastly, I draw conclusions and provide an outlook in chapter 6.
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Chapter 2

Background

2.1 Aspects of the Standard Model

In this section, I review some selected aspects of the SM.

2.1.1 Lorentz Symmetry

The stage on which particle physics unfolds in the absence of gravitational effects is

Minkowski spacetime. Physical results should not depend on the choice of inertial frame,

or put differently, remain unchanged if boosts or rotations are applied which together

constitute Lorentz transformations. In technical terms, these can be expressed as 4 × 4

matrices Λ satisfying ΛT gΛ = g where g is the Minkowski metric which is conventionally

taken as g = diag(1,−1,−1,−1) in particle physics [91]. Lorentz transformations give rise

to the Lorentz group SO(3, 1). The generators for boosts and rotations can be rearranged

in linear combinations such that they satisfy two independent su(2) algebras, and thus

SO(3, 1) is locally isomorphic to SU(2) × SU(2) [92]. Therefore, the representations of a

field under the Lorentz group can be conveniently labeled by a pair of (half-)integers (a, b)

with a, b = 0, 1
2 , 1, ... which are familiar from spin quantisation.
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2.1.1.1 Fermion Mass Terms

The presentation in this section mainly draws from ref. [92]. The notation in terms of

two-component spinors is aligned with ref. [93], and Lorentz indices are suppressed.

Weyl spinors are the simplest objects which transform non-trivially under the Lorentz

group. A Weyl spinor χ ∼ (1
2 , 0) is conventionally dubbed LH, whereas η ∼ (0, 1

2) then

denotes a RH Weyl spinor. The fact that Weyl spinors can transform under either of two

SU(2) copies implies that two Lorentz-invariant types of mass terms exist. A Majorana

mass term involves only one Weyl spinor, that is, in the case of χ ∼ (1
2 , 0),

mχχχ+ h.c. (2.1)

where “h.c.” stands for “hermitian conjugate”. A Weyl fermion with a non-zero Majo-

rana mass is called a Majorana fermion. If χ is charged under a pseudo-real or complex

representation of an unbroken symmetry, a Majorana mass term is forbidden [92]. Thus,

Majorana fermions are in particular electrically neutral and referred to as their own an-

tiparticle.

Still, a Weyl fermion χ ∼ (1
2 , 0) which transforms under a pseudo-real or complex rep-

resentation of an unbroken symmetry can form a Dirac mass term with another Weyl

fermion ξ ∼ (1
2 , 0) transforming under the respective complex-conjugate representation,

mχξ + h.c. . (2.2)

It is conventional to combine χ and ξ into a Dirac spinor ψ = (χ, ξ†) which allows the

more familiar four-component notation

mψψ . (2.3)

If m is non-zero, the Dirac spinor ψ = (χ, ξ†) is said to describe a Dirac fermion.

Consequently, a major difference between the two types of mass terms is that a Majorana

mass only involves one Weyl spinor, whereas a Dirac mass involves two different Weyl

spinors and thus twice as many independent degrees of freedom.
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2.1.1.2 Lorentz Bilinears

A free Dirac fermion is a solution to the Dirac equation

(iγµ∂µ −m)ψ = 0 (2.4)

where the matrices γµ satisfy the Dirac algebra defined by

{γµ, γν} = 2gµν (2.5)

with the anticommutator {A,B} ≡ AB +BA. The smallest non-trivial representation of

the Dirac algebra is four-dimensional. The set of 16 elements {1, γ5, γµ, γµγ5, σµν} where

σµν ≡ i

2 [γµ, γν ] (2.6)

constitutes a basis in the space of 4 × 4 matrices. Given a Dirac spinor ψ, there is a

finite number of Lorentz covariants that one can construct out of ψ and its Dirac adjoint

ψ ≡ ψ†γ0:

ψψ scalar

ψγ5ψ pseudo-scalar

ψγµψ vector

ψγµγ5ψ pseudo-vector

ψσµνψ tensor

(2.7)

The designations of these covariants indicate their respective definite behaviour under

parity transformations.1

In fact, instead considering the basis {PL, PR, γµPL, γµPR, σµν} often proves more conve-

nient [94]. Here, the chiral projection operators

PL ≡ 1
2
(
1 − γ5

)
, PR ≡ 1

2
(
1 + γ5

)
(2.8)

enter. Applying a parity transformation then interchanges the Lorentz scalars ψPL,Rψ ↔

ψPR,Lψ and Lorentz vectors ψγµPL,Rψ ↔ ψγµPR,Lψ, respectively.

1Note that one can formally also define pseudo-tensors in an equivalent manner, but
they can be rewritten in terms of tensors and the Levi-Civita symbol, and are therefore
not independent.
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2.1.2 Particle Content and Weak Interactions

The particle content of the SM can be grouped into four bosonic representations H, Gaµ,

W a
µ , Bµ of the Lorentz group, and five fermionic representations QLi, LLi, uRi, dRi, eRi.2

Here, the index i = 1, 2, 3 counts the three flavours (or generations). Furthermore, all SM

particles are organised in multiplets under the gauge group SU(3)c × SU(2)w × U(1)Y .

Up-type quarks are described by the uRi as well as the upper components of the rep-

resentation of QL under SU(2)w, whereas the dRi and the lower QL components are

called down-type quarks. Similarly, neutrinos constitute the upper components of the

representation of LL under SU(2)w, and the eRi together with the lower LL components

are called charged leptons. The specific transformation properties are summarised in ta-

ble 2.1. Upon the acquisition of a vacuum expectation value (VEV) by the Higgs doublet,

H = (ϕ+, ϕ0) →
(
0, (v + h)/

√
2
)

in unitary gauge, the product SU(2)w × U(1)Y is broken

to U(1)EM, where the subscript refers to electromagnetism [95]. Then, the charge of the

SM particles under the latter is called electric charge and determined from Q = T3 + Y ,

where T3 is the eigenvalue under the third generator of SU(2)w, called weak isospin, and

Y is the charge under U(1)Y , called hypercharge.

Furthermore, the SM is a renormalisable theory, which formally requires that any diver-

gences appearing in results for observable quantities can be removed with a finite number

of counterterms [95]. In practice, an operator composed of SM fields is renormalisable in

3 + 1 dimensions if its mass dimension is smaller than or equal to four. Treating the SM

as a weakly coupled theory, one finds that the mass dimension of an operator is simply

given by the engineering dimension, that is, the sum of the mass dimensions of the fields

and momentum insertions constituting the operator under consideration [4]. In d = 4

dimensions, [pµ] = 1 as well as [ϕ] = 1 for scalar and vector particles and [ϕ] = 3/2 for

fermions.

2The four-component notation is consistent with chapters 4 and 5. On the contrary,
two-component spinors are employed in chapter 3. In particular, RH spinors ψ ≡ PRψ are
expressed therein in terms of LH spinors ψ̄ ≡ ψc.
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SU(2) × SU(2) SU(3)c SU(2)w U(1)Y

H =
(
ϕ+, ϕ0

)
(0, 0) 1 2 1

2

QLi =
(
(uL, dL), (cL, sL), (tL, bL)

)
(1

2 , 0) 3 2 1
6

LLi =
(
(νLe, eL), (νLµ, µL), (νLτ , τL)

)
(1

2 , 0) 1 2 −1
2

uRi =
(
uR, cR, tR

)
(0, 1

2) 3 1 2
3

dRi =
(
dR, sR, bR

)
(0, 1

2) 3 1 −1
3

eRi =
(
eR, µR, τR

)
(0, 1

2) 1 1 −1

Gaµ (1
2 ,

1
2) 8 1 0

W a
µ =

(
W 1
µ ,W

2
µ ,W

3
µ

)
(1

2 ,
1
2) 1 3 0

Bµ (1
2 ,

1
2) 1 1 0

Table 2.1: Particle content of the SM, together with the transformation properties under
the Lorentz and gauge groups.

An object of major importance for the following considerations is given by ψγµψ which is

usually called “vector current” or simply “current”. It can be combined with a gauge field

to form a Lorentz- and gauge-invariant operator. One distinguishes charged and neutral

currents.

Regarding the latter, I consider the (effective) Lagrangian for the interaction between a Z

boson and SM fermions, following ref. [96],

LZeff = g

cW

∑
i,j

ψiγ
µ
[
gijψL

PL + gijψR
PR
]
ψjZµ , (2.9)

with the sums running over all SM fermion species, the SU(2)w gauge coupling g, the

cosine of the weak mixing angle θW denoted by cW , and

gijψL,R
= gSM

ψL,R
δij + δgijψL,R

. (2.10)

In the SM, the (effective) couplings are given at tree level as in

g0
ψL

= Tψ3 −Qψ sin2 θW , g0
ψR

= −Qψ sin2 θW (2.11)

with the electric charge Qψ and the weak isospin Tψ3 of the fermion ψL,R, see also table 2.2,

and δgijψL,R
= 0. At loop level, they are modified according to

gSM
ψL

= √
ρψ (Tψ3 −Qψ sin2 θeff) , gSM

ψR
= −√

ρψ Q
ψ sin2 θeff (2.12)
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SM fermion ψ Tψ3 Qψ Tψ3 −Qψ sin2 θW

νLe, νLµ, νLτ 1
2 0 0.50

eL, µL, τL −1
2 −1 −0.28

uL, cL, tL 1
2

2
3 0.35

dL, sL, bL −1
2 −1

3 −0.42
eR, µR, τR 0 −1 0.23
uR, cR, tR 0 2

3 −0.15
dR, sR, bR 0 −1

3 0.08

Table 2.2: Coupling strength of SM fermion-antifermion pairs to the Z boson.

where

ρψ = 1 + 3GFm2
t

8
√

2π2 + ... ≈ 1.0094 (2.13)

with the dominant correction due to electroweak self-energy diagrams with internal top

quarks, and sin2 θeff ≈ 0.2315 [29]. In the presence of NP, further contributions can get

induced which then results in non-zero δgijψL,R
.

2.1.3 Yukawa Sector

A major implication of the representation of the SM particles under the gauge group

SU(3)c×SU(2)w×U(1)Y is the absence of bare mass terms as introduced in section 2.1.1.1.

Still, the Yukawa interactions

LYuk = −yiju QLiϵH∗uRj − yijd QLiHdRj − yije LLiHeRj + h.c. (2.14)

with ϵ ≡ iσ2 are compatible with the gauge symmetry. The parametrisation above holds

in a generic basis in which yu, yd and ye may contain up to 18 (real) parameters each.

It might be referred to as the interaction basis which alludes to the possibility that the

operators in eq. (2.14) are an effective parametrisation of some non-trivial dynamics at

high energies. Note that in the interaction basis, the Yukawa matrices account for all the

flavour effects.

After electroweak symmetry breaking, the charged fermion mass basis is adopted via bi-
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unitary transformations

yi → ymi ≡ L†
iyiRi for i = u, d, e (2.15)

where the matrices ymi are diagonal:

ymu = diag(yu, yc, yt) , ymd = diag(yd, ys, yb) , yme = diag(ye, yµ, yτ ) . (2.16)

Regarding the basis transformation of the LH SM fermions, I find

uLi = (Lu)ijumLj , dLi = (Ld)ijdmLj , eLi = (Le)ijemLj , νLi = (Le)ijνmLj (2.17)

and for RH SM fermions

uRi = (Ru)ijumjR , dRi = (Rd)ijdmRj , eRi = (Re)ijemRj (2.18)

where the superscript m indicates the mass basis. In this basis, the elements of the Yukawa

matrices are directly proportional to the charged fermion masses, that is,
ymi√

2
= mi

v
for i = u, d, e (2.19)

where the masses are contained in the diagonal matrices mi.

As the name suggests, charged currents involve a change in the electric charge of the

involved fermions by ±1. In the SM, this implies that charged currents are composed of

an up-type quark and a down-type quark, or a neutrino and a charged lepton. W± bosons

couple to these currents at tree level, since they are linear combinations of the SU(2)w
gauge bosons W 1,2 associated with the non-diagonal Pauli matrices σ1,2. The respective

weak Lagrangians read

LW = g√
2
uLiγ

µdLiW
+
µ + g√

2
νLiγ

µeLiW
+
µ + h.c. . (2.20)

Adopting the charged fermion mass basis, one finds

(
uL cL tL

)
γµ


dL

sL

bL

 =
(
umL cmL tmL

)
L†
u γ

µ Ld


dmL

smL

bmL

 , (2.21)

(
νLe νLµ νLτ

)
γµ


eL

µL

τL

 =
(
νmL e νmL µ νmL τ

)
L†
e γ

µ Le


emL

µmL

τmL

 (2.22)
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where the basis transformation has no effect in the leptonic case since the matrix Le

cancels out. Thus, lepton mixing is unphysical in the SM. On the contrary, the Cabibbo-

Kobayashi-Maskawa (CKM) matrix

V ≡ L†
uLd (2.23)

is physical and cannot be removed from the theory. Hence, the up-type quarks and the

down-type quarks are not fully aligned in the SM. Since Lu and Ld are unitary, so is V .

It is commonly parametrised in terms of three mixing angles θ12, θ13, θ23 and a complex

phase δ. Abbreviating cij ≡ cos(θij) and sij ≡ sin(θij), one may write

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 (2.24)

where the parameters are determined from the experimental data as follows, according to

the Particle Data Group (PDG) [29]:

sin(θ12) = 0.22650+0.00048
−0.00048 , sin(θ13) = 0.00361+0.00011

−0.00009 , (2.25)

sin(θ23) = 0.04053+0.00083
−0.00061 , δ = 1.196+0.045

−0.043 . (2.26)

This implies that the magnitudes have the approximate hierarchy [97]

|V | ∼


1 λ λ3

λ 1 λ2

λ3 λ2 1

 (2.27)

where λ ≈ 0.2. Thus, the CKM matrix is close to diagonal. Consequently, flavour-changing

charged currents (FCCCs) are generically induced at tree level via couplings to the W±

boson, but they are suppressed. Note that since in particular s13 ∼ λ3 is small, the

magnitudes |Vus|, |Vub| and |Vcb| can be approximately identified with the (sines of) the

mixing angles θ12, θ13 and θ23, respectively. In the mass basis, the CKM matrix encodes

all the flavour structure, apart from the differences in the charged fermion masses.

A parametrisation-independent way of quantifying CP violation is given by the Jarlskog
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invariant J , defined via

Im(VijVklV ∗
ilV

∗
kj) = J

3∑
m,n=1

ϵikmϵjln (2.28)

which for instance implies

J = Im(VudVtbV ∗
ubV

∗
td) = c12 c23 c

2
13 s12 s23 s13 sin(δ) (2.29)

for the parametrisation used above. Note that J has physical meaning only in the presence

of three fermion generations and three non-zero mixing angles. This can be easily seen

from an alternative definition which involves the determinant [91,98]

detC = −16
v2 (mt −mc)(mt −mu)(mc −mu)(mb −ms)(mb −md)(ms −md)J (2.30)

of the traceless matrix C = i[yu, yd].

As a brief aside, in order to accommodate lepton mixing and non-zero neutrino masses,

one defines the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

U ≡ L†
eLν (2.31)

in an analogous manner, where Lν is a unitary matrix. Then, the LH SM neutrinos

transform as in

νLi = (Lν)ijνmLj . (2.32)

In stark contrast to the CKM matrix, the PMNS matrix is not close to diagonal and

considerably less hierarchical [38]:

|U | ≈


0.82 0.55 0.15

0.4 0.6 0.7

0.4 0.6 0.7

 (2.33)

Hence, lepton mixing is in fact large, and the occurrence of lepton FCCCs is not suppressed.

In complete analogy to the CKM matrix, U can be parametrised in terms of three non-

zero mixing angles and at least one complex phase.3 Since the value of the latter is still

3If neutrinos are Majorana particles, the PMNS matrix necessarily features two further
complex phases, commonly referred to as Majorana phases; see also section 3.2.3.
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beset with a considerable uncertainty, the occurrence of CP violation in the lepton sector

is not conclusively established yet; see chapter 3 for more details regarding the current

experimental situation.

Note the absence of a suitable partner field NR for the LH SM neutrinos that would

enable a Yukawa interaction with the Higgs field and subsequently a Dirac mass for neu-

trinos. Various NP models introduce such RH partner fields, called sterile neutrinos

NR ∼ (1, 1, 0), some properties of which will be reviewed in section 2.3.1. In addition, in

order to give rise to Majorana masses, the object LcLLL+h.c. would need to get contracted

into a Lorentz invariant in a suitable manner, which is not possible in the SM on the renor-

malisable level. Thus, the SM cannot accommodate Majorana masses for neutrinos either,

but they are induced by the effective Weinberg operator on the non-renormalisable level;

see section 2.4.2 for more details.

2.1.4 Global Symmetries

Besides the Yukawa sector, the only instance where fermions enter the SM Lagrangian is

the kinetic sector which is described by

Lkin =
∑
ψ

iψγµDµψ (2.34)

with the sum running over all fermion species ψ ∈ {QL, LL, uR, dR, eR}. In the absence of

Yukawa interactions, the SM Lagrangian possesses a large global symmetry [99]

G ≡
[
SU(3)

]5 ×
[
U(1)

]5 (2.35)

where the five SU(3) factors are associated with the five different fermion representations,

respectively:

SU(3)Q × SU(3)u × SU(3)d × SU(3)L × SU(3)e . (2.36)

These groups act on the space of generations, of which there are three for each fermion

representation, via unitary matrices. The U(1) factors may be identified in a similar way.

In the presence of the Yukawa interactions contained in eq. (2.14), the
[
SU(3)

]5 component
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U(1)B U(1)L
QLi

1
3 0

uRi
1
3 0

dRi
1
3 0

LLi 0 1
eRi 0 1

U(1)e U(1)µ U(1)τ
LLe = (νLe, eL) 1 0 0
LLµ = (νLµ, µL) 0 1 0
LLτ = (νLτ , τL) 0 0 1

eR 1 0 0
µR 0 1 0
τR 0 0 1

Table 2.3: Left: Charges of SM fermions under baryon and lepton number, respectively.
Right: Charges of SM leptons under electron number, muon number and tau number,
respectively.

of G is completely broken, and the remaining intact symmetry is conventionally expressed

as in

U(1)B × U(1)e × U(1)µ × U(1)τ . (2.37)

Here, U(1)B stands for baryon number, for which the conventional assignment of charges

to the SM fermions is summarised in table 2.3, together with those for lepton number

denoted by U(1)L. The three factors U(1)e× U(1)µ× U(1)τ may be referred to as electron

number, muon number and tau number, respectively, with the charge assignment to the

SM leptons contained on the right-hand side in table 2.3. A prominent implication of

U(1)B being conserved is the stability of the proton, that is, decays such as p → eπ0

are forbidden.4 As of yet, there is no experimental evidence of U(1)B violation, thus it

may indeed be an exact symmetry of nature. On the contrary, the occurrence of neutrino

oscillations implies that U(1)e × U(1)µ × U(1)τ can only be approximately realised. Still,

the non-observation of charged lepton flavour violating (cLFV) decays such as τ → µγ

suggests that it is intact to a large extent [101].

The conservation of baryon number and lepton number in the SM on the classical level

is a byproduct of fixing the particle content with its transformation properties under the

Lorentz and gauge groups, and the requirement of renormalisability. In that sense, they

4In fact, only the differences B/3 − Li where B and Li are the charges under baryon
number and electron, muon or tau number, respectively, are conserved in the SM on
the quantum level, which also implies the conservation of B − L. However, the rate of
the decay of baryons into leptons as mediated by sphalerons is exceedingly tiny at low
temperatures [91]. See for instance [100] for a recent discussion.
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are widely seen as accidental symmetries. Accordingly, the non-conservation of baryon

number and/or lepton number is a generic prediction of physics beyond the Standard

Model (BSM). Indeed, if the criterion of renormalisability is relaxed, effective operators

composed of SM fields which violate the conservation of lepton number or baryon number

emerge already at mass dimension 5 or 6, respectively; see also section 2.4.2.

The invariance of the full SM Lagrangian under G can be formally recovered if one assigns

the following transformation properties to the Yukawa couplings:

yu ∼ (3, 3, 1) under SU(3)Q × SU(3)u × SU(3)d , neutral otherwise, (2.38)

yd ∼ (3, 1, 3) under SU(3)Q × SU(3)u × SU(3)d , neutral otherwise, (2.39)

ye ∼ (3, 3) under SU(3)L × SU(3)e , neutral otherwise. (2.40)

In this way, the SM Yukawa matrices are treated as spurions, which are typically assumed

to be non-dynamical scalar fields. In a broader context, the concept of spurions may be

utilised in models which aim to explain specific flavour-dependent hierarchies or interaction

patterns via a symmetry which enlarges the SM gauge symmetry at high energies; see also

section 2.3.4. In chapter 5, a model which contains several spurion fields is described.

2.1.5 Flavour-Changing Neutral Currents

Contrary to FCCCs, flavour-changing neutral currents (FCNCs) are not induced at tree

level in the SM; see for instance ref. [97] for a review. Indeed, gluons and photons are

protected from mediating FCNCs at tree level since their respective gauge couplings are

by construction flavour-universal, that is, proportional to the unit matrix, which is a

basis-independent property. The Higgs-boson couplings are proportional to the respective

Yukawa couplings which are diagonal in the charged fermion mass basis, which is the only

source of fermion masses in the SM. Lastly, the coupling of the Z boson to any generation

of the fermion representations uLi, dLi, eLi, νLi, uRi, dRi, eRi, is given by T3i −Qi sin θw.

This latter expression is flavour-universal in the SM, effectively implying T3i = T3 and

Qi = Q for all i if a fermion species is fixed, and so the Z-boson couplings remain flavour-

universal in the mass basis.
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Figure 2.1: Feynman diagrams which mediate the decay process b → sνν in the SM; taken
from ref. [1].

Thus, the SM does not feature a neutral boson which could mediate FCNCs at tree level,

but they are induced at loop level. Since only the W± bosons can change fermion flavour,

this necessarily involves two W± vertices, and one sums over the flavours of the internal

fermion. Figure 2.1 shows two representative one-loop Feynman diagrams which mediate

the process b → sνν process in the SM, a so-called electroweak penguin diagram on the left

and a box diagram on the right. Closely related processes occur due to similar diagrams;

one might for instance swap the Z boson on the left-hand side for a hard photon which

yields b → sγ, or exchange the roles of the charged lepton and the neutrinos on the

right-hand side which then corresponds to b → sℓℓ. New mediation mechanisms for both

penguin and box diagrams can occur in the presence of NP [102].

In the following, the transition b → s is specified as it is the most relevant one for this

thesis, but similar considerations apply for other FCNC transitions. The amplitude is

schematically given as in

Ab→s ∼
∑

i=u,c,t
V ∗
ibVisf(xi), xi ≡ m2

i

m2
W

(2.41)

with the decay-dependent function f(xi) [97]. A Taylor expansion yields

Ab→s ∼
∑

i=u,c,t
V ∗
ibVisf(0) +

∑
i=u,c,t

V ∗
ibVis

m2
i

m2
W

f ′(0) (2.42)

to leading order (LO) and next-to-leading order. Since f(0) is flavour-independent, the

first term is zero by unitarity of the CKM matrix, and the largest non-vanishing term is

suppressed by the ratio m2
i /m

2
W , which is the essence of the Glashow-Iliopoulos-Maiani

(GIM) mechanism. Generically, CKM suppression occurs as well, since the product V ∗
ibVis

necessarily involves at least one off-diagonal element. Note that the amplitude would
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immediately vanish if the internal quark masses were degenerate. Furthermore, if the

top-quark contribution dominates the process, GIM suppression is obviously not efficient.

Together with the generic loop-suppression factor 1/(16π2), CKM suppression and GIM

suppression imply that the SM predicts the rates of FCNC processes to be quite small.

So far, no conclusive deviation from this prediction has been observed. Since NP does not

have to be subject to any of those suppression mechanisms, there is arguably a good chance

for it to be detected in FCNCs, whereas it might be easily swamped in other processes

to which the SM contribution is not suppressed. Thus, a precise understanding of how

NP could manifest in FCNCs is indicated. In this context, chapter 4 contains a model-

independent study of NP which resides at or above the electroweak scale and contributes

to b → s processes with two neutrinos in the final state; see also section 2.2.2.

2.1.6 Low-Energy QCD

In the SM, quantum chromodynamics (QCD) is described in terms of a non-abelian gauge

theory governed by the group SU(3)c which is coupled to the six different quark flavours

u, d, c, s, t and b. The subscript c stands for colour. The associated gauge bosons,

called gluons, transform non-trivially under SU(3)c, thus they undergo self-interactions

and source the colour field themselves.

QCD behaves very differently at energies close to or above the electroweak scale, and at

lower energies, which is quantitatively captured in terms of renormalisation group (RG)

running. A straightforward way to appreciate the notion of RG running is to note the ap-

pearance of a parameter µ in dimensional regularisation, which arises from the requirement

that the coupling parameter of a marginal operator retains a vanishing mass dimension

also for a space-time dimension d ̸= 3 + 1 [95]. In the renormalisation scheme of minimal

subtraction, quantities such as couplings and masses or, more generally, Wilson coefficients

(WCs) will generally depend on the arbitrary scale µ. Heuristically, the requirement that

physical observables do not depend on µ yields the so-called RG equations (RGEs). In

practice, incorporating RG running typically implies taking into account the renormali-
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sation of the coupling of a gauge boson to the relevant fermion current. The resulting

equations then involve so-called β functions

β(g) ≡ µ
dg
dµ (2.43)

which depend on the number of particles charged under g. Specifically, in QCD one finds

at the level of one loop

αs(µ) ≡ g2
s(µ)
4π = 2π

7
1

ln
( µ

ΛQCD

) . (2.44)

Here, the subscript s stands for “strong”, and the scale ΛQCD marks the occurrence of

the Landau pole in QCD where the coupling formally diverges. Higher-order calculations

and measurements of αs at larger energies indicate ΛQCD ≈ 200 MeV. Still, one finds

αs(µ) ≳ O(1) already at energies E ≲ 1 GeV, which implies that perturbative QCD is

not predictive anymore in this regime. Instead, the strong dynamics at low energies are

more appropriately described in terms of hadrons which are bound states consisting of a

specific set of constituent quarks and/or antiquarks.

Matrix elements in low-energy QCD cannot be computed directly, but their functional

form can be constrained via symmetry considerations [97]. Restricting to the case of two

hadrons involved in the transition, one may generically write

⟨Hf |qΓq′|Hi⟩ (2.45)

with the initial and final hadronic state Hi and Hf , respectively. If the latter is given by

the vacuum, the process is described in terms of a decay constant, and by a form factor

otherwise. qΓq′ consists of (a linear combination of) the Lorentz bilinears in section 2.1.1.2.

In the case of semileptonic hadron decays which proves most relevant for this thesis, the

relevant form factors are typically computed with the help of so-called light-cone sum

rules (LCSR) [5, 6, 103, 104] at low invariant mass q2 of the final-state lepton pair, and

with lattice quantum chromodynamics (LQCD) for large q2 [105–108].

Thus, a concrete evaluation of the above matrix element must be consistent with its

symmetry properties, in particular Lorentz symmetry and discrete symmetries like parity

which is conserved by QCD. The vacuum is assumed to be parity-even. In the following, the
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evaluation of the matrix element of the leptonic decay of a pseudo-scalar meson B−
c = bc

is sketched.

In the SM, this decay proceeds via an internal W± boson at tree level. The only observable

dynamical quantity is the Bc momentum pµ which is a Lorentz vector, thus one finds

〈
0|cγµγ5b|B−

c (p)
〉

= −ifBcp
µ (2.46)

where −i is conventional and the proportionality factor is the decay constant fBc . Note

that the vector part cγµb does not contribute due to parity. There is a contribution from

pseudo-scalar operators as well,

〈
0|cγ5b|B−

c (p)
〉

= ifBc

m2
Bc

mb +mc
(2.47)

where the proportionality factor can be derived from considering the divergence of the

axial-vector current and using the Dirac equation since the quark spinors are on shell [97].

The factor m2
Bc
/(mb + mc) results in an enhancement of the pseudo-scalar contribution

(“scalar dominance”) which is however not as pronounced for mesons composed of heavy

quarks. In addition, note that neither pseudo-scalar nor tensor contributions are induced

at tree level in the SM. See section 4.6 for technical details about form factors for B-meson

decays.

2.2 Experimental Status and Prospects

In this section, I review the experimental situation regarding neutrino masses as well as

other instances of anomalous data in flavour-sensitive observables, together with future

prospects.

2.2.1 Neutrino Masses

Neutrinos are arguably the most elusive particles in the SM. Regarding their three flavours,

the electron neutrino νe was discovered in the 1950s [109, 110], whereas the existence of
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νµ [111] and ντ [112] was established in 1962 and 2001, respectively. The combined work

from several collaborations, notably Super-Kamiokande [43] in 1998 and SNO [44, 45] in

2002, culminated in robust evidence for the occurrence of neutrino oscillations and thus

the existence of non-zero neutrino masses, indicating the incompleteness of the SM. The

results published by KamLAND, T2K and NOvA, see for instance refs. [113–115], among

others, add up to a largely consistent picture of neutrino oscillations. See section 3.2.2

for a convenient parametrisation involving the PMNS matrix, and table 3.1 for the fit

results published by the NuFit collaboration in July 2020 [38].5 Future experiments,

among them Hyper-Kamiokande [116] and DUNE [117], are in particular projected to

significantly improve upon the determination of the CP-violating phase contained in the

PMNS matrix.6

A possible means to infer an upper bound on the sum of neutrino masses and thus on the

mass m0 of the lightest neutrino is via cosmic surveys. The trajectory of free-streaming

neutrinos is not significantly altered when they pass through matter overdensities in the

universe, which results in a delayed growth of perturbations at scales smaller than their

free-streaming length scale 1/kfs ∼ 100 Mpc [120]. Thus, neutrinos do not significantly

cluster at length scales smaller than 1/kfs, but essentially behave as cold dark matter at

larger length scales. A larger neutrino mass would imply further suppression of structure

growth at smaller scales which can be constrained by observations. Recent results typically

indicate Σ ≡ m1 +m2 +m3 ≲ O(0.1 − 0.2) eV at 95% CL. In chapter 3, the upper bound

m1 +m2 +m3 ≲ 0.12 eV reported by the Planck collaboration in 2018 [121] is used.

Next-generation surveys are anticipated to overcome the currently established upper bounds

and detect Σ at a level of almost 3σ or better, assuming the minimal scenario of m0 = 0.

Deriving a robust and unambiguous cosmological bound on neutrino mass is difficult since

its effect is degenerate with other phenomena, such as the suppression of primordial cosmic

microwave background (CMB) fluctuations due to reionisation, or potential contributions

5Note that there has been an update in October 2021.
6The main goal of the experiment JUNO is to detect the mass ordering in the neutrino

sector [118], but there are proposals according to which it could also help in measuring
leptonic CP violation [119] in conjunction with a superconductive cyclotron.
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Figure 2.2: Illustration of the semileptonic decay of a B hadron in the SM, from ref. [2].

to the dark-energy equation of state [120]. The tritium-decay experiment KATRIN has

already inferred the model-independent bound
(∑

i |Uei|2m2
i

)1/2 ≲ 0.8 eV at 90% CL which

is projected to get further strengthened to 0.2 eV [122] and will thus be only slightly weaker

than the current cosmological one. Furthermore, one can infer an upper bound on the

combination ∑i U
2
eim

2
i from searches for neutrinoless double beta decay which applies if

neutrinos are Majorana particles; see for instance ref. [123] for a recent review.

2.2.2 Lepton Flavour Non-Universality

In the SM, differences in the behaviour of leptons may only arise due to phase-space effects

as a consequence of the mass hierarchy in the charged lepton sector, which is referred to

as LFU. In particular, gauge bosons couple to all lepton generations with equal strength.

Apart from the conclusive establishment of the existence of a non-trivial mass hierarchy

in the neutrino sector and of the occurrence of lepton mixing, there is further mounting

evidence for deviations from the SM in the form of apparent violations of LFU. In this

subsection, I briefly review the current experimental status.

b → c transitions. The transitions b → cℓν where ℓ ∈ (e, µ, τ) are of FCCC-type and

thus mediated via W± bosons at tree level in the SM; see figure 2.2. Thus, they are in

particular not suppressed. As mentioned beforehand, the SM predicts the strength of the

coupling of W± bosons to be independent of the involved lepton generation, and it requires
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the flavours of the final-state charged lepton and neutrino to coincide. The neutrino (and

thus also its flavour) is undetected, and so one needs to sum over all three final-state

neutrino mass eigenstates, weighted by their overlap with the fixed lepton flavour ℓ as

per the PMNS matrix [2]. Since the latter is unitary in the SM extended by three light

neutrinos, one finds ∑
i=1,2,3

|Uℓi|2 = 1 (2.48)

and thus the PMNS matrix plays no role in computations of FCCC processes. Further-

more, the dependence of the amplitude on the CKM-matrix element Vcb cancels in the SM

if the ratio of the rates involving different charged leptons in the final state is taken. This

motivates the consideration of the LFU ratios

R(D(⋆)) ≡
BR
(
B → D(⋆)τν

)
BR
(
B → D(⋆)ℓν

) , (2.49)

where ℓ stands for either an electron or a muon. According to the 2021 results from

ref. [10] which incorporates data sets from LHCb [15, 16, 124], Belle [14, 125–127] and

BaBar [128,129], the combined significance of a violation of LFU is about 3σ, which sets

the ground for chapter 5 wherein a NP model aims to explain this anomaly. Evidence for

LFU violation was also found in the B+
c → J/ψ mode [130]. Further quantities of interest

are the longitudinal polarisation of the tau lepton [131, 132] and angular distributions in

B → D⋆ℓν transitions [133]. A measurement of the baryonic decay Λ0
b → Λ+

c τν was

reported in ref. [134]. Furthermore, the next-generation experiment Belle II is projected

to measure R(D(⋆)) three times more precisely than the current world averages [135].

b → s transitions. These processes are of FCNC-type, introduced in section 2.1.5, and

thus predicted to be suppressed in the SM. The case of two neutrinos in the final state

is particularly appealing from a theoretical point of view, since the amplitude can be

neatly separated into a hadronic and a leptonic part. In the SM, this decay occurs only

if the flavours of the final-state neutrino and antineutrinos match. Furthermore, GIM

suppression implies that only the contribution with an internal top quark is relevant,

against which the masses of the respective internal charged lepton is negligible in box-

diagram contributions. Thus, differences in the decay widths for different flavours of the
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neutrino-antineutrino pair in the final state are negligible in the SM [136]. This can be

seen as an (approximate) manifestation of LFU.

On the experimental side, until very recently, only upper bounds on the branching ratios

(BRs) for the decay channel B → K(⋆) plus missing energy existed. Belle II is projected

to measure these decays with an uncertainty of only about 10%, based on the full data set

which comprises 50 ab−1, if the central values turn out consistent with the respective SM

expectation [7]. Furthermore, the process b → sνν generically also provides a stringent

constraint on NP scenarios which aim to explain the anomalous data in b → c processes,

as is the case in chapter 5.

For completeness, the case of charged leptons in the final state is also commented on.

Several experiments at LHCb [137–140] and Belle [141, 142] have revealed evidence for

deviations from LFU in b → sℓℓ transitions, notably in the ratio

RK(⋆) ≡ BR(B → K(⋆)µµ)
BR(B → K(⋆)ee)

(2.50)

which is predicted to be equal to 1 in the SM with an uncertainty of less than 1%. The most

recent result reports a 3.1σ deviation from the SM in the interval 1.1 < q2/GeV2 < 6 [139]

where q2 is the invariant mass of the lepton pair.

Magnetic moment of the muon. The so-called gyromagnetic ratio or g-factor parame-

trises the coupling of a charged fermion to an external magnetic field. The Dirac equation

predicts g = 2, but one finds g ̸= 2 due to radiative corrections and thus typically refers

to the anomalous magnetic moment (AMM) ai ≡ (g− 2)i/2 with i indicating the fermion

under consideration. In quantum electrodynamics (QED), one considers the vertex of a

photon of momentum pµ coupling to an on-shell spinor current (see e.g. refs. [143,144])

⟨p1|jµ(0)|p2⟩ = u(p1)
[
F1(q2)γµ + F2(q2) iσ

µν

2m qν + F3(q2)σ
µν

2mγ5qν

]
u(p2) (2.51)

with the momentum transfer qµ ≡ pµ1 − pµ2 . For q2 = 0, one may identify the three

form factors with the electric charge eF1(0), the AMM a = F2(0), and the electric dipole

moment (EDM) d = −eF3(0)/2m, respectively.
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The Run-1 results of the g − 2 experiment at Fermilab [18] are in good agreement with

the earlier results obtained at BNL [46] and established a 4.2σ discrepancy with the

recommended value for the SM prediction for aµ [19], that is, ∆aµ ≡ aexp
µ −aSM

µ = (2.51 ±

0.59) × 10−9. Improving the precision of the latter is in particular contingent on properly

determining the contribution from the hadronic vacuum polarisation (HVP) which is the

subject of continuing efforts. Recently, several groups have reported results from lattice

studies [145–148] which would significantly reduce the tension with experimental data,

and thus challenge the results for the LO HVP obtained from the total cross section for

the process ee → hadrons via a dispersion relation. Nonetheless, the tension between

experimental data and the SM prediction for aµ makes a compelling case for the existence

of BSM physics sensitive to lepton flavour. There is also evidence for a non-zero ∆ae, but

the results of extractions of the electromagnetic fine-structure constant from caesium [149]

and rubidium atoms [150] do not agree within the reported uncertainties, thus a further

clarification of the experimental situation is indicated in this case.

Unitarity of the CKM matrix. In the SM, the CKM matrix is unitary by construc-

tion; see also section 2.1.3. In recent years, testing this premise against experiment has

attracted attention in particular for the case of the first row, that is, the assumption that

∑
i

|Vui|2 = |Vud|2 + |Vus|2 + |Vub|2 (2.52)

adds up to one. In practice, this requires the comparison of independently inferred results

for |Vud| and |Vus|, with the numerical value of the latter being approximately coincident

with the (sine of the) Cabibbo angle θ12 which parametrises the mixing between the first

two generations of quarks. This may be done via considering different decay processes,

the results of which seem to not entirely agree and constitute the so-called Cabibbo angle

anomaly (CAA); see for instance [151] for a recent review. A possible source of the anomaly

are modifications of the Fermi constant GF due to NP. GF can be inferred indirectly, for

instance via global fits [152], but is importantly also directly extracted from muon decay.

Contributions to the latter imply a deviation from LFU in the leptonic gauge couplings.

See chapter 3 for further information and a possible realisation of this scenario.
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2.3 New-Physics Models

In the following, several concrete extensions of the SM in terms of new particles which are

relevant for this thesis are reviewed.

2.3.1 Sterile Neutrinos

Sterile neutrinos are a very well-motivated extension of the SM; see for instance refs. [153–

155] for reviews. Their presence would fix up the apparent asymmetry between the quark

sector and the lepton sector in the sense that they would provide a Dirac partner for

the active LH SM neutrinos. A sterile neutrino or RH neutral fermion singlet is a field

NR ∼ (1, 1, 0), where “sterile” refers to the fact that this particle does not participate in

SM gauge interactions. The Yukawa sector as described in eq. 2.14 gets extended by the

term

LνYuk = −yijν LLiϵH∗NRj + h.c. (2.53)

which is the only renormalisable coupling between sterile neutrinos and SM particles. Upon

the acquisition of a non-zero VEV by the Higgs doublet, the neutrinos would receive a

Dirac mass in the same way the charged fermions in the SM do. Thereby, neutrinos

and up-type quarks would formally be treated on similar footing. A non-zero Yukawa

interaction induces mass mixing between the active SM neutrinos and sterile neutrinos,

which is however relatively stringently constrained. Moreover, since NR is sterile, the

Majorana mass term

mij
NN

c
RiNRj + h.c. (2.54)

is trivially compatible with the SM gauge symmetry. In the minimal scenario of extending

the SM by sterile neutrinos, the Majorana mass term is the only source of lepton-number

breaking, and a small mN would thus be technically natural. Still, since the Majorana

mass is not necessarily related to any other SM scale, it may also be very large. The case

mN ≫ v implies the compelling seesaw scenario in which the scale of the small active

neutrino masses is induced as per mν ∼ (v yν)2/mN , which naïvely implies mN ∼ 1015
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GeV if the couplings yijν are O(1) numbers. In this case, a description in terms of the

effective Weinberg operator applies; see section 2.4.2.

Another viable reason to assume the existence of sterile neutrinos is due to their prominent

role in scenarios of leptogenesis, which rather motivates a mass scale around mN ∼ 1010

GeV. Heavy sterile neutrinos may undergo out-of-equilibrium decay in the early universe,

thereby generating a lepton-number asymmetry which can be transferred into a baryon-

number asymmetry via sphalerons [156]. Much lighter sterile neutrinos with masses in

the keV range represent an attractive candidate for warm dark matter. Lastly, eV-scale

sterile neutrinos have been proposed to ameliorate several short-baseline anomalies, which

is however problematic in the light of results from MicroBooNE, see e.g. refs. [157, 158],

as well as cosmological constraints, as is reviewed for instance in ref. [159]. Since the

number of generations of sterile neutrinos is not constrained a priori, they could also exist

with largely different mass scales. In addition, the presence of three sterile neutrinos is

required in scenarios in which B − L is promoted to a gauge symmetry due to anomaly

cancellation [95].

2.3.2 Leptoquarks

As their name suggests, LQs directly couple quarks to leptons, thus they may be either

scalar or vector particles. The SM Yukawa couplings strictly separate the quark and

lepton sectors. For both scalar and vector LQ, respectively, only a small number of

representations under the SM gauge group exist which allow for renormalisable couplings

to SM fermions [160]. A gauge-invariant description of massive vector bosons requires an

adequate enlargement of the SM gauge group, which implies that minimal extensions of

the SM by a single vector LQ are not predictive per se. Hence, vector LQs will not be

discussed further.

The six representations of scalar LQs under the SM gauge group and the allowed renor-

malisable interactions with matter fields are given in Table 2.4. Note the appearance of

diquark operators in the presence of both the weak singlet LQs and the weak triplet S3.

29



CHAPTER 2. BACKGROUND

Gauge Representation Renormalisable Matter Couplings
S1 (3, 1, 1

3) LcLQLS1 + ecRuRS1 +QLQ
c
LS1 + uRd

c
RS1

S̃1 (3, 1, 4
3) ecRdRS̃1 + uRu

c
RS̃1

S̄1 (3, 1,−2
3) dRd

c
RS̄1

R2 (3, 2, 7
6) ecRQ

c
LR2 + uRLLR2

R̃2 (3, 2, 1
6) dRLLR̃2

S3 (3, 3, 1
3) LcLQLS3 +QLQ

c
LS3

Table 2.4: The six scalar LQ representations under the SM gauge group which admit
renormalisable couplings to SM fermions. The individual coupling matrices are omitted
for brevity, generation indices are suppressed and the hermitian-conjugate operators are
understood to be added. The LQs S1, S̄1 and R̃2 may also feature renormalisable inter-
actions with sterile neutrinos if those are introduced.

Combinations of diquark and Yukawa-like LQ couplings must be sufficiently constrained

in order not to give rise to large rates of proton decay. LQs are generically also expected

to couple to the SM Higgs boson and gauge bosons. They are appealing candidates for an

explanation of the anomalous data on b → sℓℓ and b → cℓν processes, see section 2.2.2,

since they do not contribute to meson mixing at tree level [3]:

• S1 is well suited to explain the b → cℓν anomalies via tree-level contributions which

sets the ground for chapter 5, whereas b → sℓℓ transitions are only sourced at one-

loop level.

• S3 induces both b → sℓℓ and b → cℓν transitions at tree level, but it can explain the

anomalous data only in the former case [161,162].

• R2 can explain the anomalies in b → sµµ via loop-level contributions if the tree-level

processes are switched off. A tree-level explanation of the b → cℓν data by R2 is also

possible, but incompatible with the aforementioned scenario.7

7A different avenue was followed in ref. [163] where R2 was shown to allow for an
explanation of the anomaly in RK(⋆) due to a tree-level contribution to b → see, compatible
with a simultaneous explanation of R(D(⋆)). Nonetheless, this (minimal) scenario bars the
amelioration of anomalous data in other b → sµµ processes and predicts a largish BR for
the process Bc → τν.
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2.3.3 Colourless Charged Scalars

The only physical scalar particle in the SM is the CP-even neutral Higgs boson. Still,

the existence of further scalar particles is well-motivated due to conceptual difficulties of

the SM scalar sector, such as the apparent meta-stability of the electroweak vacuum, see

for instance refs. [164, 165] for reviews, or the absence of a phase transition in the early

universe which is strongly first-order [166]. Of particular relevance for this thesis is the

singly-charged scalar singlet h ∼ (1, 1, 1). This field has the appealing property that its

only renormalisable coupling to SM fermions is given by

LYuk = yijh L
c
LiLLjh+ h.c. (2.55)

where the matrix yh is antisymmetric in flavour space. Thus, yh only contains three

free parameters, which renders this SM extension very predictive. If supplemented with

a source of lepton-number violation, h can induce Majorana masses for neutrinos. A

comprehensive model-independent study of this scenario is presented in chapter 3.8 In the

following, a few explicit models featuring h are briefly reviewed. See ref. [50] for a very

comprehensive overview over radiative neutrino mass models.

Zee Model. A simple radiative neutrino mass model is given by the Zee model [60]

which enlarges the SM particle content by a second Higgs doublet Φ and a singly-charged

scalar singlet h. It is customary to adopt the so-called Higgs basis [167] in which the Higgs

doublets are parametrised as in

H =

 η+

1√
2(v + h+ iη0)

 , Φ =

 ξ+

1√
2(ϕ′ + iA)

 . (2.56)

Here, η+ and η0 are the Goldstone bosons, h and ϕ′ are CP-even neutral scalars, A is a

CP-odd neutral scalar and ξ+ is a singly-charged scalar.9 The lepton Yukawa sector of

8Therein, two-component spinors are employed, so that the above Yukawa coupling
reads LLLLh + h.c.. Furthermore, a different sign convention is used for the Yukawa
sector in general.

9Writing h for both the CP-even neutral Higgs boson and the singly-charged scalar
singlet may be seen as undesirable clash of notation. Still, in order to maintain consistency
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the theory is enlarged to

LYuk,lept = −yije LLiHeRj − yije,ΦLLiΦeRj − yijh L
c
LiLLjh+ h.c. . (2.57)

The breaking of lepton-number conservation is contingent on the simultaneous presence

of these three couplings as well as the tri-linear term HΦh∗ + h.c.. In this way, Majorana

masses for neutrinos are induced at one-loop level. The Zee model is a realisation of a

class of models dubbed the linear case which is introduced and studied in section 3.

Zee-Babu Model. Another simple radiative neutrino mass model is given by the Zee-

Babu model [63–65] which enlarges the SM particle content by a singly-charged scalar

singlet h ∼ (1, 1, 1) and a doubly-charged scalar singlet k ∼ (1, 1, 2). The lepton Yukawa

sector of the theory is enlarged to

LYuk,lept = −yije LLiHeRj − yijh L
c
LiLLjh− yijk e

c
RieRjk + h.c. . (2.58)

Then, lepton-number conservation is violated if the tri-linear term h2k∗ + h.c. is present

as well, and Majorana masses for neutrinos are induced at two-loop level. In section 3,

the Zee-Babu model is identified as a realisation of a class of models dubbed the quadratic

case.

Krauss-Nasri-Trodden Model. The Krauss-Nasri-Trodden model (KNT) model [66]

extends the SM particle content by two singly-charged scalar singlets h1 and h2 and a

neutral fermion singlet NR ∼ (1, 1, 0). The lepton Yukawa sector of the theory is enlarged

to

LYuk,lept = −yije LLiHeRj − yijh L
c
LiLLjh− yiNhN

c
ReRih2 + h.c. . (2.59)

Note that both h2 and NR are assumed to be odd under a Z2 symmetry, in order to

prevent the canonical type-I seesaw mechanism from becoming effective. Together with

the Majorana mass term mNN c
RNR + h.c. violating the conservation of lepton number

with chapter 3, I opt not to change the conventions at this point, and note that from the
context it should be clear which particle is referred to.
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Figure 2.3: Masses of the SM particles, represented on a logarithmic scale; taken from
ref. [3].

and the scalar-potential term (h1h
∗
2)2 + h.c., Majorana masses for neutrinos appear at

three-loop level. Furthermore, if NR is lighter than the singly-charged scalar singlets, it

can be a viable candidate for dark matter since it is stable as a result of the unbroken Z2

symmetry. The KNT model is a further example of the quadratic case.

2.3.4 Flavour Symmetries

Lastly, a brief introduction to the concept of flavour symmetries is given. This does not

refer to the extension of the SM by a specific particle, but rather provides a framework for

predicting the interaction structure of a model via the assignment of the particle content

to representations under a specific symmetry group, or products thereof.

Symmetries have proven a most elegant and successful concept in different fields of physics.

Via the Lorentz and gauge groups, they give rise to the structure of the SM. Thus, it might

appear reasonable to assume that the flavour structure of nature is also dictated in terms

of a symmetry. The different masses in all respective charged fermion sectors, especially

for the up-type quarks, display a hierarchical pattern; see figure 2.3 for an illustration on

a logarithmic scale.

This suggests the existence of a (spontaneously broken) flavour symmetry which extends

the SM gauge group and under which fermions of different generations carry in general

different charges. Arguably, the simplest case is given by Froggatt-Nielsen models [168]

which employ a U(1) symmetry and typically feature a SM singlet scalar ϕ and heavy

vector-like fermions [3]. One may then assign −1 unit of the U(1) charge to ϕ and as-
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sume that it condenses at a high scale. Thus, ϕ takes up the role of a spurion field; see

also section 2.1.4. At low energies, the elements of the SM Yukawa matrices will then

schematically scale as

yij ∼
( ⟨ϕ⟩
mΨ

)|nij |
(2.60)

where mΨ is a large vector-like fermion mass and nij is the (added) U(1) charge of a

SM Yukawa operator, say LLiHeRj . If ⟨ϕ⟩/mΨ < 1, a larger |nij | will imply a larger

suppression of the coefficient of the respective Yukawa operator. In general, both the radial

mode and the modulus of ϕ can give rise to constraints. If U(1) is a global symmetry,

the modulus is a (pseudo-)Goldstone boson and may help solve the strong CP problem or

provide a viable dark matter candidate [169–174].

A viable alternative to U(1) is given by non-abelian symmetry groups. For instance,

U(2) provides a natural framework to unify the first two generations in the quark sector,

respectively, in the fundamental (2-dimensional) representation, which might be beneficial

since the mixing among either of the first two generations and the third one is suppressed.

In addition, the presence of two large mixing angles in the lepton sector motivates a

symmetry group which admits three-dimensional irreducible representations. Moreover,

note that the appearance of Goldstone modes as a result of spontaneous symmetry breaking

can be naturally avoided if discrete symmetries are utilised instead of continuous ones;

see refs. [175–178] for reviews. Still, the spontaneous breaking of discrete symmetries

can result in the formation of domain walls [179]. Another approach related to flavour

symmetries is based on so-called modular forms which were first utilised in ref. [180] for

model building in the context of neutrino masses.

2.4 Effective Field Theory

The capability of quantum field theories to yield predictions of astonishing precision is

inherently connected to the premise of taking into account the effect of each and every

particle on an intermediate, that is, virtual level. Thus, the final result will in general
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depend on a variety of (mass) scales of potentially largely different numerical values [29].

Efforts to reduce this complexity are pursued within the framework of EFTs.

