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Abstract: Conformal field theories (CFTs) play a central role in theoretical physics

with many applications ranging from condensed matter to string theory. The confor-

mal bootstrap studies conformal field theories using mathematical consistency con-

ditions and has seen great progress over the last decade. In this thesis we present

an implementation of analytic bootstrap methods for perturbative conformal field

theories in dimensions greater than two, which we achieve by combining large spin

perturbation theory with the Lorentzian inversion formula. In the presence of a small

expansion parameter, not necessarily the coupling constant, we develop this into a

systematic framework, applicable to a wide range of theories.

The first two chapters provide the necessary background and a review of the

analytic bootstrap. This is followed by a chapter which describes the method in

detail, taking the form of a practical guide to large spin perturbation theory by means

of a step-by-step implementation. The goal is to compute the CFT-data that define

a given conformal field theory, and this is achieved by considering contributions from

operators in a four-point correlator through the crossing equation. We give a general

recipe for determining which operators to consider, how to find their contributions

from conformal blocks and how to compute the corresponding CFT-data through the

inversion formula.



The second part of the thesis presents several explicit implementations of the

framework, taking examples from a number of well-studied conformal field theories.

We show how many literature results can be reproduced from a purely bootstrap

perspective and how a variety of new results can be derived. We consider in depth

how to determine the CFT-data in the ε expansion for the Wilson–Fisher model from

crossed-channel operators. All CFT-data to order ε3 follow from only the identity and

the bilinear scalar operator, and by considering contributions from two infinite families

of operators we generate new results at order ε4. We study in similar depth conformal

gauge theories in four dimensions, where we find a five-parameter solution for the most

general form of the one-loop four-point correlator of bilinear scalars. For particular

parameter values this reproduces the case of the Konishi operator and the stress tensor

multiplet in weakly coupled N = 4 super Yang–Mills theory. We then present more

briefly four additional examples. These include the critical O(N) model in a large N

expansion, a solution for φ4 theory with any global symmetry, multicritical theories

to order ε2 near their critical dimensions, including new results for the central charge,

and the four-point correlator of bilinear scalars in the ε expansion. We conclude the

thesis with a discussion and some appendices.
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Chapter 1

Introduction

The main enterprise of theoretical physics is to construct mathematical models for

describing physical phenomena. These models are constructed from a supply of ex-

perimental data, and are judged based on their success in explaining previous obser-

vations and in particular on their ability to make predictions that can be confirmed

by new experiments. This approach, whose enormous success can be exemplified with

Maxwell’s equations for electromagnetism in the 1860’s and the theory of quantum

mechanics in the 1920’s, has remained successful into present days with the discovery

of the Higgs boson in 2012 [7, 8] and gravitational waves in 2015 [9].

In parallel with the main line of development, a slightly different perspective

emerged and gained increasing popularity in the study of fundamental physics. The

idea is to identify some fundamental principles, and then explore the implications that

follow from imposing mathematical consistency. One example is Dirac’s attempt in

1928 to write down a linear equation of motion for the electron quantum field [10].

He found that the only way to write a consistent equation was to formulate it in

terms of matrices of size at least 4 × 4. This in turn introduced negative energy

solutions interpreted as positrons [11], which were experimentally observed a few

years later [12].

Another example is the study of statistics in quantum mechanics. Under spatial

rotation by 2π, the wave function picks up a phase +1 for bosons and −1 for fermions.
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Famously this corresponds to {±1} being the pre-image of the identity in the univer-

sal cover of the rotation group: SU(2) over SO(3). In two dimensions the universal

cover of the rotation group SO(2) is non-compact, R, and it was noted in 1977 that

this would allow for a new kind of quantum statistics [13]. The corresponding par-

ticles were dubbed anyons, and were shown to play a role in the fractional quantum

Hall effect [14], discovered in 1982 [15]. However, even without the experimental re-

alisation, the discovery of anyons as a consistent theory is interesting on its own, as

it is investigating the boundaries for what kind of physics could at all possibly exist.

Instead of thinking about statistics, we may study the implications of spacetime

symmetry in a relativistic quantum field theory. It is believed that the maximal

extension with bosonic generators of the Poincaré group of spacetime symmetries for

interacting quantum field theories is the conformal group1. Theories with spacetime

symmetries given by the conformal group—the Poincaré group extended by scalings

and translations of the infinity—are called conformal field theories (CFTs).

In this thesis we are broadly interested in questions like what possible models for

physics are consistent with conformal symmetry? Again, the case of two dimensions

is special, and we will here focus on d > 2 spacetime dimensions.

Physics with conformal invariance has great importance. Apart from a large num-

ber of specific conformal field theories, some of which we will discuss shortly, CFT

was given a special role at the heart of quantum field theory (QFT) through Wilso-

nian renormalisation [17–19]. In Wilson’s approach, physics at different energies—or

equivalently different length scales—are related through the renormalisation group

(RG), and it has been observed that the scale-invariant fixed-points of the renor-

malisation group flow in fact happen to be conformal field theories2. An important
1It is clear that the conformal group is an extension of the Poincaré group. In [16] it was shown

that for three-dimensional theories, the existence of a higher spin current makes the theory free. In
part of this thesis we will look at theories which contain infinitely many weakly broken higher spin
currents J`.

2In two and four dimensions, it has been shown that for unitary theories scale invariance implies
conformal invariance [20,21], but it is not known if this holds in generic dimensions [22].
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consequence of this fact is that theories with different microscopic descriptions might

flow to the same CFT at long distances (IR). The short-distance (UV) theory does not

even need to be a quantum field theory, but could for instance be a spin chain, which

is a statistical system defined on a lattice. An example is the Ising spin chain [23]

which consists of a spin chain in d dimensions whose Hamiltonian contains a nearest

neighbour interaction and a coupling to an external magnetic field. At zero magnetic

field, the system undergoes a second-order phase transition between an ordered, low-

temperature phase and a disordered, high-temperature phase. At the transition, the

system becomes scale-invariant and is described by a CFT: the Ising model CFT 3. In

two dimensions, the Ising model was solved exactly [24], but, interestingly, there is

no exact solution to the 3d Ising model to this date.

Another way to reach the Ising model is to start from a Lagrangian quantum

field theory containing a single real scalar φ with φ4 interaction. In the context of

statistical physics this is said to give a Landau–Ginzburg description of the Ising

model. In three dimensions, for instance, this results in a “long RG flow” as depicted

in figure 1.1, where the spectrum of the 3d Ising model differs substantially from

that of the free theory where the flow started. This viewpoint was systematically

developed by the introduction of the ε expansion by Wilson and Fisher [25]. They

considered the RG flow between the free theory and the interacting theory (Ising

model) in d = 4 − ε dimensions. For small ε, both fixed-points can be described

as a perturbation from the free 4d theory, illustrated by the “short RG flow” in

figure 1.1. In practice, quantities of interest are computed by Feynman diagrams

and are subsequently evaluated at the point of vanishing beta function, called the

Wilson–Fisher (WF) fixed-point. The results computed through the ε expansion are

in general given by asymptotic series in ε, but the evaluation of suitably truncated

series gives good predictions also at finite ε, for instance at ε = 1 corresponding to
3In the following, we will refer to the CFT as just the Ising model, and use the phrase Ising spin

chain to describe the statistical system.
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Figure 1.1: The Wilson–Fisher fixed-point in d = 4 − ε, and multicritical fixed-points in
d = dc(θ)− ε with dc(θ) = 2θ

θ−1 . Beyond the small ε limit the theories are reached from free
theory by a long RG-flow tuning θ parameters. The multicritical fixed-points are connected
to the unitary minimal models with (holomorphic) central charge c = 1− 6

(θ+1)(θ+2) .

three dimensions. In chapter 4 we will study the ε expansion from a CFT point of

view, without referring to Feynman diagrams. Generalisations of the Wilson–Fisher

fixed-point, called multicritical models, were soon found and can be described by φ2θ

interactions near appropriate critical dimensions dc(θ). Each such theory requires

tuning θ − 1 different relevant couplings. We indicate the multicritical theories in

figure 1.1.

The fact that several systems with different microscopic descriptions exhibit the

same long-distance physics is referred to as universality. We say that systems with the

same IR behaviour belongs to a common universality class. Typically, universality

classes are characterised by the global symmetry group and the number of relevant

singlet scalar operators. For instance, the Ising universality class with Z2 global sym-

metry contains, besides the Ising spin chain, some magnetic systems and some van der

Waals gases—such as water—near the critical point of their phase diagrams. Univer-

sality classes with other global symmetry groups are common in second order phase
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transitions of certain materials, including structural phase transitions, and they also

describe quantum critical phase transitions.

From the beginning, the renormalisation group played an important role also in high-

energy physics, through the analysis of the strong force in deep inelastic scattering

experiments in terms of asymptotic freedom. High-energy theorists started to develop

conformal field theory as an independent subject. In an important paper by Ferrara,

Gatto and Grillo in 1973 [26], representations of the conformal group were discussed

and the operator product expansion (OPE) was analysed further in the CFT context,

where it has a finite radius of convergence. Soon thereafter, Polyakov [27] studied

the implications of conformal symmetry on four-point correlators (as we will discuss

shortly, two- and three-point correlators are completely fixed up to some theory-

dependent constants called the CFT-data). The idea was to avoid any Lagrangian

description of the theory and instead use the crossing equation to generate non-trivial

equations for the CFT-data. The specific implementation of Polyakov, using OPE

consistency for crossing-symmetric expressions, was recently revived using Mellin am-

plitudes to create the conformal bootstrap in Mellin space [28,29].

The advent of string theory directed interest towards two-dimensional CFTs, and

a new version of the bootstrap appeared. In 1984 Belavin, Polyakov and A. Zamolod-

chikov studied the crossing equation for two-dimensional conformal field theories, with

a particular focus on theories with central charge c < 1 [30]. This was very successful

and led to a complete classification of such theories, denoted minimal models. The

minimal models that satisfy unitarity, 0 < c < 1, can be enumerated by an integer θ,

conjecturally connected to the Ising model and the multicritical theories as displayed

in figure 1.1.

Let us explain the key ideas of the bootstrap programme in a bit more detail. Un-

like in conventional field theory, in this approach it proves useful to focus on operators

5



rather than fields. Furthermore, the transformation properties of the correlators of

these operators can be taken as axioms for the CFT. A CFT contains a distinguished

set of operators called conformal primaries and the main observables are correlators

of these primary operators. The OPE between two operators is convergent away from

other operator insertions, which implies that we can reduce any n-point function to

a sum over (n− 1)-point functions,

〈
O1(x)O2(0)O3(x3) · · · On(xn)

〉
=
∑
k

c12k
〈
C(x, ∂)Ok(0)O3(x3) · · · On(xn)

〉
, (1.1)

where ∂µ = ∂
∂xµ

. The coefficients cijk are theory-dependent OPE coefficients and

C(x, ∂) are theory-independent functions depending only on the scaling dimensions

and spins of the involved operators. Ultimately, any correlator can be reduced to a

sum of two- or three-point functions, which are given in terms of the OPE coefficients

and scaling dimensions in the theory, collectively referred to as the CFT-data.

From applying the OPE in two different ways within the four-point function, one

can extract the crossing equation,

〈
O(x1)O(x2)O(x3)O(x4)

〉
=
〈
O(x1)O(x2)O(x3)O(x4)

〉
. (1.2)

In this highly non-trivial equation the CFT-data enters in different ways in the left-

hand and right-hand sides, referred to as the direct and the crossed channel, and

as a functional equation it contains a vast amount of information. The goal of the

conformal bootstrap is to use the crossing equation to harvest as many constraints as

possible on the CFT-data, and ultimately to fix all involved quantities.

The bootstrap was particularly powerful in the case of two dimensions due to

enhanced symmetry from (global) conformal symmetry to Virasoro symmetry. This

means that the conformal multiplets, which contain a primary operator and its de-

scendants (constructed by action of ∂), group into Virasoro multiplets. We illustrate

this in the top left corner of figure 1.2. For instance, the minimal models contain
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only a finite number of Virasoro multiplets, whose CFT-data could be completely

determined. Conformal field theory in two dimensions has expanded to a large body

of knowledge—an important result is the construction of the Wess–Zumino–Witten

models [31,32]—and is now established textbook material4.

In higher dimensions the progress was slower. A set of conventions for higher-

dimensional CFTs was given by Osborn and Petkou in 1993 [40] and the conformal

field theories behind the critical phenomena, in particular the critical O(N) models,

were studied from a CFT perspective in a series of papers [41–43] identifying the set of

conformal primaries and computing the central charges. The computation of critical

exponents, which corresponds to a subset of the CFT-data, using the ε expansion was

pushed further [44], and the collective knowledge about critical phenomena around

the year 2000 was collected in [45].

One important motivation for increasing interest in CFT came through the AdS-

CFT correspondence, or holography, relating gravity in (d+1)-dimensional anti de Sit-

ter spacetime to strongly coupled conformal field theory on the d-dimensional asymp-

totic boundary [46–48]. The involved CFTs often have superconformal symmetry,

combining conformal symmetry with supersymmetry, and the prime example is the

4d maximally supersymmetric Yang–Mills theory with gauge group SU(N) (N = 4

SYM). In the large N limit it is dual to type IIB string theory in AdS5 × S5, which

at infinite coupling reduces to supergravity. Superconformal symmetry facilitates a

variety of powerful methods such as integrability [49] and supersymmetric localisa-

tion [50]. The intense activity within holography also led to important technical

results, such as explicit results for conformal (and superconformal) blocks, which sum

up the contribution to a four-point function from a given (super)conformal primary

and its descendants. These results, many of which were obtained by Dolan and Os-
4The standard reference is [33], see also the lecture notes [34] and other textbooks [35–37].

Attempts to rigorously axiomatise 2d CFT have been made, for instance by Moore and Seiberg [38]
and by Segal [39].
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born [51–53], are essential for what comes next, and for the computations in this

thesis.

In 2008 the ideas of conformal bootstrap were revived in higher dimensions—focussing

initially on four dimensions—in the seminal work of Rattazzi, Rychkov, Tonni and

Vichi [54]. The leading principle was to investigate the space of allowed CFT-data,

and therefore the space of allowed conformal field theories, by using the mathematical

consistency built into the crossing equation, without making use of any Lagrangians

or perturbative limits. More precisely, the crossing equation was studied numerically

in an expansion around a special kinematic configuration, and positivity of squares

of real-valued OPE coefficients was used to rule out whole regions of CFT-data. This

idea, which we refer to as the numerical conformal bootstrap, has been refined and

generated a wealth of results over the past decade, see [55] for a review, [56] for a

brief summary and [57] for a comprehensive and pedagogical introduction. Flagship

results include the precise determination of the critical exponents in O(N) models in

three dimensions [58], where the results in the Ising [58, 59] and O(2) [60] case are

the most precise available by any method.

In this thesis we will focus on a parallel development, namely analytic conformal

bootstrap. We introduce the main objectives of this programme by figure 1.2, where

we illustrate the spectrum of a conformal field theory, given in terms of the set of pri-

mary operators and their scaling dimensions. Without any further assumptions, the

axioms of CFT allow for arbitrary and independent values of the scaling dimensions

of the various primary operators (up to certain unitarity bounds). This corresponds

to the top centre part of figure 1.2. In the cases of CFTs in two dimensions or super-

symmetric CFTs in any dimension, the existence of additional symmetries induces an

organisation of the conformal primaries into Virasoro multiplets or superconformal

multiplets respectively. The scaling dimensions and OPE coefficients of all opera-
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Virasoro symmetry Generic CFT Superconformal symmetry

Lagrangian CFT Lessons from large spin Holographic CFT

V1
+desc

L−2V1
+desc

L−3V1
+desc

V2
+desc

L−2V2
+desc

...

V3
+desc

...

O1
+desc O2

+desc

O3
+desc

O1
+desc

QNO1
+desc

Q̄NO1
+desc

(Q̄Q)NO1
+desc

O1 = φ

O2 = :φ2 :
...

Oi = :�n∂`φp :

O1 O2

︸ ︷︷ ︸
⇒ [O1,O2]n,`

Oi ←→
single
particle
state

[Oi,Oj ]n,` ←→
double
particle
states

Figure 1.2: In the cases of 2d CFTs or SCFTs, additional symmetries relate properties of
different conformal primaries. In Lagrangian CFTs and holographic CFTs, there are direct
methods for constructing and labelling operators. In the generic case, all operators can a
priori have independent CFT-data. The purpose of analytic bootstrap is to bring structure
into this picture by studying operators with large spin.

tors within in such an enlarged multiplet are all related, reducing the number of free

parameters and facilitating a wider range of computational methods.

While two-dimensional CFTs and supersymmetric CFTs are highly structured,

one cannot a priori infer much about the spectrum of a generic CFT. The goal of

the analytic conformal bootstrap in higher dimensions is to overcome this gap. There

are two main objectives: on the one hand, to make universal statements valid in any

CFT, and on the other hand, to use the power of conformal invariance to deduce

more properties of specific models.

A key concept in this quest is a twist family of operators5. This consists of a

family of operators, parametrised by spin, with approximately equal value of the

twist, defined as the difference between scaling dimension and spin: τ` = ∆` − `.

Such operators naturally occur in weakly coupled Lagrangian CFTs as well as in
5By “operator” we here refer to a conformal primary operator. Descendant operators will be

explicitly called descendants.
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strongly coupled holographic CFTs. In the former case, twist families of operators

are constructed from the fundamental fields, taking the form φ�n∂{µ1 · · · ∂µ`}φ with a

twist of 2∆φ+2n+γ`, where γ` are small anomalous dimensions, � = ∂µ∂µ, and curly

brackets denote symmetrisation and removal of traces. In the latter case, operators

in a twist family have a natural definition as the operators dual to rotation modes of

weakly interacting multiparticle states in AdS.

In the examples studied, the operators in a twist family were observed to have

collective properties. In Lagrangian theories, the anomalous dimensions could be

parametrised in closed form in terms of the spin, and this played an important role

in deep inelastic scattering in QCD, even beyond the strictly conformal limit. In this

setting, Nachtmann’s theorem [61] further showed that the function γ` of the leading

twist family takes a convex shape. Much later, important lessons were drawn in [62]

about the large spin limit in conformal gauge theories, where it was shown that the

logarithmic scaling of anomalous dimensions at large spin can be understood as the

corresponding linear scaling with energy of a flux tube in an auxiliary theory.

In two papers from 2012 [63,64] it was independently proven, using crossing sym-

metry, that such twist families of operators must exist in any CFT in dimension

d > 2. This result is usually taken as the starting point for the analytic conformal

bootstrap. The statement is that given any two operators O1 and O2 with twists τ1

and τ2, there must exist an infinite family of operators with twists τ` approaching

τ∞ = τ1 + τ2 as ` → ∞. As we will describe in more detail in the next chapter, this

follows from the presence of the identity operator in the crossed channel of the corre-

lator 〈O1(x1)O2(x2)O2(x3)O1(x4)〉. Similarly, other operators in the crossed channel

induce corrections to the twist, which means that we can non-perturbatively define

anomalous dimensions by γ` = τ` − (τ1 + τ2).

Subsequently, more systematics were developed for the analytic bootstrap. In [65]

it was shown that the anomalous dimensions γ`, as well as corrections to OPE
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coefficients, naturally expand in inverse powers of the conformal spin, defined as

J2 = (∆` + `)(∆` + `− 2)/4. In [66], these principles were used to reproduce anoma-

lous dimensions in a number of perturbative CFTs, and in [67], the methods, now

dubbed the lightcone bootstrap, were used to quantitatively explain a large part of

the spectrum of the 3d Ising model, computed in the same paper. In 2016, a com-

pletely systematic framework named large spin perturbation theory was introduced

by Alday [68,69]. This framework facilitates significant progress in both generic and

specific CFTs in the presence of a small expansion parameter, which may for instance

be a small coupling constant, a dimensional ε, or the inverse number of degrees of

freedom. In this thesis we show that large spin perturbation theory not only eluci-

dates the structure of many conformal field theories, but it is also powerful enough

to generate new results beyond other methods.

The final ingredient to achieve this goal was given by Caron-Huot in the Lorentzian

inversion formula [70]. It puts on firm grounds the empirical observations from all

known examples that the functions γ` extend in exact form all the way down to some

finite spin, typically 0, 1 or 2. The anomalous dimensions and OPE coefficients,

collectively the CFT-data, are given in terms of an integral over a compact domain

of the double-discontinuity of the correlator weighted against a kernel. The double-

discontinuity restricts to terms containing enhanced singularities, which means that

the CFT-data can be computed without knowing the full correlator. This can be

phrased as a dispersion relation, meaning that the correlator can be reproduced from

its double-discontinuity, up to contributions from spin 0 or 1 [71].

The purpose of this thesis is to demonstrate how large spin perturbation theory can be

turned into a powerful and systematic framework for studying perturbative conformal

field theories, by which we mean CFTs equipped with any expansion parameter, not

necessarily the coupling constant. This is achieved through a number of examples
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where the method is successfully applied to some of the most well-studied CFTs. The

framework follows the analytic bootstrap approach, which means that it builds only

on consistency conditions and on the axioms of conformal field theory, without any

reference to Lagrangians or standard perturbation theory, and it does not make use

of specific methods such as supersymmetric localisation.

The thesis starts with a comprehensive review, which includes a practical guide

to large spin perturbation theory, followed by a number of concrete examples. These

examples are given as a demonstration of the method, but the results generated

there are also contributions to the literature. We do not aim to cover all aspects

of higher-dimensional CFTs and we refer instead to the excellent reviews on the

subject [55, 56, 72–74]. However, we do give the essential ingredients and present the

ideas that lead up to work in this thesis. This is the purpose of chapter 2, which

finishes by outlining the method in terms of the following procedure:

1. Find operators that contribute at each order in the expansion parameter.

2. Compute their double-discontinuity in the crossed channel.

3. Find the corresponding corrections to the CFT-data using the Lorentzian in-

version formula.

4. Where applicable, use consistency conditions to fix any undetermined constants

and/or iterate the procedure.

Chapter 2 also derives the precise version of the inversion formula used in large

spin perturbation theory from the more general formula in [70], and it contains a

presentation of some of the theories studied in detail in the later chapters.

Chapter 3 takes the form of a practical guide, giving more details on how to

execute each of the steps given above. The presentation is encyclopaedic, and the

purpose is to give a useful overview of the method, as an alternative to the often

technical original publications.
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The following chapters contain explicit examples. In chapter 4 we demonstrate

how large spin perturbation theory combined with the Lorentzian inversion formula

can be applied to the Wilson–Fisher fixed-point in the d = 4 − ε expansion, where

new results are generated at order ε4, for instance for the central charge. In chapter 5

we study conformal gauge theories and find the most general form of the order g

four-point function of a bilinear scalar operator. This reproduces known results in

the N = 4 super Yang–Mills theory but applies to any theory satisfying a short list

of assumptions.

Chapter 6 is divided into smaller sections, each giving yet another application of

the framework but recycling some technical results from previous sections and chap-

ters. While sections 6.1 and 6.2—which cover critical φ4 theories with O(N) and

general global symmetry—are based on work presented elsewhere, sections 6.3 and

6.4 contain previously unpublished results. In section 6.3 we collectively study the

multicritical theories described in figure 1.1 and derive new results for OPE coeffi-

cients, including the central charge. In section 6.4 we show that the results from

chapter 5 can be used to compute the order ε four-point function of the ϕ2 operator

in the Wilson–Fisher fixed-point.

We finish with a discussion in chapter 7, where we summarise and give some

outlook. This is followed by some appendices with technical details from the chapters

described above.
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Chapter 2

Analytic study of conformal field
theories

In this chapter we review the necessary background for the analytic study of confor-

mal field theories. After giving an overview of the fundamental definitions, we discuss

Lorentzian kinematics and give some references on conformal blocks. We then intro-

duce conventions regarding the operator content in CFTs and give three explicit

examples. This is followed by a review of the developments within the analytic boot-

strap, including the Lorentzian inversion formula. We give a precise derivation of the

perturbative inversion formula, which plays a central role in the following chapters,

and finish by outlining the principles of large spin perturbation theory.

2.1 What is a CFT?

A brief way of defining a conformal field theory is that it is a quantum field theory

invariant under conformal symmetry. This leads to a description of CFTs built on the

understanding of quantum field theory (QFT), where conformal symmetry is used to

distil properties that are special to CFTs. One such property is that all fields are

massless, i.e. the theory has no mass gap. However, while much of our understanding

of QFT relies on the possibility of writing down a Lagrangian that describes a given

theory, at least at weak coupling, it is possible to give a characterisation of conformal

field theory that is independent of this construction. It is this perspective that we

14



will take here. It leads to a more concrete, but at the same time more mathematically

rigorous, definition of a conformal field theory.

We define a conformal field theory as a consistent set of operators together with

correlation functions (correlators) of these operators with appropriate transformation

properties under the conformal group. A conformal transformation between subsets

of Euclidean manifolds is an angle-preserving map

x 7→ x′ = ψ(x), (ψ∗g′)µν(x) = Ω(x)2gµν(x), (2.1)

where Ω(x) is a positive scalar function and ψ∗g′ denotes the pullback of the metric.

A formal approach, as in Segal’s axiomatisation [39], is to view the CFT itself

as a set of operators together with a framework (a set of functors) which assigns,

to a given manifold, the set of correlators of its operators on that manifold. In this

sense, the CFT is a tool that can be used to probe the geometry of the manifold.

This philosophy is particularly useful in two dimensions, where any manifold is locally

conformally flat. In this thesis, which is restricted to the case of d > 2 dimensions, we

focus our considerations on conformally flat manifolds, and therefore study flat space

Rd. After removing the origin, this is also conformally equivalent to the cylinder

R × Sd−1 through a radial foliation, which implies that correlators on the cylinder

are directly related to correlators on Rd 1. In addition, we will limit the set of

observables to correlators of local operators. This excludes for instance Wilson loops,

as well as some interesting non-local operators such as light-ray operators and shadow

operators [77].

The fundamentals of conformal field theories in flat Rd are well-documented, for

instance briefly in [33] and in more detail in some lecture notes [72–74]2. We will not

repeat all details here, but instead just outline the main results.
1The perhaps most important manifold not conformally equivalent to Rd is S1 × Rd−1. Probing

this geometry gives access to observables at finite temperature, where the length of the circle can
be related to the inverse temperature. In [75] a bootstrap analysis was developed for this geometry
and in [76] observables for the Ising model at finite temperature were computed.

2See also [78] for some comprehensive but unfinished lecture notes.
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The conformal group of Euclidean Rd is the Poincaré group extended by dilatations

xµ 7→ λxµ and special conformal transformations (translations of infinity), and it is

isomorphic to the special orthogonal group SO(d+ 1, 1). Local conformal operators,

according to Mack’s classification [79], are either primary operators (primaries) or

descendant operators. A conformal primary may be defined as an operator which

transforms locally under the conformal transformations (2.1). For a scalar primary

operator O this takes the form

O(x′) = Ω(x)−∆OO(x), (2.2)

which defines the scaling dimension ∆O. Primary operators also transform in irre-

ducible representations (irreps) of the Lorentz group and in irreps of any potential

global symmetry group. The transformation property (2.2) implies that primaries

inserted at the origin are annihilated by the generators Kµ of special conformal trans-

formations [73]. Descendant operators are generated by the action of the generator

of momentum, −iPµ = ∂µ := ∂
∂xµ

, conjugate to Kµ: [Pµ, Kν ] = 2i(Dδ ν
µ − M ν

µ ),

where D and M ν
µ generate dilatation and Lorentz transformations respectively. For

descendants, the transformation rule (2.2) holds only for constant dilatations, and

it is corrected by derivatives in the case of more general transformations. The set

of descendants generated from a given primary forms a conformal multiplet, and all

properties of these operators are related to the corresponding primary. Therefore,

we limit our considerations to primaries, and in what follows we refer to primary

operators just as operators.

From invariance under dilatation and special conformal transformations it follows

that the two- and three-point correlation functions of scalar primaries take the form

〈Oi(x1)Oj(x2)〉 = δij

x2∆i
12

, (2.3)

〈Oi(x1)Oj(x2)Ok(x3)〉 =
cOiOjOk

x
∆i+∆j−∆k

12 x
∆j+∆k−∆i

23 x
∆k+∆i−∆j

13
, xij =

√
(xi − xj)2,

(2.4)
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where the set of OPE coefficients cOiOjOk and scaling dimensions ∆Oi forms the CFT-

data and carries the dynamical information of the CFT3.

The final essential ingredient needed to define a CFT is the state-operator cor-

respondence. It implies that any quantum state |ψ〉 defined on a sphere Sd−1 in

Euclidean Rd can be written as a linear combination of primary and descendant op-

erators inserted at the centre xµ0 of the sphere:

|ψ〉 =
∑
O
fOO(x0)|0〉 . (2.5)

If we take |ψ〉 to be the state O1(x)O2(0)|0〉 for primaries O1, O2, we get the operator

product expansion (OPE) given in (1.1) in the introduction. Importantly, in a CFT

the OPE coefficients of descendants are related to those of the primary, and the

coefficient functions C(x, ∂) in (1.1) depend only on the quantum numbers of the

involved primary operators. In the case of scalar operators O1 and O2, the conformal

primaries in the OPE must transform in a traceless symmetric representation of the

Lorentz group, and can therefore be characterised by their scaling dimension ∆ and

spin `, the latter defined as the rank of the representation. We write Oµ1···µ` and

assume that the symmetrisation and removal of traces is understood.

2.2 Lorentzian four-point functions

In the previous section we saw that the two- and three-point functions of conformal

primaries are completely fixed in terms of the CFT-data. The first correlator to carry

non-trivial kinematics is therefore the four-point function. Moving from Euclidean

Rd to Lorentzian Rd−1,1 spacetime introduces an interesting kinematic limit for four-

point functions, the lightcone limit, where operators become collinear. In this section

we describe this and other relevant limits for Lorentzian four-point functions.
3We have normalised scalar operators by choosing a diagonal basis (2.3). For spinning operators,

there are multiple conventions in the literature. Our conventions will be clear from the normalisation
of the conformal blocks below. Notice that in the presence of a global U(1) symmetry it is customary
to assign the non-vanishing two-point functions to charge conjugate pairs.
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Conformal symmetry can be used to map any four-point configuration onto a two-

dimensional plane, which means that the spacetime dependence can be parametrised

by two independent variables, called the conformal cross-ratios,

u = zz̄ = x2
12x

2
34

x2
13x

2
24
, v = (1− z)(1− z̄) = x2

14x
2
23

x2
13x

2
24
. (2.6)

Throughout this thesis we will use (u, v) and (z, z̄) interchangeably. In slight abuse

of notation, we will therefore write G(u, v) = G(z, z̄) for the four-point function of

identical external scalar operators φ, as defined by

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 1
x

2∆φ

12 x
2∆φ

34
G(u, v). (2.7)

Here we factored out a pair of two-point functions such that the contribution from

the identity operator 1 in the pairwise OPEs φ(x1)×φ(x2) and φ(x3)×φ(x4) is just 1.

In this notation, the crossing equation (1.2) takes the form4

G(u, v) =
(
u

v

)∆φ

G(v, u). (2.8)

The OPE expansions within the four-point function can be organised as

G(u, v) =
∑
O
c2
φφOG

(d)
∆O,`O(u, v), (2.9)

where we have introduced the conformal blocks G(d)
∆,`(u, v). In the OPE expansion

of the four-point function they sum up the contributions from the primary O and

all its descendants, and we refer to (2.9) as the conformal block expansion of the

correlator. The conformal blocks are theory-independent functions of the cross-ratios

and depend only on the scaling dimension ∆ and spin ` of the exchanged operators.

The CFT-data enters the conformal block expansion through the parameters ∆O and

`O
5 of the primaries, and through the squared OPE coefficients c2

φφO.
4There is also another crossing equation which follows from exchanging the operators at x1 and

x2. It takes the form G(u, v) = G
(
u
v ,

1
v

)
but it will not be important in this thesis.

5Since we are considering only scalar external operators φ, the exchanged operators transform
in the traceless symmetric representations of the Lorentz group, uniquely labelled by an integer `
(corresponding to one-row Young tableaux of length `).
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Notice now the advantage of writing the crossing equation in the form (2.8). The

expressions in the direct channel (left-hand side) and the crossed channel (right-

hand side) take the same functional form, where both sides have an expansion (2.9),

just with u and v exchanged. The conformal bootstrap aims to harvest as much

information as possible about the CFT-data from this highly complicated equation.

