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Abstract: Quantum computing advancements pose security challenges for cryptography. Specifically,
Grover’s search algorithm affects the reduction in the search complexity of symmetric-key encryption
and hash functions. Recent efforts have been made to estimate the complexity of Grover’s search
and evaluate post-quantum security. In this paper, we propose a depth-optimized quantum circuit
implementation for ASCON, including both symmetric-key encryption and hashing algorithms, as a
part of the lightweight cryptography standardization by NIST (National Institute of Standards and
Technology). As far as we know, this is the first implementation of a quantum circuit for the ASCON
AEAD (Authenticated Encryption with Associated Data) scheme, which is a symmetric-key algorithm.
Also, our quantum circuit implementation of the ASCON-HASH achieves a reduction of more than
88.9% in the Toffoli depth and more than 80.5% in the full depth compared to the previous work. As
per our understanding, the most effective strategy against Grover’s search involves minimizing the
depth of the quantum circuit for the target cipher. We showcase the optimal Grover’s search cost for
ASCON and introduce a proposed quantum circuit optimized for depth. Furthermore, we utilize
the estimated cost to evaluate post-quantum security strength of ASCON, employing the relevant
evaluation criteria and the latest advancements in research.

Keywords: quantum computer; ASCON; Grover’s search algorithm; post-quantum security

MSC: 94A60; 81P94

1. Introduction

The emergence of quantum computers offers rapid computational speed and enhanced
processing capabilities. These advantages open up possibilities for effectively address-
ing cryptographic problems by leveraging the properties of quantum states. However,
simultaneously, the advent of quantum computers presents a potential threat to existing
security systems, necessitating a reevaluation of security in the field of cryptography. One
prominent initiative in this regard is the NIST Post-Quantum Cryptography (PQC) stan-
dardization process (https://csrc.nist.gov/projects/post-quantum-cryptography, accessed
on 25 March 2024), which aims to address the need for quantum-resistant cryptography.
This need arises from the aspect that the Shor’s algorithm [1] can efficiently solve factoriza-
tion and discrete logarithm problems.

Another significant quantum algorithm pertinent to cryptography is Grover’s algo-
rithm [2]. It offers the capability to accelerate data searches, thereby reducing the complex-
ity associated with exhaustive searches in symmetric-key cryptography. However, while
Grover’s algorithm undeniably diminishes security strength, implementing the quantum
circuit required for the attack entails a significant size.
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Quantum attacks can be assessed from two primary perspectives, the computational
power to solve cryptographic problems and the scale of the quantum circuits needed to
execute those solutions. An alternative viewpoint suggests that the security of a cryp-
tographic algorithm can be appraised differently depending on the size of the quantum
circuit necessary for a quantum attack. This aspect is addressed in the NIST Post-Quantum
Cryptography documentation, where post-quantum security strength is evaluated by con-
sidering the quantum cost required for potential quantum attacks (Section 2.3). NIST
establishes post-quantum security strength by estimating the cost of Grover’s attack against
AES-128, -192, and -256 (similar in concept to how the security parameters of PQC algo-
rithms are associated with the AES family). The cost of a Grover attack depends on the
efficiency of implementing the quantum circuit for the targeted cryptographic algorithm.

This paper introduces an optimized quantum circuit for the AEAD and hash function
scheme of ASCON [3], which has been chosen as the winner of the NIST Lightweight Cryp-
tography standardization (https://csrc.nist.gov/News /2023 /lightweight-cryptography-
nist-selects-ascon, accessed on 25 March 2024). Our primary focus is on reducing the depth
of the ASCON quantum circuit while maintaining a reasonable number of qubits, which is
in line with the principles of Grover’s algorithm.

The depth of the quantum circuit directly affects the execution time of the circuits [4].
Although Grover’s algorithm accelerates search speed by the square root, it still demands
a considerable number of iterations within the quantum circuit. In essence, Grover’s
exhaustive key search is a time-intensive process, and NIST considers this aspect in security
evaluations. To our understanding, minimizing the depth for symmetric-key ciphers
represents the optimal strategy for Grover’s algorithm (further elaborated in Section 2.3),
which has consequently become the guiding principle for implementing the ASCON
quantum circuit. Based on the proposed ASCON quantum circuit, we estimate the cost of
a Grover attack and assess the post-quantum security strength of ASCON in accordance
with the documentation by NIST.

1.1. Our Contribution

The contribution in this paper is manifold and can be summarized as follows:

1. Quantum Circuit Implementation of ASCON. We demonstrate the first implementa-
tion of a quantum circuit for ASCON AEAD. Additionally, we improve an optimized
quantum circuit for the hash function of ASCON and compare it with previous work;

2. Depth Optimization of ASCON. In our implementation of the ASCON quantum
circuit, our primary focus is on achieving a low Toffoli depth and full depth. We
demonstrate how to decrease these depths using various methods (parallelization,
AND gate). Moreover, to ensure a reasonable qubit count, we adopt the method of
reusing ancilla qubits;

3.  Post-quantum Security Assessment of ASCON. We evaluate the quantum security
of ASCON by estimating the cost of Grover’s key search using our implemented
quantum circuit for ASCON. This assessment includes comparing the estimated cost
of Grover’s search for ASCON with the security levels defined by NIST.