2.4.1 Technical Aspects

The first step in constructing an EFT typically consists of identifying the relevant degrees

of freedom in the theory. In the simplest case, this implies a separation of the theory

spectrum into light states, here collectively denoted by ϕ, and heavy states Φ. The latter

cannot be produced at the energies which are probed by experiments relevant for the

problem under consideration. In a path-integral context, integrating out the heavy states

then schematically implies∫
DϕDΦ eiSfull[ϕ,Φ] =

∫
Dϕ eiSeff[ϕ] . (2.61)

Here, the effective theory described by Seff only contains the lighter states ϕ. Its La-

grangian formally reads

Leff = Ld≤4 +
∑
i

Oi

ΛdOi
−4 (2.62)

where the sum contains local non-renormalisable operators Oi of dimension dOi . Locality

implies that all fields contained in an operator are evaluated at the same space-time point.

In the case of weakly interacting theories considered here, the coefficients of operators

with larger dOi will be further suppressed, which provides a simple example of power

counting. The set of operators contained in the (a priori infinite) sum above may be

further restricted, for instance upon the imposition of a symmetry, or simply by fixing the

precision to which a specific observable needs to be computed.

At energy scales E ≲ Λ, the effective theory is predictive and equivalent to the full theory

described by Sfull above. The effects of the heavier states Φ are entirely captured via the

WCs of the non-renormalisable operators Oi composed of ϕ and momentum insertions.

The technical procedure of achieving this is known as matching, for which a simple explicit

example drawn from section 2.1 in ref. [4] will be provided in the following.

Consider a toy theory describing a massless fermion ψ and a heavy (real) scalar Φ:
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Figure 2.4: Tree-level contributions to 2 → 2 scattering in a toy theory; taken from ref. [4].

Lfull = iψγµ∂µψ − 1
2Φ(□ +M2)Φ − λψψΦ . (2.63)

There are two diagrams which contribute to the scattering process ψψ → ψψ at tree-level;

see figure 2.4. This yields the amplitude

M = u(p3)u(p1)u(p4)u(p2)(−iλ)2 i

(p3 − p1)2 −M2 − (3 ↔ 4) (2.64)

where the indices 1,2 (3,4) label the incoming (outgoing) particles. Expanding the prop-

agator in the ratio p2/M2, one finds

i

(p3 − p1)2 −M2 = i

M2
1

1 − (p3−p1)2

M2

≈ i

M2

(
1 + (p3 − p1)2

M2 + O(p4/M4)
)
. (2.65)

If one instead considers the theory containing only the massless fermion, the lowest-order

terms in the pertinent Lagrangian read

Leff = iψσµ∂µψ + c

2ψψψψ (2.66)

from which one obtains for the scattering amplitude

M = u(p3)u(p1)u(p4)u(p2)(ic) − (3 ↔ 4) . (2.67)

Now, matching dictates that the effective theory is equivalent to the full theory up to some

order in the expansion parameters, given by λ and the ratio p2/M2 in this case. At the

lowest possible order, that is, at tree level and vanishing external momenta, one thus finds

c = λ2

M2 . (2.68)

Note that the set of all operators in an EFT (say, up to a fixed mass dimension) is

generally not unique, since some operators can be expressed as linear combinations of

others upon the application of field redefinitions, Fierz identities, integration by parts
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or other transformations. Importantly, redundant operators may occur due to off-shell

matching to the EFT, and then vanish on-shell, that is, if the equations of motion are

invoked; see for instance refs. [4, 181].

On a more formal level, the difference between renormalisable and non-renormalisable

theories consists in the fact that the UV divergences appearing in the latter cannot be

removed with a finite number of counterterms [95]. Still, as mentioned above already,

higher-dimensional (counter)terms are suppressed by more powers of the cutoff scale Λ,

and thus non-renormalisable theories are perfectly predictive at sufficiently low energies.

Moreover, the formal consistency of renormalisable theories may also be challengeable, for

instance regarding the occurrence of Landau poles as in QED.

In the remainder of this section, several examples of EFTs will be introduced.

2.4.2 SMEFT

As the name suggests, Standard Model Effective Field Theory (SMEFT) arises from taking

the particle content of the complete SM as it is and promoting it to an EFT, that is,

dropping the requirement of renormalisability. It is a widely accepted view that the SM

should only be regarded as the low-energy effective version of a more complete theory.

This is indicated by several shortcomings, for instance its incapability to accommodate

inflation [182, 183] or baryogenesis [184], among other phenomena. Lastly, gravitational

effects become relevant around the Planck scale which signals the need to UV-complete

the SM into a theory which incorporates the assumed quantum nature of gravity. SMEFT

is invariant under the full SM gauge group SU(3)c × SU(2)w × U(1)Y .

At dimension 5, SMEFT features the unique Lorentz- and gauge-invariant Weinberg op-

erator [47]
cij

Λ LcLiϵHHϵLLj + h.c. . (2.69)

which gives rise to small Majorana masses upon the acquisition of a non-zero VEV by the

Higgs doublet in a gauge-invariant manner. This appearance of Majorana neutrino masses
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at the lowest non-renormalisable level of SMEFT is not a proof for the Majorana nature

of neutrino masses, albeit a very appealing and suggestive hint towards it. If neutrino

masses can indeed be described via the Weinberg operator, their smallness implies that

the associated scale Λ may be very large, potentially close to the scale of grand unified

theories (GUTs), thus Λ ∼ 1015 GeV if cij ∼ O(1). This large suppression is unproblematic

from an experimental point of view, since there is no further evidence of lepton-number

violation so far. Note that in order to accommodate neutrino oscillations, the Weinberg

operator also necessarily breaks the accidental global symmetry U(1)e × U(1)µ × U(1)τ
which is intact in the SM; see section 2.1.4.

A complete basis of SMEFT operators at dimension 6, commonly referred to as the Warsaw

basis, was first presented in ref. [185]. The dimension of a SM operator is even (odd) if

(∆B − ∆L)/2 is even (odd), as it was shown in ref. [186]. Thus, dimension-6 operators

with ∆B − ∆L = 0 can be grouped into two categories:

• Operators like
(
LLiγ

µLLj
)(
QLkγµQLl

)
which individually conserve both B and L.

They may be generated at a comparatively low scale.

• Operators like
(
QcLiQLj

) (
QcLkLLl

)
+ h.c. which individually violate both B and L.

Since there is no evidence of baryon number not being intact in nature so far, naïvely

they can be expected to be very suppressed.

Lastly, I note that extending the particle content of SMEFT by including sterile neutrinos

results in a theory which is commonly referred to as SMNEFT or νSMEFT [187–191].

2.4.3 LEFT

If the scales relevant for a particular process are substantially smaller than the electroweak

scale, the heavier SM particles, that is, the W± bosons, the Z boson, the h boson and the

top quark cannot be produced on shell and thus effectively play no role for the dynamics

under consideration. Importantly, this is typically the case for observables which are
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utilised to accurately determine the flavour structure of the SM and constrain possible

extensions. The theory which results from integrating out the aforementioned particles

from SMEFT is commonly referred to as Low-Energy Effective Field Theory (LEFT), with

a comprehensive description and analysis first provided by Jenkins, Manohar and Stoffer

in ref. [192]. Regarding its physical content, it may be viewed as a systematised version

of Fermi theory.

The lowest-dimensional operators in LEFT are Majorana mass terms for neutrinos at

dimension 3, and dipole operators for quarks, charged leptons and neutrinos at dimension

5. Sterile neutrinos can be readily accounted for in LEFT by describing them in terms

of the charge-conjugate of LH neutrinos and extending the number of generations beyond

three, that is, by writing νcLi ≡ CνLi
T with i = 1, 2, 3, 4, .... This yields a theory commonly

referred to as LNEFT or νLEFT.

The complete operator basis for LEFT with the three active SM neutrinos νLi explicitly

distinguished from (an arbitrary number of) sterile neutrinos NRj has been presented in

refs. [190, 191]. Since LEFT is governed by the gauge group SU(3)c × U(1)EM associated

with QCD and QED, respectively, with the latter being weakly coupled at all accessible

energies, only accounting for one-loop RG running under QCD is a reasonable approx-

imation which is adopted in chapter 4 and 5. Since the bottom quark is the heaviest

(coloured) particle contained in LEFT, no threshold effects need to be accounted for when

performing QCD running from the electroweak scale down to scales relevant for B-meson

physics. See section 4.2 for more details.

2.4.4 HQET

Because of the pronounced hierarchy of their masses, quarks of different flavours are stud-

ied with the help of conceptually different techniques. The masses of the lightest quarks,

that is, the up, down and strange quark are small compared to ΛQCD. They are described

within chiral perturbation theory which effectively operates around the mq = 0 limit and

yields reliable results at energies E ≲ 1 GeV; see for instance refs. [193–195]. At the other
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end of the spectrum, the top quark can efficiently be studied within perturbative QCD,

since αs(mt) is small. Lastly, the charm and bottom quarks take up intermediate roles,

since they hadronise unlike the top, but are heavy compared to ΛQCD. Thus, the scale

separation ΛQCD ≪ mc,b indicates the possibility of efficiently studying the properties

of B and D mesons within Heavy-Quark Effective Theory (HQET) which formalises an

expansion in the ratio ΛQCD/mq for q = c, b. In mesons comprising a heavy quark and a

light quark, such as B− = bu or B0 = db, the heavy quark may to LO qualitatively be

seen as a static source of gluons [95].

An aspect of HQET which is particularly relevant for this thesis is its application to in-

clusive hadron decays. If the initial-state hadron is constituted by a heavy quark and a

light quark, the expansion in ΛQCD/mq is predictive, and the inclusiveness of the decay

erases the dependence on a specific final state. The notion of quark-hadron duality im-

plies that upon integrating out a sufficiently large portion of the phase space, the decay

process of the hadron becomes calculable in QCD [29,97]. For more technical details, see

section 4.3.3.
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Chapter 3

The Singly-Charged Scalar Singlet

as the Origin of Neutrino Masses

In this chapter I study a scenario in which the main contribution to Majorana neutrino

masses originates from the coupling of two LH lepton doublets to a singly-charged scalar

singlet h. The analysis is performed in the context of a “simplified model” as laid out in

ref. [59], that is, the SM is not further extended than by h, and I remain agnostic about the

source of lepton-number violation. Thereby, the approach followed in this chapter proceeds

along a partly model-independent line. Sections 3.1 to 3.10 are a verbatim adoption of

the publication [87]. Section 3.11 is a verbatim adoption of the published erratum [88] to

the aforementioned publication.

3.1 Introduction

The Standard Model (SM) of particle physics has been extraordinarily successful. It de-

scribes all observed fundamental particles and their gauge interactions and accounts for

the masses of the charged fermions. However, the picture painted by the SM is incom-

plete since it predicts neutrinos to be massless. Several neutrino-oscillation experiments
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including Super-Kamiokande [43] and SNO [44, 45] established conclusive evidence that

neutrinos are massive, which substantiates the need for new physics.

Introducing a Dirac mass term may be considered the most straightforward way to gener-

ate neutrino masses, however, it does not provide an explanation for their smallness. Thus,

Majorana neutrinos are generally favoured from a theoretical point of view. A Majorana

mass term is generated once the SM is considered a low-energy Effective Field Theory

(EFT) via the Weinberg operator [47], which is the lowest-dimensional non-renormalisable

operator and violates the conservation of lepton number by two units. Then, neutrino

masses are suppressed by the associated new-physics scale and hence are naturally small.

Among the numerous ultraviolet (UV) completions of the Weinberg operator are the dif-

ferent seesaw mechanisms [196–206] at tree level. The first one- and two-loop neutrino

mass models have been proposed more than 30 years ago [60–65] and in the past 20 years

many more models have been designed, as detailed in various reviews on neutrino mass

models [48–50].

In recent years, several groups followed different avenues to systematically study neutrino

mass models, based on simplicity [207–209], topology [210–218], effective operators of

the form LLHH(H†H)n with n = 0, 1, . . . [215, 219, 220] and more generally effective

operators which violate lepton number by two units (∆L = 2) [51–58]. The last option

allows for an efficient classification of a large number of models and their phenomenology

associated with lepton-number violation. However, processes which do not violate lepton

number generally require us to resort to explicit models which are the origin of the different

∆L = 2 operators. There are systematic ways to use a ∆L = 2 operator as a starting point

to construct a UV-complete model [51,54–56]. A complete set of tree-level UV completions

of ∆L = 2 operators up to dimension 11 has been constructed in [56]. The vast number

of UV completions, however, make a systematic study difficult. Lastly, some of us thus

proposed a classification based on simplified models [59] and identified 20 different particles

which carry lepton number and generate neutrino masses.

In this work, we focus on a singly-charged scalar singlet h which transforms under the
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SM gauge-symmetry group SU(3)c × SU(2)L × U(1)Y as h ∼ (1, 1, 1).1 It features in a

large number of models, including the well-known Zee model [60–62] which has recently

been studied in [223], the Zee-Babu model [63–65] of which the phenomenology has been

studied in [224–226], the Krauss-Nasri-Trodden (KNT) model [66] and a number of other

models [55, 214, 214, 227, 228]. Our approach is based on the most general form of the

Majorana neutrino mass matrix if at least one of the external neutrinos couples via the

antisymmetric Yukawa coupling yh of h to two left-handed SM lepton doublets. We focus

on the case of only one singly-charged scalar singlet which may be light, for which there

are only two possible forms of the neutrino mass matrix. The antisymmetry of the Yukawa

coupling matrix yh allows us to derive model-independent constraints for the elements yijh
in terms of neutrino parameters.2 Under the assumption that low-energy effects of new

physics are dominantly governed by h, we then perform a phenomenology study and derive

conservative bounds on parameter space which are applicable to any model of neutrino

mass generation that satisfies the above criterion. We also outline generalisations of our

framework to multiple singly-charged scalar singlets.

The paper is organised as follows. In Sect. 3.2 we discuss the structure of the neutrino mass

matrix in models with a singly-charged scalar singlet and derive constraints for its Yukawa

couplings. The procedure to solve the latter is elaborated on in Sect. 3.3. The resulting

phenomenological predictions are discussed in Sect. 3.4. In Sect. 3.5 we briefly comment

on the possibility of multiple singly-charged singlet scalars. In Sect. 3.6 we summarise our

findings and draw a conclusion. Technical details are presented in the appendices.

1Motivated by the cocktail model [221], the phenomenology of the doubly-charged
scalar singlet has been studied in [222].

2For the Casas-Ibarra parametrisation in seesaw models see [229], and for a general
parametrisation of the neutrino mass matrix see [230,231].
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3.2 Singly-Charged Scalar Singlet

3.2.1 Lagrangian

In the following, it is assumed that the SM is extended by singly-charged scalar particle

h which in particular is a singlet under SU(2)L. The kinetic part of the Lagrangian

pertaining to h is given by

Lkin = −h∗(DµDµ +M2
h)h (3.1)

with the covariant derivative Dµ containing the hypercharge gauge boson in the unbroken

phase. After electroweak symmetry breaking, tree-level couplings to the photon and the

Z boson are generated, but not to W± bosons. There are also a bi-quadratic coupling

|h|2H†H to the SM Higgs doublet and a quartic self-coupling |h|4 at tree level, however,

their respective coefficients are free parameters and they are unrelated to neutrino masses.

Hence, these interactions are disregarded in the following. There is no tri-linear term

involving the Higgs doublet. The overall lepton sector is now enlarged to

Llept = yije ēiLjH
∗ + yijh LiLjh+ h.c. (3.2)

with the left-handed SM lepton doublet Li ≡ (νi, ℓi)T , the charge-conjugate ēi of the right-

handed SM charged leptons and the SM lepton Yukawa coupling matrix ye which can be

assumed to be diagonal, see also Sect. 3.3.3 Repeated flavour indices i, j are summed over.

Besides electric charge and baryon number, this theory features another continuous global

U(1) symmetry that can be identified with lepton number and is conserved by the La-

grangian in Eq. (3.2) if one assigns +1 unit to Li, −1 unit to ēi and in particular −2 units

to h. Crucial for the following analyses is the fact that the 3 × 3 Yukawa coupling matrix

yh =


0 yeµh yeτh

−yeµh 0 yµτh

−yeτh −yµτh 0

 (3.3)

3Note that expanding the contraction of weak-isospin indices yields 2yijh νiℓjh, hence
the physical coupling matrix is given by 2yh.
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is antisymmetric in flavour space and therefore features a non-trivial eigenvector

vh = (yµτh ,−yeτh , y
eµ
h )T (3.4)

with eigenvalue zero, yhvh = 0.

3.2.2 Conventions for the Neutrino Sector

Majorana masses for the active SM neutrinos are described by a symmetric complex 3 × 3

matrix Mν . In line with the conventions in [232], we relate neutrino mass eigenstates νi
and flavour eigenstates να via

να =
3∑
i=1

Uαiνi (3.5)

with the unitary Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix U , and thus

mdiag ≡ UTMνU . Since three generations of active neutrinos are assumed, mdiag =

diag(m1,m2,m3) contains two or three non-vanishing eigenvalues. We have

U = PU23U13U12UMaj (3.6)

with

U23 =


1 0 0

0 c23 s23

0 −s23 c23

 , U13 =


c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13

 , U12 =


c12 s12 0

−s12 c12 0

0 0 1

 ,
(3.7)

UMaj ≡ diag(eiη1 , eiη2 , 1) and P = diag(eiα1 , eiα2 , eiα3). The three phases αk will eventually

be removed from U upon a phase redefinition of the left-handed charged leptons ℓi, as

described in Section 3.3. η1,2 are the physical Majorana phases in the case of three massive

neutrinos, and cij ≡ cos(θij) and sij ≡ sin(θij) with the leptonic mixing angles θ12, θ13

and θ23. The individual neutrino masses can be expressed in terms of the lightest neutrino

mass m0 and the relevant squared-mass differences ∆m2
ij ≡ m2

i −m2
j ,

m1 = m0, m2 =
√

∆m2
21 +m2

0, m3 =
√

∆m2
31 +m2

0 (3.8)
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in the case of Normal Ordering (NO) m1 < m2 ≪ m3, and

m1 =
√∣∣∆m2

32
∣∣− ∆m2

21 +m2
0, m2 =

√∣∣∆m2
32
∣∣+m2

0, m3 = m0 (3.9)

in the case of Inverted Ordering (IO) m3 ≪ m1 < m2 of neutrino masses. The ranges of the

different parameters entering U and mdiag which are compatible with current experimental

data are listed in Tab. 3.1.

3.2.3 Neutrino Mass Matrix

In the following, we will discuss the two possible structures for the neutrino mass matrix

that are obtained in the presence of one singly-charged scalar singlet h. The main as-

sumption is that the dominant contribution to neutrino masses is generated by a diagram

in which one or both of the external neutrinos couple via yh. This is schematically de-

picted in Fig. 3.1 where the grey blob represents unspecified physics which involves the

breaking of the conservation of lepton number. Hence, we require that there are no size-

able contributions to neutrino masses which are independent of the one stemming from

the singly-charged scalar singlet h. This scenario is naturally realised in an effective field

theory (EFT) for which the grey blob represents an effective operator, but it is not limited

to it. Examples are provided below when discussing the two cases. The case of multi-

ple singly-charged scalar singlets which generate similarly large contributions to neutrino

masses is commented on in Sect. 3.5.

3.2.3.1 Case I: Neutrino Masses Linear in yh

If the main contribution to neutrino masses is generated by a diagram in which only one

of the external neutrinos couples via yh, as schematically shown on the left in Fig. 3.1,

neutrino masses are approximately given by

U∗mdiagU
† = Mν = Xyh − yhX

T . (3.10)

Here, the coupling matrix X contains the information about the rest of the loop struc-

ture, that is, particle masses, couplings, loop factors and further unknown parameters.
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ν ν
ℓ

ν ν
ℓ ℓ

Figure 3.1: Self-energy diagram responsible for the generation of neutrino masses via a
singly-charged scalar singlet: linear case (left) and quadratic case (right). The grey blob
represents all other interactions which contribute to the diagram. It could be one effective
vertex or a sub-diagram consisting of multiple vertices and propagators. There are at least
two insertions of the Higgs vacuum expectation value somewhere in the diagram which
are not explicitly shown.

It is stressed again that the main assumption that there are no sizeable contributions

to neutrino masses which cannot be parametrised as above is essential for what follows.

Multiplying Eq. (3.10) by vh defined in Eq. (3.4) from the left- and the right-hand side,

one obtains

vThU
∗mdiagU

†vh = 0 , (3.11)

which we identify as a necessary condition for neutrino masses being correctly explained

by h. Eq. (3.11) is very predictive in the sense that is does not involve X and hence the

mechanism of the breaking of lepton-number conservation does not have to be specified.

Instead, we maintain a model-independent approach throughout the analysis and do not

explicitly construct the neutrino mass matrix. Treating the elements of X as essentially

free parameters also implies that in general the determinant of Mν does not vanish and

hence all three active neutrinos are massive.4 Nevertheless, one may impose det(Mν) = 0

as a further condition which then necessarily also involves the elements of X. In this case,

the smallest neutrino mass and one of the Majorana phases vanish, the consequences of

which will be briefly commented on in Sect. 3.4.3. See App. 3.7 for the expression in

Eq. (3.11) explicitly written out.

In case X is generated by some heavy new physics, one may use EFT to parametrise its

4Linear combinations of the elements Xij are constrained in the sense that Eq. (3.10)
has to be satisfied, however, this does not uniquely determine the Xij in terms of the yklh
since Mν is symmetric, whereas X can be a general matrix.
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effect. As an example, let us consider the non-renormalisable dimension-5 operator [59]

cij

Λ h∗ēiLjH + h.c. (3.12)

which violates lepton number by two units. Here, the lepton-number breaking scale Λ is

assumed to be much larger than Mh, and c is a general complex 3 × 3 matrix. Then,

neutrino masses are generated at one-loop level and can be approximately written as

Mν ∝ v2

(4π)2Λ
(
c ye yh − yhye c

T
)
. (3.13)

Hence, in this case

X ≈ c ye
(4π)2Λv

2 . (3.14)

There is in principle an infinite number of potential realisations of this effective description

of neutrino masses in terms of concrete models. Among them, several simple examples

in which neutrino masses are generated at three-loop level are discussed in [214].5 In

addition, the constraint in Eq. (3.11) also applies to some of the minimal UV completions

of lepton-number violating effective operators discussed in [55]. Still, the most prominent

realisation of the general structure in Eq. (3.10) is given by the Zee model and its variants

[50, 60–62, 223, 233, 234]. Here, the SM particle content is enlarged by h and a new Higgs

doublet Φ ∼ (1, 2, 1/2) which in particular allows for a tri-linear term HΦh∗ + h.c. at tree

level which violates lepton number. Then,

X = y′
eme

sin(2φ)
16π2 log

M2
h+

2

M2
h+

1

 , (3.15)

with me the SM charged-lepton masses, φ the angle parametrising the mixing of the singly-

charged scalar mass eigenstates h+
1,2 with masses Mh+

1,2
, and y′

e the Yukawa coupling of Φ

(in the so-called Higgs basis) to the SM leptons. Together with the tri-linear term, the

latter generates the effective operator in Eq. (3.12) at tree level when the second Higgs

doublet Φ is integrated out.

5They are dubbed ‘Model 3’ and ‘Model 4’ therein. Another possibility mentioned is
to take h as accompanied by the scalar doublet ∼ (1, 2, 3/2) and generate neutrino masses
at two-loop level. This can be seen as a modification of the Zee model in the sense that
one of the loops generates the tri-linear term HHh+ h.c. which vanishes at tree level.
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3.2.3.2 Case II: Neutrino Masses Quadratic in yh

If neutrino masses are dominantly generated by a diagram in which both external neutrinos

couple via yh, respectively, as shown on the right in Fig. 3.1, one obtains

U∗mdiagU
† = Mν = yh S yh , (3.16)

where S is a complex symmetric matrix. This can be considered as a special realisation

of the linear case (Case I) with X = yhS
′, where S′ is a general complex matrix and

thus S ≡ S′ + S′T . Still, this identification is trivial if the main contribution to neutrino

masses is inherently flavour-symmetric. The lightest neutrino will be massless at this order,

because the determinant of Mν vanishes by construction due to yh being antisymmetric.

Also, this implies that there is only one physical Majorana phase.6

As in the linear case, the relevant assumption is that the model under consideration

does not generate any sizeable contribution to neutrino masses which is not given by the

structure in Eq. (3.16). Then, one identifies the condition

mdiagU
†vh = 0 (3.17)

which trivially implies the one in Eq. (3.11), but the converse statement is not true in

general. Explicitly, Eq. (3.17) yields the two relations

yeτh
yµτh

= tan(θ12)cos(θ23)
cos(θ13) + tan(θ13) sin(θ23)eiδ, (3.18)

yeµh
yµτh

= tan(θ12) sin(θ23)
cos(θ13) − tan(θ13) cos(θ23)eiδ (3.19)

in the case of NO and

yeτh
yµτh

= − sin(θ23)
tan(θ13)e

iδ, (3.20)

yeµh
yµτh

= cos(θ23)
tan(θ13)e

iδ (3.21)

6We choose η1 = 0 in the quadratic case which matches the convention in [224].
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for IO.7 Note that these relations only depend on the leptonic mixing angles and the Dirac

CP phase and are independent of the Majorana phases and individual neutrino masses,

and thus they are more constraining than the one in Eq. (3.11).

For a concrete example for S in terms of an EFT, one may consider the non-renormalisable

dimension-5 operator

dij

Λ (h∗)2ēiēj + h.c. (3.22)

which violates lepton number by two units. Here, the lepton-number breaking scale Λ is

assumed to be much larger than Mh, and d is a complex symmetric 3 × 3 matrix. Then,

neutrino masses are generated at two-loop level and can be approximately written as

Mν ∝ v2

(4π)4Λyh ye d ye yh . (3.23)

Hence, in this case

S ≈ yedye
(4π)4Λv

2 . (3.24)

The constraint in Eq. (3.17) has been previously discussed [224–226, 235] in the context

of the Zee-Babu model [63–65]. Here, the SM particle content gets enlarged by h and a

doubly-charged scalar singlet k ∼ (1, 1, 2) with mass Mk which in particular allows for a

tri-linear term µh2k∗ + h.c. at tree level which violates lepton number. Then, neutrino

masses are generated at two-loop level and one may write [224,226,236]

S = 16me ykme µF

(
M2
k

M2
h

)
, (3.25)

with yk the symmetric Yukawa coupling matrix of k to right-handed SM leptons and F

a loop function. The effective operator in Eq. (3.22) is induced at tree level when k is

integrated out. However, the constraint also applies to the KNT model [66] which features

a second singly-charged scalar singlet ∼ (1, 1, 1) and a fermionic singlet ∼ (1, 1, 0) both

of which are charged under a Z2 symmetry, as well as to some variants of it discussed

7Eq. (3.17) formally implies three equations, but one of them is trivially satisfied due to
det(Mν) = 0. Also, the expressions differ from the ones in [224] by a complex conjugation
as per how the PMNS matrix U is defined.
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in [214, 227, 228] or to the extension of the Zee-Babu model by another heavy singly-

charged scalar singlet, see App. 3.10. Analogous to X in the linear case, the constraint in

Eq. (3.17) does not involve S itself and hence is independent of the details of the breaking

of lepton-number conservation.

3.3 Solving the Neutrino-Mass Constraint

In this section, the procedure of solving the constraint in Eq. (3.11) is elaborated on. Both

the real part and the imaginary part of vThU∗mdiagU
†vh have to identically vanish which

yields two real conditions. We decompose the couplings into their respective magnitudes

and phases and use the constraint to determine two of the |yijh | in terms of the third one,

the phases and the active-neutrino parameters which enter mdiag and U . This amounts

to finding the roots of a single expression that is quartic in two of the yijh since both

the real and imaginary part of vThU∗mdiagU
†vh can be taken as quadratic in either of the

couplings yijh . Therefore, the constraint is numerically solved and one can obtain up to

four solutions. In the quadratic case, Eq. (3.17) implies four real conditions which then

also determine two phases of the Yukawa couplings yijh in terms of neutrino data.

The smallest neutrino mass m0 can be arbitrarily small or even zero, whereas upper bounds

arise from cosmological surveys as well as experimental searches for tritium beta decay

and neutrino-less double beta decay. The cosmological bound is the strongest one and,

while model-dependent, it is assumed to apply in the scenario under consideration since

no new physics is introduced below the electroweak scale. The latest results published by

the Planck Collaboration in 2018 [121] comprise the upper bound m1 +m2 +m3 ≤ 0.12 eV

which implies m0 = m1 ≲ 30 meV for NO and m0 = m3 ≲ 15 meV for IO. |yijh | can in

principle also be arbitrarily small, whereas |yijh | ≲ 2π due to perturbativity constraints

with the normalisation of the Yukawa coupling taken into account.8 Notwithstanding,

both the coupling magnitude assigned a value and the magnitudes obtained as solutions

8The constraint |yijh | ≲ 2π may for instance be derived from requiring that the one-loop
correction to the physical coupling 2yijh remains smaller than 2yijh itself.

51



CHAPTER 3. THE SINGLY-CHARGED SCALAR SINGLET AS THE ORIGIN OF
NEUTRINO MASSES

to Eq. (3.11) are required to satisfy |yijh | > 1×10−4 in order to limit the orders of magnitude

sampled over.

The flavour observables discussed in the following section also depend on the mass Mh

which is not constrained by Eq. (3.11). A model-independent lower bound Mh ≳ 200 GeV

has recently been derived in [237] from the reinterpretation of a collider search for smuons

and selectrons [238]. Depending on the relative magnitudes |yijh |, the constraint is actually

slightly more stringent. Hence, we require Mh ≥ 350 GeV to safely operate beyond any

mass region potentially excluded. This is consistent with the earlier analysis in [239]. The

assumed upper bound Mh ≤ 100 TeV arises from an order-of-magnitude estimate based on

requiring the absence of unnaturally large corrections to the SM Higgs-boson mass [59].

Furthermore, a careful determination of the physical phases in the theory is in order.

Before electroweak symmetry breaking, unitary basis transformations applied to ēi and Li
can be used to diagonalise ye with real and positive eigenvalues, and the phases in yh can

be eliminated upon redefinitions of ēi and Li. After electroweak symmetry breaking, the

charged-lepton masses are already diagonal by construction, and the neutrino mass matrix

is diagonalised via the PMNS matrix U . Then, three phases in U can be eliminated via

redefining the left-handed charged leptons ℓi which reintroduces three phases in yh. One

of these can be set to zero upon exploiting the phase freedom of h. Therefore, yµτh is taken

real while arg(yeµh ) and arg(yeτh ) are randomly sampled over. As a side note, the presence of

complex couplings indicates that the singly-charged scalar singlet, accompanied by a source

of lepton-number violation, will in general contribute to leptonic electric dipole moments.

However, as these are linked to the violation of lepton-number conservation and hence no

strong constraints are to be expected, electric dipole moments are not explored further.

As of yet, the physical Majorana phases η1,2 are completely unconstrained experimentally

and hence also randomly sampled over. Note that the ranges of η1,2 can be restricted to

[0, π] without loss of generality since the sign of the Majorana field is unphysical.

The leptonic mixing parameters and neutrino-mass-squared differences which have been

constrained by experiments are assigned pseudo-random variates from normal distributions

of which the respective mean values and standard deviations are taken from the latest fit
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me [keV] mµ [MeV] mτ [GeV] GF [ 1
GeV2 ] α−1

EM MZ [GeV]

510.9989 105.6584 1.777 1.16638 × 10−5 137.035999 91.1535

∆m2
3l [1 × 10−3 eV2] ∆m2

21 [1 × 10−5 eV2] δ [rad]

NO 2.517 ± 0.026 7.42 ± 0.20 3.44 ± 0.42

IO −2.498 ± 0.028 7.42 ± 0.20 4.92 ± 0.45

sin2(θ12) sin2(θ13) sin2(θ23)

NO 0.304 ± 0.012 0.02219 ± 0.00062 0.573 ± 0.016

IO 0.304 ± 0.012 0.02238 ± 0.00062 0.575 ± 0.016

|yijh | arg(yekh ) arg(yµτh ) m0 [meV] η1,2 [rad] Mh [GeV]

Prior Log-Flat Flat Fixed Log-Flat Flat Log-Flat

Range [1 × 10−4, 2π] [0, 2π] 0 [1 × 10−4, 30] (NO)
[1 × 10−4, 15] (IO) [0, π] [350, 1 × 105]

Table 3.1: The table at the top contains the experimental values for input parameters taken
from [29,37]; the one in the centre summarises the experimental values for leptonic mixing
parameters and neutrino-mass-squared differences taken from NuFIT 5.0 [38]. ∆m2

31 > 0
for NO, and ∆m2

32 < 0 for IO. Priors and the ranges sampled over in the numerical scan
are given in the bottom table. The flavour indices for the antisymmetric Yukawa couplings
are i, j = e, µ, τ , and k = µ, τ .

results provided by the NuFIT collaboration [38]. Symmetric distributions are assumed

for simplicity. The numerical values used for the charged-lepton masses (me,mµ,mτ ) and

the electroweak input parameters (GF , αEM,MZ) are summarised in Tab. 3.1. For the

numerical scan we generated approximately 5 × 105 sample points for each neutrino-mass

ordering.
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3.4 Phenomenology

In the following, the contributions of h to various flavour observables are presented under

the assumption that the couplings yijh satisfy the constraints in Eq. (3.11) or Eq. (3.17)

and hence neutrino masses are dominantly generated by the singly-charged scalar singlet.

The considered observables together with the current experimental bound, prospected

sensitivities for future experiments as well as the maximum contribution found in the

numerical scan are summarised in Tab. 3.2. Note that the bounds on several observables

can be (nearly) saturated. Large tuning of the ratios of coupling magnitudes |yijh | is

necessarily absent due to the constraints in Eq. (3.11) and Eq. (3.17), see Sect. 3.4.3,

thus in particular the bounds on µ → eγ and µ → 3e cannot be evaded and hence they

efficiently shape the available parameter space.

We assume that further new particles are weakly coupled or heavy enough not to gen-

erate sizeable contributions to any of the observables under consideration. In particular,

particles which induce flavour-changing decays of charged leptons at tree level have to

be sufficiently decoupled, as the singly-charged scalar singlet generates these processes at

one-loop level. Significant destructive interference or fine-tuned cancellations are taken

as absent. Succinctly, we assume that low-energy effects of new physics are dominantly

governed by h. In that sense, the bounds on parameter space which is compatible with

neutrino masses as discussed in the following are conservative.

3.4.1 Effective Description of Low-Energy Phenomenology at Tree Level

As derived in App. 3.8, the Wilson coefficient of the effective dimension-6 four-lepton

operator

OLL,ijkl ≡ L†α
i σ̄

µLjαL
†β
k σ̄µLlβ (3.26)
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Experimental Data

Observable Current Bound Future Sensitivity

Br(µ → eγ) 4.2 × 10−13 (90% CL) [22] 6 × 10−14 [240]

Br(τ → eγ) 3.3 × 10−8 (90% CL) [241] 3 × 10−9 [7]

Br(τ → µγ) 4.4 × 10−8 (90% CL) [241] 1 × 10−9 [7]

Br(µ → 3e) 1 × 10−12 (90% CL) [242] 1 × 10−16 [243]

Br(τ → 3e) 2.7 × 10−8 (90% CL) [28] 4.3 × 10−10 [7]

Br(τ → 3µ) 2.1 × 10−8 (90% CL) [28] 3.3 × 10−10 [7]

|gµ/ge| [0.9986, 1.0050] (2σ) [244]

|gτ/gµ| [0.9981, 1.0041] (2σ) [244]

|gτ/ge| [1.0000, 1.0060] (2σ) [244]
[0.9985, 1.0075] (3σ) [244]

|δMW |[GeV] 0.018 (3σ) [29]

Numerical Analysis

Linear Case Quadratic Case

Observable NO IO NO IO

Br(µ → eγ) 4.2 × 10−13 4.2 × 10−13 4.2 × 10−13 4.2 × 10−13

Br(τ → eγ) 6.4 × 10−11 4.9 × 10−11 3.1 × 10−13 6.8 × 10−14

Br(τ → µγ) 1.6 × 10−11 1.6 × 10−11 2.9 × 10−14 1.5 × 10−12

Br(µ → 3e) 1 × 10−12 1 × 10−12 1 × 10−12 1 × 10−12

Br(τ → 3e) 6.6 × 10−9 1.3 × 10−8 7.7 × 10−13 1.6 × 10−13

Br(τ → 3µ) 3.0 × 10−9 1.2 × 10−8 6.1 × 10−13 8.8 × 10−13

|gµ/ge| 1.0050 1.0047 1.0002 1.0000

|gτ/gµ| 1.0009 1.0014 1.0000 1.0001

|gτ/ge| 1.0048 1.0043 1.0002 1.0000

|δMW |[GeV] 0.018 0.018 0.002 0.007

Table 3.2: The upper table contains the current experimental bounds on and future sensi-
tivities to the relevant observables. The lower table shows the respective maximum contri-
bution found in the scan in the linear case and the quadratic case for either neutrino-mass
ordering.
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receives a contribution at tree level from integrating out the singly-charged scalar singlet

h:9

CijklLL = (yikh )∗yjlh
M2
h

. (3.27)

In the low-energy effective theory, this leads to the neutral-current Lagrangian

LNSI
d=6 = −2

√
2GF ϵklij

(
ν†
i σ̄

µνj
) (
ℓ†kσ̄µℓl

)
, (3.28)

(see also [226]) with the Wilson coefficients

ϵklij ≡ − 1
2
√

2GF

(
CijklLL + CklijLL

)
= − 1√

2GF
(yikh )∗yjlh
M2
h

(3.29)

which are commonly called non-standard interaction (NSI) parameters. They are an-

tisymmetric under the exchange of an upper index and the corresponding lower index,

ϵklij = −ϵkjil = −ϵilkj , and their complex conjugates are obtained via swapping the upper and

lower indices among themselves: ϵklij = (ϵlkji)∗. Note that there are no effective operators

with four neutrinos or four charged leptons due to the antisymmetry of yh and thus in

particular no tree-level contributions to flavour-violating charged-lepton decays.

Fermi Constant and CKM Matrix

Singly-charged scalar singlets affect the partial decay widths Γa→b associated to the differ-

ent leptonic channels ℓ−a → ℓ−b νaν̄b and ℓ+a → ℓ+b ν̄aνb [224,237,246] and hence in particular

modify the extraction of the Fermi constant GF from measurements of the muon lifetime.

In the framework of treating the SM as an effective field theory (SMEFT), one defines

(see e.g. [247])

GF = GSM
F −

√
2

4 (CµeeµLL + CeµµeLL ) (3.30)

with the Wilson coefficient CijklLL given in Eq. (3.27) and GSM
F denotes the Fermi constant

in the SM.10 Hence,

GF = GSM
F −

√
2

4

(
(yeµh )∗yµeh
M2
h

+ (yµeh )∗yeµh
M2
h

)
= GSM

F + 1√
2

|yeµh |2

M2
h

, (3.31)

9See [245] for integrating out h at one-loop level.
10Additional contributions from other operators to GF are omitted.
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where we have used the antisymmetry of the Yukawa coupling matrix yh. Equivalently,

we can express it as GF = GSM
F +

√
2GF δGF with

δGF = 1
2GF

|yeµh |2

M2
h

≡ −ϵµµee√
2
. (3.32)

Another observable which has recently attracted attention (see for instance [248–255]) and

is of interest for the scenario under consideration is the sum of the squares of the absolute

values of the first-row elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix:

∑
i

|Vui|2 = |Vud|2 + |Vus|2 + |Vub|2 . (3.33)

The magnitude of the element Vus can be extracted directly from kaon and tau decays

[256,257], and indirectly via |Vud| from nuclear beta decays (see for instance [258,259] for

recent theoretical progress) and the assumption of the sum in Eq. (3.33) being equal to one

which in the SM is a built-in consequence of unitarity.11 The fact that there is significant

tension between the results is referred to as the Cabibbo Angle Anomaly (CAA). The

discrepancy between the “true" value of |Vus| and the one obtained from beta decays and

CKM unitarity in the SM can be explained via new contributions to muon decay and

subsequently the Fermi constant [237].

Universality of Leptonic Gauge Couplings

One defines the lepton-flavour universality ratios via the “effective Fermi constants" Gab ∼

gagb associated to the different leptonic channels: [224,246]

4

√
Γτ→µ

Γτ→e
∝ Gτµ
Gτe

= gµ
ge

≈ 1 + 1√
2GF

|yµτh |2 − |yeτh |2

M2
h

≡ 1 + ϵττee − ϵττµµ, (3.34)

4

√
Γτ→µ

Γµ→e
∝ Gτµ
Gµe

= gτ
ge

≈ 1 + 1√
2GF

|yµτh |2 − |yeµh |2

M2
h

≡ 1 + ϵµµee − ϵττµµ, (3.35)

4

√
Γτ→e

Γµ→e
∝ Gτe
Gµe

= gτ
gµ

≈ 1 + 1√
2GF

|yeτh |2 − |yeµh |2

M2
h

≡ 1 + ϵµµee − ϵττee . (3.36)

The experimental best-fit values of all three universality ratios are currently larger than

one, |gµ/ge| = 1.0018 ± 0.0032, |gτ/ge| = 1.0030 ± 0.0030, |gτ/gµ| = 1.0011 ± 0.0030 with

11The magnitude of Vub is negligibly small in this context.
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errors given at 2σ [244]. In particular, the channel τ → µ appears to receive sizeable

contributions from new physics.

In [237] it has been shown that the deviations of gµ/ge and gτ/ge from one and the

CAA, which will be collectively referred to as the “flavour anomalies" henceforth, can be

simultaneously explained with a singly-charged scalar singlet. Adopting the results for the

best-fit regions and using the terminology as in [237], for simplicity we take the anomalies

to be explained if both δ(µ → eνν) ∈ [0.0005, 0.0008] and δ(τ → µνν) ∈ [0.0016, 0.004]

are satisfied12, with

δ(ℓi → ℓjνν) ≡ 1√
2GF

|yijh |2

M2
h

= −ϵjjii . (3.37)

This immediately implies an upper bound Mh ≲ 39 TeV if h explains the flavour anomalies,

given that perturbativity constraints require |yijh | ≲ 2π. The experimental values used

in [237] are taken from [257].

In the top panel of Fig. 3.2 we show gτ/ge − 1 as a function of gµ/ge − 1 for NO (left)

and IO (right). The results of the numerical scan for the linear case are represented by

blue sample points which explain gτ/ge at 2σ, and by black sample points which explain

gτ/ge at 3σ, but not at 2σ, see also the caption of Fig. 3.2 for details. The 3σ region for

gτ/ge has been included to accommodate the SM prediction. If not indicated otherwise,

“at 2σ" and “at 3σ" always refer to this distinction. Red sample points in diamond shape

also explain the flavour anomalies which are briefly discussed below. The quadratic case

is shown in brown. In Tab. 3.2 we summarise the respective confidence levels at which

further experimental bounds are imposed. For the sample points, the same colour code is

used throughout this work, except for Figs. 3.10 and 3.12.

We find that there are solutions to the linear-case constraint in Eq. (3.11) for both neutrino-

mass orderings which simultaneously explain the flavour anomalies introduced above and

respect the bounds from the considered flavour observables. One does in particular not have

12These ranges are located within the region preferred at 1σ as presented in [237]. We
refrain from parametrising its elliptic shape.
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Figure 3.2: Correlations among deviations of gµ/ge, gτ/ge (top) and gτ/gµ (bottom) from
universality for NO (left) and IO (right). All shown sample points explain neutrino masses
and respect the bounds arising from the flavour observables considered in this work. For
the blue points, the deviation of gτ/ge from universality is explained at 2σ in the linear
case (Case I), and for the black points at 3σ, but not at 2σ. The red diamonds also explain
the flavour anomalies, for which gτ/ge must be respected at 2σ. Brown points pertain to
the quadratic case (Case II) which only occurs at 2σ for NO and at 3σ for IO. Solid lines
indicate current experimental bounds (black for 2σ or 90 % CL, and green for 3σ).
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to assume that |yeτh | is negligibly small.13 Contrariwise, explaining the flavour anomalies

in the quadratic case is not possible.

In the quadratic case, no large deviations from universality can be generated. In par-

ticular, none of the respective 1σ regions for the ga/gb which are currently preferred by

experiments can be reached. Still, the corrections to both gµ/ge − 1 and gτ/ge − 1 are

strictly positive (negative) for Normal (Inverted) Ordering in the quadratic case, hence a

conclusive experimental determination of one of the signs would rule out one of the mass

orderings being generated by h. Similarly, positive (negative) corrections to gτ/gµ − 1 are

severely disfavoured for NO (IO).

In the linear case, large contributions to gµ/ge (gτ/ge) are disfavoured for IO as they

enforce |yµτh | ≫ |yeτh |(|yeµh |), see Sect. 3.4.3 for more details. On the contrary, for IO we

find more sample points with gτ/gµ > 1 as shown in the bottom panel of Fig. 3.2. This

is due to the fact that a hierarchy between |yeµh | and |yeτh | is easier to achieve in this

case. Still, the deviation of gτ/gµ from universality is measured to be smaller and an

explanation of its best-fit value via h would imply a further deviation from the best-fit

values of the other two ratios. A given mass Mh fixes the ranges of magnitude of |yµτh |

and |yeµh | for which the flavour anomalies are explained, as in Eq. (3.37). Together with

the strict experimental limit on Br(µ → eγ) which bounds |yeτh | in terms of |yµτh |, this

determines the relative positions of the red and blue sample points in Fig. 3.2.

A more precise determination of the lepton-flavour universality ratios ga/gb mainly relies

on reducing the uncertainties in measurements of the branching ratios Br(τ → µ(e)νν) and

of the tau lifetime [260]. An improvement of a factor of ten is suggested in [261]. Further

improvement would rely on determining the tau mass at higher precision, for instance

upon running a future tau factory at the production threshold [260–263]. Nonetheless,

shifts in the measured values ga/gb themselves cannot be predicted and we refrain from

showing estimates for prospective sensitivities in Fig. 3.2.

13In order to avoid the bound from µ → eγ, yeτh was set to zero in [237] which in general
is not a viable solution to the constraint in Eq. (3.11) and hence is incompatible with
neutrino masses.
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Figure 3.3: Correlations among MW and deviations of gτ/ge from universality. The colours
are the same as in Fig. 3.2.

W -Boson Mass

The contribution to the Fermi constant induced by h results in a necessarily negative

correction [264]

δM2
W = − M2

W√
2GF

∣∣∣∣∣1 − MWMZ

2M2
W −M2

Z

∣∣∣∣∣ |yeµh |2

M2
h

(3.38)

to the W -boson mass which exacerbates the existing 1.5σ tension among the SM predic-

tion MW ± ∆MW = (80.361 ± 0.005) GeV and the world average of measurements given

by M exp
W ± ∆M exp

W = (80.379 ± 0.012) GeV [29, 37, 265]. In order to accommodate an ex-

planation of the flavour anomalies, we allow for a 3σ discrepancy which implies MW ≥

80.343 GeV and gives rise to the constraint |yeµh |2/M2
h ≲ 1.25×1×10−2/TeV2. To compare,

the best-fit value presented in [237] corresponds to |yeµh |2/M2
h ≈ 1.07 × 1 × 10−2/TeV2.

In Fig. 3.3 the prediction for the W -boson mass is shown as a function of the absolute

value of the deviation of the universality ratio gτ/ge from one. Note that in the quadratic

case the maximum correction to MW is much larger for IO than for NO, and there is

a non-trivial correlation in the linear case especially for |yeµh | > |yµτh |. A large effect in

gτ/ge − 1 together with a conclusive determination of MW close to its current SM predic-

tion would severely disfavour the scenario of h explaining neutrino masses with IO, but

not with NO. Furthermore, a result MW ≳ 80.35 GeV would currently rule out an expla-

nation of the flavour anomalies via h. In proposals for next-generation lepton colliders,

a reduction of the uncertainty in the experimental determination of MW by a factor of

roughly 10 − 20 [261, 266] is suggested. As for the universality ratios ga/gb, any shifts in
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the obtained value MW itself, be it determined at colliders or via electroweak fits, cannot

be predicted though.

Leptonic Non-Standard Interactions

As it can be seen from Eq. (3.28), the singly-charged scalar singlet induces leptonic non-

standard interactions at tree level, whereas NSIs with quarks only arise at loop level.

Hence, we disregard the latter. The fact that the constraint in Eq. (3.11) disfavours large

hierarchies among the coupling magnitudes (see Sect. 3.4.3 for more details) implies that

the results found in studies in which only one NSI parameter was switched on at a time

(see for instance [267]) are not directly applicable here. We obtain magnitudes of up to

|ϵρσαβ| ∼ 1 × 10−3 in the linear case which to our knowledge is below all current bounds

and also appears to be challenging to observe in near-future experiments. For instance,

depending on the flavour channel, DUNE is prospected to be sensitive to magnitudes down

to |ϵρσαβ| ∼ 1×10−2 at 90 % CL [268]. Still, at a future neutrino factory it might be possible

to probe some of the NSI parameters relevant for neutrino production in the νe → ντ and

Figure 3.4: Non-standard interactions. The colours are the same as in Fig. 3.2. Dashed
lines indicate prospected experimental sensitivities.
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νµ → ντ channels [226]:

ϵeµτe ≡
(yeτh )∗yeµh√

2GFM2
h

= −(ϵeeµτ )∗, ϵeµµτ ≡ −
(yeµh )∗yµτh√

2GFM2
h

. (3.39)

Upon using a 2 kt OPERA-like near tau detector a sensitivity to |ϵeµµτ | ∼ 7 × 10−4 and

|ϵeµτe | ∼ 6 × 10−4 is prospected to be achievable [225, 269]. In that case, the simultaneous

explanation of neutrino masses and the flavour anomalies via h in the linear case could

be conclusively tested at a neutrino factory for both neutrino-mass orderings. The con-

tributions in the quadratic case will remain beyond reach. This is illustrated in Fig. 3.4.

As indicated in Eq. (3.39), the NSI parameter ϵeµτe is trivially related to the corresponding

one for the propagation of νµ and ντ neutrinos in matter.

3.4.2 Charged Lepton Flavour Violation

The leading-order contributions to flavour-violating charged-lepton decays from singly-

charged scalar singlets occur at one-loop level. In fact, finite contributions to radiative

charged-lepton decays ℓi → ℓjγ are sourced by a single diagram with a neutrino νk, i ̸= j

and i ̸= k ̸= j, in the loop. The branching ratios are given by [224,237,270–272]

Br(µ → eγ) = Br(µ → eνν̄) αEM
48πG2

F

|yeτh y
µτ
h |2

M4
h

, (3.40)

Br(τ → eγ) = Br(τ → eνν̄) αEM
48πG2

F

|yeµh y
µτ
h |2

M4
h

, (3.41)

Br(τ → µγ) = Br(τ → µνν̄) αEM
48πG2

F

|yeµh yeτh |2

M4
h

, (3.42)

with Br(µ → eνν̄) ≈ 1, Br(τ → eνν̄) ≈ 0.178 and Br(τ → µνν̄) ≈ 0.174 [29]. As it can be

seen in Fig. 3.5, any signal in radiative tau decays showing up at Belle II cannot be induced

by h alone, see Table 3.2. For instance, one would need two singly-charged scalar singlets

which conspire to circumvent the strong bounds arising from flavour-violating muon de-

cays. Also the sizeable contributions to τ → eγ implied by simultaneously generating

neutrino mass and explaining the flavour anomalies will be beyond reach [237]. Instead, a

future search for µ → eγ [240] efficiently probes parts of the parameter space pertaining

to h generating neutrino masses both in the linear case and in the quadratic case, as well
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Figure 3.5: Branching ratios of radiative charged-lepton decays. The vertical dot-dashed
lines correspond to the prospected sensitivities to Br(µ → e; Ti) at PRISM/PRIME and to
Br(µ → e; Al) at Mu2e which were then converted via Br(µ → e; Al) ≈ 0.0079 Br(µ → eγ)
and Br(µ → e; Ti) ≈ 0.0125 Br(µ → eγ), see also App. 3.9. The colours are the same as
in Fig. 3.2.
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as the combined scenario in which also the flavour anomalies are explained in the linear

case.