2.2.1 Lorentzian kinematics

Let us take a closer look at the kinematics of the four-point function (2.7) in Lorentzian

signature. As described above, any configuration is conformally equivalent to one

where the four operator insertion points xi are confined to a plane. Restricting to

space-like separation, we can, up to permutation of the xi, parametrise the plane by

a time-like and a space-like direction (x0, x1) and use additional conformal symmetry

to place (gauge-fix) the operators at

x1 = 0, x2 = (x0
2, x

1
2, 0, . . .), x3 = (0, 1, 0, . . .), x4 =∞. (2.10)

We define z = x1
2−x0

2 and z̄ = x1
2 +x0

2, by which the space-like separation corresponds

to the values z, z̄ ∈ (0, 1). This is illustrated in figure 2.1. In this region the conformal

blocks are real-valued regular functions of z and z̄ [54]. The Lorentzian configura-

tion (2.10) can be reached by a Wick-rotation from Euclidean signature, where (z, z̄)

are complex and each other’s conjugate.

The convergence of the OPE in Euclidean signature is guaranteed by the operator-

state correspondence (2.5), and carries over to Lorentzian signature, see e.g. [80]. In

the limit z, z̄ � 1 6, operators with the smallest scaling dimensions dominate the

conformal block expansion, and we refer to this limit as the OPE limit. Conversely,

the limit 1− z, 1− z̄ � 1 corresponds to the crossed-channel OPE limit.
6It is often necessary to separate the hierarchy between z and z̄, which can be realised from

the appearance of terms like (z − z̄)−1 for instance in the four-dimensional conformal blocks (2.21)
below. In these cases we assume that we have z � z̄ � 1.
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Figure 2.1: A spacelike configuration in Lorentzian kinematics with operators O1, O3 and
O4 at fixed positions and O2 confined in the (x1

2, x
0
2) plane. The cross-ratios and the relevant

kinematic limits are indicated.

In the OPE limit, the conformal blocks have the following expansion

G
(d)
∆,`(u, v) ∼ u

τ
2 (1− v)`, τ = ∆− `, (2.11)

which has two important implications. Firstly, it shows that the twist τ = ∆ − `

is a useful label for operators since all operators with equal twist can be collected

into a common u power. Secondly, it means that given a correlator G(u, v) in closed

form, one can expand both sides of (2.9) order by order in u and 1− v, and compute

the involved OPE coefficients and scaling dimensions one by one. We refer to this

procedure as performing the conformal block decomposition. This decomposition may

equally well be done in the variables (z, z̄) in the expansion z � z̄ � 1.

For the purpose of the numerical bootstrap, an expansion around the crossing

symmetric point z = z̄ = 1
2 is particularly useful, since it treats the direct and the

crossed channel on an equal footing. However, for this thesis we will instead make

use of an inherently Lorentzian regime, namely the lightcone limit. Since the notion

of the lightcone limit sometimes is ambiguous in the literature, we will always use the
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Table 2.1: Conventions for the kinematic variables, used throughout this thesis.

Cross-ratios u = x2
12x

2
34

x2
13x

2
24

v = x2
14x

2
23

x2
13x

2
24

u = zz̄ v = (1− z)(1− z̄)

Auxiliary cross-ratios w = 1− z̄, ξ = 1− z̄
z̄

Harmonic superspace αᾱ = y2
12y

2
34

y2
13y

2
24

(1− α)(1− ᾱ) = y2
14y

2
23

y2
13y

2
24

OPE limit u→ 0 v → 1
z → 0 z̄ → 0

Collinear limit u→ 0 any v
z → 0 any z̄

Double lightcone limit u→ 0 v → 0
z → 0 z̄ → 1

Crossing u 7→ v v 7→ u
z 7→ 1− z̄ z̄ 7→ 1− z

two notions collinear limit and double lightcone limit, and for additional clarity we

summarise our conventions for kinematic variables in table 2.1 as well as in figure 2.1.

The collinear limit is defined as z → 0 for any value of z̄. This corresponds to the

point x2 becoming null separated from x1. Defining x = x21 we see that this limit

is characterised by the vanishing of the four-vector norm x2 → 0 in a limit where

some of the components xµ remain finite. The importance of this limit dates back to

deep inelastic scattering experiments with hadrons, where an approximate conformal

invariance was understood to control the operator product expansion, see e.g. [81,82].

In the collinear limit, the OPE is dominated by the operator with the lowest value of

twist for each spin. This can be seen from the detailed form of the OPE,

O2(x)O1(0) =
∑
O`
c21O(x2)

∆O−∆1−∆2
2

xµ1 · · · xµ` − traces
(x2)`/2 (Oµ1···µ`(0) + desc.) , (2.12)

from which one can read off that the leading singularities as x2 → 0, keeping xµ finite,

scale as τ = ∆O − `.

The double lightcone limit is relevant when we discuss crossing in Lorentzian

kinematics. It occurs when x2 becomes collinear with both x1 and x3. The double
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lightcone limit is dominated by operators of large spin, and studying the crossing

equation in this limit has become known as lightcone bootstrap, of which we can

view large spin perturbation theory (LSPT) as a special case.

When dealing with expansions in the double lightcone limit we should take

z � 1− z̄ � 1. (2.13)

This explicitly breaks the symmetry of the double lightcone towards the direct chan-

nel collinear limit. This means that in this thesis we will treat the direct channel

and crossed channel differently. In the direct channel, we are always free to restrict

ourselves to the leading twist family. When considering crossed-channel operators,

however, we have to be careful. In the expansion of the crossed channel in the

limit (2.13), it is in general not enough to expand conformal blocks one by one.

Instead, one needs to compute sums over twist families before taking z → 0. We

indicate this in figure 2.1.

Both the collinear and the double lightcone limit translate to corresponding limits

for the cross-ratios u and v, and all conventions for kinematics used in this thesis are

collected in table 2.1. From the conformal blocks in the collinear limit, (2.25) below,

we can derive an approximate relation between z̄ and the spins that dominate the

contribution to the four-point function. The dominant contributions come from spins

` of order

` ∼ 1√
1− z̄

, (2.14)

and we give more detail on this in section 2.4.2 and 5.3.4.2.

Apart from the lightcone limit, which plays the central role in this thesis, there is

another important intrinsically Lorentzian limit, denoted the Regge limit [83, 84]. In

a CFT four-point configuration with pairwise timelike separated operators at x0
4 > x0

1

and x0
2 > x0

3, the Regge limit arises when both pairs (x1, x2) and (x3, x4) approach

null separation. In holographic theories, this corresponds to high-energy scattering
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in the dual AdS space. As explained in e.g. [77], in terms of the cross-rations this

projects onto the OPE limit z, z̄ → 0, but with z̄ evaluated on the second sheet after

analytically continuing around the point z̄ = 1. The OPE is not convergent since the

points x1 and x2 are not near each other. Instead each conformal block has a scaling

that schematically looks like

G
(d)
∆,`(z, z̄) ∼

√
zz̄

1−`
. (2.15)

However, any physical correlator is expected to be bounded in this limit7. We will not

review the various applications of the Regge limit, but will refer back to the scaling

(2.15) when we discuss the Lorentzian inversion formula in section 2.5.

2.2.2 Conformal blockology

From the discussion above, it should be clear that any method in conformal bootstrap

will rely heavily on the conformal blocks G(d)
∆,`(u, v) appearing in the decomposition

(2.9). In general, these functions are not known in closed form, which means that we

depend on various technologies for evaluating the blocks in certain expansions.

In the most general setting, the conformal blocks are functions of the cross-ratios,

depending on the scaling dimensions of the exchanged and the external operators,

and on the spacetime dimension d. In the case of identical external scalar operators

φ, the blocks are independent of ∆φ
8 and we reserve the notion G

(d)
∆,`(u, v) for this

case.

By definition, the conformal block for a conformal primary operator of dimension

∆ and spin ` sums up the contribution to the four-point function of that operator

together with all its descendants. Since descendants of a given primary are related

by the generator of translations, ∂µ, all terms making up the conformal block have
7More precisely by a scaling of the form (2.15), where ` is taken to be the Regge/Pomeron

intercept `0, which has a value `0 < 2 [77].
8For generic external scalars they depend on the combinations ∆1 −∆2 and ∆3 −∆4.
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identical eigenvalues under the action of the Casimir operators of the conformal group.

This leads to a set of differential equations satisfied by the blocks,

C2G
(d)
∆,`(u, v) = 1

2 (`(`+ d− 2) + ∆(∆− d))G(d)
∆,`(u, v), (2.16)

C4G
(d)
∆,`(u, v) = `(`+ d− 2)(∆− 1)(∆− d+ 1)G(d)

∆,`(u, v), (2.17)

for the quadratic and quartic Casimir operators [85]9

C2 = Dz +Dz̄ + (d− 2) zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄) , (2.18)

C4 =
(

zz̄

z − z̄

)d−2
(Dz −Dz̄)

(
zz̄

z − z̄

)2−d
(Dz −Dz̄) , (2.19)

respectively, where

Dx = (1− x)x2∂2
x − x2∂x. (2.20)

By solving the Casimir equations with appropriate boundary conditions, the confor-

mal blocks in four dimensions were computed in a closed form by Dolan and Osborn

in 2000 [51]10

Gτ,`(z, z̄) := G
(4)
τ+`,`(z, z̄) = zz̄

z − z̄
(
k τ

2 +`(z)k τ
2−1(z̄)− k τ

2 +`(z̄)k τ
2−1(z)

)
, (2.21)

where

kβ(x) = xβ2F1(β, β; 2β;x), (2.22)

in which 2F1(a, b; c;x) is Gauß’s hypergeometric function as defined in (A.5) in ap-

pendix A.2. Dolan and Osborn also showed that the conformal block for a scalar

operator in arbitrary dimension d = 2µ is given by the infinite double-sum [51]

G
(d)
∆,0(u, v) = u

∆
2

∞∑
m,n=0

(∆/2)2
m (∆/2)2

m+n
(∆ + 1− µ)m (∆)2m+n

um(1− v)n
m!n! , (2.23)

9Written in terms of generators of the Lorentzian conformal group SO(d, 2), the Casimirs take
the form C2 = JABJBA and C4 = JABJBCJCDJDA [26]. Note that the Casimir eigenvalues satisfy
a symmetry generated by {` ↔ 2 − d − `,∆ ↔ d − ∆,∆ ↔ 1 − `}, corresponding to the dihedral
group of eight elements [70,77].

10A similar expression was also derived in two dimensions and through a recursion relation the
blocks in all even dimensions can be generated [53]. In two dimensions there is also the notion of
Virasoro conformal blocks, summing up contributions from an entire Virasoro multiplet. They are
much more complicated, but can be generated to arbitrary order [86].
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where (a)n = Γ(a+n)
Γ(a) is the Pochhammer symbol.

We have already stressed the importance of the collinear limit, and in fact, in this

limit both the Casimir operators and the conformal blocks simplify dramatically. We

are effectively left with one cross-ratio and the conformal group reduces to SL(2,R).

Theories with this symmetry group are referred to as one-dimensional CFTs. The

corresponding Casimir operator, called the collinear or SL(2,R) Casimir, takes the

form11

D = Dz̄ = (1− z̄)z̄2∂2
z̄ − z̄2∂z̄, (2.24)

and the conformal blocks expand as

G
(d)
∆,`(z, z̄) = z

∆−`
2 k∆+`

2
(z̄) +O

(
z

∆−`
2 +1

)
. (2.25)

We refer to zτ/2kh̄(z̄) as the collinear blocks and kh̄(z̄) as the SL(2,R) blocks. The

collinear blocks, or equivalently the SL(2,R) blocks, have eigenvalue J2 = h̄(h̄ − 1)

under the Casimir action,

Dkh̄(z̄) = h̄(h̄− 1)kh̄(z̄). (2.26)

The expansion (2.25) suggests that in the collinear limit it is natural to introduce

variables h = ∆−`
2 , h̄ = ∆+`

2 , in analogy with two dimensions. In fact, h̄ will be very

important in what follows, as we discuss in section 2.4. We will however not employ

the notation (h, h̄) for individual operators; instead we will use h̄ as an independent

variable, parametrising operators with approximately equal value of h. We also keep

the twist as a label rather than h, since τ = 2h and the twist is more commonly used

in the literature.

The subleading corrections in z of (2.25) can be computed and at each order in z

they take the form of a finite sum of SL(2,R) blocks with shifted arguments, where
11The form of the collinear Casimir, up to a constant shift, follows from acting with the C2 on an

ansatz for the blocks given as a series expansion in z starting at z τ2 , with coefficients as functions of
z̄.
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the coefficients depend on ∆, ` and d. In appendix A.1 we give more detail on this

expansion. Notice that the explicit form of the collinear blocks is independent of the

spacetime dimension d, following from the one-dimensional nature of the collinear

expansion. Nevertheless, the subleading corrections do depend on d.

Finally, for completeness we give the collinear blocks in the case of non-identical

external scalar operators. In this case we evaluate (2.25) under the replacement

kh̄(z̄) z̄h̄2F1
(
h̄+ ∆2−∆1

2 , h̄+ ∆3−∆4
2 ; 2h̄; z̄

)
. (2.27)

2.2.3 Conserved currents and unitarity bounds

A main object of interest is the spectrum of operators that appear in the OPE ex-

pansion of a four-point function. In section 2.3 below we will discuss this in detail in

the case of CFTs with a small expansion parameter, and we will look at a few explicit

examples. Here, we instead make some universal statements valid in any CFT.

We have seen that the collinear limit emphasises the contribution from the leading

twist family in the OPE. In a unitary CFT there is a minimal twist that such any

spinning operator can admit [79]

τO` > d− 2, ` > 0. (2.28)

Operators saturating this bound are referred to as conserved currents, since they are

subject to a conservation equation ∂µ1Oµ1···µ` = 0. Equivalently, we can view this as

a shortening of the conformal multiplet, since this equation means that a subset of

the possible descendant operators vanishes. For the conformal blocks this translates

into a differential equation [69]

DsatG
(d)
d−2+`,`(u, v) = 0, Dsat = (d− 2)

(
z2∂z − z̄2∂z̄

)
+ 2zz̄(z̄ − z)∂z∂z̄, (2.29)

which will be used in section 6.1. For scalar operators the corresponding bound is

∆O >
d− 2

2 , ` = 0, O 6= 1. (2.30)
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The bounds (2.30) and (2.29) are saturated by the operators φ and φ∂`φ in the theory

of a free scalar in d dimensions.

The unitarity bounds are not the only way a Lorentzian CFT can fail to be unitary,

and typically unitarity is broken by some OPE coefficients or scaling dimensions

taking values off the real axis. In [87] it was shown that the Ising model, described by

the top curve in figure 1.1, is in fact non-unitary away from any integer dimension.

A generic interacting conformal field theory contains only a finite number of con-

served currents, namely the stress tensor Tµν related to the generators of Poincaré

invariance, and, where applicable, global symmetry currents Jµ. In addition, super-

symmetry adds further conserved currents. Correlators involving conserved currents

satisfy conformal Ward identities, which introduce physically meaningful normalisa-

tion constants called central charges [43], see also [51].

The central charge, CT , determines the OPE coefficient with the stress tensor and

is of the same order of magnitude as the number of degrees of freedom in the theory12.

In our conventions the stress tensor OPE coefficient takes the form

cOiOjT = −d∆Oi
d− 1

1
2
√
CT

δij. (2.31)

These conventions correspond to

CT,free = Nd

d− 1 (2.32)

for N free scalars in d dimensions.

The current central charge CJ , related to the normalisation of global symmetry

currents Jµ, roughly corresponds to the amount of degrees of freedom charged under

the corresponding symmetry. The exact normalisations for current central charges

depend on conventions for the group generators and the normalisations of the adjoint
12However, CT is not a precise measure of the number of degrees of freedom of the theory, and

it does not always decrease under RG-flow as in Cardy’s c-theorem. However, in two dimensions,
CT = 2c has this role [88]. In higher dimensions, the statements corresponding to the c theorem are
the a-theorem in four dimensions [89] and the conjectured F -theorem in three dimensions [90,91].
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representation. In this thesis we take the conventions such that for global O(N)

symmetry we have

c2
φφJ = − 1

CJ
, CJ,free = 2

d− 2 . (2.33)

The negative sign for the squared OPE coefficient is a consequence of our convention

for the conformal blocks, which differs by a factor (−2)` from the conventions given

in [51].

2.2.4 Conformal bootstrap

Before we move on to discuss conformal field theories with small expansion pa-

rameters, let us briefly review the developments within non-perturbative conformal

bootstrap. The mainstream numerical approach relies on writing the crossing equa-

tion (2.8) as

∑
∆,`

c2
φφO∆,`

F∆,`(u, v) = 0, F∆,`(u, v) = v∆φG∆,`(u, v)− u∆φG∆,`(v, u). (2.34)

The interpretation is that the left-hand side consists of a convex hull of vectors in an

infinite-dimensional vector space spanned by the functions F∆,`(u, v). By acting with

functionals F on (2.34), one derives strict bounds on the dimensions and spins of the

exchanged operators. Typically, these functionals consist of acting with derivatives

at the crossing symmetric point

Fp,q(F∆,`) = ∂p

∂zp
∂q

∂z̄q
F∆,`(z, z̄)

∣∣∣∣∣
z=z̄= 1

2

. (2.35)

This idea was presented in 2008 by Rattazzi, Rychkov, Tonni and Vichi [54] and has

since led to numerous applications and refinements, as reviewed in [55]. Important

early results were the determination of 3d Ising exponents [59], including c mini-

mization [92] and a set of universal bounds in 4d theories [93]. The framework was

subsequently applied to supersymmetric theories [94, 95] and extended to systems of

mixed correlators, the latter leading to high precision results for the 3d O(N) mod-

els [58], and particularly high precision in the cases of Ising [58] and O(2) [60]. There
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have also been implementations for non-scalar external operators such as fermions [96]

and vector currents [97]. Finally, let us mention the paper [98] which studies the Ising

model in interpolating dimensions along the top curve of figure 1.1, making interest-

ing observations on the interplay between the large spin expansion (valid for d > 2)

and the 2d Virasoro symmetry.

Apart from the mainstream numerical bootstrap, other numerical techniques have

been developed. Gliozzi [99] proposed a truncation method where the idea is to search

for approximate solutions to crossing using only a small set of conformal primary

operators. The method does not rely on the positivity of the squared OPE coefficients

c2
φφO and therefore also applies to non-unitary theories such as the Yang–Lee edge

singularity.

More recently, analytic functionals have been developed, which replace the nu-

meric functionals (2.35). By varying these functionals, one can get constraints on the

spectrum for one-dimensional CFTs [100, 101], generating an interesting relation to

the problem of sphere packings [102]. Some generalisations to higher dimensions have

also been made [103,104].

2.3 Perturbative structure of conformal field the-
ories

So far, we have discussed the structure of the OPE and the conformal block decom-

position in a generic conformal field theory. We now focus the discussion onto CFTs

which admit a small expansion parameter g. We will from time to time refer to the

expansion in g as a perturbative expansion, but it does not need to be a coupling con-

stant in the traditional, Lagrangian, sense. Indeed, for g we can take the ε = dc−d in

an ε expansion, 1/N in a planar expansion, or 1/λ for the ’t Hooft coupling in strongly

coupled holographic CFTs. However, we will assume that g = 0 corresponds to twist

degeneracy, namely that all operators in a twist family has identical twist. We keep g
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as a generic name and assume that all quantities in the theory of consideration admit

expansions in powers of g. In general, such series might be asymptotic and may need

to be complemented by non-perturbative corrections.

Let us focus on the contribution within the four-point function from a single twist

family. We assume that there is one operator O` for each even spin13. This means

that we can parametrise the CFT-data in terms of the spin

∆` = τ0 + `+ γ`, c2
φφO` = a`, (2.36)

where the anomalous dimensions γ` are of order g. Here we have introduced a ref-

erence twist τ0. A natural choice of reference twist is τ∞, chosen such that γ` → 0

as ` → ∞, but other choices are also allowed as long as they are consistent with

anomalous dimensions of order g.

In (2.36) we also introduced the notion a` to denote the squared OPE coefficients.

As such, they are positive in unitary theories. By abuse of notation we will often

refer to the a` as just the OPE coefficients. We assumed that both a` and γ` admit

expansions in g, so we write

a` = gα
(
a

(0)
` + ga

(1)
` + g2a

(2)
` + . . .

)
, γ` = gγ

(1)
` + g2γ

(2)
` + . . . , (2.37)

where we have taken out a possible overall factor gα. Inserting this in the conformal

block expansion (2.9) and expanding in the collinear limit gives

∑
`

a`G
(d)
∆`,`

(u, v) = z
τ0
2
∑
`

a`z
γ`
2 kh̄+ 1

2γ`
(z̄) +O(z

τ0
2 +1), (2.38)

where h̄ = τ0
2 + `. For reasons that will become clear in section 2.4.1, we refer to h̄

as the bare conformal spin, often omitting the word “bare”. Expanding each term in
13The spin takes either even or odd values, depending on the transformation properties under the

global symmetry group.
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(2.38) in powers of g, we can write the sum as

∑
`

a`G
(d)
∆`,`

(u, v) (2.39)

= z
τ0
2 gα

∑
`

(
a

(0)
` + g

[
a

(1)
` + 1

2a
(0)
` γ

(1)
` (log z + ∂h̄)

]
+O(g2)

)
kh̄(z̄) +O(z

τ0
2 +1),

where evaluation at h̄ = τ0
2 + ` is understood. An important observation is that

terms proportional to log z are multiplied by the leading order anomalous dimensions

γ
(1)
` . Similarly, higher powers of log z will have leading terms corresponding to higher

powers of the anomalous dimensions. At subleading orders in g, the contributions

from anomalous dimensions and OPE coefficients are mixed and need to be resolved.

In section 5.3.5 we describe a straight-forward way of resolving this at leading order in

g, by introducing a shift in the OPE coefficients. In the majority of this thesis we will

instead make use of the formula (2.80), or rather (2.90), which more transparently

generalises to arbitrary orders.

2.3.1 Generalised free field theory

We discussed above a family of operators O` parametrised by spin `. A natural place

where such operators appear is in what is called the generalised free field (GFF)

theory, which is also known as “mean field theory”. It is the theory of a single

non-interacting field φ with arbitrary dimension ∆φ. Correlators are computed via

pair-wise Wick contractions, using the CFT two-point function (2.3)

〈φ(x1)φ(x2)〉 =
( 1
x12

)2∆φ

. (2.40)

This means that the four-point function of φ can be constructed from three contribu-

tions, corresponding to s-channel, t-channel and u-channel contractions. Normalising

with respect to the s-channel, in agreement with (2.7), we get that the four-point

function takes the form

G(u, v) = 1 + u∆φ +
(
u

v

)∆φ

. (2.41)
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From this expression we can perform a conformal block decomposition. The powers

of u indicate that there must be operators of twist τ = 2∆φ + 2n for integer n, which

we refer to as GFF operators and denote by [φ, φ]n,`. We write the OPE schematically

as

φ× φ = 1 +
∑
n,`

[φ, φ]n,`, (2.42)

and denote the corresponding OPE coefficients aGFF
n,` . These OPE coefficients, which

were worked out in two and four dimensions in [105] and in full generality in [106],

take the form

aGFF
n,` |∆φ

= 2(∆φ + 1− µ)2
n(∆φ)2

n+`
`!n! (`+ µ)n(2∆φ + n+ 1− 2µ)n(2∆φ + `+ n− µ)n(2∆φ + 2n+ `− 1)`

(2.43)

for µ = d/2.

Despite having well-defined scaling dimensions, correlators and OPE, the gener-

alised free field theory is not a local conformal field theory, since, unless φ is the free

scalar (∆φ = µ−1) the theory lacks a stress tensor. Such a theory is sometimes called

a conformal theory. However, the GFF theory is often a useful tool in understand-

ing CFTs. Firstly, its operator content is exactly dual to freely propagating fields

in AdS, where the lack of stress tensor signals the lack of gravitational interaction.

Secondly, the spectrum of GFF operators and the OPE (2.42) is a useful starting

point in describing spectra of many CFTs, as we will see in the examples below.

2.3.2 Operators, labels and mixing

In order to discuss the spectra of actual CFTs we need to introduce some language

to precisely describe the primary operators in a conformal block expansion. Even in

the cases where we can construct primary operators from the fundamental fields of

the Lagrangian, it is often too cumbersome to write down the explicit form of these

operators, since this involves projecting away terms that are descendants of other

primaries. We have already noted that operators come in twist families labelled by
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some τ0 and that the OPE expansions sometimes involve the whole tower of GFF

operators [φ, φ]n,`. We will build on these ideas to formulate some universal naming

conventions which could be used to describe any perturbative CFT. The name of a

primary operator should be as short as possible but still carry the essential information

about that operator, such as its spin and its belonging to a twist family. At the

same time, our conventions need to be flexible enough in order to describe a variety

of theories, which means that sometimes a given operator may be assigned several

different names. We adopt the following conventions.

Definition 2.1. We use the following types of symbols to denote primary operators.

Each symbol comes with a convention for the reference twist τ0 of the twist family

the that the operator belongs to.

• Unique names for scalar operators, generically O1, O2 etc., where the scaling

dimension is denoted ∆O1 , ∆O2 etc. Some of these operators are referred to

as fields, or fundamental fields, since in a Lagrangian description they corre-

spond to fields integrated over in the path integral. In that case, we define the

anomalous dimension of these operators as the difference between the scaling

dimension and the canonical dimension: ∆O = ∆(0)
O + γO. We often use the

letter φ in the case of weakly coupled scalar fields with ∆(0) = µ−1, but we will

sometimes let φ denote a generic external operator without any assumptions

about its scaling dimension.

• Universal names for conserved currents, T µν and Jµ, as well as weakly broken

higher spin currents J` with τ0 = d− 2 +O(g), i.e. near the unitarity bound.

• Composite operators (or, in the terminology of [106], conglomerate operators)

written as�n∂`Ok1
1 Ok2

2 · · · 14, with reference twist τ0 = 2n+k1∆O1 +k2∆O2 +. . ..
14This should be read as the following: An operator constructed from 2n contracted and ` un-

contracted gradients acting on k1 operators O1 etc., distributed in such a way that it is not a
descendant.
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When there are exactly two fields involved we write the derivatives between the

operators.

• GFF operators [O1,O2]n,` with τ0 = ∆O1 + ∆O2 + 2n. In composite operator

notation we would write O1�n∂`O2.

The choice of τ0 is arbitrary up to terms of order g. We will often be explicit with

the choice made for a given twist family, especially when using conventions which do

not agree with the definitions above. The consequence of changing reference twist is

simply an order g redefinition of anomalous dimension.

In the presence of global symmetry, operators transform in irreducible represen-

tations of the global symmetry group. We then add a label R denoting the irrep, and

write the corresponding operators names as JR,`, [O1,O2]R,n,`, (�n∂`φk)R etc.

Let us now describe the important concept of operator mixing. The existence of

mixing arises naturally from the following considerations. By the naming conventions

above, we may parametrise all operators in a theory by their reference twist τ0 and

spin `. Assuming this, and focussing on a given twist family, the conformal block

decomposition of a correlator and a re-expansion in g would generate a sum like

(2.39)

∑
`

a`G
(d)
∆`,`

(u, v) = z
τ0
2
∑
`

(
a`+

1
2a`γ`(log z+∂h̄)+ 1

8a`γ
2
` (log z+∂h̄)2+. . .

)
kh̄(z̄)+. . . .

(2.44)

The conformal blocks now depend only on τ0 and `, and the expansion is blind to any

additional information about the involved operators. In particular, there may exist d`

different degenerate operators with equal τ0 and `. By our naming convention, such

operators would share the name, say O`. To distinguish them we need to employ an

additional label and write O`,i, i = 1, . . . d`. In the expansion above we define

〈a`γp` 〉 =
d∑
i=1

a`,iγ
p
`,i , (2.45)
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by which (2.44) takes the form

z
τ0
2
∑
`

(
〈a`〉+ 1

2 〈a`γ`〉 (log z + ∂h̄) + 1
8
〈
a`γ

2
`

〉
(log z + ∂h̄)2 + . . .

)
kh̄(z̄) + . . . .

(2.46)

Mixing has some severe consequences. For instance, without mixing, knowing

〈a(0)
` 〉 and 〈a

(0)
` γ

(1)
` 〉 would give access to all 〈a(0)

` (γ(1)
` )p〉, i.e. to the leading power

of log z at all orders in perturbation. With degenerate operators, the mixing must

be resolved before one can compute even the sum of anomalous dimensions squared.

Resolving the mixing problem in a given theory requires knowledge of the individual

anomalous dimensions and/or considerations of mixed correlators and it is, in general,

a difficult task.

2.3.3 Spectrum of the Wilson–Fisher model

As a first example of a fully interacting conformal field theory, we review the spectrum

of the Wilson–Fisher (WF) model in d = 4 − ε dimensions [17, 25]. Here ε serves as

the expansion parameter g. As discussed briefly in the introduction in connection to

figure 1.1, one can view this CFT as the IR fixed-point of a short RG flow starting

from the theory with a free scalar field φ perturbed by a quartic interaction λφ4. At

the fixed-point, λ takes a value of order ε. Another point of view is that the ε ex-

pansion follows from a limit of a family of conformal field theories non-perturbatively

defined in d dimensions—the d-dimensional Ising model—which approaches the free

theory as d → 4. A more concrete description follows from studying the multiplet

recombination induced by the equation of motion �φ ∝ φ3. This equation generates

φ3 as a descendant of φ, and it was shown in [107] how this simple statement can be

used to deduce several properties of the Wilson–Fisher fixed-point.

We focus on the operators that appear in the conformal block decomposition of

the four-point function

G(u, v) = x
2∆φ

12 x
2∆φ

34 〈φ(x1)φ(x2)φ(x3)φ(x4)〉 . (2.47)
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Here ∆φ = µ − 1 + γφ = 1 − ε
2 + ε2γ

(2)
φ + . . ., where γ(2)

φ = 1
108 and where we have

indicated the well-known fact that φ has no anomalous dimension at order ε 15. Other

conformal primaries in the theory can be explicitly constructed from φ and ∂µ, and

are defined up to contribution from descendants. Due to the global Z2 symmetry

φ 7→ −φ, only Z2 even operators, constructed from an even number of fields, appear

in the OPE.

The scaling dimensions of φ, φ2 and φ4 can be computed from standard dimen-

sional regularisation, where the coupling is evaluated at the fixed-point. The dimen-

sions of the first two operators φ and φ2 are often presented in terms of a pair of

critical exponents, such as η and ν using the relations η = 2∆φ − d + 2 = 2γφ and

ν−1 = d − ∆φ2 16. They were computed to order ε4 soon after the WF model was

proposed [108] in order to generate estimates for the critical exponents of the 3d Ising

model, and have since been computed to order ε7 [109]17.

At leading twist, the OPE φ×φ contains weakly broken currents J` = φ∂`φ, with

γ` = − ε2

9`(`+ 1) +O(ε3) (2.48)

as derived in [17, 111]. In [112] they were computed to order ε4 and we provide

an independent computation in chapter 4 based on [2]. At higher reference twist

mixing occurs and in figure 2.2 we illustrate the spectrum of operators in the OPE

decomposition of the four-point function (2.47). The identity operator ∆ = 0, ` = 0

and the operators φ∂`φ are the only operators with (squared) OPE coefficients at

leading order, as illustrated by the black dots. In the figure we have indicated the

anomalous dimensions in terms of grey bands of width ε and ε2, centred around twists
15From a Lagrangian point of view, γ(1)

φ = 0 corresponds to the fact that there is no one-loop field
renormalisation.

16Other critical exponents for the Ising model can be related to η and ν through scaling relations,
see e.g. [45]. The exception is the exponent ω, defined through ω = ∆φ4 − d.

17The results for the Ising exponents were not added to [109] until after the ε6 results appeared
in [110]. I thank Erik Panzer for making me aware of [109] and providing me with the explicit results
for future reference.
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Figure 2.2: Operators, labels and mixing in the Wilson–Fisher fixed-point in the ε ex-
pansion. We display the number of degenerate operators as one, two, three or more than
three.