The relevant source codes for our work can publicly accessed (https://github.com/
yudini/ ASCON_quantum, accessed on 25 March 2024).

1.2. Extension from WISA'23 (Oh et al.)

This current work is indeed a substantially enlarged version of our previous paper
presented at WISA 2023. For reference, the WISA paper can be found at [5].

In the current version of the paper, we explore a more optimized quantum circuit than
the one presented in [5]. Additionally, this time, we extend our research to include the
quantum analysis of ASCON AEAD and ASCON-HASH, thereby expanding the scope.


https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://csrc.nist.gov/News/2023/lightweight-cryptography-nist-selects-ascon
https://github.com/yudini/ASCON_quantum
https://github.com/yudini/ASCON_quantum
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1.3. Paper Organization

The overall structure of this paper is as follows: First, we provide the background
knowledge necessary for the research in Section 2. Next, in Section 3, we describe the main
method for our proposed ASCON quantum circuit. We explain the depth-optimized imple-
mentation of substitution (S-boxes) and the linear layers, which are the main components
of ASCON. Then, we describe the overall implementation of ASCON AEAD and HASH.
Sections 4 and 5 then present the quantum resources required for the proposed quantum
circuit implementation, and use them to estimate the cost of Grover’s attack. We also
evaluate the post-quantum security of ASCON. Finally, in Section 6, we conclude our study.

2. Preliminaries
2.1. Quantum Gates

Figure 1 shows the gates most commonly utilized for implementing cryptography in
quantum circuits (note that this list is not exhaustive and does not encompass all potential
gates applicable for this purpose). Figure 1a illustrates the quantum X gate, which replaces
the classical NOT operation by reversing the qubit state. Figure 1b showcases the Swap
gate, exchanging the states of two qubits. The CNOT gate depicted in Figure 1c, replaces
similarly to the classical XOR operation. It utilizes one control qubit to determine the
value of the target qubit. Figure 1d depicts the quantum Toffoli gate, which serves as an
alternative to the classical AND operation, and utilizes two control qubits to determine the
target qubit’s value.

In short, the X, CNOT, and Toffoli gates correspond to classical NOT, XOR, and AND
operations, respectively. It is important to note that the Toffoli gate is implemented using
various (decomposition-level) quantum gates, including the T, CNOT, X, and H gates,
among others. Hence, it is essential to minimize the cost metrics associated with the
constituents of the Toffoli gate when optimizing quantum circuits.

a @ ~a a b
b a
(a) X gate (classical NOT) (b) Swap gate
X X X X
y D XDy y y
z & z® (x-y)
(c) CNOT gate (classical XOR) (d) Toffoli gate (classical AND)

Figure 1. Common (top level) quantum gates.

2.2. Search Using Grover’s Algorithm

The significance of the Grover algorithm lies in its ability to efficiently tackle crypto-
graphic decryption and search problems. By leveraging this algorithm, issues such as key
search and database search can be efficiently addressed. For an encryption algorithm that
uses a k-bit key, a classical computer has a search complexity of O(2F). On the other hand,
in Grover’s key search, a quantum computer has a reduced (by square root) complexity of
O(V/2F). We describe the process of Grover’s key search in three steps as follows. In the
case of collision search for hash functions, only the search target is changed from a key to a
collision pair.

1.  Hadamard gates are applied to a k-qubit key, which result in a superposition state |¢).
The key has equal amplitudes for 2* states;

HEK0)*F = |y) = (|O> a |1>) = 262 ;)W

V2
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2. Inthe Oracle, the target encryption algorithm is implemented using quantum gates.
The implemented quantum circuit performs encryption with a prepared key that
represents 2F states. The generated ciphertext is also in a superposition state, repre-
senting 2k ciphertexts. This ciphertext in a superposition state is checked against the
known ciphertext. If a match is found, the sign of the key in a superposition state is
changed to negative. This is how the solution is returned in the Oracle. Note that
the implemented quantum circuit operates in reverse by transforming the generated
ciphertext (in a superposition state) back into the known plaintext;

| 1if Enciey(p) = c O
~oif Encyey(p) # ¢
2" -1
U (19)1-) = 572 L (1)) o)

3. The diffusion operator amplifies the amplitude (i.e., probability) of the solution key
returned by the Oracle. Recall that the Oracle returns the solution key by changing the
sign. The implementation method for the diffusion operator is standard and can be
easily implemented. As the complexity of the diffusion operator is trivial compared
to that of the Oracle, it is typically neglected in the cost estimation for Grover’s
key search [6-8]. Grover’s algorithm iterates a numerous number of operations of
the Oracle and diffusion (i.e., around v/2F times) to amplify the amplitude of the
solution key.

2.3. NIST Security Criteria

NIST provides security levels for post-quantum security against quantum attacks [9,10],
and we refer to these for evaluating our implementation. NIST estimates the complexity of
Grover’s key search and collision search on the AES and SHA-2/3 families, respectively.
Levels 1, 3, and 5 correspond to the complexity of Grover’s key search for AES, while levels
2 and 4 correspond to the complexity of collision search for SHA-2/3.