As it is well-known, if the contributions from on-shell photon penguin diagrams dominate,

the branching ratios for tri-lepton decays with only one flavour in the final state are entirely

fixed as functions of Br(ℓi → ℓjγ) and SM parameters:14 [273,274]

Br(µ → 3e)
Br(µ → eγ) ≈ αEM

3π

(
log

(
m2
µ

m2
e

)
− 11

4

)
≈ 1

163 , (3.43)

Br(τ → 3e)
Br(τ → eγ) ≈ αEM

3π

(
log

(
m2
τ

m2
e

)
− 11

4

)
≈ 1

95 , (3.44)

Br(τ → 3µ)
Br(τ → µγ) ≈ αEM

3π

(
log

(
m2
τ

m2
µ

)
− 11

4

)
≈ 1

446 . (3.45)

For masses close to the lower bound Mh = 350 GeV, the photon-penguin approximation

is perfectly valid. In the quadratic case, the relative magnitudes of the couplings yijh
are quite sensitive to the neutrino-mass ordering, as dictated in Eq. (3.17). Together

with the flavour-dependent suppression factors ∼ log(mk/ml), this efficiently determines

the relative size of the different radiative charged-lepton decay channels in the photon-

penguin limit. On the contrary, note how the contributions from box diagrams outperform

those from photon penguins for τ → 3µ in the case of NO, as can be seen in Fig. 3.6.

The vertical solid grey lines in Fig. 3.6 indicate the bound induced by µ → eγ which is the

relevant one both for the the linear case and for the quadratic case as long as the photon

penguin dominates µ → 3e. In the numerical scan, the full expression as given in [237]

is used, because larger masses Mh generally render larger magnitudes |yijh | compatible

with the different experimental bounds, which in turn implies that the contributions from

box diagrams to tri-lepton decays become increasingly dominant. Since box diagrams are

proportional to the product of four Yukawa couplings, they can thus induce contributions

to tri-lepton decays which in fact grow if the mass increases beyond Mh ≈ 1 TeV and

further. Thus, h will decouple from the phenomenology at low energy only for even larger

masses Mh ≫ 100 TeV. This is distinctively visible in Fig. 3.7 where we show τ → 3e(µ) as

14We do not expect more stringent constraints from tri-lepton decays with different
flavours in the final state and hence we do not consider them.
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Figure 3.6: Branching ratios of tri-lepton decays. The colours are the same as in Fig. 3.2.
The solid grey lines indicate the respective experimental bounds that would apply to the
photon-penguin approximation. Dashed lines indicate prospected experimental sensitivi-
ties.

a function of the singly-charged scalar singlet mass Mh. As the figures illustrate, masses

larger than Mh ≳ 11 TeV and Mh ≳ 15 TeV can induce an observable signal in τ → 3e and

τ → 3µ, respectively, at Belle II [7].

Besides µ → 3e [243] which will be sensitive both to the linear case and the quadratic

case, tri-lepton tau decay thus offer another avenue for testing the generation of neutrino

masses via h at larger masses Mh in the linear case, complementary to µ → eγ for which
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Figure 3.7: Branching ratio of tri-lepton tau decays as a function of the mass Mh. The
colours are the same as in Fig. 3.2. Dashed lines indicate prospected experimental sensi-
tivities.
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the contributions start to decrease before the assumed upper limit Mh ≤ 100 TeV is

reached. Via τ → 3e we are even sensitive to parts of the parameter space for which the

flavour anomalies are explained as well [237]. Still, the constraint in Eq. (3.11) disfavours

the solutions yijh which induce large contributions to τ → 3e(µ) as there needs to be a

hierarchy among the coupling magnitudes |yeµh | and |yµτh | (|yeτh |) entering the relevant box

diagram and |yeτh | (|yµτh |) which must be smaller in order not to violate the experimental

bound on Br(µ → eγ).

A further relevant process is µ− e conversion in nuclei which probes the same parameter

combination as µ → eγ and is dominated by photon-penguin diagrams. As of today, the

strongest constraint arises from the SINDRUM-II experiment in which a gold target was

used [275]. Taking into account both the short-range and the long-range contribution (see

App. 3.9), one finds Br(µ → e; Au) ≡ ωAu
conv/ω

Au
capt ≈ 0.0130 Br(µ → eγ) for µ−e conversion

in gold [237, 276, 277]. Hence, the process does not yield a competitive constraint yet,

still, in the photon-penguin approximation it is less suppressed with respect to µ → eγ

than µ → 3e. In addition, future experiments on µ − e conversion are prospected to

outperform current and future searches for radiative charged-lepton decays in sensitivity

by far [278–280]. For instance, PRISM/PRIME can be expected to almost conclusively

test the simultaneous explanation of neutrino masses and the flavour anomalies.

As a side note, the singly-charged scalar singlet also generates contributions to anomalous

magnetic moments. However, the contribution is always negative [224, 281–283], hence it

is not possible to explain the long-standing anomaly δaµ ≡ aexp
µ −aSM

µ ≈ 3×10−9 [284,285]

in the first place. Contributions up to δaµ ≈ −1×10−11 and δae ≈ −1×10−16 are possible,

which is however too small to explain the measured value δae ≈ −9 × 10−13 [286].

3.4.3 Magnitude of Couplings

The constraint in Eq. (3.11) tends to correlate the couplings yijh in such a way that in many

cases at least two of them are comparable in magnitude, as it can be seen in Fig. 3.8. We

show the ratios because the magnitudes |yijh | of the elements of vh in Eq. (3.11) can always
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Figure 3.8: Plot of the coupling ratios |yeµh |/|yµτh | and |yeτh |/|yµτh | as obtained in the nu-
merical scan. The colours are the same as in Fig. 3.2.

.

be rescaled by a common factor and hence only the relative magnitudes are determined

via the constraint. It is distinctively visible how viable parameter space opens up upon

replacing the condition in Eq. (3.17) by the more general one in Eq. (3.11).

For NO, solutions with |yµτh | larger than both |yeih |, i = µ, τ are most abundant and

in particular the hierarchies |yeµh | < |yµτh | < |yeτh | and |yeτh | < |yµτh | < |yeµh | are rather

disfavoured, hence, there is a tendency for |yµτh | ≳ |yeµh | ≈ |yeτh |. On the contrary, for IO

there are smaller differences in how often the different hierarchies are obtained. Note that

while the viable regions in parameter space in Fig. 3.8 do in general not feature a sharp

contour, the most distinctive deviation from that tendency occurs if both |yeµh |/|yµτh | ≲ 0.1

and |yeτh |/|yµτh | ≲ 0.1 for which viable solutions seem to be rigorously excluded in the case

of IO. Hence, if the coupling yµτh was experimentally confirmed to sufficiently dominate

over the electron-flavoured ones in magnitude, this would appear to leave us only with

the possibility of h generating the main contribution to neutrino masses with NO. The

corresponding experimental signature would be a vanishingly small branching ratio for the

decay channel h → eν, see also Sect. 3.4.4.

Besides, as it can be seen in Fig. 3.9, if |yeµh | > |yµτh |, which corresponds to black sample
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Figure 3.9: Plot of the coupling ratios |yeµh |/|yeτh | as a function of the smallest neutrino
mass (m1 for NO, and m3 for IO). The colours are the same as in Fig. 3.2.

points, the constraint in Eq. (3.11) further disfavours solutions with |yeµh |/|yeτh | ≲ 0.1. In

addition, if the lightest neutrino is not much heavier than m0 = m1 ≈ 1 meV in the case

of NO, |yeµh | > |yµτh | is only viable for |yeµh |/|yeτh | ≲ 10. We trace this back to the fact

that for NO the neutrino mass matrix is known to feature a slight hierarchy between the

magnitudes of the components in the first row (and column) and those in the 23-block,

which only diminishes if the smallest neutrino mass m1 becomes large.

Of course, these solutions are not obtained if one solves the constraint in Eq. (3.11) with

the additional condition of one Majorana phase and the smallest neutrino mass vanishing.

Still, there are no major differences in the obtained phenomenology compared to the

general case with three massive neutrinos. In particular, one does not enjoy the same

predictive power as in the quadratic case for which the smallest neutrino mass vanishes,

m0 = 0, automatically. On the contrary, for IO the |M ij
ν | are more similar in magnitude

and less sensitive to m3, and thus so are the |yijh |.

Furthermore, a determination of the relative size of the regions in the parameter space

of coupling magnitudes which are compatible only with NO or with IO, or with both is

performed. The strategy is to discretise the parameter space into a grid structure and to

count the sample points contained in each grid square, starting with the square containing
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Figure 3.10: Plot of the coupling ratios |yeµh |/|yµτh | and |yeτh |/|yµτh | as obtained in the
numerical scan if approximately 95.45 % of the overall number of 547991 (542287) sample
points generated for NO (IO) are taken into account. Each square shown to be compatible
with NO (IO) contains at least 97 (74) sample points. See also main text.

the largest number of points and then gradually moving on to those with fewer points,

until a specified portion of the overall number of sample points is taken into account.

Fig. 3.10 shows the region of approximately 95.45 % of the sample points.

3.4.4 Decay Channels of the Singly-Charged Scalar Singlet

The partial width of the decay of a singly-charged scalar singlet into a charged lepton ℓ

and a neutrino ν is given by [224]

Γ(h → ℓaνb) = Γ(h → ℓbνa) = |yabh |2

4π Mh . (3.46)

Leaving the undetected neutrino flavour unspecified, one obtains the branching ratio for

the decay of h into a charged lepton of flavour a and a neutrino:

Br(h → ℓaν) =
∑
b̸=a |yabh |2

2(|yeµh |2 + |yeτh |2 + |yµτh |2) . (3.47)

Regardless of whether the magnitudes |yijh | are constrained in some way or not, the indi-

vidual branching ratios always take a value between 0 and 0.5.
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Figure 3.11: Branching ratios of h → ℓν. The colours are the same as in Fig. 3.2.

A very small or vanishing branching ratio for the electron channel (and consequently

Br(h → µν) ≈ Br(h → τν) ≈ 0.5) is supported in NO, but severely disfavoured for IO, as

it can be seen in Fig. 3.11. Contrariwise, obtaining a (near-)maximal branching to taus

and a small one to muons is disfavoured by NO, but compatible with IO. For the more

restrictive constraint in Eq. (3.17), the muon and tau channels exhibit a slight correlation

with the CP-violating phase δ in the case of NO which is illustrated in Fig. 3.12 and has

been discussed before in [226] for the Zee-Babu model. It is due to the fact that for IO δ

only fixes the phases arg(yeih ), while it also determines |yµτh | in the case of NO.

3.5 Multiple Singly-Charged Scalar Singlets

Lastly, we comment on the possibility of generating 1, ..., n sizeable contributions to neu-

trino masses via multiple singly-charged scalar singlets h1, ..., hn and focus on n = 2 for

simplicity.

The overall lepton sector for two singly-charged singlet scalars is given by

Llept = yije ēiLjH
∗ + yijh1

LiLjh1 + yijh2
LiLjh2 + h.c.. (3.48)
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Figure 3.12: Branching ratios of the different channels h → ℓν as functions of the Dirac
CP phase δ in the quadratic case (Case II).

We again can distinguish the linear and the quadratic case and focus on the latter first.

We assume that the main contribution to neutrino masses consists of diagrams in which

both external neutrinos couple to the respective loop structure via yh1 or yh2 . Then, the

most general neutrino mass matrix reads

U∗mdiagU
† = Mν = yTh1S1yh1 + yTh2S2yh2 + yTh1Zyh2 + yTh2Z

T yh1 , (3.49)

with the symmetric coupling matrices S1,2 and a general matrix Z. Multiplying Eq. (3.49)

by the respective eigenvectors vh1,2 of yh1,2 with eigenvalue zero, one obtains three inequiv-

alent complex conditions:

vTh1U
∗mdiagU

†vh1 = vTh1y
T
h2S2yh2vh1 , (3.50a)

vTh2U
∗mdiagU

†vh1 = vTh2y
T
h1Zyh2vh1 , (3.50b)

vTh2U
∗mdiagU

†vh2 = vTh2y
T
h1S1yh1vh2 . (3.50c)

Contrary to the linear case and the quadratic case discussed for one singly-charged scalar

singlet before, here the constraint explicitly involves the matrices S1,2 and Z which

parametrise the breaking of lepton-number conservation. In that sense, Eqs. (3.50a)-

(3.50c) are in general model-dependent and hence less predictive. In App. 3.10 we present

one possible neutrino mass model with two singly-charged scalar singlets as an example.
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In explicit models, some of the matrices S1,2, Z may vanish in the case of an additional

symmetry. Then, the respective expressions above would simplify accordingly and one

could solve them as in the linear case. Still, irrespective of the specific structures in S1,2

and Z, all Eqs. (3.50a)-(3.50c) have to be individually satisfied. Thus, the contributions

yTh1
S1yh1 and yTh2

S2yh2 are not independent, but the elements of yh1 and yh2 are intertwined

via each of the right-hand sides and in particular also via the left-hand side of Eq. (3.50b)

even if Z is taken to zero. Only if both Z and one of the matrices S1 and S2 are absent, one

trivially recovers the quadratic case for one singly-charged scalar singlet. The same limit

is obtained for a large hierarchy between the masses of h1 and h2 since one may integrate

out the heavier singlet and attain more predictive power. Lastly, it is straightforward

to generalise Eq. (3.49) towards the case of n singly-charged scalar singlets generating

sizeable contributions to neutrino masses.15

In the linear case, one would generalise the structure of the neutrino mass matrix towards

U∗mdiagU
† = Mν = X1yh1 − yh1X

T
1 +X2yh2 − yh2X

T
2 . (3.51)

Still, there is no non-trivial limit in which the derived constraints would become indepen-

dent of the model-dependent physics in X1,2.

3.6 Conclusions

We have presented a classification and phenomenological study for scenarios in which a

singly-charged scalar singlet particle h generates the main contribution to neutrino masses.

Among the SM fermions, h interacts only with the left-handed lepton doublets via an

antisymmetric Yukawa coupling yhLLh+ h.c. at tree level. It is possible to assign charges

of lepton number to h and the SM leptons in a way such that it is respected by all

renormalisable terms in the Lagrangian. Thus, in order to generate Majorana masses

for neutrinos, one needs to introduce a source of lepton-number breaking. Our approach

15See for instance [287,288] for studies of variants of the Zee-Babu model which contain
three singly-charged scalar singlets.
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is independent of the details of this breaking. The only assumption is that the main

contribution of neutrino masses is generated by a diagram in which one or both of the

external neutrinos couples via yh.

For the minimal case of just one singlet state, this gives rise to only two possible structures

for the neutrino mass matrix. Regarding the Feynman diagram which generates the main

contribution to neutrino masses, we distinguish between the “linear case" in which only

one external neutrino is linked to the loop structure via yh, and the “quadratic case" in

which both external neutrinos are. Several well-known models of neutrino-mass generation

fall into those two categories: The Zee model [60–62] is an example for the linear case and

the Zee-Babu [63–65] and KNT models [66] are examples for the quadratic case.

For each of the cases, we employ the antisymmetry of yh in flavour space to derive a model-

independent constraint which has to be satisfied to guarantee the correct description of

the measured mixing and mass hierarchy of neutrinos. In the linear case, the constraint

determines two of the magnitudes of the Yukawa coupling matrix elements |yijh | in terms

of the third one, the two phases of yeih , i = µ, τ , neutrino masses, leptonic mixing angles

and phases. In the quadratic case, the two constraints are independent of the neutrino

masses and Majorana phases and thus more predictive.

This enables us to perform a phenomenological study applicable to many different types

of models. The study is conservative in the sense that no other contributions to the

considered observables beyond the ones induced by h are taken into account. If the other

new particles involved in a specific model are sufficiently decoupled in the sense that they

are very heavy or very weakly coupled to the SM, the phenomenological bounds obtained

will approximately coincide with those of the actual model, otherwise the bounds will

be weaker. This is trivially satisfied in an effective field theory framework, in which the

singly-charged scalar singlet is much lighter than all other new particles.

For the linear case, the constraint disfavours large hierarchies among the coupling magni-

tudes yijh and hence the available parameter space is mostly shaped by µ → eγ and µ → 3e

and other low-energy processes are generally not competitive. The relative magnitudes
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|yijh | display some sensitivity to the neutrino-mass ordering. Furthermore, we demonstrate

that the region in parameter space where the Cabibbo Angle Anomaly and the deviation

of leptonic gauge couplings from universality, collectively dubbed the “flavour anomalies",

are explained by h is compatible with, albeit not preferred by neutrino masses. A con-

clusive measurement of MW > 80.35 GeV would imply that h cannot explain the flavour

anomalies.

For the quadratic case, the parameter space is strongly constrained by neutrino masses

and thus the scenario is very predictive. The leptonic gauge couplings do not receive large

contributions and thus it is not possible to explain their deviation from universality as

indicated by current data and neither the Cabibbo Angle Anomaly. Furthermore, there

is a tight correlation between the different radiative charged-lepton decays and hence

any signal of a radiative flavour-violating tau decay at Belle II would imply that low-

energy effects of new physics cannot be assumed to be dominated by h. Also, one may

derive sharp predictions for the branching ratios of the different decay channels to satisfy

Br(h → τν) ≃ Br(h → µν) ∼ 0.4 and Br(h → eν) ≲ 0.2 for NO and Br(h → τν) ∼ 0.3,

Br(h → µν) ∼ 0.2 and Br(h → eν) ∼ 0.5 for IO. The branching ratios Br(h → τν) and

Br(h → µν) exhibit a slight dependence on the Dirac CP phase δ for NO.

Finally, we commented on the generalisation of our framework to multiple singly-charged

scalar singlets. One may also derive constraints in that case, but they depend on the

breaking of lepton number and thus do not allow for a model-independent study.

To conclude, this study of the singly-charged scalar singlet h is a neat example of a

model-independent towards neutrino masses and their phenomenological implications. The

constraints originate only from the form of the neutrino mass matrix and the antisymmetry

of the Yukawa coupling of h to left-handed lepton doublets. We leave the discussion of

other simplified neutrino mass scenarios for future work.
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3.7 Appendix: Neutrino-Mass Constraint Spelt in Full

Written out, the constraint in Eq. (3.11) explicitly reads((
c2

13m3c
2
23 + e−2iη2m2

(
e−iδc23s12s13 + c12s23

)2
+ (3.52)

e−2iη1m1
(
e−iδc12c23s13 − s12s23

)2 )
yeµ
h

−
(
c23m3s23c

2
13 + e−2iη1m1

(
e−iδc12c23s13 − s12s23

) (
c23s12 + e−iδc12s13s23

)
−e−2iη2m2

(
e−iδc23s12s13 + c12s23

) (
c12c23 − e−iδs12s13s23

) )
yeτ
h

+c13
(
eiδc23m3s13 − e−2iη2m2s12

(
e−iδc23s12s13 + c12s23

)
+e−2iη1c12m1

(
s12s23 − e−iδc12c23s13

) )
yµτh

)
yeµ
h

−
((
c23m3s23c

2
13 + e−2iη1m1

(
e−iδc12c23s13 − s12s23

) (
c23s12 + e−iδc12s13s23

)
−e−2iη2m2

(
e−iδc23s12s13 + c12s23

) (
c12c23 − e−iδs12s13s23

) )
yeµ
h

−
(
c2

13m3s
2
23 + e−2iη1m1

(
c23s12 + e−iδc12s13s23

)2

+ e−2iη2m2
(
c12c23 − e−iδs12s13s23

)2 )
yeτ
h

−eiδc13
(
e−2i(δ+η1)m1s13s23c

2
12 + e−iδc23

(
e−2iη1m1 − e−2iη2m2

)
s12c12

−
(
m3 − e−2i(δ+η2)m2s

2
12

)
s13s23

)
yµτh

)
yeτ
h

+
(
c13
(
eiδc23m3s13 − e−2iη2m2s12

(
e−iδc23s12s13 + c12s23

)
+e−2iη1c12m1

(
s12s23 − e−iδc12c23s13

) )
yeµ
h

+eiδc13
(
e−2i(δ+η1)m1s13s23c

2
12 + e−iδc23

(
e−2iη1m1 − e−2iη2m2

)
s12c12

−
(
m3 − e−2i(δ+η2)m2s

2
12

)
s13s23

)
yeτ
h

+
(
e−2iη2m2s

2
12c

2
13 + e−2iη1c2

12m1c
2
13 + e2iδm3s

2
13

)
yµτh

)
yµτh = 0 ,

with the abbreviations sij ≡ sin(θij) and cij ≡ cos(θij).
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3.8 Appendix: Effective Four-Lepton Operator

Starting from the full theory as defined via Eqs. (3.1) and (3.2), one obtains the lowest-

order solution to the classical equation of motion for h:

h = −
(yijh )∗

M2
h

L†
jL

†
i . (3.53)

The resulting effective Lagrangian reads

Leff = (yijh )∗yklh
M2
h

L†
jL

†
iLkLl = (yikh )∗yjlh

M2
h

L†α
i σ̄

µLjαL
†β
k σ̄µLlβ. (3.54)

In order to derive this result, one first observes that

L†
jL

†
iLkLl = L†α

j L
†β
i LkβLlα − L†α

j L
†β
i LkαLlβ. (3.55)

Together with the antisymmetry of yh, this implies

(yijh )∗yklh
M2
h

L†
jL

†
iLkLl = 2(yijh )∗yklh

M2
h

L†α
j L

†β
i LkβLlα. (3.56)

Then, applying a Fierz transformation and relabeling flavour indices yields the result

(yijh )∗yklh
M2
h

L†
jL

†
iLkLl = (yijh )∗yklh

M2
h

L†α
j σ̄

µLlαL
†β
i σ̄µLkβ (3.57)

= (yikh )∗yjlh
M2
h

L†α
i σ̄

µLjαL
†β
k σ̄µLlβ ≡ CijklLL OLL,ijkl.

3.9 Appendix: µ − e Conversion in Nuclei

We consider the photon-penguin contribution to the effective Lagrangian for µ − e con-

version in nuclei and neglect all other contributions following [237]. In addition to the

short-range contribution which has been discussed in [237] we also include the relevant

long-range contribution. Following [277], we identify the relevant terms

Leff = −4
√

2GF (mµARµ̄σ
µνeFµν + h.c.) − GF√

2
∑

q=u,d,s

[
gLV (q) e

†σ̄µµ (q†σ̄µq + q̄σµq̄
†)
]

(3.58)
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in the effective Lagrangian, where the “barred" fields denote the charge-conjugates of the

respective right-handed fields and we employ the 2-component notation for spinors as

detailed in [93]. The Wilson coefficients are given by [237]

AR = − 1
2
√

2GF

√
4παEM

96π2M2
h

yeτh (yµτh )∗, gLV (q) = −
√

2
GF

4παEMQq
72π2M2

h

(yeτh )∗yµτh , (3.59)

where Qq denotes the electric quark charge, Qu = 2
3 and Qd = −1

3 . The resulting conver-

sion rate is [277]

ωconv = 2G2
Fm

5
µ

∣∣∣A∗
RD + g̃

(p)
LV V

(p) + g̃
(n)
LV V

(n)
∣∣∣2 (3.60)

in terms of the couplings to protons and neutrons. The coupling to neutrons vanishes,

g̃
(n)
LV = gLV (u) + 2gLV (d) = 0, because the photon-penguin contribution is proportional to

the electric charge of the nucleon, and the effective coupling to the proton is

g̃
(p)
LV = 2gLV (u) + gLV (d) = −

√
2αEM

18πGFM2
h

(yeτh )∗yµτh . (3.61)

Hence we find the conversion rate

ωconv =
∣∣(yeτh )∗yµτh

∣∣2 ∣∣∣∣∣α
1/2
EMD

96π3/2 + αEMV
(p)

9π

∣∣∣∣∣
2
m5
µ

M4
h

. (3.62)

The experimental limits for µ−e conversion are generally quoted in terms of the ratio of the

conversion rate ωconv over the capture rate ωcapt [277, 289], Br(µ → e; X) ≡ ωX
conv/ω

X
capt.

For X = Au,Al,Ti we use

ωAu
capt = 13.06 × 106 1

s , ωAl
capt = 0.7054 × 106 1

s , ωTi
capt = 2.59 × 106 1

s . (3.63)

Currently, the SINDRUM II experiment places the strongest limit on µ− e conversion in

gold [275] with Br(µ → e; Au) ≡ ωAu
conv/ω

Au
capt < 7 × 10−13. In the coming years, several

experiments with improved sensitivity will probe unexplored parameter space using µ− e

conversion: The Mu2e experiment at Fermilab [278] and the COMET experiment [279] are

expected to reach a sensitivity of 6 × 10−17 and 2.6 × 10−17, respectively, for an aluminum

target. Ultimately, PRISM/PRIME [280] is projected to reach a sensitivity of 10−18 for a

titanium target. The relevant overlap integrals for the long-range and short-range photon-

penguin contributions to µ − e conversion in gold, aluminum and titanium are given by

79



CHAPTER 3. THE SINGLY-CHARGED SCALAR SINGLET AS THE ORIGIN OF
NEUTRINO MASSES

D, V (n) and V (p):

DAu = 0.189 , V
(p)

Au = 0.0974 , V
(n)

Au = 0.146 ,

DAl = 0.0362 , V
(p)

Al = 0.0161 , V
(n)

Al = 0.0173 , (3.64)

DTi = 0.0864 , V
(p)

Ti = 0.0396 , V
(n)

Ti = 0.0468 .

3.10 Appendix: Generalised Zee-Babu Model

A natural example of the quadratic case with two singly-charged scalar singlets is given

by a generalised version of the Zee-Babu model. Hence, consider the extension of the SM

particle content by two singly-charged scalar singlets h1 and h2 and a doubly-charged scalar

singlet k. Assuming the mass basis for the singly-charged scalar singlets and neglecting

all terms in the scalar potential which are unrelated to the breaking of lepton-number

conservation, one finds the following Lagrangian:

L = −h∗
1(DµDµ +M2

1 )h1 − h∗
2(DµDµ +M2

2 )h2 − k∗(DµDµ +M2
k )k

−
((
µ1h

2
1 + µ2h

2
2 + µ12h1h2

)
k∗ + h.c.

)
(3.65)

−
(
y∗
eL

†Hē† + yh1LLh1 + yh2LLh2 + ykē
†ē†k + h.c.

)
.

The contribution to neutrino masses corresponding to S1 (S2) which is defined in Eq. (3.49)

can be obtained as in the Zee-Babu model and is proportional to µ1/M
2
k (µ2/M

2
k ) in the

limit Mk/Mh ≫ 1.16 To our knowledge, a similar limit for the contribution corresponding

to Z has not been considered yet, but in analogy it may be expected to be proportional

to µ12/M
2
k . There are up to fifteen parameters in the model which are directly linked to

neutrino masses: µ1, µ2, µ12, six couplings in yk and three couplings both in yh1 and in yh2 .

In general, up to six of them can be determined via the constraint in Eqs. (3.50a)-(3.50c)

upon fixing the other parameters. A detailed study of the full generalised Zee-Babu model

is left for future work.

16This assumption may be relaxed without altering the form of the dominant contribu-
tion to neutrino masses. Still, the relevant loop function acquires a simple form only in
the limits Mk/Mh ≫ 1 and Mk/Mh → 0 [224,226,236].
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In the case of a further hierarchy between the masses M1 and M2 (which is assumed

not to be cancelled by another hierarchy in |µ1| and |µ2|), such that the contribution

of the heavier singly-charged scalar singlet both to neutrino masses and to other flavour

observables can be neglected with respect to the lighter one, one may integrate out the

former. Hence, assuming M2 ≫ M1,k and integrating out h2, we obtain the following

effective Lagrangian up to dimension-6 terms:

Leff ⊇ −h∗
1(DµDµ +M2

1 )h1 − k∗(DµDµ +M2
k )k −

(
µ1h

2
1k

∗ + h.c.
)

−
(
yijh1

LiLjh1 + h.c.
)

−
(
µ∗

2y
ij
h2
yklh2

M4
2

kLiLjLkLl + h.c.
)

+
(
µ∗

12y
ij
h2

M2
2
kh∗

1LiLj + h.c.
)

+
(yijh2

)∗yklh2

M2
2

LkLlL
†
jL

†
i

−
(
ykē

†ē†k + h.c.
)
. (3.66)

This corresponds to the Zee-Babu model extended by effective interactions. Thus, in the

effective field theory limit M2 ≫ M1,k the dominant contribution to neutrino masses is

given by the renormalisable terms and therefore the same as in Eq. (3.25) for h → h1.

3.11 Erratum to: The Singly-Charged Scalar Singlet as the

Origin of Neutrino Masses

Taking only contributions to the Fermi constant into account, the correction to the gauge

coupling g2 = e/sθ reads

δg2 = − g2
c2θ

1√
2
c2
θ δGF

which corrects for a missing factor cθ in the first line of Eq. (A.11) in [264]. Thus a singly-

charged scalar singlet h ∼ (1, 1, 1) of mass Mh which couples to left-handed leptons as per

yijh LiLjh + h.c. results in the following correction to the squared W -boson mass at tree

level:

δM2
W = − M2

W√
2GF

∣∣∣∣∣1 − M2
W

2M2
W −M2

Z

∣∣∣∣∣ |yeµh |2

M2
h

. (4.13)
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According to this, |δM2
W | is roughly a factor of 2/3 smaller than implied by Eq. (4.13)

in [87]. Since we require agreement with the world average of measurements17 of MW

at 3σ, Eq. (4.13) implies a weaker bound on |yeµh |/Mh and thus a small growth of the

available parameter space. Consequently, two quantitative statements in [87] are changed

as follows:

• We find that a result 80.348 GeV ≲ MW ≲ 80.353 GeV can be compatible with an

explanation of the flavour anomalies at 1σ, as can be seen in Fig. 3.3.

• The coupling yeµh enters box-diagram contributions to trilepton tau decays, and so we

find that the minimum mass Mh required to induce an observable signal in τ → 3e

and τ → 3µ at Belle II is given by Mh ≳ 9 TeV and Mh ≳ 13 TeV, respectively, as

illustrated in Fig. 3.7. Note that we display the brown sample points on top of the

other ones to improve contrast, unlike in Fig. 7 in [87].

More generally, since yeµh is correlated with yeτh and yµτh via the neutrino-mass constraint,

is it slightly easier to generate viable sample points. Still, their overall distribution in

parameter space is not noticeably affected, see Fig. 3.8. The figures shown in this erratum

are based on a sample comprising roughly 6.5×105 points for each neutrino-mass ordering.

As detailed in the caption of Fig. 2 in [87], the colours distinguish between the quadratic

case (brown) and the linear case in which the deviation of gτ/ge from universality can be

explained either only at 3σ (black), or at 2σ (blue) for which an explanation of the flavour

anomalies at 1σ (red) is also possible. For completeness, we also provide an updated

version of the lower part of Tab. 3.2.

17As δM2
W < 0 in Eq. (4.13), the singly-charged scalar singlet is not able to explain

the recent CDF result [290]. Here, we do not attempt to include the latter in the world
average for the W -boson mass, but use the value reported in [29] like in [87].
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Figure 3.3: Correlations among MW and deviations of gτ/ge from universality. The colours
are the same as in Fig. 2.

Numerical Analysis

Linear Case Quadratic Case .

Observable NO IO NO IO

Br(µ → eγ) 4.2 × 10−13 4.2 × 10−13 4.2 × 10−13 4.2 × 10−13

Br(τ → eγ) 9.5 × 10−11 8.2 × 10−11 3.3 × 10−13 6.6 × 10−14

Br(τ → µγ) 2.4 × 10−11 2.4 × 10−11 3.1 × 10−14 1.5 × 10−12

Br(µ → 3e) 1 × 10−12 1 × 10−12 1 × 10−12 1 × 10−12

Br(τ → 3e) 1.3 × 10−8 4.3 × 10−9 7.1 × 10−13 1.5 × 10−13

Br(τ → 3µ) 4.2 × 10−9 6.9 × 10−9 5.9 × 10−13 8.5 × 10−13

|gµ/ge| 1.0050 1.0050 1.0002 1.0000

|gτ/gµ| 1.0010 1.0014 1.0000 1.0001

|gτ/ge| 1.0050 1.0047 1.0002 1.0000

|δMW |[GeV] 0.018 0.018 0.001 0.005

Table 3.2: (lower table only) The upper table contains the current experimental bounds on
and future sensitivities to the relevant observables. The lower table shows the respective
maximum contribution found in the scan in the linear case and the quadratic case for
either neutrino-mass ordering.
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Figure 3.7: Branching ratio of tri-lepton tau decays as a function of the mass Mh. The
colours are the same as in Fig. 2. Dashed lines indicate prospected experimental sensitiv-
ities.
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Figure 3.8: Plot of the coupling ratios |yeµh |/|yµτh | and |yeτh |/|yµτh | as obtained in the nu-
merical scan. The colours are the same as in Fig. 2.
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Chapter 4

A Tale of Invisibility: Constraints

on New Physics in b → sνν

After having investigated a simplified neutrino mass model in the last chapter, I now turn

to a genuinely model-independent study of existing and prospective data on b → sνν

decay processes. Working in the context of LEFT and taking into account several decay

channels, I derive constraints on contributions from different operators. The results can

be matched onto any concrete BSM model which introduces new degrees of freedom close

to or above the electroweak scale. The presentation in this chapter is a verbatim adoption

of the publication [89].

4.1 Introduction

As of today, we know for sure that the flavour structure of nature is more complicated

than what is implied by the Standard Model (SM) of particle physics. This has first

become manifest with the measurement of neutrino oscillations which provide conclusive

evidence that lepton flavour is not exactly conserved. Currently observed anomalies such

as the long-standing tensions between the SM predictions for and measurements of the
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magnetic dipole moment of the muon [18] as well as in observables related to lepton-flavour

universality in semi-leptonic B-meson decays like R(D(∗)) and R(K(∗)) (see for instance

Ref. [10]) suggest the existence of new physics.

A particularly promising avenue to probe and constrain extensions of the SM is via the

investigation of rare processes. In the search for light and weakly-interacting particles, rare

processes with missing energy are particularly interesting, because they may not only be

enhanced via new intermediate states, but also via exotic sterile final states which escape

undetected.

Furthermore, the amplitudes for b → sνν transitions completely factorise into a hadronic

and a leptonic part and are therefore under very good theoretical control. Indeed, quantum

chromodynamics (QCD) involved in exclusive decays is entirely captured via an appro-

priate set of form factors, whereas the inclusive decay mode is at leading order given by

the underlying parton-level process which is calculable in perturbation theory and receives

corrections only at quadratic order in the heavy-quark effective theory (HQET) expansion.

Processes like b → sνν are mediated by flavour-changing neutral currents (FCNCs) which

in the SM are suppressed in a rather accidental manner via the Glashow-Iliopoulos-Maiani

(GIM) mechanism, which however generically does not hold anymore if flavour-sensitive

new physics is introduced. In this paper, we exploit this feature and study the constrain-

ing power of measurements of several observables related to the b → sνν transition in the

light of the expected sensitivity of Belle II [7].

Indeed, due to the large suppression of b → s transitions as predicted by the SM, currently

only experimental upper bounds on the decay channels B → K(∗)νν and B → Xsνν exist.

Most recently, the Belle-II collaboration presented a new analysis for B+ → K+νν [8]

and reported an upper bound Br(B+ → K+νν) < 4.1 × 10−5 at the 90% confidence

level. A simple weighted average of their result with earlier results [24, 291, 292] leads to

Br(B+ → K+νν) = (1.1 ± 0.4) × 10−5 [1,8]. If substantiated further, this would imply an

enhancement on top of the SM expectation Br(B+ → K+νν) = (4.4 ± 0.7) × 10−6 [11],

which has been interpreted in terms of leptoquarks and Z ′ bosons [293,294].
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Moreover, if the aforementioned observed tensions in b → sℓℓ processes are confirmed as

being induced by new physics, this may intriguingly also imply effects in the decay channels

with neutrinos, since the latter are part of the same weak-isospin doublets as left-handed

charged leptons. Recently, the interplay of the observed anomalies in b → sµ+µ− and rare

decays such as B → K(∗)νν and K → πνν was studied in [295, 296], and [77] provides a

more general analysis of the interplay of di-neutrino and di-charged-lepton modes based

on the relevant four-fermion vector operators. Finally, an observation of b → sνν may

place constraints on semi-leptonic B-meson decays with τ leptons in the final state which

are currently less precisely determined by experimental data.

There are several earlier model-independent studies of semi-leptonic B-meson decays with

final-state neutrinos in terms of effective field theory for different classes of operators.

Vector operators with left-handed massless neutrinos have been studied in [70,71,74–77].

Contributions from scalar and tensor operators were taken into account in [72,73], but no

dependence on (sterile) neutrino mass and consequently neither any interference between

scalar, vector and tensor operators. The inclusive mode B → Xsνν was studied earlier

in [67–69,74] where only vector operators were taken into account. Reference [297] contains

an investigation of the process B → Xsℓ
+ℓ− including contributions from scalar and tensor

operators which can be applied to B → Xsνν.

We go beyond previous work by considering the full set of dimension-6 operators in low-

energy effective theory (LEFT) which contribute to b → sνν [192, 298] for an arbitrary

number of generations to account for the possible existence of massive sterile neutrinos.

Right-handed sterile neutrinos νR are included as left-handed fields νcR ≡ CνR
T . There are

only five operators at dimension 6, i.e. vector and scalar operators with left-handed and

right-handed quark bilinears, respectively, and tensor operators with left-handed quark

bilinears. The dimension-5 dipole operators are already strongly constrained from searches

for neutrino magnetic dipole moments [299, 300] (see [301] for a recent review) and are

thus not considered.

In this work, we investigate the current constraints on the dimension-6 LEFT opera-

tors and their improvement in the light of the future sensitivity of Belle II. We discuss
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the implications of an interpretation of the aforementioned simple weighted average of

Br(B+ → K+νν) in terms of an additional sterile neutrino. We also provide the leading-

order result for the inclusive decay mode B → Xsνν with all contributing operators

including interference terms and arbitrary masses for both final-state neutrinos. Our re-

sults are entirely general and can be matched onto any specific new-physics model yielding

non-zero contributions to one or several of the considered operators.

The paper is organised as follows. The effective field theory framework is explained in

Sec. 4.2. In Sec. 4.3 we introduce the considered observables and present compact expres-

sions for massless neutrinos. In Sec. 4.4 we discuss the results of our phenomenological

study and conclude in Sec. 4.5. Expressions for the observables in the case of massive

neutrinos as well as further technical details are summarised in the appendices.

4.2 Effective Field Theory Framework

We consider the Standard Model extended by an arbitrary number of sterile neutrinos and

work entirely within LEFT [192]. The matching of the LEFT operators to SM effective

field theory (SMEFT) operators is presented in App. 4.11. Throughout the paper, we

assume massless SM neutrinos ν1,2,3, i.e. they refer both to flavour eigenstates and to mass

eigenstates. We neglect mixing between active ν1,2,3 and sterile neutrinos ν4,..., thus we

also treat the latter as well-defined mass and flavour eigenstates. The relevant interactions

for b → sνν processes are described by the Lagrangian [192,298]

L =
∑

X=L,R
CVLX
νd OVLX

νd +

 ∑
X=L,R

CSLX
νd OSLX

νd + CTLL
νd OTLL

νd + h.c.

 (4.1)

with the effective operators

OVLL
νd = (νLγµνL)(dLγµdL) OVLR

νd = (νLγµνL)(dRγµdR)

OSLL
νd = (νcLνL)(dRdL) OSLR

νd = (νcLνL)(dLdR)

OTLL
νd = (νcLσµννL)(dRσµνdL) ,

(4.2)

where the superscripts indicate the chirality and νcL ≡ CνL
T with the charge conjugation

matrix C = iγ2γ0. Note that the scalar operators OSLL
νd , OSLR

νd are symmetric in the
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neutrino flavours and the tensor operator OTLL
νd is antisymmetric in the neutrino flavours

as shown in Eq. (4.57). The vector operators OVLL
νd , OVLR

νd do not exhibit any manifest

symmetry properties. As the dimension-5 neutrino dipole operator νcLσµννLFµν only con-

tributes together with the dipole operator dLσµνdRFµν for down-type quarks, it effectively

contributes at the same order in the LEFT expansion. Still, both dipole operators are only

generated at loop-level and thus further suppressed. Moreover, the neutrino dipole opera-

tor is strongly constrained by searches for magnetic dipole moments of neutrinos [299,300]

(see [301] for a recent review). Hence we do not include contributions from the neutrino

dipole operator in this study.

The Weyl fermions νL for the neutrino fields and their respective charge conjugate can be

combined to form Majorana neutrino fields ν ≡ νL+νcL, e.g. the scalar operator OSLL
νd can

be rewritten as OSLL
νd = (νPLν)(dRdL) where we explicitly included the chiral projection

operators PL,R = 1
2(1 ∓ γ5). The vector and axial-vector Majorana neutrino bilinears are

antisymmetric and symmetric in the neutrino flavours, respectively. In App. 4.7 we present

the matching to a basis in terms of (pseudo)scalar, (axial)vector and tensor neutrino

bilinears which we use for the exclusive decays following [302].

Most of the relevant Wilson coefficients (WCs) are zero in the SM. The only sizeable

non-vanishing WC which contributes to b → sνανα is

CVLL,SM
νd,ααsb = −4GF√

2
α

2πV
∗
tsVtb

(
X

sin2 θW

)
, (4.3)

including two-loop electroweak corrections induced by top quarks as captured by the

function X. The latter has been calculated in [303] and is numerically given by [11]

X = 6.402 sin2 θW .

In LEFT the dominant quantum corrections originate from QCD running. The vector

(and axial-vector) current operators do not run at one-loop order because of the Ward

identity. However, the scalar and tensor currents do exhibit renormalisation group (RG)

running and their one-loop RG equations for the corresponding Wilson coefficients are

well-known (see e.g. [298,304])

µ
d

dµ
CSLL
νd = −3CF

αs
2π C

SLL
νd , µ

d

dµ
CTLL
νd = CF

αs
2π C

TLL
νd (4.4)
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where CF = (N2
c − 1)/2Nc = 4/3 and Nc = 3 is the second Casimir invariant of the colour

group SU(3)c and αs = g2
s/(4π) is the strong fine structure constant. Here, one may

exchange SLL ↔ SLR. The solutions to the above equations are given by

CSLL
νd (µ1) =

(
αs(µ2)
αs(µ1)

)3CF /b

CSLL
νd (µ2) , CTLL

νd (µ1) =
(
αs(µ2)
αs(µ1)

)−CF /b

CTLL
νd (µ2)

(4.5)

between two scales µ1 and µ2. Here b = −11 + 2
3nf with nf being the number of active

quark flavors between µ1 and µ2, and one may exchange CSLL
νd ↔ CSLR

νd . We use Run-

Dec [305] to obtain precise values for the strong fine structure constant at the different

scales. Numerically, we find for the Wilson coefficients at the hadronic scale µ = 4.8 GeV

as a function of the Wilson coefficients at the scale µ = mZ

CSLL
νd (4.8GeV) = 1.370CSLL

νd (mZ) , CTLL
νd (4.8GeV) = 0.900CTLL

νd (mZ) ,

CSLR
νd (4.8GeV) = 1.370CSLR

νd (mZ) .
(4.6)

4.3 Observables b → sνν

In our analysis we consider the two exclusive decays B → K(∗)νν and the inclusive decay

B → Xsνν decay. While the only observable for B → Kνν is the differential branching

ratio because the final-state neutrinos escape the detector unobserved, the decay to a vector

meson B → K∗(→ Kπ)νν provides additional angular information which is contained in

the K∗ longitudinal polarisation fraction FL [74, 76]. Belle II is anticipated to measure

the different branching ratios for B → K(∗)νν at the level of 10% with the full integrated

luminosity and will also be sensitive to FL [7]. Throughout this work we use the B → K

form factors in [6] and the B → K∗ form factors in [5], the analytical expressions for

which are summarised in App 4.6. Both of them are based on a combined fit to data

extracted from light-cone sum rules (LCSR) and lattice QCD (LQCD). We summarise

the SM predictions1, current constraints and future sensitivities in Tab. 4.1. There is no

1We used flavio [11,12] to determine the SM uncertainties of the exclusive decays. Our
results for the central values of the SM prediction are the same. UsingB → K∗ form factors
based on the LCSR+LQCD in [6] yields slightly smaller values for the branching ratio and
the longitudinal polarisation fraction FL, but within the quoted theoretical errors. Our
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Observable SM prediction current constraint Belle II [7]
LQCD+LCSR 5 ab−1 50 ab−1

Br(B0 → K0νν) (4.1 ± 0.5) × 10−6 [12] < 2.6 × 10−5 [24]2
Br(B+ → K+νν) (4.4 ± 0.7) × 10−6 [12] < 1.6 × 10−5 [292] 30% 11%
Br(B0 → K∗0νν) (11.6 ± 1.1) × 10−6 [12] < 1.8 × 10−5 [24] 26% 9.6%
Br(B+ → K∗+νν) (12.4 ± 1.2) × 10−6 [12] < 4.0 × 10−5 [291] 25% 9.3%
FL(B0 → K∗0νν) 0.49 ± 0.04 [12] 0.079
FL(B+ → K∗+νν) 0.49 ± 0.04 [12] 0.077
Br(B → Xsνν) (2.7 ± 0.2) × 10−5 [74] < 6.4 × 10−4 [306]

Table 4.1: Observables for b → sνν. The SM predictions for the exclusive decays and
their uncertainties are based on light-cone sum rules (LCSR) and lattice QCD and are
taken from [6] for B → Kνν and from [5] for B → K∗νν including a 10% increase of
the B → K∗ form factors due to finite-width effects [39]. The last two columns list the
Belle-II sensitivities to exclusive B-meson decays to a K(∗) meson and active neutrinos [7]
if the respective SM predictions are assumed.

projection for the inclusive decay B → Xsνν [7].

Recently, the Belle II collaboration presented a new analysis with a new upper bound

Br(B+ → K+νν) < 4.1 × 10−5 [1, 8]. A simple weighted average of the result with

previous analyses [24,291,292] results in Br(B+ → K+νν) = (1.1±0.4)×10−5 [1,8] which

suggests an enhancement over the SM expectation. We discuss its implications in terms

of new physics in Sec. 4.4.4.

For the discussion of the exclusive decays B → K(∗)νν we employ the helicity formal-

ism [307] and make use of the general discussion in [302] which employs the narrow-

width approximation. Finite-width effects have been considered for B → K∗ form factors

in [39, 308]. Following [39] we increase all B → K∗ form factors by 10% to take these

effects into account. In order to check our results, we performed independent calculations

for B → Kνν without the use of helicity amplitudes [309] and for B → K∗νν using

transversity amplitudes [310]. Finally, we find agreement when comparing our results to a

result for the inclusive decay slightly overestimates the branching ratio by about 20%,
because it does not take into account QCD and subleading HQET corrections, and hence
we refer to [74] for the SM prediction.

2Reference [24] quotes the upper bound on the branching ratio for B0 → K0
Sνν which

we translated to B0 → K0νν.
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calculation of exclusive decays in the SM extended with vector operators with flavio [12]

and the calculation of the inclusive decay in [74].

4.3.1 B → Kνν

After integrating over the phase space of the final state neutrinos which escape the detector

unobserved, the differential decay width reads [302]

dΓ(B → Kνανβ)
dq2 = 1

4Ḡ
(0)(q2) , (4.7)

where q2 denotes the square of the 4-momentum of the neutrino pair and Ḡ(0)(q2) is the

coefficient of the Wigner-D function D0
0,0(Ων) = 13. In App. 4.8 we report the function

G(0)(q2) which describes the CP-conjugate process B̄ → K̄νανβ. It is related to Ḡ(0) via

replacing all Wilson coefficients by their complex conjugates.

We refer the reader to App. 4.8 for the full expression with massive neutrinos as it is

lengthy, and only quote the differential decay rate for massless neutrinos

dΓ(B → Kνανβ)
dq2 =

√
λBKq

2

(4π)3m3
B(1 + δαβ)

[
λBK
24q2 |f+|2

∣∣∣CVLL
νd,αβsb + CVLR

νd,αβsb

∣∣∣2
+ (m2

B −m2
K)2

8(mb −ms)2 |f0|2
( ∣∣∣CSLL

νd,αβsb + CSLR
νd,αβsb

∣∣∣2 +
∣∣∣CSLL

νd,αβbs + CSLR
νd,αβbs

∣∣∣2 )
+ 2λBK

3(mB +mK)2 |fT |2
(∣∣∣CTLL

νd,αβsb

∣∣∣2 +
∣∣∣CTLL

νd,αβbs

∣∣∣2)+ (α ↔ β)
]

(4.8)

where λBK is an abbreviation for the Källén function evaluated as λBK ≡ λ(m2
B,m

2
K , q

2).

Note that there is no interference between scalar, vector and tensor operators for massless

neutrinos due to the different chiralities of the final-state neutrinos and the symmetry

properties of the scalar and tensor operators. As expected, the differential decay rate

is symmetric under exchange of the final-state neutrinos and also under exchange of the

quark-flavour indices sb ↔ bs for the scalar and tensor operators. The same exchange

symmetries hold for massive neutrinos.

3Ων denotes the solid angle of να in the centre of mass frame of the neutrino pair.
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4.3.2 B → K∗(→ Kπ)νν

As the final-state neutrinos escape unobserved from the detector, there are two indepen-

dent observables which can be parameterised in terms of the coefficients Ḡ0,0
0 and Ḡ2,0

0 of

the Wigner-D functions in the differential decay rate [302]

dΓ(B → K∗νανβ)
dq2d cos θK

= 3
8
[
Ḡ0,0

0 (q2)D0
0,0(ΩK) + Ḡ2,0

0 (q2)D2
0,0(ΩK)

]
(4.9)

where q2 denotes the square of the 4-momentum of the neutrino pair. The relevant Wigner-

D functions are D0
0,0(ΩK) = 1 and D2

0,0(ΩK) = 1
2
(
3 cos2 θK − 1

)4 and their coefficients Ḡ

are given in App. 4.9. The CP conjugate process B̄ → K̄∗νανβ is obtained by replacing

the Ḡ functions with the corresponding G functions G0,0
0 and G2,0

0 for which all Wilson

coefficients are replaced by their complex conjugates.