2∆φ + 2n, n ∈ N. Of the bilinear operators φ∂`φ, the scalar φ2 is the only one that

has an anomalous dimension at order ε. The positions of the grey bands, as well

as the corresponding ones for the theories we consider below, depend on which four-

point function we study and will be very important when we develop the analytic

bootstrap approach later. It is instructive to compare figure 2.2 with figure 1 of [67],

which gives a similar display of the operator spectrum in the 3d Ising model as found

by the numerical bootstrap.

Now we take a look at the operators of higher twist. Since ∆φ = 1 + O(ε), and

the Z2 symmetry enforces an even number of fields φ, all operators in the φ×φ OPE

will have twists of the form τ = 2∆φ + 2n+ O(ε) for n = 0, 1, 2, . . .. It is possible to

compute the order ε anomalous dimension of an arbitrary operator of this kind [113],

and in [114] the spectrum was systematically investigated. The leading anomalous

dimensions of arbitrary composite operators may also be computed using conformal

perturbation theory [87]18.
18See appendix C of [115] for more details, and [116] for an alternative method based on the
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At n = 1, the operators take the schematic form ∂`φ4, and are now subject to

mixing. At spins 0 and 2 there is a unique operator, but at spin 4 there are two

different operators, with dimensions ∆(∂4φ4)1 = 8 − 2ε + 4
9ε + O(ε2) and ∆(∂4φ4)2 =

8− 2ε+ 15
19ε+O(ε2). The degeneracy keeps growing for each subsequent spin and in

figure 2.2 we only indicate the precise degeneracy d` when d` < 4.

At higher n the situation is even more complicated, with mixing between operators

of different number of fields, for instance φ8 and �2φ4 19. The only non-degenerate

point for n > 2 is n = 2, ` = 0, where the operator is φ6 with ∆φ6 = 6 + 2ε + O(ε2).

This is the only point with n > 1 where no operator of the form ∂`�n−1φ4 takes part

in the mixing, a fact that will have an interesting consequence in section 6.4.

2.3.4 Spectrum of N = 4 SYM at weak coupling

In preparation for chapter 5, we give a short description of the weak coupling spec-

trum of operators in the N = 4 supersymmetric Yang–Mills (SYM) theory in four

dimensions. Due to its properties as a highly complex but still well-structured the-

ory, the literature on the topic is vast and we will not be able to review it. Here we

only give the minimum amount of information needed to use the theory as a test and

prototype for the methods of chapter 5.

The N = 4 SYM theory is the maximally supersymmetric quantum field theory

in four dimension. The field content consists of one vector multiplet in the adjoint

representation of the gauge group, which we will take to be SU(N). The vector

multiplet contains a gauge field Aµ ∈ 1, four Majorana spinors λi ∈ 4 and six real

scalars ΦI ∈ 6, transforming in the indicated irreps of the R-symmetry SU(4) ∼=

SO(6). The theory has an exactly marginal coupling gYM, and is thus conformal at

multiplet recombination. I thank M. Hogervorst and P. Liendo for detailed discussions on these two
methods.

19Recall that we discuss mixing here in meaning of having equal reference twist, in the context of
our discussion in section 2.3.2. In constructing the explicit form of the conformal primary operators,
there is no order ε mixing between operators with different number of fields.
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Figure 2.3: Operators, labels and mixing in N = 4 SYM at weak coupling, displaying
operators in the 1 representation. At each even spin and near each even twist, there are
operators with OPE coefficients at order g0

YM.

all values of this coupling. Here we look at the weak coupling limit and define

g = g2
YMN

4π2 (2.49)

as our expansion parameter.

Conformal primary operators are constructed from gauge-invariant combinations

of the fields, and transform in irreducible representations of the R-symmetry. Super-

symmetry further groups the operators into supermultiplets, labelled by superconfor-

mal primaries. The conformal primaries are generated from the superconformal pri-

maries by the supersymmetry generators and transform in Lorentz and R-symmetry

irreps related to their superprimaries. In particular, the scaling dimensions are related

and all superdescendants share the same anomalous dimensions.

The theory contains a number of superconformal primary operators whose di-

mensions are protected by supersymmetry, typically on some BPS-bound. They are

referred to as short multiplets due to various shortening conditions, which means

that a fraction of the operator content of these multiplets is annihilated. In addition
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to the short multiplets, the theory contains long multiplets with unprotected scal-

ing dimensions. A detailed presentation of the various supermultiplets can be found

in [52].

We will be interested in four-point correlators of the simplest possible scalar

operators, which are constructed from bilinears in Φ, with a SU(N) trace to ren-

der them gauge-invariant. There are two such operators: the Konishi operator

K = Tr(ΦIΦI) ∈ 1, and half-BPS operator O20′ = Tr(Φ{IΦJ}) ∈ 20′, where the

latter is the rank two traceless symmetric representation of SO(6).

The Konishi operator is the superconformal primary of a long multiplet and has

scaling dimension ∆K = 2 + 3g + O(g2). Its anomalous dimension is known to order

g4 [117], and non-perturbatively in the planar limit N →∞ [118]. The operator O20′

with ∆O20′ = 2 is the superconformal primary of the short supermultiplet, which in

addition contains amongst others the stress tensor and the R-symmetry currents. In

the OPE decomposition of the Konishi four-point function, only R-symmetry sing-

lets contribute, whereas the decomposition of the O20′ four-point function contains

operators in all SU(4) irreps in the tensor product

20′ ⊗ 20′ = 1⊕ 15⊕ 20′ ⊕ 84⊕ 105⊕ 175, (2.50)

where we used the notation of [119] for the irreps. Since both correlators contain

R-symmetry singlets, we will focus on them. In fact, the only unprotected super-

conformal primaries in the O20′ four-point function are in the singlet representation,

which means that the singlet representation contains all dynamical information of the

perturbative correlator.

Figure 2.3 contains a plot similar to figure 2.2, displaying the singlet conformal

primaries, where we have shaded regions within order g from τ = 4 + 2n, n ∈ N. At

the leading twist, there are three conformal primaries at each even spin, denoted T`,
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Σ` and Ξ`. They have anomalous dimensions γ = ∆− (2 + `) of the form

γ
(1)
T`

= 2S1(`− 2), γ
(1)
Σ` = 2S1(`) γ

(1)
Ξ` = 2S1(`+ 2), (2.51)

where S1(n) = ∑n
k=1

1
n
denotes the harmonic numbers, defined in appendix B.1. These

operators, called leading twist operators, or twist-2 operators, follow from diagonal-

isation of the one-loop perturbative anomalous dimension in the space of bilinears

in Φ, λ and Fµν respectively [120, 121]20. At ` = 0, the operator is non-degenerate:

Ξ0 = K. T2 is the stress tensor. In fact, the operators belong to superconformal mul-

tiplets in groups of three, which explains why the anomalous dimensions are related

to the universal function γuniv.(`) = 2S1(`). In the four-point function of the Konishi

operator they appear with an average given by

〈a`γ`〉 =
∑

O`=T`,Σ`,Ξ`
aO`γO` = 2cΓ(`+ 1)2

Γ(2`+ 1) γuniv.(`) + 2c 3δ`,0, (2.52)

where c = 2
3(N2−1) .

The operators just discussed constitute the leading twist family in N = 4 SYM,

but let us emphasise that they are not double-twist operators. Since they have twist

below the double twist of the external operator, they lie outside the grey bands

displayed in figure 2.3. At the double twist, as well as at higher twists, a large

number of operators contribute, and to resolve the mixing problem is a difficult task.

This was, however accomplished in the four-point function of O20′ case in [123–125]

and more generally in [126].

2.3.5 Spectrum of the critical O(N) model

As a final example, let us discuss the spectrum of the critical O(N) model, where

O(N) denotes the orthogonal group. This theory is a generalisation of the Ising

model and admits a 4 − ε expansion with a similar Lagrangian λφ4  λ(ϕiϕi)2,
20More details can be found in [122], where the matrix elements of the one-loop dilatation operator

are given. Notice, however, a typo in that paper; the proper form is γ(0)
λλ = −4S1(j)+8/j−8/(j+1).
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Figure 2.4: Various limits for the critical O(N) model. The CFT-data agrees in the over-
lapping regions between two expansion limits.

where i runs from 1 to N . Likewise, in three dimensions the critical model follows

from a long RG flow from the theory of N free scalars, and describes a range of

interesting critical phenomena [45]. However, it is possible to treat the number of

fields N as an additional parameter of the theory, and indeed many observables

can be seen as analytic functions of N . This group parameter expansion has been

common practice for a long time and was recently put on more firm ground using

Deligne categories [127]. Thanks to the continuation in N , the theory admits various

overlapping perturbative limits, displayed in figure 2.4, which we will now describe.

Important for this thesis are the 4 − ε expansion and the large N expansion, which

we will discuss shortly. In addition, there is an expansion in d = 2 + ε dimensions,

where the critical O(N) model for N > 2 is related to the UV fixed-point of a

non-linear sigma model with target space O(N), see e.g. chapter 31 of [128]. In that

expansion, anomalous dimensions [129] and central charges [130] have been computed

in a series in ε. The behaviour near N = d = 2 is not fully understood, and the limits
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d → 2 and N → 2 do not appear to commute [131]21. The large N expansion can

be continued beyond d = 4 to match a cubic model of N + 1 fields in d = 6 − ε

dimensions [132], where perturbative CFT-data is known [129]. Unitarity in the

five-dimensional theory a disputed topic, see [133] for a recent discussion taking into

account instanton contributions.

In the 4 − ε expansion, the spectrum of operators in the ϕ four-point function

is similar to the N = 1 case described in section 2.3.3. The ϕi × ϕj OPE contains

three irreducible representations: singlet (S) and rank two traceless symmetric (T )

and antisymmetric (A) tensors, where the latter is odd under i ↔ j and therefore

contains intermediate operators of odd rather than even spin. We focus on the singlet

representation, which has the most interesting operator content. In the ε expansion,

the spectrum of singlet operators looks similar to figure 2.2, with the modification

that the degeneracy of higher twist operators grows faster. However, at large N the

spectrum shows an interesting behaviour which we will now describe.

It has for long been understood how to develop a Lagrangian description for the

critical O(N) model at large N and generic spacetime dimension d = 2µ, through

the introduction of the Hubbard–Stratonovich auxiliary field σ, see e.g. [132] for a

detailed discussion. This is accomplished by adding to the Lagrangian of N free

scalars ϕi the interaction terms

SI =
∫

ddx
(

1
2
√
N
σϕiϕi − 1

4λN σ2
)
. (2.53)

One can check that integrating out the field σ gives back the usual λ(ϕ2)2 interaction.

Alternatively, σ can be promoted to a dynamical field and a perturbation theory can

be developed with 1/
√
N as the effective coupling constant, where the second term

becomes irrelevant in the IR. The large N expansion of the O(N) model can be

used to generate approximate results at finite N , but it has also been conjectured to
21I thank Slava Rychkov for mentioning this reference to me.
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have a holographic dual given by type A Vasiliev theory hs4 [134] when limiting to

correlators of O(N) singlets.

In the spectrum, the operator ϕ2
S = ϕiϕi gets replaced by σ, which has dimension

∆σ = 2 + O(N−1). Generic operators are then constructed from σ, ϕi (with ∆(0)
ϕ =

µ−1) and ∂µ. In the overlap between the 4− ε expansion and the large N expansion,

the operators in the two descriptions are in one-to-one correspondence with each

other, and the scaling dimensions agree. For instance, for the first non-trivial singlet

scalar we have

∆ϕ2
S

= 2− ε+ N + 2
N + 8ε+ (N + 2)(44 + 13N)

2(N + 8)3 ε2 +O(ε3), (ε expansion), (2.54)

∆σ = 2− 4(µ− 1)(2µ− 1)
2− µ

γ(1)
ϕ

N
+O(N−2), (large N expansion).

(2.55)

Inserting the literature value

γ(1)
ϕ = (µ− 2)Γ(2µ− 1)

Γ(µ+ 1)Γ(µ)2Γ(1− µ) (2.56)

we can explicitly check that for µ = 2− ε
2 both expressions expand to 2− 6ε

N
+ 13ε2

2N +. . ..

In table 2.2 we list a few operators and give their names in the different expansions,

including their conventional names in the 3d Ising model.

In figure 2.5 we display the large N spectrum of O(N) singlet operators, displaying

bands corresponding to twists within 2∆ϕ + 2n+O(N−1) for n ∈ N. It is clear that

σ is outside the first of these bands, whereas all the spinning weakly broken currents

JS,` = ϕi∂`ϕi have twist 2(µ− 1) +O(N−1) and fall within the first band.

It is more interesting to look at what happens near the next band, n = 1. This

corresponds to the O(N) version of the n = 1 band in figure 2.2, where now the

number of degenerate operators is dO(N)
` = 1, 2, 4, 6, 8 instead of dN=1

` = 1, 1, 2, 3, 4 for

` = 0, 2, 4, 6, 8. By using the techniques from [87, 115] to find the order ε anomalous

dimension of a set of operators of the schematic form ∂`ϕ4
S = ∂`ϕiϕiϕjϕj, we can

study the fate of these operators upon expanding at large N . It turns out that exactly

44



0 2 4 6 8 10
`

2∆ϕ

2

4∆ϕ

2∆ϕ+2

4

τ

OPE coefficients

O(N0)

O(N−1)

O(N−2)

O(N−4)

Figure 2.5: Operators, labels and mixing in the critical O(N) model at large N , displaying
operators in the singlet representation.

one operator at each spin gets τ` = 4 + O(N−1), which we interpret as the leading

GFF operator [σ, σ]0,`. Other (degenerate) operators have τ` = 2 + 2∆ϕ + O(N−1)

and we identify them as subleading GFF operators of the form [ϕ, ϕ]S,1,`. Finally,

the remaining (degenerate) operators have τ` = 4∆ϕ +O(1/N), for which we use the

notation ∂`ϕ4
S.

Near the band corresponding to n = 2 in figure 2.2 the situation is similar, where

now operators in the large N limit take one of the following twists: 6, 2∆ϕ + 4,

4∆ϕ + 4 and 6∆ϕ. We have omitted it in figure 2.5 to keep the figure less cluttered.

Also at higher values of n the situation is similar. The only operators at the bands

with n > 1 that will play a role in this thesis are the GFF operators [σ, σ]n,`. In

figure 2.5 we have also indicated at what order in 1/N the various (squared) OPE

coefficients enter within the ϕ four-point function. The essential assumption needed

is that aσ = c2
ϕϕσ is of order 1/N . This will in fact imply that all operators [σ, σ]n,`

have (squared) OPE coefficients at order 1/N2.

The O(N) model is also a prototype for φ4 theories with various global symmetries,
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Table 2.2: Some operators with low twist in the critical O(N) model and their conventional
names in the different regimes.

Irrep Spin ε expansion Large N 3d Ising (N = 1)
S 0 1 1 1

V 0 ϕi ϕi σ

S 0 ϕ2
S = ϕiϕi σ ε

S 2 JS,2 = Tµν JS,2 = Tµν Tµν

S 4 JS,4 = ϕi∂4ϕi JS,4 = ϕi∂4ϕi Cµνρσ

S ` even JS,` = ϕi∂`ϕi JS,` = ϕi∂`ϕi Oµ1···µ`

T ` even JT,` = ϕ{i∂`ϕj} JT,` = ϕ{i∂`ϕj} —
A ` odd JA,` = ϕ[i∂`ϕj] JA,` = ϕ[i∂`ϕj] —
S 0 ϕ4

S = (ϕiϕi)2 [σ, σ]0,0 = σ2 ε′

some of which admit expansions similar to the large N here. Based on the results

in this thesis and in [4], we can treat all such theories in a unified way, which we

describe in section 6.2.

2.4 Large spin and the lightcone

The lightcone bootstrap, and therefore large spin perturbation theory, is developed

from an interplay between large spin expansions of CFT-data and an expansion of

the crossing equation near the double lightcone limit. In this section we will review

the development of these ideas to be able to provide a full description of the method

in the subsequent sections.

2.4.1 Large spin expansion of CFT-data

Although the scaling dimension ∆ and the spin ` are natural labels for primary

operators based on the conformal algebra, we have seen that the collinear expansion

of the conformal blocks (2.25) motivated the introduction of another pair of labels:

the twist τ = ∆ − `, and the variable h̄ = ∆+`
2 . The introduction of twist implies

that we can parametrise the operators in a given twist family by the spin `. In this
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section we will give further motivation for the linear change of variable to h̄ = τ
2 + `.

In relation to the experiments on deep inelastic scattering of hadrons, anomalous

dimensions were computed for leading twist operators in QCD in the early 1970’s.

There, as well as in some other theories, the anomalous dimension of operators within

a twist family could we written as a function in spin; they were “analytic in spin”.

These functions γ` were observed to have some universal properties. For instance,

based on high-energy bounds on the scattering cross-section, Nachtmann proved that

γ` must be an upward convex function, referred to as Nachtmann’s theorem or con-

vexity [61].

Another empirically motivated result from that time is reciprocity, formulated in

the context of deep inelastic scattering by Gribov and Lipatov [135]. It concerns the

large spin expansion of γ`, i.e. the potentially asymptotic expansion around the point

` = ∞. In this limit, the spin dependence of γ` was found to come purely through

the combination

J2 = j(j + 1) = h̄(h̄− 1) =
(∆ + `

2

)(∆ + `

2 − 1
)
. (2.57)

This combination is exactly the eigenvalue of the collinear Casimir (2.24), and due to

the equivalence on the level of complexified Lie algebras of SL(2,R) and the three-

dimensional rotation group SO(3) it was later referred to as the conformal spin22 23.

The Gribov–Lipatov reciprocity was originally phrased in terms of splitting func-

tions P (x), which are dual to the anomalous dimensions through a Mellin transform24

γj = −
1∫

0

dx xj−1P (x), (2.58)

22It is difficult to find the first use of the expression conformal spin. The use dates back far, for
instance in [136] it is used with clear reference to the collinear Casimir equation. I thank V.M.
Braun and A.N. Manashov for discussions on this topic.

23Similar to the SO(3) case, there is a slight abuse of notation, where both j and J2 are referred
to as the conformal spin. Notice, however, that we are now considering a non-compact real form of
the algebra, which means that j is no longer restricted to integer values.

24This is a peculiar use of the word Mellin transform, and it does not agree with the usual definition
used in the context of Mellin amplitudes and Mellin space bootstrap. The Mellin transform (2.58)
is defined up to some regularisation of the x→ 1 limit, see e.g. [137] for a precise definition.
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where x is the Bjorken variable. Then reciprocity takes the form

P (x) = −xP
(1
x

)
. (2.59)

A proof of the equivalence between the two statements can be found in [138]. We

illustrate the reciprocity principle by the anomalous dimension γuniv.(`) = 2S1(`) in

N = 4 SYM, where now j = h̄ + 1 = ` to leading order. We have for the harmonic

numbers

S1(j) = γE +log
√
j(j + 1)+ 1

6j(j + 1)−
1

30(j(j + 1))2 + 4
315(j(j + 1))3 + . . . , (2.60)

where γE is the Euler–Mascheroni constant. The exact form of this and similar

expansions at large spin is discussed in [139].

Reciprocity was initially thought to be broken at two-loop order in QCD, but the

principle was restored by realising that the correct variable to use is the full conformal

spin, h̄f = τ0/2 + ` + γ`/2 rather than the bare counterpart h̄b = τ0/2 + ` [140]. It

can thus be phrased in the following way.

Proposition 2.1. Anomalous dimensions of operators in a twist family with approx-

imate twist τ0 satisfy the equation

γ` = g
(
τ0

2 + `+ 1
2γ`

)
, (2.61)

where g(h̄) has a large h̄ expansion symmetric under h̄↔ 1− h̄.

By the assumption γ` = O(g), the relation (2.61) can be studied order by order in g

and the expression for γ` beyond leading orders will contain derivatives of the function

g. Reciprocity therefore assumes that there exists an analytic continuation in spin

making these derivatives well-defined.

The reciprocity relation was subsequently observed to hold in perturbative results

at higher order, such as QCD and N = 4 SYM at three loops [141, 142] and N = 4
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SYM at seven loops in the planar (N →∞) limit [143]. Indeed, reciprocity and the

related principle of transcendentality was a leading organisational principle in this

work [144]. Reciprocity was also observed to persist recursively in other conformal

field theories such as the critical O(N) model, in the spirit of proposition 2.1.

While traditional diagrammatic methods have generated results at high loop order

for anomalous dimensions, OPE coefficients are much harder to compute. However,

explicit results for correlators at loop order in N = 4 SYM generated OPE coefficients

of spinning operators by direct conformal block decomposition [145], for instance in

the O20′ correlator at three-loops [146]. It was realised that the large spin expansion

of OPE coefficients has similar properties to the anomalous dimensions [147], and a

combined reciprocity principle was proven in [65] for any conformal field theory. We

will re-derive this and give a precise statement in theorem 2.2 in section 2.5.3.

2.4.2 Lightcone limit and crossing

The relation between the large spin limit of CFT-data and the double lightcone

expansion of conformal four-point functions is the key ingredient in this thesis. In the

discussion until this point, we have mostly focussed on the whole twist family and the

collinear limit z → 0. Let us now specialise further and look at the double lightcone

limit z → 0, z̄ → 1. This limit emphasises the asymptotic behaviour at large spin of

the CFT-data, which corresponds to expansions like (2.60).

In [62], this limit was investigated for N = 4 SYM, where the anomalous di-

mensions of leading twist operators admit the particular expansion (2.60), which is

dominated by the term log ` 25. In that paper, configurations corresponding to opera-

tors of large spin ` were analysed in terms of states in an auxiliary theory in AdS3×S1

consisting of two particles at a given separation distance χ = log `. In this picture,

twists in N = 4 SYM correspond to energies in the auxiliary theory. For leading twist
25The prefactor of this leading logarithm agrees with the cusp anomalous dimension and is known

at four loops [148], and non-perturbatively in the planar limit [144].
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operators, which are single-trace, a flux tube connecting the operators gives rise to an

energy linear in χ, explaining the logarithmic scaling of γ`. Double-trace operators,

on the contrary, correspond to configurations of where the interaction energy decays

as E ∼ e−αχ, where α is equal to the smallest twist in the CFT spectrum: α = τmin.

This gives the generic scaling γ` ∼ `−τmin .

In two important papers from 2012 [63,64], the observations from [62] were gener-

alised to arbitrary CFTs and were proved using explicit computations in the double

lightcone limit. In [64] connections were made between the picture of [62] and the

older results from deep inelastic scattering and Nachtmann’s theorem. In [63] a more

direct approach was taken, and the results were then related to physics in AdS, noting

that in any CFT, even beyond the usual holographic limits, double-trace operators

for sufficiently large spin can be interpreted as states which correspond to two dis-

joint “blobs” orbiting each other. The most important results in the two almost

simultaneous papers were the same, and we review and prove two of them here.

Proposition 2.2. In any conformal field theory in d > 2 dimensions, containing

operators O1, O2 with twists τ1 and τ2, the value τ∞ = τ1 + τ2 is an accumulation

point in twist, i.e. there is a family of operators O` where τ` → τ1 + τ2 as `→∞.

Proof. Consider the mixed correlator G2112(u, v) ∼ 〈O2(x1)O1(x2)O1(x3)O2(x4)〉. In

the standard normalisation26, crossing for this correlator reads

G2112(u, v) = u
∆1+∆2

2

v∆1
G1122(v, u). (2.62)

In the direct channel (left-hand side), the collinear conformal blocks, using (2.27),

expand in the double lightcone limit as −Γ(2h̄)
Γ(h̄+ ∆12

2 )Γ(h̄−∆34
2 )
zτ/2 log(1−z̄) plus regular and

higher order terms27. The crossed channel (right-hand side), contains the contribution
26More precisely, we use conventions such that Gijkl(u, v) = x

∆i+∆j

12 x∆k+∆l
34 x∆k−∆l

13 x
∆j−∆i

24 ×
x

∆i−∆j−∆k+∆l

14 〈Oi(x1)Oj(x2)Ok(x3)Ol(x4)〉.
27For the case ∆1 = ∆2 we give the complete expansion in (A.7).
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1 from the identity operator, multiplied by the crossing factors. This leads to the

equation

−
∑
O
aOz

τO/2 Γ(2h̄O) log(1− z̄)
Γ(h̄O + ∆12

2 )Γ(h̄O − ∆34
2 )

= z
∆1+∆2

2

(1− z̄)∆1
+ reg., (2.63)

where we sum over all possible direct-channel operators. Since each term on the left-

hand side only contain a log divergence, the power divergence on the right-hand side

must arise from infinitely many terms. By further matching the correct z dependence

we find that we must have, for any interval τ1 +τ2±δ, an infinite number of operators

O with τO in that interval. This proves proposition 2.2.

The involved expansions around large spin were analysed quantitatively in [63,64] by

approximating the sums (2.63) over spin with an integral, which is valid up terms

regular or at most logarithmically divergent in w = 1− z̄ → 0. We refer to this as the

kernel method, and provide more details in section 5.3.4.2. The leading w divergence

in the corresponding expansion can be computed by

∑
h̄

2Γ(h̄)2

Γ(2h̄− 1)
u
(
h̄(h̄− 1)

)
kh̄(1− w) ∼

∞∫
0

dĴ 4Ĵ
w
u

(
Ĵ2

w

)
K0(2Ĵ), (2.64)

where u(J2) denotes any additional spin dependence relative to the free theory OPE

coefficients in four dimensions28 and K0 is a modified Bessel function of the second

kind. A direct application of the kernel method for the case u(J2) = 1 gives the sum
1
w
. Taking instead u(J2) ∼ J2α we get a sum which generates a leading divergence of

the form 1
w1+α . We will use this result to prove the next proposition.

Proposition 2.3. The double-twist operators [O1,O2]0,` according to proposition 2.2

have anomalous dimensions which have asymptotic behaviour at large ` of the form

γ` ∼ −
amin

`τmin
, (2.65)

28We note how the ratios of Gamma functions cancel between (2.63) (restricted to identical ex-
ternal operators) and (2.64), up to from a factor 2h̄ − 1. That factor is in turn consumed by the
Jacobian of the change of variables h̄ Ĵ =

√
h̄(h̄− 1)/w.
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where τmin is the twist of the smallest twist operatorOmin 6= 1 appearing in both OPEs

O1×O1 andO2×O2, and amin is the corresponding OPE coefficient amin = c11minc22min.

Proof. For this proof we consider the divergence in w introduced by the contributions

from the operators 1 and Omin appearing in the crossed channel. Including crossing

factors these contributions take the form

1 : z
∆1+∆2

2

w∆1
, Omin : amin

z
∆1+∆2

2 w
τmin

2

w∆1
(− log z + reg.) , (2.66)

where w = 1− z̄. We match this with an expansion of the form of (2.44): ∑h̄ ah̄(1 +
1
2γh̄ log z)zτ0/2kh̄(z̄). We see that the anomalous dimensions correspond to the relative

power −aminw
τmin

2 between the terms ah̄ and ah̄γh̄, which translates exactly to the

result (2.65) using the kernel method.

The principles behind [63,64], essentially the argument in the proof of proposition 2.3,

were subsequently refined and extended to higher orders in the large spin expansion,

providing understanding of which crossed-channel operators correspond to particular

terms in the anomalous dimensions in various theories [66, 149]. Collectively these

methods became known as the lightcone bootstrap, used in parallel with the more gen-

eral analytic bootstrap. Thanks to its universal assumptions, the lightcone bootstrap

could be used for rigid derivations of facts valid in a wide range of theories. Starting

from some considerations in [64], this was used to rederive general properties of cor-

relators in holographic CFTs, where the expansion parameter is 1/CT [150]. If one

further assumes that the only light operator corresponding to a single-particle state

in AdS is the stress tensor, one gets a CFT definition of Einstein gravity. In [151]

CFT-data were derived for the double-twist operators in such a theory, the “double

stress tensors”. Another fruitful direction has been the relation to conformal collider

physics [152], leading to a proof of the average null energy condition [80]. Finally, a

demonstration of the lightcone bootstrap beyond any perturbative limit came in the

elegant paper [67]. There the CFT-data was computed for a large number of operators
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in the 3d Ising model using numerical bootstrap, and the spectrum was then analysed

from the lightcone bootstrap. While the twist family [σ, σ]0,` was easily understood,

the two families [ε, ε]0,` and [σ, σ]1,` have approximately equal τ∞ 29 and participate

in a non-trivial non-perturbative mixing, which generates an eigenvalue repulsion of

the two families at low spin.

Large spin perturbation theory (LSPT), proposed in 2016 in [68] and demonstrated

with a number of examples in [69], builds on the lightcone bootstrap with the following

additional ingredients. In LSPT, the anomalous dimensions and OPE coefficients are

treated on the same footing, whereas previous work had focussed mostly on the

former. Another feature is that the crossed-channel operators generating corrections

to the CFT-data may be introduced in terms of an ansatz where no assumptions

need to be made on for instance their anomalous dimensions. This introduces free

parameters in the theory, which can be fixed at later stages through consistency

conditions. These ingredients are tied together with a computational procedure of

computing CFT-data from the crossed-channel operators, which we call an inversion

procedure. We will give a more concrete presentation of large spin perturbation theory

at the end of this chapter, after we have introduced Caron-Huot’s Lorentzian inversion

formula [70], which provides one such inversion procedure.

The ideas generated from the analytic bootstrap and lightcone bootstrap have

become a powerful tool for practical computations. This has become particularly

useful in applications to holographic CFTs, in particular N = 4 SYM at strong

coupling. Specifically, studying the boundary CFT at second order perturbation

theory in the planar and strong coupling limit has generated results corresponding

to loop supergravity and string corrections in AdS [123–126, 153–157]. The main

obstacle that was overcome in these works was the resolution of mixing of degenerate
29As indicated in table 2.2, the operators σ and ε in the 3d Ising model are identified with φ and

φ2 in the ε expansion. The values ∆σ = 0.5181489(10) and ∆ε = 1.412625(10) [58] generate the two
values τ∞ = 2.825 and τ∞ = 3.036.
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operators, and it was shown on general grounds in [158] that the growth in degeneracy

is related to the number of extra dimensions in the dual gravity/string theory.

2.5 The Lorentzian inversion formula

A major concern with the lightcone bootstrap, and indeed large spin perturbation

theory, was the assumption, based on empirical observation, that CFT-data could

be written as analytic functions of spin, however with spin zero often excluded. For

instance, the reciprocity statement in proposition 2.1 relies on being able to differen-

tiate the function g. At best, the lightcone bootstrap could argue that the expansions

around infinite spin correspond to the asymptotic behaviour. Even with a large spin

expansion like (2.60) known to all orders, it would not be certain that the anomalous

dimension would take the precise value S1(`) for small or any finite value of `.

The situation was greatly improved by a paper by Caron-Huot in 2017 with the

title Analyticity in spin in conformal theories [70]. There it was not only shown that

the CFT-data is analytic in spin, but an explicit integral formula was provided for

performing the inversion procedures described above. With such a formula, one can

directly check that asymptotic series like (2.60), with appropriate non-perturbative

completions, indeed correspond to functions which give correct values at finite spin30.

The inversion formula plays a central role in this thesis, we will devote this whole

section to it. We start with an overview of its derivation, leaving the details to [70].

Then we will extract from the general formula a specific, one-dimensional formula

adopted for CFTs with a small expansion parameter. Since this is the main formula

of the thesis, we give a detailed derivation keeping track of all factors. Finally, the

Lorentzian inversion formula will allow us to rederive reciprocity and give a precise

formulation thereof.
30We refer generically to the large spin expansion as the asymptotic behaviour of CFT-data.

However, here we use asymptotic in the precise meaning of a series expansion with zero radius of
convergence.
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2.5.1 Caron-Huot’s inversion formula

We begin by summarising the derivation of the Lorentzian inversion formula in [70].

For simplicity we consider the case of external identical scalar operators. Details of

the computation, as well as the extension to non-identical scalars, can be found in

the original reference.