*  Level 1: To be considered secure, any attack that compromises the relevant security
definition must require computational resources that are at least comparable to those
required for a key search on a 128-bit key block cipher, such as AES-128 (2170 — 21%7);

*  Level 2: To be considered secure, any attack that compromises the relevant security
definition must require computational resources that are at least comparable to those
required for a collision search on a 256-bit hash function, such as SHA-256 /SHA3-256;

*  Level 3: To be considered secure, any attack that compromises the relevant security
definition must require computational resources that are at least comparable to those
required for a key search on a 192-bit key block cipher, such as AES-192 (2233 — 2221);

*  Level 4: To be considered secure, any attack that compromises the relevant security
definition must require computational resources that are at least comparable to those
required for a collision search on a 384-bit hash function, such as SHA-384/SHA3-384;

¢  Level 5: To be considered secure, any attack that compromises the relevant security
definition must require computational resources that are at least comparable to those
required for a key search on a 256-bit key block cipher, such as AES-256 (2298 — 2285),

Unsurprisingly, the Grover algorithm is one of the prominent quantum attacks on
symmetric-key ciphers, and NIST also considers this aspect. The difficulty of attacks at
Levels 1, 3, and 5 depends on the cost of Grover’s key search applied to AES-128, 192, and
256, respectively. This cost is determined by multiplying the total gate count by the depth
of Grover’s key search circuit. NIST provides estimates for Levels 1, 3, and 5 as 2170 233,
and 22%, respectively, based on the quantum circuit implementation of AES by Grassl et al.
Recently, NIST adjusted the costs of Grover’s key search on the AES family, as reported
in [10]. Over the past few years, various efforts have been made to optimize the quantum
circuits of AES. For instance, Jaques et al. introduced depth-optimized quantum circuits for
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AES at Eurocrypt'20, resulting in a decreased cost of Grover’s key search on AES [7]. NIST
has now defined new quantum attack costs for AES-128, 192, and 256 based on the findings
from [7], yielding costs of 21%7, 2221 and 2285, respectively. It is worth noting that despite
the reported programming-related issues in their quantum circuit implementation, Jang et
al. address these concerns in [8], and demonstrates how to implemented optimized AES
quantum circuits. As of now, the most up-to-date on AES results are documented in [8], to
the best of our finding.

Moreover, we need to consider NIST-defined MAXDEPTH, which denotes the max-
imum circuit depth feasible for execution on a quantum computer. NIST categorizes
the depth constraints of quantum attacks, represented by MAXDEPTH, into the follow-
ing intervals: [240,2%4] and [2%4,2%], as it acknowledges that the considerable depth of
Grover’s key search, resulting from numerous sequential iterations, renders the attack
practically challenging.

Given this consideration, one would anticipate that the depth of the quantum circuit
for Grover’s search does not exceed 2% (the highest estimated bound for MAXDEPTH
(since Grover’s search increases the circuit depth beyond 2¢/2 for a k-bit key (where the
quantum depth for cipher implementation X L%Zk/ 2] is required for Grover’s iteration),
the quantum depth is necessarily greater than the two smaller MAXDEPTH values for
AES variants)). If it turns out that the depth restriction exceeds the specified limit, the
parallelization of Grover’s search can be considered [11].

For the parallelization of Grover s algorithm, the trade-off metrics for quantum circuits
change by multiplying circuit depth. In short, the product of qubit count and circuit depth
is replaced with the product of qubit count and squared depth. Throughout this paper,
we denote qubit count, full depth, Toffoli depth, and T-depth as M, FD, TD, and Td,
respectively. For the evaluation of quantum circuits, we also estimate the changed trade-off
metrics for Grover’s parallelization as F D2-M, TD?-M, and Td?-M.

2.4. ASCON

ASCON is a lightweight cryptographic algorithm standardized in the NIST Lightweight
Cryptography standardization. ASCON comprises an authenticated encryption with asso-
ciated data (AEAD) mode, a hash function, and a variant known as Ascon-80pq, designed
to offer improved resistance against quantum key-search attacks. ASCON offers the fol-
lowing two AEAD modes: ASCON-128 and ASCON-128a. The encryption process in
ASCON AEAD consists of Initialization, Processing Associated Data, Processing Plaintext, and
Finalization. For a hash function, ASCON offers the following two modes: ASCON-HASH
and ASCON-XoF. The encryption process in the hash function of ASCON consists of
Initialization, Absorb Message, and Squeeze Tng.

The main components common to all ASCON schemes consist of two 320-bit permuta-
tions, each configured with different round counts (p® and p?). For computational purposes,
the 320-bit state S is divided into five 64-bit register words x; (S = xo||x1||x2||x3|| x4, where
xp is the most significant word and x4 is the least significant word). The permutation
functions include the addition of constants, a substitution layer using a 5-bit S-box, and a
linear layer using 64-bit diffusion functions.