As there are two observable final-state particles K and π in addition to the missing energy

of the neutrino pair, there are two independent observables, the differential decay rate

dΓ/dq2 and the longitudinal polarisation fraction FL(q2) [311],

dΓ
dq2 = 3

4Ḡ
0,0
0 (q2) , FL(q2) = Ḡ0,0

0 (q2) + Ḡ2,0
0 (q2)

3Ḡ0,0
0 (q2)

. (4.10)

The corresponding transverse polarisation fraction FT is related to the longitudinal po-

larisation fraction by FL + FT = 1. Experiments measure the integrated longitudinal

polarisation fraction

FL =

〈
Ḡ0,0

0 (q2)
〉

+
〈
Ḡ2,0

0 (q2)
〉

3
〈
Ḡ0,0

0 (q2)
〉 , (4.11)

where angle brackets denote the binning over q2 including a summation over the final-state

neutrino flavours5

⟨X⟩ ≡
∑
α,β

1
(q2

1 − q2
0)

∫ q2
1

q2
0

dq2X . (4.12)

The analytic expressions in the general case of massive neutrinos are lengthy and reported

in App. 4.9, but there are compact expressions for massless neutrinos. In this case, the

4ΩK denotes the solid angle of the final-state K meson in the K∗ rest frame.
5If no endpoints q0,1 are specified, the full kinematic range is integrated over.
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differential decay rate is given by

dΓ(B → K∗νανβ)
dq2 =

√
λBK∗q2

(4π)3m3
B(1 + δαβ)

[
λBK∗ |V |2

12(mB +mK∗)2

∣∣∣CVLL
νd,αβsb + CVLR

νd,αβsb

∣∣∣2
+
(

8m2
Bm

2
K∗

3q2 |A12|2 + (mB +mK∗)2|A1|2

12

) ∣∣∣CVLL
νd,αβsb − CVLR

νd,αβsb

∣∣∣2
+ λBK∗

8(mb +ms)2 |A0|2
( ∣∣∣CSLR

νd,αβsb − CSLL
νd,αβsb

∣∣∣2 +
∣∣∣CSLR

νd,αβbs − CSLL
νd,αβbs

∣∣∣2 )
+
(

32m2
Bm

2
K∗ |T23|2

3(mB +mK∗)2 + 4λBK∗ |T1|2 + 4(m2
B −m2

K∗)2|T2|2

3q2

)

×
(∣∣∣CTLL

νd,αβbs

∣∣∣2 +
∣∣∣CTLL

νd,αβsb

∣∣∣2)+ (α ↔ β)
]

(4.13)

where λBK∗ = λ(m2
B,m

2
K∗ , q2). The longitudinal polarisation fraction reads

FL = 1−
∑
α,β

1
3(4π)3m3

B(1 + δαβ)Γ(B → K∗νν)

∫
dq2√λBK∗

×
(

λBK∗ |V |2q2

4(mB +mK∗)2

∣∣∣CVLL
νd,αβsb + CVLR

νd,αβsb

∣∣∣2 + (mB +mK∗)2q2|A1|2

4
∣∣∣CVLL

νd,αβsb − CVLR
νd,αβsb

∣∣∣2
+
(
2λBK∗ |T1|2 + 2(m2

B −m2
K∗)2|T2|2

)(∣∣∣CTLL
νd,αβsb

∣∣∣2 +
∣∣∣CTLL

νd,αβbs

∣∣∣2)+ (α ↔ β)
)
,

(4.14)

where we integrate over the full kinematic range in q2. As it is the case for B → Kνν there

is no interference between the scalar, vector, and tensor operators because of the different

chiralities and the symmetry properties of the scalar and tensor Wilson coefficients.

4.3.3 B → Xsνν

Formally, the inclusive decay rate of a hadron H is related to its full propagator in the

relevant effective theory described by a Hamiltonian Heff via the optical theorem [312]

Γ(H) = 1
mH

Im
〈
H

∣∣∣∣i ∫ d4x T
{
Heff(x)Heff(0)

}∣∣∣∣H〉 . (4.15)

In the case of B hadrons, the comparatively large b-quark mass allows for an efficient

expansion of the time-ordered product in terms of local operators defined in heavy-quark

effective theory (HQET). The leading term in this expansion is determined by the decay
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width of a free b quark, and corrections only appear at O(Λ2
QCD/m

2
b) in the heavy-quark

limit as it was first demonstrated in [313]. The fact that, at leading order, inclusive hadron

decays are equivalent to the underlying partonic processes is seen as a manifestation of the

notion of “quark-hadron duality" (see for instance Ref. [97] for a review). For semi-leptonic

inclusive decays, this enforces integrating out the phase space to a sufficiently large extent

which is often referred to as a “smearing procedure".

The rate of the inclusive decay B → Xsνν is very sensitive to mb. Besides the HQET

corrections, there are also radiative QCD corrections to the leading-order result, the size

of which depends on the scheme one chooses for the b-quark mass. It has been argued

that a so-called “threshold mass" definition is favourable [314, 315] as this avoids renor-

malon ambiguities associated with the pole mass which does not directly correspond to a

measurable quantity, and the QCD corrections are smaller and exhibit better convergence

behaviour compared to the case of the MS mass. We will employ the 1S mass as originally

proposed in [314] and use the more recently determined value m1S
b = 4.75±0.04 GeV [316].

The leading-order result for the differential decay rate of the inclusive decay B → Xsνανβ

reads

dΓ(B → Xsνανβ)
dq2 =

√
λ(m2

b ,m
2
s, q

2)λ(m2
α,m

2
β, q

2)
384π3q4(1 + δαβ)

×
(
dΓνανβ

incl,V
dq2 +

dΓνανβ

incl,S
dq2 +

dΓνανβ

incl,T
dq2 +

dΓνανβ

incl,VS
dq2 +

dΓνανβ

incl,VT
dq2

) (4.16)

with the different terms given in Appendix 4.10 for arbitrary neutrino masses. Subleading

HQET contributions will lead to a slight suppression by O(10%) [74] compared to the

leading-order result presented here. In the limit of massless neutrinos, the expression
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simplifies as follows:

dΓ(B → Xsνανβ)
dq2 =

√
λ(m2

b ,m
2
s, q

2)
768π3mb(1 + δαβ)

((
3 q

2

m2
b

(m2
b +m2

s − q2) + 1
m2
b

λ(m2
b ,m

2
s, q

2)
)

×
[ ∣∣∣CVLL

νd,αβsb

∣∣∣2 +
∣∣∣CVLL

νd,βαsb

∣∣∣2 +
∣∣∣CVLR

νd,αβsb

∣∣∣2 +
∣∣∣CVLR

νd,βαsb

∣∣∣2 ]
− 12q2ms

mb
Re
(
CVLL
νd,αβsbC

VLR∗
νd,αβsb + CVLL

νd,βαsbC
VLR∗
νd,βαsb

)
+ 2

[
3 q

2

m2
b

(m2
b +m2

s − q2)
[ ∣∣∣CSLL

νd,αβsb

∣∣∣2 +
∣∣∣CSLR

νd,αβsb

∣∣∣2 +
∣∣∣CSLL

νd,αβbs

∣∣∣2 +
∣∣∣CSLR

νd,αβbs

∣∣∣2 ]
+ 12q2ms

mb
Re
(
CSLL
νd,αβsbC

SLR∗
νd,αβsb + CSLL

νd,αβbsC
SLR∗
νd,αβbs

)]
+ 32

(
3 q

2

m2
b

(m2
b +m2

s − q2) + 2
m2
b

λ(m2
b ,m

2
s, q

2)
)[ ∣∣∣CTLL

νd,αβsb

∣∣∣2 +
∣∣∣CTLL

νd,αβbs

∣∣∣2 ]) .

(4.17)

Note that the result does not include QCD corrections and subleading HQET corrections

which generally lead to a suppression of the differential decay rate. For the SM prediction

it amounts to a suppression of O(20%). As there are currently no projected sensitivities

for the inclusive decay mode at Belle II, QCD and subleading HQET corrections are left

for future work.

4.4 Results

In this section we present our results, of which the discussion is split in four parts. In the

first three subsections, we demonstrate the reach for new physics in b → sνν processes at

Belle II under the assumption of no experimental evidence of an enhancement or suppres-

sion of the SM expectation. In the fourth subsection, we consider the recently reported

simple weighted average [1, 8] Br(B+ → K+νν) = (1.1 ± 0.4) × 10−5 and discuss how it

could be explained in terms of a sterile neutrino.

We generally use [6] for the B → K form factors and [5] for the B → K∗ form factors

which are both based on a combined fit to LCSR and LQCD data. We increase the

B → K∗ form factors by 10% to include finite-width effects following [39]. Note that

only the leading-order contribution to the inclusive decay is taken into account in the

following, which in particular overestimates the contributions to vector operators (and
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thus the SM contribution) by O(20%). All results are presented as constraints on real

Wilson coefficients evaluated at the electroweak scale µ = mZ . Note that the scalar

(tensor) Wilson coefficients are (anti)symmetric in the neutrino flavours, and thus the

presence of a Wilson coefficient with neutrino flavours αβ always implies the simultaneous

presence of the Wilson coefficient with neutrino flavours βα in these cases.

We typically only refer to B → Kνν and B → K∗νν in the main text, but we generally

imply B+ → K+νν and B0 → K∗0νν for the current bounds as they are the most stringent

ones, and the charged modes for the future sensitivity due to a slightly better new-physics

reach, unless differently specified. The results for the neutral mode would be essentially

the same in the latter case, since any discrepancy is only due to the slightly different

lifetimes and masses. Furthermore, as indicated in the caption in Figure 4.2, α refers to a

fixed value ∈ (1, 2, 3) in general, thus no summation is implied.

4.4.1 One Operator with Massless Neutrinos

Current Bound Future Sensitivity (50 ab−1)

Operator Value
[TeV−2]

NP scale
[TeV] Observable Value

[TeV−2]
NP scale

[TeV] Observable

OVLL,NP
νd,ααsb 0.028 6 B → K∗νν 0.023 7 B → K(∗)νν

OVLR
νd,ααsb 0.021 7 B → Kνν 0.002 25 B → K(∗)νν

OVLL
νd,γδsb 0.014 9 B → K∗νν 0.006 13 B → K(∗)νν

OSLL
νd,γγsb 0.012 10 B → K(∗)νν 0.002 25 B → Kνν

OSLL
νd,γδsb 0.009 10 B → K(∗)νν 0.002 25 B → Kνν

OTLL
νd,γδsb 0.002 25 B → K∗νν 0.0009 35 B → K∗νν

Table 4.2: Most competitive bounds imposed on the absolute value of the respective Wilson
coefficients if only one of them gets (sizeable) contributions from new physics at a time,
both for the current situation and for the projections for the 50 ab−1 Belle-II data set under
the assumption of a confirmation of the SM predictions. Here, α ∈ (1, 2, 3) and γ and δ
arbitrary, but γ ̸= δ (only in the case of OVLL

νd,γδsb, γ and δ may be equal if larger than 3),
and neutrino masses are set to zero both for active and sterile states. Generally, the most
conservative constraint is provided, with the possibility of interference with the SM taken
into account. We also provide rough estimates for the corresponding new-physics scale
and the observable from which the respective bound arises. If B → K(∗)νν is indicated,
B → Kνν and B → K∗νν yield similar bounds.
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In this section we discuss the current constraints on and future sensitivities to new physics

under the assumption that it contributes (dominantly) only to one of the considered opera-

tors, as summarised in Table 4.2. The first column contains a representative selection of rel-

evant operators which are bounded in different ways. The operators OVLL,NP
νd,ααsb and OVLR

νd,ααsb

both interfere with the SM, but since B → K∗νν and FL depend on |CVLL
νd,ααsb +CVLR

νd,ααsb|2

and |CVLL
νd,ααsb−CVLR

νd,ααsb|2 with different q2 dependencies each, contributions from OVLR
νd,ααsb

cannot efficiently cancel the SM contribution and thus it is subject to stronger bounds.

The operator OVLL
νd,γδsb and the scalar operators could be replaced by the respective right-

handed operators6 without changing the constraints.

The second and fifth columns contain the current bounds on and future sensitivities to

the Wilson coefficients in TeV−2, respectively. The values for the future sensitivities are

obtained under the assumption that the central value of the Belle II measurement exactly

coincides with the SM prediction. In each case, the given experimental uncertainty then

translates into a constraint on the Wilson coefficient. We generally provide the most

conservative bound on the absolute value, with the possibility of interference with the SM

contribution taken into account. Due to the latter, the current bounds on OVLL,NP
νd,ααsb and

OVLR
νd,ααsb are the least stringent ones.

Scalar operators are more strongly constrained, both in the case of contributions to diago-

nal elements and those to off-diagonal elements, and tensor operators exhibit the tightest

bounds. This general trend can be expected to remain so in the future as well, with the

only exception given by OVLR
νd,ααsb. The bound on this operator is projected to outper-

form the one on OVLL
νd,γδsb due to interference with the SM, because of which there is a

comparatively large contribution ∝ CVLL,SM
νd,ααsb C

VLR
νd,ααsb to the relevant observables.

Therefore, the future sensitivity to OVLR
νd,ααsb may become about ten times as strong as the

current bound, whereas the improvement factor for scalar operators is roughly five, and

about or less than two for the other operators. Besides the numerical values of the bounds

on the Wilson coefficients, we also provide an approximate lower bound for the associated

6In general, a “left-handed (right-handed) operator" is to be understood as an operator
which contains a left-handed (right-handed) projector in the quark bilinear.
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scale

Λ ≈ 1√
|CXLY
νd,αβsb|

(4.18)

at which new physics contributing to the respective operator might reside. Here, tree-

level mediation and O(1) couplings are assumed, and potential (unknown) enhancement

or suppression factors are neglected.

Currently, depending on the operator under consideration, new physics scales between

a few TeV and roughly 25 TeV may be seen as (partly) constrained. In the fourth and

seventh column of Table 4.2, we provide the process which gives rise to the indicated

bound. If B → K(∗)νν is indicated, both processes are very similarly competitive. We

find that B → Kνν is most sensitive to scalar operators, whereas tensor operators receive

the most stringent constraint from B → K∗νν. For vector operators, there is no overall

trend towards one clearly most competitive observable.

Lastly, we discuss the differential branching ratios as functions of the transferred momen-

tum q2. Figure 4.1 shows the contours for vector (blue), scalar (red) and tensor (black)

operators. For each of the curves, one representative non-zero Wilson coefficient is intro-

duced. We have set CXLL
νd,23sb = 0.01 TeV−2 in all cases X = V,S,T. The different linestyles

correspond to different choices for the form factors as detailed in the caption of Figure 4.1.

One finds that vector operators dominantly contribute to the small-q2 region in the case

of B → Kνν, whereas the tensor and scalar operators source this decay more efficiently

at intermediate and large q2, respectively. For B → K∗νν, one instead finds that the

contributions from tensor operators are quite large for small and intermediate q2 and then

decrease. Here, vector and scalar operators become most efficient for larger q2 values. As

we use a logarithmic scale on the vertical axes in the top plots of Figure 4.1, we can-

not show the behaviour of the respective curves at the kinematic endpoints which can be

intuitively understood in terms of helicity conservation, see for instance Ref. [72] for a dis-

cussion. Three q2 bins would most likely already help distinguish potential contributions

from different operators for either decay channel. As for the form factors, the different

sets are generally in good agreement for each operator. The largest discrepancies arise for

B → Kνν in the case of scalar operators.
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Figure 4.1: The differential branching ratio distributions (top) and the differential longitu-
dinal polarisation fraction FL (bottom) generated for different non-zero Wilson coefficients
CXLL
νd,23sb = 0.01 TeV−2 for X = V,S,T, and choices of form factors. The blue (red) [black]

lines stand for the vector (scalar) [tensor] operator, respectively. The solid lines denote
the results for the form factors which are used in the analysis, taken from [5] for the
B → K∗ and from [6] for the B → K form factors. Both sets of form factors are based on
a combined fit to LCSR and LQCD data. The dotted lines indicate the form factors based
on the LCSR fit in [6] and the dashed lines show the B → K∗ form factors obtained using
a combined fit to LCSR and LQCD in [6]. Note that no SM contribution is included here.

As can be seen from the definition in Eq. (4.43), the (unbinned) longitudinal polarisation

fraction is not sensitive to the value of the contributing Wilson coefficient if only one is

switched on at a time. Scalar-operator contributions do generally not enter the numerator

of FT ≡ 1 − FL and thus imply FL(q2;K∗+) = 1 (without taking into account the SM

contribution). The behaviour of vector and tensor operators is complementary in the

sense that the former gradually reduce the value of FL(q2;K∗+) if q2 increases, whereas

the effect of the latter is a complete cancellation of FL(q2;K∗+) for small q2 which then

becomes less efficient for larger q2. This is related to the normalisation of the relevant
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helicity amplitudes with respect to q2, i.e., one has q2|HV (A)
±αβ |2 → 0 and q2|HT (Tt)

0αβ |2 → 0,

but q2|HV (A)
0αβ |2 → const. and q2|HT (Tt)

±αβ |2 → const. for q2 → 0, see Eqs. (4.40), since A12,

T1 and T2 do not vanish at q2 = 0. In general, the distributions pertaining to scalar and

tensor operators (approximately) converge at the kinematic endpoint of the distribution,

only for the ones based on the form-factor set in Ref. [6] which employs a combined fit to

LQCD and LCSR data there is a slight discrepancy.

4.4.2 Two Operators with Massless Neutrinos

In the following, we discuss the parameter space compatible with non-zero contributions

from two operators induced by new physics under the assumption of massless neutrinos,

both for sterile states and as an approximation for the very small masses of the active SM

neutrinos. The case of massive neutrinos is discussed in Sect. 4.4.3.

Depending on the observable and whether the two operators shown in a plot interfere

with each other, the parameter space compatible with that observable will in most cases

have the shape of an ellipse or of straight bands. Straight bands indicate the possibility of

exact cancellations among two operators. This occurs if the observable under consideration

depends only on the sum or the difference of the two Wilson coefficients shown. If there is

no interference between the two operators, the viable parameter space will in general be

elliptic. The same shape arises if the observable under consideration receives contributes

both from the sum and from the difference. The cases can be distinguished based on the

orientation of the ellipses in parameter space. The occurrence of parabola in the case of

FL(K∗+) is due to its insensitivity to contributions from a single vector operator or due

to cancellations between contributions to the numerator and the denominator, see the

bottom-right plot in Figure 4.3.

In the plots in Figure 4.3, no interference with the SM contribution occurs. In the plots

in Figure 4.2, the Wilson coefficient shown on the horizontal axis interferes with the SM

contribution. This implies an overall shift of the centre of the resulting viable parameter

space, i.e. the intersection of the regions pertaining to the different observables, from
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Figure 4.2: The allowed parameter space for the Wilson coefficients under the assumption
that the Belle-II results for 5 ab−1 (light shaded regions) and for 50 ab−1 (dark shaded
regions, dashed lines) for several b → sνν observables will confirm the SM predictions.
In the shown cases, interference with the SM occurs. We use the sensitivities referenced
in [7] and assume an experimental uncertainty of 50% (dotted lines) and 20% (dashed
lines) for the inclusive decay B → Xsνν, respectively. The solid dark purple and green
lines reflect the current experimental bounds, see Table 4.1. For the neutrino flavor indices,
α ∈ (1, 2, 3), while γ and δ are arbitrary.

(0, 0) to (−1, 0) in units of |CVLL,SM
νd,ααsb | ≈ 0.01 TeV−2. Moreover, a region containing that

point will be excluded as well, since destructive interference would render the respective

decays unobservable in there, contrary to our assumption that Belle II will confirm the
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SM predictions. If instead the measured branching ratios turned out to be larger than

expected, the viable regions would in general get inflated, since there would necessarily

have to be non-zero contributions from new physics to induce the measured excess. In the

case of no interference with the SM, an excluded region containing (0, 0) would appear.

The excluded region containing (−|CVLL,SM
νd,ααsb |, 0) in the plots in Figure 4.2 would also grow,

since a cancellation of the SM contribution would be even more strongly disfavoured. On

the contrary, if Belle II turned out to measure smaller branching ratios than expected, this

would imply that there has to be cancellation of the SM contribution. Thus, the viable

region in the plots would generally shrink towards their respective centre points.

If the constraints from all decay channels are combined, there trivially is at least one

single connected viable region in parameter space containing (0, 0). If neither of the shown

operators interferes with the SM contribution, it is the only viable region. In the case of

interference, a region enclosing the point (−2, 0) in units of |CVLL,SM
νd,ααsb | will be viable as

well. This is because the new-physics contribution will result only in a sign flip of CVLL
νd,ααsb

which has no observable effect.7

In the case of vector operators, a region compatible with B → Kνν has the shape of a

straight band as can be seen in the top-left plot of Figure 4.2 and the bottom-left plot

in Figure 4.3, because the observable only depends on the (squared) sum of OVLL
νd,αβsb and

OVLR
νd,αβsb where β may be equal to α. Thus, there are exact cancellations between opposite-

sign contributions from new physics to these two Wilson coefficients. Put differently,

B → Kνν bounds new-physics contributions to left- and right-handed vector operators of

equal sign. On the contrary, B → K∗νν depends both on the sum and on the difference

of OVLL
νd,αβsb and OVLR

νd,αβsb, each being multiplied by different combinations of form factors

and constants. Hence, the parameter space compatible with B → K∗νν is always elliptic

in the case of vector operators, see the top-left plot in Figure 4.2 and the bottom-left plot

in Figure 4.3.

Interference between OVLL
νd,ααsb and OVLR

νd,ααsb as visible in the top-left plot in Figure 4.2 can

7Throughout this work, CVLL
νd,ααsb = CVLL,SM

νd,ααsb + CVLL,NP
νd,ααsb is understood.
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slightly weaken the current single-operator constraints listed in Table 4.2 to −0.033 TeV−2 ≲

CVLL,NP
νd,ααsb ≲ 0.012 TeV−2 or −0.022 TeV−2 ≲ CVLR

νd,ααsb ≲ 0.022 TeV−2 which amounts to

an effect of roughly 18% and 5%, respectively, and the implied lower bounds on the new-

physics scale become Λ ≳ 6 TeV and Λ ≳ 7 TeV. Note, though, that the future sensitivities

are not noticeably affected in a similar way in the case of vector operators due to the fact

that B → Kνν and B → K∗νν will become almost equally competitive.

For OVLL
νd,ααsb and OVLR

νd,ααsb, regions containing the point (−1,±1) in units of |CVLL,SM
νd,ααsb |

are viable as well, see the top-left plot in Figure 4.2. Thus, for these two operators,

an experimental “confirmation" of the SM will restrict any deviation of the new-physics

contribution from the points (0, 0), (0,−2) and (−1,±1) in units of |CVLL,SM
νd,ααsb | to less than

roughly 0.002 TeV−2, respectively. If the sign of this deviation is the same (opposite)

for CVLL,NP
νd,ααsb and CVLR

νd,ααsb, the relevant bound will be set by B → Kνν (B → K∗νν).

For the region containing (0, 0), this would infer a prospective bound on CVLL,NP
νd,ααsb which

is numerically very similar to the one on CVLR
νd,ααsb in Table 4.2. A region containing

(−1,±1)|CVLL,SM
νd,ααsb | means that sizeable O(|CVLL,SM

νd,ααsb |) new-physics contributions to two

Wilson coefficients effectively relocate the source of the processes under consideration

from OVLL
νd,ααsb, as it is the case in the SM, to OVLR

νd,ααsb without altering the experimentally

accessible signal. Thus, the possibility of the existence of two further relatively small,

disjoint windows for new physics will persist, distinguished by the sign of CVLR
νd,ααsb, with

an associated scale of roughly 10 TeV.

The bottom-left plot in Figure 4.3 shows a situation where two vector operators interfere

among themselves, but not with the SM. Here, it is sufficient to discuss the constraints

for non-negative CVLR
νd,αβsb where α ̸= β for α < 4 or β < 4, as there is no change under

swapping CVLL
νd,αβsb ↔ CVLR

νd,αβsb or a sign flip of the contributions. The current constraint

may weaken to −0.018 TeV−2 ≲ CVLL
νd,αβsb ≲ 0.018 TeV−2 if CVLR

νd,αβsb ≈ (−)0.011 TeV−2

at the upper (lower) bound, which amounts to a relaxation of the constraint on OVLL
νd,γδsb

in Table 4.2 by roughly 30%, and may be interpreted as the possibility of new physics

residing at roughly 7 TeV.

Vector operators are a suitable instance to make a case for efforts to experimentally access
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Figure 4.3: Continuation of Figure 4.2, but here the neutrino flavour indices are arbitrary
with α ̸= β.

the inclusive mode B → Xsνν. While this is very challenging, our results show that

with an assumed sensitivity of 50% one can already expect to (almost) exclusively probe

parameter space which has been inaccessible so far. Also, note that the inclusive mode

is less prone to cancellations among contributions from left- and right-handed operators

than B → K∗νν in parts of parameter space.

In the case of scalar operators, B → K∗νν only depends on the difference of OSLL
νd,αβsb and
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OSLR
νd,αβsb. Thus, the region compatible with this observable also has the shape of a straight

band, as it can be seen in the top-left plot in Figure 4.3. B → K∗νν (B → Kνν) hence

provides a bound on new-physics contributions to left- and right-handed scalar operators

of opposite (equal) sign.

Note that interference between contributions to OSLL
νd,αβsb and OSLR

νd,αβsb cannot significantly

relax the relevant current constraints indicated in Table 4.2, but |CSLL
νd,αβsb| ≲ 0.003 TeV−2

and a corresponding new-physics scale of roughly 20 TeV, which amounts to a loosening

of the single-operator bounds by roughly 50%, may still be viable in the future. This is

due to the fact that the new-physics reach of B → Kνν will become clearly dominant in

the case of scalar operators, whereas currently B → K∗νν is only slightly inferior. In that

sense, the situation is contrary to the one for vector operators where interference can only

noticeably affect the current constraints.

Generally, the observable FL(K∗+) is very suitable to test contributions to scalar operators

because they only modify the denominator in FT ≡ 1 −FL, see Eq. (4.44), whereas vector

and tensor operators also alter the numerator. Furthermore, note that a single contribution

to OVLL
νd,ααsb can be removed from the q2 integral in the numerator and the denominator

and thus FL(K∗+) is not sensitive to its value. If new physics contributes to OSLL
νd,αβsb

and OSLR
νd,αβsb with opposite signs, B → K∗νν (for 50 ab−1) and FL(K∗+) provide similarly

competitive constraints, as can be seen in the top-left plot of Figure 4.3. The top-right plot

in Figure 4.2 demonstrates that combining FL(K∗+) with B → K∗νν would prove efficient

in probing the scenario of new physics contributing to OVLL
νd,ααsb and a scalar operator (or a

tensor operator as shown in the bottom diagram). In this case, both observables related to

B → K∗ can already considerably tighten the existing bounds, and leveraging B → Kνν

as well would imply only a moderate further improvement especially in the case of tensor

operators.

The current single-operator bound on, say, OSLR
νd,αβsb does not significantly loosen if at the

same time the SM contribution would be (partly) cancelled by new physics. In fact, an

efficient cancellation of the SM contribution and a simultaneous contribution to scalar

operators would already come under severe pressure if the 5 ab−1 data set confirmed the
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respective SM predictions for B → Kνν and B → K∗νν, as there is only little overlap

between the relevant light-shaded regions in the top-right plot in Figure 4.3. On the

contrary, in the top-left plot the intersection of the viable regions pertaining to the 5 ab−1

data set is even disconnected in parameter space, but cancellations of the SM contribution

could not be excluded at all. Still, a scenario with |CSLR
νd,αβsb| ≲ 0.004 TeV−2 and a less

efficient cancellation of the SM contribution could only be ruled out with the 50 ab−1 data

set. This illustrates that Belle II can be expected to be quite efficient in constraining new

physics which sources only one scalar operator with different final-state neutrinos, hence,

more contributions would be necessary to “mimic" the SM expectation.

For the b → sνν processes, tensor operators only exist with left-handed projectors in

the fermion bilinears (together with their hermitean conjugates), thus they can never

interfere with one another. As in the case of scalar operators, the 5 ab−1 data set will

not entirely suffice either to rule out the scenario that |CVLL,SM
νd,ααsb | gets (partially) cancelled

by new physics and the relevant decays under consideration are instead induced by tensor

operators, but 50 ab−1 will provide a conclusive answer, see the bottom plot in Figure 4.2.

Note that if OVLL,NP
νd,ααsb and OTLL

νd,γδsb contribute together, instead of B → K∗νν one could

consider FL(K∗+) together with B → Kνν without a significant loss of constraining power.

4.4.3 Massive Neutrinos

For the discussion of the impact of non-zero neutrino masses, we start with the current

constraints on and future sensitivities to a single Wilson coefficient, respectively, as a

function of the mass of a sterile neutrino, as shown in Figure 4.4. In each case, all other

operators are switched off. It is assumed that the SM is extended by only one sterile

neutrino, that is, there cannot be two sterile neutrinos in the final state with different

masses. We study the entire range from massless neutrinos up to the respective kinematic

threshold for each process. Regarding the final-state neutrino flavours, we consider a

representative off-diagonal element as well as the diagonal one with two sterile neutrinos

with identical masses in the final state for the vector and scalar operator.

108



4.4.3 Massive Neutrinos

0 1 2 3 4
m4 (GeV)

10−3

10−2

10−1

100

C
V

L
L

ν
d
,4

4s
b

(T
eV
−

2
)

B+ → K+

B+ → K∗+

FL(K∗+)

B → Xs

0 1 2 3 4
m4 (GeV)

10−3

10−2

10−1

100

C
S

L
L

ν
d
,4

4s
b

(T
eV
−

2
)

B+ → K+

B+ → K∗+

FL(K∗+)

B → Xs

0 1 2 3 4
m4 (GeV)

10−3

10−2

10−1

100

C
V

L
L

ν
d
,3

4s
b

(T
eV
−

2
)

B+ → K+

B+ → K∗+

FL(K∗+)

B → Xs

0 1 2 3 4
m4 (GeV)

10−3

10−2

10−1

100

C
S

L
L

ν
d
,3

4s
b

(T
eV
−

2
)

B+ → K+

B+ → K∗+

FL(K∗+)

B → Xs

0 1 2 3 4
m4 (GeV)

10−3

10−2

10−1

100

C
T

L
L

ν
d
,3

4s
b

(T
eV
−

2
)

B+ → K+

B+ → K∗+

FL(K∗+)

B → Xs

Figure 4.4: Current (shaded regions) and future sensitivities (lines) on a single Wilson
coefficient as a function of the mass of two sterile neutrinos (top panel) and one sterile
neutrino (middle panel and bottom plot) in the final state, respectively. We assume that
the Belle-II results for 5 ab−1 (dashed lines) and for 50 ab−1 (solid lines) for several
b → sνν observables will confirm the SM predictions. We use the sensitivities referenced
in [7] and assume an experimental uncertainty of 50% (solid line) and 20% (dashed line)
for the inclusive decay B → Xsνν. Regions with \\ (//) [–] hatching are excluded via
the current bounds on B+ → K+νν (B0 → K∗0νν) [B → Xsνν]. The constraints are
identical if exchanging the third neutrino flavour α = 3 for α = 1, 2.

109



CHAPTER 4. A TALE OF INVISIBILITY: CONSTRAINTS ON NEW PHYSICS IN
B → Sνν

Note that for a sterile-neutrino mass larger than m4 ≳ 1.7 (3.7) GeV for (off-)diagonal

elements of vector operators, B → Kνν is currently more constraining than B → K∗νν.

In terms of future sensitivities, B → Kνν and B → K∗νν are very similarly competitive in

the (approximately) massless case, but for heavier sterile neutrinos B → K∗νν also grows

more and more inferior. Indeed, for m4 ≳ 1.5 (3.5) GeV for (off-)diagonal vector-operator

elements, even the results for B → Kνν based on the 5 ab−1 data set are projected

to outperform the bounds imposed by all other observables. The plots in Figure 4.4

also reflect the previously made observation that FL(K∗+) is not sensitive to a single

contribution to OVLL
νd,αβsb in the case of massless neutrinos. A sizeable deviation from that

only occurs for two massive neutrinos in the final state as can be seen in Eqs. (4.38)

and (4.39), and thus FL(K∗+) cannot impose a constraint on CVLL
νd,34sb where the mass only

reduces the available phase space. For OVLL
νd,44sb, a prospective constraint arises for m4 ≳ 0.9

GeV which nonetheless will only imply a (moderate) improvement over the current bounds

in the range 1.5 GeV ≲ m4 ≲ 1.9 GeV, and is generally not competitive.

For the entire accessible neutrino-mass range, B → Kνν accounts for the highest future

sensitivity to as well as the most stringent current bound on scalar operators, although

this dominant role is not very pronounced in the latter case for very small or zero neutrino

masses. Furthermore, irrespective of their symmetry properties, scalar operators are al-

ways more strongly constrained than vector operators also for non-zero neutrino masses.

In the case of tensor operators, B → K∗νν imposes the most competitive bound for almost

the entire neutrino-mass range. Indeed, for 1.1 GeV ≲ m4 ≲ 3.6 GeV, even the results for

B → K∗νν based on the 5 ab−1 data set will outperform the bounds imposed by all other

observables. Only if the sterile neutrino is heavier than m4 ≳ 4 GeV, B → Kνν becomes

more competitive, and in this range the tensor operator will also be slightly less stringently

constrained than the scalar operator. Hence, B → Kνν is indeed a very powerful probe of

new physics in b → sνν processes for all considered operators. Note that up to m4 ≲ 2.6

GeV, we find that the inclusive mode is more sensitive to tensor-operator contributions

than B → Kνν.

Linearly adding up the theoretical and experimental uncertainties for FL(K∗+) as given
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Figure 4.5: Binned longitudinal polarisation fraction FL(K∗+) as a function of one new-
physics Wilson coefficient at a time (including the SM contribution). On the left-hand
side the blue (red) [black] lines stand for the vector (scalar) [tensor] operator, respectively.
Solid [dashed] contours signify m4,5 = 0 GeV [m4,5 = 1.5 GeV]. On the right-hand side the
blue (purple) lines stand for the Wilson coefficients CVLL

νd,33sb (CVLR
νd,33sb). Note the binned

longitudinal polarisation fraction FL(K∗+) is obtained by separately binning the numera-
tor and denominator, see Eq. (4.11), and not by integrating the distributions FL(q2;K∗+)
shown in Figure 4.1.

in Table 4.1, one finds that only a result in the range (0.37, 0.61) would be compatible

with the SM expectation at 1σ. Hence, a measurement of FL(K∗+) in principle allows

for a sharp distinction between the case of dominant contributions to only the scalar

operator, or only the tensor operator, as can be seen in Figure 4.5 on the left-hand side.

As scalar operators do only contribute to the denominator, but not to the numerator of

FT , increasing the Wilson coefficient only implies a shrinkage of the difference of FL(K∗)

from 1. Note that with one massive neutrino in the final state, FL(K∗+) is affected by

new physics contributing to OVLL
νd,ααsb only via phase-space suppression which does not

result in a competitive bound, see Eqs. (4.38) and (4.39). While FL(K∗+) is sensitive

to new-physics contributions to left-handed vector operators with two massive neutrinos,

unambiguously discerning a deviation from the SM expectation might be challenging in

this case. On the contrary, a contribution to a right-handed vector operator can induce

a signal in FL(K∗+) also for massless neutrinos, see the plot on the right in Figure 4.5,

which should be distinguishable from the SM case at least for a Wilson coefficient value

close to CVLR
νd,ααsb ≈ 0.02 TeV−2.
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A generic effect of the introduction of sterile-neutrino masses is a larger phase-space sup-

pression and thus a relaxation of the implied bounds on the new-physics Wilson coefficients.

Note that the masses have to be quite large to induce a noticeable deviation, for instance,

a decrease of the bounds on the respective Wilson coefficients by a factor of 2 occurs only

for sterile-neutrino masses of at least roughly m4 = 1 (2) GeV or larger in the case of

(off-)diagonal operator elements, that is, for about half of the kinematically allowed range

there is only a small effect. Indeed, the structure of the respective viable regions for two

non-zero operators does not substantially change either if massive neutrinos are consid-

ered. In particular, neutrino masses do not spoil the possibility of exact cancellations

between contributions from vector and scalar operators of opposite chirality, respectively,

to B → Kνν and B → K∗νν.

Non-zero neutrino masses allow for interference between vector operators and scalar or

tensor operators. Still, as the contributions are proportional to (the sum or difference of)

the final-state neutrino masses, the discussion of potential interference of new physics with

the SM contribution in the last section will not be noticeably impacted if the tiny masses

of the active SM neutrinos were taken into account. A non-trivial consequence of two

massive sterile neutrinos in the final state, though, are non-vanishing contributions from

interference among scalar operators with different quark-flavour orderings, sb and bs. This

can also occur for tensor operators.8 As the amplitudes for the decays under consideration

receive contributions from the Hermitian conjugates of the bs operators which amounts to

a chirality flip in the neutrino bilinears, interference with sb operators only occurs if both

neutrinos in the final state are massive.

The plots in Figure 4.6 indicate that the interference effect could in principle be exploited

to distinguish between interfering contributions from sb and bs quark-flavour scalar op-

erators with of the same quark chirality from those of opposite chirality. In particular,

the orientation of the ellipses indicating the parameter space compatible with B → K∗νν

and FL(K∗+) changes. Note that especially for two operators of the same chirality, a

8Vector operators with the quark-flavour ordering bs are trivially related to those with
sb via Hermitian conjugation.
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Figure 4.6: Future sensitivity of Belle II for 5 ab−1 (light shaded regions) and for 50 ab−1

(dark shaded regions, dashed lines) to scalar Wilson coefficients with sb and bs quark-
flavour ordering and massive sterile neutrinos following the same analysis as in Figure 4.2.
The solid dark purple and green lines indicate the current experimental bound, see Ta-
ble 4.1. Left: m4 = 0 GeV; Right: m4 = 1.5 GeV.

measurement of either observable can be expected to already imply a substantial improve-

ment over the current bound imposed by B → Kνν. Still, in the considered scenario with

only two contributing operators, the latter will retain the best future sensitivity to new

physics. Nonetheless, B → Kνν lacks the feature of distinguishing between chiralities of

scalar operators. Thus it is conceivable that in scenarios with more contributions, for in-
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OVLL
νd,44sb OSLL

νd,44sb OSLL
νd,34sb OTLL

νd,34sb Bound SM

WC (10−3 TeV−2) 22.3+5.97
−8.31 9.12+2.44

−3.40 6.45+1.72
−2.40 9.33+2.50

−3.48 0
Br(B0 → K∗0νν)/10−5 2.89 ± 1.05 1.45 ± 0.18 13.5 ± 7.5 1.8 1.16 ± 0.11
Br(B+ → K∗+νν)/10−5 3.11 ± 1.13 1.57 ± 0.20 14.6 ± 8.1 4.0 1.24 ± 0.12

Br(B → Xsνν)/10−4 1.01 ± 0.37 0.494 ± 0.055 4.57 ± 2.53 6.4 0.27 ± 0.02

Table 4.3: Implication of the non-zero simple weighted average of Br(B+ → K+νν) for the
contributing WCs and the other decay channels. The indicated upper and lower ranges
reflect the uncertainty at 1σ. Note that our new-physics predictions for the inclusive mode
do not take into account QCD and HQET corrections, as indicated in Section 4.3, and are
thus expected to be overestimated by O(10 − 20%). All bounds and SM predictions are
the same as in Table 4.1.

stance also to CSLR
νd,44sb with the sign opposite to that of CSLL

νd,44sb, interference effects render

B → K∗νν and/or FL(K∗+) entirely competitive with B → Kνν and the shape of the

combined viable parameter space carries information about the chiralities.

4.4.4 A Hint for New Physics?

Recently, the Belle-II collaboration reported an upper limit Br(B+ → K+νν) < 4.1 ×

10−5 [8] at the 90% confidence level. As part of the analysis a simple weighted average

of the branching ratio with previous analyses [24, 291, 292] was presented with Br(B+ →

K+νν) = (1.1 ± 0.4) × 10−5 [1,8] which is above the SM expectation Br(B+ → K+νν) =

(4.4±0.7)×10−6 [11]. In this section, we interpret it as a hint for new physics and discuss

its implication for and interplay with the existing bounds on the other decay channels.

With the sets of form factors employed in this work, the SM prediction is contained in the

2σ region of the average. At 3σ, the latter is still well compatible with zero.

We take the SM to be extended by one massless sterile neutrino which accounts for the

non-zero branching ratio Br(B+ → K+νν). We further assume one non-zero Wilson

coefficient at a time, and compute the resulting branching ratios for the other decay

channels. The results (at the scale µ = mZ) are summarised in Table 4.3. The constraints

for the right-handed vector and scalar operators would be the same.
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Figure 4.7: Parameter space which is compatible with the non-zero simple weighted av-
erage of Br(B+ → K+νν) [1, 8] at 1σ (2σ) [darker(lighter)-orange shaded region] and the
current bounds on B+ → K+νν and B0 → K∗0νν.
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The comparatively large vector Wilson coefficient reflects that B → Kνν is generally

less sensitive to the vector operator than the scalar operator. Besides, one has OTLL
νd,34sb =

−OTLL
νd,43sb and thus the combined contribution from the components of the tensor operator

is also fairly large. The non-zero branching ratio Br(B+ → K+νν) also directly implies

Br(B0 → K0νν) = (1.02 ± 0.37) × 10−5 which is perfectly compatible with the current

bound Br(B0 → K0νν) < 2.6 × 10−5.

As a general result, one may assert that the non-zero weighted average can be most

compellingly explained in terms of a contribution from scalar operators, since the relative

uncertainties of the predicted branching ratios are at most roughly 13% at 1σ and thus

fairly small. More specifically, the prediction for the neutral (charged) mode of B → K∗νν

is roughly 20% (60%) smaller than (and hence perfectly compatible with) the current

bound, but also still agrees with the SM prediction at 2σ. In particular, as the predictions

are slightly larger than in the SM, this scenario will definitely be tested at Belle II. The

neat agreement with the current bounds is reflected by the fact that if two operators

contribute, the viable region in parameter space compatible with the average at 1σ in the

plots in Figure 4.7 is connected only in the case of two non-interfering scalar operators.

An explanation via vector operators is less preferred due to some tension with B0 → K∗0νν

of which the 1σ region is already excluded. Still, the prediction for this channel is compat-

ible with zero at 3σ. The latter statement also holds for B+ → K∗+νν, but its prediction

respects the current bound at large parts of the 1σ range. Arguably, contributions to

tensor operators are the least elegant way to account for the non-zero weighted average

of Br(B+ → K+νν). The implied predictions for both the neutral mode and the charged

mode of B → K∗νν are already ruled out at much more than 1σ. Indeed, Figure 4.7

indicates that current bounds already constrain a possible contribution from tensor op-

erators to be quite small, i.e. |CTLL
νd,34sb| ≲ 0.002 TeV−2, whereas |CTLL

νd,34sb| ≳ 0.006 TeV−2

would be needed to explain the non-zero average at 1σ. Conversely, the uncertainties of

the predictions are so large that they are compatible with zero at less than 2σ.
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4.5 Conclusions

In this paper, we have studied how new physics contributing to b → sνν transitions is

constrained by current bounds on the branching ratios of B → Kνν, B → K∗νν, and

B → Xsνν, and what improvements can be expected from the projected measurement of

these processes at Belle II. We have also taken into account the longitudinal polarisation

fraction FL(B → K∗νν). Throughout the analyses, we have assumed that the Belle-II

results will confirm the SM expectations. Our investigation is based on the most general

set of dimension-6 operators in low-energy effective theory (LEFT) which contribute to

b → sνν [192, 298] including massive sterile neutrinos, except for the dimension-5 dipole

operator the contribution of which can be expected to be very suppressed. We employ the

form factors provided in [6] for B → Kνν and the ones from [5] for the observables related

to B → K∗νν, both of which are based on a combined fit to LQCD and LCSR data.

Finite-width effects are taken into account for the B → K∗ form factors via increasing

them by 10% following [39]. The implementation of the exclusive decays makes use of the

general formalism developed in Ref. [302]. We also provide the leading-order expression

for the inclusive decay mode which we computed with FeynCalc [317,318].

We started our discussion with a consideration of the bounds in the case of new physics

(dominantly) contributing to only one operator. We found that currently the vector op-

erator is the least constrained one, whereas the most stringent bound holds for the tensor

operator. The associated scale of new physics might reside at roughly 25 TeV in the latter

case, which Belle II can be expected to refine to approximately 35 TeV. One should stress

that the scalar and tensor operators exhibit symmetries under the exchange of the final-

state neutrino flavours, and thus a contribution from a αβ operator element with α ̸= β

always implies that the βα element also contributes with equal strength, which we do not

compensate for in our basis.

The bulk of our paper is dedicated to the case of non-zero new-physics contributions to

two different operators, as this allows the discussion of effects of interference between the

operators, and complementarities between different observables to probe these contribu-
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tions. We have also considered new-physics contributions to OVLL
νd,ααsb which is the only

non-vanishing operator in the SM at leading-order. Since we assume that Belle II will not

find significant deviations from the SM expectation, we exclude the possibility of efficient

cancellations, and thus there is generally less parameter space available in this scenario.

Only a simultaneous compensating contribution to OVLR
νd,ααsb could potentially make the

experimental results appear consistent with the SM predictions.

Our results show that the combination of the processes B → Kνν and B → K∗νν is

generally the most powerful probe of new physics. Partly, this is due to the fact that

B → Kνν depends on the sum of left- and right-handed vector operators and scalar

operators, respectively, while B → Kνν is dominantly sensitive to the respective difference

of these operators. Thus, these processes probe largely different regions in parameter space.

Moreover, the experimental uncertainties for these processes are projected to be as small as

ca. 10% with the 50 ab−1 data set. In the case of massive neutrinos, the bound imposed

by B → Kνν becomes completely superior in the case of large neutrino masses for all

considered operators. Still, as indicated above, these observables individually are not safe

from the possibility of cancellations among interfering contributions from different Wilson

coefficients, in which case independent information from other processes is needed.

In particular, throughout our study a bound on the inclusive mode always translates

into an unambiguous bound on each contributing operator. B → Xsνν is a suitable probe

especially in the case of interfering vector operators, but it is also useful to constrain tensor

operators for which it outperforms B → Kνν for sterile-neutrino masses below ≲ 2.6 GeV.

Our conservative assumptions about the uncertainties associated with B → Xsνν could be

nullified with a dedicated study of next-to-leading order contributions to the decay rate.

Therefore, we wish to make a case for efforts to experimentally access the inclusive decay

and to reduce its theory uncertainty.

Conversely, the longitudinal polarisation fraction FL is very suitable to test the scenario

of new physics yielding contributions to scalar operators. In the case of two massive

neutrinos in the final state, it can even help distinguish whether the operators are of the

same or opposite chirality. Here, it is perfectly competitive with the branching ratio of
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B → K∗νν. The latter observable is the most sensitive probe for tensor operators up to

a sterile-neutrino mass of ≲ 4 GeV and also competitive with B → Kνν in the case of

vector operators and small neutrino masses.

In summary, we have demonstrated that the search for rare process based on b → s quark

transitions with missing energy in the final state at Belle II will considerably strengthen

the current bounds on new physics contributing to these processes, and that the processes

under consideration exhibit different and therefore complementary sensitivity to the differ-

ent operators taken into account. Studies of non-leading contributions to the observables

as well as the interpretation of the results in terms of SMEFT and their connection to

other rare processes are left for future work.

4.6 Appendix: Form factors

We follow the parametrisation in [6]. For the B → P transition with P = π, K, D̄, the

form factors f0, f+ and fT are defined as in

⟨P (k)|dγµb|B(p)⟩ =
[
(p+ k)µ − m2

B −m2
P

q2 qµ
]
f+(q2) + m2

B −m2
P

q2 qµf0(q2),

⟨P (k)|dσµνqνb|B(p)⟩ = ifT (q2)
mB +mP

(
q2(p+ k)µ − (m2

B −m2
P )qµ

)
,

(4.19)

where qµ = pµ − kµ, k and p are the 4-momenta of the P pseudoscalar meson and the B

meson, respectively.

For theB → V decay with V = ρ, K∗, D̄∗, the non-vanishing form factors V, A0,1,2,3, T1,2,3
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are

⟨V (k, η)|dγµb|B(p)⟩ = ϵµνρση∗
νpρkσ

2V
mB +mV

,

⟨V (k, η)|dγµγ5b|B(p)⟩ = iη∗
ν

[
gµν(mB +mV )A1 − (p+ k)µqν

mB +mV
A2 − qµqν

2mV

q2 (A3 −A0)
]
,

⟨V (k, η)|diσµνqνb|B(p)⟩ = ϵµνρση∗
νpρkσ2T1,

⟨V (k, η)|diσµνγ5b|B(p)⟩ = iη∗
ν

[
(gµν(m2

B −m2
V ) − (p+ k)µqν)T2

+ qν
(
qµ − q2

m2
B −m2

V

(p+ k)µ
)
T3

]
,

(4.20)

where η is the polarisation vector of the vector meson. A3 is a redundant quantity and

can be expressed in terms of A1 and A2

A3 ≡ mB +mV

2mV
A1 − mB −mV

2mV
A2. (4.21)

In practice, it is common to replace A2 and T3 by

A12 ≡(mB +mV )2(m2
B −m2

V − q2)A1 − λ(q2,m2
B,m

2
V )A2

16mBm2
V (mB +mV ) ,

T23 ≡(m2
B −m2

V )(m2
B + 3m2

V − q2)T2 − λ(q2,m2
B,m

2
V )T3

8mBm2
V (mB −mV ) .

(4.22)

Furthermore, there are also three identities for the form factors at q2 = 0:

f+(q2 = 0) =f0(q2 = 0),

A0(q2 = 0) =A3(q2 = 0),

T1(q2 = 0) =T2(q2 = 0).

(4.23)

Combining Eqs. (4.21), (4.22), and (4.23), one obtains

A12(q2 = 0) = m2
B −m2

V

8mBmV
A0(q2 = 0). (4.24)

4.7 Appendix: S, P, V, A, T basis

The LEFT operators can be related to the basis used in [302]. In order to take into account

the Majorana nature of neutrinos we include an additional factor of 1/2 in the effective
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Lagrangian. This ensures that the leptonic helicity amplitudes have the same form as in

the case of Dirac fermions. The effective Lagrangian is thus given by

L = 1
2cH

∑
i

∑
α,β

(Ci,αβOi,αβ + C ′
i,αβO

′
i,αβ) . (4.25)

where i runs over S, P, V,A, T and cH determines the normalisation of the operators. In

this work we choose cH = 1.9 The operators are given by

OS(P )αβ = (sLb)(να(γ5)νβ) , OV (A)αβ = (sLγµb)(ναγµ(γ5)νβ) , OT αβ = (sLσµνb)(νασµννβ) .
(4.26)

The primed operators are obtained by replacing sL → sR, i.e. O′ = O|sL→sR where

qL,R ≡ PL,Rq. The notation O9(10) ≡ OV (A) is also commonly found in the literature.