The starting point is the Euclidean inversion formula, which follows as a property

of harmonic analysis on the Euclidean conformal group SO(d + 1, 1) [159], for a

recent treatment see [160]. The objects of study there are conformal partial waves,

which form a basis for the space of Euclidean correlators. Each conformal partial

wave Ψ∆,`(z, z̄) is a function labelled by an positive integer spin ` and a continuous

dimension ∆ taking values on the principal series ∆ ∈ d
2 + iR. The conformal partial

wave can be constructed from the corresponding conformal block, together with the

conformal block with the shadow dimension:

Ψ∆,` = 1
2
(
G

(d)
∆,`(z, z̄) +N

(d)
∆,`G

(d)
d−∆,`(z, z̄)

)
, (2.67)

for some relative constant N (d)
∆,`. The conformal partial waves satisfy an orthogonality

relation 〈Ψ∆,`,Ψ∆′,`′〉 ∼ δ`,`′δ(−i(∆ − ∆′)), where the inner product is given by a

two-dimensional integration over the complex Euclidean z plane with an appropri-

ate measure factor. The Euclidean inversion formula is the corresponding Fourier

transform for a Euclidean correlator and results in a function C(∆, `) given by

C(∆, `) ∼
∫

dzdz̄ µ(z, z̄)Ψ∆,`(z, z̄)GEucl.(z, z̄), (2.68)

where µ(z, z̄) is a measure factor. The function C(∆, `) carries the dynamical infor-

mation of the correlator; for each spin ` it has residues at physical operator dimensions

∆ = ∆0 and the residues are proportional to the OPE coefficients of the correspond-

ing operators within the correlator G(z, z̄). We give the precise relation in (2.75)
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below. By looking at the inverse transform

GEucl.(z, z̄) ∼
∞∑
`=0

∫
∆∈ d2 +iR

d∆
2πiC(∆, `)Ψ∆,`(z, z̄) (2.69)

one can reproduce the Euclidean correlator. By closing the ∆ contour, evaluating the

residues, and disentangling the contributions from the shadow blocks one recovers the

usual conformal block decomposition (2.9) in the OPE limit.

The Lorentzian inversion formula presented by Caron-Huot for identical scalar

external operators φ takes the form [70]

C(∆, `) =
(
1± (−1)`

) κ∆+`

4

1∫
0

dz
1∫

0

dz̄µ(z, z̄)G(d)
d−1+`,1−d+∆(z, z̄)dDisc[G(z, z̄)],

(2.70)

where we now keep track of all factors, given by µ(z, z̄) = |z − z̄|d−2(zz̄)−d and

κβ = Γ(β/2)4

2π2Γ(β)Γ(β−1) . The kernel G(d)
d−1+`,1−d+∆(z, z̄) is functionally a conformal block,

but it corresponds to a non-physical operator with scaling dimension d − 1 + ` and

spin analytically continued to the value ∆ + 1 − d. This combination has the same

eigenvalues (2.16) and (2.17) under the Casimir operators as the block for dimension

∆ and spin `. The integration domain is now the spacelike Lorentzian kinematics,

i.e. the square in figure 2.1. Finally, the ± sign is the same as the transformation of

the correlator under 1↔ 2.

The derivation of the Lorentzian inversion integral takes as a starting point the

Euclidean formula, (2.68), with the correct normalisation factors inserted. The idea is

to analytically continue z and z̄ to independent complex variables, and perform con-

tour deformations. This requires dropping contributions from arcs at infinity, which

turns out to be valid for ` > 1 and relies on analytic properties of the conformal partial

wave and of the correlator. While the conformal partial waves have known analytic

properties, the constraints from the correlator require physical input. Specifically, we

require that the correlator belongs to a unitary CFT, and as such it is bounded in

the Regge limit. More precisely, the correlator is more bounded than any individual
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block (2.15) for ` > 1, which means that the contributions from operators with spin

` > 2 must all be related.

The result of the contour manipulations is a sum over four terms, where the

correlator is evaluated at Lorentzian kinematics z, z̄ ∈ (0, 1), but on different sheets

in the complex z̄ plane. The terms combine into the double-discontinuity

dDisc[G(z, z̄)] = G(z, z̄)− 1
2G
	(z, z̄)− 1

2G
�(z, z̄), (2.71)

defined as the correlator minus its two analytic continuations around z̄ = 1. From a

spacetime point of view, the double-discontinuity corresponds to the double commu-

tator of the correlator

dDisc[G(z, z̄)] = (zz̄)∆φ 〈0|[φ(0, 0), φ(z, z̄)][φ(1, 1), φ(∞)]|0〉 . (2.72)

The appearance of the double commutator is more obvious from the alternative deriva-

tion of the inversion formula given in [161]. Also there, the starting point is the

Euclidean inversion formula (2.68). The conformal partial wave is given a shadow

representation, introducing a further integral over a point x5. Under some partial

gauge fixing, the integral variables become x3 and x4. Subsequent contour deforma-

tions move these points from the Euclidean configuration via a Wick rotation to their

Lorentzian configuration. This results in four terms that combine into the double

commutator (2.72). Following the contour deformations in terms of the cross-ratios

shows that for two of the terms, z̄ moves in its complex plane around branch cut at

z̄ > 1 (in opposite directions), which produces the double-discontinuity (2.71).

2.5.2 The perturbative inversion formula

We now derive a one-dimensional version of the inversion formula (2.70), which will

be the main formula of this thesis. In particular, by focussing on a particular power

zτ0/2, the one-dimensional inversion formula will give the CFT-data corresponding to

a twist family of reference twist τ0. We will present two equivalent versions, (2.79)
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and (2.89), which are valid in perturbation theory, and give an explicit form of the

CFT-data for a family of operators with that reference twist.

We simplify the discussion by looking at the leading twist family, which dominates

the small z limit. Higher twist families are found by suitable projections, and we defer

this to section 3.2.4.2. We follow the manipulations of section 4 of [70] and write (2.70)

as31

C(∆, `) =
1∫

0

dz
2z z

`−∆
2

1∫
z

dz̄ 2K∆,`(z, z̄)dDisc[G(z, z̄)], (2.73)

where we have factored out a potentially non-integer power of z such that the re-

maining z dependence can be expanded in a power series:

K∆,`(z, z̄) =
∞∑
k=0

zkK
(k)
∆,`(z̄). (2.74)

This means that for each power zτ/2 in dDisc[G(z, z̄)], the integral over z results in a

pole

C(∆, `) ∼ − a`
∆− (τ + `) , (2.75)

as well as poles from k > 0. Taking the residue in ∆ for fixed integer ` shows the

existence of an operator with dimension τ + ` and OPE coefficient a`.

The kernel contains the non-physical conformal block G
(d)
d−1+`,1−d+∆(z, z̄), which

we expand in the collinear limit, (2.25). Changing variables to h = ∆−`
2 and h̄ = ∆+`

2 ,

this leads to an integral of the form

Ĉ(h, h̄) =
1∫

0

dz
z
z−h

1∫
0

dz̄
z̄2 κ2h̄kh̄(z̄)dDisc[G(z, z̄)], (2.76)

where C(∆, `) = 1
2Ĉ

(
∆−`

2 , ∆+`
2

)
and we extended the limit of the inner integral to 0.

When using (2.76) to read off the OPE coefficients, there will be an extra Jacobian

factor induced by the change of variables. If we are interested in the OPE coefficient
31We have limited the integral to z̄ > z, at the expense of an extra factor of 2, see [70] for details.
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for a particular spin `0, we integrate the residue of C(∆, `) against a delta function

a`0 = −
∫

d`
∮ d∆

2πiC(∆, `)δ(`− `0)

= −
∫

dh̄
∮ dh

2πiĈ(h, h̄)δ(h̄− h− `0). (2.77)

The locus hL of the pole in h will depend on h̄, and evaluating the δ function means

that we need to divide by the factor Jac = ∂
∂h̄

(h̄− hL(h̄)) evaluated at h̄ = hL + `0:

a`0 = − 1
Jac res

h=hL(h̄)
Ĉ(h, h̄)

∣∣∣
h̄=hL+`0

. (2.78)

Let us now specify to the case where we have a small expansion parameter g, which

means that we can derive an explicit relation between the integral and the CFT-data.

More precisely, we assume that the spectrum of the theory expands in a series in g,

where g = 0 corresponds to twist degeneracy, i.e. at g = 0 all operators in a twist

family has identical twist. With this assumption, we collect in the correlator G(z, z̄)

all powers zh that are infinitesimally close to some value zh0 , i.e. h = h0 + h1g + . . .,

at the expense of introducing logarithms zh = zh0(1 + gh1 log z + . . .). This defines a

generating function

T(log z, h̄) = T
(0)
h̄

+ 1
2T

(1)
h̄

log z + 1
8T

(2)
h̄

log2 z + . . .

= 2κ2h̄

1∫
0

dz̄
z̄2 kh̄(z̄) dDisc[G(z, z̄)]|zh0 , (2.79)

where we have chosen the rational prefactors of T (p)
h̄

as 2−p/p!. We will refer to (2.79)

as the perturbative inversion formula. The exact relation to the CFT-data is given

by the following theorem, formulated in analogy with [162].

Theorem 2.1. Study a correlator G(z, z̄) of identical scalar operators φ in an expan-

sion in g, in a theory where g = 0 corresponds to twist degeneracy. If the double-

discontinuity dDisc[G(z, z̄)] of a correlator of identical scalars φ, in an expansion in

g, contains a leading power zh0 , then the following holds.
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1. The OPE φ × φ contains an infinite family of operators O` for ` = 2, 4, . . ., of

twist τ = 2h0 + γ` with γ` ∼ O(g).

2. The OPE coefficients a` = c2
φφO` and the anomalous dimensions γ` of these

operators are analytic functions of spin, given by the formula

a`(γ`)p = T
(p)
h̄

+ 1
2∂h̄T

(p+1)
h̄

+ 1
8∂

2
h̄T

(p+2)
h̄

+ . . .
∣∣∣∣
h̄=h̄0

, h̄0 = h0 + `, (2.80)

for T (p)
h̄

given by (2.79).

In the case of mixing of operators within the twist τ = 2h0 family, (2.80) is modified

by

a`(γ`)p  〈a`γp` 〉 :=
d∑̀
i=1

a`,iγ
p
`,i, (2.81)

where a`,i and 2h0 + γ`,i denote the OPE coefficients and twists of the d` operators

of equal spin and approximate twist 2h0. The statement is now that the functions

〈a`γp` 〉 are analytic in spin.

Proof. Performing the z integral in (2.76) with G(z, z̄) = ∑
p z

h0Gp(z̄) logp z gives

Ĉ(h, h̄) =
∑
p

1∫
0

dz
z
z−h+h0 logp z

1∫
0

dz̄
z̄2 2κ2h̄kh̄(z̄)dDisc[Gp(z̄)]

= −
∑
p

2−p
(h− h0)p+1T

(p)
h̄
. (2.82)

Assume now that each function T (p)
h̄

admits an expansion in g starting at order gp 32.

To make this dependence visible we will make the temporary replacement T (p)
h̄
 

gp T
(p)
h̄

, and omit terms higher order in g at each p. This means that (2.82) takes the

form

Ĉ(h, h̄) = −
T

(0)
h̄

h− h0
− 1

2
gT

(1)
h̄

(h− h0)2 −
1
4

g2T
(2)
h̄

(h− h0)3 + . . . . (2.83)

Non-perturbatively, we expect only single-poles, which means that the presence of

higher order poles must be a result of the expansion in g. Consider the function
32It may be that the leading contribution is not at g0 but at some gα. Such overall contribution

can be factored out and the argument below holds.
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Ĉ(h, h̄) near the d` degenerate operators at spin `. Assuming twist degeneracy we

expect the dependence

Ĉ(h, h̄) = −
d∑̀
i=1

ai
h− (h0 + g

2γi)
, (2.84)

where we have explicitly factored out g and where we omit in γi the terms higher

order in g. Expanding this around small g gives

Ĉ(h, h̄) ∼
∑
i

ai
h− h0

+ g

2
aiγi

(h− h0)2 + g2

4
aiγ

2
i

(h− h0)3 + . . . , (2.85)

matching the pole structure of (2.83). In principle, we can now use (2.78) to read off

the OPE coefficients. This, however, requires computing the Jacobian factor, which

becomes complicated at higher order in g. Instead we will make direct use of (2.77)

to extract 〈a`〉. When evaluating the contour integrals in h, the higher order poles

generate derivatives of the integrand:

〈a`〉 (2.86)

=
∫

dh̄
(
T

(0)
h̄
δ(h̄− h− `)+ g

2∂h
[
T

(1)
h̄
δ(h̄− h− `)

]
+ 1

2

(
g

2

)2
∂2
h

[
T

(2)
h̄
δ(h̄− h− `)

]
+. . .

)
.

When integrating against h̄, the delta function turns the derivatives into derivatives

with respect to h̄, and we arrive at

〈a`〉 = T
(0)
h̄

+ g

2∂h̄T
(1)
h̄

+ g2

8 ∂
2
h̄T

(2)
h̄

+ . . .

∣∣∣∣∣
h0+`

. (2.87)

This proves the p = 0 case of (2.80). The case for higher p can be shown by multiplying

the integrand in (2.77) by (h − h0)p, and performing the same contour integration.

From (2.85) we see that this now corresponds to extracting 〈a`γp` 〉, and we get

〈a`γp` 〉 = gpT
(p)
h̄

+ gp+1

2 ∂h̄T
(p+1)
h̄

+ gp+2

8 ∂2
h̄T

(p+2)
h̄

+ . . .

∣∣∣∣∣
h0+`

, (2.88)

which finishes our proof.

For later convenience we define

U(log z, h̄) = Γ(h̄)2

π2Γ(2h̄)

1∫
0

dz̄
z̄2 kh̄(z̄) dDisc[G(z, z̄)]|zh0 , (2.89)
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where U(log z, h̄) = U
(0)
h̄

+ 1
2U

(1)
h̄

log z+ 1
8U

(2)
h̄

log2 z+ . . .. The CFT-data is now given

by

A`(γ`)p = U
(p)
h̄

+ 1
2∂h̄U

(p+1)
h̄

+ 1
8∂

2
h̄U

(p+2)
h̄

+ . . .

∣∣∣∣
h̄=h̄0

, h̄0 = h0 + `, (2.90)

where A` are related to the usual OPE coefficients by

a` =
Γ
(

∆+`
2

)2

Γ(∆ + `− 1)A`. (2.91)

The normalisation of U(log z, h̄) is defined such that the OPE coefficients of a free

scalar field in four dimensions correspond to A` = 2 33. The functions T and U carry

the same information, but in the following we find it useful to work with the U.

2.5.3 Reciprocity revisited

As promised, let us now return to the statement about reciprocity, namely that

CFT-data admit expansions around large spin organised in terms of integer powers

of J2 = h̄(h̄ − 1). From the discussion above, we have concluded that the CFT-

data of a twist family can be described by the function U(log z, h̄) computed from

the perturbative inversion formula (2.89). We assume that the double-discontinuity

dDisc[G(z, z̄)]|zh0 takes the form of a power series expansion in (1− z̄), multiplied by

an overall factor (1− z̄)α, however in general it can be a sum of several superimposed

such series, potentially with logarithmic insertions. Since it is the z̄ → 1 limit that is

responsible for the large spin expansion, we can always re-expand this series in terms

of 1−z̄
z̄
, giving

dDisc[G(z, z̄)]|zh0 =
∞∑
k=0

ck

(1− z̄
z̄

)α+k
. (2.92)

In section 3.4 we will explicitly show that integrating the terms in this sum against

the kernel in (2.89) gives the result

Γ(h̄)2

Γ(2h̄)

1∫
0

dz̄
z̄2 kh̄(z̄)

(1− z̄
z̄

)α+k
=

Γ
(
h̄− (α + k + 1)

)
Γ(α + k + 1)2

Γ
(
h̄+ (α + k + 1)

) . (2.93)

33In the original articles [2–4], the normalisation of U (p)
h̄

differs from here with a factor of 2h̄− 1.
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Thus expanding the integral of the sum (2.92) gives a sum of terms (2.93). Each such

term expands for large J =
√
h̄(h̄− 1) as J−2−2α−2k times integer powers of J−2. We

therefore conclude that the whole sum (2.92) expands as J−ν multiplied by integer

powers of J−2, where ν = 2 + 2α, which may not be an even integer.

Allowing for logarithms and superimposed series we have in general

U
(p)
h̄

=
∑
i

1
Jνi

∞∑
k=0

u
(p)
i,k (log J)
J2k . (2.94)

This will be used to derive the following precise version of the reciprocity principle,

equivalent to [65].

Theorem 2.2. For non-degenerate operators in a twist family, parametrised by `, the

anomalous dimensions γ` and the OPE coefficients a` satisfy the recursive relations

γ` = g
(
h̄+ 1

2γ`
)
, (2.95)

A` =
(

1− 1
2g ′

(
h̄+ 1

2γ`
))

A
(
h̄+ 1

2γ`
)
, (2.96)

with a` and A` are related by (2.91), where the functions A, g have asymptotic

expansions of the form

A(h̄) =
∑
i

1
Jαi

∞∑
k=0

ai,k(log J)
J2k , g(h̄) =

∑
i

1
Jβi

∞∑
k=0

bi,k(log J)
J2k , J2 = h̄(h̄− 1).

(2.97)

Proof sketch. Notice that both the functions U (p)
h̄

and the functions g and A admit

the same kind of reciprocity-respecting expansions. However, any derivative of such

functions will break this, since ∂h̄J2 = 2h̄ − 1 =
√

1 + 4J2. We therefore need to

check that these violating terms are exactly cancelled by the process of extracting the

CFT-data from U
(p)
h̄

and re-packaging it in the form (2.95) and (2.96)

We need to perform this proof order by order in perturbation theory, using the

fact that γ`, and therefore g, are of order g. The leading dependence of g and A is

given by γ` and A` respectively. They are in turn related to the functions U (p)
h̄

at
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leading order in (2.90), which is free from derivatives with respect to h̄: A` = U
(0)
h̄

and γ` = U
(1)
h̄
/U

(0)
h̄

. Hence the correct expansions of g and A at leading order follow

directly from the expansions (2.94) of the U (p)
h̄

.

At subleading order in the expansion parameter g, the derivatives with respect

to h̄ in (2.90) induce terms that break the J2 expansion. By carefully following the

propagation of all terms one can check that these terms cancel if and only if one

assumes that the operators are non-degenerate. This is because we have to impose

relations like U (2)
h̄

/
U

(0)
h̄

= γ2
` =

(
U

(1)
h̄

/
U

(0)
h̄

)2
which are not true for operators with

mixing.

2.6 Large spin perturbation theory

Large spin perturbation theory aims to produce perturbative results in conformal

field theories by using the crossing equation and inversion procedures for CFT-data.

These results are either specific for a given model, or generic for classes of CFTs

satisfying some stipulated assumptions. This is achieved through an initial ansatz of

crossed-channel operators generating the entire double-discontinuity of the four-point

function at a given order in perturbation theory, and through a systematic inversion

procedure. These steps are supplemented by imposing consistency conditions and

may be iterated at higher orders in the perturbation.

The results of large spin perturbation theory consist of a set of CFT-data, or

alternatively of an explicit expression for the correlator. These are essentially equiva-

lent; given the correlator, the CFT-data is found by a conformal block decomposition,

and given the CFT-data the correlator can be reconstructed by explicitly summing

conformal blocks, often referred to as resummation. The discovery of the Lorentzian

inversion formula adds a new dimension to this equivalence, as depicted in figure 2.6,

where we now note that the double-discontinuity of the correlator is equivalent to the
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U(log z, h̄) dDisc[G(u, v)]

a`, γ` G(u, v)
(
u
v

)∆φ G(v, u)

Input: crossed-channel operators

Result Result

Inversion integral

Resummation

Conformal block
decomposition

Crossing

Spin zero
contribution

a0, γ0

Figure 2.6: A flowchart describing the method of large spin perturbation theory. The
input is CFT-data for a small set of crossed-channel operators. The output is results for
the CFT-data or various twist families, or by resummation expressions for the correlator.
Using crossing, the twist families contribute in the crossed channel and the process can be
iterated.

.

function U(log z, h̄) through the Lorentzian inversion formula34. This leads to the

a commuting diagram, where the central rectangle of figure 2.6 conveys the picture

that the whole correlator G(u, v) is essentially determined by its double-discontinity

dDisc[G(u, v)]. This fact was formulated in [71] in terms of a dispersion relation. The

only ambiguities come from terms at low spin, which are beyond the range of validity

of the Lorentzian inversion formula (spin 0 and potentially spin 1).

It is now clear why large spin perturbation theory turns out to be an effective

method. At each order in perturbation theory, the entire double-discontinuity can be

generated from just a small subset of crossed-channel operators. The reason is that

the double-twist operators themselves have suppressed double-discontinuities in the

crossed-channel. This can be realised by considering a crossed-channel operator with

twist 2∆φ + 2n+γn,` in the double lightcone limit. By making the same expansion as
34The reverse arrow corresponds to the kernel method.
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in the proof of proposition 2.3, and taking the double-discontinuity, we get the term

dDisc
[

z̄∆φ

(1− z̄)∆φ
(1− z̄)

1
2(2∆φ+2n+γn,`)

]
∼ z̄∆φ

π2

2 (γn,`)2 , (2.98)

where we used that dDisc[log(1 − z̄)2] = 4π2. Hence we can see that the first non-

zero double-discontinuity appears at an order suppressed by the squared anomalous

dimension. In the theories that we reviewed in section 2.3, we marked out these

operators in the respective spectra by the grey bands in the figures 2.2, 2.3 and 2.5.

Our strategy will thus be as follows. Work at a given order in perturbation theory

and identify which operators have a non-zero double-discontinuity in the crossed

channel. Then create an ansatz for the double-discontinuity generated by these

operators—in a specific theory one may want to use additional information about

these operators, in a generic theory this introduces some undetermined constants.

Following through the inversion procedure gives the CFT-data of twist families at

this order. Next one can proceed to higher orders. New operators may appear, which

expand the ansatz. Eventually the double-twist operators themselves will also appear

but their contribution can be derived from results at lower order through crossing.

This induces an iterative procedure, cycling through the diagram in figure 2.6 multiple

times.

We have presented the Lorentzian inversion integral as the prototype way of re-

covering the CFT-data from the correlator. However, there are other inversion pro-

cedures as well, such as those used in the original papers on large spin perturbation

theory [68, 69]. In this thesis we will use such alternative procedures in chapter 5.

Before the role of the double-discontinuity was made clear, terms in the double light-

cone limit were classified as either regular or singular, where singular terms referred

to those that cannot be constructed from a finite sum of direct-channel blocks. In

chapter 5 we refer to these terms as having an enhanced singularity. These terms are

exactly those which develop a power-divergence in z̄ → 1 after repeated action by
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the collinear Casimir [66,67]. By constructing building blocks, called twist conformal

blocks or H-functions, as sums of conformal blocks modulated by powers of J−2, the

enhanced singularities can be matched between a correlator and the corresponding

CFT-data, turning the inversion into an algebraic problem [66,69].

After giving a practical guide to large spin perturbation theory in the next chapter,

we demonstrate the power of the method in chapter 4, where we apply it to the

Wilson–Fisher fixed-point and derive results up to order ε4 [2]. We comment on the

generalisation to O(N) symmetry [3]. Then we show in chapter 5 how the method

facilitates the computation of the most general four-point function at order g ∼ g2
YM

of a scalar of dimension 2 + O(g) in a four-dimensional conformal gauge theory [1].

We give further applications in chapter 6: The O(N) model at large N [4], general

φ4 theories in both an ε expansion and a large N expansion [5], multicritical theories

and an adaptation of chapter 5 to the Wilson–Fisher model.
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Chapter 3

A practical guide to large spin
perturbation theory

The previous chapter contained background material leading up to a formulation of

large spin perturbation theory in section 2.6, where the main idea was presented in

the diagram of figure 2.6. Large spin perturbation theory is a systematic framework

for studying perturbative conformal field theories and the procedure applies to a wide

range of theories. Anyone who wants to apply it to a new theory with a new set of

assumptions will follow through the diagram by executing the steps listed at the end

of chapter 1.

In the later chapters of this thesis we will give complete examples of applying

large spin perturbation theory to specific cases. However, heading straight into these

examples would obscure the many common features that emerge only after studying

several different theories. The purpose of the present chapter is therefore to high-

light these general aspects in order to give more information about each part of the

procedure outlined above. This includes introducing useful notation and giving some

specific statements in terms of some propositions and standard inversions.

At the centre of the diagram in figure 2.6 sits the the perturbative inversion for-

mula. Although other inversion procedures exist, it is the main tool of this thesis and
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we repeat it here:

U(log z, h̄) = Γ(h̄)2

π2Γ(2h̄)

1∫
0

dz̄
z̄2 kh̄(z̄) dDisc[G(z, z̄)]|zh0 , (3.1)

where τ0 = 2h0 is the reference twist of the twist family under consideration. To

appreciate how the formula works in practice, we give some concrete computational

examples in the first section of this chapter. In the subsequent sections we then

follow the steps of chapter 1. In section 3.2 we give some generic statements about

the structure of the OPE, both in the direct and the crossed channel. In section 3.3

we focus on how to compute the double-discontinuities that arise from the crossed-

channel operators. In section 3.4 we survey the most useful ways of executing the

inversion integral (3.1) and give some concrete examples of inversions. We finish the

chapter with section 3.5 containing a literature review of applications of large spin

perturbation theory to date.

3.1 Invitation: sums and inversions

The inversion formula (3.1) is the main tool for performing the inversion procedure

that plays the central role in large spin perturbation theory. In this section we will

give some concrete examples of how the inversion procedures work in practice. The

examples we consider here will be used later in the thesis, typically for leading order

computations. At higher order in g, more complicated functions will appear and to

explicitly perform the inversion procedure will require a variety of methods, explained

later on.

The central square of figure 2.6 represents the computational machinery of large

spin perturbation theory. Working in the collinear limit, the z dependence decouples

and we are in practice left with sums and inversions of SL(2,R) blocks. This is

essentially a one-dimensional problem, where the CFT-data is parametrised by spin
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`, or equivalently by h̄ = τ0/2 + `, and the correlator is a function of z̄. The CFT-

data of operators with spin ` > 0 is represented by U(h̄), which is computed by the

inversion integral

U(h̄) = Γ(h̄)2

π2Γ(2h̄)

1∫
0

dz̄
z̄2 kh̄(z̄)dDisc[G(z̄)], (3.2)

where the double-discontinuity is still taken around z̄ = 1. We will now give some

explicit examples of the second line of figure 2.6, namely resummation and conformal

block decomposition. For simplicity we assume that we are working with operators

on the unitarity bound in four dimensions, which means that the SL(2,R) block

decomposition corresponding to (3.2) is

∑
`=`0,`0+2,...

Γ(`+ 1)2

Γ(2`+ 1)U(`+ 1)k`+1(z̄) = G(z̄). (3.3)

In the free four-dimensional theory, it is natural to begin the sum at `0 = 0. However,

since J2 = `(` + 1) becomes zero for ` = 0 we take `0 = 2. The difference would be

the spin zero SL(2,R) block: k1(z̄) = − log(1− z̄).

3.1.1 Elementary sums of SL(2,R) blocks

Let us start with the simplest possible sum, where U(h̄) is a constant. For later

convenience, we choose the constant to be 2. In this case, the sum (3.3) can be

performed directly with computer algebra software like Mathematica [163], by using

the following manipulations. First we use a convenient integral representation for the

SL(2,R) block in the integral kernel,

kh̄(z̄) = Γ(2h̄)
Γ(h̄)2

z̄h̄
1∫

0

dt
t(1− t)

(
t(1− t)
1− tz̄

)h̄
. (3.4)

Then the sum over ` = 2, 4, . . . can be performed to give a rational function in t and

z̄. Finally, integrating over t gives the result

∑
`=2,4,...

Γ(`+ 1)2

Γ(2`+ 1)2k`+1(z̄) = 1
1− z̄ + z̄ − 1 + 2 log(1− z̄)︸ ︷︷ ︸

regular

, (3.5)
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where we have marked the terms that are regular in the limit z̄ → 1. By regular we

mean terms which have no double-discontinuity in this limit, corresponding to terms

which have a regular series expansion at z̄ → 1, or a series expansion multiplied by

a single factor of log(1 − z̄). Notice that we could have absorbed the logarithm by

extending the sum to include the ` = 0 block k1(z̄) = − log(1− z̄).

Another explicit example of a sum is the case where U(h̄) = 2/J2, for J2 =

h̄(h̄− 1). We have

∑
`=2,4,...

Γ(`+ 1)2

Γ(2`+ 1)
2

`(`+ 1)k`+1(z̄) = 1
2 log2(1− z̄) + 2 Li2(z̄) + 2 log(1− z̄)︸ ︷︷ ︸

regular

, (3.6)

where Lip(x) denotes the polylogarithm. This sum is in fact much harder to find

than (3.5) by explicit computations. Indeed, very few sums of conformal blocks can

be computed directly, which means that typically resummation is a more difficult

task than conformal block decomposition1. A practical way of performing the sum

(3.6) is therefore to make use of the conformal block decomposition. It turns out

that in some cases, sums of SL(2,R) blocks kh̄(z̄) organise according to a transcen-

dentality principle, and in general take the form of rational functions of z̄ multiplied

by polylogarithms. From the result it is clear that an ansatz of polylogarithms of

maximal combined degree 2 would be enough to perform the sum (3.6) (recall that

Li1(z̄) = − log(1− z̄)).

We finish by giving a couple of examples of sums, computable in the same way,

where U(h̄) involve the harmonic numbers:

∑
`=2,4,...

2Γ(`+ 1)2

Γ(2`+ 1) S1(`)k`+1(z̄) = − log(1− z̄)
2(1− z̄) + 1

2(1 + z̄) log(1− z̄)︸ ︷︷ ︸
regular

, (3.7)

∑
`=2,4,...

2Γ(`+ 1)2

Γ(2`+ 1)
S1(`)
`(`+ 1)k`+1(z̄) = − log3(1− z̄)

12 . (3.8)

1However, the conformal block decomposition gives only the OPE coefficients, here corresponding
to U(`+ 1), one by one in `, and it may be a non-trivial task to deduce the closed form. In practice,
these tasks are often accomplished by a combination of educated guessing, the use of functions such
as Mathematica’s FindSequenceFunction [163] and searches in the Online encyclopedia of integer
sequences [164].
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Here the latter sum has no regular part.

3.1.2 Elementary inversions for SL(2,R) blocks

In the explicit sums given above, we have indicated the regular parts, which have no

double-discontinuity. Let us now show how the functions U(h̄) used to produce these

sums can be recovered from the inversion integral, using only the enhanced singular

part.

It is easiest to start with the terms involving no negative powers of 1− z̄, and we

begin by analysing the sum in (3.6). We letG(z̄) = 1
2 log2(1− z̄)+2 Li2(z̄)+2 log(1−z̄)

and start by computing the double-discontinuity. As discussed above, only the first

term has a double-discontinuity, and a direct use of the definition (2.71) gives

dDisc[log2(1− z̄)] = log2(1− z̄)− 1
2 (log(1− z̄) + 2πi)2− 1

2 (log(1− z̄)− 2πi)2 = 4π2,

(3.9)

which implies that dDisc[G(z̄)] = 2π2. This means that U(h̄) is given by the integral

U(h̄) = Γ(h̄)2

π2Γ(2h̄)

1∫
0

d z̄
z̄2 kh̄(z̄)2π2 = 2

∫
[0,1]2

dtdz̄
t(1− t)z̄2

(
t(1− t)z̄

1− tz̄

)h̄
, (3.10)

where we used the integral representation (3.4) for kh̄. Evaluating first the z̄ integral

and then the t integral gives U(h̄) = 2
h̄(h̄−1) , in exact agreement with (3.6). To

systematise the notation it is useful to write the result of the inversion as

INV[G(z̄)] = Γ(h̄)2

π2Γ(2h̄)

1∫
0

dz̄
z̄2 kh̄(z̄)dDisc[G(z̄)]. (3.11)

In this notation we have shown that

INV[log2(1− z̄)] = 4
J2 . (3.12)

Using dDisc[log3(1− z̄)] = 12π2 log(1− z̄) we can use the same integral representation

as in (3.10) to show that

INV
[

log3(1− z̄)
12

]
= −2S1(h̄− 1)

h̄(h̄− 1)
. (3.13)
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We now turn to the inversion problem corresponding to the sum (3.5). The in-

version of negative integer powers of 1− z̄ requires a regularisation, and we therefore

start by considering the inversion of the general power G(z̄) =
(

z̄
1−z̄

)p
. Since we have

dDisc
[(

z̄

1− z̄

)p ]
= 2 sin2(πp)

(
z̄

1− z̄

)p
, (3.14)

we get, again using the integral representation (3.4),

U(h̄) = 2 sin2(πp)Γ(1− p)2Γ(h̄+ p− 1)
π2Γ(h̄− p+ 1)

. (3.15)

We see that this expression vanishes for p = 0,−1,−2, . . . which corresponds exactly

to the cases where G(z̄) becomes regular. In the limit p→ 1 the pole at Γ(0) cancels

with the zero at 1
π

sin π, and we recover U(h̄) = 2, in agreement with (3.5). This can

also we written

INV
[ 1
1− z̄

]
= 2. (3.16)

We save the inversion corresponding to the sum (3.7) until we have discussed the

SL(2,R) Casimir operator.