3. Quantum Implementation of ASCON

In this section, we describe the quantum implementation of ASCON-128, which is a
variant of AEAD, and ASCON-HASH, which is a hash function. Due to the same rate in
ASCON-128 and ASCON-HASH (it means that they have the same data block size), when used
together for both authenticated encryption and hashing, the two schemes can be efficiently
combined. Aligning with our design philosophy, which prioritizes minimizing depth for optimal
performance in Grover’s algorithm, we focus on optimizing the depth of the ASCON-128 and
ASCON-HASH quantum circuits while also ensuring a reasonable number of qubits.
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3.1. Implementation (with Parallelization) of S-Box

While the lookup table method is a common choice for S-boxes implementations in
classical computing (i.e., hardware and software implementations), the reversible nature of
operations in quantum computing renders the use of lookup tables infeasible. Hence, it
becomes evident that the implementation of S-box quantum circuits should rely on Boolean
expressions (specifically, the coordinate functions) using quantum gates. In the quantum
circuit of ASCON, the implementation of the S-box is notably resource-intensive. The 5-bit
ASCON S-box can be realized by utilizing Boolean operations that involve NOT (~), AND
(), and XOR () gates, as follows (adopted from [3]).

X0 =xX0DPxg, X4 =x4Px3, xX2=2x2Bxy,

to =x0, t1 =x1, fa =2x2, t3 =2x3, f4 =Xy,

to =~ to, t1=rt), b =~ty, I3=r~13, fg=r14

fo=1to- x1, f1 =11 Xp, tp =1tr- X3, t3 =13 X4, t4 = ts4- Xo,
Xg=x0Dt, x1=x1Df, x2=xDt3, x3=x3D1ty, X4 =2x4Dty,
X1 =x1Pxg, Xg=x0DPxg, X3=x3Dx2, X =~ X3.

In [12], the authors used the ancilla qubits allocated from the linear layer in order
to reduce the number of qubits. In short, the substitution and linear layers share ancilla
qubits. They partly use the result of the substitution layer in the linear layer. After utilizing the
result, they reverse the operations previously performed in the substitution layer (to reuse the
qubits). While this architecture can reduce the number of qubits, it increases the circuit depth
due to the multiple reverse operations of high complexity. Unlike the previous approach, we
implement the substitution and linear layers independently. The benefit achieved from this
architecture is that it avoids performing reverse operations that involve intricate operations
in the quantum circuit. Despite using more qubits than [12], we achieve the best trade-off
performance in terms of time-space complexity by significantly reducing the circuit depth.

As shown in Expression (3), we can see that x; words are intertwined to perform AND
and XOR operations, which are referred to as Toffoli operations in quantum computing.
Therefore, we need additional ancilla qubits to store these resulting values. By using an
64 x 5 ancilla qubits, we can perform an S-box that uses the fewest qubits. However, in this
scenario, Toffoli gates are executed in a sequential manner for the AND operation, resulting
in an increased Toffoli depth. In response, we propose a shallow version of the ASCON
S-box quantum circuit with a Toffoli depth of one.

Figure 2 depicts the proposed quantum circuit for the ASCON S-box. Through reverse
operations, we can reuse one ancilla qubit set. We optimize the Toffoli depth to one by
processing all Toffoli operations in parallel. In order to facilitate the parallel operations
of S-boxes in the substitution layer, it is essential to allocate the same quantity of qubits
(i-e., 320 qubits) to an additional ancilla set as we did for fj..4. Having an extra ancilla set
allows the operands for all Toffoli gates to be independently prepared. Thus, as depicted in
Figure 2, all the Toffoli gates operate in parallel, leading to a Toffoli depth of one. However,
our main focus is on minimizing the depth while simultaneously aiming to decrease the
number of qubits. We address the increased overhead of the qubit count effectively in the
next section.
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Once in the beginning Reverse
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0) & i | i
0 1 | | B
100 1Dy \ \ I
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X2 S 1 1 i B- x2
X3 /T\ Hp X3
X4 D ‘ ‘ Xy
ancilla (to) : : garbage
ancilla (t) ‘ ‘ garbage
ancilla (¢;) : : garbage
ancilla (t3) i i garbage
ancilla (ty) C - garbage

Figure 2. ASCON S-box quantum circuit with Toffoli depth of one using two sets of ancilla and
reverse operations.

3.2. Reusing Ancilla Set with Reverse Operation

As a result of parallelizing the Toffoli gates within the substitution layer, we achieve a
Toffoli depth of one (Section 3.1). However, allocating an ancilla qubit set for each round leads
to a significant overhead in terms of the number of qubits. The number of qubits, in addition
to depth, is also a crucial metric for optimizing a quantum circuit. For this purpose, we allocate
the ancilla set once initially and subsequently reuse it throughout the entire process.

In this instance, because we reuse the ancilla set, there is no need to allocate a new
ancilla set for each round of the substitution layer. Only the initial allocation of 320 ancilla
qubits is required. To reuse the ancilla set, we perform the reverse operations after the
Toffoli gate operations (see Figure 2). Throughout the reverse process, there is an increase
in the number of CNOT gates. Nevertheless, the depth remains unaffected since this
reverse operation is conducted simultaneously with the ongoing quantum gates from other
operations. Additionally, we omit the X gate operation from the reverse operation. Instead
of initializing the ancilla qubits to |0), we leave the ancilla qubits in the flipped state (i.e.,
|1)) by skipping the X gate operation. This approach avoids the need for an X gate operation
in the next round, resulting in fewer gates. Specifically, by applying the NOT operation
only once in the initial round and omitting it in the reverse operations, the subsequent
rounds no longer require the NOT operation. As a result, we utilize 640 (=320 x 2) ancilla
qubits in a single substitution layer, and 320 ancilla qubits are reused without an additional
X gate. Figure 2 shows our quantum circuit for the ASCON S-box.