The operators have well-defined symmetry properties: the pseudo(scalar) operators are

symmetric in the neutrino flavour indices and the (axial)vector and tensor operators are

antisymmetric. We find for the Wilson coefficients using the S, P, V,A, T basis

CV αβ = CVLL
νd,[αβ]sb , CAαβ = −CVLL

νd,(αβ)sb ,

C ′
V αβ = CV LRνd,[αβ]sb , C ′

Aαβ = −CV LRνd,(αβ)sb ,

CSαβ = CSLR
νd,(αβ)sb + CSLL∗

νd,(βα)bs , CPαβ = −CSLR
νd,(αβ)sb + CSLL∗

νd,(βα)bs ,

C ′
Sαβ = CSLL

νd,(αβ)sb + CSLR∗
νd,(βα)bs , C ′

Pαβ = −CSLL
νd,(αβ)sb + CSLR∗

νd,(βα)bs ,

CT αβ = 2CTLL∗
νd,[βα]bs , C ′

T αβ = 2CTLL
νd,[αβ]sb ,

(4.27)

where α, β denote the neutrino flavours. Parentheses (. . . ) indicate symmetrisation and

square brackets [. . . ] indicate anti-symmetrisation of the neutrino flavour indices as in

M(ab) ≡ 1
2 (Mab +Mba) , M[ab] ≡ 1

2 (Mab −Mba) . (4.28)

4.8 Appendix: B → Kνανβ

For the convenience of the reader, we provide the expression for the coefficient G(0) of the

Wigner-D function D0
0,0(Ω) = 1 for B̄ → K̄νανβ following [302]. Although the vector and

9Reference [302] uses cH = 4GF√
2

α
4πV

∗
tsVtb. Note that we rewrote the effective Hamil-

tonian in terms of an effective Lagrangian and replaced ℓ in [302] by the neutrino fields
ν.
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tensor operator are antisymmetric in the neutrino flavour indices α, β, all combinations

which enter the helicity amplitudes are symmetric under exchanging them. The CP-

conjugate process B → Kνανβ is obtained via replacing G(0) by Ḡ(0) where the Wilson

coefficients in the helicity amplitudes are replaced by their complex conjugates. Note that

this complex conjugation does not introduce additional minus signs into the coefficients

of the Wigner-D functions for terms with antisymmetric Wilson coefficients. The CP

conjugation also implies a redefinition of the angles, in particular θK → π − θK , under

which the relevant Wigner-D functions D0
0,0 and D2

0,0 are invariant though. According

to [302],

N−1G(0)(q2) =
(

4 (EαEβ +mαmβ) + λγ∗

3q2

)
|hVαβ|2 +

(
4 (EαEβ −mαmβ) + λγ∗

3q2

)
|hAαβ|2

+
(

4 (EαEβ −mαmβ) + λγ∗

q2

)
|hSαβ|2 +

(
4 (EαEβ +mαmβ) + λγ∗

q2

)
|hPαβ|2

+ 16
(
EαEβ +mαmβ − λγ∗

12q2

)
|hTt
αβ|2 + 8

(
EαEβ −mαmβ − λγ∗

12q2

)
|hTαβ|2

+ 16 (mαEβ +mβEα) Im
[
hVαβh

Tt∗
αβ

]
+ 8

√
2 (mαEβ −mβEα) Im

[
hAαβh

T∗
αβ

]
,

(4.29)

where the normalisation factor N , the energies Eα,β and the kinematic functions λBK,γ∗

are defined as in

N =
√
λBKλγ∗

(4π)3m3
Bq

2(1 + δαβ) , Eα,β =
√
m2
α,β + λγ∗

4q2 , λBK ≡ λ(m2
B,m

2
K , q

2) , λγ∗ ≡ λ(q2,m2
α,m

2
β)

(4.30)

and λ(x, y, z) ≡ x2 +y2 +x2 −2xy−2xz−2yz denotes the Källén function. The symmetry

factor for identical neutrinos in the final state is contained in N .
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The helicity amplitudes are given by

hVαβ =
√
λBK

2
√
q2

(
CV αβ + C ′

V αβ

)
f+ , (4.31)

hAαβ =
√
λBK

2
√
q2

(
CAαβ + C ′

Aαβ

)
f+ , (4.32)

hSαβ = m2
B −m2

K

2

(
CSαβ + C ′

Sαβ

mb −ms
+ mα −mβ

q2 (CV αβ + C ′
V αβ)

)
f0 , (4.33)

hPαβ = m2
B −m2

K

2

(
CPαβ + C ′

Pαβ

mb −ms
+ mα +mβ

q2 (CAαβ + C ′
Aαβ)

)
f0 , (4.34)

hTαβ = −i
√
λBK√

2(mB +mK)

(
CT αβ − C ′

T αβ

)
fT , (4.35)

hTt
αβ = −i

√
λBK

2(mB +mK)
(
CT αβ + C ′

T αβ

)
fT (4.36)

in terms of the S, P, V,A, T basis. We provide the matching to the chiral LEFT basis in

App. 4.7. For massless neutrinos, the expression reduces to

G(0)(q2) =
√
λBKq

2

(4π)3m3
B(1 + δαβ)

(4
3 |hVαβ|2 + 4

3 |hAαβ|2 + 2|hSαβ|2 + 2|hPαβ|2 + 8
3 |hTt

αβ|2 + 4
3 |hTαβ|2

)
.

(4.37)

4.9 Appendix: B → K∗νανβ

As the final-state neutrinos are not observed, we integrate over the neutrino solid angle.

Thus there are only two relevant contributions which are described in terms of the co-

efficients of the Wigner-D functions D0
0,0(ΩK) and D2

0,0(ΩK) which depend on the solid

angle ΩK of the final-state K meson in the K∗ rest frame. They are denoted by G0,0
0 and

G2,0
0 for B̄ → K̄∗νανβ following [302]. The corresponding coefficients for the CP conjugate

process B → K∗νανβ are denoted by Ḡ0,0
0 and Ḡ2,0

0 and obtained from G0,0
0 and G2,0

0 by

replacing all Wilson coefficients with their complex conjugates. The coefficient for the
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Wigner-D function D0
0,0 for B̄ → K̄∗νανβ is [302].

N−1G0,0
0 = 4

9

(
3EαEβ + λγ∗

4q2

) ∑
a=0,±

(|HV
aαβ|2 + |HA

aαβ|2) + 4mαmβ

3
∑
a=0,±

(|HV
aαβ|2 − |HA

aαβ|2)

+ 4
3

(
EαEβ −mαmβ + λγ∗

4q2

)
|HS

αβ|2 + 4
3

(
EαEβ +mαmβ + λγ∗

4q2

)
|HP

αβ|2

+ 16
9

(
3(EαEβ +mαmβ) − λγ∗

4q2

) ∑
a=0,±

|HTt
aαβ|2

+ 8
9

(
3(EαEβ −mαmβ) − λγ∗

4q2

) ∑
a=0,±

|HT
aαβ|2

+ 16
3 (mαEβ +mβEα) Im

 ∑
a=0,±

HV
aαβH

Tt∗
aαβ


+ 8

√
2

3 (mαEβ −mβEα) Im

 ∑
a=0,±

HV
aαβH

T∗
aαβ


(4.38)

and the coefficient for the Wigner-D function D2
0,0 is

N−1G2,0
0 = −4

9

(
3EαEβ + λγ∗

4q2

) ∑
b=V,A

(
|Hb

+αβ|2 + |Hb
−αβ|2 − 2|Hb

0αβ|2
)

− 4mαmβ

3
(
|HV

+αβ|2 + |HV
−αβ|2 − 2|HV

0αβ|2 − (V → A)
)

+ 8
3

(
EαEβ −mαmβ + λγ∗

4q2

)
|HS

αβ|2 + 8
3

(
EαEβ +mαmβ + λγ∗

4q2

)
|HP

αβ|2

− 16
9

(
3(EαEβ +mαmβ) − λγ∗

4q2

)(
|HTt

+αβ|2 + |HTt
−αβ|2 − 2|HTt

0αβ|2
)

− 8
9

(
3(EαEβ −mαmβ) − λγ∗

4q2

)(
|HT

+αβ|2 + |HT
−αβ|2 − 2|HT

0αβ|2
)

− 16
3 (mαEβ +mβEα) Im

[
HV

+αβH
Tt∗
+αβ +HV

−αβH
Tt∗
−αβ − 2HV

0αβH
Tt∗
0αβ

]
− 8

√
2

3 (mαEβ −mβEα) Im
[
HV

+αβH
T∗
+αβ +HV

−αβH
T∗
−αβ − 2HV

0αβH
T∗
0αβ

]
,

(4.39)

where the normalisation factor N , the energies Eα,β and the kinematic functions λBK∗,γ∗

are the same as in Eq. (4.30) with the kinematic function λBK replaced by λBK∗ ≡
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λ(m2
B,m

2
K∗ , q2). The helicity amplitudes for B̄ → K̄∗νανβ are given by

HV
0αβ = 4imBmK∗√

q2

(
CV αβ − C ′

V αβ

)
A12 ,

HA
0αβ = 4imBmK∗√

q2

(
CAαβ − C ′

Aαβ

)
A12 ,

HV
±αβ = i

2(mB +mK∗)
[
±
(
CV αβ + C ′

V αβ

)√
λBK∗V − (mB +mK∗)2

(
CV αβ − C ′

V αβ

)
A1
]
,

HA
±αβ = i

2(mB +mK∗)
[
±
(
CAαβ + C ′

Aαβ

)√
λBK∗V − (mB +mK∗)2

(
CAαβ − C ′

Aαβ

)
A1
]
,

HP
αβ = i

√
λBK∗

2

[
CPαβ − C ′

Pαβ

mb +ms
+ mα +mβ

q2

(
CAαβ − C ′

Aαβ

)]
A0 ,

HS
αβ = i

√
λBK∗

2

[
CSαβ − C ′

Sαβ

mb +ms
+ mα −mβ

q2

(
CV αβ − C ′

V αβ

)]
A0 ,

HT
0αβ = 2

√
2mBmK∗

mB +mK∗

(
CT αβ + C ′

T αβ

)
T23 ,

HTt
0αβ = 2mBmK∗

mB +mK∗

(
CT αβ − C ′

T αβ

)
T23 ,

HT
±αβ = 1√

2q2

[
±
(
CT αβ − C ′

T αβ

)√
λBK∗T1 −

(
CT αβ + C ′

T αβ

)
(m2

B −m2
K∗)T2

]
,

HTt
±αβ = 1

2
√
q2

[
±
(
CT αβ + C ′

T αβ

)√
λBK∗T1 −

(
CT αβ − C ′

T αβ

)
(m2

B −m2
K∗)T2

]

(4.40)

in terms of the S, P, V,A, T basis. The matching to the chiral LEFT basis is given in

App. 4.7. For massless neutrinos, the normalisation factor reduces to

N =
√
λBK∗

(4π)3m3
B(1 + δαβ) (4.41)

and the coefficients of the Wigner-D functions become

G0,0
0 = Nq2

[
4
9
∑
a=0,±

(|HV
aαβ|2 + |HA

aαβ|2) + 2
3 |HS

αβ|2 + 2
3 |HP

αβ|2 + 8
9
∑
a=0,±

|HTt
aαβ|2 + 4

9
∑
a=0,±

|HT
aαβ|2

]
,

G2,0
0 = Nq2

[
− 4

9
∑
b=V,A

(
|Hb

+αβ|2 + |Hb
−αβ|2 − 2|Hb

0αβ|2
)

+ 4
3 |HS

αβ|2 + 4
3 |HP

αβ|2 (4.42)

− 8
9
(
|HTt

+αβ|2 + |HTt
−αβ|2 − 2|HTt

0αβ|2
)

− 4
9
(
|HT

+αβ|2 + |HT
−αβ|2 − 2|HT

0αβ|2
) ]

.
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For massless neutrinos, the binned longitudinal polarisation fraction FL for the decay

B → K∗νανβ can be compactly written in terms of helicity amplitudes H̄ as

FL =

〈
Ḡ0,0

0 + Ḡ2,0
0

〉
3
〈
Ḡ0,0

0

〉
= 4

9

〈
Nq2

(
|H̄V

0αβ|2 + |H̄A
0αβ|2 + 3

2 |H̄S
αβ|2 + 3

2 |H̄P
αβ|2 + 2|H̄Tt

0αβ|2 + |H̄T
0αβ|2

)〉
〈
Ḡ0,0

0

〉 .

(4.43)

The helicity amplitudes H̄ are obtained from the corresponding helicity amplitude H by

replacing all Wilson coefficients by the complex conjugates. The corresponding binned

transverse polarisation fraction FT is given by

FT = 1 − FL = 4
9

〈
Nq2∑

a=±

(
|H̄V

aαβ|2 + |H̄A
aαβ|2 + 2|H̄Tt

aαβ|2 + |H̄T
aαβ|2

)〉
〈
Ḡ0,0

0

〉 . (4.44)

4.10 Appendix: B → Xsνανβ

In the following, the different terms contributing to the inclusive differential decay rate

which was computed via FeynCalc [317,318] are given. The individual contributions from
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vector, scalar and tensor operators are given as in

dΓνανβ

incl,V
dq2 = q2

mb

(
12ms

mb

[(
m2
α − 4mαmβ +m2

β − q2)ℜ(CVLL
νd,[αβ]sbC

VLR∗
νd,[αβ]sb

)
+
(
m2
α + 4mαmβ +m2

β − q2)ℜ(CVLL
νd,(αβ)sbC

VLR∗
νd,(αβ)sb

)]
− 1
m2
b

[
g
(
mα,mβ,ms,

√
q2,mb

) 1
q4 − 6mαmβ

(
m2
b +m2

s − q2)]
×
[∣∣CVLL

νd,[αβ]sb
∣∣2 +

∣∣CVLR
νd,[αβ]sb

∣∣2]
− 1
m2
b

[
g
(
mα,mβ,ms,

√
q2,mb

) 1
q4 + 6mαmβ

(
m2
b +m2

s − q2)]
×
[∣∣CVLL

νd,(αβ)sb
∣∣2 +

∣∣CVLR
νd,(αβ)sb

∣∣2]),
dΓνανβ

incl,S
dq2 = −3 q

2

mb

(
(m2

α +m2
β − q2)

×
[ 1
m2
b

(m2
b +m2

s − q2)
(∣∣∣CSLL

νd,αβsb

∣∣∣2 +
∣∣∣CSLR

νd,αβsb

∣∣∣2 +
∣∣∣CSLL

νd,αβbs

∣∣∣2 +
∣∣∣CSLR

νd,αβbs

∣∣∣2)
+ 4ms

mb
ℜ
(
CSLL
νd,αβsbC

SLR∗
νd,αβsb + CSLL

νd,αβbsC
SLR∗
νd,αβbs

)]
+ 2mαmβ

[ 2
m2
b

(m2
b +m2

s − q2)Re
(
CSLL
νd,αβsbC

SLL
νd,αβbs + CSLR

νd,αβsbC
SLR
νd,αβbs

)
+ 4ms

mb
ℜ
(
CSLL
νd,αβsbC

SLR
νd,αβbs + CSLR

νd,αβsbC
SLL
νd,αβbs

)])
,

dΓνανβ

incl,T
dq2 = 16 q

2

m3
b

([
3(m2

α +m2
β − q2)(m2

b +m2
s − q2) − 2 g

(
mα,mβ,ms,

√
q2,mb

) 1
q4

]

×
( ∣∣∣CTLL

νd,αβsb

∣∣∣2 +
∣∣∣CTLL

νd,αβbs

∣∣∣2 )− 72mαmβmsmbRe
(
CTLL
νd,αβsbC

TLL
νd,αβbs

))
.

(4.45)

Here, the function

g(x, y, s, w,m) =
(
2(x4 + y4) − w4 − w2(x2 + y2) − 4x2y2

)
λ(m2, s2, w2)

+ 3w2(x4 + y4 − 2x2y2 − w4)(m2 − w2 + s2)
(4.46)
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was defined for convenience in order to shorten the expressions. The interference terms

involving the vector operators and the scalar and tensor operators read

dΓνανβ

incl,VS
dq2 = − 3

m2
b

(
(mα −mβ)

(
(mα +mβ)2 − q2

)
×
[ms

mb
(m2

b −m2
s + q2)ℜ(CVLL

νd,[αβ]sb(CSLL∗
νd,αβsb + CSLL

νd,αβbs) + CVLR
νd,[αβ]sb(CSLR∗

νd,αβsb + CSLR
νd,αβbs)

)
+ (m2

b −m2
s − q2)ℜ

(
CVLL
νd,[αβ]sb(CSLR∗

νd,αβsb + CSLR
νd,αβbs) + CVLR

νd,[αβ]sb(CSLL∗
νd,αβsb + CSLL

νd,αβbs)
)]

+ (mα +mβ)
(
(mα −mβ)2 − q2

)
×
[ms

mb
(m2

b −m2
s + q2)ℜ(CVLL

νd,(αβ)sb(CSLL∗
νd,αβsb − CSLL

νd,αβbs) + CVLR
νd,(αβ)sb(CSLR∗

νd,αβsb − CSLR
νd,αβbs)

)
+
(
m2
b −m2

s − q2)ℜ(CVLL
νd,(αβ)sb(CSLR∗

νd,αβsb − CSLR
νd,αβbs) + CVLR

νd,(αβ)sb(CSLL∗
νd,αβsb − CSLL

νd,αβbs)
)])

,

dΓνανβ

incl,VT
dq2 = 36

m2
b

(
(mα −mβ)

(
(mα +mβ)2 − q2

)
×
[ms

mb
(m2

b −m2
s + q2)ℜ

(
CVLL
νd,(αβ)sbC

TLL∗
νd,αβsb + CVLR

νd,(αβ)sbC
TLL
νd,αβbs

)
− (m2

b −m2
s − q2)ℜ

(
CVLR
νd,(αβ)sbC

TLL∗
νd,αβsb + CVLL

νd,(αβ)sbC
TLL
νd,αβbs

)]
+ (mα +mβ)

(
(mα −mβ)2 − q2

)
×
[ms

mb
(m2

b −m2
s + q2)ℜ

(
CVLL
νd,[αβ]sbC

TLL∗
νd,αβsb − CVLR

νd,[αβ]sbC
TLL
νd,αβbs

)
− (m2

b −m2
s − q2)ℜ

(
CVLR
νd,[αβ]sbC

TLL∗
νd,αβsb − CVLL

νd,[αβ]sbC
TLL
νd,αβbs

)])
.

(4.47)

4.11 Appendix: Matching to SM Effective Field Theory

with Sterile Neutrinos

For completeness we present the matching to SM effective field theory (SMEFT) with

sterile neutrinos. The matching conditions have been obtained by translating the existing

matching results in the literature [191, 192, 319] to the operator basis we are using. The

relevant SMEFT operators are contained in the effective Lagrangians L6,7 for operators
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at dimension-6 and dimension-7, respectively [185,191]

L6 ⊃ CH(H†H)3 + CH□(H†H)□(H†H) + CHD(H†DµH)∗(H†DµH)

+ CHBH
†HBµνB

µν + CHWH
†HW I

µνW
Iµν + CHWBH

†τ IHW I
µνB

µν

+ C
(1)
lq (H†i

↔
Dµ H)(L̄γµL) + C

(3)
lq (H†i

↔
D
I

µ H)(L̄τ IγµL) + Cld(L̄γµL)(d̄γµd)

+ CQN (Q̄γµQ)(N̄γµN) + CdN (d̄γµd)(N̄γµN)

+ CLNQd(L̄αN)ϵαβ(Q̄βd) + CLdQN (L̄αd)ϵαβ(Q̄βN)

L7 ⊃ Cd̄LQLH1ϵijϵmn(d̄Li)(QcjLm)Hn + CQNdH(Q̄N)(N cd)H + CdQNHH
†(d̄Q)(N cN)

+ CQNLH1ϵij(Q̄γµQ)(N cγµLi)Hj + CQNLH2ϵij(Q̄γµQi)(N cγµLj)H

+ CdNLHϵij(d̄γµd)(N cγµLi)Hj

(4.48)

where N denotes right-handed neutrinos, i.e. right-handed SM singlet fermions, τ I denotes

the Pauli spin matrices and we suppressed flavour and colour indices. For the matching,

we also require the modified Z-boson couplings [192]

L ⊃ −ḡZZµ
[
ZdL

d̄Lγ
µdL + ZdR

d̄Rγ
µdR + Zν ν̄Kγ

µνL + ZN N̄γ
µN + (ZνNνcγµN + h.c.)

]
,

(4.49)

where ḡZ denotes the effective gauge coupling of the Z boson and depends on gauge

couplings and the weak mixing angle θ̄

ḡZ = ē

sin θ̄ cos θ̄

[
1 + ḡ2

1 + ḡ2
2

2ḡ1ḡ2
v2
TCHWB

]
, ē = ḡ2 sin θ̄ − 1

2 cos θ̄ḡ2v
2
TCHWB ,

cos θ̄ = ḡ2√
ḡ2

1 + ḡ2
2

[
1 − CHWBv

2
T

2
ḡ1
ḡ2

ḡ2
2 − ḡ2

1
ḡ2

1 + ḡ2
2

]
, ḡ1 = g1(1 + CHBv

2
T ) ,

sin θ̄ = ḡ1√
ḡ2

1 + ḡ2
2

[
1 + CHWBv

2
T

2
ḡ2
ḡ1

ḡ2
2 − ḡ2

1
ḡ2

1 + ḡ2
2

]
, ḡ2 = g2(1 + CHW v

2
T ) .

(4.50)

The Z-boson couplings to the different fermion species are parameterised by

[ZdL
]pr =

(
−1

2 + 1
3 sin2 θ̄

)
δpr − v2

T

2
(
C

(1),pr
Hq + C

(3),pr
Hq

)
, [ZdR

]pr = 1
3 sin2 θ̄δpr − v2

T

2 CprHd ,

[Zν ]pr = 1
2δpr − v2

T

2
(
C

(1),pr
Hl − C

(3),pr
Hl

)
, [ZN ]pr = −v2

T

2 CprHN , (4.51)

[ZνN ]pr = v3
T

4
√

2
(CrpNL1 + 2CrpNL2) .
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Following [192], we write the renormalisable part of the SM Higgs potential as

V = λ

(
H†H − v2

2

)2

(4.52)

and the SM Higgs doublet H in unitary gauge as

H = 1√
2

 0

[1 + cH,kin]h+ vT

 . (4.53)

The Higgs field normalisation 1 + cH,kin and the Higgs VEV vT receive corrections from

dimension-6 operators

cH,kin ≡
(
CH□ − 1

4CHD
)
v2 , vT ≡

(
1 + 3CHv2

8λ

)
v . (4.54)

After introducing and summarising the relevant SMEFT operators and expressions, it is

straightforward to present the matching of the LEFT Wilson coefficients to SMEFT. We

find for the LEFT Wilson coefficients with neutrino flavour indices 1 ≤ α, β ≤ 3

CVLL
νd,αβpr = C

(1),αβpr
lq − C

(3),αβpr
lq − ḡ2

Z

M2
Z

[ZdL
]pr[Zν ]αβ, CVLR

νd,αβpr = Cαβprld − ḡ2
Z

M2
Z

[ZdR
]pr[Zν ]αβ,

CSLL
νd,αβpr = − vT

4
√

2

(
Cpαrβ
d̄LQLH1 + Cpαrβ

d̄LQLH1

)
, CSLR

νd,αβpr = 0,

CTLL
νd,αβpr = vT

16
√

2

(
Cpαrβ
d̄LQLH1 − Cpβrα

d̄LQLH1

)
.

(4.55)

For Wilson coefficients pertaining only to sterile neutrinos with α, β ≥ 4, they are

CVLL
νd,αβpr = −CprβαQN + ḡ2

Z

M2
Z

[ZdL
]pr[ZN ]βα, CVLR

νd,αβpr = −CprβαdN + ḡ2
Z

M2
Z

[ZdR
]pr[ZN ]βα,

CSLL
νd,αβpr = − vT

4
√

2

(
CpαβrQNdH + CpβαrQNdH

)
, CSLR

νd,αβpr = vT√
2
CprαβdQNH ,

CTLL
νd,αβpr = vT

16
√

2

(
CpαβrQNdH − CpβαrQNdH

)
.

(4.56)

The different signs and orderings of neutrino flavour indices originate from the charge

conjugation in N ≡ νc and the symmetry properties of the bilinears

ψciΓψcj = ηΓψjΓψi C−1ΓC = ηΓΓT ηΓ =


+1 for Γ = 1, γ5, γ

µγ5

−1 for Γ = γµ, σµν , σµνγ5

. (4.57)
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Finally, SMEFT operators which contain both sterile and active neutrinos imply

CVLL
νd,αβpr = vT√

2

(
CprαβQNLH1 − CprαβQNLH2

)
+ ḡ2

Z

M2
Z

[ZdL
]pr[ZνN ]βα,

CVLR
νd,αβpr = vT√

2
CprαβdNLH + ḡ2

Z

M2
Z

[ZdR
]pr[ZνN ]βα,

CSLL
νd,αβpr = Cβαrp∗

LNQd − 1
2C

βprα∗
LdQN ,

CSLR
νd,αβpr = 0,

CTLL
νd,αβpr = −1

8C
βprα∗
LdQN

(4.58)

when α ≥ 4 and 1 ≤ β ≤ 3 and

CVLL
νd,αβpr = vT√

2

(
Crpβα∗
QNLH1 − Crpαβ∗

QNLH2

)
+ ḡ2

Z

M2
Z

[ZdL
]∗rp[ZνN ]∗αβ,

CVLR
νd,αβpr = vT√

2
Crpβα∗
dNLH + ḡ2

Z

M2
Z

[ZdR
]∗rp[ZνN ]∗αβ,

CSLL
νd,αβpr = Cαβrp∗

LNQd − 1
2C

αprβ∗
LdQN ,

CSLR
νd,αβpr = 0,

CTLL
νd,αβpr = −1

8C
αprβ∗
LdQN

(4.59)

when 1 ≤ α ≤ 3 and β ≥ 4.
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Chapter 5

Flavour Anomalies Meet Flavour

Symmetry

After having performed (partly) model-independent studies in this thesis so far, I lastly

present an extensive investigation of a concrete NP model which provides a possible expla-

nation for several currently observed flavour anomalies as well as for the charged fermion

masses and quark mixing. The predicted interaction structure is constrained by the dis-

crete symmetry D17 × Z17 which is broken at high energies by the VEVs of several spu-

rion fields. I find that it is indeed possible to address the aforementioned anomalies in

agreement with experimental constraints arising from various flavour observables. The

presentation in this chapter draws from ref. [90].1

5.1 Introduction

The SM has been very successful in describing the gauge interactions involving fermions,

the Higgs boson and gauge bosons. However, the observed values for the masses and

1I was primarily responsible for sections 4 and 5 as well as appendices C.3.2−C.3.6 and
D therein, but also helped prepare the other sections and appendices. I acknowledge my
co-authors Innes Bigaran, Claudia Hagedorn and Michael Schmidt and their contributions.
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mixing among the fermions can only be accommodated with a judicious choice of free

parameters, appearing in the Yukawa matrices, and cannot be predicted. In particular,

it would be desirable to have a profound explanation at hand for the strong hierarchies

among the charged fermion masses, and for the fact that the Cabibbo angle is the only

sizeable quark mixing angle, while the lepton sector features two large mixing angles.

Given the success of symmetries in predicting the gauge interactions of the SM particles, it

appears reasonable to also employ a symmetry Gf which acts on the flavour (or generation)

space in order to explain the measured fermion masses and mixing. Abelian symmetries,

such as a U(1) group [78], have been shown to be capable of accommodating the hierarchies

among the charged fermion masses via an appropriate selection of charges for the different

generations of SM fermion species. However, a non-abelian, discrete flavour symmetry

group which can be broken non-trivially seems to be preferred in the light of the striking

differences between quark and lepton mixing, as well as due to the capability of these

groups to predict a certain mixing pattern, e.g. tri-bimaximal mixing among leptons [320–

323]. See refs. [175–178] for reviews about applications in high-energy particle physics.

In recent years there have been several measurements of flavour-physics observables which

deviate from their respective SM predictions and hint at a more non-trivial flavour struc-

ture. In particular, the ratios2

R(D(⋆)) = Γ(B → D(⋆)τν)
Γ(B → D(⋆)ℓν)

(5.1)

with ℓ = e, µ which are sensitive probes of LFU have been measured at BaBar [128, 129],

Belle [14,125–127] and LHCb [15,16,124]. A combined fit yields larger values for R(D(⋆))

and exhibits a tension with the SM prediction at the 3.4σ level [10]. There is also a

long-standing discrepancy between the measured value [18, 46] of the AMM of the muon,

aµ = (g − 2)µ/2, and its theoretical prediction [19, 324–358]. The combined fit to the

experimental data shows a 4.2σ tension [18] in ∆aµ = aexp
µ − aSM

µ .3 The three anomalies

are summarised in table 5.1.

In ref. [79] Bauer and Neubert have proposed a simultaneous explanation of the flavour

2For brevity, antiparticles are not indicated by overbars in schematic expressions in
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Anomalies
Observable SM prediction Experiment Significance
R(D) 0.297 ± 0.008 [11–13] 0.340 ± 0.027 ± 0.013 [10] 1.4 σ
R(D⋆) 0.245 ± 0.008 [11–13] 0.295 ± 0.010 ± 0.010 [10] 2.9 σ
∆aµ 0 (2.51 ± 0.59) × 10−9 [18, 19] 4.2 σ

Table 5.1: Overview of the three anomalies to be addressed in this chapter
and their present significance. The quoted experimental values for R(D) and R(D⋆)
are adopted from the Heavy Flavour Averaging Group (HFLAV) fit circa 2021, and the
combined significance of these two anomalies is 3.4 σ, with a correlation ρ = −0.38 [10].

anomalies via the scalar LQ ϕ transforming as (3, 1,−1
3) under the SM gauge group. The

importance of LQ couplings to RH fermions has been emphasised in ref. [80] and it has

been pointed out that ϕ alone cannot explain the discrepancies in b → sµµ which requires

the presence of additional particles; see e.g. refs. [359–371]. In the vast majority of these

studies only the couplings which are needed to explain the flavour anomalies are assumed

to be non-zero, without any explanation for their size or why the remaining couplings

vanish.

In this chapter, I describe a model with a discrete flavour symmetry which explains the

observed anomalies in R(D(⋆)) and in the AMM of the muon. This model is also capable

of correctly describing the strong hierarchies among the charged fermion masses as well as

quark mixing, while not accounting for neutrino masses and lepton mixing. Therefore, the

three generations of SM fermions are (mostly) assigned to doublets and singlets of Gf , and

a dihedral group is chosen for the flavour symmetry. The series of single-valued (double-

valued) dihedral groups Dn (D′
n) groups feature one- and two-dimensional irreducible

representations for n ≥ 3 (n ≥ 2); see e.g. refs. [372–375] for their application in the

context of fermion mixing. The thorough analysis in this chapter shows that a model

equipped with the flavour symmetry group Gf = D17 × Z17 can pass all requirements

this chapter unless required for clarity.
3There is an ongoing debate about the theoretical prediction of the HVP. While

the current determination of the LO contribution is obtained from dispersion relations,
c.f. ref. [19], recent lattice calculations [145–148] predict a value consistent with the ex-
perimental result for the AMM of the muon.
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which for instance arise from the non-observation of cLFV decays such as τ → µγ. The

residual symmetry Zdiag
17 which furnishes a diagonal subgroup of Gf is preserved by the LQ

couplings to the SM fermions at LO, and turns out crucial for appropriately suppressing

the couplings to up quarks and electrons. The breaking of the flavour symmetry is achieved

with the help of four spurions that acquire specific VEVs, given in terms of the expansion

parameter λ ≈ 0.2. For related studies on flavour symmetries in the context of explaining

the anomalies observed in semi-leptonic B meson decays, see refs. [81–86].

The chapter is organised as follows. The model setup is introduced in section 5.2 wherein

the choice of Gf , its residual symmetry and the assignment of transformation properties

to the particles as well as the spurion fields are motivated. The explicit form of the mass

matrices and the LQ couplings in the charged fermion mass basis is derived in section 5.3.

Analytic expressions for the charged fermion masses and quark mixing are also given.

Section 5.4 contains the phenomenological study which includes the analytic estimates

and numerical results for primary and secondary observables. Conclusions are drawn in

section 5.5, and further technical details are collected in the appendices 5.6 to 5.12.

5.2 Model Setup

The main motivation behind the model discussed in this chapter is to ameliorate the

above-mentioned anomalies with a specific LQ coupling structure which is predicted by a

(discrete) flavour symmetry. For that purpose, the scalar LQ S1 [160], c.f. section 2.3.2,

is added to the SM particle content, but I employ the notation ϕ ∼ (3, 1,−1
3) in this

chapter which implies that the quantum numbers of ϕ coincide with those of S†
1. Sterile

neutrinos are not included in the model, and baryon-number conservation is imposed in

order to forbid the occurrence of diquark couplings. Furthermore, the structure of a type-

II two-Higgs-doublet model [376,377] is adopted, that is, the generation of up-type quark

masses is achieved via the Higgs doublet Hu, whereas the masses of the down-type quarks

and charged leptons arise from the presence of a second Higgs doublet Hd. In order to

accommodate the hierarchy between the masses of the bottom quark (or the tau lepton)
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and the top quark, an adequate hierarchy among the VEVs of Hd and Hu must be chosen.

This implies 〈
H0
d

〉
≡ vd√

2
∼ 2.4 GeV and

〈
H0
u

〉
≡ vu√

2
∼ 174 GeV (5.2)

and therefore v2
u + v2

d = v2 ∼ (246 GeV)2. Consequently, the Yukawa sector of the SM is

defined as in

LYuk = −yiju QLiHu uRj − yijd QLiHd dRj − yije LLiHd eRj + h.c. (5.3)

which is consistent with eq. (2.14) up to the obvious difference due to the presence of Hu

and Hd. I do not discuss the scalar potential of the model. The couplings of ϕ to the SM

fermions are described as in

Lint
LQ = x̂ij LcLi ϕ

†QLj + ŷij ecRi ϕ
† uRj + h.c. . (5.4)

Here, x̂ij and ŷij are, in general, complex numbers which constitute the coupling matrices

x̂ and ŷ. The hats indicate the interaction basis of the SM fermions. Adopting the mass

basis of the charged SM fermions yields

Lmass
LQ = xij (νm

L )ci ϕ
† dm

Lj + yij (em
R)ci ϕ

† um
Rj − zij (em

L )ci ϕ
† um

Lj + h.c. (5.5)

where the conventions are consistent with section 2.1.3. In a way similar to the interaction

basis, xij , yij and zij are, in general, complex numbers which constitute the coupling

matrices x, y and z. Note that

z = xV † (5.6)

with the CKM matrix V . Neutrino masses are not accounted for in the model, and thus

lepton mixing is unphysical as in the SM.

Regarding the interactions between ϕ and the different generations of SM fermions, a major

guiding principle for the construction of the model is an (approximate) achievement of the

texture

x ∼


0 0 0

0 λ3 λ

0 λ2 1

 and y ∼


0 0 0

0 0 λ3

0 1 0

 , (5.7)
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which was identified in ref. [80]. Here, λ ≈ 0.2, and zeros denote entries which are generally

further suppressed than λ4 ∼ 10−3. All non-zero components are accompanied by complex

order-one numbers. The above textures hold in a basis which (approximately) coincides

with the mass basis of the down-type quarks and charged leptons, thus, the CKM matrix

(largely) originates from the structure of the up-quark mass matrix. Furthermore, the

unitary transformation associated with the RH up-type quarks is close to the unit matrix

in flavour space.

In the model, the non-zero entries shown in the texture above are generated with the help

of a single spurion field S. Protecting (most of) the zero entries in y is one motivation to

introduce an external ZN symmetry and assign different charges under it to the RH up

quarks.

Furthermore, experimental constraints require that the first row and column of both LQ

coupling matrices x and y are largely suppressed. In the model, this requirement is

implemented with the help of a residual symmetry. I consider an extension of the SM

gauge group by the group product

D17 × Z17 (5.8)

with the residual symmetry Zdiag
17 , where Zdiag

17 is the diagonal subgroup of a Z17 symmetry

contained in D17 (and generated by the generator a of D17; see appendix 5.6 for details)

and the external Z17 symmetry. As long as Zdiag
17 is intact, the vanishing elements in the

texture in eq. (5.7) are protected from acquiring non-zero values. Conversely, the non-

zero values therein should correspond to combinations of SM fermions and ϕ of which the

added-up charge under the residual symmetry is zero. Besides, the first component of S

which acquires a VEV must be uncharged under Zdiag
17 . The charges of the fields contained

in the model under the residual symmetry are listed in table 5.2.

Choosing a member of the series of dihedral groups Dn is furthermore motivated by the

fact that they feature several one- and two-dimensional representations which allows for

the assignments 1 + 1 + 1 and 2 + 1 for the three fermion generations. Note that both the

singlets and the doublets can be inequivalent, respectively. Assigning the third generation
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Field Zdiag
17 Field Zdiag

17 Field Zdiag
17 Field Zdiag

17 Field Zdiag
17

QL1 3 dR1 5 eR1 5 S1 0 W1 14
QL2 16 dR2 14 eR2 16 S2 15 W2 10
QL3 16 dR3 7 eR3 9 T1 10
uR1 13 LL1 3 Hu 15 T2 6
uR2 8 LL2 1 Hd 9 U1 10
uR3 1 LL3 1 ϕ 0 U2 6

Table 5.2: Charges under the residual symmetry Zdiag
17 . I list the charges of the different

fermions, scalars and spurion fields under the residual symmetry Zdiag
17 , preserved by the LO

structure of the LQ couplings x and y; see eq. (5.7). This residual symmetry Zdiag
17 is the diagonal

subgroup of the Z17 symmetry contained in D17 and generated by the generator a, compare
appendix 5.6, and the external Z17 symmetry.

to a singlet is a reasonable choice in particular regarding the quark sector, since mixing

between the third quark generation and the first two ones is small. Indeed, the assignment

2 + 1 is used for LH quarks as well as LH and RH leptons; see table 5.3. Conversely,

the assignment 1 + 1 + 1 is used for RH up-type quarks as it is helpful regarding the

pronounced hierarchy among the masses of the up-type quarks, and the desired structure

of the interactions between RH up-type quarks and RH charged leptons.

Further spurion fields T , U , W are introduced in order to account for the charged fermion

masses and quark mixing in the SM. These spurions acquire VEVs which generally break

the residual flavour symmetry. The spurion T generates the masses of the muon and the

strange quark, U gives rise to the masses of the electron and the down quark, and W

generates the charm-quark mass and the Cabibbo angle. A specific combination of T

and U together also give rise to the up-quark mass, whereas an operator involving (S†)2

further generates the smaller quark mixing angles; see eqs. (5.117), (5.119) and (5.121).

The VEVs of the spurions are given by

⟨S⟩ =

λ
0

 , ⟨T ⟩ =

λ2

0

 , ⟨U⟩ =

 0

λ4

 , ⟨W ⟩ =

λ5

λ4

 . (5.9)

Since the potential of these spurions is not adressed and thus neither potential mechanisms

to achieve the alignment of their VEVs, the latter is assumed to be exact in the following.
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Field SU(3) SU(2) U(1) D17 Z17

QL =

 QL1

QL2

 3 2 1
6 22 1

QL3 3 2 1
6 11 16

uR1 3 1 2
3 12 13

uR2 3 1 2
3 11 8

uR3 3 1 2
3 11 1

dR =

 dR1

dR2

 3 1 −1
3 24 1

dR3 3 1 −1
3 11 7

LL =

 LL1

LL2

 1 2 −1
2 21 2

LL3 1 2 −1
2 11 1

eR =

 eR1

eR2

 1 1 −1 23 2

eR3 1 1 −1 11 9

Hu 1 2 −1
2 11 15

Hd 1 2 1
2 11 9

ϕ 3 1 −1
3 11 0

S =

 S1

S2

 1 1 0 21 16

T =

 T1

T2

 1 1 0 22 8

U =

 U1

U2

 1 1 0 22 8

W =

 W1

W2

 1 1 0 22 12

Table 5.3: Particle content of the model. The fermions, scalar fields and spurions (flavour-
symmetry breaking fields) and their transformation properties under the SM gauge group SU(3) ×
SU(2)×U(1) as well as the flavour symmetry Gf = D17 ×Z17 are given. Particles in an irreducible
two-dimensional representation of D17 are evidenced in terms of two-component vectors.
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5.3 Mass Matrices and Leptoquark Couplings

In this section, the form of the charged fermion mass matrices Mu, Md and Me, analytic

formulae for charged fermion masses, the unitary matrices Lu, Ru, Ld, Rd, Le and Re

relating the interaction basis and mass basis of the SM fermions, and the form of the LQ

couplings x, y and z given in eq. (5.5) are presented, given the transformation properties of

the particles contained in the model; see table 5.3. I take into account all operators which

are invariant under the flavour symmetry and yield a contribution up to and including

order λ12 in the symmetry-breaking parameter, given the VEVs of the spurion fields as

indicated in eq. (5.9). The relevant underlying Lagrangians including the operators as well

as the resulting LQ couplings x̂ and ŷ in the interaction basis are listed in appendix 5.7.

The matrices Mu, Md, Me, x, y and z are given in an effective parametrisation. The

relations between these parameters and the coefficients of the contributing operators can

be found in appendix 5.9. The parameters are implicitly assumed to be real for the

analytic derivations discussed in this section, but they are taken to be complex-valued in

the phenomenological studies presented further below.

I focus on the scenario of a slight modification of the up-quark mass matrix Mu for the

model under consideration, dubbed ‘scenario B’, in comparison with ‘scenario A’ without

any modification. The motivation to introduce scenario B is the observation that the CKM

mixing matrix V as obtained in scenario A cannot be in full agreement with experimental

data; see section 5.3.1 below for more information. Therefore, the presentation of the

relevant results for scenario A is relegated to appendix 5.8. Still, the form of the LQ

coupling matrices x, y and z is computed in both scenarios.

5.3.1 Quark Sector

Herein I discuss the results for the up-type quark mass matrix Mu and the down-type

quark mass matrix Md as well as the CKM mixing matrix V in scenario B.
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5.3.1.1 Up-Quark Sector

The form of the up-type quark mass matrix Mu as predicted in scenario A is given in

eq. (5.127) in the appendix, and the unitary matrices Lu and Ru which achieve the diag-

onalisation of Mu are given in eqs. (5.128) and (5.129). Therefore, one can already infer

that the CKM-matrix element

Vtd = (L∗
u)13(Ld)11 + (L∗

u)23(Ld)21 + (L∗
u)33(Ld)31 (5.10)

is likely to very suppressed, since Ld is close to the identity matrix in flavour space and

thus (Ld)21 and (Ld)31 will be very small, and in addition (Lu)13 ∼ λ8. Consequently, the

Jarlskog invariant JCP can also be expected to be very small, cf. eq. (2.29). Besides, the

CKM-matrix elements Vus, Vub and Vcb will turn out to be too strongly correlated as per

the tight relation between the elements (Lu)21, (Lu)31 and (Lu)32.

A simple way to resolve these issues is an enhancement of the element (Mu)13 in the

up-type quark mass matrix, that is

Mu =


f11 λ

8 f12 λ
5 f̃13 λ

3

f21 λ
10 f22 λ

4 f23 λ
2

f31 λ
12 f32 λ

4 f33


〈
H0
u

〉
(5.11)

where f̃13 and the fij are generally independent, complex order-one numbers, apart from

f12 and f22 which satisfy

f12 − f22 ∼ c λ2 (5.12)

with c complex.4 This relation is sourced by the operators with coefficients αu5 and αu6

in eq. (5.118); see also eq. (5.140) in appendix 5.9. Therein, the definition of the other

parameters fij in terms of the coefficients αui are given therein as well.

A further contribution added ad hoc to the element (Mu)13 is not explained by an ap-

4For the sake of clarity, one could instead express the element (Mu)12 as (f22 +
f̃12λ

2) λ5 〈H0
u

〉
, where f̃12 is a complex order-one number.
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propriate operator in the context of this model.5 Thus, the Lagrangians presented in

section 5.7 are valid both for scenario A and scenario B. Still, as it will become clear from

the analytic estimates for the primary observables discussed later on in this chapter, the

enhancement of (Mu)13 does not appreciably affect the phenomenology induced by ϕ.

The effective parametrisation of Mu in scenario B implies the following LO results for the

up-type quark masses:

mu =
∣∣∣f11 λ

8 + O(λ10)
∣∣∣ 〈H0

u

〉
,

mc =
∣∣∣∣∣f22 λ

4 +
(
f2

12
2 f22

− f23f32
f33

)
λ6 + O(λ8)

∣∣∣∣∣ 〈H0
u

〉
,

mt =
∣∣∣∣∣f33 + f2

23
2 f33

λ4 + O(λ6)
∣∣∣∣∣ 〈H0

u

〉
.

(5.13)

As expected from the construction of the model, the dominant contributions to the three

up-type quark masses originate from the first, second and fourth operator in eq. (5.117),

respectively. Also, note that the enhancement of (Mu)13 only causes further subleading

contributions to mt to appear at order λ6 instead of λ8 as in scenario A.

The unitary matrices Lu and Ru which diagonalise Mu read

Lu =


1 − f2

12
2 f2

22
λ2 + O(λ4) f12

f22
λ+ O(λ3) f̃13

f33
λ3 + O(λ7)

−f12
f22

λ+ O(λ3) 1 − f2
12

2 f2
22
λ2 + O(λ4) f23

f33
λ2 + O(λ6)(

f12f23
f22f33

− f̃13
f33

)
λ3 + O(λ5) −f23

f33
λ2 + O(λ4) 1 − f2

23
2 f2

33
λ4 + O(λ6)

 (5.14)

5The field combinations Hu uR3 and Hd dR3 transform in the same way in order to gen-
erate the LO contributions to the top- and bottom-quark mass, respectively, when paired
with QL3 . For instance, this means that the invariance of QLHu uR3 (S†)2 which sources
the LO contribution to the mixing angle θ23 also implies the invariance of QLHd dR3 (S†)2.
Importantly, if an element (Mu)13 ∼ λ3 〈H0

u

〉
was generated via an operator, I would im-

mediately also obtain (Md)13 ∼ λ3 〈H0
d

〉
and thus enhance (Ld)31 and consequently the

elements in the first column of the LQ coupling x in the charged fermion mass basis.
Therefore, I refrain from inducing (Mu)13 via an operator which explicitly breaks the
flavour symmetry. On the contrary, generating (Mu)13 ∼ λ3 〈H0

u

〉
in a manner which is

consistent with the flavour symmetry likely necessitates a modification of the transforma-
tion properties of (some of) the SM fermions under Gf , and/or of Gf itself. An exploration
of this option is beyond the scope of this thesis.
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and

Ru =


1 + O(λ10) f11f12

f2
22

λ5 + O(λ6) f11f̃13
f2

33
λ11 + O(λ12)

−f11f12
f2

22
λ5 + O(λ6) 1 + O(λ8) f32

f33
λ4 + O(λ6)

f11f12f32
f2

22f33
λ9 + O(λ10) −f32

f33
λ4 + O(λ6) 1 + O(λ8)

 . (5.15)

I note that Lu is the primary source of the CKM mixing matrix, whereas Ru is close to the

identity matrix, which is thus in good agreement with the basis in which the textures of the

LQ couplings x and y are given in eq. (5.7). As expected, one now has (Lu)13 ∼ λ3, and

the tight relation between the elements (Lu)21, (Lu)31 and (Lu)32 observed for scenario

A, see section 5.8.1, is relaxed. The largest deviation of Ru from the identity matrix

is of order λ4, due to the operator with the coefficient αu7 which appears automatically

upon fixing the LO operators in the up-type quark sector; see section 5.7.1. Apart from

(Ru)13 ∼ λ11 herein, the matrix Ru is identical in scenario A and scenario B.

5.3.1.2 Down-Quark Sector

The effective parametrisation of the down-type quark mass matrix, including all contri-

butions up to and including order λ12, reads

Md =


d11 λ

4 d12 λ
8 d13 λ

8

d21 λ
10 d22 λ

2 d23 λ
2

d31 λ
12 d32 λ

4 d33


〈
H0
d

〉
(5.16)

with dij being, in general, independent complex order-one numbers, related to the coef-

ficients αdi as shown in eq. (5.141) in appendix 5.9. Furthermore, the LO results for the

down-type quark masses are given as in

md =
∣∣∣d11 λ

4 + O(λ12)
∣∣∣ 〈H0

d

〉
,

ms =
∣∣∣∣d22 λ

2 − d23(d22d23 + 2 d32d33)
2 d2

33
λ6 + O(λ10)

∣∣∣∣ 〈H0
d

〉
,

mb =
∣∣∣∣∣d33 + d2

23
2 d33

λ4 + O(λ8)
∣∣∣∣∣ 〈H0

d

〉
,

(5.17)
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with the dominant contributions arising from the three operators in eq. (5.119), as expected

from the construction of the model.

The unitary matrices Ld and Rd read

Ld =


1 − d2

12
2 d2

22
λ12 + o(λ12) d12

d22
λ6 + O(λ10) d13

d33
λ8 + O(λ12)

−d12
d22

λ6 + O(λ10) 1 − d2
23

2 d2
33
λ4 + O(λ8) d23

d33
λ2 + O(λ6)

Ld,31 λ
8 + O(λ12) −d23

d33
λ2 + O(λ6) 1 − d2

23
2 d2

33
λ4 + O(λ8)

 (5.18)

with

Ld,31 = d12d23 − d13d22
d22d33

(5.19)

and

Rd =


1 + o(λ12) Rd,12 λ

8 + O(λ12) Rd,13 λ
12 + o(λ12)

−Rd,12 λ
8 − O(λ12) 1 + O(λ8) (d22d23+d32d33)

d2
33

λ4 + O(λ8)

O(λ12) − (d22d23+d32d33)
d2

33
λ4 + O(λ8) 1 + O(λ8)


(5.20)

with

Rd,12 = d11d12 + d21d22
d2

22
and Rd,13 = d11d13 + d21d23 + d31d33

d2
33

. (5.21)

Both Ld and Rd are close to the identity matrix, except for the (23)-block in Ld where

a rotation of order λ2 is present which is a consequence of the operator QLHd dR3 (S†)2

being invariant. This implies a contribution to the quark mixing angle θ23 of the same

order in λ as the contribution arising from the up-quark sector; see the (23)-block of Lu
in eq. (5.14) and eq. (5.128) as well as the CKM mixing matrix in eq. (5.130) (scenario A)

and eq. (5.22) (scenario B). Furthermore, it induces contributions to the elements x22 and

x32 of the LQ coupling x in the charged fermion mass basis which are of the same order

as the elements x̂22 and x̂32 of the LQ coupling x̂ in the interaction basis; see eq. (5.29)

and eq. (5.145) in appendix 5.9.
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5.3.1.3 Quark Mixing

I obtain the CKM mixing matrix

V = L†
u Ld =


1 − f2

12
2 f2

22
λ2 + O(λ4) −f12

f22
λ+ O(λ3)

(
f12
f22
V32 − f̃13

f33

)
λ3 + O(λ5)

f12
f22

λ+ O(λ3) 1 − f2
12

2 f2
22
λ2 + O(λ4) −V32 λ

2 + O(λ4)
f̃13
f33

λ3 + O(λ7) V32 λ
2 + O(λ6) 1 − 1

2(V32)2 λ4 + O(λ6)


(5.22)

with

V32 ≡ f23
f33

− d23
d33

. (5.23)

Clearly, this mixing matrix predicted in scenario B features the required modifications:

the element Vtd ∼ λ3, the Jarlskog invariant JCP = Im(VudVtbV ∗
ubV

∗
td) ∼ λ6 and a not-

too-tight relation between Vus, Vub and Vcb. Indeed, the results of a chi-squared fit show

that scenario B can be brought into excellent agreement with experimental data on quark-

mixing parameters [29] and the charged fermion masses at the scale µ = 1 TeV [378].

5.3.2 Charged Lepton Sector

For the charged lepton mass matrix Me I find the effective parametrisation

Me =


e11 λ

4 e12 λ
12 o(λ12)

e21 λ
8 e22 λ

2 e23 λ

e31 λ
9 e32 λ

3 e33


〈
H0
d

〉
(5.24)

with eij being complex order-one numbers that are related to the coefficients αei as indi-

cated in eq. (5.142) in appendix 5.9. The element (Me)13 is generated only at an order

higher than λ12.

This implies the following LO results for the charged lepton masses

me =
∣∣∣e11 λ

4 + o(λ12)
∣∣∣ 〈H0

d

〉
,

mµ =
∣∣∣∣e22 λ

2 − e23(e22e23 + 2 e32e33)
2 e2

33
λ4 + O(λ6)

∣∣∣∣ 〈H0
d

〉
,

mτ =
∣∣∣∣∣e33 + e2

23
2 e33

λ2 + O(λ4)
∣∣∣∣∣ 〈H0

d

〉
.

(5.25)
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As expected, the respective dominant contributions arise from the three operators in

eq. (5.121).

The unitary matrices Le and Re read

Le =


1 + o(λ12) e11e21

e2
22

λ8 + O(λ10) o(λ12)

− e11e21
e2

22
λ8 + O(λ10) 1 − e2

23
2 e2

33
λ2 + O(λ4) e23

e33
λ+ O(λ3)

e11e21e23
e2

22e33
λ9 + O(λ11) − e23

e33
λ+ O(λ3) 1 − e2

23
2 e2

33
λ2 + O(λ4)

 (5.26)

and

Re =


1 − e2

21
2 e2

22
λ12 + o(λ12) e21

e22
λ6 + O(λ8) (e21e23+e31e33)

e2
33

λ9 + O(λ11)

− e21
e22

λ6 + O(λ8) 1 − 1
2(Re,23)2λ6 + O(λ8) Re,23 λ

3 + O(λ5)

Re,31 λ
9 + O(λ11) −Re,23 λ

3 + O(λ5) 1 − 1
2(Re,23)2 λ6 + O(λ8)

 .

(5.27)

with

Re,23 ≡ e22e23 + e32e33
e2

33
and Re,31 ≡ 1

e33

(
e21e32
e22

− e31

)
. (5.28)

I reiterate that since neutrinos are massless in this model, lepton mixing is unphysical and

thus the neutrinos transform with Le.