3.1.3 Inversion integral and the Casimir

A very important tool in computing inversions is the SL(2,R) Casimir operator D =

(1 − z̄)z̄2∂2
z̄ − z̄2∂z̄, introduced in section 2.2.2, which on the SL(2,R) blocks has

eigenvalue J2 = h̄(h̄− 1):

Dkh̄(z̄) = J2 kh̄(z̄). (3.17)

Acting with D on a sum of (3.3) for a given U(h̄) will therefore give the corresponding

sum with U(h̄) replaced by h̄(h̄− 1)U(h̄). The same holds for the inversion integral,

and we get the useful equation

INV
[
DG(z̄)

]
= J2 INV [G(z̄)] . (3.18)
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Table 3.1: Some elementary inversion results, where w = 1− z̄ and J2 = h̄(h̄− 1), showing
pairs G(z̄) and U(h̄) = INV[G(z̄)].

G(z̄) U(h̄) DG(z̄) J2U(h̄)

log2w
4
J2

2
w

+ reg. 4

log3w −24S1(h̄− 1)
J2

6 logw
w

+ reg. −24S1(h̄− 1)

This can be used to demonstrate the last of the four sums discussed in section 3.1.1.

We note first that D log3(1− z̄) = log(1−z̄)
1−z̄ . Then the relation (3.18) combined with

the inversion (3.13) gives that

INV
[

log(1− z̄)
1− z̄

]
= J2 INV

[1
2 log3(1− z̄)

]
= −4S1(h̄− 1). (3.19)

We summarise the four elementary inversions discussed in this section in table 3.1.

In appendix B.1 we collect more results of this kind, useful for inversions near four

dimensions and in particular for chapter 4.

In fact, the relation (3.18) between the Casimir D and its eigenvalue J2 can be

used to derive the exact form of the SL(2,R) inversion integral (3.11). We give this

argument in section 4.2.2. However, such derivation relies on the assumption that the

CFT-data of the underlying theory is analytic in spin down to some finite value. The

extraction of the perturbative inversion formula from Caron-Huot’s general formula,

which we worked out in section 2.5.2, is therefore necessary to establish analyticity

and to determine the limit `0 below which we can not trust the result.

3.1.4 An algebraic method

The discussion so far shows that there is a direct correspondence between the func-

tions U(h̄) and the enhanced divergent part of G(z̄). This implies that by matching

appropriate terms on both sides we can turn the inversion problem into an algebraic

problem. This programme was initiated in [66] and was the main method used in the

original papers on large spin perturbation theory [68, 69]. In chapter 5 based on [1],
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we develop this idea further. We define what we call H-functions, which are a special

case of the more general twist conformal blocks introduced in [68]. The H-functions

are sums of conformal blocks modulated by a specified function of J2 2

H
(m,logn)(z̄) =

∑
h̄

Γ(h̄)2

Γ(2h̄− 1)
logn J
J2m kh̄(z̄) + reg. (3.20)

By expanding the CFT-data as

U(h̄) =
∑
m,n

A(m,logn)
logn J
J2m . (3.21)

we can write the sum (3.3) as

∑
m,n

A(m,logn)H
(m,logn)(z̄) = G(z̄) + reg. (3.22)

The H-functions can be computed by various techniques, but once they have been

found the inversion procedure can be turned into a simple algebraic problem involving

solving systems of linear equations. We give further details of this method, including

an explicit toy example, in section 5.3.

3.1.5 The free 4d scalar

We finish this section by a concrete example, namely the free scalar field theory in

four dimensions. Using Wick contractions the four-point function of the field φ takes

the form

G(u, v) = 1 + u

v
+ u. (3.23)

We will now demonstrate that this correlator can be determined completely from its

double-discontinuity, which is the middle term u
v
. This term corresponds precisely to

the exchange of the identity operator in the crossed channel, which demonstrates the

machinery of large spin perturbation theory as prescribed in figure 2.6: The identity

operator generates a double-discontinuity, inverting this produces the CFT-data of
2The H-functions used in chapter 5 have an additional factor 2cz̄ compared to here.
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direct-channel operators which resums into the correlator (3.23), constituting our

result.

Expanding dDisc[G(u, v)] in the collinear limit we get

dDisc[G(u, v)] = dDisc
[

z

1− z̄

]
+O(z2). (3.24)

From the power z we see that the double-discontinuity must correspond to operators

of reference twist τ0 = 2, and from the lack of dependence on log z we see that U (p)
h̄

=

0 for p = 1, 2, . . ., meaning that the corresponding operators have no anomalous

dimension. The inversion (3.16) gives immediately that

U
(0)
h̄

= 2, (3.25)

from which we derive the four-dimensional free field OPE coefficients using (2.90) and

(2.91):

a` = 2Γ(`+ 1)2

Γ(2`+ 1) . (3.26)

The next step is to perform the resummation of the correlator. The four-dimensional

conformal blocks were given in (2.21) and for τ = 2 they take the particularly simple

form

G2,`(z, z̄) = zz̄

z − z̄
(k`+1(z)− k`+1(z̄)) . (3.27)

This means that we can use the sum (3.5) to compute3

∑
`=0,2,...

2Γ(`+ 1)2

Γ(2`+ 1) G2,`(z, z̄) = zz̄

(1− z)(1− z̄) + zz̄. (3.28)

Adding the direct-channel term 1 corresponding to the identity operator, we have re-

constructed the correlator (3.23). We shall also check subleading powers in z omitted

in (3.24). A careful analysis shows that they correspond to subleading contributions

of the τ = 2 operators, which means that no further operators need to be considered.
3In the free theory, the formula (3.26) analytically continues to spin zero. In principle, this

OPE coefficient could take any other value, and the ambiguity at spin zero must be checked by
independent methods such as a direct analysis of crossing.
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We conclude this section by discussing how to generate corrections to the free

theory. From (2.98) it is clear that any new double-discontinuity must arise at order

g2 for some coupling g. This means that no operator in the leading twist family will

receive anomalous dimensions until order g2. The only exception is at spin zero, where

analyticity in spin does not hold. We can therefore define g = γφ2 and conclude that all

CFT-data at order g2 will be depending on this constant. The leading contribution

to U
(1)
h̄

from the operator φ2 is proportional to −g2dDisc[log2(1− z̄)]. Using the

inversion (3.12) we get U (1)
h̄
∼ −g2/J2, and ultimately we get

γ` = − g2

`(`+ 1) +O(g3). (3.29)

Noting that γφ2 = ε
3 + O(ε2) this agrees precisely with the result (2.48) quoted in

section 2.3.3. In chapter 4 we continue reconstructing the Wilson–Fisher model from

large spin perturbation theory and ultimately compute all CFT-data of the spinning

operators to order ε4. Further explicit results in the Wilson–Fisher model can be

found in [165], where the whole correlator at order ε2 is given.

3.2 Correlators and twist families

The first step in an application of large spin perturbation theory is to specify a given

conformal field theory and a correlator to study. Large spin perturbation theory will

then generate CFT-data for twist families in this correlator. Of course, the details

depend on the specific choice of theory and correlator, but there are some universal

features that we will describe here.

3.2.1 Direct channel structure

We limit ourselves to the simplest case and consider the four-point function of identical

external operators. The generic content of twist families appearing in such a correlator

is described by the following three propositions, however any specific theory may of
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course contain other twist families as well. In these propositions, we allow φ to have

generic dimensions, not necessarily close to the unitarity bound.

Proposition 3.1. The φ × φ OPE contains operators φ∂`φ = [φ, φ]0,` with τ` =

2∆φ + γ`.

This is essentially the statement we proved in proposition 2.2. In addition, unless we

are in the free theory, we have GFF operators with twists τn,` = 2∆φ + 2n + γn,` for

all positive n. If φ is near the unitarity bound, i.e. ∆φ = µ− 1 +O(g) with µ = d/2,

the OPE coefficients of the GFF operators for n > 1 are suppressed with a factor g

compared to n = 0. This can be seen from the explicit expression (2.42).

Proposition 3.2. In theories where the expansion parameter g corresponds to a

coupling constant, the φ×φ OPE contains weakly broken conserved currents J` with

τ` = d− 2 + γ̃`, where in the non-degenerate case we have γ̃2 = 0.

Proposition 3.2 can be proved by the following argument. Analyticity in spin means

that any operator with spin ` > `0 = 1 must be member of a twist family. Since

the stress tensor always appears in the OPE of any two identical operators, with a

non-zero OPE coefficient given by (2.31), it must be a member of the leading twist

family. If γ̃` is order g, proposition 3.2 follows. However, in expansions around

strong coupling the argument may break down. The reason is that at each order

in the strong coupling expansion, the limit `0 of analyticity may be shifted upwards

to another small integer [162]. Non-perturbatively, as well as in a weak coupling

expansion, the limit `0 = 1 holds. In section 5.1 of [70], this is discussed further in

the context of a CFT dual to Einstein gravity, where it is only non-perturbatively

that the stress tensor belongs to a twist family.

Proposition 3.3. Assume that the φ × φ OPE contains an operator O with OPE

coefficient aO = c2
φφO, where ∆O 6= 2∆φ +O(g) and ∆O 6= ∆φ +m+O(g) for m ∈ Z.
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Then the φ× φ OPE contains the operators [O,O]n,` with OPE coefficients at order

a2
O.

Proof. We follow the approach of appendix E of [4] and consider the mixed correlator

〈φ(x1)φ(x2)O(x3)O(x4)〉. The crossing equation reads

GφφOO(u, v) = u∆φ

v
∆φ+∆O

2

GOφφO(v, u). (3.30)

By assumption cφOφ = cφφO is non-zero, which means that the crossed-channel OPE

contains the operator φ. It contributes to the double-discontinuity with a term pro-

portional to its conformal block, which in the mixed correlator takes the form [51]

G
(d)
∆,0|∆i

= v
∆
2

∞∑
m,n=0

(
∆+∆12

2

)
m

(
∆−∆34

2

)
m

(
∆−∆12

2

)
m+n

(
∆+∆34

2

)
m+n

(∆)2m+n(∆ + 1− µ)m
vm(1− u)n

m!n! (3.31)

with ∆ij = ∆i−∆j represent the crossed-channel external operator dimensions ∆1 =

∆4 = ∆O, ∆2 = ∆3 = ∆φ. We focus on the leading contribution to the CFT-data,

which comes from the m = 0 term. For this term, the sum over n can be computed

and gives, together with the crossing factor,

u∆φ

v
∆φ+∆O

2

G
(d)
∆,0|∆i

= u∆φ

v
∆O

2
2F1

(
∆φ −

∆O
2 ,∆φ −

∆O
2 ; ∆φ; 1− u

)
+O(v−

∆O
2 +1). (3.32)

Using (A.8) to expand the hypergeometric for small u, which is equivalent to small

z, we get two contributions,

u∆φ

v
∆φ+∆O

2

G
(d)
∆,0|∆i

= C1

(
u∆φ

v
∆O

2

+O(u)
)

+ C2

(
u∆O

v
∆O

2

+O(u)
)
, (3.33)

for some constants C1 and C2 depending only on the involved operator dimensions.

C2 is regular and non-zero as long as the assumptions in the proposition are satisfied.

This term signals the existence of operators [O,O]0,` in the direct channel, with OPE

coefficients

cφφ[O,O]0,`cOO[O,O]0,` ∼ c2
φOφ = aO. (3.34)

Using that cOO[O,O]0,` are of order 1 by proposition 3.1, we conclude that c2
φφ[O,O]0,` ∼

a2
O. The case n > 0 follows by projections to higher twist and is valid as long as

∆O 6= µ− 1 +O(g).
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3.2.2 Spin zero

As we reviewed in section 2.5, an important step in the derivation of the Lorentzian

inversion formula [70] is the contour deformations from the Euclidean integration

domain C to the Lorentzian region z, z̄ ∈ [0, 1], a manipulation that is valid for spin

` > 1. This means that the analytic expressions for CFT-data that result from the

inversion formula may not correctly reproduce the CFT-data for operators at spin

` = 0 or ` = 1. Indeed, it is the case in some examples that the spin zero operator of

a given twist family explicitly breaks the formula for e.g. anomalous dimensions. On

the other hand, there are also many examples where the spin zero operator appears

to obey the generic spin formula. A systematic determination of the conditions under

which this happens remains an open problem. We summarise here a number of

observations made in connection with the theories studied in this thesis.

As a first attempt to analyse the situation, we can study the convergence properties

of the inversion integral from the one-dimensional perturbative inversion formula

(3.1). The limit z̄ → 0 in the integration domain induces a pole at h̄ = 1. This has

two implications: Firstly, the evaluation of the CFT-data at the spin corresponding to

value of h̄ ≈ 1 may not be defined, or least needs to be suitably regularised. Secondly,

for any spin corresponding to h̄ < 1, the CFT-data has to be evaluated in its analytic

continuation beyond the first pole, which is beyond the region of convergence of the

inversion integral.

From the relation h̄ = τ0
2 +` it is clear that the pole at h̄ = 1 in many cases affects

only the leading twist family. This is for instance the case in N = 4 SYM, where we

observed in section 2.3.4 that the leading twist anomalous dimension in the average

(2.52) has a finite support solution at spin zero. In chapter 5 we will assume that the

CFT-data in the higher twist families can be extended to spin zero with no ambiguity.

For instance, at the subleading twist, τ0 = 4, the pole is at ` = −1 which is beyond the

physical values of spin. However, there exist solutions to crossing which have finite
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support in spin at all twists. They were first constructed in [105] and correspond

via holography to higher derivative interactions in AdS. For such theories, the Regge

bounds used in establishing the inversion formula must be suitably modified.

The critical and multicritical models offer another venue for exploring spin zero.

In the multicritical theories, i.e. the λφ2θ theories for θ > 3 as displayed in figure 1.1,

the operator φ2 can be included in the family of weakly broken currents φ∂`φ, and

the CFT-data correctly extends to spin zero. Since h̄ = µ − 1 + ` and µ ≤ 3
2 , this

leads to an evaluation to the left of the pole at h̄ = 1, but the result is still consistent

with the literature. We give more details of this in section 6.3.

In the φ4 case with O(N) symmetry, the situation is more subtle, but it turns

out that in both the ε expansion and in large N expansion, the CFT-data of broken

currents can be extended to spin zero in a suitable way. In the ε expansion, spin zero

appears at the pole h̄ = 1, but by shifting from the bare conformal spin h̄ to the full

conformal spin h̄f = ∆+`
2 , the pole can be resolved at the expense of a factor of ε. This

means that the spin zero operator φ2 has an anomalous dimension of one order lower

in ε than the broken currents, which is in agreement with the literature. We discuss

this further in section 4.2.4 based on [2]. In the large N expansion, the behaviour at

spin zero depends on whether the representation contains an auxiliary field at spin

zero. In the traceless symmetric, T , representation the CFT-data trivially extends to

spin zero as in the multicritical models. In the singlet, S, representation, the scaling

dimension extended to spin zero satisfies instead a shadow relation with respect to

the auxiliary field σ:

∆S,0 = d−∆σ. (3.35)

This relation, trivial at infinite N , appears to holds also in perturbation theory in

1/N . We use this to analyse φ4 theories in section 6.1 for O(N) case and section 6.2

in a generalised large N expansion for generic global symmetry.
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Finally, in [71] it was discussed how the inversion formula can be improved by

suitably subtracting the terms that determine the limit of convergence `0. Of course,

also in this approach the spin zero operators need to be added by hand, but the

discussion may be useful in explaining why the operators at spin zero in the cases

described above do inherit properties from the corresponding twist family.

3.2.3 Global symmetries and crossing

In the case of global symmetry, the formalism introduced here can be easily modified

by introducing an extra label R representing the irreducible representations involved

in a given correlator. We typically consider the correlator of φI , where I is an index

for the vector representation V of a global symmetry group. Then the correlator can

be projected onto the irreps R in the tensor product V ⊗ V by introducing tensor

structures TIJKL
R . This means that we write the correlator as

〈
φI(x1)φJ(x2)φK(x3)φL(x4)

〉
= 1
x

2∆φ

12 x
2∆φ

34

∑
R∈V⊗V

TIJKL
R GR(u, v), (3.36)

where each function GR(u, v) has a conformal block decomposition of the form (2.9),

GR(u, v) =
∑
OR

c2
φφORG

(d)
∆OR ,`OR

(u, v). (3.37)

The representations R will have different parity transformations under x1 ↔ x2, and

if the tensor structure TIJKL
R is even (odd) under I ↔ J , the operators in the sum

(3.37) have even (odd) spin. The crossing equation can be written on the form

GR(u, v) =
(
u

v

)∆φ ∑
R̃∈V⊗V

M
RR̃
G
R̃

(v, u), (3.38)

where the exact form of the matrix M
RR̃

has to be worked out from the tensor

structures TIJKL
R for a given symmetry group. We give the matrix for the O(N) case

in (6.2) in section 6.1.

The types of operators described above now exist in various different represen-

tations. Double-twist operators [φ, φ]R,n,` according to proposition 3.1 exist in all
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representations R ∈ V ⊗ V . In addition, for operators R1 and R2 in irreps R1 and

R2 respectively, proposition 3.3 generalises to operators [R1,R2]R,n,` in all represen-

tations R ∈ R1 ⊗R2 ∩ V ⊗ V .

The twist families containing conserved currents are more interesting. Proposi-

tion 3.2 only applies to the singlet S representation. If this representation is nor-

malised such that the contribution from the identity operator is 1, then the OPE

coefficient of the stress tensor at spin two in (3.36) has exactly the same relation to

the central charge as in (2.31) above, namely

∆S,2 = d, aS,2 =
d2∆2

φ

4(d− 1)2CT
. (3.39)

If the global symmetry is continuous, there are conserved currents in one or several of

the odd representations, with ∆R,1 = d−1, and corresponding current central charges

related to the normalisations of the irreps.

3.2.4 Further aspects
3.2.4.1 Mixing

Mixing of operators within a twist family is a major hurdle for the analytic bootstrap

and it has two serious consequences. One consequence affects the goal of large spin

perturbation theory, namely to derive explicit results for the CFT-data. The existence

of mixing means that one can, in general, only access averages such as 〈aγ〉 in (2.45).

Since these averages are defined within the specific correlator, they are not very

meaningful observables of the theory. On the other hand, these averages are precisely

the building blocks needed to compute the mentioned correlator, which hence can be

computed without resolving the mixing.

The second consequence happens when large spin perturbation theory is iterated

to subleading orders in g. For instance, the contribution from the double-twist oper-

ators themselves is proportional to〈
(aγ2)`

〉
=

d∑̀
i=1

a`,iγ
2
`,i. (3.40)
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If d` > 1, knowing the averages 〈a〉 and 〈aγ〉 does not lead to (3.40) without knowing

the individual anomalous dimensions.

As we saw in section 2.3.4, the mixing of leading twist operators in N = 4 SYM

can be explicitly resolved, since the individual anomalous dimensions are known and

related to the universal function γuniv.(`). In section 2.4.2, we mentioned that in

addition, for correlators of half-BPS operators in the planar expansion, the mixing

has been resolved also for higher-twist operators. There, the structure of individual

anomalous dimensions has a lot of symmetry, and has in fact been explained in terms

of a, potentially accidental, ten-dimensional conformal symmetry [154].

In chapter 4 we encounter the same difficulty, in this case involving mixing within

the operators ∂`φ4 in the Wilson–Fisher fixed-point. In that case, a transcendentality

principle facilitates an ansatz for the sum of the twist family, consistent with the

non-degenerate cases at spins ` = 0 and ` = 2.

3.2.4.2 Projections onto higher twist families

So far, we have been concerned with extracting CFT-data for the leading twist fam-

ily in a given CFT. Specifically, the perturbative inversion formula (3.1) involves a

projection to the power z∆φ , which corresponds to studying CFT-data of operators

with reference twist τ0 = 2∆φ. By instead projecting onto another power, say zh0 one

can extract CFT-data for a family with reference twist τ0 = 2h0. Everything that we

have described so far translates to the general case when h0 and ∆φ are not related

by an integer, i.e. when h0 6= ∆φ + n + O(g) for n ∈ Z. We will now outline what

happens when h0 and ∆φ are related by an integer.

Let us assume that the inversion problem has been studied at reference twist

τ0 = 2h0, which could be 2∆φ, and that we are interested in operators in a subleading

twist family with τ0 = 2h0 + 2n for some positive integer n. To this end we define a
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new function

T{h0}(z, log z, h̄) =
∞∑
n=0

zh0+n2κh̄
1∫

0

dz̄
z̄2 kh̄(z̄) dDisc[G(z, z̄)]|zh0+n

=
∞∑
n=0

zh0+nTh0+n(log z, h̄), (3.41)

computed from the double-discontinuity of all powers of z related to zh0 by an integer

multiple. In this notation T(log z, h̄) of (2.79) corresponds to the n = 0 term for

h0 = ∆φ.

Assume that we are interested in the reference twist 2h0 + 2 and that we have

computed both Th0(log z, h̄) and Th0+1(log z, h̄). In the direct channel at the power

zh0+1 we have both contributions from subleading collinear blocks of the twist 2h0

operators, and contributions from the new operators at twist 2h0 + 2. Using the form

of the subcollinear blocks, given explicitly in appendix A.1, we get

∑
h̄

(
S(log z, h̄)kh̄(z̄)+

1∑
i=−1

c1,i(h0+γ
2 , h̄)Th0(log z, h̄)kh̄+i(z̄)

)
=
∑
h̄

Th0+1(log z, h̄)kh̄(z̄),

(3.42)

where S(log z, h̄) denotes the contribution due to new primary operators at twist

2h0+2, and γ is the anomalous dimensions at twist 2h0. The trick to extract S(log z, h̄)

is to use a linear change in variables in the sum such that all terms in (3.42) multiply

kh̄(z̄). Ignoring regular terms, this re-writing means that we can read off the equation

S(log z, h̄) = Th0+1(log z, h̄)−
1∑

i=−1
c1,i(h0 + γ

2 , h̄− i)Th0(log z, h̄− i). (3.43)

The change in variables in the sum is allowed, because the difference between a sum

and its shifted version corresponds to a single conformal block and therefore contains

no enhanced divergence. The procedure outlined here generalises to higher order

powers zh0+n, where corrections from subcollinear blocks of all lower twist families

need to be projected away.
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3.3 Contributions from crossed-channel operators

In this section we give some more details on how to compute the double-discontinuity

of a correlator in a given theory from crossed-channel operators. As outlined in

figure 2.6 in section 2.6, at any given order in the expansion parameter g, the double-

discontinuity will be computed by considering operators appearing in the crossed-

channel conformal block decomposition. Let us now refer back to figure 2.1, displaying

the kinematic limits in Lorentzian signature. The conformal blocks of crossed-channel

operators naturally expand in the crossed-channel OPE limit, i.e. for small 1− z and

small w = 1− z̄. The small w expansion is convenient, since it can be carried over to

the double-lightcone limit where it generates a large J2 expansion for the CFT-data.

The small 1− z expansion, however, is problematic, since the perturbative inversion

formula (3.1) requires expanding in small z and extracting the coefficient of a given

power. This requires a summation and re-expansion of powers of 1− z.

In summary, our strategy is therefore as follows:

1. At each order in g, identify which operators contribute with a non-zero double-

discontinuity at that order.

2. Find expressions for the conformal blocks in the crossed-channel OPE limit for

these operators.

3. Compute full sums over powers (1−z)k, and then re-expand the result in small z.

4. Select an appropriate power zh0 , and construct the corresponding function G(z̄)

to invert, either in closed form or as a series in w = 1− z̄.

The headings below give some details about each step. Importantly, due to the re-

expansion in z, the contribution to the double-discontinuity from operators in a twist

family must be treated collectively. Since the crossed-channel large spin limit exactly

corresponds to the direct-channel small z limit, performing the sum over spins can

86



introduce new non-trivial behaviour at small z not exhibited by a single crossed-

channel block. We will therefore separate the case of contribution from individual

operators, which will be predominantly scalars, and from entire twist families.

3.3.1 Crossed channel structure in perturbation theory

Recall that a crossed-channel operatorO with twist τO and OPE coefficient aO = c2
φφO

appears in the inversion integral with a prefactor aO sin2(τO/2−∆φ). This followed

from the discussion in section 2.6 leading up to (2.98). From the linear expansion

around the zeros of the sine function, the proposition below follows.

Proposition 3.4. If τO = 2∆φ + 2n + κgδ + O(gδ+1), with n ∈ Z and we allow

for the case δ = 0, and if aO = κ̃gα + O(gα+1), then the operator O has the first

non-vanishing double-discontinuity at order ga, where

1. a = 2δ + α if n > 0,

2. a = α if n < 0.

Proposition 3.4 implies that the order at which an operator contributes is completely

determined by the order of its OPE coefficient and the distance to the nearest double-

twist dimension. Step 1 of the strategy is therefore to analyse the leading contribution

of the OPE coefficients of particular operators in the theory, i.e. to identify α above.

In general, this task requires some knowledge of or assumptions about the theory of

consideration and here we give some general guiding principles.

For the contribution from crossed-channel twist families, the considerations in

section 3.2.1 apply. Double-twist operators and GFF operators [O,O]n,` appear with

suppressions of order γ2 and a2
O respectively. Therefore the first operators (different

from 1) to appear are typically either scalars, or twist families with reference twist

τ0 < 2∆φ +O(g). If a scalar operator is the leading contribution, its OPE coefficient
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becomes an effective coupling constant of the perturbative expansion. This is for

instance the case in the O(N) model at large N in section 6.1. In the case of a

twist family below the double-twist threshold, one has to introduce an appropriate

crossing symmetric ansatz for its contribution. This is the philosophy of our approach

in chapter 5.

3.3.1.1 Heuristic diagrammatic method

If one studies a CFT with a Lagrangian description, information about α of the

(squared) OPE coefficient of a given operator can be extracted from a heuristic di-

agrammatic method, similar to the cuts in Witten diagrams in AdS as described

in [106]. The idea relies on drawing position space Feynman diagrams contributing

to the four-point function such that it is possible to make a cut through the diagram

corresponding to the operator under consideration. From this the following rule can

be formulated: If there is a cut through k1 lines of O1, k2 lines of O2 etc. in a diagram

at order gα, then the operator �n∂`Ok1
1 Ok2

2 · · · contributes in the OPE at order gα.

There are two exceptions to this rule. If the dimensions of the Oi are near the scalar

unitarity bound, operators with n > 1 are further suppressed. If all field lines join to

a single point at both sides of the cut, only the scalar Ok1
1 Ok2

2 · · · operator contributes

at that order. We give an explicit example in figure 6.1 in the case of multicritical

theories.

3.3.2 Individual operators

The contribution from individual operators is given by considering the crossed-channel

conformal block and re-expanding it in the direct-channel small z limit. Of course, in

even integer dimensions any conformal block can be evaluated exactly, by which the

re-expansion in small z is a trivial task. In generic dimension, explicit forms of the

conformal blocks are not known except in specific cases.
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The single most important case is the scalar, where the conformal block takes the

form (2.23) given in section 2.2.2. Taking this expression with u and v interchanged

and performing the sum over m, the small z limit can be computed. The sum over n

subsequently gives the result

v−∆/2 G
(d)
∆,0(v, u)

∣∣∣
small z

= − Γ(∆)
Γ(∆

2 )2

[
∂

∂a
2F1

(
∆
2 + a, ∆

2 ; ∆ + 1− µ; 1− z̄
)∣∣∣
a=0

+
(
2S1(∆

2 − 1) + log(zz̄)
)

2F1
(

∆
2 ,

∆
2 ; ∆ + 1− µ; 1− z̄

) ]
,

(3.44)

The details of these manipulations can be found in [4]. In section 3.4.3 we will make

use of this expression evaluated at ∆ = 2. In expansions around four dimensions,

the hypergeometric functions reduce to polylogarithms similar to those encountered

in section 3.1.

The double light-cone expansion of crossed-channel blocks for general spinning

operators was considered in [166], and in particular, explicit expressions were derived

for operators at the unitarity bound. We reproduce here the stress tensor case,

v−(µ−1) G
(d)
d,2(v, u)

∣∣∣
small z

= z̄1−µΓ(2µ+ 2)
Γ(µ+ 1)2

[
log

(
z̄

z

)
− 2S1(µ)

+ (4µ− 2)(1− z̄)
µ(µ+ 1) 2F1 (1, 2;µ+ 2; 1− z̄)

]
, (3.45)

where µ = d/2.

3.3.3 Families of operators

Let us emphasise again that large spin perturbation theory requires that the contri-

bution from operators in the same twist family be summed up before the re-expansion

in small z is performed. This is in general a formidable task requiring a variety of

techniques. The general form of such a sum is given by the following proposition:

Proposition 3.5. Let O` be a family of crossed-channel operators. Then the sum

over the corresponding crossed-channel blocks with GFF OPE coefficients (2.43),
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modulated by J−κ, has the small z expansion which takes the form

∑
`

aGFF
0,` |∆

1
Jκ
G

(d)
2∆+`,`(1− z̄, 1− z) = z−∆+κ

2F1(z, z̄) + F2(z, z̄). (3.46)

In this expression, each of the Fi(z, z̄) expands in non-negative integer powers of z

and log z: Fi(z, z̄) = ∑
j,k z

j logk z fijk(z̄).

The first term, F1(z, z̄), follows from the kernel method, (2.64), combined with the

fact that the case κ = 0 reproduces the correct dependence z−∆ for the GFF theory.

The second term exists in each conformal block (see (A.7)) and can therefore not be

excluded from the sum4.

Proposition 3.5 is very useful for determining what direct-channel families a crossed-

channel family of operators gives rise to. Consider for instance the contribution from

the leading twist singlet operators JS,` in the O(N) model. In section 6.1 we show

that their anomalous dimension takes the form

γS,` = −
2γ(1)

ϕ

N

(
(µ− 1)µ

J2 + γ(1)
ϕ

π csc(πµ)Γ(µ+ 1)2Γ(`+ 1)
J2(µ− 2)Γ(`+ 2µ− 3)

)
+O(N−2), (3.47)

where J2 = (µ − 1 + `)(µ − 2 + `) and where the second term expands as J−2(µ−1).

The operators JS,` contribute with a leading order double-discontinuity that arises

from a sum of anomalous dimensions squared. This gives rise to three terms of the

form (3.46), with κ = 4, κ = 2µ and κ = 4µ − 4 respectively. Let us identify what

direct-channel singlet operators this corresponds to. We need to multiply by the

factor z∆ϕMSS from crossing, where ∆ϕ = µ−1+O(N−1) and whereMSS = 1
N

is the

matrix element in the O(N) model crossing matrix (6.2). Since to leading order aS,` =
1
N
aGFF

0,` |∆=µ−1, we get that the contribution must happen at order 1/N4. Multiplying

the prefactor of F1(z, z̄) in (3.46) by zµ−1 from crossing, we get contributions of the

form zκ/2, which correspond to twists κ for the values given above. We identify
4When considering mixed correlators, F2(z, z̄) gets an additional contribution proportional to

z
∆1−∆2−∆3+∆4

2 , which exists in each collinear block (2.27), expanded using (A.8).
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the three values of κ with twist families [σ, σ]0,`, [ϕ, ϕ]S,1,` and (∂`ϕ4)S respectively.

Finally, the term corresponding to F2(z, z̄) contributes to the operators [ϕ, ϕ]S,0,`

themselves. All of this is consistent with figure 2.5.

Proposition 3.5 has an important practical consequence for the organisation of

the inversion problem. In the sum over a twist family, it enables the sum to be

computed using subcollinear blocks in the crossed channel. The reason is that the

crossed-channel collinear limit z̄ → 1 generates a series in w = 1 − z̄. Under the

inversion integral, this in turn produces a series in large J2. This means that the

inversion can proceed without finding the explicit form of the sums (3.46), and if the

resulting large J2 series can be matched to an explicit function, the goal is achieved.

Various refinements of the kernel method can be used to compute relevant limits

of the function F1(z, z̄) of proposition 3.5. This played an important role in [67] and

is described there. The term F2(z, z̄), however, is in general harder to extract. In [4],

as we will return to in section 6.1, this was achieved by the method of twist conformal

blocks, combined with an additional differential equation on the unitarity bound.