In summary, by accepting the initial overhead of allocating an additional ancilla set
and tolerating a slight increase in the number of quantum gates, we can achieve the benefits
of reducing the Toffoli and the overall depth. Table 1 shows the comparison of the quantum
resources required for ASCON with a previous work [12]. As mentioned earlier, unlike our
separated non-linear (i.e., substitution) and linear layer implementation, the work by Lee
et al. [12] includes the resources for performing both substitution and linear operations
combined for comparison, as it adopts an interconnected structure (the description of the
linear implementation continues in Section 3.4).

In Table 1, we also investigate the ASCON implementations by Stoffelen [13] and
Lu et al. [14] in the context of classical computing, and port to quantum circuits. The
corresponding results can be seen from Table 1. Furthermore, we could not verify the
ASCON implementations given in [15] (also in the context of classical computing), so those
are not included here.
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Table 1. Comparison of quantum resources required for ASCON permutation (one round).
Operation Source #CNOT #1qCliff #T Toffoli Depth  #Qubit (Reuse)  Full Depth
Stoffelen [13] 4608 918 2240 2 1600 24
Substitution (ASCON) [3] 3264 1174 2240 1 960 (320) 15
Luo™ [14] 16,640 7808 15,680 7 5760 94
Substitution + Linear Lee* [12] 4544 2070 3584 8 640 80
Ours 4224 1174 2240 1 1280 (320) 18
Linear layer Ours 960 0 0 0 640 3

Now, there are quantum-specific tools that find the implementation of a given, such
as [16,17]; however, neither of these work with 5-bit.  Recently, two new quantum im-
plementations of a related paper have appeared online, namely [18,19] (we were informed
by the authors of [19] that their paper was under submission when [18] first came online).
Unfortunately, Ref. [19] does not scale-up for a 5-bit (the authors of [19] stated that the solver
did not return a solution when the number of logic gates > 13 within a feasible time). It is not
mentioned if the method of [18] works for the ASCON (it is not mentioned in their paper, also
their publicly available source code does not seem to produce any usable result).

3.3. Optimized Implementation of T-Depth One

Various approaches exist for decomposing the Toffoli gate, depending on specific goals
like minimizing the T-depth or qubit count. In our implementation, we adopt a technique
outlined in [20], breaking down the Toffoli gate into eight Clifford gates followed by seven
T gates. This results in a T-depth of four and an overall depth of eight. Additionally, we
apply the AND gate method described in [7]. This approach functions similarly to the
Toffoli gate, but requires the target qubit to be in a clean state. The AND gate is comprised
of 11 Clifford gates, 4 T gates, and 1 ancilla qubit, resulting in a T-depth of 1 and a full
depth of 8 (Figure 3a). The AND' gate, being the reverse of the AND gate and based
on the Measurement gate, is constructed with five Clifford gates and one Measurement
gate. It achieves a full depth of four, with a T-depth of zero (Figure 3b). The ancilla
qubit used within the AND gates can be initialized and reused, requiring only a single
allocation at the beginning. Consequently, to process all the AND gates in parallel, an initial
allocation of 320 (=5 x 64) ancilla qubits for use in the AND gates is necessary. However,
we opt not to allocate an additional 320, but rather declare the ancilla qubits in advance
for use in the linear layer. As a result, we do not require additional ancilla qubits for the
implementation of the AND gates. Furthermore, since the reverse operation of the Toffoli
gate is not employed in our implementation, we do not benefit from the resource efficiency
offered by the AND' gate. However, we utilize the AND' gate in the Grover oracle (as
detailed in Section 5).

|a) & [1t] P a)  a) |a)
|b) D [1t] P by |b) Ib)
0) —{H] 7] jab)  lab) {HHAAXF——10)
10) ® O[T ® 10) (b) AND' gate

(a) AND gate

Figure 3. Quantum AND and AND' gates.

3.4. Quantum Implementation of Linear Layer

The linear layer of ASCON is composed of 320-bits. It is split into five blocks (each of
64-bits) as, xo, ..., x4. The update is given by:
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xg < Zo(x0) = X0 @ (x0 3> 19) ® (xo > 28),
X1 XZq(x1) = x1 8 (x1 > 61) & (v > 39),
X Zp(x2) =x0® (x2 3> 1) D (x2 > 6), 4)
X3 < Z3(x3) = x3® (x3 >> 10) @ (x3 > 17),
Xg ¢ Zg(xg) =x4D (x4 > 7) D (x4 >>41).

The ASCON linear layer can indeed be perceived as a sequence of operations on
five 32 x 32 binary matrices (where each xy, . .., x4 represents a 64-qubit array), ultimately
resulting in a 320 x 320 binary matrix. When considering the implementation of a quantum
circuit for these linear operations, both out-of-place and in-place strategies are feasible
(see [21]). We explore various methodologies, including the PLU factorization-based im-
plementations detailed in [6,7], aimed at minimizing the depth for the quantum circuit.
Although these approaches allow for an in-place implementation and reduce the require-
ment for ancilla or output qubits, they involve consecutive CNOT gate operations, thereby
leading to an increase in the circuit depth.