In both Le and Re, the (23)-block deviates from being close to the identity matrix. The

element (Le)23 ∼ λ is mainly due to the operator LLHd eR3 S
† which arises because

LL3Hd eR3 is induced at tree level, LL2 and LL3 carry the same charge under Zdiag
17 ,

and LL and S both transform under 21 and thus the product contains the combination

LL2 S1. Similarly, the operator LL3Hd eR S T which sources the element (Re)23 ∼ λ3 is

automatically induced upon fixing the field content of the operators arising at tree level

in the model.

5.3.3 Leptoquark Couplings

Herein I discuss the form of the LQ couplings x, y and z, defined in (5.5) and given in

the charged fermion mass basis, in scenario B. The LQ couplings x̂, ŷ in the interaction

basis, as well as x, y and z in scenario A are given in section 5.8.3.
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5.3.3.1 Couplings in Charged Fermion Mass Basis

I use the matrices Ld and Le defined in eqs. (5.18) and (5.26) as well as the LQ coupling

x̂ in eq. (5.135) to obtain

x = LTe x̂Ld =


a11 λ

9 a12 λ
11 a13 λ

9

a21 λ
8 a22 λ

3 a23 λ

a31 λ
8 a32 λ

2 a33

 , (5.29)

where the effective parameters aij are related to the coefficients âij , dij and eij contained

in the matrices x̂ in eq. (5.135), Md in eq. (5.16) and Me in eq. (5.24), respectively. The

explicit form of these relations is given in eq. (5.145) in appendix 5.9. In general, the aij
can also be expected to be complex order-one numbers.

Comparing the form of the LQ coupling x in eq. (5.29) to the texture of x in eq. (5.7),

one finds that all of the elements x33, x23, x32 and x22 are generated at the correct order

in λ, respectively, whereas the remaining elements in the first row and/or column are

strongly suppressed. Note that in the case of x22 and x23, the LO contributions are not

only sourced by the respective elements x̂22 and x̂23 in the interaction basis, but also by

the order-λ rotation in the (23)-block of Le; see eq. (5.145) in appendix 5.9.

Furthermore, applying the matrices Lu and Le, see eqs. (5.14) and (5.26), to the LQ

coupling x̂ in eq. (5.135), I find

z = LTe x̂Lu =


c11 λ

9 c12 λ
10 c13 λ

9

c21 λ
4 c22 λ

3 c23 λ

c31 λ
3 c32 λ

2 c33

 . (5.30)

While the orders of magnitude in λ at which the different elements of z are induced are

identical in scenario A and scenario B, the relations between the effective parameters cij
and the coefficients âij , eij , fij and f̃13 are slightly different. Comparing to eq. (5.146) in
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appendix 5.9, I now have

c21 = − f12
e33f22f33

(â33e23f23 − â23e33f23 − â32e23f33 + â22e33f33)

− f̃13
f33

(
â23 − â33e23

e33

)
+ O(λ2) ,

c31 = f12(â33f23 − â32f33)
f22f33

− f̃13
f33

â33 + O(λ2) .

(5.31)

From the unitary matrices Ru and Re in eqs. (5.15) and (5.27) as well as ŷ in eq. (5.136),

I obtain the form of the LQ coupling y in the charged fermion mass basis as in

y = RTe ŷRu =


b11 λ

9 b12 λ
9 b13 λ

9

b21 λ
8 b22 λ

3 b23 λ
3

b31 λ
5 b32 b33 λ

4

 . (5.32)

The effective parameters bij are related to the coefficients b̂ij , eij and fij , with the exact

form of these relations given in eq. (5.147) in appendix 5.9.

Comparing this form of the LQ coupling y with the texture in eq. (5.7), one sees that

the elements y22 ∼ λ3, y33 ∼ λ4 and y31 ∼ λ5 turn out to be larger than anticipated in

the charged fermion mass basis, which is mainly due to (Ru)23 ∼ λ4 and (Ru)12 ∼ λ5;

see eq. (5.15). Still, as will be clear from section 5.4, none of these couplings plays a

major role for the currently viable parameter space of the model. The LO contribution to

the element y22 is not only sourced by the interaction-basis element ŷ22, but also by the

order-λ3 rotation in Re; see eq. (5.147) in appendix 5.9. Moreover, the LQ couplings y1j

involving the electron are very small. Note that the enhancement of the element (Mu)13

of the up-quark mass matrix in scenario B only leaves a slight imprint on the form of y,

with the largest contribution appearing at order λ7 in y31.

5.4 Phenomenological Study

In this section, I will mainly discuss the strategy and results of an analytic and numeri-

cal study of the primary observables which will be defined in section 5.4.1.1 just below.

Ref. [90] also contains an extensive discussion of a second study which is referred to as
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comprehensive since it also takes into account observables which are currently not com-

petitive, and includes a fit to charged fermion masses and quark mixing. The strategy

employed for the comprehensive scan will also be sketched herein, and the findings for the

primary and secondary observables will be presented where appropriate.

5.4.1 Employed Strategy and Parametrisations

5.4.1.1 Primary Scan

Besides R(D), R(D⋆) and ∆aµ of which I aim to explain the anomalous experimental

data, the primary observables comprise those for which the model contributions may be

in conflict with current experimental bounds in some regions of parameter space, or can

be probed in near-future experiments. A brief discussion of the results for secondary

observables is also provided in section 5.4.12. These are not currently competitive in

shaping or probing the parameter space of the model, but promise to do so in the near-

or mid-term future. Where results are expressed in terms of LEFT, see also section 2.4.3,

the Jenkins-Manohar-Stoffer (JMS) basis [192] is chosen.

Note that in the primary scan, I do not explicitly refer to the interaction basis of the SM

fermions as the underlying structure which has been utilised for the construction of the

model, but instead treat (most of) the effective parameters in the LQ coupling matrices

x, y and z as unrelated order-one coefficients for simplicity. Indeed, the magnitudes of

the effective parameters aij , bij and cBij (except for b32 and cB12), the latter to be defined

momentarily, are independently varied in the range[
λ,

1
λ

]
≈ [0.23, 4.42] (5.33)

in order not to jeopardise the expansion in λ, and their phases within

[0, 2π) . (5.34)

A narrower range is chosen for the magnitude of the effective parameter b32 for m̂ϕ = 2,

in order to respect a constraint arising from searches for high-pT τ τ̄ pairs at colliders; see

table 5.4 and section 5.4.10 for details.
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As a further simplification, I assume that the phenomenology of the scalar sector of the

model is dominated by effects induced by ϕ, and only the lightest Higgs is SM-like with

all other scalar states being effectively decoupled.6

In order to better reflect the fact that the coupling matrix z is directly linked to x via

the CKM matrix as per eq. (5.6), instead of the form given in eq. (5.30) I employ the

parametrisation

z =


(a11 − (cB

12)2

2 a11
λ2 + cB11 λ

3)λ9 cB12 λ
10 (a13 + cB13 λ

3)λ9

c21 λ
4 (a22 + a23 c̃+ cB22 λ

2)λ3 (a23 + cB23 λ
4)λ

c31 λ
3 (a32 + a33 c̃+ cB32 λ

2)λ2 a33 + cB33 λ
4

 (5.35)

where

c21 ≡ − cB12
a11

(a22 + a23 c̃) − a23 c̄+ cB21 λ ,

c31 ≡ − cB12
a11

(a32 + a33 c̃) − a33 c̄+ cB31 λ .

(5.36)

This reflects scenario B which I will exclusively focus on due to its capability to cor-

rectly account for experimental data on quark mixing, as emphasised in section 5.3.1.3.7

Furthermore, I define8

cB12 = â11f12
f22

+ O(λ) , c̃ = d23
d33

− f23
f33

and c̄ = f̃13
f33

(5.37)

and the remaining effective parameters cBij are taken to be complex order-one numbers,

thereby reflecting rather involved combinations of the âij , b̂ij , fij , dij and eij . Together

with

a11 = â11 + O(λ3) , (5.38)

6This can be justified for instance in the scenario of inducing one of the Higgs
VEVs [379]. A dynamical mechanism to achieve this might require a further extension
of the scalar field content of the model, and a soft breaking of the imposed symmetry. The
pertinent discussion is well beyond the scope of this thesis.

7Note that c21 and c31 are the only two effective LQ coupling parameters of which the
form differs in scenario A and scenario B. Still, neither of them plays a major role for the
primary observables. c21 enters a subleading contribution to µ− e conversion in nuclei, as
can be seen in section 5.4.6 and table 5.5. c31 is relevant for the leptonic decay B → τν
which constitutes a secondary observable and will be commented on in section 5.4.12.4.

8The parameter c̃ is formally equivalent to −V32 defined in eq. (5.23).
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this implies

|Vus| ≈
∣∣∣∣∣ cB12
a11

∣∣∣∣∣λ , |Vcb| ≈ |c̃|λ2 and |Vtd| ≈ |c̄|λ3 (5.39)

to LO in λ. Regarding the respective powers of λ, this is consistent with experimental

data on quark mixing, see eq. (2.27), thus I further decompose

cB12 = a11 α e
i ω1 , c̃ = β ei ω2 , c̄ = γ ei ω3 (5.40)

where the parameters α, β and γ are varied in the range

[0.5, 1.5] (5.41)

and the phases ωi, i = 1, 2, 3 in

[0, 2π) . (5.42)

This does not reflect any information on CP violation.

Both the primary scan and the comprehensive scan are performed for each of the following

three LQ ϕ masses

m̂ϕ ≡ mϕ

TeV = 2 , 4 and 6 . (5.43)

From the LQ coupling matrices in eqs. (5.29), (5.30) and (5.32), one may infer that ϕ

will dominantly decay into one of the three pairs νLτ b, τc or τt of final-state particles.

For BR(ϕ → νLτ b) ∼ BR(ϕ → τt), that is, for the two BRs taking similar values which

is the case in the model since the relevant couplings are related via quark mixing, the

lower bound m̂ϕ ≳ 1.2 at 95 CL has been established at ATLAS [380]. Decays with

muons or electrons in the final state are further suppressed by at least λ2. Still, the above

choice of benchmark masses is also consistent with the most stringent limits on LQs solely

coupling to muons (electrons), for which m̂ϕ > 1.7 (1.8). This bound is robust regarding

different flavours of the coupled quark [381]; one may also consult ref. [382]. For the mass

m̂ϕ = 2(4)[6], a sample of 4(3)[2] × 106 points has been generated in the primary scan.

For each observable discussed in this section, an analytic estimate is derived which ev-

idences the respective dominant contribution and involved LQ couplings in the charged

fermion mass basis. Note, though, that for the numerical study, including the displayed

151



CHAPTER 5. FLAVOUR ANOMALIES MEET FLAVOUR SYMMETRY

plots which illustrate the results, the complete analytic expressions are employed. They

are given in the remainder of this section as well as in sections 5.10, 5.11 and 5.12, and

used to calculate the contributions to the primary observables. In line with the consider-

ations in section 2.4.3, RG running under QED is typically neglected, that is, the relevant

leptonic observables are directly evaluated at the scale µ = mϕ. On the contrary, RG run-

ning under QCD between the scales µ = mϕ and µ = µB ≡ 4.8 GeV is taken into account

for R(D), R(D⋆) and τSM
Bc ; see eq. (5.47). For the observables BR(τ → µγ), BR(µ → eγ),

BR(τ → 3µ), BR(τ → µeē), BR(µ → 3e), Rν
K(⋆) , τSM

Bc and gτA/g
SM
A , the current exper-

imental bounds are imposed; see table 5.4. A concise discussion of contributions to the

scalar charged-current WC CSRRνedu,3332 is provided in section 5.4.11.

Regarding the sample points displayed in the scatter plots which reflect the findings of the

primary scan, the following conventions hold:

• A round light-coloured sample point indicates that at least one of the imposed ex-

perimental bounds is violated.

• A sample point with the shape of a star (plus sign) [cross] indicates that all imposed

experimental bounds are respected in the case of m̂ϕ = 2(4)[6].

• Different colours are used to distinguish the different masses m̂ϕ = 2, 4, 6.

I employ solid lines for bounds arising from existing experimental data, and dashed lines

signify prospective bounds or future sensitivities. In the former case, regions in parameter

space for which agreement with existing data is established at difference CLs may be

highlighted with grey shadings. Lastly, I mark the employed SM predictions for the

observables R(D) and R(D⋆) at 1σ with a black cross in figure 5.2, and green-shaded

bands in the respective top panel of figures 5.5, 5.6, 5.15 and 5.18.

152



5.4.1 Employed Strategy and Parametrisations

5.4.1.2 Comprehensive Scan

In the comprehensive scan, 1.5 × 105 sample points were generated for each LQ mass.9

The effective parameters fij , dij and eij were fixed in a chi-squared fit to the (running)

charged fermion masses at the scale µ = 1 TeV [378] and to quark mixing [29]. In order to

achieve this, the VEV of Hd was varied in the range ⟨H0
d⟩/GeV ∈ [1.22, 4.86] in accordance

with eq. (5.2). Note that in the comprehensive scan it is also assumed that besides the LQ

ϕ only one SM-like Higgs is present in the scalar sector, which can be easily accounted for

by appropriately rescaling the effective parameters dij and eij . Since the unitary matrices

Ld, Rd, Le and Re only depend on ratios of these, they are unaffected by this rescaling

and thus the LQ coupling matrices x, y and z also remain unaltered.

A further motivation to conduct a second numerical study is the possibility to efficiently

target regions in the high-dimensional parameter space of the model which were identified

in the primary scan as compatible with an explanation of the flavour anomalies, and as

consistent with current experimental bounds. This is achieved via a suitable biasing of

the most relevant effective parameters, as is explained in sections 5.4.3.2 and 5.4.4.

Furthermore, since the comprehensive scan is based on a variation of the effective param-

eters in the LQ coupling matrices x̂ and ŷ, it properly accounts for effects which originate

from the unitary transformations relating the interaction basis and the charged fermion

mass basis. This in general implies additional contributions to the effective LQ parameters

in the coupling matrices x, y and z, which may push them outside the range [λ, 1/λ] and

thus leave an imprint on the phenomenology in some instances as discussed below. For

simplicity, the relations between effective parameters given in appendix 5.9 which hold at

LO in λ are employed to translate between the interaction basis and the charged fermion

mass basis. As these generally involve both the SM Yukawa parameters fij , dij and eij

9As already mentioned in the beginning of section 5.4, I will discuss the findings of the
comprehensive scan and include the pertinent plots where appropriate in the following.
Note that the comprehensive scan as well as the discussion of the results as presented
in ref. [90] are primarily an achievement by my co-author Innes Bigaran. If no explicit
reference is made to the comprehensive scan in the main text herein, it is understood that
the results agree with those from the primary scan.
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as well as the LQ parameters âij and b̂ij , the ranges which the effective LQ parameters

fall into may be sensitive both to the fit to charged fermion masses and quark mixing

and to the biases. In the comprehensive scan, the observables R(D), R(D⋆) and RνK⋆ are

calculated via the WCs defined in eqs. (5.45) and (5.69) further below in this section, the

Wilson package [383] and flavio [11,12]. ∆aµ, BR(τ → µγ), BR(µ → eγ) and CR(µ− e;

Al) are computed with the help of SARAH [384, 385] and SPheno [385]. Trilepton decays

and gτA/g
SM
A are calculated in the same way as in the primary scan.

The conventions for the plots which illustrate the results from the comprehensive scan are

not identical to those for the primary scan. Firstly, the displayed coloured points pass all

considered constraints. Red stars are employed for m̂ϕ = 2, yellow plus signs for m̂ϕ = 4

and blue crosses for m̂ϕ = 6, as displayed in the plot legends. Dotted black lines indicate

the central values for SM predictions. If relevant for the observable under consideration, a

red-brown shaded region indicates the prospective reach as labelled, with the best-fit value

denoted with a solid red-brown line. Where a parameter (or combination of parameters)

is shown on an axis, a grey-shaded band signifies the region of parameter space probed in

the primary scan. The overlaid white crosses (labelled ‘Anomalies’ in the legends) mark

sample points that can simultaneously address the anomalies in R(D), R(D⋆) and ∆aµ
within the respective 3σ regions about their present best-fit values. Slightly different

conventions are employed in figure 5.7; see the caption therein for further information.

Lastly, in agreement with the conventions for the primary scan, solid black lines indicate

current experimental bounds, dashed black lines stand for prospective bounds, and grey-

shaded areas indicate the regions about the present experimental best-fit values pertaining

to different CLs where a physical observable is shown on an axis.

5.4.2 R(D) and R(D⋆)

I begin the discussion of the phenomenology of the model under consideration with the

LFU ratios R(D) and R(D⋆). They are mediated via semi-leptonic charged current tran-
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List of Primary Observables

Observable
Experiment

Current constraint/measurement Future reach
R(D) 0.339 ± 0.026 ± 0.014 at 1σ level [10] ±0.016 (0.008) for 5 (50) ab−1 [17]
R(D⋆) 0.295 ± 0.010 ± 0.010 at 1σ level [10] ±0.009 (0.0045) for 5 (50) ab−1 [17]
∆aµ (2.51 ± 0.59) × 10−9 at 1σ level [18, 19] ±0.4 × 10−9 [20]
BR(τ → µγ) 4.2 × 10−8 at 90% C.L. [21] 6.9 × 10−9 [386]
BR(µ → eγ) 4.2 × 10−13 at 90% C.L. [22] 6 × 10−14 [23]
BR(τ → 3µ) 2.1 × 10−8 at 90% C.L. [28] 3.6 × 10−10 [386]
BR(τ → µeē) 1.8 × 10−8 at 90% C.L. [28] 2.9 × 10−10 [386]
BR(µ → 3 e) 1.0 × 10−12 at 90% C.L. [242] 20 (1) × 10−16 [27]
CR(µ− e; Al) 2.6 (2.9) × 10−17 [25, 26]
RνK⋆ 2.7 at 90% C.L. [24] 1.0 ± 0.25 (0.1) for 5 (50) ab−1 [7]
gτA/g

SM
A 1.00154 ± 0.00128 at 1σ level [30, 31] ±7.5 (0.75) × 10−5 [31–33]

τSM
Bc

0.52+0.18
−0.12 ps at 1σ level [387]

cc → τ τ̄ |b32| < 2.6 (m̂ϕ = 2) [161,388]

Table 5.4: List of primary observables. Herein I list the observables of which the anomalous
data ought to be explained, as well as the ones which dominantly constrain this model, together
with the respective current measurement/constraint and future reach. The values for R(D) and
R(D⋆) reflect the 2021 averages from the HFLAV collaboration. The future reach for BR(µ → 3e)
outside (inside) the parentheses refers to Phase 1 (2) of the Mu3E experiment. For CR(µ → e;
Al), the first (second) value indicates the future reach of COMET (Mu2E). The future reach
for Rν

K⋆ holds under the assumption that the result of the measurement will agree with the SM
expectation [7]. Regarding the projections for gτA

, it is assumed that the experimental uncertainty
will be reduced by the same factor as sin2 θeff as in ref. [31]; the unbracketed projection refers
to the International Linear Collider (ILC) [32], whereas the bracketed value is for the Future
Circular Collider (FCC) [33]. The current experimental constraint on the Bc lifetime is τ exp

Bc
=

(0.510 ± 0.009) ps [10, 29]. Note that the constraint arising from high-pT τ τ̄ searches differs from
the other constraints in that it is directly imposed in the primary scan via an adequate restriction
of the range for |b32| as indicated.

sitions, for which the effective Lagrangian reads

L ⊃ CV LLνedu,ijkl

(
νiγ

µPLej
)(
dkγµPLul

)
+ CV LRνedu,ijkl

(
νiγ

µPLej
)(
dkγµPRul

)
+ CSRLνedu,ijkl

(
νiPRej

)(
dkPLul) + CSRRνedu,ijkl

(
νiPRej

)(
dkPRul

)
+ CTRRνedu,ijkl

(
νiσ

µνPRej
)(
dkσµνPRul

)
+ h.c. .

(5.44)

Integrating out ϕ, I find the following contributions via tree-level matching:

CV LLνedu,ijkl = −x∗
ikzjl

2m2
ϕ

, CSRRνedu,ijkl = −x∗
ikyjl

2m2
ϕ

, CTRRνedu,ijkl = 1
4
x∗
ikyjl

2m2
ϕ

. (5.45)
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Observable Effective parameters

R(D) a33, b32, (a23)
R(D⋆) a33, b32, (a23)
∆aµ b23, c23

BR(τ → µγ) b23, c33

BR(µ → eγ) b13, c23

BR(τ → 3µ) b23, c33, (c23)
BR(τ → µeē) b23, c33, (c23)

Observable Effective parameters

BR(µ → 3 e) b13, c23

CR(µ → e; Al) b13, c23, (b11, b23, c13, c21)
RνK⋆ a32, a33, (a22, a23)

gτA/g
SM
A c33

τSM
Bc

a33, b32, (a23)

cc → τ τ̄ b32

bc → τν a33, b32, (c32)

Table 5.5: List of primary observables with the relevant effective parameters. I list
the primary observables together with the effective parameters related to the LQ couplings in the
charged fermion mass basis which capture the most relevant contributions, respectively, in line
with the analytic estimates performed in this section. The parameters listed in round brackets
refer to contributions which are subdominant.

On the contrary, CV LRνedu,ijkl and CSRLνedu,ijkl are only sourced at loop level and thus disre-

garded. The underlying quark-level transition for R(D) and R(D⋆) is given by b → c,

thus I specify k = 3 and l = 2 henceforth. According to eq. (5.45), one has

CSRRνedu,ij32(mϕ) = −4CTRRνedu,ij32(mϕ) (5.46)

at the matching scale µ = mϕ. Since it is common to define the observables R(D) and

R(D⋆) at a scale close to the mass of the bottom quark, I account for the effects of RG

running as follows, extracted from the package Wilson [383]:

CV LLνedu,βα32(µB)
CV LLνedu,βα32(mϕ)

≈


1.016, m̂ϕ = 2

1.018, m̂ϕ = 4

1.019, m̂ϕ = 6

 ,
CSRRνedu,βα32(µB)
CSRRνedu,βα32(mϕ)

≈


1.675, m̂ϕ = 2

1.736, m̂ϕ = 4

1.770, m̂ϕ = 6

 ,

CTRRνedu,βα32(µB)
CTRRνedu,βα32(mϕ)

≈


0.860, m̂ϕ = 2

0.852, m̂ϕ = 4

0.848, m̂ϕ = 6

 .
(5.47)

Here, I have chosen the scale

µ = µB ≡ 4.8 GeV . (5.48)

Note in particular that RG running implies

CSRRνedu,ij32(µB) ≈ −8CTRRνedu,ij32(µB) . (5.49)
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The formulae used for the computation of R(D) and R(D⋆) in the primary scan are derived

from requiring that the results agree with the output of the package flavio [11,12], v2.3.10

Thus, the SM predictions R(D)SM = 0.297±0.008 and R(D⋆)SM = 0.245±0.008 obtained

from flavio are employed as well. Their discrepancy with current data has a significance

of roughly 3σ, as can be seen in table 5.1.11

As the model predicts the main contributions to R(D) and R(D⋆) to be induced in the tau-

lepton channel, I focus on j = 3 henceforth. Moreover, the dominant correction will arise

from the large coupling x33 ∼ 1 which involves a tau neutrino ντ . In this case, interference

with the SM contribution occurs, as the flavours of the final-state leptons match. Since the

coupling x23 ∼ λ is also fairly large, neglecting the lepton-flavour violating (LFV) channel

with a muon neutrino νµ is generally not justified. Contrariwise, the residual symmetry

Zdiag
17 successfully protects the couplings to electron neutrinos νe, resulting in x11 ∼ λ9,

x13 ∼ λ9 and x12 ∼ λ11, respectively, which implies that this channel can never have a

sizeable impact. Eventually, I find the approximate expressions

R(D)
R(D)SM

≈ 1 − 1.17 Re
(
ĈSRRνedu,3332(µB)

)
+ 0.72 Re

(
ĈTRRνedu,3332(µB)

)
+ 0.63

(∣∣∣ĈSRRνedu,3332(µB)
∣∣∣2 +

∣∣∣ĈSRRνedu,2332(µB)
∣∣∣2)

+ 0.37
(∣∣∣ĈTRRνedu,3332(µB)

∣∣∣2 +
∣∣∣ĈTRRνedu,2332(µB)

∣∣∣2)
≈ 1 + 1.07 |a33b32|

m̂2
ϕ

cos
(
Arg(a33) − Arg(b32)

)
+ 0.46 |a33b32|2

m̂4
ϕ

+ 0.02 |a23b32|2

m̂4
ϕ

(5.50)

10As the formulae are lengthy, they are relegated to appendix 5.10.
11R(D) and R(D⋆) are implemented in flavio via the helicity formalism [302]. Regard-

ing the employed form factors, ref. [13] which makes use of HQET, see section 2.4.4, has
been used since v2.0.
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Figure 5.1: Correlation plot for m̂ϕ = 4
based on the sample points which ex-
plain R(D(⋆)) at 2σ or 1σ in the pri-
mary scan. The plot visualises Spearman’s
rank correlation coefficient calculated via the
library seaborn [9]. A negative (positive)
correlation among, say, two coefficient mag-
nitudes indicates that if one of them in-
creases, the other tends to decrease (also
increase). Note that sample points not re-
specting the experimental bounds are taken
into account here as well.

and
R(D⋆)
R(D⋆)SM

≈ 1 + 0.10 Re
(
ĈSRRνedu,3332(µB)

)
+ 4.21 Re

(
ĈTRRνedu,3332(µB)

)
+ 0.03

(∣∣∣ĈSRRνedu,3332(µB)
∣∣∣2 +

∣∣∣ĈSRRνedu,2332(µB)
∣∣∣2)

+ 8.60
(∣∣∣ĈTRRνedu,3332(µB)

∣∣∣2 +
∣∣∣ĈTRRνedu,2332(µB)

∣∣∣2)
≈ 1 + 0.36 |a33b32|

m̂2
ϕ

cos
(
Arg(a33) − Arg(b32)

)
+ 0.12 |a33b32|2

m̂4
ϕ

+ 0.01 |a23b32|2

m̂4
ϕ

.

(5.51)

Here, the dominant LFV contributions are captured via the WCs with the flavour-index

combination 2332, and the parameter product a23b32 in the respective last line. Further-

more, for the sake of convenience, dimensionless WCs

Ĉ ≡ C · TeV2 (5.52)

were introduced. Note that ϕ dominantly sources R(D) via the scalar operator, and

R(D⋆) via the tensor operator. On the contrary, the hierarchy z32/y32 ∼ λ2 implies

that corrections mediated by vector operators are further suppressed and can hence be

neglected.

The estimates in eqs. (5.50) and (5.51) suggest that the contributions to both R(D) and
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R(D⋆) are largely controlled by the product |a33b32| which has to fall in an appropriate

range to explain the anomaly. Furthermore, whether an enhancement or a suppression of

R(D) and R(D⋆) is obtained may be suspected to largely depend on the cosines associated

with the real parts of the NP WCs which interfere with the SM contributions. Seeing as

the best-fit values are larger than the SM predictions in either case, one expects that

the cosines should take values close to +1 for that purpose, which would imply that the

arguments of the complex coefficients a33 and b32 should approximately coincide, hence

be positively correlated.

These considerations are substantiated via selecting only the points from the entire gener-

ated sample for which the anomaly in R(D) and R(D⋆) is explained at a certain CL, and

then determining Spearman’s rank correlation coefficient for all pairwise combinations of

the LQ coupling parameters. For that purpose, the library seaborn [9] has been used,

and the results are shown in the correlation plot in figure 5.1.

Besides the coefficients a33 and b32 which play a major role for R(D) and R(D⋆), the

coefficients a23, b13 and b23 are included as well for the sake of comparison due to their

relevance for contributions to the AMM of the muon and radiative cLFV lepton decays; see

section 5.4.3. The case m̂ϕ = 4 and an (inclusive) CL of 2σ are chosen as an illustrative

example, the results are not appreciably different for the other considered masses and

CLs. Note that the sample points taken into account in figure 5.1 comprise all those which

explain R(D) and R(D⋆), regardless of whether they also respect the imposed experimental

bounds or not, thereby making up roughly 10% of the entire sample for m̂ϕ = 4. A blueish

(reddish) colour illustrates a negative (positive) correlation, whereas black indicates the

absence of any appreciable correlation. One can see that the contribution linear in |a33b32|

is required to be positive for an explanation of R(D) and R(D⋆), that is, the contribution

quadratic in |a33b32| is generically too small to yield a dominant effect.

The results from the primary scan in the R(D) − R(D⋆) plane are displayed in the left

plot of figure 5.2. The distinctive linear relation

R(D⋆) ≈ 0.30R(D) + 0.15 (5.53)
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Figure 5.2: Model predictions for R(D) and R(D⋆). Left: Results from primary scan. The
regions marked by solid lines are compatible with the current experimental world averages for
R(D(⋆)) [10] at the indicated CL; see table 5.4. I use the values output by flavio, v2.3 for the
SM predictions for R(D(⋆)) at 1σ [11–13] indicated by the black cross, see section 5.10. The round
points (geometric shapes) indicate that current experimental bounds are violated (respected); see
also the main text of section 5.4.1.1. Right: Results from comprehensive scan. The shown sample
points respect the experimental bounds from primary constraints; see also section 5.4.1.2. The
dot-dashed purple ellipse shows the 1σ contour about the most recent results for R(D) and R(D⋆)
from Belle [14], and the green band indicates the 1σ region about the most recent result for R(D⋆)
from LHCb [15, 16]. The black dashed ellipse shows the prospective reach at Belle II [17] at the
level of 3σ for 5 ab−1 of data under the assumption of the best-fit value and correlation coefficient
from the HFLAV collaboration as of 2021 [10].

holds after the experimental bounds are imposed, implying that ϕ can accommodate the

anomalous data in R(D) and R(D⋆) at the level of 2σ, regardless of which benchmark mass

is considered. This is confirmed by the findings of the comprehensive scan, see the right

plot in figure 5.2. Moreover, if the best-fit value and the correlation coefficient reported by

HFLAV remain unchanged, but the uncertainties for R(D) and R(D⋆) shrink as projected

by the Belle-II collaboration, see table 5.4, an accommodation of the anomaly within the

model would still be possible at 3σ for all LQ masses.
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5.4.3 Radiative Lepton Transitions

In order to describe radiative transitions of charged leptons, I make use of the contribution

from the dipole operator which enters the relevant leptonic effective Lagrangian

L ⊃ Cijeγ(eiσµνPRej)Fµν + h.c. . (5.54)

Herein, I define the covariant derivative for QED as in Dµ = ∂µ + iQeAµ which agrees

with ref. [192]. Note that as per ψ = (PL+PR)ψ with the projection operators introduced

in eq. (2.8), the transitions described by eq. (5.54) necessarily involve a chirality flip.

Evaluating the one-loop amplitudes of the contributions mediated by ϕ and matching the

results onto LEFT with the help of FeynRules [389], FeynArts [390], FormCalc [391,392],

Package-X [393], and ANT [394] yields

Cijeγ = − e

32π2m2
ϕ

∑
m

((
meiy

∗
imyjm +mejz

∗
imzjm

)
[fS(tum) − 3fF (tum)]

−mumz
∗
imyjm [gS(tum) − 3gF (tum)]

) (5.55)

with the unit electric charge e = |e| and the abbreviation

tX ≡ m2
X

m2
ϕ

. (5.56)

Moreover, the loop functions

fS(x) = x+ 1
4(x− 1)2 − x ln x

2(x− 1)3 , fF (x) = x2 − 5x− 2
12(x− 1)3 + x ln x

2(x− 1)4 ,

gS(x) = 1
x− 1 − ln x

(x− 1)2 , gF (x) = x− 3
2(x− 1)2 + ln x

(x− 1)3

(5.57)

enter. Expanding them in small arguments, I approximately find

Cijeγ ≈ e

128π2m2
ϕ

∑
m

(
meiy

∗
imyjm +mejz

∗
imzjm + 2mumz

∗
imyjm(7 + 4 ln tum)

)
. (5.58)

This result neatly illustrates that the chirality flip occurs due to a mass insertion either on

an external lepton line (first two terms), or the internal up-quark line (right-hand term).

Thus, the latter contribution will be the dominant one for m = 3 due to the large mass

of the top quark. Generally, the finite contributions to the AMM arise from the photon

coupling to either the internal LQ propagator or the internal up-type quark propagator.
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Figure 5.3: Correlation plot for m̂ϕ = 4
based on the sample points which ex-
plain ∆aµ at 2σ or 1σ in the primary
scan. The plot visualises Spearman’s rank
correlation coefficient calculated via the li-
brary seaborn [9]. A negative (positive) cor-
relation among, say, two coefficient magni-
tudes indicates that if one of them increases,
the other tends to decrease (also increase).
Note that sample points not respecting the
experimental bounds are taken into account
here as well.

5.4.3.1 Anomalous Magnetic Moment of the Muon

Turning now to the AMM of the muon and using eqs. (2.51) and (5.54), I find

∆aµ = 4mµ

e
Re(C22

eγ ) ≈ mµmt

16π2m2
ϕ

(7 + 4 ln tt) Re
(
z∗

23y23
)

≈ − 5
m̂2
ϕ

Re(b23c
∗
23) × 10−9 = − 5

m̂2
ϕ

|b23c23| cos (Arg(b23) − Arg(c23)) × 10−9 .
(5.59)

After the announcement of the Run-1 results from the g − 2 experiment at Fermilab [18],

the combined significance of the experimental anomaly in the AMM of the muon now

stands at 4.2σ; see also section 2.2.2. The result ∆aµ ∼ 10−9 obtained from the estimate

above suggests that the model under consideration can ameliorate this anomalous data,

see also table 5.4, which I will elaborate on in the following.

Firstly, a positive contribution to ∆aµ is required, which implies that the cosine in eq.(5.59)

must cancel the negative sign in front. Therefore, the difference of the arguments of the

coefficients12 c23 ≈ a23 and b23 needs to be in a vicinity of π, signaling the requirement of

12As can be seen in eq. (5.35), the effective parameters c23 and a23 as well as c33 and
a33 agree up to O(λ4), respectively, and since c23 and c33 are not varied as fundamental
parameters in the primary scan, the implications for these coefficients will be mainly
discussed in terms of a23 and a33.
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a negative correlation between Arg(c23) ≈ Arg(a23) and Arg(b23). This is confirmed via

the correlation plot in figure 5.3 which indicates a (moderate) negative correlation, both

in the case of |a23| and |b23| as well as for the phase differences. The points constituting

the plot may or may not respect the imposed experimental bounds and comprise roughly

15% of the entire sample for the mass m̂ϕ = 4 used as a benchmark here.

Note that the negative correlation of the magnitudes is less pronounced than in the case

of |a33| and |b32| if the anomaly in R(D) and R(D⋆) ought to be explained. I interpret

this as being due to the fact that the product |a33b32| more directly determines the result

for R(D(⋆)), since there is not only the contribution arising from interference with the

SM, but also the (smaller) contribution proportional to |a33b32|2 which is unaffected by

Arg(a33) − Arg(b32), as can be seen in eqs. (5.50) and (5.51). On the contrary, say, a

too large value |a23b23| can always directly get compensated by Arg(a23) − Arg(b23); thus

the result for ∆aµ exhibits a more similar sensitivity to the magnitudes and the phase

difference of a23 and b23.

The primary scan shows that a priori, a result up to ∆aµ ≈ 3 · 10−9 or larger is possible,

depending on the LQ mass, in line with the estimate in eq. (5.59) in the case of large LQ

couplings. Still, after imposing the experimental bounds, ∆aµ ∼ 10−9 is not a generic

result, but instead I found a further suppression by one or two orders of magnitude for

about 90% of the viable sample points with positive ∆aµ generated in the primary scan,

irrespective of the LQ mass. Imposing the experimental bounds does not result in a

preference for either sign of ∆aµ, as is expected since none of the primary observables

exhibit a particular sensitivity to the phase of b23 or a23. Still, the results hint towards

the possibility of explaining ∆aµ at 2σ or better in the model. See section 5.4.4 for the

pertinent plots and further discussions.

Regarding the case of other charged leptons, I note that the model under consideration

can generate contributions |∆ae| ∼ 10−21 and |∆aτ | ∼ 10−7 as is found in the comprehen-

sive scan, which are however well below the respective present and future experimental

reaches [395–398]. The EDM of the muon will be briefly discussed in section 5.4.12.1.
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Figure 5.4: Correlation plot for m̂ϕ = 4
based on the sample points which re-
spect all imposed experimental con-
straints in the primary scan. The plot
visualises Spearman’s rank correlation coef-
ficient calculated via the library seaborn [9].
A negative (positive) correlation among, say,
two coefficient magnitudes indicates that if
one of them increases, the other tends to de-
crease (also increase). The LO contributions
to BR(τ → µγ) and BR(µ → eγ) are propor-
tional to |a33b23|2 and |a23b13|2, respectively.

5.4.3.2 Radiative Charged Lepton Flavour Violating Decays

Contributions to the dipole operator generally also imply the occurrence of radiative cLFV

decays, of which the BRs read

BR(ei → ejγ) =
m3
ei

4πΓei

(
|Cijeγ |2 + |Cjieγ |2

)
. (5.60)

Here, the full decay width of the charged lepton ei is signified by Γei . Again focussing on

the dominant contribution with a top-quark mass insertion in the loop, I approximately

find

BR(ei → ejγ) ≈
e2m2

tm
3
ei

1282π5Γeim
4
ϕ

|7 + 4 ln tt|2
(
|zi3yj3|2 + |zj3yi3|2

)
. (5.61)

Further specifying the flavour channels µ → e and τ → µ, one obtains

BR(µ → eγ) ≈
e2m2

tm
3
µ

1282π5Γµm4
ϕ

|7 + 4 ln tt|2|z23y13|2 ≈ 8
m̂4
ϕ

|c23b13|2 × 10−11 (5.62)

and

BR(τ → µγ) ≈ e2m2
tm

3
τ

1282π5Γτm4
ϕ

|7 + 4 ln tt|2|z33y23|2 ≈ 3
m̂4
ϕ

|c33b23|2 × 10−6 . (5.63)

In fact, the viable parameter space for the model is predominantly shaped by the estab-

lished experimental limits on these two BRs. This is further evidenced by the correlation
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plot in figure 5.4 showing the coefficients of the LQ couplings which display non-zero cor-

relations when all the experimental bounds considered in the primary scan are imposed.

Note that for the selected benchmark mass m̂ϕ = 4 this is the case for only 0.35% of the

generated sample points.

Therefore, imposing an adequate negative correlation between the magnitudes |a23| and

|b13| as well as |a33| and |b23|, respectively, is sufficient in the primary scan to render

a sample point compatible with every experimental constraint taken into account. In

other words, one in principle only needs to sufficiently constrain the products |b13a23| and

|b23a33|, which is in excellent agreement with eqs. (5.62) and (5.63) above. Thus, if a bound

on another observable is violated, this generally implies in the primary scan that either

BR(τ → µγ) or BR(µ → eγ), or both of them, is too large as well. Still, this observation

needs to be revised in particular in the light of the results from the comprehensive scan

for the observable Rν
K(⋆) , which is the subject of section 5.4.5.

Combining the estimates for ∆aµ and BR(µ → eγ), I approximately find

|∆aµ| ≲ 5
m̂2
ϕ

|b23c23| × 10−9 < 5
√

BR(µ → eγ)exp
|b23|
|b13|

× 10−9 ≲
1.6
|b13|

× 10−9 . (5.64)

Note that the smallness of the coupling |y13| ∼ |b13|λ9 due to the residual symmetry Zdiag
17

implies that BR(µ → eγ) does not provide a more stringent constraint than BR(τ → µγ),

although the experimental bound on the former is five orders of magnitude stronger than

the one on the latter. As is found in the primary scan, one generally generates large

contributions BR(τ → µγ) ≳ O(10−9), depending on the LQ mass. Still, the experimental

bound on BR(µ → eγ) is easily saturated as well. See the pertinent plots and further

discussions in section 5.4.4 below. On the contrary, the hierarchy y13/y23 ∼ λ6 also implies

that the experimental bound on BR(τ → eγ) does not give rise to a relevant constraint

for the model, despite it being similarly stringent as the one on BR(τ → µγ).

In the comprehensive scan, the competitiveness of the processes τ → µγ and µ → eγ in

shaping the parameter space is incorporated via a suitable biasing of the involved effective
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parameters, as derived from the results of the primary scan. Explicitly, I require

|b23| ≲ 1
|a33|


0.16, m̂ϕ = 2

0.45, m̂ϕ = 4

0.86, m̂ϕ = 6

 (5.65)

and

|b13| ≲ 1
|a23|


0.41, m̂ϕ = 2

1.16, m̂ϕ = 4

2.22, m̂ϕ = 6

 . (5.66)

Thus, the parameters |b13| and |a23| as well as |b23| and |a33| are correlated in the com-

prehensive scan not only due to the imposed experimental bounds on BR(τ → µγ) and

BR(µ → eγ), but also a priori due to the biases enforced as per eqs. (5.65) and (5.66).

Note that the ranges for |a23| and |a33| employed in the comprehensive scan also arise

from a biasing procedure; see the following section 5.4.4 for more details.

On a slightly different note, I emphasise that ϕ also induces a correction to the charged

lepton masses in a manner similar to the radiative transitions discussed in this section.

Still, in the case of the electron and the tau lepton, the contributions are very small

compared to the respective measured masses. On the contrary, the muon mass can receive

O(mµ) corrections which may however be absorbed via a redefinition of the effective

parameter e22.13

5.4.4 Simultaneous Explanation of All Anomalies

From ∆aµ ∝ |b23c23|, cf. eq. (5.59), and R(D(⋆)) being mainly controlled by |a33b32| as

can be seen in eqs. (5.50) and (5.51), one may conclude that a priori these observables are

not (strongly) correlated in the model. Still, BR(τ → µγ) is intertwined with R(D) and

R(D⋆) via |c33| ≈ |a33|, and with ∆aµ via |b23|, whereas the latter also largely depends

on |c23| ≈ |a23| which is constrained via BR(µ → eγ); see sections 5.4.2 and 5.4.3. Thus,

13See for instance refs. [399, 400] for a different approach in which a constraint related
to these corrections is imposed.
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Figure 5.5: Model predictions for R(D), R(D⋆) and ∆aµ. Upper panel: Results from
primary scan. The regions marked by solid lines are compatible with the current experimental
world averages for R(D(⋆)) [10] and ∆aµ [18, 19], respectively, at the indicated CL; see table 5.4.
The SM predictions for R(D(⋆)) at 1σ [11–13] are indicated by the green-shaded bands. The round
points (geometric shapes) indicate that current experimental bounds are violated (respected); see
also the main text of section 5.4.1.1. Lower panel: Results from comprehensive scan. The shown
sample points respect the experimental bounds from primary constraints; see also section 5.4.1.2.
The red-brown band indicates the projected sensitivity of the Muon g−2 experiment [20] at the
level of 3σ. This (roughly) overlays the present 2σ region under the assumption that the current
experimental best-fit value persists (red-brown solid line).

enforcing the bounds on these two BRs results in a distinct correlation between ∆aµ and

R(D(⋆)).

The capability of the model to explain the anomalies in R(D), R(D⋆) and ∆aµ is illustrated
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in figure 5.5. Therein, the effect of imposing the bound on BR(τ → µγ) helps understand

the shape of the viable parameter space. As indicated in section 5.4.2, the difference of

R(D)/R(D)SM and R(D⋆)/R(D⋆)SM from 1 can be approximated as a quadratic function

in |a33|, respectively; see eqs. (5.50) and (5.51). Together with ∆aµ ∝ |b23|, see eq. (5.59),

and the experimental limit on BR(τ → µγ) constraining the product |b23c33| ≈ |b23a33|

according to eq. (5.63), this bounds R(D)/R(D)SM and R(D⋆)/R(D⋆)SM from above as a

function of ∆aµ.

Consequently, both R(D) and R(D⋆) can individually be explained at least at 2σ for all

considered LQ masses in agreement with the current experimental bound on BR(τ → µγ);

see figure 5.6. Still, the model contribution to R(D⋆) will always be smaller than the

experimental best-fit value. Note, though, that even in the case of a non-observation of

τ → µγ at Belle II [7], an explanation of R(D) within 1σ would still be possible, whereas

an accommodation of the anomaly in R(D⋆) would be disfavoured in that case.

The upcoming searches for τ → µγ and µ → eγ [23] will both probe large parts of the

currently viable parameter space. τ → µγ can be expected to provide a particularly

efficient test of the model in the case of m̂ϕ = 2. The bottom-left plot in figure 5.6 also

indicates that current data on τ → µγ implies the upper limit ∆aµ ≲ 3×10−9 in the model

which can readily be recovered from combining the estimates in eq. (5.59) and (5.63) with

the current experimental bound BR(τ → µγ)exp < 4.2 × 10−8 [21] for the magnitudes of

the involved effective LQ parameters not much larger than, say, 2. In addition, both the

future search for τ → µγ at Belle II and the one for µ → eγ at MEG II will test the

capability of the model to explain ∆aµ and potentially render this option at least unlikely.

Using flavio [11–13], one finds that the SM prediction R(D)SM = 0.297±0.008 is compat-

ible with the current experimental world average at 2σ, that is, the anomaly is primarily

constituted by the discrepancy between R(D⋆)SM = 0.245 ± 0.008 and the corresponding

experimental value [10] which overlap only at 3σ.14 Thus, a combined explanation of the

anomalies in R(D), R(D⋆) and ∆aµ at a CL of 3σ or better is very challenging to achieve

14Since the values for R(D)SM and R(D⋆)SM output by flavio differ from those quoted
in ref. [10], the significances are not in exact correspondence with the ones in Table 5.1.
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Figure 5.6: Constraining power and future reach of τ → µγ and µ → eγ as found in the
primary scan. The vertical solid (dashed) lines indicate the current bound on (future sensitivity
of) BR(τ → µγ) [7, 21] in the upper panel and the bottom-left plot, and the current bound on
(future sensitivity of) BR(µ → eγ) [22, 23] in the bottom-right plot; see table 5.4. The round
points (geometric shapes) indicate that current experimental bounds are violated (respected); see
also the main text of section 5.4.1.1.

in the primary scan in particular due to the correlation between the latter two observables.

This situation is remedied in the comprehensive scan with the help of an adequate biasing

of the effective parameters a33, b32, a23 and b23 as laid out in table 5.6. The shown

ranges reflect the sample points generated in the primary scan for which all considered

experimental bounds are respected and at least one of the anomalies in R(D(⋆)) or ∆aµ are
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m̂ϕ |a33| |b32| cos[∆(a33, b32)] |a23| cos[∆(a23, b23)]

2 [0.2, 0.7] [1.1, 2.6] [0.4, 1.0] – –

4 [0.2, 1.9] [1.0, 4.5] [0.1, 1.0] [1.6, 4.4] [−1.0,−0.5]

6 [0.2, 3.6] [0.8, 4.5] [0.0, 1.0] [1.4, 4.4] [−1.0,−0.3]

Table 5.6: Inputs for biasing in the comprehensive scan, derived from the samples
generated in the primary scan. I define ∆(rij , skl) ≡ Arg(rij) − Arg(skl). Every sample point
found in the primary scan which respects all experimental bounds and explains R(D(⋆)) or ∆aµ (or
both) at 3σ falls into the displayed ranges. The interval bounds are rounded to one decimal place.
Since no sample points which explain ∆aµ at 3σ were found for m̂ϕ = 2 in the primary scan, the
default ranges [λ, 1/λ] and [−1.0, 0.0] are adopted for |a23| and cos[∆(a23, b23)], respectively, in the
comprehensive scan. Note that the inequalities in eq. (5.65) and (5.66) are imposed as well, as is
explained in the main text.

explained at 3σ. In the case of |a33|, the union of the ranges separately extracted from the

sample points explaining R(D(⋆)) at 3σ and those explaining ∆aµ at 3σ is displayed. Still,

an efficient accommodation of the constraints arising from BR(τ → µγ) and BR(µ → eγ)

requires further imposing the inequalities in eqs. (5.65) and (5.66). Note that the bound

on BR(τ → µγ) controls whether a sample point will explain R(D(⋆)), for which |a33|

needs to be rather large, or ∆aµ, for which |b23| must be rather large.

As they are extracted from the primary scan, the biases are expressed in the charged

fermion mass basis. Still, the given ranges are utilised to sample â33, b̂32 and b̂23 in the

interaction basis, since these coefficients constitute the only contribution to the respective

parameters in the charged fermion mass basis at LO in λ; see eqs. (5.145) and (5.147).

Nonetheless, since the complete relations between the LQ coupling parameters in the

interaction basis and the mass basis are used, the ranges of the resulting coefficients in

the latter may not strictly adhere to the ranges laid out in table 5.6 in the sampling for

the comprehensive scan.

Note that sample points with |a23| being as large as 1/λ which respect all imposed con-

straints are found in the comprehensive scan for all considered LQ masses, and thus

eq. (5.66) implies that |b13| may be pushed outside the default range [λ, 1/λ].15 The

15On the contrary, the biases for |a33| are compatible with maintaining the range [λ, 1/λ]
for |b23| to a good degree. This is in agreement with the model since |b23| = |b̂23| at LO
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Figure 5.7: Illustration of the capability
of the model to simultaneously explain
the anomalies in R(D), R(D⋆) and ∆aµ in
the comprehensive scan. The sample points
shown as light-coloured dot points (dark-coloured
points with specific shapes) respect the experi-
mental bounds from primary constraints and ex-
plain ∆aµ within the 3σ (2σ) range about the
present best-fit value. Apart from that, the plot
is to be read in the same way as the right plot in
figure 5.2.

model can accommodate this in a somewhat accidental manner, since the effective pa-

rameter b13 picks up an additional contribution from the adoption of the charged fermion

mass basis, that is,16

b13 = b̂13 − b̂23
e21
e22

+ O(λ2) . (5.67)

Indeed, values as small as |b13| ≈ 0.004 ∼ λ4 are obtained in the comprehensive scan.

Importantly, as per eq. (5.64), this implies that larger results for ∆aµ are attainable than

suggested by the primary scan where |b13| > λ was enforced.

Overall, I observe that the biases imposed in the comprehensive scan help establish the

fact that the model under consideration respects all primary constraints and can explain

the anomalous data in R(D), R(D⋆) and ∆aµ at the level of 3σ for m̂ϕ = 2 and 4.

Furthermore, even a sample point for which all anomalies are simultaneously explained at

2σ was identified in the case of m̂ϕ = 2; see figure 5.7.

Apart from the conventions employed for figure 5.7 as is explained in the caption therein

in λ; see eq. (5.147).
16The parameter e22 is directly determined from the fact that it constitutes the LO

contribution to the muon mass in the model. Still, since lepton mixing is unphysical,
the parameter e21 is only indirectly constrained from the diagonalisation of the charged
lepton mass matrix in eq. (5.24). Indeed, the fit to charged fermion masses and quark
mixing seems to prefer the ratio |e21/e22| to take values roughly between 1 and 4.5 and
thus cannot bar cancellations among both LO contributions to b13.
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as well as in section 5.4.1.2, a simultaneous explanation of the anomalies at 3σ or better

is achieved in the comprehensive scan only for the white crosses displayed in the plots.

In fact, all of these have |b13| < λ. If solely ∆aµ is considered, an accommodation of the

anomaly requires |b13| < λ only for m̂ϕ = 2, whereas |b13| can be larger for m̂ϕ = 4, 6.

This is the only instance in which experimental data favours the LO contribution to a LQ

coupling to be suppressed by more powers of λ than anticipated in the construction of the

model.

Lastly, I remark that in the comprehensive scan, a simultaneous explanation of the anoma-

lies together typically, albeit not necessarily implied a signal in τ → µγ at Belle II and/or

in µ → eγ at MEG II.