A twist conformal block is defined as a sum over a single twist family: H(0)(z, z̄) =∑
` a`G

(d)
τ0+`,`(z, z̄) [68]. This generalises to the level m twist conformal block defined

by

H(m)(z, z̄) =
∑
`

a`
J2mG

(d)
τ0+`,`(z, z̄). (3.48)

The definition is similar to the H-functions introduced in section 3.1.4, but we now

consider complete functions of both z and z̄ rather than just the singular part. By

making a shift in the quadratic Casimir C2, given in (2.18), such that the eigenvalue

is the conformal spin J2, the twist conformal blocks at different levels are related by

a differential equation

CmH(m)(z, z̄) = H(0)(z, z̄), C = C2 −
τ0(τ0 + 2− 2d)

4 . (3.49)

If H(0)(z, z̄) is known, the first few functions H(m)(z, z̄) may be computed by solving

the relation (3.49) in specific limits.
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3.4 Inversion procedures

After identifying the operators that contribute at a given order and computing their

double-discontinuities, the job is in principle done. The corresponding CFT-data is

packaged in the function U(log z, h̄) which is given by the inversion integral (3.1). In

practice, however, the extraction of the CFT-data requires the integral to be explicitly

computed, which in general is a difficult task. In particular, it is desirable to extract

U(log z, h̄) as a closed-form expression in h̄, especially since the actual CFT-data is

given in terms of derivatives of this function through (2.90).

The formulation of the inversion procedure as a one-dimensional integral over a

compact domain has an important advantage compared to earlier and alternative

procedures. Any candidate result for a specific inversion problem, regardless how it

was extracted, can and should be checked by a direct numerical integration. This is

done by high-precision evaluation of the integral for a number of finite values of h̄,

not necessarily related to integer spin. This is especially important when the result

has been derived using an indirect method such as a large spin expansion.

3.4.1 Direct evaluation

We start by giving some examples of how the inversion integral can be solved by

direct evaluation. The first is the result quoted already in section 2.5.3 and discussed

again in section 3.1.2, namely the inversion of a power ξ−p where ξ = (1− z̄)/z̄. Since

the crossing factor
(
u
v

)∆φ takes exactly this form in the collinear limit for p = ∆φ,

this result corresponds to inverting the identity operator. We summarise it in the

following way:

Inversion 3.1. The identity operator 1 appearing in the crossed-channel OPE in the

φ four-point function generates CFT-data given by U(log z, h̄) = A[∆φ](h̄), where we
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define

A[∆φ](h̄) = 2Γ(h̄+ ∆φ − 1)
Γ(∆φ)2Γ(h̄−∆φ + 1)

. (3.50)

We show this by first noting that dDisc[ξ−∆φ ] = 2 sin2(π∆φ)ξ−∆φ . Then, the integral

representation (3.4) gives that

INV[ξ−∆φ ] = 2 sin2(π∆φ)
π2

∫
[0,1]2

dtdz̄
t(1− t)

(
t(1− t)
1− tz̄

)h̄
z̄∆φ+h̄−2

(1− z̄)∆φ
. (3.51)

The z̄ integral can be computed using the integral (A.14) in appendix A.2. The re-

sulting hypergeometric function collapses since 2F1(a, b; b;x) = (1 − x)−a, by which

the t integral takes the form of the Euler integral of first kind (Beta function), (A.13).

Finally, using the identity (A.15) we replace the factors of sin(π∆φ) by Gamma func-

tions and arrive at the result A[∆φ](h̄). We may write this result on a general form

as

INV[ξp] = A[−p](h̄). (3.52)

The simplicity of the result (3.52) can be compared to the situation for a general

factor (1− z̄)pz̄−q, where the result is [166]

INV
[

(1− z̄)p
z̄q

]
= 2Γ(h̄− q − 1)

Γ(−p)2Γ(h̄+ p− q)
Γ(h̄)2

Γ(2h̄)Γ(1 + p) 3F2

(
h̄, h̄, h̄− q − 1
2h̄, h̄+ p− q

∣∣∣∣∣ 1
)
.

(3.53)

For p = q this reduces to (3.52) using the identity (A.9).

3.4.2 Large conformal spin expansions

While direct evaluation of the inversion integral is limited to cases where suitable

integral identities exist, the result for the inversion of a single power of ξ = 1−z̄
z̄

can

be used to generate a large J2 expansion for the inversion of any function G(z̄). First,

we require that G(z̄) admits an expansion in powers of w = 1− z̄. This is a natural

expansion for crossed-channel conformal blocks, since it corresponds to the crossed-

channel OPE limit. Order by order, this expansion can be converted into a series
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expansion in ξ = w
1−w . Then inversion 3.1, or equivalently (3.53), gives

INV
[ ∞∑
p=0

cpξ
p−α

]
=
∞∑
p=0

cpA[α− p]. (3.54)

Since term A[α− p] expands as

A[α− p] = 2
Γ(α− p)2

( 1
J2

)1−α+p (
1 + (p− α)(1 + p− α)(2 + p− α)

3J2 + . . .

)
,

(3.55)

any truncated sum of the form (3.54) will generate the same number of terms in the

large J expansion.

This method applies also to expansions of G(z̄) which contain logarithmic terms.

For instance, a term ξp log ξ can be generated from applying a derivative of the ex-

ponent. Using this, we get

INV[ξp log ξ] = −∂a A[a− p]|a=0 . (3.56)

The method described here therefore generates a large J expansion for the functions

U
(p)
h̄

that takes the form (2.94). However, the ultimate goal is find these functions

in a closed form. In a number of situations, this can be achieved by comparing with

expansions of known functions. In theories near four dimensions, for instance, CFT-

data typically takes the form of rational functions in J2, multiplied by the harmonic

number S1(h̄ − 1) and its generalisations. In practice, this is done by creating an

ansatz consisting of suitable functions and matching this with the expansion created

through (3.54).

One example of this is the inversion of the contribution from the scalar bilinear

φ2 in the ε expansion.

Inversion 3.2. In the d = 4 − ε expansion, the bilinear scalar ∆φ2 = 2∆φ + γ with

OPE coefficient c2
φφφ2 , assuming γ = γ(1)ε + γ(2)ε2 + . . ., has the following inversion
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expanded to order ε3

U(log z, h̄) =
c2
φφφ2

2 γ2 1
J2

(
−1− γ + ε+ γS1(h̄− 1)

)
log z

+
c2
φφφ2

2 γ2 1
J4

(
−1 + (J2ζ2 + 1)ε+ (S1(h̄− 1)− J2ζ2 − 1)γ

)
, (3.57)

where ζn denote Riemann’s zeta function.

We derive this in section 4.2.3, starting from the scalar conformal block (2.23), putting

d = 4−ε, ∆ = 2∆φ+γ and ∆φ = 1− ε
2+O(ε2). In that case the sums defining the scalar

conformal block can be explicitly computed and generate the type of polylogarithms

encountered in section 3.1. Expanding to order ε3 we get

dDisc
[(
u

v

)∆φ

cφφφ2G
(4−ε)
2∆φ+γ,0(v, u)

∣∣∣
z

∆φ

]

= dDisc
[
cφφφ2 log2(1− z̄)

((
− γ2

8 −
γ3

48 log(1− z̄) + εγ2 − γ3

8

)
log z

+ γ2 log z̄
8 + (εγ2 − γ3)(ζ2 − log z̄)

8 + γ3

48(6 Li2(1− z̄) + log(1− z̄) log z̄)
)]
.

(3.58)

The techniques described above are then used to generate a large J series for the

inversion of this expression, which can be matched with a suitable ansatz of terms

of the form J−2p and J−2pS1(h̄ − 1). The result is the expression (3.57) quoted in

inversion 3.2. Alternatively, the large J series can be generated by the H-function

method. Of course, the results for the various inversions of single terms, for instance

INV[log2(1− z̄) log z̄] = −4/J4, can be recorded for later use by extending table 3.1.

We give such an extension in appendix B.1, containing all inversions needed for study-

ing the ε expansion to order ε4.

We stress again the importance of checking the inversion results by numerical inte-

gration. The large J2 expansions generated by the series method are often asymptotic,

meaning that they have zero radius of convergence around J−2 = 0. For instance,

this is the case with the expansion (2.60) of the harmonic number S1(h̄ − 1) and
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similar functions. It is therefore possible that the true result of the inversion integral

contains additional terms, exponentially suppressed as J → ∞. Fortunately, this is

not the case for the harmonic number and its generalisations, where the expansions

generated by the series (3.54) agree with the standard large spin expansions given in

e.g. [139]. When extracting CFT-data at finite spin, one should always use the closed

form expression and not the large J expansion. For instance, in [167] it was shown

that taking into account the finite spin corrections in the case of the the 3d Ising

model improved the precision of the computations in [67], which were derived using

the large spin asymptotics.

3.4.3 Inversion and the SL(2,R) Casimir

In section 3.1.3 we demonstrated how the SL(2,R) Casimir operatorD = (1−z̄)z̄2∂2
z̄−

z̄2∂z̄ was used to relate the inversion INV[G(z̄)] to the inversion INV[DG(z̄)] by a

simple division by J2. This principle can be very useful in proving the exact form of

some inversions.

To give another example, consider the inversion of a scalar operator of dimension

∆ = 2 in the correlator of external operators of dimension ∆φ = µ−1, where µ = d/2.

In (3.44) we gave the double lightcone expansion of a single crossed-channel conformal

block. Multiplying by
(

z̄
1−z̄

)µ−1
and specialising to ∆ = 2 we need to invert

G(log z, z̄) = −
(

z̄

1− z̄

)µ−1
(1− z̄)

[
(log z + log z̄) 2F1 (1, 1; 3− µ; 1− z̄)

+ 2 ∂
∂a

2F1 (1 + a, 1; 3− µ; 1− z̄)|a=0

]
. (3.59)

While integrating these hypergeometric functions against the kh̄(z̄) appearing in the

inversion integral appears to be a difficult task, the situation simplifies drastically

when acting on this function by D:

DG(log z, z̄) = −
(

z̄

1− z̄

)µ−1(
(µ− 2)2(log z+log z̄) + (1− z̄)2F1 (1, 1; 3− µ; 1− z̄)

)
.

(3.60)
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It is now trivial to invert the term proportional to log z, since it is just a pure power

of ξ = 1−z̄
z̄
. The result for U (1)

h̄
is therefore

2 1
J2 INV[−(µ− 2)2ξ1−µ] = −2(µ− 2)2 A[µ− 1](h̄)

J2 . (3.61)

Also the inversion of the last term follows straightforwardly, since it takes the same

form as the original log z term. By acting once again by the Casimir D it is clear that

it inverts to (µ − 2)2A[µ − 1](h̄)/J4. Finally, the term proportional to log z̄ can be

inverted by expanding the inversion integrand in powers of z̄ where kh̄(z̄) is regular,

and inverting term by term. The result is given in terms of the combination5

S1[α](h̄) = 2S1(h̄− 1)− S1(h̄− 2 + α)− S1(h̄− α). (3.62)

We can summarise our findings, first derived in [4], in the following way.

Inversion 3.3. The contribution from a scalar O with ∆O = 2 in the φ four-point

function, where ∆φ = µ− 1, in generic spacetime dimension d = 2µ takes the form

U(log z, h̄) = (µ− 2)2c2
φφO

A[µ− 1](h̄)
J2

(
− log z + S1[µ− 1](h̄)− 1

J2

)
. (3.63)

3.5 Applications of large spin perturbation theory

We finish the practical guide to large spin perturbation theory by reviewing the

numerous applications of the framework that have appeared in the literature. We

limit ourselves to the work in the direct spirit of [68] and its companion paper [69],

with or without the inversion integral, and we do not aim to cover the whole range

of analytic bootstrap work that we briefly summarised in section 2.4.2.

In [69] the leading order implications of large spin perturbation theory were studied

in a variety of examples. This included leading corrections to anomalous dimensions
5This combination of harmonic numbers is closely related to the function A[α](h̄) noting that

∂αA[α](h̄) = A[α](h̄)
(
−2S1(α− 1) + S1(h̄− 2 + α) + S1(h̄− α)

)
.

Moreover, S1[α](h̄) has a large J expansion that is free from terms log J . This is in agreement with
the fact that the function G(log z, z̄) has no terms scaling as log(1− z̄) in the limit z̄ → 1.
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in the O(N) model at order ε2 and order 1/N , as well as the leading order corrections

to dimensions and OPE coefficients in a generic conformal guage theory.

The ε expansion is particularly suitable for large spin perturbation theory, which

can be realised by studying figure 2.2 in section 2.3.3 in connection with the con-

siderations in proposition 3.4 above. Since all crossed-channel operators, except the

identity, have twists of the form 2∆φ+ 2n+O(ε), illustrated by the grey bands in fig-

ure 2.2, their contributions to the double-discontinuity are suppressed by at least an

order ε2. In addition, the weakly broken currents are not corrected until order ε2, and

the higher twist operators have OPE coefficients of order ε2 or higher, and therefore

the vast majority of operators do not contribute until order ε4. This means that the

whole double-discontinuity up to order ε3 is generated from the identity operator 1

and the bilinear scalar φ2. All CFT-data to this order therefore follow from a direct

application of inversions 3.1 and 3.2. As we describe in detail in chapter 4, based

on [2], the whole double-discontinuity at order ε4 can also be computed in terms of

the CFT-data at lower orders, by an iterative procedure in the spirit of figure 2.6.

This consists of two contributions: the weakly broken currents themselves and oper-

ators of approximate twist four (the n = 1 case in the discussion in section 2.3.3).

The latter contribution is found through an ansatz based on transcendentality, and

some input from the literature is needed to fix some coefficients.

In [3], which we do not have room to reproduce in this thesis, the problem at

order ε4 was revisited in the O(N) symmetric case, and by using the projections to

subleading twists in the spirit of our section 3.2.4.2, all dependence on literature values

was circumvented. The resulting OPE coefficients of broken currents JR,` at order ε4

were all new results, as well as the scaling dimensions in the rank two representations

T and A. From the OPE coefficients, new results at order ε4 for the central charges

CT and CJ were computed, which we give at the end of chapter 4.

A different approach is needed to study conformal gauge theories, where the sim-
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plest operator in the spectrum is a bilinear scalar of dimension ∆O = 2 +O(g). The

perturbative structure of the four-point of such an operator was determined already

in [147], and was revisited in [69]. In the double lightcone limit, the most general

expression at order g takes the form

G(1)(u, v) = u

v
(a11 log u log v + a10 log u+ a01 log v + a00) +O(u2), (3.64)

where crossing relates a10 and a01 through the external anomalous dimensions gγext =

∆O−2. In chapter 5, based on [1], we will show that this expression, complemented by

a contribution at spin zero, generates the entire double-discontinuity of the correlator

and can be completed to an explicit expression for the whole correlator. To understand

why this is possible we refer back to figure 2.3 in section 2.3.4 for the special case of

N = 4 SYM; the structure of the spectrum in a general conformal gauge theory is

similar. From this figure it is clear that the identity operator together with the leading

twist operators generate the entire double-discontinuity to order g. All other operators

are suppressed by proposition 3.4, as indicated by the grey bands in figure 2.3. Since

the CFT-data for leading twist operators can be extracted from the ansatz (3.64),

the four constants aij together with the anomalous dimension at spin zero generate a

five-dimensional solution space for all CFT-data entering the correlator, and therefore

for the most general form of the four-point function.

It is natural to extend this to next order, where the higher-twist operators them-

selves contribute to the double-discontinuity. Due to the complicated mixing of op-

erators, this has not yet been achieved. However, as we mentioned already in sec-

tion 2.4.2, more progress has been made in the planar limit at strong coupling. There,

the expansion is typically phrased in holographic language and written as

G(u, v) = Gdisc.(u, v) + 1
N2Gtree(u, v) + 1

N4Gloop(u, v) +O(N−6), (3.65)

where the subscripts refer to disconnected, tree-level and one-loop diagrams in su-

pergravity. By studying systems of tree-level supergravity correlators of half-BPS

99



operators Op in the traceless symmetric [0, p, 0] representations of the R-symmetry

SU(4), the mixing problem was resolved, and subsequently the loop supergravity cor-

relator could be determined. This was first done for the [0, 2, 0] = 20′ case [123–125]

and later for general half-BPS operators [126, 156, 157], as well as with string theory

corrections [155], the latter corresponding to 1/λ for the ‘t Hooft coupling λ = g2
YMN .

CFTs in three dimensions were studied in [168], which considered CFTs with

weakly broken higher spin symmetry and gauge group SU(N) for large N , the main

example being Chern–Simons theories coupled to a fundamental complex scalar or

a Dirac fermion. The object of study was the four-point function of the smallest-

dimension scalar J0, with dimension ∆0 = 1 or ∆0 = 2 depending on theory. Similar

to weakly coupled 4d N = 4 SYM, the OPE contains broken currents J` which

generate the double-discontinuity at order 1/N , as well as GFF operators [J0, J0]n,`.

Also here, mixing amongst the higher twist operators prevents a full determination

at order 1/N2, which can only be determined in the case where there is no mixing.

The general case at order 1/N2 remains an open problem.

In [4], which we summarise in section 6.1, we studied the critical O(N) model at

large N based on some initial considerations in [66] and [69]. Referring to figure 2.5

in section 2.3.5, we see that the leading double-discontinuities are generated by the

identity operator 1 and the auxiliary field σ. At subleading orders, the contribution

from the broken currents JR,` needs to be computed, as well as contributions from

the GFF operators [σ, σ]n,`. As we review in section 6.2, based on [5], the leading

computations in the large N expansion, as well as the ε expansion, generalise to φ4

theories with other global symmetries.

The tools developed for the O(N) model can in fact be used to study multicritical

φ2θ theories near their critical dimensions dc(θ). We describe how to do this in

section 6.3. Also cubic theories in 6− ε dimensions have been studied using large spin

perturbation theory in [69] and [169].
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The inversion formula has been used to reproduce results in the heavy-light boot-

strap [170]. The purpose is to study universal properties of CFTs with holographic

interpretation, where the expansion parameter is the inverse of the number of degrees

of freedom, or equivalently 1/CT . The operators are divided into light L and heavy

H, where ∆L = O(1) and ∆H = O(CT ), and the starting point of the bootstrap anal-

ysis is the mixed correlator 〈HLLH〉. The contributions from the identity operator

1 and the stress tensor Tµν in the crossed-channel generate double-twist operators

[H,L]n,` with anomalous dimensions of the order γn,` ∼ J−(d−2)/CT . The next step

is to look at crossing for the correlator 〈LLHH〉, where the minimal set of direct-

channel operators are 1, Tµν and the double-stress tensors [T, T ]0,`. In [170] it was

shown how the OPE coefficients for the double-stress tensors can be computed from

the large spin perturbation theory, matching with the results of [151]. More precisely,

the kernel method can be used to determine the crossed-channel contribution from

[H,L]n,`. By proposition 3.5 this gives the power zd−2 which exactly matches the

reference twist of the double stress tensors. The OPE coefficients are proportional to

1/C2
T by proposition 3.4 and finally the twists of [H,L]n,` correspond to the correct

asymptotic spin dependence of the double stress tensor OPE coefficients6.

Some further applications and generalisations of large spin perturbation theory

have been made. In [171], scalar correlators in fermionic theories were considered,

with specific applications to the Gross–Neveu model in 2+ε dimensions and the Gross–

Neveu–Yukawa model in 4 − ε dimensions. Interestingly, the former case admits an

all twist result that is very similar to our results in chapter 5, where the spacetime

dimensionality is 2 rather than 4. In [172] conformal blocks, crossing equation and

large spin expansion were developed for the 〈φψφψ̄ 〉 correlator for a scalar φ and

a fermion ψ in four dimensions. Similarly, in [167] some initial considerations were

made for the fermion four-point function in three dimensions. Alternative versions of
6As mentioned in [170], an important assumption in deriving this result is that the operators

[H,L]n,` are non-degenerate.
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the Lorentzian inversion formula have also been derived in the case of defect CFTs

[173, 174] and CFTs at finite temperature [75], where the latter was used in [76] to

study the thermal 3d Ising model.

In connection to the lightcone bootstrap, one might attempt to determine in full

generality the exact contribution from a crossed-channel operator to a given direct-

channel operator. This is known as the crossing kernel, or 6j symbol [175–178]. The

results derived in these references are non-perturbative and do not simply translate to

large spin perturbation theory. Often they are phrased as a contribution to γ`, but in

the language of this thesis, the results rather match U (1)
h̄
/A[∆φ](h̄), which, contrary

to γ`, is additive in crossed-channel contributions. As we stressed in section 3.3, in

a perturbative setting, the contribution from twist families cannot be computed by

inverting operators one by one, so crossing kernels are not enough to perform large

spin perturbation theory beyond leading order in perturbation.
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Chapter 4

Wilson–Fisher model in the ε
expansion

4.1 Introduction

In this chapter we will apply the method of large spin perturbation theory to the

Wilson–Fisher (WF) model in d = 4− ε dimensions. In [69] results were obtained for

the anomalous dimensions of weakly broken currents to the first non-trivial order in ε.

In a series of papers [28,179–181] a proposal has been put forward for an alternative

method to compute CFT-data analytically. In this approach one uses Mellin space

and crossing symmetry is built in. Consistency with the OPE then constrains the

CFT-data. This method has been applied to the WF model in the ε expansion leading

to impressive results. More precisely, the CFT-data for weakly broken currents has

been obtained to cubic order in ε. The purpose of this chapter is first to show how

these results can be recovered from the perspective of large spin perturbation theory

using the Lorentzian inversion formula. To cubic order the relevant divergences of

the correlator arise, via crossing symmetry, from just two operators in the crossed

channel: the identity operator and the bilinear scalar operator. This makes our

derivation very simple: in the present framework it essentially involves a first-order

computation. The simplicity of our method is also manifest when dealing with the

O(N) model where the results to cubic order follow straightforwardly from those for

103



N = 1. A remarkable feature of our computation is that the convergence properties of

the inversion integral allow to extrapolate the results down to spin zero. Conservation

of the stress tensor together with a matching condition for spin zero lead to two non-

trivial constraints, that allow to fix not only the dimension of the external operator

but also the dimension of the scalar operator φ2. We then move on to the computation

at fourth order. In this case the divergences of the correlator are more involved and

arise from infinite towers of operators with arbitrarily large spins. The computation

is complicated by the appearance of new operators in the OPE at quadratic order.

A remarkable feature of these operators, together with intuition from perturbation

theory, makes it possible to guess their contribution to the divergence, and hence to

determine the CFT-data of weakly broken currents to fourth order. The results for

the anomalous dimensions agree with those in the literature, computed by Feynman

techniques, while the OPE coefficients are a new result. From the latter we deduce

the central charge of the WF model to fourth order in the ε expansion:

CT
CT,free

= 1− 5
324ε

2 − 233
8748ε

3 −
( 100651

3779136 −
55

2916ζ3

)
ε4 + . . . , (4.1)

where we stress the fact that the contribution proportional to ε4 is also negative.

This chapter is organised as follows. The computation up to cubic order is pre-

sented in section 4.2. After introducing the basic ingredients we explain the connec-

tion between the inversion formula and large spin perturbation theory. Since we are

dealing with leading twist operators, the inversion problem for SL(2,R) suffices, and

we give a quick derivation of the SL(2,R) inversion formula. Then we proceed to

obtain the CFT-data for leading twist operators, up to this order, from the double-

discontinuity of the correlator. We also show how to generalise these results to the

O(N) model. In section 4.3 we tackle the problem to fourth order and give the full

answer for the anomalous dimensions and OPE coefficients of leading twist operators.

We finish with some conclusions. Appendix B.1 contains a database of the necessary
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inversion integrals to compute the CFT-data at hand, while appendix B.2 contains

expressions for double discontinuities at fourth order.

4.2 Lorentzian OPE inversion in the ε expansion

4.2.1 Generalities

Consider the four-point correlator of a scalar field φ in a d-dimensional CFT

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = G(z, z̄)
x

2∆φ

12 x
2∆φ

34
. (4.2)

It admits a decomposition in conformal blocks, which in the direct channel decompo-

sition reads

G(z, z̄) =
∑
∆,`

a∆,`G
(d)
∆,`(z, z̄), (4.3)

where G(d)
∆,`(z, z̄) are the d−dimensional conformal blocks defined in section 2.2.2. We

assume that there is a free point where the correlator reduces to that of generalised

free fields (GFF)

G(0)(z, z̄) = 1 + (zz̄)∆φ +
(

zz̄

(1− z)(1− z̄)

)∆φ

. (4.4)

The intermediate operators are the identity and towers of bilinear operators of twist

2∆φ + 2n and spin `. We will be interested in leading twist operators with n = 0. In

this case the GFF OPE coefficients (2.43) reduce to

a
(0)
` = 2 ((∆φ)`) 2

`!(`+ 2∆φ − 1)`
. (4.5)

As we show below, these OPE coefficients are fixed by the structure of divergences

of the correlator. Next we consider perturbations by a small parameter g. This

introduces a correction to the scaling dimensions and OPE coefficients of the leading-

twist operators

∆` = 2∆φ + `+ γ
(1)
` g + . . . (4.6)

a` = a
(0)
` + a

(1)
` g + . . . . (4.7)
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We will assume that at this order no new operators appear in the OPE φ× φ. From

the analysis of [68] it follows that the only solutions consistent with crossing symmetry

have finite support in the spin. For generic ∆φ these solutions can be constructed

following [105]. For the present chapter we will be interested in the case ∆φ = d−2
2 at

leading order in g. In this case it was proven in [69] that crossing symmetry admits

a non-trivial solution only around d = 4, with support for spin zero. We define the

coupling constant g as the anomalous dimension of the bilinear operator with spin

zero

∆0 = 2∆φ + g. (4.8)

All other quantities will be computed in terms of this coupling constant. In [69]

it was also shown that ∆φ can receive corrections only at order g2. Note that the

dimensionality of space-time can differ from four by at most something of order g,

so that d = 4 − ε with g ∼ ε. The correction to the OPE coefficients can be found

through an extension of the analysis of [69]. Again, the corresponding solution has

support only for spin zero and one finds a0 = a
(0)
0 (1− g + . . .). In summary, for spin

two and higher the corrections start at order g2

∆` = 2∆φ + `+ γ
(2)
` g2 + . . . , ` = 2, 4, . . . ,

a` = a
(0)
` + a

(2)
` g2 + . . . , ` = 2, 4, . . . , (4.9)

and the same is true for the external operator

∆φ = d− 2
2 + γ

(2)
φ g2 + . . . . (4.10)

We would like to find the corrections consistent with crossing symmetry. Our method

relies on the fact that the double-discontinuity of the correlator contains all the rele-

vant physical information. Let us explain this in more detail.
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4.2.2 From large spin perturbation theory to an inversion
formula

Consider a basis of SL(2,R) conformal blocks f∆,`(z̄). We find it convenient to intro-

duce the following normalisation

f∆,`(z̄) = r∆+`
2
k∆+`

2
(z̄), rh = Γ(h)2

Γ(2h− 1) , (4.11)

with kh(z̄) = z̄h2F1(h, h, 2h, z̄). We are interested in solving the following inversion

problem: find A` such that

∑
∆=2∆φ+`,
`=0,2,...

A`f∆,`(z̄) = G(z̄), (4.12)

for a given G(z̄) containing an enhanced singularity as z̄ → 1. By enhanced singu-

larity we mean a contribution which becomes power-law divergent upon applying the

Casimir operator a finite number of times, and as such it cannot be obtained by a

finite number of conformal blocks. This is equivalent to saying that G(z̄) contains a

double-discontinuity. For a correlator the double-discontinuity is defined in (2.71)

dDisc[G(z̄)] ≡ G(z̄)− 1
2G

	(z̄)− 1
2G

�(z̄). (4.13)

An algorithm to find A` as a series in 1/` to all orders was developed in [68]. The idea

is the following. First recall that the SL(2,R) conformal blocks are eigenfunctions of

a quadratic Casimir operator (2.26)

Df∆,`(z̄) = J2f∆,`(z̄), (4.14)

where D = z̄2∂̄(1− z̄)∂̄ and J2 = 1
4(∆+`)(∆+`−2). We then assume that A` ≡ A(J)

admits an expansion in inverse powers of the conformal spin

A(J) =
∑
m

am
J2m (4.15)

and define the following family of functions

h(m)(z̄) =
∑

∆=2∆φ+`,
`=0,2,...

f∆,`(z̄)
J2m . (4.16)
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From the explicit form of the blocks we can compute

h(0)(z̄) =
∑

∆=2∆φ+`,
`=0,2,...

f∆,`(z̄) = 1
2

z̄

1− z̄ + regular, (4.17)

where the regular terms do depend on ∆φ but are not important for us. The sequence

of functions h(m)(z̄) can then be generated by the inverse action of the Casimir

Dh(m+1)(z̄) = h(m)(z̄). (4.18)

The inversion problem (4.12) then amounts to decomposing G(z̄) in the basis of

functions h(m)(z̄). The precise range of m depends on the specific form of G(z̄). The

recursion (4.18) can be used to systematically construct the functions h(m)(z̄) and

hence find the coefficients am. More specifically, one matches the double-discontinuity

on both sides of (4.12). To make contact with the inversion formula of [70] assume

there exists a family of projectors K(m)(z̄) such that
∫ 1

0
dz̄K(m)(z̄)dDisc

[
h(n)(z̄)

]
= δmn. (4.19)

Having the projectors K(m)(z̄) we can write

A(J) =
∫ 1

0
dz̄K(z̄, J)dDisc [G(z̄)] , (4.20)

where

K(z̄, J) =
∑
m

K(m)(z̄)
J2m . (4.21)

As will be clear momentarily, the precise form of these projectors will not be necessary.

Acting on both sides of (4.12) with the Casimir operator D and integrating by parts

we obtain (
D
† − J2

)
K(z̄, J) = 0 (4.22)

where we have assumed the absence of boundary terms and D
† = ∂̄(1 − z̄)∂̄z̄2.

Introducing the notation J2 = h̄(h̄− 1) we find two independent solutions related by

h̄ ↔ 1 − h̄. We will be interested in the one regular for positive h̄. Requiring the
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inversion formula to give A(J) = 1 for G(z̄) = h(0)(z̄) fixes the overall normalisation.

We find it convenient to use the integral representation (3.4) which leads to the

following result

A(h̄) = 1
π2

∫ 1

0
dtdz̄ z̄

h̄−2(t(1− t))h̄−1

(1− tz̄)h̄
dDisc [G(z̄)] . (4.23)

Integrating over t leads to the inversion formula (2.89). For all the inversions needed

in this chapter it will be convenient to integrate first over z̄.

While this discussion is not a rigorous derivation of the inversion formula, it

explains its relation to large spin perturbation theory in the original approach of

[68,69]. In appendix B.1 we give several results relevant for our computations below.

In all cases the integral is convergent in the region h̄ > 1. For our application below

this means the integral converges and is expected to give the right answer for ` > 0.

Below we will discuss the case ` = 0 in more detail.

4.2.3 Inverting discontinuities in the ε expansion

Let us return to the correlator introduced at the beginning of this section. We will

use the inversion formula to compute the CFT-data of leading twist operators in an

expansion to cubic order in ε (or rather g). Crossing symmetry implies

∑
∆=τ`+`,
`=0,2,...

A`z
τ`/2f∆,`(z̄) = z∆φ

(
z̄

1− z̄

)∆φ

G(1− z̄, 1− z)
∣∣∣∣∣
small z

, (4.24)

where the sum runs over leading twist operators with τ` = 2∆φ + g2γ
(2)
` + . . . and

the OPE coefficients are related to A` by a` = A` r τ`
2 +`. According to our discussion

above, the CFT-data appearing on the left-hand side of (4.24) can be recovered from

the double-discontinuities of the right-hand side. Up to cubic order in g those are

straightforward to compute, as they only arise from the identity operator and the
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bilinear operator of spin zero, so that

∑
∆=τ`+`,
`=0,2,...

A`z
τ`/2f∆,`(z̄) = z∆φ

(
z̄

1− z̄

)∆φ (
1 + a0G

(4−ε)
∆0,0 (1− z̄, 1− z) + regular

)∣∣∣∣∣
small z

,

(4.25)

where we remind that ∆0 = 2∆φ + g we defined in (4.8). The regular terms do

not contribute to the double-discontinuity to the order we are considering. The

d-dimensional conformal block for a scalar exchange between two identical scalar

operators was given in (2.23)

G
(d)
∆,0(1− z̄, 1−z) =

∑
m,n=0

(∆/2)2
m (∆/2)2

m+n
m!n! (∆ + 1− d/2)m (∆)2m+n

[(1− z)(1− z̄)]m+ ∆
2 (1−zz̄)n.