Leveraging insights from prior studies, particularly [21], we assess the different im-
plementation methodologies for the ASCON linear layer to evaluate their trade-offs in
terms of qubit count and circuit depth. Our primary optimization objective focuses on
achieving a low depth of circuit. To this end, we choose to enhance the quantum circuit
of the linear layer with ancilla qubits, allocating 320 ancilla qubits for each round to fa-
cilitate out-of-place operations and store the output of the linear layer. Throughout the
implementation process, we recognize the significant impact of CNOT gate sequencing on
circuit depth and strategically arrange the sequence to achieve a quantum depth of three
for the ASCON linear layer. A comprehensive comparison of quantum resources for the
ASCON linear layer is presented in Table 2, with our quantum implementation of the linear
layer utilizing 640 qubits (320 qubits are used to store the output), 960 CNOT gates, and
achieving a quantum depth of three, which stands as the lowest depth attainable.

Table 2. Comparison of quantum resources required for ASCON linear layer.

Linear Layer Source #CNOT #Qubit Depth
Out-of-place Ours 960 640 3
Naive (binary matrix) ~ Roy et al. [21] 960 640 26
Gauss-Jordan Roy et al. [21] 2,413 320 358
PLU Roy et al. [21] 2,413 320 288
Modified [22] Roy et al. [21] 1,595 320 119

3.5. Constructing ASCON AEAD Quantum Circuit

Our implementation of the ASCON AEAD quantum circuit is outlined in Algorithm 1.
The Permutation®(S, ancilla) function encompasses constant addition, the substitution layer,
and the implementation of the linear layer circuit, as described earlier. Across the entire
circuit, an ancilla set (referred to as Ancilla in Algorithm 1) is reused in accordance with
the approach detailed in Section 2.4.

During the initialization, the permutation operation and a bit-wise XOR operation
between the 320-qubit S value and the 128-qubit key are performed. For these XOR
operations, CNOT gates are used (CNOT64 indicates that the CNOT gates operate on
64 qubits). To align the key qubits with S (320-bit), padding the key value with zeros is
performed. As XORing with 0 has no effect, only the least significant 128 qubits (x3 and x4)
require XORed.

During both the processing of associated data and plaintext, input data are processed
in blocks of 64 bits each, requiring padding to divide it into 64-bit qubit blocks. Padding
includes adding a single 1 and the minimum number of 0s. Performing an XOR operation
with one results in the same outcome as applying the NOT operation. Hence, we execute the
NOT operation, represented by the X gate, on the qubit identified as x([31] in Algorithm 1.
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Algorithm 1 Quantum circuit implementation of ASCON-128.

Input: S = xo||x1||x2||x3]|xs, pt, A, key = keyo||key, ancilla
Output: ct, T

1

2:
3:

10:

11:

12:
13:

14:

15:
16:

17:
18:

: § ¢ Permutation3(S, ancilla)

x3 < CNOT64(keyy, x3)

X4 < CNOT64(k€]/l/ Xg)

: x0[32 : 64] +— CNOT32(A, x¢[32 : 64])
: XO[31] — NOT(X0[31])

. S «Permutation®(S, ancilla)

T X4 [0} <—NOT(X4[0])

: x0[32 : 64] < CNOT32(pt, x0[32 : 64])
: ct < allocate new 32 qubits

ct + x0[32 : 64]

x0[31] + NOT(x([31])

X1 < CNOT64(k€]/0/ x1)
xp — CNOT64(keyy, x7)

S <—Permutation?(S, ancilla)

x3 < CNOT64(keyy, x3)
X4 CNOT64(k€]/1/ X4)

T X3| |X4
return ct,T

> Initialization

> Processing Associated Data

> Al[1]|0" =1 — (]A] (mod r)) XORed with xg

> Last bit of S XORed with 1

> Processing Plaintext

> pt[|1][07 1= (Al (mod 1)) XORed with xg

> Finalization

3.6. Constructing ASCON-HASH Quantum Circuit

Algorithm 2 shows the implementation of the ASCON-HASH quantum circuit. In
ASCON-HASH, unlike ASCON AEAD, only the permutation p* is used, not p’. For
efficiency, we implement the initialization of ASCON-HASH using only X gates, as the
initial 320-bit state S can be pre-computed for each instance. Simply speaking, we set the
quantum state of S using only X gates depending on the classical value of S. Conceptually,
it is the same to XOR the round constant to the intermediate state using X gates.

Algorithm 2 Quantum circuit implementation of ASCON-HASH.

Input: S = x¢||x1||x2]|x3]|xs, Message, ancilla

Output: Hash

1

2:

3

ARSI

7

8:
9:
10:

. Initialization(S)

m_len = [ Message length /64|

: h_len = [Hash length/64]

: for0 <i < m_len do

S < Permutation?®(S, ancilla)

cfor0<i<h_len—1do

S < Permutation?®(S, ancilla)
return Hash

> Only X gates are used

> Absorbing

xo + CNOT64(Message[256 — (64 (i +1)], xo)

> Squeezing

Hash[64 -i: 64 i+ 63] < CNOT64(xg, Hash[64 -i: 64 - i+ 63])




Mathematics 2024, 12, 1337

11 of 15

In Absorbing, ASCON-HASH processes the message in blocks of 64 bits. To ensure
that the length of the message becomes a multiple of 64 bits, padding is applied to the
message by appending a single 1 and the minimum number of 0s. Each message block of
64 bits is processed by XORing it with the first 64-bit block of the state S (i.e., x¢), followed
by the application of the Permutation® to the state S.