5.4.5 Rν
K(∗)

The effective Lagrangian for neutral-current semi-leptonic b → sνν̄ transitions reads

L ⊃ CV LLνq,ij23
(
νiγ

µPLνj
)(
sγµPLb

)
+ CV LRνq,ij23

(
νiγ

µPLνj
)(
sγµPRb

)
+ h.c. . (5.68)

In the SM, contributions to CV LLνq,ij23 are generated at the level of one loop through penguin

and box diagrams, whereas CV LRνq,ij23 is sourced only at higher order. In addition, ϕ induces

tree-level corrections to CV LLνq,ij23, but not to CV LRνq,ij23, so I henceforth disregard the influence

of the latter. Tree-level matching yields

CV LLνd,ij23 = xj3x
∗
i2

2m2
ϕ

. (5.69)

Unlike in the SM, the flavours of the neutrino and antineutrino in the final state do not

have to match in the model under consideration. The BR for the decay B → K(⋆)νν̄

is normalised with respect to the SM prediction in the ratio Rν
K(⋆) . In accordance with

ref. [76], I write

RνK(⋆) = 1
3

3∑
α,β=1

∣∣∣∣∣δαβ +
CV LLνd,αβ23
CV LLνd,23,SM

∣∣∣∣∣
2

. (5.70)

Here, the value CV LLνd,23,SM ≈ (1.01 − 0.02i) 10−2

TeV2 is used which is output by flavio, v2.3,

see also ref. [303], at the scale µ = µB and re-expressed in the JMS basis. The absence
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of sizeable contributions to RH vector currents furthermore implies RνK ≈ RνK⋆ , therefore

I only employ the current bound RνK⋆ < 2.7 at 90% CL [24] in the following as it is the

more stringent one.

If the flavours of the neutrino and antineutrino in the final state coincide, interference

with the SM contribution occurs. The interaction structure of the model implies that one

obtains the largest NP contribution for a tau neutrino-antineutrino pair ντντ (top line

below), whereas the case of a muon neutrino-antineutrino pair νµνµ (middle line below)

will also prove non-negligible. Lastly, I also provide the LO LFV combinations ντνµ and

νµντ (bottom line below), respectively:

RνK(⋆) ≈ 1 + 1.69 |a33a32|
m̂2
ϕ

cos
(
Arg(a33) − Arg(a32)

)
+ 2.15 |a33a32|2

m̂4
ϕ

+ 0.09 |a23a22|
m̂2
ϕ

cos
(
Arg(a23) − Arg(a22)

)
+ 0.01 |a23a22|2

m̂4
ϕ

+ 0.11
(

|a23a32|2

m̂4
ϕ

+ |a33a22|2

m̂4
ϕ

)
.

(5.71)

Consequently, one may approximate Rν
K(⋆) as a quadratic function in |a33| to LO, in a vein

similar to R(D)/R(D)SM and R(D⋆)/R(D⋆)SM in eqs. (5.50) and (5.51), respectively. In

this way, the constraint on BR(τ → µγ) ∝ |a33b23|2 correlates Rν
K(⋆) with ∆aµ ∝ |b23|, and

the LO contribution is expected to effectively compete with an explanation of the anomaly

in ∆aµ. This is confirmed by the results of the primary scan, and further substantiated

by the comprehensive scan for the larger benchmark masses m̂ϕ = 4, 6, as can be seen

in figure 5.8. The correlation is less strict for m̂ϕ = 2 where subleading contributions,

including LFV ones, become more relevant. In order to saturate the current bound, |a33|

needs to be (almost) as large as allowed by the biasing for m̂ϕ = 4, 6, whereas it can be

smaller for m̂ϕ = 2; see table 5.6 and the bottom-left plot in figure 5.9.

There are two effective LQ coupling parameters which receive an additional contribution

from the adoption of the charged fermion mass basis, respectively, and play a major role

in shaping the results for Rν
K(⋆) in the comprehensive scan. Firstly, the coupling of a tau

neutrino ντ to a strange quark s is given by x32 = a32λ
2 where

a32 = â32 − â33
d23
d33

+ O(λ2) (5.72)
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Figure 5.8: Constraining power and future reach of Rν
K⋆ . Left: Results from primary scan.

The vertical solid line indicates (dashed lines indicate) the region compatible with the current
experimental bound on (future reach of) Rν

K⋆ [7, 24]; see also table 5.4. For the future reach, a
SM-like result and an uncertainty of 10% is assumed. The round points (geometric shapes) indicate
that current experimental bounds are violated (respected); see also the main text of section 5.4.1.1.
Right: Results from comprehensive scan. The shown sample points respect the experimental
bounds from primary constraints; see also section 5.4.1.2. The red-brown shaded regions indicate
the projected reach for Rν

K⋆ at Belle II for 5 ab−1 of data, again under the assumption that the
best-fit value is SM-like.

and secondly, the coupling of a muon neutrino νµ to a strange quark s is given by x22 =

a22λ
3 where

a22 = â22 −
(
â23 − â23

e23
e33

)
d23
d33

− â32
e23
e33

+ O(λ2) . (5.73)

Indeed, O(10) results are possible in the comprehensive scan for both |a22| and |a32|, which

again cannot be fully accounted for in the primary scan due to the imposed range [λ, 1/λ];

see the top panel in figure 5.9.

Since larger values can be generated for |a32|, the LO contribution to Rν
K(⋆) from ϕ which

is proportional to |a33a32| and interferes with the SM may be further enhanced. The

fact that sample points which respect all experimental constraints and for which |a23| can

be as large as 1/λ can be accessed in the comprehensive scan implies that substantial

contributions to RνK⋆ via the LFV channel with the combination ντνµ which is governed

by |a23a32| are attainable. The same holds for the contribution involving the combination
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Figure 5.9: Results for Rν
K(⋆) as a function of

the magnitudes of several effective param-
eters in the comprehensive scan. The shown
sample points respect the experimental bounds
from primary constraints; see also section 5.4.1.2.
The red-brown shaded regions indicate the pro-
jected reach for Rν

K⋆ at Belle II for 5 ab−1 of data
under the assumption that the best-fit value is
SM-like. For the bottom-left plot, the dot-dashed
lines correspond to the respective upper limit on
|a33| for each LQ mass as given in table 5.6, in
dark red (orange) [dark blue] for m̂ϕ = 2(4)[6].

νµνµ driven by |a23a22| which interferes with the SM. Note that since the biases on |a33|

force this parameter to be smaller than 1/λ, a similarly large contribution to the final-state

combination νµντ governed by |a33a22| is not expected.

Still, despite the imposed (moderate) suppression of |a33|, large attainable magnitudes of

a22 and a32 result in the fact that the model can generate contributions which exceed

the current experimental bound on RνK⋆ . This is in stark contrast with the primary scan

where the restriction to the range [λ, 1/λ] in particular implied that this bound could a

priori not be reached for m̂ϕ = 6, irrespective of whether other experimental constraints

are imposed or not. Notwithstanding, the comprehensive scan demonstrates that Rν
K(⋆)

genuinely takes part in shaping the viable model parameter space for all LQ masses, which
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is not obvious from the results of the primary scan either.

Overall, this suggests that if the expected measurement of B → K(⋆) + invisible at Belle

II [7] does not reveal a substantial deviation from the SM expectation, the model would be

in the best position to explain the anomaly in ∆aµ. Still, even if there was a large excess

in Rν
K(⋆) , the anomalous data in ∆aµ could still be accounted for if the LQ is sufficiently

light, that is, for m̂ϕ = 2.

5.4.6 µ − e Conversion in Aluminium

For the description of µ − e conversion in nuclei one needs the effective Lagrangian for

neutral-current semi-leptonic interactions

L ⊃ CV LLeq,ijkl(eiγµPLej)(qkγµPLql) + CV RReq,ijkl(eiγµPRej)(qkγµPRql)

+ CV LReq,ijkl(eiγµPLej)(qkγµPRql) + CV LRqe,ijkl(qiγµPLqj)(ekγµPRel)

+
[
CSRReq,ijkl(eiPRej)(qkPRql) + CSRLeq,ijkl(eiPRej)(qkPLql)

+ CTRReq,ijkl(eiσµνPRej)(qkσµνPRql) + h.c.
]
.

(5.74)

Integrating out ϕ, one obtains

CV LLeu,ijkl = zjlz
∗
ik

2m2
ϕ

, CV RReu,ijkl =
yiky

∗
jl

2m2
ϕ

, CSRReu,ijkl = z∗
ikyjl
2m2

ϕ

, CTRReu,ijkl = −1
4
z∗
ikyjl
2m2

ϕ

(5.75)

via tree-level matching. The full expression for the conversion rate reads [277]

ωconv =
∣∣∣∣∣−Ceγ,12

2mµ
D + g̃

(p)
LSS

(p) + g̃
(p)
LV V

(p) + (p → n)
∣∣∣∣∣
2

+
∣∣∣∣∣−C∗

eγ,21
2mµ

D + g̃
(p)
RSS

(p) + g̃
(p)
RV V

(p) + (p → n)
∣∣∣∣∣
2 (5.76)

with the effective coupling constants g(N)
X for N ∈ (p, n) and X ∈ (LS,LV,RS,RV ) given

in appendix 5.12 and the nuclear overlap integrals D, S(N) and V (N) taken from ref. [277].

In the model under consideration, the dominant contributions are again due to the dipole

operator which is induced at the level of one loop. Tree-level contributions from scalar

operators have a subdominant effect, while the remaining contributions can be neglected:
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ωconv ≈
∣∣∣∣∣− C12

eγ

2mµ
D

∣∣∣∣∣
2

+
∣∣∣∣∣−C21∗

eγ

2mµ
D + g̃

(p)
RSS

(p) + g̃
(n)
RSS

(n)
∣∣∣∣∣
2

≈ D2

4m2
µ

e2m2
t

642π4m4
ϕ

(7 + 4 ln tt)2|z13y23|2

+
∣∣∣∣∣− D

2mµ

emt

64π2m2
ϕ

(7 + 4 ln tt)z23y
∗
13

+
(
Gu,pS S(p) +Gu,nS S(n)

) z21y
∗
11

2m2
ϕ

∣∣∣∣∣
2

(5.77)

Numerically, one has Gu,pS = 5.1, Gu,nS = 4.3 [401] and D = 0.0362m5/2
µ , S(p) = 0.0155m5/2

µ

and S(n) = 0.0167m5/2
µ for aluminium [277]. Furthermore, the muon capture rate in

aluminium is given by ωcapt = 0.7054 × 106 s−1 [277]. After normalising the conversion

rate to the capture rate in the conversion ratio (CR) given by ωconv/ωcapt which is the

quantity typically reported by experimental collaborations, I approximately find

CR(µ → e; Al) ≈ 2.243

0.003 |c13b23|2

m̂4
ϕ

+
∣∣∣∣∣c23b

∗
13

m̂2
ϕ

+ 0.003c21b
∗
11

m̂2
ϕ

∣∣∣∣∣
2
× 10−13 . (5.78)

The dominant contribution from the dipole-operator WC C21
eγ ∝ c∗

23b13 is constrained by

the non-observation of µ → eγ. Neglecting all other contributions, I find

CR(µ → e; Al) ≈ π
ΓµD2

ωcaptm5
µ︸ ︷︷ ︸

≈0.0027

BR(µ → eγ) (5.79)

and thus a very stringent correlation between the two rates. In this case, the plots in

the top panel in figure 5.10 would simply feature a straight line in the centre of the

coloured region, respectively. Subdominant contributions, mostly due to scalar operators

as elaborated on above, can result in a deviation from the photon-penguin approximation

by a factor 2 or 3, while further outliers are incompatible with the considered constraints.

Still, the future search for µ− e conversion in aluminium can be expected to complement

the one for µ → 3 e, as can be directly compared in the top-right plot in figure 5.10.

COMET [25] and Mu2e [26] are projected to efficiently probe the scenario of the model

explaining ∆aµ, see the bottom-left plot in figure 5.10, and to generally provide an excellent

test for the cLFV µ → e transition, superseding the currently more stringent bound on
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Figure 5.10: Future reach of µ − e conver-
sion in Aluminium as found in the primary
scan. The vertical dashed lines indicate the fu-
ture sensitivity of µ − e conversion in Al as an-
ticipated by COMET [25] and Mu2e [26]; see ta-
ble 5.4. The round points (geometric shapes) in-
dicate that current experimental bounds are vio-
lated (respected); see also the main text of sec-
tion 5.4.1.1.

BR(µ → eγ).17 Indeed, all the sample points found in the comprehensive scan which

simultaneously explain the anomalies in R(D), R(D⋆) and ∆aµ fall above the projected

sensitivity of either experiment; see the bottom plot in figure 5.14 further below.

17One might note that, relatively independently of the target nucleus, the model can
generate O(10−13) contributions to the respective µ − e CRs for m̂ϕ = 4 and 6, and
O(10−12) contributions for m̂ϕ = 2, which are however ruled out due to the stringent
bound on and the strong correlation with BR(µ → eγ) in this regime. Thus, the current
experimental bounds CR(µ → e; Ti[Au]{Pb})exp < 0.061[0.070]{4.6}×10−11 [402–404] do
not impose relevant constraints on the model. In addition, the reach of future searches for
µ− e conversion in aluminium [25,26] is projected to be three to four orders of magnitude
better than for carbon targets [405].
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5.4.7 Trilepton Decays

In order to describe decays with one lepton in the initial state and three leptons in the

final state, one needs the relevant effective Lagrangian

L ⊃ CV LLee,ijkl(eiγµPLej)(ekγµPLel) + CV RRee,ijkl(eiγµPRej)(ekγµPRel)

+ CV LRee,ijkl(eiγµPLej)(ekγµPRel) +
[
CSRRee,ijkl(eiPRej)(ekPRel) + h.c.

]
.

(5.80)

Note that not all of the WCs contained in the sums above are independent. In the

following, I will consider two different cases. If the flavours of all the final-state leptons

match, the BR reads [406]

BR(ei → ejejej) =
m5
ei

3(16π)3Γei

[
64
∣∣∣CV LLee,jijj

∣∣∣2 + 64
∣∣∣CV RRee,jijj

∣∣∣2 + 8
∣∣∣CV LRee,jijj

∣∣∣2 + 8
∣∣∣CV LRee,jjji

∣∣∣2
+ 256e2

m2
ei

(
ln
m2
ei

m2
ej

− 11
4

)(
|Cjieγ |2 + |Cijeγ |2

)

− 64e
mei

Re
[(

4CV LLee,jijj + CV LRee,jijj

)
Cji∗eγ +

(
4CV RRee,jijj + CV LRee,jjji

)
Cijeγ

] ]
.

(5.81)

If there is a lepton-antilepton pair in the final state of which the flavour is different from

the one of the third lepton, the BR reads

BR(ei → ejekek) =
m5
ei

3(16π)3Γei

[
128

∣∣∣CV LLee,jikk

∣∣∣2 + 128
∣∣∣CV RRee,jikk

∣∣∣2 + 8
∣∣∣CV LRee,jikk

∣∣∣2 + 8
∣∣∣CV LRee,kkji

∣∣∣2
+ 256e2

m2
ei

(
ln
m2
ei

m2
ej

− 3
)(

|Cjieγ |2 + |Cijeγ |2
)

(5.82)

− 64e
mei

Re
[(

4CV LLee,jikk + CV LRee,jikk

)
Cji∗eγ +

(
4CV RRee,jikk + CV LRee,kkji

)
Cijeγ

] ]
.
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Figure 5.11: Constraining power and future reach of µ → 3e as found in the primary
scan. The vertical dashed lines indicate the respective projected reach of the phase-1 and phase-2
runs of the future search for µ → 3e [27]; see table 5.4. The round points (geometric shapes)
indicate that current experimental bounds are violated (respected); see also the main text of
section 5.4.1.1.

5.4.7.1 µ → 3e

In the model under consideration, the decay mode µ → 3e is entirely dominated by

contributions to the dipole operator. Indeed, one finds

BR(µ → 3e) ≈
e2m3

µ

48π3Γµ

(
ln
m2
µ

m2
e

− 11
4

) ∣∣∣C21
eγ

∣∣∣2
≈ e2

12π2
e2m2

tm
3
µ

1282π5Γµm4
ϕ

(
ln
m2
µ

m2
e

− 11
4

)
|z23y13|2

≈ 6
m̂4
ϕ

|c23b13|2 × 10−13 .

(5.83)

Furthermore, this implies that the BR is strictly correlated with the one for µ → eγ, and

a comparison with eq. (5.62) yields

BR(µ → 3e) ≈ e2

12π2

(
ln
m2
µ

m2
e

− 11
4

)
︸ ︷︷ ︸

≈0.0069

BR(µ → eγ) . (5.84)

These expectations are confirmed by the results from the primary scan, as can be seen

in the left plot in figure 5.11, and from the comprehensive scan. In addition, the right
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plot illustrates that the future search for µ → 3e at Mu3e [27] can be expected to probe a

substantial portion of the parameter space which is currently viable, and might challenge

the scenario of the model explaining ∆aµ.

5.4.7.2 τ → 3µ

Unlike µ → 3e, the decay channel τ → 3µ is not only sensitive to the dipole operator, but

contributions from Z-penguin diagrams with two top-quark mass insertions can also be

important. I find

BR(τ → 3µ) ≈ m5
τ

3(16π)3Γτ

[
64
∣∣∣CV LLee,2322

∣∣∣2 + 8
∣∣∣CV LRee,2322

∣∣∣2
+ 256e2

m2
τ

(
ln m

2
τ

m2
µ

− 11
4

) ∣∣∣C21
eγ

∣∣∣2 ]

≈ 1
64π4

m2
tm

3
τ

3(16π)3Γτ

[
4 e4(7 + 4 ln tt)2

(
ln m

2
τ

m2
µ

− 11
4

)
|y23z33|2

m4
ϕ

+ 72G2
Fm

2
tm

2
τ (1 + ln tt)2((1 − 2s2

W )2 + 2s4
W

) |z23z33|2

m4
ϕ

]

≈ 1.46 × 10−7 |b23c33|2 + 0.07|c23c33|2

m̂4
ϕ

.

(5.85)

Instead, in the limit of exact photon-penguin dominance one finds [273,274]

BR(τ → 3µ) ≈ e2

12π2

(
ln
(
m2
τ

m2
µ

)
− 11

4

)
︸ ︷︷ ︸

≈0.0025

BR(τ → µγ) (5.86)

which would imply that an observation of τ → 3µ at Belle II is not possible due to the

experimental constraint on BR(τ → µγ). This case corresponds to the upper edge of

the coloured region in the left plot of figure 5.12. Still, with the presence of Z-penguin

contributions taken into account, the search for τ → 3µ at Belle II [7] will be sensitive to

a portion of the parameter space which is currently viable. As can be seen in the right

plot in figure 5.12, this is also the case for m̂ϕ = 2.

The hierarchy |c23| ≈ |a23| ≫ |b23| required for large Z-penguin contributions tends to

suppress the product of the two coupling magnitudes and thus the result for ∆aµ, the latter
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Figure 5.12: Constraining power and future reach of τ → 3µ in relation with τ → µγ.
Left: Results from primary scan. The vertical solid (dashed) lines indicate the current bound on
(future sensitivity of) τ → 3µ [7, 28]; see table 5.4. The round points (geometric shapes) indicate
that current experimental bounds are violated (respected); see also the main text of section 5.4.1.1.
Right: Results from comprehensive scan. The shown sample points respect the experimental
bounds from primary constraints; see also section 5.4.1.2. The purple dot-dashed line (labelled
“γ-penguin”) illustrates the approximate correlation between τ → 3µ and τ → µγ in the limit of
photon-penguin dominance as given in eq. (5.86).

particularly efficiently in the case of m̂ϕ = 6; see eqs. (5.59) and (5.85). As a consequence,

observing τ → 3µ at Belle II would indicate that an explanation of ∆aµ ∝ |b23| is very

unlikely for m̂ϕ = 6 and, due to the increased sensitivity to the constraint on BR(τ → µγ),

also for m̂ϕ = 4; see figure 5.13. For these two masses, conversely, the largest contributions

to ∆aµ are generated if BR(τ → 3µ) remains below the prospected sensitivity. In turn,

for m̂ϕ = 2, the ratio |b23/c23| being small in the regime of large Z-penguin contributions

does not efficiently suppress the results for ∆aµ.

The inequality in eq. (5.65) imposed in the comprehensive scan implies that the photon-

penguin contributions to τ → 3µ are generally smaller than in the primary scan. Indeed,

since a simultaneous explanation of the anomalies in R(D), R(D⋆) and ∆aµ hinges on an

efficient accommodation of the experimental bound on BR(τ → µγ), it is often accompa-

nied by a signal in τ → 3µ at Belle II as is visible in the plots illustrating the results from

the comprehensive scan.
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Figure 5.13: Constraining power and future reach of τ → 3µ in relation with ∆aµ. Left:
Results from primary scan. The vertical solid (dashed) lines indicate the current bound on (future
sensitivity of) τ → 3µ [7, 28]; see table 5.4. The round points (geometric shapes) indicate that
current experimental bounds are violated (respected); see also the main text of section 5.4.1.1.
Right: Results from comprehensive scan. The shown sample points respect the experimental
bounds from primary constraints; see also section 5.4.1.2.

In the model, an observation of τ → 3µ effectively enforces an observation of τ → µγ, but

the reverse case is not true in general. Furthermore, the plots in the top panel of figure 5.14

seem to suggest that a result BR(τ → 3µ) ≳ O(10−10) becomes increasingly disfavoured

if the contributions to cLFV µ → e transitions shrink. Since by construction |b13| > λ

in the primary scan, this shrinkage mainly relies on a small |c23| ≈ |a23|, see eqs. (5.62),

(5.78) and (5.83), and so the Z-penguin contributions to τ → 3µ become more suppressed.

Hence, BR(τ → 3µ) is more tightly correlated with BR(τ → µγ) in this case, and it is

more difficult to respect the stringent experimental bound on the latter. In turn, if τ → 3µ

is observable at Belle II, |c23| ≈ |a23| must be rather large and therefore one generates

an enhancement of BR(µ → eγ) and CR(µ − e; Al). Still, since |b13| ≪ λ is possible in

the comprehensive scan, the rates for cLFV µ → e processes can get efficiently suppressed

without a direct impact on the Z-penguin contributions. Indeed, the distinct slope of

the right edge of the coloured region in the top plots in figure (5.14) has almost entirely

disappeared in the bottom-left plot therein. This indicates that there is no pronounced

correlation between BR(τ → 3µ) and cLFV µ → e transitions in the comprehensive scan.
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Figure 5.14: Constraining power and future
reach of τ → 3µ in relation with µ → e tran-
sitions. Top panel: Results from primary scan.
The vertical solid (dashed) lines indicate the cur-
rent bound on (future sensitivity of) τ → 3µ
[7, 28]; see table 5.4. The round points (geo-
metric shapes) indicate that current experimental
bounds are violated (respected); see also the main
text of section 5.4.1.1. Bottom-left plot: Re-
sults from comprehensive scan. The shown sam-
ple points respect the experimental bounds from
primary constraints; see also section 5.4.1.2.

The discussion above generally also holds for the decay channel τ → µeē, for which an

estimate yields

BR(τ → µeē) ≈ m5
τ

3(16π)3Γτ

[
128

∣∣∣CV LLee,2311

∣∣∣2 + 8
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≈ 1.34 × 10−7 |b23c33|2 + 0.05|c23c33|2

m̂4
ϕ

.

(5.87)
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In the limit of exact photon-penguin dominance, one finds

BR(τ → µeē) ≈ e2

12π2

(
ln
(
m2
τ

m2
µ

)
− 3

)
︸ ︷︷ ︸

≈0.0023

BR(τ → µγ) (5.88)

as well as

BR(τ → 3µ)
BR(τ → µeē) ≈ 2 ln(mτ/mµ) − 11/4

2 ln(mτ/mµ) − 3 ≈ 1.09 . (5.89)

More generally, the obtained BRs for τ → 3µ and τ → µeē are almost coincident in

the primary scan, whereas larger deviations appear in the comprehensive scan. This is

mainly due to the possibility of generating effective coupling parameters with magnitudes

(much) larger than 1/λ in the latter, which can result in contributions from box diagrams

becoming more relevant.

Similar to the role of τ → eγ among the radiative cLFV decays, trilepton decays with

other flavour combinations in the final state do not give rise to relevant constraints on the

model, neither regarding current data nor in the light of near-future searches.

5.4.8 Bc → τ ν

In the model, ϕ contributes to the leptonic decay channel Bc → τν and therefore modifies

the lifetime of the Bc meson, as was originally elaborated on in ref. [131]. In line with this

approach, I employ a constraint on the SM contribution to the lifetime. A pseudoscalar

meson Bk constituted by a bottom quark b and an up-type quark uk decays into a tau

lepton and a neutrino with a rate [29,407]

ΓBk→τν = G2
F

8π mBk
f2
Bk

|Vukb|
2m2

τ

(
1 − m2

τ

m2
Bk

)2

×
3∑

β=1

∣∣∣∣∣(1 + δ) · δ3β − 1
2
√

2GFVukb

Cϕνedu,β33k(µB)
∣∣∣∣∣
2 (5.90)

where

Cϕνedu,β33k(µB) ≡ CV LLνedu,β33k(µB) −
m2
Bk

mτ
(
muk

(µB) +mb(µB)
)CSRRνedu,β33k(µB) (5.91)
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was defined. Here, mBk
and fBk

are the mass and decay constant of the meson, respec-

tively, and V is the CKM matrix. The correction δ = 0.007 accounts for QED running

of the SM contribution to CV LLνedu from the Z-boson mass scale down to the hadronic scale

µ = µB.

I equate the measured decay width with the sum of the contributions in the SM and from

ϕ as in

Γexp
Bc

= ΓSM
Bc

+ ΓϕBc
. (5.92)

Here, I fix τ exp
Bc

= 1/Γexp
Bc

= 0.510±0.009 ps [10,29] at the best-fit value, while ΓϕBc
accounts

for contributions to the tree-level process bc → τν induced by ϕ. ΓϕBc
can be calculated

by subtracting the SM contribution from the rate in eq. (5.90), thereby it also captures

interference effects:

ΓϕBc
= G2

F

8π mBcf
2
Bc
V 2
cbm

2
τ

(
1 − m2

τ

m2
Bc

)2

×

 3∑
β=1

∣∣∣∣(1 + δ) · δ3β − 1
2
√

2GFVcb
Cϕνedu,β332(µB)

∣∣∣∣2 − (1 + δ)2

 .

(5.93)

I do not attempt a direct calculation of ΓSM
Bc

= 1/τSM
Bc

which takes into account all SM

contributions to the Bc decay width, but instead indirectly infer it from eq. (5.92). The

complete expression reads

τSM
Bc

=
[

1
τ exp
Bc

− G2
F

8π mBcf
2
Bc
V 2
cbm

2
τ

(
1 − m2

τ

m2
Bc

)2

×

 3∑
β=1

∣∣∣∣(1 + δ) · δ3β − 1
2
√

2GFVcb
Cϕνedu,β332(µB)

∣∣∣∣2 − (1 + δ)2

]−1

.

(5.94)

I require that the resulting τSM
Bc

lies in the interval [0.4, 0.7] ps, following the seminal

result in ref. [387] at 1σ, and neglect all other uncertainties against the broadness of this

range.18 I use the PDG values τ exp
Bc

= 0.510 ps, mBc = 6.2745 GeV, mτ = 1.7769 GeV,

Vcb = 0.0405 [29] as well as fBc = 434 MeV [410] and the quark masses mc(µB) = 0.9023

GeV and mb(µB) = 4.0945 GeV output by flavio, v2.3.

18More recent calculations of the Bc lifetime in the SM can for instance be found in
refs. [408,409].
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The LQ ϕ mainly sources the channel with a tau neutrino ντ in the final state, but the

muon neutrino channel may also have a non-negligible effect. The latter corresponds to

the rightmost term in eqs. (5.96) and (5.98) below. One approximately finds

τSM
Bc

τ exp
Bc

=
[
1 −

ΓϕBc

Γexp
Bc

]−1

≈ 1 +
ΓϕBc

Γexp
Bc

(5.95)

≈ 1 − 0.13Re(a33b32)
m̂2
ϕ

+ 0.19 |a33b32|2

m̂4
ϕ

+ 0.01 |a23b32|2

m̂4
ϕ

(5.96)

= 1 − 0.13 |a33b32|
m̂2
ϕ

cos
(
Arg(a33) − Arg(b32)

)
(5.97)

+ 0.19 |a33b32|2

m̂4
ϕ

+ 0.01 |a23b32|2

m̂4
ϕ

(5.98)

upon rearranging eq. (5.92). The latter is also equivalent to the following relation

BR(Bc → τν) = BR(Bc → τν)SM −
(
τ exp
Bc

τSM
Bc

− 1
)
. (5.99)

Thus, imposing an upper bound on the BR, say BR(Bc → τν) ≲ 0.3 [131] or ≲ 0.1 [411],

which takes into account the (semi)tauonic contributions in the SM and from NP, is equiv-

alent to τSM
Bc

≲ 0.70 ps or ≲ 0.55 ps, respectively. Indeed, a BR larger than predicted in

the SM implies an effective reduction of the lifetime due to ϕ which must be “compen-

sated” by a larger SM contribution to the lifetime in order to maintain consistency with

the experimentally determined value τ exp
Bc

.

As is illustrated in figure 5.15, a large contribution from the LQ to the lifetime of the Bc
meson is incompatible with the imposed experimental bounds. In the plots in the upper

(lower) panel, the vertical solid lines indicate (grey-shaded region indicates) where the SM

prediction agrees with the measured lifetime of the Bc meson at 1σ. In particular, the

model can accommodate the current best-fit value in R(D)exp = 0.339 ± 0.026 ± 0.014

even in the absence of any contribution from ϕ to the Bc lifetime. In the case of larger LQ

masses, an inferred SM contribution to the lifetime which is appreciably larger than the

experimentally determined one only arises if R(D) and R(D⋆) become smaller than in the

SM, respectively, which is consistent with the opposite signs of the respective contributions

linear in |a33b32|; see eqs. (5.50), (5.51) and (5.98).

187



CHAPTER 5. FLAVOUR ANOMALIES MEET FLAVOUR SYMMETRY

Figure 5.15: Constraining power and future reach of τSM
Bc in relation with R(D) and

R(D⋆). Top panel: Results from primary scan. The vertical solid lines indicate the region
where the inferred contribution to the Bc lifetime in the SM agrees with the measured lifetime
at 1σ [10, 29], and the hatched area marks the region in which the BR of Bc → τν remains
smaller than 0.1, as is implied by eq. (5.99); see also table 5.4. The round points (geometric
shapes) indicate that current experimental bounds are violated (respected); see also the main text
of section 5.4.1.1. Lower panel: Results from comprehensive scan. The shown sample points
respect the experimental bounds from primary constraints; see also section 5.4.1.2. The grey-
shaded region represents the 1σ range about the current best-fit value for τ exp

Bc
, and the red-brown

shaded band indicates the region of parameter space that corresponds to BR(Bc → τν) ≤ 0.1.

Contrariwise, for m̂ϕ = 2, the comprehensive scan demonstrates that a SM contribution

which substantially exceeds τ exp
Bc

= (0.510±0.009) ps [10,29] is compatible with a simulta-
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Figure 5.16: Constraining power and future reach of τSM
Bc in relation with ∆aµ. Left:

Results from primary scan. The vertical solid lines indicate the region compatible with current
experimental data on the Bc lifetime at 1σ [10,29], and the hatched areas mark the regions in which
the BR of Bc → τν remains smaller than 0.1 and 0.3, respectively, as is implied by eq. (5.99); see
also table 5.4. The round points (geometric shapes) indicate that current experimental bounds are
violated (respected); see also the main text of section 5.4.1.1. Right: Results from comprehensive
scan. The shown sample points respect the experimental bounds from primary constraints; see
also section 5.4.1.2.

neous enhancement of R(D) and R(D⋆) over their respective SM values, which I interpret

as mainly due to the channel with a muon neutrino νµ in the final state. Furthermore,

for almost all sample points found in the comprehensive scan which successfully explain

the anomalies in R(D), R(D⋆) and ∆aµ I obtain |a33b32| ≲ 1, thus significantly below

the upper bound |a33b32| ≲ 1.82 imposed via the biasing, cf. table 5.6. Hence, a maxi-

mally large contribution to the channel with a tau neutrino ντ in the final state is not

preferred for an accommodation of the anomalies. Note that a similar effect occurs for

R(D) and R(D⋆) where an enhancement of up to 40% and 30%, respectively, over the

respective SM contributions can in principle be induced via the muon channel in the case

of m̂ϕ = 2. For m̂ϕ = 4, 6, I obtain a maximal enhancement of 10% which is still roughly

coincident with the current 1σ region about the respective experimental best-fit values

of R(D) and R(D⋆), and should thus not be neglected in the light of more precise data

becoming available in the near future.
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If ∆aµ is explained at 3σ or better in the model, I find that a substantial deviation of τSM
Bc

from the measured Bc lifetime is very unlikely for m̂ϕ = 4, 6, see figure 5.16. This reflects

the way an explanation of R(D) and R(D⋆) competes with an explanation of ∆aµ; see

section 5.4.4. Still, according to the results of the comprehensive scan, an enhanced τSM
Bc

is compatible with an explanation of ∆aµ, since the latter is controlled by the effective

parameter c23 ≈ a23 which also drives the muon-neutrino contribution from ϕ to the Bc
decay rate and thus implies a larger inferred τSM

Bc
.

Still, a deviation of τSM
Bc

from the best-fit value of τ exp
Bc

by more than 10 percent is incom-

patible with the considered constraints. Accordingly, the BR for Bc → τν will remain

below 0.1 in most cases, and can potentially exceed this limit only to a very small degree.

In line with eq. (5.99), imposing the upper bound BR(Bc → τν) ≲ 0.1 ps constrains

the Bc lifetime to the hatched (red-brown shaded) region in the upper (lower) panel in

figure 5.15, respectively.

5.4.9 Z → ττ

For the discussion of modifications to the effective Z-boson couplings to fermions induced

by ϕ, I focus on the case of charged leptons henceforth and define the vector and axial-

vector couplings as in

gijeV (A)
= gijeL

± gijeR
, (5.100)

cf. eq. (2.10). In the model under consideration, charged leptons only couple to up-type

quarks at tree level. Following ref. [96], I approximately find

δgiieA(V )
≡ δgeiA(V ) ≈ Nc

32π2
tt(tt − 1 − ln tt)

(tt − 1)2

(
|zi3|2 ± |yi3|2

)
. (5.101)

Under the assumption of LFU for the SM couplings, that is

gSM
eA

= gSM
µA

= gSM
τA

≡ gSM
A = √

ρψT
ψ
3 , (5.102)
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Figure 5.17: Constraining power and future reach of gτA
/gSM

A as found in the primary
scan. The regions indicated by vertical solid (dashed) lines are compatible with the current
experimental world averages for (future sensitivity of) gτA

/gSM
A at the indicated CL [30, 31] (at

3σ [31–33]); see table 5.4. The round points (geometric shapes) indicate that current experimental
bounds are violated (respected); see also the main text of section 5.4.1.1.

taking the ratio yields in the case of the tau lepton

gτA/g
SM
A ≈ 1 −


4.5 , m̂ϕ = 2

1.5 , m̂ϕ = 4

0.8 , m̂ϕ = 6

 |c33|2 × 10−4 . (5.103)

Note that the negative sign of the correction is due to the axial-vector coupling to charged

leptons being negative in the SM. This estimate suggests that gτA/g
SM
A is not per se

(strongly) correlated with ∆aµ ∝ |a23b23|, as is further evidenced in figure 5.17. Still, if

the experimental constraints are imposed, the axial-vector coupling of Z bosons to tau

leptons is necessarily SM-like if ∆aµ is explained at 3σ. In particular, the deviation from

LFU would be constrained to be much smaller than 0.1%. This correlation is established

through the bound on BR(τ → µγ) ∝ |a33b23|2 illustrated by the plot on the right in

figure 5.17. It is distinctly visible that a deviation of gτA/g
SM
A from the current best-

fit value [30, 31] larger than 2σ is incompatible with the constraint on BR(τ → µγ).

Furthermore, the future search for τ → µγ at Belle II [7] will conclusively test the capability

of the model to induce a significant deviation from LFU in axial-vector couplings. Note
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that the prospective sensitivities of a measurement of Z-boson couplings quoted in table 5.4

are adopted from ref. [31] where it is assumed that the precision of the determination of

geA will improve by the same factor as sin2 θeff. In addition, if this sensitivity were indeed

reached and the current best-fit value for gτA/g
SM
A remained unchanged, the currently

observed deviation from the SM value could not be explained within the model.

5.4.10 High-pT Dilepton Searches

In several recent studies [161, 412–414], constraints on effective operators were derived

from LHC data. In ref. [161], the process qq̄ → τ τ̄ was considered for the LQ ϕ, among

other ones, and the ATLAS analysis in ref. [388] was reinterpreted to place a constraint on

the LQ couplings for the mass range m̂ϕ ∈ [1, 3]. Reading off from the top-right of figure

4 in ref. [161] and using the fact that the LHC does not distinguish between chiralities,

one may infer the upper bound on the LQ coupling involving a RH tau lepton and charm

quark

|y32| = |b32| < m̂ϕ + 0.6 . (5.104)

Similarly, in ref. [414] the process bc → τν was considered and two analyses [415, 416] by

the ATLAS and CMS collaborations were recast to obtain a constraint on the relevant

effective charged-current operators. The resulting constraints are quoted in table II in

ref. [414], where it is assumed that a single operator dominates. In terms of the effective

couplings at the LQ mass scale, they read
√

|a33c32| < 3.5 m̂ϕ and
√

|a33b32| < 0.70 m̂ϕ (5.105)

where the QCD RG corrections are extracted from RunDec [305, 417]. Still, these two

constraints are automatically respected in the model if the experimental bounds on other

primary observables are imposed.
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Figure 5.18: Current constraints on and fu-
ture sensitivity to |CSRR

νedu,3332| as found in the
primary scan. The scalar WC is computed as in
eqs. (5.45) and (5.47), and the displayed results
hold at the hadronic scale µ = µB . The round
points (geometric shapes) indicate that current
experimental bounds are violated (respected); see
also the main text of section 5.4.1.1.
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5.4.11 Scalar Charged-Current Wilson Coefficients

Herein I provide a brief discussion on current constraints on and the projected sensitivity

to contributions to |CSRRνedu,3332| in future experiments. This scalar WC constitutes the

dominant contribution to the observables R(D), R(D⋆) and τSM
Bc

in the model. In line

with eqs. (5.45) and (5.47), I find CSRRνedu,3332 ≈ −1.7x33y32/(2m2
ϕ) ≈ −1.7a33b32/(2m2

ϕ) at

the hadronic scale µ = µB. The following statements draw from the primary scan, and

largely agree with the findings from the comprehensive scan apart from small deviations

in the case of m̂ϕ = 2.

As can be seen in the top panel in figure 5.18, the achievable deviation of R(D) and R(D⋆)

from their respective SM values grows linearly with an increase of the absolute value of

CSRRνedu,3332. Only for magnitudes |CSRRνedu,3332| ≳ 0.2/TeV2, a slight deviation from that

trend becomes visible. This confirms that the contributions to R(D) and R(D⋆) which are

linear in the scalar WC and interfere with the SM, see eqs. (5.50) and (5.51), dominate for

smaller LQ coupling values. The top plots also conveniently illustrate that the anomaly is

mainly driven by the experimental data for R(D⋆), that is, explaining R(D⋆) at 2σ (1σ)

requires |CSRRνedu,3332| ≳ 0.2(0.3)/TeV2.

The centre-left plot in figure 5.18 evidences that a correlation between ∆aµ ∝ |b23c23| and

|CSRRνedu,3332| ∝ |a33b32| arises only after imposing the experimental bound on BR(τ → µγ) ∝

|b23c33|2 ≈ |b23a33|2. Indeed, the current constraint requires |CSRRνedu,3332| ≲ 0.4/TeV2, and

the upcoming search for the process at Belle II [7] will potentially strengthen this to

|CSRRνedu,3332| ≲ 0.15/TeV2. Note that an efficient test of the capability of the model to

explain ∆aµ still requires a further refinement of that bound, as is visible in the centre-left

plot.

Lastly, one can see that τSM
Bc

is slightly less sensitive to |CSRRνedu,3332| than R(D) or R(D⋆)

are. The distribution of the generated sample points for m̂ϕ = 2 features a kink which is

localised at the upper boundary of the coloured region at |CSRRνedu,3332| ≈ 0.13/TeV2, due

to the experimental constraint |b32| < 2.6. One can see that |CSRRνedu,3332| ≳ 0.3/TeV2 is

necessary to have the BR of the decay channel Bc → τν exceed 0.1.
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List of Secondary Observables

Observable
Experiment

Current constraint/measurement Future reach
|dµ| < 1.5 × 10−19 e cm at 90% C.L. [418] 1000 (60) [1] × 10−24 e cm [34,35,40–42]
gµA/g

SM
A 0.99986 ± 0.00108 at 1σ level [30, 31] ±6.3 (0.63) × 10−5 [31–33]

R
µ/e
D 0.995 ± 0.090 at 1σ level [419] ±0.00995 [36]

R
e/µ
D⋆ 1.01 ± 0.032 at 1σ level [420] ±0.0101 [36]

BR(B → τν) (1.09 ± 0.24) × 10−4 at 1σ level [29] ±9 (4)% at 5 (50) ab−1 [17]

Table 5.7: List of secondary observables. I list the observables that can potentially be used
to further constrain and test this model, together with their current experimental constraint and
future sensitivity. In the case of the muon EDM dµ, the future projection without brackets refers
to the prospective reach of the Muon g− 2 experiment at Fermilab [34] and a similar experimental
effort at J-PARC [40], while the bracketed values are estimates for experimental proposals [35,41,42]
based on the frozen-spin technique. Furthermore, I assume that the precision of measurements of
gµA

will improve by the same factor as sin2 θeff as in ref. [31]; the (un)bracketed projection refers
to the FCC [33] (ILC [32]).

5.4.12 Secondary Observables

In this section, I briefly comment on the results for the secondary observables from the

comprehensive scan which are collected in table 5.7. The muon EDM and BR(B → τν)

were calculated with the help of SPheno, gµA/g
SM
A was obtained from analytic formulae

which are analogous to the ones for gτA/g
SM
A , and flavio was used for Rµ/eD and R

e/µ
D⋆ .

5.4.12.1 Electric Dipole Moment of the Muon

Similar to the AMM of a charged lepton being sourced by the real part of the relevant

dipole operator, EDMs are related to the imaginary part. As the generation of large

contributions to ∆aµ is a key motivation for the model, and the LQ couplings can be

complex, the occurrence of sizeable results for dµ is expected. In complete analogy to

the reasoning laid out in section 5.4.3.1, the dominant contribution is due to a top-quark

mass insertion on the internal line of the relevant one-loop diagram. Using eqs. (2.51) and

(5.54), I find
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Figure 5.19: Future reach of secondary leptonic observables in relation with ∆aµ in the
comprehensive scan. The shown sample points respect the experimental bounds from primary
constraints; see also section 5.4.1.2. In the left plot, two constraints on the magnitude |dµ| of the
muon EDM are shown, from the Muon g−2 [34] experiment and the muEDM experiment [35]. For
gµA

/gSM
A , the red-brown shaded regions represent the projected sensitivities at the ILC [32] under

the assumption that the current best-fit values [30, 31] shown herein as red-brown solid lines will
persist.

dµ = 2 Im(C22
eγ ) ≈ emt

32π2m2
ϕ

(7 + 4 ln tt) Im
(
z∗

23y23
)

≈ − 8
m̂2
ϕ

Im(b23c
∗
23) × 10−9

≈ − 5
m̂2
ϕ

Im(b23c
∗
23) × 10−22 e cm

= − 5
m̂2
ϕ

|b23c23| sin (Arg(b23) − Arg(c23)) × 10−22 e cm .

(5.106)

Firstly, note that the contributions to the muon EDM are well below the current bound

|du| < 1.5 × 10−19 e cm [34] if the experimental bounds are imposed, see table 5.7 and

the left plot in figure 5.19, despite the absence of a CP symmetry in the model. Still,

in agreement with the literature regarding correlations between dµ and solutions to the

currently present anomaly in ∆aµ, particularly for the LQ ϕ [276,400], I find that a portion

of the viable parameter space can be expected to be probed at the muEDM experiment [35].

Generally, if the anomaly in ∆aµ is accommodated within its 3σ range, one obtains a result

|dµ| ∈ [10−25, 10−22]. As the biasing requires cos(Arg(a23) − Arg(b23)) to lie in a vicinity

of −1, see table 5.6, it may favour smallish values for sin(Arg(a23) − Arg(b23)), but no

preference for either sign of du is induced. After all, the impact of the phase difference

Arg(a23) − Arg(b23) seems to be limited, since there is no indication that (comparatively)
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large contributions to ∆aµ and dµ would be incompatible.

5.4.12.2 Z → µµ

The presence of sizeable contributions to ∆aµ due to loops containing a top quark triggers

the expectation that the process Z → µµ will also get modified. In complete analogy to

section 5.4.9 and under the assumption of LFU for the SM gauge couplings, one finds

gµA/g
SM
A ≈ 1 −


2.3, m̂ϕ = 2

0.8, m̂ϕ = 4

0.4, m̂ϕ = 6

 |c23|2 × 10−5 . (5.107)

The deviation of the best-fit value of the measured axial-vector coupling of the Z boson to

a muon-antimuon pair from the SM prediction is currently compatible with zero at 1σ; see

table 5.7. Moreover, the contributions obtained in the comprehensive scan all fall within

this range, thus no constraints can presently be derived from this observable.

Still, the discrepancy between the SM prediction and the current best-fit value can in

principle be explained in the model. Furthermore, if the best-fit value persists and the

experimental uncertainty shrinks as is projected for the ILC [32], some of the sample

points which simultaneously explain all anomalies fall outside the prospective 3σ range,

as can be seen in the right plot in figure 5.19. Therefore, upcoming measurements of the

axial-vector coupling of the Z boson to muons promise to provide a powerful test of this

scenario. Note that a further decrease of the experimental uncertainty by a factor of 10 is

expected from the Future Circular Collider (FCC) [33].

Regarding the couplings of the Z boson to electron-positron pairs, the relevant couplings

are suppressed by a factor of λ9, and thus no sizeable BSM contributions to Z → ee can

be expected.
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5.4.12.3 Lepton-Flavour Universality Ratios Rµ/eD and R
e/µ
D⋆

The LFU ratios Rµ/eD and R
e/µ
D⋆ are useful probes for NP effects in b → cℓν transitions

which do not involve the tau lepton,

R
µ/e
D = BR(B → Dµν)

BR(B → Deν) ≡ GD2
GD1

, R
e/µ
D⋆ = BR(B → D⋆eν)

BR(B → D⋆µν) ≡ GD
⋆

1
GD

⋆

2
, (5.108)

where GD(⋆)
i is defined as per eq. (5.149) and (5.150). I obtain the LO estimates

R
µ/e
D

(Rµ/eD )SM
≈ 1 + 2

m̂2
ϕ

Re(c∗
22a23) × 10−3 (5.109)

and

R
e/µ
D⋆

(Re/µD⋆ )SM
≈ 1 − 2

m̂2
ϕ

Re(c∗
22a23) × 10−3 . (5.110)

A scalar-operator contribution is induced at the same order in λ, but is numerically sup-

pressed. Note the occurrence of the parameter a23 ≈ c23 which plays a major role for

∆aµ and is biased towards larger values, see table 5.6. Furthermore, O(10) values can be

generated for the magnitudes |c22| ≈ |a22| in the comprehensive scan.

The results show that an enhancement or suppression of either LFU ratio by more than

2 percent with respect to the SM expectation is at least very unlikely; see the left plot in

figure 5.20. Thus, the model predictions are SM-like and well compatible with currently

available data at the 1σ level. Still, this will not be the case anymore for the entire

currently viable parameter space if the sensitivity improves as is projected for Belle II [36],

regardless of whether the best-fit value will change or not.

5.4.12.4 Leptonic Decay B → τν

In this model, ϕ contributes to the leptonic decay channel B → τν which in the SM

is CKM-suppressed due to |Vub| ∼ λ3; see eq. (5.90) with uk = u for the full decay

width including the contributions from ϕ. I focus on the case of a tau neutrino ντ in the

final state for which interference with the SM occurs. Indeed, the process B → τν also
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Figure 5.20: Future reach of secondary hadronic observables in the comprehensive
scan. The shown sample points respect the experimental bounds from primary constraints; see
also section 5.4.1.2. The projected sensitivities at Belle II to R

µ/e
D and R

e/µ
D⋆ [36] (5 ab−1) and

BR(B → τν) [17] are indicated via the respective red-brown shaded regions. Note that the white
crosses are omitted in the left plot since they lie uniformly across the coloured region and would
thus obstruct a proper visualisation of the data.

largely depends on the parameter a33 and thus provides another probe for the b → cτν

transitions. The largest contribution arises for the vector-operator WC CV LLνedu,3331, whereas

the scalar-operator WC CSRRνedu,3331 is suppressed at the scale µ = mϕ due to the hierarchy

y31/z31 ∼ λ2. This is only partly compensated by the RG evolution down to the hadronic

scale µ = µB and the chirality enhancement of the scalar-operator contribution, which

together results in an enhancement factor of roughly 6.5. I find

BR(B → τν)
BR(B → τν)SM

≈ 1 − 0.1
m̂2
ϕ

Re(a33c
∗
31) . (5.111)

In the comprehensive scan, the magnitudes |c31| ≈ |a31| can take large O(10) values. Still,

the currently viable parameter space of the model will only be probed by future searches

for B → τν to an appreciable extent, see the right plot in figure 5.20. This happens

despite the dependence on the couplings y31 and z31 which involve first-generation quarks

and thus are protected by the residual symmetry Zdiag
17 ; see sections 5.3.3.1 and 5.7.4.

If the current experimental best-fit value persists and the experimental uncertainty de-

creases as projected at Belle II [17], the model predictions for the BR will remain partly

consistent with the data at 2σ, but not at 1σ. Since these prospective sensitivities to
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the BR are comparable to the uncertainty of the SM prediction which currently stands at

the level of about 10 percent, see [7], one can indeed expect that the decay B → τν will

provide a useful probe for the model in the near future.

5.5 Conclusions

I have considered an extension of the SM with two Higgs doublets Hu and Hd (in the

decoupling limit) and a scalar LQ ϕ ∼ (3, 1,−1
3). The main purpose of ϕ is to explain the

flavour anomalies in R(D), R(D⋆) and the AMM of the muon. The interaction structure of

this model is constrained by the flavour group Gf = D17 ×Z17. The three scalars Hu, Hd

and ϕ are singlets under the dihedral group, whereas the three generations of SM fermion

species transform in doublet and singlet representations, apart from the three RH up-type

quarks which are all assigned to singlets. In this way, the masses of the third-generation

charged fermions arise without breaking the dihedral group.

The flavour symmetry Gf is broken by the VEVs of four different spurions S, T , U and W

which are assigned to doublets of the dihedral group. While the role of S is to (mainly)

generate the aimed-at texture of LQ couplings in x̂ and ŷ, T and U are responsible for

the masses of the second and first generation, respectively, of both down-type quarks and

charged leptons. The purpose of the spurion W is to give rise to the mass of the charm

quark and to generate the correct size of the Cabibbo angle. The smaller quark mixing

angles and the up-quark mass arise automatically due to the spurions S and a combination

of T and U , respectively. As dictated by their roles, the VEVs of these spurions are given

by the expansion parameter λ ≈ 0.2 taken to some integer power, i.e. ⟨S⟩ ∼ λ, ⟨T ⟩ ∼ λ2,

⟨U⟩ ∼ λ4 and ⟨W ⟩ ∼ (λ4, λ5)t. A residual symmetry Zdiag
17 given by the diagonal subgroup

of a Z17 group contained in D17 and the external Z17 symmetry is preserved by both x̂ and

ŷ at LO, which facilitates the achievement of suitable coupling textures and simultaneously

avoids too large effects involving first-generation quarks and/or leptons.