(4.26)

Note that in order to extract the small z dependence the sum over n has to be

performed. Expanding the right-hand side of (4.24) in powers of g up to cubic order

and keeping only terms that contribute to the double-discontinuity we obtain

∑
∆=τ`+`,
`=0,2,...

A`z
τ`/2f∆,`(z̄) = z∆φ

(
z̄

1− z̄

)∆φ

+ (4.27)

+ z∆φ z̄∆φa0

(
g2

8 log2(1− z̄) (1 + ε∂ε + g∂∆) + g3

48 log3(1− z̄)
)
g

(4d)
2,0 (1− z̄, 1− z),

where a0 = 2(1− g + . . .) and

g
(4d)
2,0 (1− z̄, 1− z) = log z̄ − log z

z̄
,

∂εg
(4d)
2,0 (1− z̄, 1− z) = (log z̄ − log z)(log z̄ − 2) + 2ζ2

2z̄ , (4.28)

∂∆g
(4d)
2,0 (1− z̄, 1− z) = Li2(1− z̄) + log z̄ − log z − ζ2

z̄
,

and only the small z limit has been considered. We would like to recover the CFT-data

for leading twist operators from these singularities. This data admits the following

decomposition

A` = A
(0)
` + g2A

(2)
` + . . . ,

τ` = 2∆φ + g2γ
(2)
` + . . . , (4.29)
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where

A
(0)
` =

2Γ
(
h̄+ ∆φ − 1

)
Γ (∆φ) 2Γ

(
h̄−∆φ + 1

) , h̄ = `+ ∆φ, (4.30)

i.e. A` = A[∆φ](∆φ + `) by the notion of (3.50). In order to apply the inversion

procedure to this order we introduce

A` = U
(0)
h̄

+ 1
2∂h̄U

(1)
h̄
,

A`γ` = U
(1)
h̄
, (4.31)

where we have made clear that the natural variable in which to express U (0)
h̄
, U

(1)
h̄

is h̄ = ` + ∆φ as opposed to `. These combinations are the ones that preserve the

reciprocity principle proven in [65]1:

U
(0)
h̄

=
∑ u(0)

m

J2m , U
(1)
h̄

=
∑ u(1)

m

J2m , (4.32)

where in principle these expansions could contain both even and odd powers of 1/J

as well as logarithmic insertions. In terms of these expansions we obtain

∑
m

z∆φ

(
u(0)
m + 1

2 log zu(1)
m

)
h(m)(z̄) = z∆φ

(
z̄

1− z̄

)∆φ

+ (4.33)

+ z∆φ z̄∆φa0

(
g2

8 log2(1− z̄) (1 + ε∂ε + g∂∆) + g3

48 log3(1− z̄)
)
g

(4d)
2,0 (1− z̄, 1− z).

This has exactly the form of the inversion problem discussed above. With the inver-

sion formulas given in appendix B.1 we find

U
(0)
h̄

= A[∆φ](h̄) +
(
− g2

(h̄− 1)2h̄2
+ ζ2(h̄− 1)h̄+ 1

(h̄− 1)2h̄2
g2ε− ζ2(h̄− 1)h̄− S1

(h̄− 1)2h̄2
g3
)

+ . . . ,

U
(1)
h̄

= − 2
(h̄− 1)h̄

g2 + 2
(h̄− 1)h̄

g2ε+ 2S1

(h̄− 1)h̄
g3 + . . . , (4.34)

where S1 denotes the harmonic number with argument h̄ − 1. These results encode

the full CFT-data for leading twist operators to cubic order. They translate easily
1For the present computation we find it convenient to work with this “bare” h̄ as opposed to

the “full” one, given by h̄f = ∆`+`
2 . The standard reciprocity principle for the CFT-data is usually

expressed in terms of the full conformal spin h̄f(h̄f − 1). Note that h̄f and h̄ coincide to leading
order.
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into the standard anomalous dimensions and OPE coefficients and agree exactly with

those obtained previously in [179]. The explicit results, including order ε4 and for

O(N) symmetry are available in the ancillary data of the Arxiv submission of [3].

4.2.4 Matching conditions at low spin

Let us write the result we have just obtained for the anomalous dimensions in terms

of the full h̄f , defined as h̄f = `+ ∆φ + 1
2γ`. We obtain

∆` = 2∆φ + `− g2

(h̄f − 1)h̄f
+ g2ε+ (g3 − g2ε)S1

(h̄f − 1)h̄f
+ . . . (4.35)

These results followed only from crossing symmetry of a single correlator and the

inversion procedure used in this work shows that they basically follow from a one-

loop computation (since squares of anomalous dimensions will generate discontinuities

only at quartic order). We now impose two further matching conditions at low values

of the spin

∆2 = d, (4.36)

∆0 = 2∆φ + g. (4.37)

The first condition is implied by the existence of a conserved stress tensor and fixes

the dimension of the external operator

∆φ = 1− 1
2ε+ 1

12g
2 − 1

8g
3 + 11

144g
2ε+ . . . . (4.38)

The second condition arises from the requirement that the inversion results can be

extrapolated down to spin zero2. For ε, g 6= 0, in order to reach ` = 0 we need to

continue ∆` to the left of the pole at h̄f = 1. We will assume the standard continuation

across a pole, i.e. that the expression (4.35) remains valid also in this region. This is

summarised in Figure 4.1. Note that in the ε expansion h̄f − 1 ∼ ε, so that the limit
2We would like to thank Aninda Sinha for suggesting this idea.
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0 2 4 6

`

τ`

∆0

2∆φ

Figure 4.1: Schematic graph of τ`. As we move from spin two to spin zero we move to the
left of the pole at h̄f = 1, denoted by a red line. Note the change of sign in the correction.
Assuming the standard continuation in (4.35), we reproduce the correct dimension on both
sides.

is somewhat subtle. To leading order we obtain the following relation

− gε+ 3g2 = 0. (4.39)

This equation has two solutions. One corresponds to the free theory with g = 0 and

the other corresponds to

g = 1
3ε+ . . . , (4.40)

fixing the relation between g and ε. Plugging this into the expression for ∆φ we obtain

∆φ = 1− 1
2ε+ 1

108ε
2 + . . . , (4.41)

which exactly agrees with the well-known value for the WF model! The order g4

results obtained in the next section allow us to go one order further, and find the

relation

g = 1
3ε+ 8

81ε
2 + . . . . (4.42)

This fixes the relation between g and ε, and therefore all the quantities entering the

problem.
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4.2.5 O(N) model

The method used in this chapter generalises to the O(N) model immediately. Let us

consider the WF model withN scalar fields ϕi with global O(N) symmetry in d = 4−ε

dimensions. We can now consider the four-point correlator of the fundamental field

ϕi. Intermediate operators decompose into the singlet (S), symmetric traceless (T )

and anti-symmetric (A) representations of O(N). It is convenient to write the crossing

equations as

fS(z, z̄) = 1
N
fS(1− z̄, 1− z) + N2 +N − 2

2N2 fT (1− z̄, 1− z) + 1−N
2N fA(1− z̄, 1− z),

fT (z, z̄) = fS(1− z̄, 1− z) + N − 2
2N fT (1− z̄, 1− z) + 1

2fA(1− z̄, 1− z), (4.43)

fA(z, z̄) = −fS(1− z̄, 1− z) + 2 +N

2N fT (1− z̄, 1− z) + 1
2fA(1− z̄, 1− z),

where fR(z, z̄) = ((1− z)(1− z̄))∆ϕGR(z, z̄). The crossing equations at leading order

have been analysed in [69] with the methods of large spin perturbation theory. Again,

at leading order the fundamental field does not acquire any corrections while

γ
(1)
ϕ2
S

= g =: gS, γ
(1)
ϕ2
T

= 2
2 +N

g + . . . =: gT . (4.44)

In order to reconstruct the CFT-data from double discontinuities we note that these

arise from the identity operator, present in the singlet representation, and the bilinear

operators in the singlet and traceless-symmetric representations, which acquire an

anomalous dimension at order g. By looking at the double-discontinuity of the identity

operator on the right-hand side of the crossing equations (4.43) we see that at leading

order the OPE coefficients of the T and A representations are exactly as before, up

to a sign for A, while those of the S representation have an extra factor of 1/N .

A
(0)
T/A,` = ±A[∆φ](h̄), A

(0)
S,` = 1

N
A[∆φ](h̄), (4.45)

where ` is even for the symmetric-traceless and singlet representations and odd for

the anti-symmetric representation. A careful analysis of the crossing conditions also
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determines the corrections to order g of the OPE coefficients for the spin zero opera-

tors:

aR,0 = a
(0)
R,0(1− gR + . . .), (4.46)

which in fact holds for φ4 theories in any global symmetry group. By looking at the

crossing equations (4.43) and comparing them with our computation for the N = 1

case, it is then straightforward to write down the result for U (1)
h̄

= A` γ` for each

representation. We obtain

U
(1)
S,h̄

= 2
N2J2

(
−g2

S + g2
Sε+ g3

SS1 + . . .
)

+ 2
J2
N2 +N − 2

2N2

(
−g2

T + g2
T ε+ g3

TS1 + . . .
)
,

U
(1)
T,h̄

= 2
NJ2

(
−g2

S + g2
Sε+ g3

SS1 + . . .
)

+ 2
J2
N − 2

2N
(
−g2

T + g2
T ε+ g3

TS1 + . . .
)

U
(1)
A,h̄

= 2
NJ2

(
−g2

S + g2
Sε+ g3

SS1 + . . .
)
− 2
J2

2 +N

2N
(
−g2

T + g2
T ε+ g3

TS1 + . . .
)
,

(4.47)

where J2 = h̄(h̄ − 1) and as before the harmonic number S1 is evaluated at h̄ − 1.

Similar expressions for U (0)
R,h̄

can be obtained in exactly the same way. All the results

are in full agreement with those obtained in [181,182] after substituting the literature

values

gS = 2 +N

8 +N
ε+ 6(N + 2)(N + 3)

(N + 8)3 ε2 + . . . , gT = 2
8 +N

ε+ 36 + 4N −N2

(N + 8)3 ε2 + . . . .

(4.48)

4.3 Results to fourth order

4.3.1 New operators at second order

Before proceeding to solve the crossing constraints to higher order, we would like

to make the following crucial observation. At order g2 new intermediate operators

are expected to appear, which are of the schematic form φ22n∂µ1 . . . ∂µ`φ
2 and have

twist τ = 4 + 2n and spin `. These operators are expected to acquire an anomalous

dimension to order ε. Hence, they generate a double-discontinuity, proportional to the

square of their anomalous dimension, to order g4. Furthermore, these operators are
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highly degenerate in perturbation theory, so that computing this double-discontinuity

would require solving a mixing problem. The statement that the CFT-data can be

reconstructed from the double-discontinuities of the correlator is not restricted to

leading twist operators and the projection methods to higher twist, described in

section 3.2.4.2, can be used to find the leading OPE coefficients of these operators3.

The steps are very similar to the ones above, and to second order in g we find

a4+2n,` =


Γ(`+2)2

Γ(2`+3)
`2+3`+8

12(`+1)(`+2)g
2 + . . . for n = 0,

O(g4) for n 6= 0.
(4.49)

This is a somewhat surprising result: only operators with approximate twist four

appear at this order4. As we will see, this constrains the possible structure of double-

discontinuities at fourth order and it will allow us to solve the problem completely.

Given the convergence of the inversion integrals we expect these results to be valid

down to spin zero.

4.3.2 Solving the inversion problem at fourth order

The contribution arising from leading twist operators in a perturbative ε expansion

can be encoded as follows

G(z, z̄)|small z =
∑
m

z∆φ

(
u(0)
m + 1

2 log z u(1)
m + 1

8 log2 z u(2)
m + . . .

)
h(m)(z̄), (4.50)

where u(p)
m ∼ g2p for small g. As before, the u(p)

m are the coefficients in the large J

expansions of U (p)
h̄

, whose relation to the usual OPE data is given by (2.90),

A` (γ`)p = U
(p)
h̄

+ 1
2∂h̄U

(p+1)
h̄

+ 1
8∂

2
h̄U

(p+2)
h̄

+ . . . . (4.51)

3Since we are near four dimensions, the problem simplifies and one can use the four-dimensional
conformal blocks instead of the subcollinear blocks. The details are explicitly worked out in [3].

4As a byproduct, this result justifies an ansatz made in [183], where the vanishing of OPE
coefficients involving operators with n 6= 0 was assumed.
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To order g4 the double-discontinuity of the correlator arises from four distinct contri-

butions, so that

G(z, z̄)|small z = z∆φ

((
z̄

1− z̄

)∆φ

+ Iφ2 + I2 + I4 + regular
)
. (4.52)

Iφ2 denotes the contribution from the scalar bilinear operator. To cubic order it

was given in the previous section. It is straightforward to compute it to fourth

order and the result is given in appendix B.2. I2 denotes the contribution arising

from leading twist operators of spin two and higher: the square of their anomalous

dimension generates a double-discontinuity at fourth order. Since these operators are

non-degenerate, this contribution can be readily computed and it is given in appendix

B.2. As already mentioned, a direct computation of I4 would require solving a mixing

problem, for instance by considering more general correlators5. However, note that

at fourth order I4 involves four-dimensional conformal blocks evaluated at reference

twist four. This implies the following structure

I4 = (log zg(z̄)− log z̄g(z)) log2(1− z̄), (4.53)

where g(z̄) arises from a sum over twist-four operators

g(z̄) = 1
8

∑
`=0,2,...

η` k2+`(1− z̄) (4.54)

for some η` equal to the weighted average, over degenerate operators, of the square

anomalous dimensions η` = 〈a4,`γ
2
4,`〉 = ∑

i a4,`,iγ
2
4,`,i. As such it is regular around

z̄ = 1. Furthermore, the structure of the OPE to this order implies the following
5The contribution from twist-four operators to the anomalous dimension of leading twist operators

starts at order 1/`4, see [62], so that the leading terms in a 1/` expansion can still be computed
without its knowledge. This was done in [184] by applying directly the methods of [66] for isolated
operators. Since there is an accumulation point at twist two, one should be careful. In principle the
correct procedure from the large spin perspective would be to compute the double-discontinuity due
to the tower of twist-two operators and then compute the anomalous dimensions from there. The
procedure of [184] is justified since the resulting series are convergent.
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expansion around z = 0 6

g(z) = α0 log2 z + α1 log z + α2 + . . . . (4.55)

We will now discuss how to fix U (0)
h̄
, U

(1)
h̄
, U

(2)
h̄

to quartic order. Before we proceed,

note that the term log zg(z̄) in I4 will only contribute to U (1)
h̄

. Hence U (0)
h̄

and U (2)
h̄

only require minimal information about g(z), namely only its limit as z → 0. As

a result, they could be fully determined in terms of α0 and α2, even without any

knowledge of twist-four operators. We will be able to do even better than this.

Let us start with U (2)
h̄

. From the expressions in appendix B.2, it follows that Iφ2

and I2 do not contribute to U (2)
h̄

, as they do not contain a log2 z piece. The whole

contribution arises then from I4 and is proportional to −α0 log z̄ log2(1 − z̄). From

the results in appendix B.1 this immediately gives

U
(2)
h̄

= −8α0
4(1− 2h̄)
h̄2(1− h̄)2

g4, (4.56)

which exactly agrees with A`(γ`)2 to order g4 provided α0 = 1/16.

To compute U (1)
h̄

one needs to know g(z̄). The full results for double discontinu-

ities up to cubic order as well as the double discontinuities in appendix B.2 suggest

that perturbative results for the present correlator organise themselves in pure tran-

scendental functions with discontinuities around z̄ = 0 and regular around z̄ = 1.

Furthermore, the degree of these functions increases with the perturbative order in a

prescribed way7. If this principle holds then we expect g(z̄) to be given by a linear

combination of the following building blocks

{log2 z̄, Li2(1− z̄), log3 z̄, log z̄ Li2(1− z̄), Li3(1− z̄), Li3
(
z̄ − 1
z̄

)
}. (4.57)

6Specifically, note that in equation (3.4), on the left-hand side any higher powers logk z would
have to be generated by higher powers γk2,` of anomalous dimensions, which contribute only at order
g2k and higher.

7More precisely, up to this order we will assume that the answer can be written as combinations
of polylogarithms of z̄ and 1 − z̄, without rational functions in front, such that the total degree
increases linearly with the loop order. This structure is very familiar in other perturbative contexts.
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These blocks form a basis of functions as described above. Any other function with the

same features can be related to combinations of these by identities for polylogarithms

such as (A.11) and (A.12). The fact that g(z̄) arises from twist-four operators in the

dual channel, constrains the possibilities. Furthermore, consistency with (4.54) and

(4.55) leads us to the following result

g(z̄) = 1
16 log2 z̄ + α

(
−1

6 log3 z̄ − 2
3 log z Li2(1− z̄) + Li3(1− z̄) + Li3

(
z̄ − 1
z̄

))
,

(4.58)

with a single undetermined coefficient. We would like to stress that this expression can

be systematically tested as an expansion around z̄ = 1. Since k2+`(1− z̄) ∼ (1− z̄)2+`,

to any given order in (1 − z̄) only a finite number of operators contribute and the

mixing problem is finite. For instance, twist-four operators with spin zero and two

are non-degenerate. The anomalous dimensions for these operators are known, see

section 2.3.3, and in the conventions used here they take the form γ4,0 = 3g + . . .

and γ4,2 = 4/3g + . . . 8. From (4.49) we can also read off a4,0 = g2/6 + . . . and

a4,2 = g2/160 + . . .. These values are exactly consistent with the expression for g(z̄)

up to fifth order in (1− z̄) and furthermore fix α = −3/2. With this we find

g(z) = 1
16 log2 z − 1

2ζ2 log z − 3
2ζ3 + . . . , around z = 0. (4.59)

We have now all the ingredients to compute U (0)
h̄

and U (1)
h̄

to fourth order. Using the

inversion formulae in appendix B.1 we find

U
(1)
h̄

= −2
J2 g

2 + 2 (3 + S1)
J2 g3 + 1

6J2

 6
J4 + 7 + 48S−2

J2

− 9ζ2 − 6S2
1 − 36S1 − 12S−2 − 58

g4 + . . . (4.60)

8Alternatively, these anomalous dimensions can be computed from the discontinuities of the
correlator at cubic order by a projection from the leading twist family [3].
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and

U
(0)
h̄

= A[∆φ](h̄) + −2
J4 g

2 + 1
J2

(3 + S1

J2 + 2ζ2

)
g3 + 1

12J2

 2
J4 − 106ζ2

− 56 + 3ζ2 + 72ζ3 + 6S2
1 + 36S1 − 12S−2

J2 + 72ζ3 − 24ζ2S1 − 54S3

g4 + . . . ,

(4.61)

where the argument of all nested sums, defined in appendix B.1, is h̄ − 1. In these

expressions we have traded the dependence on ε in favour of g. The CFT-data can

then be recovered from (4.51). In particular

γ` =
U

(1)
h̄

+ 1
2∂h̄U

(2)
h̄

+ . . .

U
(0)
h̄

+ 1
2∂h̄U

(1)
h̄

+ . . .
, (4.62)

and the result can be seen to exactly agree with that obtained in [185]9. In order to fix

∆φ and g(ε) to this order one could proceed exactly as before: ∆φ follows again from

conservation of the stress tensor while g(ε) follows from the matching condition at spin

zero. However, the later result to cubic order would require going to higher orders in

our computation. Instead, we will take a shortcut and assume the known value of the

dimension of the fundamental field ∆φ = 1− ε
2 + ε2

108 + 109
11664ε

3 +( 7217
1259712−

2
243ζ3)ε4 + . . ..

This together with the conservation of the stress tensor gives the relation between g

and ε:

g = ε

3 + 8
81ε

2 +
( 305

8748 −
4
27ζ3

)
ε3 + . . . . (4.63)

Let us emphasise however, that the first two orders follow completely from our results,

without any additional input, and also the next term could be in principle computed

in our formalism if extended to order ε6. The result for the OPE coefficients is

completely new. The most interesting quantity that can be extracted from them is

the central charge, related to the OPE coefficient for ` = 2. In terms of ε we find

exactly the fourth order result (4.1) quoted at the beginning of this chapter. The

result to cubic order exactly reproduces what was found in [179]. The result to fourth
9We would like to thank the authors of [184] for making us aware of a typo in [185].
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order is new. Setting ε = 1 we observe that this new contribution gets us closer to

the highly precise numerical result for the 3d Ising model found in [58,92].

4.3.3 O(N) model at order ε4

Before we conclude, let us summarise briefly the results of [3], which considered the

O(N) model. Also there, the new operators to contribute at order ε4 were families

of weakly broken currents and of operators of approximate twist four, but now in

all three representations S, T and A. The contributions from twist-four operators

required an ansatz similar to (4.57), but now the anomalous dimensions of non-

degenerate operators (spin zero in S and T , and spin one in A) was computed using

a projection at order ε3 along the lines of section 3.2.4.2. For completeness, we give

here the results from [3] for the central charges in the critical O(N) model in the 4− ε

expansion:

CT
CT,free

= 1− 5(N + 2)
12(N + 8)2 ε

2 − (N + 2) (7N2 + 382N + 1708)
36(N + 8)4 ε3

− (N + 2) (65N4 + 5998N3 + 309036N2 + 2396800N + 5440832)
1728(N + 8)6 ε4

+ (N + 2) (2N3 + 43N2 + 922N + 3488) ζ3

12(N + 8)5 ε4 +O(ε5), (4.64)

and

CJ
CJ,free

= 1− 3(N + 2)
4(N + 8)2 ε

2 − (N + 2) (N2 + 132N + 632)
8(N + 8)4 ε3

+ (N + 2) (11N4 + 246N3 − 13124N2 − 126976N − 310976)
64(N + 8)6 ε4

+ (N + 2) (7N2 + 442N + 1792) ζ3

4(N + 8)5 ε4 +O(ε5). (4.65)

4.4 Conclusions

We have used analytic bootstrap techniques to derive the anomalous dimensions and

OPE coefficients of bilinear operators (weakly broken currents) in the WF model
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in d = 4 − ε dimensions, to fourth order in the ε expansion. To cubic order the

computation is essentially straightforward, since the double-discontinuity arises solely

from the identity operator and the bilinear scalar. This simplicity is also manifest

in the results of the O(N) model, and in section 6.2.1 we will generalise this to any

global symmetry. At fourth order the situation is much more interesting, since two

towers of high spin operators, of twist two and four respectively, contribute to the

discontinuity. The contribution from twist two operators can be readily computed,

while the structure of perturbation theory, together with the explicit form of four-

dimensional conformal blocks, allows to make a proposal for the double-discontinuity

due to twist-four operators. This proposal can be systematically tested order by

order in powers of (1 − z̄), by solving a finite order mixing problem. This satisfies

all possible consistency conditions and is compatible with features of perturbation

theory from other CFTs. With this result, we have found the CFT-data to fourth

order. Two further constraints, namely conservation of the stress tensor, together

with a continuation to spin zero, allowed to fix the anomalous dimensions of both the

scalar operator φ2 as well as the dimension of the external operator.

There are several interesting open problems. A remarkable feature of our compu-

tation is the apparent analyticity down to spin zero. This allowed us to reproduce

constraints analogous to those of a vanishing beta function. It would be interesting

to understand the systematics of this to higher orders, and even non-perturbatively.

It would also be interesting to understand the structure of double-discontinuities to

higher orders in the ε expansion. Up to fourth order we have observed that the func-

tions that appear have pure transcendentality. It is tantalising to propose that this

persists to higher orders which would greatly simplify the computation of CFT-data.

The extension to order ε4 requires detailed knowledge of the operator content of the

theory in question, such as the degeneracy of the operators at approximate twist four.

As mentioned above, this has been done for the O(N) model in [3], but not in theories
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with other global symmetry groups.

A natural direction would be to extend these results to higher orders. At order

ε5 the same operators contribute as at order ε4. The challenge, again, is to find the

contribution from the twist-four operators. It would also be interesting to consider

analytic constraints arising from mixed correlators. In the present case one could

consider correlators of the fundamental field and the bilinear scalar. The crossing

constraints for such a system are expected to be stronger than the ones considered in

this chapter.
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Chapter 5

Weakly coupled gauge theories

5.1 Introduction

In this chapter we apply this method to weakly coupled conformal field theories in

four space-time dimensions. We study four-point correlation functions

G(x) = (x2
12x

2
34)∆O〈O(x1)O(x2)O(x3)O(x4)〉 (5.1)

of identical operators built out of fundamental scalar fields of the theory in the small

coupling g expansion. Here, ∆O is the conformal dimension of the operator O and

xij denotes the distance between two space-time points. A prototypical example of

such theory is N = 4 SYM. In order to focus our attention we will discuss two very

particular scalar operators in N = 4 SYM: the Konishi operator K and the half-

BPS operator O20′ in the [0, 2, 0] representation of the SU(4) R-symmetry. Both

of them are the simplest gauge invariant scalar operators and have the schematic

form O = Tr(Φ2), where Φ is a fundamental scalar field of the theory. The methods

developed here will however apply to a large class of conformal field theories satisfying

a set of assumptions spelled out at the end of this section.

In the following we study four-point correlation functions in the perturbation

theory around vanishing coupling constant g = 0,

G(x) = G(0)(x) + g G(1)(x) + . . . . (5.2)
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The leading-order answers G(0)(x) can be found by directly performing Wick contrac-

tions and depend on a single parameter related to the central charge of the theory. In

this chapter we focus most of our attention on the one-loop function G(1)(x) and find

its general form using only conformal symmetry, crossing symmetry and the structure

of the operator product expansion (OPE). In the two cases that we study we find a

family of crossing-symmetric solutions which depend on a small number of free param-

eters. The most transcendental part of the answer is given by the scalar box function

times a rational function. These have to be supplemented by lower transcendental

functions. We find the explicit form of these functions without referring to Feynman

diagram calculations. In particular, we will avoid introducing any regularisation or

any redundancies fundamentally bound to the Feynman approach. In order to find a

particular four-point correlator we supplement our general solution with a few explicit

values of the CFT-data for operators with small classical conformal dimension and

spin.

Our method will be based on only a few assumptions:

• We study unitary weakly coupled conformal gauge theories in four dimensions.

In particular, unitarity implies that the operators in the OPE expansion sat-

isfy the unitarity bound and have non-negative (squared) OPE coefficient with

O = Tr(Φ2). Moreover, the fact that we study gauge theories implies that the

fundamental field Φ is not part of the spectrum, and therefore the correlator of

O provides the strongest constraint on the CFT-data.

• We assume that infinite towers of operators parametrised by spin ` have a

regular expansion of the CFT-data at large spin, i.e. the CFT-data can be

written as a Taylor expansion of 1
`
with possible log ` insertions.

Furthermore we will use the following properties of conformal field theories:

• We use the fact that four-point correlation functions are crossing symmetric.
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• We use the knowledge of the OPE structure. Furthermore, we rely on an explicit

form of the conformal blocks in four dimensions and the superconformal blocks

for the half-BPS operators O20′ in N = 4 SYM.

It was already found in [105, 186] that there exists a class of crossing symmetric

solutions which correspond to CFT-data that is truncated in spin. In particular, the

instanton solutions are of this type, as shown in [187]. Our analysis extends these

results by including also solutions unbounded in spin. Since crossing at one loop in

perturbation theory is a linear problem, we can treat these two types of solutions

separately and focus only on the latter.

The chapter is organised as follows: in section 5.2 we collect basic information

about four-point correlation functions and their properties. In section 5.3 we intro-

duce the notion of twist conformal blocks and H-functions and study their properties.

In section 5.4 we use H-functions to find a family of solutions to the conformal boot-

strap equation and in particular recover the known form of the four-point correlator

of Konishi operators. In section 5.5 we repeat the analysis from the previous two

sections in the case of the correlation function of four half-BPS operators O20′ in

N = 4 SYM. We end the chapter with conclusions and outlook and supplement it

with a few appendices containing the more technical ingredients of our results.

5.2 Four-point correlators

In this section we collect all relevant information about four-point correlation func-

tions of operators that we will study in the rest of this chapter. In the first part we

describe four-point correlators of four identical scalar operators with classical dimen-

sion ∆0 = 2. This is relevant for the Konishi operator in N = 4 SYM, which is of the

form

K(x) = Tr(ΦI(x)ΦI(x)), (5.3)
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where I is the SO(6) R-symmetry index. We study the correlation function of four

Konishi operators using the ordinary conformal block decomposition in four dimen-

sions [51].

In the second part we study the N = 4 SYM half-BPS operator in the [0, 2, 0] =

20′ representation of the SU(4) R-symmetry

O20′(x, y) = yI yJ Tr(ΦI(x)ΦJ(x)) , (5.4)

where we have introduced an auxiliary six-dimensional complex null vector yI , namely

y · y ≡ yIy
I = 0. In order to properly accommodate for a non-trivial R-symmetry

structure of the correlation function of four half-BPS operators we employ the super-

conformal blocks introduced in [145].

5.2.1 Conformal block decomposition for Konishi operators

First, let us consider the case relevant for the Konishi operator K, namely a scalar

operator with the conformal dimension

∆K = 2 +
∞∑
i=1

γ
(i)
K gi . (5.5)

The crossing equations for the four-point correlator of Konishi operators are

G(u, v) = G
(
u

v
,

1
v

)
, v∆KG(u, v) = u∆KG(v, u) . (5.6)

In the following, we will solve these equations and study their solutions as pertur-

bations in the double lightcone limit. While the first equation in (5.6) can easily be

expanded using the conformal block decomposition, the second equation has to be

treated more carefully. In order to do that we will need to employ the twist conformal

blocks introduced in [68]. We refer to the second equation in (5.6) as the conformal

bootstrap equation.
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Figure 5.1: Wick contractions relevant for the tree-level calculation.

The conformally invariant function G(u, v) entering (5.6) admits a decomposition

into conformal blocks obtained by considering the OPE expansion in the limit x1 → x2

G(u, v) =
∑
τ,`,i

aτ,`,iGτ,`(u, v). (5.7)

Here the sum runs over all conformal primaries of twist τ = ∆ − `, where ∆ is the

conformal dimension, and even spin ` present in the OPE decomposition of two Kon-

ishi operators and the index i = 1, . . . , dτ0,` runs over a possible additional degeneracy

in the spectrum of operators with a given twist and spin. We denote the square of

OPE coefficients by aτ,`,i = c2
KKOτ,`,i . The conformal blocks Gτ,`(u, v), which resum

contributions coming from all descendants of a given conformal primary operator, can

be found explicitly for four dimensions [51]. For even spins they take the following

form (2.21):

Gτ,`(z, z̄) = zz̄

z − z̄
(
k τ

2 +`(z)k τ
2−1(z̄)− k τ

2 +`(z̄)k τ
2−1(z)

)
. (5.8)

It is easy to check that each conformal block satisfies the first equation in (5.6).

On the other hand, in perturbative conformal gauge theories the four-point func-

tion admits a small coupling expansion

G(u, v) = G(0)(u, v) + g G(1)(u, v) + . . . , (5.9)

where g is the gauge coupling. The tree-level term can be directly evaluated using

Wick contractions in the free theory as in figure 5.1 and renders

G(0)(u, v) =
(

1 + u2 + u2

v2

)
+ c

(
u+ u

v
+ u2

v

)
, (5.10)
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where c is a theory-dependent constant which for example for N = 4 SYM with gauge

group SU(N) is proportional to the inverse of the central charge, c ∼ (N2 − 1)−1.

Performing the conformal block decomposition we find that for each reference twist

τ0 = 2, 4, 6, . . . there exists an infinite tower of operators contributing to the sum in

(5.7), labelled by spin ` and degeneracy index i. This twist degeneracy will be partially

lifted in the next sections, when we include perturbative corrections to the four-point

correlator. Using the conformal block decomposition of (5.10) we can compute the

tree-level structure constants, i.e. the OPE coefficients. They are non-zero only for

even spins ` and take the form

〈a(0)
τ0,`〉 =


2c Γ(`+ τ0

2 )2

Γ(2`+τ0−1) , τ0 = 2 ,

2 Γ( τ02 −1)2Γ( τ02 +`)2

Γ(τ0−3)Γ(τ0+2`−1)

(
c (−1)

τ0
2 + (τ0 + `− 2)(`+ 1)

)
, τ0 > 2 ,

(5.11)

where we have introduced an average of structure constants over operators with the

same reference twist and spin, 〈a(0)
τ0,`〉 := ∑

i a
(0)
τ0,`,i. Notice that from the correlator

(5.10) alone it is not possible to calculate individual structure constants by this pro-

cedure.