The processing of squeezing generates the 256-bit hash value. The hash value (Hash)
is copied from the state of the 64-bit block x( until it reaches a total length of 256 bits (line 8
of Algorithm 2). After each extraction, the internal state S is transformed by Permutation?.

4. Performance of Quantum Circuits

In this section, we provide a summary to estimate the resource of our implemented
ASCON-128 and ASCON-HASH quantum circuits. We employ the quantum programming
tool ProjectQ for both implementing and simulating the quantum circuits. The correctness
of the implementation is confirmed by validating it with the ClassicalSimulator library
in ProjectQ), while the usage of the quantum resources is assessed through analysis with
the ResourceCounter.

Table 3 (in [23], a quantum circuit implementation for ASCON is presented but is
not included in this table, as it was difficult to compare their implementation approach
and the required quantum resources) shows the resource requirements for our ASCON
quantum circuit. The resource requirements for the implementation of the ASCON-HASH
quantum circuit are compared to the previous work [12] (the reported depths and costs
from [12] are estimated before the decomposition of the Toffoli gates. For a fair comparison,
we decompose the Toffoli gates used in their implementation/code and re-estimate the full
depth and costs). The quantum resources presented in Table 3 are analyzed based on the
decomposition of the Toffoli gate into Clifford + T levels (8 Clifford + 7 T gates, T-depth 4,
and full depth 8).

The resource estimation maintains a fixed size of 32 bits for both the associated data
(AD) and plaintext (P), aligning with the methodology described in [24,25]. As such, our
paper also follows the same approach by keeping the size consistent. In the same context,
the input message length for the resource estimation of ASCON-HASH is fixed at 256 bits,
as in the previous work [12].

Table 3. Quantum resources required for implementations of ASCON.

Toffoli Depth #Qubit Full Depth

. . _ _ 2_ 2_
Cipher Source #CNOT #1qCliff #T (TD) M) (FD) TD-M FD-M TD*-M FD*-M
ASCON-128 Ours 127,200 40,443 67,220 30 20,064 513 115 %219 123 x2%2 1.08x2%# 1.23x 2%
ASCON-HASH L*[12] 491,008 208,018 387,072 864 35,136 8427 1.81 x 2% 110x2% 153x2% 1.13x24
Ours 406,016 68,435 215,040 96 62,592 1641 143 x 222 153 x2% 1.07x2%° 123 x2%

Comparing the results of ASCON AEAD presented in Table 3 with other quantum
circuit implementations for ciphers [24-26], it becomes apparent that the devised quantum
circuit for ASCON-128 demonstrates a significantly reduced Toffoli depth. Also, our
implementation of ASCON-HASH provide improved results in terms of the Toffoli depth
and the full depth compared to the previous work [12].

However, our implementation achieves a low depth at the cost of requiring a high
number of qubits (there is a trade-off between the two). For this trade-off, we report the
TD-M, FD-M, TD?-M, and FD?-M costs in Table 3. The TD cost denotes the Toffoli depth,
FD denotes the full depth, and M denotes the qubit count. These metrics are commonly
utilized to assess the trade-off performance of quantum circuits [7,8,26,27]. When using
these metrics to compare our implementation with [12], our implementation provides
a better performance. Using these estimated quantum resources, we approximate the
cost of Grover’s key/ collision search for ASCON and explore the post-quantum security
of ASCON.
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5. Evaluation of Grover’s Search Complexity

To estimate the cost of Grover’s search for ASCON, we follow the methodology
outlined in Section 2.2. In the Grover oracle, it is composed of the sequential execution of
both the ASCON quantum circuit and its reverse circuit. In this scenario, the AND' gate
can be utilized in the reverse circuit. According to the estimated costs of the Grover’s oracle
outlined in Table 4, it is evident that utilizing the AND gate results in lower resource costs
across all aspects (without increasing the qubit count).

Grover’s search requires executing a large number of sequential iterations of the
ASCON quantum circuit. For each successive key recovery attempt for the cipher using a k-
bit key/input, a set of oracle and diffusion operators should be iterated | § \/27J times. For
a hash function with an ¢-bit output, the BHT algorithm in [28] indicates that the complexity
associated with finding collisions using a Grover’s circuit is assumed to be 2//3. Thus, a
series of oracle and diffusion operators for a hash function should be iterated L%Zé /3| times.
However, the diffusion operator’s overhead can be disregarded compared to the oracle,
as the majority of the quantum resources are allocated for implementing the target cipher
within the quantum circuit. For this reason, Grover’s search cost is often considered as the
cost of iteration for the oracle in many studies [6-8]. Taking this approach, we exclusively
focus on the quantum resources essential for the iterations of the oracle to estimate the
cost of Grover’s search algorithm. In summary, we estimate the cost of Grover’s search
for ASCON-128 and ASCON-HASH as follows: Table 4 x | Z1/2F| and Table 4 x | Z2//3],
respectively. Tables 5 and 6 show the costs for ASCON-128 and ASCON-HASH using
Grover’s search algorithm. According to the documents of NIST, we report the G-FD cost
and also provide FD-M, Td-M, F D2-M, and Td?-M metrics for a trade-off between the
number of qubits and the circuit depth. According to the NIST about the MAXDEPTH
constraint, the metrics related to circuit depth, including the Toffoli depth, the T-depth,
and the full depth, are highlighted as crucial factors. In this regard, our depth-optimized
implementation provide the optimal performance in these metrics.