The most relevant physical observables were identified analytically, and two numerical
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studies of the phenomenology of this model were performed. A major distinction was

drawn between primary and secondary observables. The former include the anomalies

(R(D), R(D⋆) and ∆aµ) and other observables for which the present experimental mea-

surements can (significantly) constrain the parameter space of this model. The latter do

not currently provide competitive constraints, but according to short- or mid-term future

prospects, increased experimental sensitivity to them will offer an opportunity to probe

this model.

In the first (“primary”) numerical study I included only the primary observables, and

varied the effective LQ coupling coefficients in the charged fermion mass basis as (mostly)

independent order-one parameters. This scan, therefore, did not touch upon the viability of

the model to explain the charged fermion masses or quark mixing. It identified the bounds

on the radiative cLFV decays τ → µγ and µ → eγ as the most stringent constraints on

parameter space, and was used to extract biases on effective LQ parameters to guide a

more thorough numerical analysis. A simultaneous reconciliation of all anomalies proved

to be very challenging in the primary scan.

In the second (“comprehensive”) numerical study, all considered observables were included

and the LQ parameters in the interaction basis were (mostly) varied as order-one param-

eters. A subset of them were fixed in a chi-squared fit in order to reproduce the charged

fermion masses and CKM mixing matrix which yielded excellent agreement with experi-

mental data in the case of scenario B. The remaining order-one parameters parametrising

the LQ coupling matrices were biased with the help of results from the primary scan. The

comprehensive scan demonstrated that this model is compatible with all considered ex-

perimental constraints and capable of explaining the observed deviations in R(D), R(D⋆)

and ∆aµ from their SM predictions at the 3 σ level for m̂ϕ = 2 and 4. Furthermore, even

a reconciliation of the three anomalies at the level of 2 σ was shown to be achievable for

m̂ϕ = 2.

The direct use of the interaction basis turned out to be the main reason for the greater

success of the comprehensive scan. For phenomenological purposes, it was found that

the effective parameter b13 is preferred to be slightly smaller than expected from the
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construction of the model. Thus, in an improved attempt of model building, one should

intend to further suppress the LQ coupling y13 by λ or λ2. In several decay processes,

contributions beyond the ones from photon penguins can play an important role, that is, in

particular render τ → 3µ and τ → µeē accessible at Belle II. For the primary observables

with neutrinos in the final state, i.e. R(D), R(D⋆), RνK⋆ and the lifetime of the Bc meson,

LFV contributions are found to be definitely non-negligible in some instances.

The study laid out in this chapter can be extended in several directions. On the phe-

nomenological side, it seems promising to study the observables R(J/ψ) and R(Λc) which

are closely related to the b → c transitions analysed so far, as well as the angular distribu-

tions of the processes B → D⋆eiν [133] and the longitudinal polarisation of the tau lepton

in B → D⋆τν [131]. For some of these, the measured value (slightly) disagrees with the

SM expectation, e.g. for R(J/ψ) [130]. It may also be interesting to address other flavour

anomalies like those observed in b → s transitions, that is, in R(K), R(K⋆) and in the

process Bs → µµ; see e.g. ref. [421] for a recent concise overview. For this purpose, an

additional LQ must be added to the model, for instance the one transforming as (3, 3,−1
3)

under the SM gauge group; see e.g. refs. [362, 366, 371, 422]. Along the way, this may

allow for incorporating a mechanism of neutrino-mass generation, for instance a seesaw

mechanism via adding RH neutrinos [196], or a radiative mechanism; see ref. [50] for an ex-

tensive review. For simplicity, in the model under consideration it has been assumed that

possible diquark couplings of ϕ are forbidden by a baryon-number symmetry. However, it

could also be insightful to scrutinise the efficacy of Gf to suppress these couplings beyond

the strong existing bounds from searches for proton decay [29]; see e.g. refs. [84, 423] for

similar studies.

With non-vanishing neutrino masses, lepton mixing becomes physical and its appropriate

description, i.e. two large mixing angles and one small one [38], may require a change in

the assignment of the LH lepton doublets to representations of Gf or even the extension or

modification of Gf itself. The observed lepton mixing angles are often interpreted as a hint

towards the unification of the three generations of LH lepton doublets in an irreducible

three-dimensional representation of the flavour symmetry; for reviews see refs. [175–178].
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Prime candidates for such a flavour symmetry are members of the group series ∆(6n2) with

n ≥ 2 integer [424] which were shown to allow for an adequate description of lepton mixing

as well as quark mixing, see e.g. refs. [425–429], and of the charged fermion mass hierarchies

if accompanied by an appropriate external symmetry; see e.g. the supersymmetric model in

ref. [430]. A similarly profound change in the construction of the model might be necessary

for an accommodation of JCP ∼ λ6 in terms of operators which respect (a modified version

of) the flavour symmetry Gf . Lastly, one may consider extending Gf by a CP symmetry,

given the constraining power regarding the two Majorana phases in the lepton sector [431]

(see also refs. [321,432–438]) and the extent of CP violation in the LQ couplings.

5.6 Appendix: Group Theory of D17

In this appendix, the main features of the non-abelian discrete group D17 [374] are sum-

marised. D17 is a member of the series of dihedral groups Dn which are non-abelian for

n ≥ 3. D17 features 34 distinct elements and ten real irreducible representations: the triv-

ial singlet 11, a non-trivial singlet 12 as well as eight doublets, called 2i with i = 1, ..., 8.

All these eight doublets are faithful. Like the other dihedral groups, D17 can be described

in terms of two generators a and b which satisfy

a17 = e , b2 = e , a b a = b (5.112)

where e denotes the neutral element of the group. Their representation matrices read

a(11) = b(11) = 1 and a(12) = 1 , b(12) = −1 (5.113)

as well as

a(2i) =

 ωi
17 0

0 ω17−i
17

 and b(2i) =

 0 1

1 0

 , (5.114)

where ω17 = exp
(

2π i
17

)
is the 17th root of unity. In this model, only the doublets 21, 22,

23 and 24 are used. Below, the most relevant Kronecker products and Clebsch-Gordan

coefficients are presented which have a particularly simple form in the chosen basis. If a
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and b are singlets and (c1 c2)T , (d1 d2)T are doublets, one has [374]

11 × 11 : a b ∼ 11 , (5.115a)

11 × 12 : a b ∼ 12 , (5.115b)

12 × 12 : a b ∼ 11 , (5.115c)

11 × 2i :

 a c1

a c2

 ∼ 2i , (5.115d)

12 × 2i :

 a c1

−a c2

 ∼ 2i , (5.115e)

21 × 21 : c1 d2 + c2 d1 ∼ 11 , c1 d2 − c2 d1 ∼ 12 ,

 c1 d1

c2 d2

 ∼ 22 , (5.115f)

21 × 22 :

 c2 d1

c1 d2

 ∼ 21 ,

 c1 d1

c2 d2

 ∼ 23 , (5.115g)

22 × 22 : c1 d2 + c2 d1 ∼ 11 , c1 d2 − c2 d1 ∼ 12 ,

 c1 d1

c2 d2

 ∼ 24 , (5.115h)

21 × 23 :

 c2 d1

c1 d2

 ∼ 22 ,

 c1 d1

c2 d2

 ∼ 24 , (5.115i)

22 × 23 :

 c2 d1

c1 d2

 ∼ 21 ,

 c1 d1

c2 d2

 ∼ 25 , (5.115j)

23 × 23 : c1 d2 + c2 d1 ∼ 11 , c1 d2 − c2 d1 ∼ 12 ,

 c1 d1

c2 d2

 ∼ 26 , (5.115k)

21 × 24 :

 c2 d1

c1 d2

 ∼ 23 ,

 c1 d1

c2 d2

 ∼ 25 , (5.115l)

22 × 24 :

 c2 d1

c1 d2

 ∼ 22 ,

 c1 d1

c2 d2

 ∼ 26 , (5.115m)

23 × 24 :

 c2 d1

c1 d2

 ∼ 21 ,

 c1 d1

c2 d2

 ∼ 27 , (5.115n)

24 × 24 : c1 d2 + c2 d1 ∼ 11 , c1 d2 − c2 d1 ∼ 12 ,

 c1 d1

c2 d2

 ∼ 28 . (5.115o)
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In addition, it should be pointed out that the Clebsch-Gordan coefficients for combinations

involving conjugated fields have a slightly different form, since a complex matrix is chosen

for the generator a in the two-dimensional (real) representations 2i. For a being a singlet

and (c1 c2)T , (d1 d2)T being doublets, the combinations involving c∗
1,2 read e.g.

2i × 11 :

 c∗
2 a

c∗
1 a

 ∼ 2i , (5.116a)

2i × 12 :

 c∗
2 a

−c∗
1 a

 ∼ 2i , (5.116b)

21 × 21 : c∗
1 d1 + c∗

2 d2 ∼ 11 , c∗
1 d1 − c∗

2 d2 ∼ 12 ,

 c∗
2 d1

c∗
1 d2

 ∼ 22 , (5.116c)

21 × 22 :

 c∗
1 d1

c∗
2 d2

 ∼ 21 ,

 c∗
2 d1

c∗
1 d2

 ∼ 23 . (5.116d)

The general form of the Kronecker products and Clebsch-Gordan coefficients can be found

in ref. [374].

5.7 Appendix: Lagrangians

In this section, I list the operators contributing to the charged fermion mass matrices Mu,

Md and Me, and to the LQ couplings x̂ and ŷ as defined in eq. (5.4). I include operators

that contribute up to and including order λ12 in the symmetry-breaking parameter, and

assume the VEVs of the spurions S, T , U and W as given in eq. (5.9). Each operator is

accompanied by a complex order-one coefficient. When the operators are listed, they are

usually ordered according to the number of spurion insertions. Furthermore, note that

the spurions are treated as dimensionless flavour-symmetry breaking fields; thus, no cutoff

scale is needed to establish the correct mass dimension of the operators.

Note that for any given operator in the lists below there might be more than one combi-

nation of the contained fields which yields an invariant of the flavour symmetry Gf , and

thus more than one independent contribution to the charged fermion mass matrices Mu,
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Md and Me or the LQ couplings x̂ and ŷ from one operator. These instances are signaled

via the usage of primed operator efficients, e.g. αd8, (αd8)′ – see eq. (5.141). Generally, I

omit all operators which carry insertions of S S†, T T †, U U † and W W †, and products or

powers thereof. Typically, these solely duplicate the contribution from the corresponding

operators without the respective insertions, but are further suppressed by at least λ2, λ4

and ≲ λ8, depending on the spurion involved. There are two exceptions to this rule:

• The up-type quark mass matrix elements (Mu)12 and (Mu)22 feature the same LO

contribution arising from the second operator in eq. (5.117), but the subleading

contributions appearing at the relative order λ2 are not identical due to the first

operator in eq. (5.118) which involves the combination S S†. This can be seen

explicitly in eq. (5.140).

• The combination W W † contains a covariant in 24 with a non-vanishing VEV, thus

some operators with this insertion may yield non-redundant contributions. Nonethe-

less, they are always suppressed by at least λ8 compared to the contribution from

the respective operator without the insertion.

5.7.1 Up-Quark Sector

In the up-quark sector, I identify four LO operators that generate the up-type quark

masses and the three quark mixing angles:

LuYuk,LO = αu1 QL3Hu uR3 + αu2 QLHu uR2W

+ αu3 QLHu uR3 (S†)2 + αu4 QLHu uR1 T
2 U .

(5.117)
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At subleading order, the up-type quark mass matrix receives contributions up to and

including λ12 from the following operators

LuYuk,SLO = αu5 QLHu uR2 S S
†W + αu6 QLHu uR2 (S†)4 T

+ αu7 QL3Hu uR2 (S†)2 T + αu8 QL3Hu uR2 (W †)2

+ αu9 QLHu uR2W
2W † + αu10QLHu uR1 T U

2

+ αu11QL3Hu uR2 S
2W + αu12QLHu uR2 T

† U W

+ αu13QLHu uR2 T U
†W + αu14QLHu uR3 T

† (W †)2

+ αu15QLHu uR3 (S†)2 T U † + αu16QLHu uR3 S
2 T †W

+ αu17QLHu uR3 S
2 U †W + αu18QLHu uR2 S

2 T †W †

+ αu19QLHu uR2 S
2 U †W † + αu20QLHu uR2 (S†)2 (W †)2

+ αu21QLHu uR3 (S†)2W W † + αu22QL3Hu uR1 S
2 T U2

+ αu23QL3Hu uR1 (S†)4 (U †)2 + αu24QL3Hu uR3 S
4 T †W

+ αu25QL3Hu uR3 (S†)4 T W † + αu26QL3Hu uR2 S
4 T †W †

+ αu27QLHu uR2 (S†)4 T 2 U † + αu28QLHu uR3 S
4 (T †)2W †

+ αu29QLHu uR2 S
6 (T †)2 + αu30QLHu uR3 (S†)6 T W † .

(5.118)

Among these, the first two operators contribute at the relative order λ2 to the elements

(Mu)12 and (Mu)22 and are thus the most important ones. The operators with the co-

efficients αu6 and αu7 are examples of operators which are automatically allowed once the

field content of the LO operators is determined. I note that several of the subleading

operators yield two independent contributions to the up-type quark mass matrix Mu. The

operator with the coefficient αu5 induces contributions of order λ6 to the element (Mu)22

and of order λ7 to the element (Mu)12, but with a different relative sign; the one with αu14

gives contributions of order λ10 and λ11; the one with αu16 yields contributions of order λ8

and λ9; the one with αu18 leads to contributions of order λ8 and λ9; finally, the operator

with the coefficient αu20 gives rise to two independent contributions of order λ10 and λ11,

respectively.
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5.7.2 Down-Quark Sector

There are three operators which induce the respective dominant contributions to the down-

type quark masses:

LdYuk,LO = αd1 QL3Hd dR3 + αd2 QLHd dR T + αd3 QLHd dR U . (5.119)

At subleading order, I find

LdYuk,SLO = αd4 QLHd dR3 (S†)2 + αd5 QL3Hd dR S
2 T

+ αd6 QLHd dR T
† U2 + αd7 QLHd dR T

2 U †

+ αd8 QLHd dR3 T
† (W †)2 + αd9 QLHd dR T W W †

+ αd10QLHd dR3 (S†)2 T U † + αd11QLHd dR3 S
2 T †W

+ αd12QLHd dR3 S
2 U †W + αd13QLHd dR S

2 (W †)2

+ αd14QLHd dR3 (S†)2W W † + αd15QL3Hd dR S
2 T † U2

+ αd16QLHd dR S
4W + αd17QL3Hd dR (S†)2 T 2W †

+ αd18QL3Hd dR3 S
4 T †W + αd19QL3Hd dR3 (S†)4 T W †

+ αd20QL3Hd dR S
6W + αd21QLHd dR (S†)4 T 2W †

+ αd22QLHd dR3 S
4 (T †)2W † + αd23QLHd dR3 (S†)6 T W †

+ αd24QLHd dR S
6 T †W † + αd25QLHd dR (S†)7 (T †)2 .

(5.120)

The existence of the first operator herein is an immediate consequence of the corresponding

operator in the up-quark sector being invariant. Similarly, the second operator with the

coefficient αd5 is automatically induced once the LO operators which generate the charged

fermion mass matrices and the LQ couplings x̂ and ŷ are included.

There are several operators which yield more than one independent contraction: the op-

erator with the coefficient αd8 leads to two independent contributions of order λ10 and λ11

to the down-type quark mass matrix; the one with αd9 yields two contributions, both of

order λ11; the operator with αd11 gives two contributions of order λ8 and λ9; the one with

αd13 leads to three contributions of order λ10, λ11 and λ12; finally, the operator with the

coefficient αd16 implies two contributions of order λ8 and λ9.
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5.7.3 Charged Lepton Sector

In complete analogy to the down-type quark sector, I identify the corresponding LO op-

erators in the charged lepton sector

LeYuk,LO = αe1 LL3Hd eR3 + αe2 LLHd eR T + αe3 LLHd eR U . (5.121)

Still, the subleading operators are generally not equivalent:

LeYuk,SLO = αe4 LLHd eR3 S
† + αe5 LL3Hd eR S T

+ αe6 LLHd eR T W W † + αe7 LL3Hd eR S
† (T †)2W †

+ αe8 LL3Hd eR S
† T † U †W † + αe9 LLHd eR S

2 (W †)2

+ αe10 LLHd eR3 S T
† (W †)2 + αe11 LLHd eR S

2 (T †)3

+ αe12 LLHd eR S
2 T † (U †)2 + αe13 LLHd eR S

4W

+ αe14 LLHd eR3 S
3 T †W + αe15 LL3Hd eR (S†)3 T †W

+ αe16 LL3Hd eR (S†)3 U †W + αe17 LLHd eR (S†)2 (T †)2W †

+ αe18 LL3Hd eR S
3 (W †)2 + αe19 LL3Hd eR S

3 (T †)3

+ αe20 LL3Hd eR S
5W + αe21 LL3Hd eR3 S

4 T †W

+ αe22 LLHd eR (S†)4 T †W + αe23 LLHd eR (S†)4 U †W

+ αe24 LL3Hd eR3 (S†)4 T W † + αe25 LL3Hd eR (S†)3 T 2W †

+ αe26 LLHd eR3 (S†)5 T W † + αe27 LLHd eR (S†)4 T 2W † .

(5.122)

The appearance of the first operator herein has already been commented on in section 5.3.2.

The second one with the coefficient αe5 also turns out to be an operator that is automatically

induced upon fixing the field content of the LO operators which are responsible for the

dominant contributions to the charged fermion mass matrices and the LQ couplings x̂

and ŷ. I note that only the operator with the coefficient αe9 gives rise to two independent

contributions to the charged lepton mass matrix Me: one of order λ11 and another one of

order λ12, see also eq. (5.142).
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5.7.4 Leptoquark Couplings in Interaction Basis

For the LQ couplings, I begin with the LO operators which are responsible for the structure

of the (23)-block in the LQ coupling x̂:

Lint
x̂,LO = βL1 L

c
L3 ϕ

†QL3 + βL2 L
c
L ϕ

†QL3 S + βL3 L
c
L3 ϕ

†QL S
2 + βL4 L

c
L ϕ

†QL S
3 . (5.123)

At subleading order, I find several additional operators

Lint
x̂,SLO = βL5 L

c
L3 ϕ

†QL T W
2 + βL6 L

c
L ϕ

†QL S
† T W †

+ βL7 L
c
L ϕ

†QL S
† U W † + βL8 L

c
L3 ϕ

†QL S
2 T † U

+ βL9 L
c
L ϕ

†QL S
† (T †)2W + βL10 L

c
L ϕ

†QL S
† T † U †W

+ βL11 L
c
L ϕ

†QL S T W
2 + βL12 L

c
L ϕ

†QL3 S
† T W 2

+ βL13 L
c
L3 ϕ

†QL (S†)2 T W † + βL14 L
c
L3 ϕ

†QL (S†)2 U W †

+ βL15 L
c
L3 ϕ

†QL S
2W W † + βL16 L

c
L ϕ

†QL S
3 T † U

+ βL17 L
c
L ϕ

†QL3 (S†)3 T W † + βL18 L
c
L ϕ

†QL S (T †)3W †

+ βL19 L
c
L ϕ

†QL S
3W W † + βL20 L

c
L ϕ

†QL (S†)5 U †

+ βL21 L
c
L ϕ

†QL (S†)3 T 2W + βL22 L
c
L3 ϕ

†QL3 S
4 T †W

+ βL23 L
c
L3 ϕ

†QL3 (S†)4 T W † + βL24 L
c
L3 ϕ

†QL (S†)4 T 2W

+ βL25 L
c
L ϕ

†QL3 S
5 T †W + βL26 L

c
L3 ϕ

†QL S
6 T †W .

(5.124)

All couplings βLi are complex order-one coefficients. As was the case in the charged fermion

sector, I note that several of these operators induce two respective independent contribu-

tions to the LQ coupling x̂. The operator with the coefficient βL5 leads to contributions of

order λ10 and λ11; the one with βL6 gives contributions of order λ7 and λ8; the operator

with βL10 induces two contributions of order λ11 and λ12; the one with βL11 yields contribu-

tions of order λ11 and λ12; the one with βL13 gives rise to two contributions of order λ8 and

λ9; finally, the operator with the coefficient βL21 leads to two independent contributions of

order λ11 and λ12.

Lastly, I also list the operators which contribute to the LQ coupling ŷ up to and includ-

ing order λ12. As expected from the construction of the model, I identify only two LO
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operators

Lint
ŷ,LO = βR1 e

c
R3 ϕ

† uR2 + βR2 e
c
R ϕ

† uR3 S
3 . (5.125)

Additional operators are found at the subleading level

Lint
ŷ,SLO = βR3 e

c
R ϕ

† uR2 S T + βR4 e
c
R3 ϕ

† uR3 S
2 T †

+ βR5 e
c
R3 ϕ

† uR3W
2 + βR6 e

c
R ϕ

† uR1 S
† (U †)2

+ βR7 e
c
R ϕ

† uR1 S U W + βR8 e
c
R3 ϕ

† uR3 (S†)2W †

+ βR9 e
c
R ϕ

† uR3 S
† T W † + βR10 e

c
R ϕ

† uR3 S
† (T †)2W

+ βR11 e
c
R ϕ

† uR3 S
† T † U †W + βR12 e

c
R ϕ

† uR3 S T W
2

+ βR13 e
c
R ϕ

† uR2 S
† (T †)2W † + βR14 e

c
R ϕ

† uR2 S
† T † U †W †

+ βR15 e
c
R ϕ

† uR1 (S†)3 T U + βR16 e
c
R3 ϕ

† uR1 (S†)2 T † (U †)2

+ βR17 e
c
R ϕ

† uR2 (S†)3 T †W + βR18 e
c
R ϕ

† uR2 (S†)3 U †W

+ βR19 e
c
R ϕ

† uR3 S (T †)3W † + βR20 e
c
R ϕ

† uR2 S
3 (W †)2

+ βR21 e
c
R ϕ

† uR2 S
3 (T †)3 + βR22 e

c
R3 ϕ

† uR1 S
4 U2

+ βR23 e
c
R ϕ

† uR3 (S†)5 U † + βR24 e
c
R ϕ

† uR2 S
5W

+ βR25 e
c
R3 ϕ

† uR3 (S†)4 T W + βR26 e
c
R ϕ

† uR3 (S†)3 T 2W

+ βR27 e
c
R3 ϕ

† uR2 S
4 T †W + βR28 e

c
R3 ϕ

† uR2 (S†)4 T W †

+ βR29 e
c
R ϕ

† uR2 (S†)3 T 2W † ,

(5.126)

with all coefficients βRi being complex order-one numbers. The presence of the first and the

second operator is automatic upon fixing the transformation properties of the fields which

are relevant for the LO terms of the charged fermion mass matrices Mu, Md, Me and the

LQ couplings x̂ and ŷ. I note that all listed operators give rise to a single (independent)

contribution to ŷ.
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5.8 Appendix: Mass Matrices and Leptoquark Couplings in

Scenario A

For the sake of contrast with section 5.3 where scenario B was focussed on, herein I present

the form of the up-type quark mass matrix Mu, the unitary matrices Lu and Ru, and the

form of the LQ couplings x, y and z as defined in eq. (5.5) in scenario A. As there is

no difference between the respective down-quark and charged lepton mass matrices in the

two scenarios, they are not explicitly referred to in this section.

5.8.1 Up-Quark Sector

In the absence of an enhancement of the element (Mu)13 as is present in scenario B, the

effective parametrisation of the up-type quark mass matrix up to and including order λ12

reads in scenario A

Mu =


f11 λ

8 f12 λ
5 f13 λ

8

f21 λ
10 f22 λ

4 f23 λ
2

f31 λ
12 f32 λ

4 f33


〈
H0
u

〉
, (5.127)

where fij are generally independent, complex order-one numbers, apart from f12 and f22,

see section 5.3.1.1. Regarding the up-type quark masses, the only difference between

scenario A and scenario B is related to subleading corrections to the top-quark mass mt

which appear at order λ8 in scenario A, but at order λ6 in scenario B.

The matrices Lu and Ru transforming LH and RH up-type quarks from the interaction to

the mass basis read, up to and including order λ12,

Lu =


1 − f2

12
2 f2

22
λ2 + O(λ4) f12

f22
λ+ O(λ3) f13

f33
λ8 + O(λ9)

−f12
f22

λ+ O(λ3) 1 − f2
12

2 f2
22
λ2 + O(λ4) f23

f33
λ2 + O(λ6)

f12f23
f22f33

λ3 + O(λ5) −f23
f33

λ2 + O(λ4) 1 − f2
23

2 f2
33
λ4 + O(λ8)

 (5.128)
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and

Ru =


1 + O(λ10) f11f12

f2
22

λ5 + O(λ6) f21f23+f31f33
f2

33
λ12 + ≀(λ12)

−f11f12
f2

22
λ5 + O(λ6) 1 + O(λ8) f32

f33
λ4 + O(λ6)

f11f12f32
f2

22f33
λ9 + O(λ10) −f32

f33
λ4 + O(λ6) 1 + O(λ8)

 . (5.129)

5.8.2 Quark Mixing

From the matrices Lu and Ld shown in eq. (5.128) and eq. (5.18), respectively, I obtain

the following CKM mixing matrix in scenario A

V = L†
u Ld =


1 − f2

12
2 f2

22
λ2 + O(λ4) −f12

f22
λ+ O(λ3) f12

f22
V32 λ

3 + O(λ5)
f12
f22

λ+ O(λ3) 1 − f2
12

2 f2
22
λ2 + O(λ4) −V32 λ

2 + O(λ4)

V31 λ
8 + O(λ9) V32 λ

2 + O(λ6) 1 − 1
2(V32)2 λ4 + O(λ6)


(5.130)

with

V32 ≡ f23
f33

− d23
d33

(5.131)

and

V31 ≡ f13
f33

− d13
d33

− d12
d22

V32 . (5.132)

Obviously, the element Vtd ∼ λ8 is predicted to be further suppressed than the experi-

mentally measured value |Vtd| = 0.00854+0.00023
−0.00016 ∼ λ3 [29]. Furthermore, assuming that

the effective parameters dij and fij are complex, one can estimate the size of the Jarlskog

invariant as in JCP ∼ λ11, see eq. (2.29), which is in conflict with the measured value,

JCP =
(
3.00+0.15

−0.09

)
× 10−5 ∼ λ6 [29].

In addition, I note that the predicted relation between Vus, Vcb and Vub is too tight to

accommodate all three CKM-matrix elements in accordance with experimental data [29].

One has

|Vus| ≈
∣∣∣∣f12
f22

∣∣∣∣ λ ∼ λ and |Vcb| ≈
∣∣∣∣f23
f33

− d23
d33

∣∣∣∣ λ2 ∼ λ2 (5.133)

as well as

|Vub| ≈
∣∣∣∣f12
f22

(
f23
f33

− d23
d33

)∣∣∣∣ λ3 ≈ |Vus| |Vcb| , (5.134)
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so that |Vus| = 0.22650 and |Vcb| = 0.04053 [29] imply |Vub| ≈ 0.0092. Compared to the

experimental best-fit value |Vub| = 0.00361+0.00011
−0.00009 [29], this is by a factor of about 2.5

wrong and clearly outside the range preferred at the level of 3σ.

These findings are confirmed with a chi-squared fit – while the charged fermion masses

are fitted well at the scale µ = 1 TeV [378], quark mixing cannot be brought into full

agreement with experimental data [29].

5.8.3 Leptoquark Couplings

5.8.3.1 Interaction Basis

From the contributions of the operators in eqs. (5.123) and (5.124), I obtain the form of

the LQ coupling x̂ up to and including order λ12 as in

x̂ =


â11 λ

9 â12 λ
12 o(λ12)

â21 λ
8 â22 λ

3 â23 λ

â31 λ
8 â32 λ

2 â33

 (5.135)

with the effective parameters âij being, in general, complex order-one numbers. Their

definitions in terms of the coefficients βLi can be found in eq. (5.143). I note that the

element x̂13 is only generated at an order higher than λ12.

Before adopting the charged fermion mass basis, one may already compare this form of

the LQ coupling with the texture laid out in eq. (5.7). The elements in the first column

and/or row are well protected by the residual symmetry Zdiag
17 , while each element in the

(23)-block has the anticipated order of magnitude in λ.

Similarly, from the contributions of the operators in eqs. (5.125) and (5.126), I obtain the

form of the LQ coupling ŷ up to and including order λ12 as in

ŷ =


b̂11 λ

9 b̂12 λ
9 b̂13 λ

9

b̂21 λ
9 b̂22 λ

3 b̂23 λ
3

b̂31 λ
12 b̂32 b̂33 λ

4

 . (5.136)
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The parameters b̂ij are, in general, complex order-one numbers and are related to the

coefficients βRi as shown in eq. (5.144).

Comparing this result to the texture in eq. (5.7), one sees that the elements ŷ32 ∼ 1 and

ŷ23 ∼ λ3 are indeed induced at the anticipated order of magnitude, whereas the elements

ŷ22 ∼ λ3 and ŷ33 ∼ λ4 are also rather large. The latter arise from the operators with the

coefficients βR3 and βR4 in eq. (5.126) which have been identified as being automatically

induced upon fixing the LO operators, contributing to the-charged fermion mass matrices

and LQ couplings x̂ and ŷ, and their particle content. Notably, none of the elements of

the first row and/or column of the LQ coupling ŷ is larger than λ9, reflecting the efficacy

of the residual symmetry Zdiag
17 . Couplings to RH electrons and/or up quarks are thus

very small.

5.8.3.2 Charged Fermion Mass Basis in Scenario A

In scenario A, i.e. in the absence of an enhancement of the up-quark mass matrix element

(Mu)13, one obtains the following form for the LQ coupling z from the unitary matrices

Lu and Le, see eqs. (5.128) and (5.26), and the LQ coupling x̂ in eq. (5.135):

z = LTe x̂Lu =


c11 λ

9 c12 λ
10 c13 λ

9

c21 λ
4 c22 λ

3 c23 λ

c31 λ
3 c32 λ

2 c33

 . (5.137)

The effective parameters cij are related to âij , eij and fij which enter eqs. (5.135), (5.24)

and (5.127). Again, the explicit form of these relations can be found in eq. (5.146).

In comparison with eq. (5.35), the strong correlation between the LQ couplings x and z

can be evidenced in scenario A as in

z =


(a11 − (cA

12)2

2 a11
λ2 + cA11 λ

3)λ9 cA12 λ
10 a13 λ

9

(− cA
12
a11

(a22 + a23 c̃) + cA21 λ)λ4 (a22 + a23 c̃+ cA22 λ
2)λ3 (a23 + cA23 λ

4)λ

(− cA
12
a11

(a32 + a33 c̃) + cA31 λ)λ3 (a32 + a33 c̃+ cA32 λ
2)λ2 a33 + cA33 λ

4


(5.138)
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where aij are the same parameters as in x in eq. (5.29). In a manner analogous to scenario

B, apart from

cA12 = â11f12
f22

+ O(λ) and c̃ = d23
d33

− f23
f33

, (5.139)

one may take the new effective parameters cAij and c̃ to be complex order-one numbers

which account for rather involved expressions in the other coefficients.

Lastly, regarding the LQ coupling y, both its form as given in eq. (5.32) and the definition

of the effective parameters bij , given in eq. (5.147), are identical in scenario A and scenario

B.

5.9 Appendix: Relations between Lagrangian and Effective

Parameters

In the following, I collect the relations between the Lagrangian parameters and the effective

ones which appear in the charge fermion mass matrices and LQ couplings. Note that

the effective couplings are formally taken to be real herein, whereas complex phases are

taken into account for the diagonalisation of the charged fermion mass matrices in the

comprehensive scan.

The effective parameters fij which appear in the up-type quark mass matrix in eq. (5.127)

216



5.9. APPENDIX: RELATIONS BETWEEN LAGRANGIAN AND EFFECTIVE
PARAMETERS

are related as follows to the Lagrangian parameters αui

f11 = αu4 ,

f12 = αu2 + αu5 λ
2 + (αu5)′ λ2 + αu13 λ

5 + αu18 λ
3 + αu19 λ

6 + αu20 λ
5 + αu27 λ

7 + αu29 λ
5 ,

f13 = αu14 λ
2 + αu15 + αu16 λ+ αu17 λ

2 + αu21 λ
3 + αu28 λ

4 ,

f21 = αu10 ,

f22 = αu2 + αu5 λ
2 − (αu5)′ λ2 + αu6 λ

2 + αu9 λ
8 + αu12 λ

7 + (αu18)′ λ5 + (αu20)′ λ7 ,

f23 = αu3 + (αu14)′ λ9 + (αu16)′ λ6 + αu30 λ
10 ,

f31 = αu22 + αu23 ,

f32 = αu7 + αu8 λ
5 + αu11 λ

2 + αu26 λ
7 ,

f33 = αu1 + αu24 λ
10 + αu25 λ

10 .

(5.140)

For the effective parameters dij appearing in the down-type quark mass matrix in eq. (5.16),

I find the following relations to the Lagrangian parameters αdi

d11 = αd3 + αd9 λ
7 + αd13 λ

8 ,

d12 = αd7 + (αd9)′ λ3 + (αd13)′ λ2 + αd16 λ+ αd24 λ
4 + αd25 λ

3 ,

d13 = αd8 λ
2 + αd10 + αd11 λ+ αd12 λ

2 + αd14 λ
3 + αd22 λ

4 ,

d21 = αd6 ,

d22 = αd2 + (αd13)′′ λ9 + (αd16)′ λ6 + αd21 λ
10 ,

d23 = αd4 + (αd8)′ λ9 + (αd11)′ λ6 + αd23 λ
10 ,

d31 = αd15 ,

d32 = αd5 + αd17 λ
6 + αd20 λ

6 ,

d33 = αd1 + αd18 λ
10 + αd19 λ

10 .

(5.141)

Similarly, I find the following relations between the effective parameters eij in the charged
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lepton mass matrix in eq. (5.24) and the Lagrangian parameters αei

e11 = αe3 + αe6 λ
7 + αe9 λ

8 ,

e12 = αe12 ,

e21 = αe11 + αe17 λ
2 + αe22 λ

3 + αe23 λ
4 ,

e22 = αe2 + (αe9)′ λ9 + αe13 λ
6 + αe27 λ

10 ,

e23 = αe4 + αe10 λ
11 + αe14 λ

8 + αe26 λ
10 ,

e31 = αe7 + αe8 λ
3 + αe15 λ+ αe16 λ

2 + αe19 ,

e32 = αe5 + αe18 λ
9 + αe20 λ

6 + αe25 λ
8 ,

e33 = αe1 + αe21 λ
10 + αe24 λ

10 .

(5.142)

I continue with the relations between the effective parameters âij which appear in the LQ

coupling x̂, see eq. (5.135), and the coefficients βLi

â11 = βL9 λ+ βL10 λ
2 + βL18 λ

2 + βL20 ,

â12 = (βL10)′ ,

â21 = βL6 + βL7 λ+ βL11 λ
3 + βL16 λ+ βL19 λ

4 + βL21 λ
3 ,

â22 = βL4 + (βL6 )′ λ4 + (βL11)′ λ9 + (βL21)′ λ9 ,

â23 = βL2 + βL12 λ
11 + βL17 λ

8 + βL25 λ
10 ,

â31 = βL5 λ
2 + βL8 + βL13 λ+ βL14 λ

2 + βL15 λ
3 + βL24 λ

4 ,

â32 = βL3 + (βL5 )′ λ9 + (βL13)′ λ6 + βL26 λ
10 ,

â33 = βL1 + βL22 λ
10 + βL23 λ

10 .

(5.143)

For the LQ coupling ŷ given in eq. (5.136), one can define the effective parameters b̂ij in
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terms of the coefficients βRi as in

b̂11 = βR7 + βR15 ,

b̂12 = βR13 + βR14 λ
3 + βR17 λ+ βR18 λ

2 + βR21 ,

b̂13 = βR10 λ+ βR11 λ
2 + βR19 λ

2 + βR23 ,

b̂21 = βR6 ,

b̂22 = βR3 + βR20 λ
9 + βR24 λ

6 + βR29 λ
8 ,

b̂23 = βR2 + βR9 λ
4 + βR12 λ

9 + βR26 λ
9 ,

b̂31 = βR16 + βR22 ,

b̂32 = βR1 + βR27 λ
10 + βR28 λ

10 ,

b̂33 = βR4 + βR5 λ
5 + βR8 λ

2 + βR25 λ
7 .

(5.144)

The effective parameters aij in the LQ coupling x in eq. (5.29) read in terms of the effective

parameters âij , dij and eij as follows

a11 = â11 + o(λ3) ,

a12 = − â22e11e21
e2

22
+ â23d23e11e21

d33e2
22

+ â32e11e21e23
e2

22e33
− â33d23e11e21e23

d33e2
22e33

+ O(λ) ,

a13 = − â23e11e21
e2

22
+ â33e11e21e23

e2
22e33

+ O(λ2) ,

a21 = â21 + O(λ) ,

a22 = â22 − d23
d33

(
â23 − â33e23

e33

)
− â32e23

e33
+ O(λ2) ,

a23 = â23 − â33e23
e33

+ O(λ2) ,

a31 = â31 − â32d12
d22

− â33d13
d33

+ â33d12d23
d22d33

+ O(λ) ,

a32 = â32 − â33d23
d33

+ O(λ2) ,

a33 = â33 + O(λ2) .

(5.145)

Similarly, one can express the effective parameters cij in the LQ coupling z in eq. (5.137)
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in terms of âij , eij and fij and find for scenario A

c11 = â11 + O(λ2) ,

c12 = â11f12
f22

+ O(λ) ,

c13 = − â23e11e21
e2

22
+ â33e11e21e23

e2
22e33

+ O(λ2) ,

c21 = − f12
e33f22f33

(â33e23f23 − â23e33f23 − â32e23f33 + â22e33f33) + O(λ2) ,

c22 = â22 − â32e23
e33

−
(
â23 − â33e23

e33

)
f23
f33

+ O(λ2) ,

c23 = â23 − â33e23
e33

+ O(λ2) ,

c31 = f12(â33f23 − â32f33)
f22f33

+ O(λ2) ,

c32 = â32 − â33f23
f33

+ O(λ2) ,

c33 = â33 + O(λ2) .

(5.146)

The effective parameters bij in the LQ coupling y given in eq. (5.32) read for scenario A

in terms of b̂ij , eij and fij

b11 = b̂11 + o(λ3) ,

b12 = b̂12 − b̂22e21
e22

− b̂32e31
e33

+ b̂32e21e32
e22e33

+ O(λ2) ,

b13 = b̂13 − b̂23e21
e22

+ O(λ2) ,

b21 = − b̂22f11f12
f2

22
+ b̂32e22e23f11f12

e2
33f

2
22

+ b̂32e32f11f12
e33f2

22
+ O(λ) ,

b22 = b̂22 − b̂32(e22e23 + e32e33)
e2

33
+ O(λ2) ,

b23 = b̂23 + O(λ4) ,

b31 = − b̂32f11f12
f2

22
+ O(λ) ,

b32 = b̂32 + O(λ6) ,

b33 = b̂33 + b̂32f32
f33

+ O(λ2) .

(5.147)
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5.10 Appendix: Formulae for R(D) and R(D⋆)

I define

R(D)
R(D)SM

≡ GD3
GD2 +GD1

,
R(D⋆)
R(D⋆)SM

≡ GD
⋆

3
GD

⋆

2 +GD
⋆

1
(5.148)

with

GDα ≈
3∑

β=1

(
1, α = 1

0.500, α = 2

0.500, α = 3


∣∣∣ṼcbGF δαβ − CV LLνedu,βα32(µB)

∣∣∣2

+


0.596

0.593

1.120


∣∣∣CSRRνedu,βα32(µB)

∣∣∣2 +


0.272

0.272

0.662


∣∣∣CTRRνedu,βα32(µB)

∣∣∣2

−


0.000

0.079

1.563

Re
((
ṼcbGF δαβ − CV LLνedu,βα32(µB)

)
CSRR∗
νedu,βα32(µB)

)

−


0.000

0.084

0.959

Re
((
ṼcbGF δαβ − CV LLνedu,βα32(µB)

)
CTRR∗
νedu,βα32(µB)

))

(5.149)
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and

GD
⋆

α ≈
3∑

β=1

(
0.501, α = 1

0.499, α = 2

1.000, α = 3


∣∣∣ṼcbGF δαβ − CV LLνedu,βα32(µB)

∣∣∣2

+


0.039

0.039

0.053


∣∣∣CSRRνedu,βα32(µB)

∣∣∣2 +


6.372

6.364

15.347


∣∣∣CTRRνedu,βα32(µB)

∣∣∣2

−


0.000

−0.012

−0.139

Re
((
ṼcbGF δαβ − CV LLνedu,βα32(µB)

)
CSRR∗
νedu,βα32(µB)

)

−


−0.001

−0.261

−5.620

Re
((
ṼcbGF δαβ − CV LLνedu,βα32(µB)

)
CTRR∗
νedu,βα32(µB)

))
.

(5.150)

Here, Ṽcb ≡ (1+δ) ·2
√

2Vcb, and α (β) denotes the flavour of the charged lepton (neutrino)

in the final state. The numbers in the first (second) [third] entry of the vectors in curly

brackets encode the hadronic form factors employed by flavio [11–13] since v2.0, and

the integrated-out phase space for α = 1 (2) [3]. These numbers can be compared to the

ones that are found in ref. [439]. The correction δ = 0.007 accounts for QED running

of the SM contribution to CV LLνedu from the Z-boson mass scale down to the hadronic

scale µ = µB = 4.8 GeV. I employ the PDG value Vcb = 0.0405 [29]. Using the values

R(D)SM = 0.297±0.008 and R(D⋆)SM = 0.245±0.008 output by flavio, v2.3, I find that

the results obtained from the expressions above deviate from those obtained from flavio

only by up to 0.5% in the ranges of R(D(⋆)) displayed in the plots in section 5.4.

5.11 Appendix: Matching Results for Leptonic Lagrangian

The one-loop contributions to the WCs in the effective leptonic Lagrangian can be grouped

according to the type of diagrams. Firstly, the results for short-distance contributions from
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Z-penguin diagrams read19

CV LL,Zee,ijkl ≈ 3
√

2GF (1 − 2s2
W )

64π2 tt(1 + ln tt) (δilz∗
k3zj3 + δijz

∗
k3zl3 + δklz

∗
i3zj3 + δjkz

∗
i3zl3) ,

CV RR,Zee,ijkl ≈ 3
√

2GF s2
W

32π2 tt(1 + ln tt) (δily∗
k3yj3 + δijy

∗
k3yl3 + δkly

∗
i3yj3 + δjky

∗
i3yl3) ,

CV LR,Zee,ijkl ≈ −3
√

2GF
16π2 tt(1 + ln tt)

(
(1 − 2s2

W )δijy∗
k3yl3 + 2s2

W δklz
∗
i3zj3

)
,

(5.151)

with the Fermi constant GF and the sine of the weak mixing angle signified by sW .

Secondly, the results for short-distance contributions from photon-penguin diagrams read

CV LL,γee,ijkl = αem
96πm2

ϕ

∑
m

(5 + 4 ln tum) (δilz∗
kmzjm + δklz

∗
imzjm + δijz

∗
kmzlm + δjkz

∗
imzlm) ,

CV RR,γee,ijkl = αem
96πm2

ϕ

∑
m

(5 + 4 ln tum) (δily∗
kmyjm + δkly

∗
imyjm + δijy

∗
kmylm + δjky

∗
imylm) ,

CV LR,γee,ijkl = αem
24πm2

ϕ

∑
m

(5 + 4 ln tum) (δijy∗
kmylm + δklz

∗
imzjm) , (5.152)

with the fine-structure constant αem. Thirdly, the results for short-distance contributions

from box diagrams read

CV LL,box
ee,ijkl = 3

256π2m2
ϕ

∑
m,n

zjmzln (z∗
inz

∗
km + z∗

imz
∗
kn) ,

CV RR,box
ee,ijkl = 3

256π2m2
ϕ

∑
m,n

yjmyln (y∗
iny

∗
km + y∗

imy
∗
kn) ,

CV LR,box
ee,ijkl = 3

64π2m2
ϕ

∑
m,n

ylnzjmy
∗
knz

∗
im .

(5.153)

Lastly, the short-distance contributions from Higgs-penguin diagrams are neglected due

to the small Yukawa couplings to the charged leptons.

5.12 Appendix: Effective Coupling Constants for µ−e Con-

version

The effective coupling constants for µ− e conversion in nuclei used herein read

19Note that the masses of the external leptons are set to zero here, thus the contributions
are proportional to the square of the internal quark mass, that is, there are two mass
insertions on the internal line. The contribution with an internal top quark is by far the
dominant one.
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g̃
(N)
LS =

∑
i

Gqi,N
S

(
CSRReq,12ii + CSRLeq,12ii

)
g̃

(N)
RS =

∑
i

Gqi,N
S

(
CSRR∗
eq,21ii + CSRL∗

eq,21ii

)
g̃

(p)
LV = 2

(
CV LLeu,1211 + CV LReu,1211

)
+
(
CV LLed,1211 + CV LRed,1211

)
g̃

(p)
RV = 2

(
CV RReu,1211 + CV LRue,1112

)
+
(
CV RRed,1211 + CV LRde,1112

)
g̃

(n)
LV =

(
CV LLeu,1211 + CV LReu,1211

)
+ 2

(
CV LLed,1211 + CV LRed,1211

)
g̃

(n)
RV =

(
CV RReu,1211 + CV LRue,1112

)
+ 2

(
CV RRed,1211 + CV LRde,1112

)

(5.154)

with N = p, n.
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Chapter 6

Conclusion and Future Directions

In this thesis, I have demonstrated that it is indeed possible to investigate the origin behind

the observed flavour structure of nature in several ways. Specifically, a class of models in

which neutrino masses are radiatively generated is studied in chapter 3, which represents

an intermediate avenue between model-based and model-independent analyses. While

chapter 4 demonstrates the fruitfulness of the latter approach, a thorough investigation of

a concrete new-physics model is detailed in chapter 5.

After having reviewed some technical aspects of flavour physics in and beyond the SM in

chapter 2, I continued with the above-mentioned study of a simplified model containing a

singly-charged scalar singlet h ∼ (1, 1, 1) under the assumption that this particle generates

the main contribution to Majorana neutrino masses. Since the antisymmetric coupling yh
of h to two LH lepton doublets is the only renormalisable interaction with SM fermions,

this extension of the SM can be very predictive. In particular, the minimal scenario of

adding one copy of h to the SM particle content yields only two possible structures for

the neutrino mass matrix, and it allows for the straightforward derivation of a necessary

condition for the elements of yijh in terms of experimental neutrino data.

Indeed, in this case it is not necessary to specify the mechanism of how the breaking of

lepton-number conservation is achieved, which may involve further new particles, effec-
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tive interactions, strongly coupled dynamics or other features. Several well-known mod-

els of radiative neutrino mass generation, that is, the Zee model [60–62], the Zee-Babu

model [63–65] and the KNT model [66] are different realisations of this minimal scenario.

In the regime where NP effects at low energy are only induced by h to an appreciable

extent, the results of the study of the simplified model can be expected to agree with the

predictions obtained from complete models to a good degree.

With the prospect of more data on leptonic CP violation becoming available, e.g. at Hyper-

Kamiokande [116] or DUNE [117], as well as further insights into the mass ordering in the

neutrino sector for instance at JUNO [118], the constraints on the couplings yijh are set to

become more stringent in the near future. Overall, the feasibility to quantitatively study

a specific class of neutrino mass models lays the ground to repeat this exercise for other

BSM particles.

Following a somewhat different approach, in chapter 4 I formalise the extraction of in-

formation about NP via a careful investigation of experimental data on decay processes

mediated by the transition b → sνν. It is studied how current bounds on and future

sensitivities to the observables BR(B → Kνν), BR(B → K∗νν) and BR(B → Xsνν) as

well as FL(B → K∗νν) can be used to constrain different effective operators, under the

conservative assumption that Belle II will not detect a deviation from the respective SM

expectations.

Since I make use of the most general set of dimension-6 operators in LEFT which con-

tribute to b → sνν [192,298] including massive sterile neutrinos, except for the dimension-5

neutrino dipole operators, the results can be applied to any concrete model which intro-

duces NP at or above the electroweak scale and contributes to at least one of the considered

operators. The results show that one can expect the currently established bounds on the

WCs associated with the different operators to be considerably strengthened, and that

the constraining power of the considered observables is (partly) complimentary. There-

fore, a case can be made for model-independent studies of other rare processes, or for a

further refinement of the one laid out in this thesis, for instance with regard to subleading

contributions to the inclusive decay mode B → Xsνν.
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Lastly, in chapter 5 I demonstrated that one can successfully explain the charged fermion

masses in the SM as well as quark mixing together with currently observed anomalies

in R(D) and R(D⋆) and of the AMM of the muon via a model which makes use of the

discrete flavour symmetry Gf = D17 × Z17. The presence of two Higgs doublets Hu

and Hd (in the decoupling limit) and the enlargement of the SM particle content by a

scalar LQ ϕ ∼ (3, 1,−1
3) is assumed. The flavour symmetry is intact at high energies,

but gets broken by the non-zero VEVs of several spurion fields. It was found that the

most stringent constraints on the viable parameter space of the model currently arise

from the non-observation of the radiative cLFV decays τ → µγ and µ → eγ. A successful

accommodation of the anomalies in R(D) and R(D⋆) and of the AMM of the muon

proved to be very challenging in an unbiased scan with only the most relevant observables

included.

Therefore, biases were extracted in order to target preferred regions in parameter space

in a more comprehensive scan. This allowed for an explanation of R(D), R(D⋆) and the

AMM of the muon at a CL of 3σ for the LQ masses m̂ϕ = 2 and 4, and even at 2σ in the

case of m̂ϕ = 2, while all considered experimental bounds were respected and a successful

fit to the charged fermion masses and quark mixing was achieved. Signals in several cLFV

µ → e transitions were found to be a typical signature of explaining the AMM of the

muon.

Key avenues to further improve the model are the incorporation of lepton mixing and

non-zero neutrino masses as well as predicting JCP ∼ λ6 in terms of operators respecting

the flavour symmetry Gf , which might in fact necessitate a modification or enlargement

of Gf , and/or a change of the transformation properties of the particles contained in

the model. Other refinements could consist in forbidding operators which violate the

conservation of baryon number in terms of the flavour symmetry, and suppressing the

coupling between ϕ, a RH electron and a RH top quark by a further factor of λ or λ2. The

latter has proven crucial for a simultaneous amelioration of the anomalies in R(D), R(D⋆)

and ∆aµ. On the phenomenological side, an incorporation of further observables related

to the underlying b → c transitions would be desirable, for instance R(J/ψ) [130], R(Λc),
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angular distributions in B → D⋆eiν [133] and the longitudinal tau-lepton polarisation

in B → D⋆τν [131]. For an extended version of the model, one might also attempt an

explanation of the observed anomalies in b → s transitions, that is, R(K), R(K⋆) and

Bs → µµ.

The quest to shed light on the inner workings of the flavour structure of nature is pursued

on many frontiers, both theoretically and experimentally, and the prospects for major

breakthroughs in the next decades are good. The approach of simplified models will

prove useful for navigating further efforts to decipher the origin of neutrino masses, which

may be seen as the most pressing open question in the field of flavour physics. On the

experimental side, precise measurements of rare processes as well as a further investigation

and clarification of the situation regarding currently observed anomalies will be absolutely

crucial. Together with efforts in model building as well as EFT-based studies performed

in the theory community, with examples laid out in this thesis, we can expect to at least

catch a further glimpse of what constitutes the fundamental structures of our universe.
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