Table 4. Decomposed quantum resources for Grover’s oracle on ASCON.

T-Depth  #Qubit Full Depth

. . . ) 2 .
Cipher Source #CNOT  #1qCliff #T #Measure (Td) o) (FD) Td-M FD-M Td*-M FD*-M
ASCON-128 Ours 254,400 80,886 134,440 0 240 20,065 1,026 115 x 222 123 x 2% 1.08x 230 123 x2%
Ours-AND 225,600 71,926 38,400 9600 30 20,065 816 1.15x 21 195x22 1.08 x2%* 156 x2%
L*[12] 982,016 416,036 774,144 0 6,912 35,137 16,854 1.81 x 2% 1.10x2% 153 x2% 113x2%
ASCON-HASH Ours 812,032 136,870 430,080 0 768 62,593 3,282 143 x 2% 153 x2% 107 x2% 123 x2%
Ours-AND 719,872 229,030 122,880 30,720 96 62,593 2,608 143 x 22 122x2% 1.07x2% 155x2%
Note that for the entire key space, Grover’s search is optimal, but in practical scenar-
ios, cryptanalysis techniques are often employed to reduce or partition the search space.
However, Grover’s search can also be applied to these reduced search spaces, as they partly
require exhaustive search.
Table 5. Cost of Grover’s key search for ASCON-128 (ours).
. #Gate Full Depth  T-Depth #Qubit 2 o
Cipher Source G-FD FD-M Td-M FD*-M Td*-M
P (G) (FD) (Td) (M)
ASCON-128 Ours 142252 157 %27 147 %270 122x 2" 112x21% 192 x 2% 179 x 2% 150 x 2161 1.32 x 2197
Ours-AND  1.01 x 282 12527 144 x 208 122x2™ 126x2'%5 153x28 176 %282 1.90 x 2160 127 x 2151
Table 6. Costs of Grover’s collision search for ASCON-HASH.
. #Gate Full Depth  T-Depth  #Qubit : . 3 2 2
Cipher Source (©) (FD) (Td) (M) G-FD FD-M Td-M FD*-M Td*-M
L*[12] 1.02 x 2196 101 % 2%  1.66x2%7 1.07x215 1.04x2205 109x211% 179 %2112 17112213 149 x 2210
ASCON-HASH Ours 130 x 2105 158 x 2% 148 x2% 191 x215 1.03x2202 151 %2112 141 %2110 120 %2209 1,05 x 2205
Ours-AND  1.04 x 2105 125 x2% 147 x2°17 191 x 215 131 %2201 120x2"12 141 x2197 151 %2208 104 x 219
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6. Conclusions

The analysis of a quantum attack’s costs on ciphers provides a means to evaluate
the post-quantum security of a cipher. In this context, it becomes crucial to take into
account the post-quantum security criteria established by NIST. In 2016, NIST introduced
the post-quantum security levels (level 1, 3, and 5) determined by the anticipated costs
for breaking AES. However, with the diminishing costs of attacks against AES, NIST has
revised the attack cost metrics to align with the security levels, as discussed in Section 2.3.
Based on the information provided in Table 5, the most optimized quantum attack cost for
ASCON-128 is 1.26 x 21%°. Therefore, based on current standards, ASCON-128 falls short
of achieving post-quantum security level 1, equivalent to the cost of breaking AES-128
(2157). On the other hand, NIST does not assign specific costs for Levels 2 and 4, which
relate to the costs associated with SHA2/3-256 and SHA?2/3-384. Therefore, we focus
on the comparison of costs in the previous paper [12]. Ultimately, our implementation
demonstrates a higher level of optimization in terms of the NIST-provided metric, G-
FD, compared to [12]. Additionally, both ASCON-128 and ASCON-HASH show more
optimized metrics for the AND gate version.

In summary, this paper presents the first implementation of the ASCON-128 quantum
circuit and the optimized implementation of the ASCON-HASH compared it with previous
work. We employ various techniques to minimize the Toffoli and full depths while ensuring
areasonable qubit count. Our depth-optimized ASCON-128 quantum circuit fails to achieve
post-quantum security level 1. Furthermore, our quantum circuit implementation of the
ASCON-HASH achieves the full depth improvement of over 80.5% and the Toffoli depth
by more than 88.9% compared to the implementation proposed in [12].

In [29], the authors of ASCON anticipated that ASCON, being designed for lightweight
applications, does not claim resistance against all possible quantum attacks. Therefore,
an extended version called ASCON-80pq with a 160-bit longer key length was proposed.
Building on this, we will implement quantum circuits for ASCON-80pq and evaluate its
security level in future work. Lastly, the implementation techniques proposed in this paper
are expected to be applicable to quantum circuit implementations of other cipher systems.
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