In the following sections we will find the most general one-loop correction to

(5.10) using the conformal symmetry, crossing symmetry and the structure of the

OPE. In particular, we will compute an explicit form of the perturbative corrections

to the structure constants 〈a(0)
τ0,`〉 → 〈a

(0)
τ0,`〉 + g〈a(1)

τ0,`〉 as well as to the twists τ0 →

τ0 + g
〈a(0)
τ0,`

γ
(1)
τ0,`
〉

〈a(0)
τ0,`
〉

. The knowledge of results for individual operators Oτ,`,i will not be

necessary to find the complete four-point correlator at one loop, they will become

relevant only at the two-loop order. We will comment on this matter in the outlook

of this chapter.

5.2.2 Superconformal block decomposition for half-BPS op-
erators

As the second example, we consider the four-point correlation function of four half-

BPS operators O20′ in N = 4 SYM, which are protected and their dimension is
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∆O20′ = 2. The four-point correlation function of such operators decomposes into the

following two contributions

〈O20′(x1, y1)O20′(x2, y2)O20′(x3, y3)O20′(x4, y4)〉 = Gfree(x, y) + Gpert(x, y), (5.12)

where Gpert(x, y) vanishes when g → 0. The part Gfree(x, y) corresponds to the free

theory and is a rational function of space time and R-symmetry coordinates. Again,

it can be evaluated directly by Wick contractions and it boils down to the same set

of graphs as in figure 5.1. It renders

Gfree(x, y) = d2
12d

2
34 + d2

13d
2
24 + d2

14d
2
23 + c̃

(
d12d23d34d14 + d12d24d34d13 + d13d24d23d14

)
,

(5.13)

where the superpropagator dij is given by

dij =
y2
ij

x2
ij

, yij = yi · yj, (5.14)

and c̃ is a theory-dependent constant which for SU(N) N = 4 SYM again depends

only on the central charge c̃ ∼ (N2 − 1)−1.

From the superconformal Ward identities [188], the interacting part of the four-

point function can be written in a factorised form

Gpert(z, z̄, α, ᾱ) = d2
12d

2
34

(z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)
(α ᾱ)2 H(u, v) , (5.15)

where we have introduced a set of cross-ratios for the R-symmetry coordinates

αᾱ = y2
12y

2
34

y2
13y

2
24
, (1− α)(1− ᾱ) = y2

14y
2
23

y2
13y

2
24
. (5.16)

Similar to the four-point function of Konishi operators, crossing symmetry implies

that the function H(u, v) satisfies the two equations

H(u, v) = 1
v2H

(
u

v
,

1
v

)
, v2H(u, v) = u2H(v, u) , (5.17)

where in the second equation we used explicitly the fact that ∆O20′ = 2.

130



On the other hand, the four-point correlation function (5.12) admits a supercon-

formal block decomposition, see e.g. [189]

Gfree(x, y) + Gpert(x, y) = d2
12d

2
34
∑
R,i

AR,i SR(x, y), (5.18)

where the sum runs over all superconformal primary operators appearing in the OPE

expansion of two half-BPS operators

O20′ ×O20′ ∼
∑
R,i

CO20′O20′OR,i (OR,i + . . .) . (5.19)

Superconformal primaries in (5.19) are labelled by their twist τ = ∆− `, spin ` and

a representation of the SU(4) R-symmetry of N = 4 SYM, which we collectively

denote by R. Again, we also introduced the label i which takes care of a possible

additional degeneracy of operators with the same twist, spin and the R-symmetry

label. Importantly, the superconformal blocks do not depend on the label i. An

explicit description of superconformal multiplets and an explicit form of the super-

conformal blocks SR can be found in the appendix C.1. As it is summarised there,

we distinguish three types of supermultiplets in (5.19): half-BPS, quarter-BPS and

long supermultiplets. All half-BPS and most quarter-BPS supermultiplets have their

conformal dimensions and structure constants protected by supersymmetry. Then,

their two-point and three-point correlation functions are completely determined by

the free part Gfree. They will therefore not contribute to the interacting part H(u, v)

of the four-point correlation function. The only exception are quarter-BPS supermul-

tiplets at the unitarity bound. They can combine in the interacting theory to form

a long, non-protected supermultiplet [52, 190]. This is exactly the case for the twist-

two operators. Together with the other long supermultiplets they form a complete

non-protected spectrum of operators present in the intermediate channel. Since we

want to find the one-loop correction to H(u, v), we will in the following be interested

only in the non-protected part of the spectrum.
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We can perform a superconformal block decomposition of the leading contribution

Gfree(x, y) to the four-point function and get structure constants for all non-protected

multiplets

〈A(0)
τ0,`〉 =

2c̃ Γ(`+ τ0
2 +2)2

Γ(2`+τ0+3) , τ0 = 2 ,
2Γ( τ02 +1)2Γ( τ02 +`+2)2

Γ(τ0+1)Γ(τ0+2`+3)

(
c̃ (−1)

τ0
2 + (τ0 + `+ 2)(`+ 1)

)
, τ0 = 4, 6, 8, . . . .

(5.20)

It is interesting to notice that 〈A(0)
τ0,`〉 = 〈a(0)

τ0,`〉
∣∣∣
c→c̃,τ0→τ0+4

.

Furthermore, using the explicit form of superconformal blocks (C.9) and (C.11) for

non-protected multiplets, the interacting part of the four-point correlation function

can be expanded as

H(u, v) =
∑
τ,`

〈Aτ,`〉u−2Gτ+4,`(z, z̄), (5.21)

where Gτ,`(z, z̄) is exactly the same conformal block as in (5.8) in section 5.2.1.

We notice that both leading-order structure constants 〈A(0)
τ0,`〉 and superconformal

blocks for non-protected supermultiplets are related to the Konishi case by shifting

τ0 → τ0 + 4. For this reason, the one-loop calculation for the four-point correlator of

half-BPS operators is analogous to a similar analysis for four Konishi operators, after

this shift is implemented at the level of twist conformal blocks.

5.3 Twist conformal blocks

In this section we describe twist conformal blocks and their generalisations introduced

in [68] and use them to rewrite the conformal block decomposition of four-point

correlation functions from the previous section. We focus in this section exclusively

on the case of four Konishi operators, leaving the half-BPS case to section 5.5. We

start by defining twist conformal blocks relevant for the tree-level correlators and

then define their generalisations with spin-dependent insertions that will be relevant

for the perturbative expansion around the tree-level solution.
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5.3.1 Twist conformal blocks

A motivation to study twist conformal blocks is the observation that in perturba-

tion theory there exists, for each even number τ0 = 2, 4, 6, . . ., an infinite family of

operators Oτ0,`,i, ` = 0, 2, 4, . . ., i = 1, . . . , dτ0,`, with the reference twist equal to τ0:

τ = τ0 +O(g) . (5.22)

Therefore, at tree-level we have an infinite twist degeneracy which is lifted only when

we turn on the coupling constant. In particular, it motivates us to resum contributions

coming from all intermediate operators with the same reference twist τ0. In this case,

the leading order four-point correlator (5.10) can be decomposed as

G(0)(u, v) =
∑

τ0=2,4,...
Hτ0(u, v), (5.23)

where we have defined twist conformal blocks

Hτ0(u, v) =
∞∑
`=0
〈a(0)
τ0,`〉Gτ0,`(u, v), (5.24)

with 〈a(0)
τ0,`〉 given in (5.11). The sum in (5.24) can be performed for any τ0 using the

explicit form of conformal blocks. For example for τ0 = 2 it renders

H2(u, v) = c
u

v
+ c u. (5.25)

For higher twists, the explicit form of Hτ0(u, v) is more involved and we will not

present it here. However, in all subsequent calculations we will need only their power

divergent part as v → 0. Such divergent parts can be easily calculated and written

in a closed form as we will show below.

5.3.2 H-functions

In order to study perturbative corrections to the tree-level correlation function G(0)(u, v)

we need to generalise the notion of twist conformal blocks. In particular, when the
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coupling constant g is not zero, the twist degeneracy we observed at the tree-level

is lifted and each Oτ0,`,i gets individual corrections to their twists and structure con-

stants,

ττ0,`,i = τ0 + g γ
(1)
τ0,`,i +O(g2), (5.26)

aτ0,`,i = a
(0)
τ0,`,i + g a

(1)
τ0,`,i +O(g2). (5.27)

Here γ(1)
τ0,`,i is the one-loop anomalous dimension of Oτ0,`,i and a

(1)
τ0,`,i is the one-loop

correction to the structure constants. In the conformal block decomposition, these

corrections will introduce an additional dependence on the spin and will modify the

sum in the definition of the twist conformal blocks. Therefore, we will need to calcu-

late sums of the form
∞∑
`=0
〈a(0)
τ0,`〉κτ0(`)Gτ0,`(u, v), (5.28)

where κτ0(`) stands for the spin dependence coming from either the anomalous di-

mensions or the OPE coefficients. In particular, these insertions can be of two kinds:

unbounded in spin ` or truncated contributions with finite support in `. The trun-

cated contributions do not affect the enhanced divergent part of correlator and we

will postpone their study to the following section. On the other hand, for the inser-

tions unbounded in spin the sum (5.28) can be calculated as an expansion around the

infinite value of spin. In particular, in the unbounded case κτ0(`) can be expanded in

inverse powers of the conformal spin J2
τ0 = ( τ02 + `)( τ02 + `− 1):

κτ0(`) =
∞∑
m=0

(
C(m)

J2m
τ0

+ C(m,log)

J2m
τ0

log Jτ0 + . . .

)
, (5.29)

as was shown in [65]. Then, in order to study perturbation theory beyond the tree-

level, we consider a set of functions [68]

H(m,logn)
τ0 (u, v) =

∑
`

〈a(0)
τ0,l〉

(log Jτ0)n
J2m
τ0

Gτ0,l(u, v), (5.30)

which we will refer to as H-functions. The H-functions describe contributions from an

infinite sum of conformal blocks with spin-dependent insertions. In the case m = n =
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0 the H-functions H(0)
τ0 (u, v) coincide with the twist conformal blocks. Importantly,

the functions (5.30) satisfy the following recursion relation

H(m,logn)
τ0 (u, v) = CH(m+1,logn)

τ0 (u, v), (5.31)

where we defined the shifted quadratic Casimir (3.49)

C = Dz +Dz̄ + 2 zz̄

z − z̄
((1− z)∂z − (1− z̄)∂z̄)−

τ0(τ0 − 6)
4 , (5.32)

with Dx = (1 − x)x2∂2
x − x2∂x . The relation (5.31) can be easily proven by notic-

ing that each individual conformal block Gτ0,`(z, z̄) is an eigenvector of the Casimir

operator C with the eigenvalue J2
τ0 .

5.3.3 Enhanced divergences

In the following we will not need an explicit form of the functions H(m,logn)
τ0 (u, v) but

only their enhanced divergent part as v → 0. Expanding (5.8) in this limit, one

can notice that the conformal blocks behave as a logarithm Gτ0,`(u, v) ∼ log(v) for

v → 0. By enhanced divergence we will mean terms which cannot be written as a

finite sum of conformal blocks. There are two kinds of enhanced divergences we will

encounter: inverse powers of v, and functions with higher powers of the logarithm,

that is functions of the form p(v) logn v, n > 1, where p(v) is regular for v → 0. As

was shown in [65], the power divergent part of Hτ0(u, v) is completely determined by

operators with large spin `. In order to compute this divergent part it is therefore

sufficient to study the tail of the sum in (5.24). As explained in the following section

such computations can be done explicitly. For example, at τ0 = 2 it renders

H
(0)
2 (u, v) = c

u

v
+O(v0). (5.33)

One notices that the power divergence agrees with the explicit calculation in (5.25).

Moreover, the finite term O(v0) will not be necessary in the following sections.
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Throughout the chapter we will often be interested in comparing only the enhanced

divergent part of various functions. For this reason we introduce a notation

f(u, v) .= g(u, v) if f(u, v) = g(u, v) + p(u, v) + q(u, v) log v, (5.34)

where p and q are polynomials in v with coefficients that are functions of u. This is

to say that f(u, v) and g(u, v) are equal up to “regular terms”, by which we mean

contributions which can come from a finite number of conformal blocks. In particular,

regular terms can contain a single power of log v but no higher powers of the logarithm

nor inverse powers of v.

5.3.4 Computing H-functions

We now describe how to construct the power divergent part of the H-functions that

we will need in the subsequent calculations. First, we describe how to use the kernel

method, motivated by [62] and systematically developed in [63, 64]. This method,

however, becomes inefficient very fast. For this reason we explain how to use an

alternative method based on the recursion relation (5.31). We start by focusing on

the case of operators with twist τ0 = 2, and later on describe how H-functions for

higher twists arise naturally from the twist-two case.

5.3.4.1 Factorisation

We are only interested in the terms with a power divergence as v → 0. In the

following, it will be more convenient to use the coordinates (z, z̄) instead of the

cross-ratios (u, v). In these coordinates we are interested in the limit z̄ → 1. Using

the definition (5.24) and the explicit form of conformal blocks, any power divergent

contributions to twist conformal blocks must arise from an infinite sum over spins.

Moreover, they can only come from the second part of the conformal block (5.8).

Then the part of the twist conformal blocks with a power divergence as z̄ → 1 can
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be written as
z z̄

z̄ − z
k τ0

2 −1(z)
∞∑
`=0
〈a(0)
τ0,`〉k τ02 +`(z̄). (5.35)

Similar reasoning can be applied to all H-functions defined in (5.30). For this reason

the power divergent part of the H-functions takes a factorised form

H(m,logn)
τ0 (z, z̄) .= z

z̄ − z
k τ0

2 −1(z)H(m,logn)
τ0 (z̄), (5.36)

where we have defined the functions

H
(m,logn)
τ0 (z̄) = z̄

∞∑
`=0
〈a(0)
τ0,`〉

logn Jτ0
J2m
τ0

k τ0
2 +`(z̄). (5.37)

We notice now that the action of the quadratic Casimir (5.32) simplifies signifi-

cantly when applied only to the divergent part of the H-functions

CH(m,logn)
τ0 (z, z̄) .= z

z̄ − z
k τ0

2 −1(z)DH(m,logn)
τ0 (z̄), (5.38)

where

D = (2− z̄)(1− z̄∂z̄) + z̄2(1− z̄)∂2
z̄ = z̄ D z̄−1 (5.39)

where D is the SL(2,R) Casimir defined in (2.24). Additionally, due to (5.38), the

recursion (5.31) implies a similar recursion relation for H(m,logn)
τ0 (z̄), taking the form

H
(m,logn)
τ0 (z̄) = DH(m+1,logn)

τ0 (z̄) . (5.40)

It is important to notice that the operator D maps regular terms to regular terms

and therefore does not introduce any enhanced divergence while acting on finite sums

of conformal blocks. More generally, for polynomial functions p(z̄) it acts as

D(p(z̄) log(1− z̄)n) = n(n− 1) z̄ p(z̄) log(1− z̄)n−2

1− z̄ +O((1− z̄)0). (5.41)

It is clear that for n = 0, 1 no enhanced divergence is produced when acting with D.

On the other hand, expressions with higher powers of the logarithm, namely n > 1,

will always produce terms with negative powers of 1 − z̄ after we act on them with

D a finite number of times. This property explains why we refer to such terms as

enhanced divergent.
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5.3.4.2 Derivation of H-functions: kernel method

Let us now focus on finding the power divergent part of the functions H(m,logn)
τ0 (z̄). In

principle, this is possible for any m and n. However, in order to solve the one-loop

problem we will see that it is sufficient to focus on H(m,logn)
τ0 (z̄) for n = 0, 1 and m 6 0.

Since we want to compute just the power divergent part of these functions we only

need to consider the tail of the sum over spins in (5.37). In this limit the sum is

well-approximated by an integral which can be explicitly computed using the method

described in [63, 64], see also the appendix A of [66]. This method allows to capture

all power divergences, namely all terms of the form ∼ 1
(1−z̄)k for k > 0.

Let us start by considering the twist conformal block H(0)
2 (z̄) and compute

z̄
∑
`

〈a(0)
2,`〉 k`+1(z̄) =

∑
`

2cΓ(`+ 1)2

Γ(2`+ 1) z̄
`+2

2F1(`+ 1, `+ 1, 2`+ 2; z̄). (5.42)

The divergent contributions come from large spins of order ` ∼ 1√
ε
, where we have

introduced the notation ε = 1− z̄ in order to simplify the following formulae. There-

fore, we can define ` = p√
ε
and convert the sum over ` into the integral 1

2
∫ dp√

ε
. We

also replace the hypergeometric function by its integral representation

2F1(a, b; c;x) = Γ(c)
Γ(b)Γ(c− b)

1∫
0

dt
tb−1(1− t)c−b−1

(1− x t)a . (5.43)

Consecutively, we perform the change of variables

p√
ε

(
p√
ε

+ 1
)

= Ĵ2

ε
, t = 1− w

√
ε . (5.44)

The integration limits of the w integral can safely be extended to [0,∞) since this

does not add any power divergent term. Implementing these changes of variables

gives the result

z̄
∑
`

〈a(0)
2,`〉 k`+1(z̄)→ (1− ε) c

∫ ∞
0

dĴ K2(Ĵ , ε), (5.45)

where we have defined the integral kernel

K2(j, ε) =
∫ ∞

0
dw

−2Ĵ
w ε(w

√
ε− 1)

(
w(1− ε)(1− w

√
ε)

w +
√
ε− wε)

) 1
2

(
1+
√

1+ 4Ĵ2
ε

)
. (5.46)
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Expanding K2(Ĵ , ε) in powers of ε we get

K2(Ĵ , ε) = 4ĴK0(2j)1
ε
− 4

3
(
ĴK0(2Ĵ) + (1 + 2Ĵ2)K1(2Ĵ)

)
+ . . . , (5.47)

where Kn(x) are the modified Bessel functions of the second kind.

In particular, this method allows us to find

H
(0)
2 (z̄) .= 1

1− z̄ c
∫ ∞

0
dj 4jK0(2j) = 1

1− z̄ c+O((1− z̄)0), (5.48)

which is exactly the previously mentioned result (5.33). Importantly, it agrees up

to regular terms with the direct calculation (5.25). Let us emphasise that for the

twist conformal block H(0)
2 (z̄) there are no additional enhanced divergences beyond

the power divergence, namely there are no terms with logn(1 − z̄) for n > 1. This

statement will become crucial when we use the recursion relation method in the

following section.

More generally, using this method we can find all negative powers of ε = 1− z̄ of

the H-functions with m 6 0 by modifying the integrand with suitable insertions

H
(m,logn)
2 (z̄) .= (1− ε) c

∫ ∞
0

djK2(j, ε)
(
ε

j2

)m
logn

(
j√
ε

)
. (5.49)

For example for m = 0, n = 1 we find after an explicit calculation

H
(0,log)
2 (z̄) .= 1

1− z̄ c
∫ ∞

0
dĴ 4ĴK0(2Ĵ)

(
log Ĵ − 1

2 log(1− z̄)
)

.= − γE
1− z̄ c−

log(1− z̄)
2(1− z̄) c+O((1− z̄)0), (5.50)

where γE is Euler’s constant.

By studying the ε-dependence in (5.49) we also immediately find a general schematic

form of the power divergent part of H(m,logn)
2 (z̄) for m 6 0,

H
(m,logn)
2 (z̄) .=

−m∑
i=0

n∑
j=0

k
(m,logn)
i,j

logj(1− z̄)
(1− z̄)−m−i+1 c, (5.51)

where all coefficient k(m,logn)
i,j in principle can be calculated from (5.49). This quickly

becomes very tedious and for this reason we present a different approach in the

following section.
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5.3.4.3 Derivation of H-functions: recursion relation method

We will now move to a more efficient approach, where we derive the H-functions

H
(m,logn)
2 (z̄) using the recursion relation (5.40). From (5.25) the complete enhanced

divergent part of twist conformal block for τ0 = 2 is H(0)
2 (z̄) .= c

1−z̄ . The recursion

relation (5.40) immediately allows us to find all divergent parts for all H-functions

H
(m)
2 (z̄) with m < 0 by simply using

H
(m)
2 (z̄) = D−mH(0)

2 (z̄) , for m < 0 . (5.52)

Also for positive m we could in principle find the enhanced divergent part of the H-

functions by solving differential equations (5.40). This becomes tedious very quickly

and moreover we would need to introduce two constants of integration every time we

increase m. However, as we already pointed out, we will not need H-functions with

positive m at all. Left to construct are therefore the H-functions with logarithmic

insertions. As described in the appendix A.4 of [69], these are given by differentiating

the H(m)
2 (z̄) with respect to the parameter m:

H
(m,logn)
2 (z̄) = −1

2
∂

∂m
H

(m,logn−1)
2 (z̄). (5.53)

We will only need to consider the case n = 1, although the computation for n > 1 is

analogous. In order to find H(0,log)
2 (z̄), we need to analytically continue H(m)

2 (z̄) with

respect to the parameter m and then take the derivative. The most general form of

the enhanced divergent parts of H(m)
2 (z̄) for m 6 0 is given by (5.51),

H
(m)
2 (z̄) .=

−m∑
i=0

k
(m)
i

(1− z̄)−m−i+1 c, (5.54)

where all coefficients k(m)
i can be found explicitly from (5.52). In particular, it allows

us to derive a recursion relation for the coefficients k(m)
i . For example for k(m)

0 we get

k
(m)
0 = m2 k

(m+1)
0 , (5.55)
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which together with the initial condition k(0)
0 = 1 coming from H

(0)
2 (z̄) .= c (1− z̄)−1

allows us to find the general form

k
(m)
0 = Γ(−m+ 1)2 , for m 6 0. (5.56)

Proceeding to subleading terms, and using as boundary conditions the explicit values

of k(−i)
i for i > 0 that can be calculated directly from (5.52), one can find all expansion

terms in (5.54). We present few first terms below

H
(m)
2 (z̄) .= Γ(−m+ 1)2c

(1− z̄)−m+1 + m(2m2 − 6m+ 1)
3

Γ(−m)2c

(1− z̄)−m+

+ (m− 1)m(m+ 1)(20m3 − 54m2 − 35m+ 36)
90

Γ(−m− 1)2c

(1− z̄)−m−1 + . . . .

(5.57)

For all m 6 0 this expansion is valid up to the order (1− z̄)−1. Now, all expressions

in (5.57) are meromorphic functions and can be analytically continued to any value

of m. Taking the derivative with respect to m, as in (5.53), we obtain the divergent

part of H(m,log)
2 (z̄)

H
(m,log)
2 (z̄) .=− 1

2
Γ(−m+ 1)2c

(1− z̄)−m+1 (log(1− z̄)− 2S1(−m) + 2γE) + . . . , (5.58)

where Sk(N) = ∑N
i=1

1
ik

are harmonic sums. Again, for given m 6 0, this expansion

is valid up to the order (1− z̄)−1.

There exists a very compact way to encode all negative powers of 1 − z̄ in the

functions H(m,log)
2 (z̄) for m 6 0 by constructing the complete enhanced divergent part

of H(0,log)
2 (z̄). In order to do that we start with a general ansatz

H
(0,log)
2 (z̄) = elog

1− z̄ c log(1− z̄) + e−1

1− z̄ c+
∞∑
i=0

ei(1− z̄)ic log2(1− z̄). (5.59)

We can fix the coefficients ei and elog by using the relation

H
(m,log)
τ0 (z̄) = D−mH(0,log)

τ0 (z̄) , for m < 0, (5.60)
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and comparing it with the previously obtained expansion (5.58). This allows us to

find

H
(0,log)
2 (z̄) = −1

2
log(1− z̄)

1− z̄ c− γE
1− z̄ c+

(
− 1

12 + 1− z̄
10 − 5(1− z̄)2

504 + . . .

)
c log2(1−z̄).

(5.61)

With this method arbitrarily many terms multiplying log2(1 − z̄) can be computed

if we use (5.60) for a sufficiently large −m. We refer the reader to the appendix C.2

where we have collected more orders of this expansion. Now, using the explicit form

of H(0,log)
2 (z̄) in (5.61) we can easily find all negative powers of H(m,log)

2 (z̄) for m 6 0

by applying the formula (5.60). A similar analysis can be done also for H(m,logn)
2 (z̄)

for n > 1, however we will not need these functions in solving the one-loop problem.

5.3.4.4 Higher twist H-functions

We end this section by describing how to compute the H-functions H(m,logn)
τ0 (z̄) for

τ0 > 2. First of all, notice that the tree-level structure constants for higher twists

(5.11) can be nicely written using the tree-level structure constants for twist-two

operators

〈a(0)
τ0,`〉 =

Γ( τ02 − 1)2

Γ(τ0 − 3)
1
c

(
c (−1)

τ0
2 − ( τ02 − 2)( τ02 − 1) + J2

τ0

)
〈a(0)

2,`+ τ0
2 −1〉, (5.62)

where again J2
τ0 =

(
τ0
2 + `

) (
τ0
2 + `− 1

)
. When we plug this into the definition of twist

conformal blocks for higher twist and perform a change of variables j = `+ τ0
2 − 1 we

get

H
(0)
τ0 (z̄) = z̄

Γ( τ02 − 1)2

Γ(τ0 − 3)

∞∑
j= τ0

2 −1

1
c

(
c (−1)

τ0
2 − ( τ02 − 2)( τ02 − 1) + (J2)2

)
〈a(0)

2,j〉kj+1(z̄).

(5.63)

where (J2)2 = j(j + 1). In the limit z̄ → 1 the sum over j can be replaced by a sum

from zero to infinity since the difference is a regular term. This leads to

H
(0)
τ0 (z̄) .=

Γ( τ02 − 1)2

Γ(τ0 − 3)
1
c

((
c (−1)

τ0
2 − ( τ02 − 2)( τ02 − 1)

)
H

(0)
2 (z̄) +H

(−1)
2 (z̄)

)
. (5.64)
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This allows us to rewrite the twist conformal blocks for higher twists in terms of

functions we have already constructed. Similar analysis can be performed for all

H-functions leading to the explicit form for higher-twists

H
(m,logn)
τ0 (z̄) .=

Γ( τ02 − 1)2

Γ(τ0 − 3)
1
c

((
c (−1)

τ0
2 − ( τ02 − 2)( τ02 − 1)

)
H

(m,logn)
2 (z̄) +H

(m−1,logn)
2 (z̄)

)
.

(5.65)

To summarise, all H-functions relevant for the one-loop problem can be constructed

using just two functions: H(0)
2 (z̄) and H(0,log)

2 (z̄) whose explicit form can be found in

(5.33) and (5.61), respectively.

5.3.5 Decomposing one-loop correlator into H-functions

Knowing the explicit form of the H-functions, we focus now on the one-loop four-point

correlation function G(1)(z, z̄) and expand its power divergent part in terms of the H-

functions. By doing this we focus only on contributions to anomalous dimensions and

structure constants unbounded in spin `. Later on we will also include terms which

are truncated in spin. The latter do not interfere with our analysis of the power

divergent part of the correlator.

For each operator present in the intermediate channel we expand their conformal

dimension and structure constants as follows

τi = τ0 + g γ
(1)
τ0,`,i +O(g2), (5.66)

aτi,`,i = a
(0)
τ0,`,i + g a

(1)
τ0,`,i +O(g2). (5.67)

Then the four-point correlation function G(z, z̄), up to the order g, can be written as

G(0)(z, z̄) + g G(1)(z, z̄)

=
∑
τ0,`,i

(
a

(0)
τ0,`,i + g a

(1)
τ0,`,i

)(
Gτ0,`(z, z̄) + g γ

(1)
τ0,`,i

(
∂

∂τ
Gτ,`(z, z̄)

) ∣∣∣
τ→τ0

)
(5.68)

=
∑
τ0,`

〈a(0)
τ0,`〉Gτ0,l(z, z̄) + g

∑
τ0,`

(
〈a(1)
τ0,`〉Gτ0,`(z, z̄) + 〈a(0)

τ0,`γ
(1)
τ0,`〉

(
∂

∂τ
Gτ,`(z, z̄)

) ∣∣∣
τ→τ0

)
,
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where we have again defined the averages 〈fτ0,`〉 = ∑
i fτ0,`,i.

In the last line of (5.68) the derivative with respect to twist τ is understood as a

partial derivative of a function of two variables: τ and `. It turns out that our further

analysis simplifies significantly if we instead use the variables (τ̃ , ˜̀) defined as

(
τ̃ , ˜̀

)
=
(
τ, `+ τ

2

)
. (5.69)

Up to a constant factor, this is equivalent to a change of variables to (h, h̄) as discussed

at the end of section 2.2.2. Then the partial derivatives in the new variables can be

related to the partial derivatives with respect to the twist and spin as

∂

∂τ
= ∂

∂τ̃
+ 1

2
∂

∂ ˜̀ ,
∂

∂`
= ∂

∂ ˜̀ . (5.70)

In particular, it implies that ∂τ̃k τ2 +`(z̄) = 0. We can now rewrite the derivative in the

last line of (5.68) as

∑
τ0,`

(
〈a(0)
τ0,`γ

(1)
τ0,`〉

(
∂

∂τ̃
Gτ,`(z, z̄)

) ∣∣∣
τ→τ0

+ 1
2〈a

(0)
τ0,`γ

(1)
τ0,`〉

(
∂

∂ ˜̀Gτ0,`(z, z̄)
))

.=
∑
τ0,`

(
〈a(0)
τ0,`γ

(1)
τ0,`〉

(
∂

∂τ̃
Gτ,`(z, z̄)

) ∣∣∣
τ→τ0

− 1
2
∂

∂ ˜̀
(
〈a(0)
τ0,`γ

(1)
τ0,`〉

)
Gτ0,`(z, z̄)

)
, (5.71)

where in the second line we dropped a total derivative with respect to ˜̀, which is a

regular term. Finally, we can rewrite the divergent part of G(1)(z, z̄) as

G(1)(z, z̄) .= zz̄

z̄ − z
∑
τ0,`

〈a(0)
τ0,`〉

(
〈α̂τ0,`〉k τ02 −1(z) + 〈γτ0,`〉

(
∂

∂τ
k τ

2−1(z)
) ∣∣∣

τ→τ0

)
k τ0

2 +`(z̄),

(5.72)

where we used the factorisation (5.35) of the divergent parts of the conformal blocks

and introduced

〈γτ0,`〉 :=
〈a(0)
τ0,`γ

(1)
τ0,`〉

〈a(0)
τ0,`〉

, (5.73)

〈α̂τ0,`〉〈a
(0)
τ0,`〉 := 〈a(1)

τ0,`〉 −
1
2
∂

∂`

(
〈a(0)
τ0,`γ

(1)
τ0,`〉

)
= 〈a(1)

τ0,`〉 −
1
2〈a

(0)
τ0,`〉

∂

∂`
〈γτ0,`〉 −

1
2
∂

∂`
〈a(0)
τ0,`〉〈γτ0,`〉. (5.74)
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One can recognise the last formula in (5.74) as the one-loop perturbative expansion

of âτ0,` introduced in [69].

In weakly coupled CFTs at one loop, both the anomalous dimensions 〈γτ0,`〉 and

the modified structure constants 〈α̂τ0,`〉 depend on spin as a single logarithm log ` at

large `. Therefore, in order to use the H-functions to constrain the unbounded parts

of the CFT-data we expand the modified structure constants 〈α̂τ0,`〉 and anomalous

dimensions 〈γτ0,`〉 in the following way [65]:

〈α̂τ0,`〉 =
∞∑
m=0

Aτ0,(m,log)

J2m
τ0

log Jτ0 +
∞∑
m=0

Aτ0,(m)

J2m
τ0

, (5.75)

〈γτ0,`〉 =
∞∑
m=0

Bτ0,(m,log)

J2m
τ0

log Jτ0 +
∞∑
m=0

Bτ0,(m)

J2m
τ0

. (5.76)

Inserting the expansions (5.75) and (5.76) into (5.72) we can finally rewrite the

divergent part of the one-loop correlator in terms of H-functions

G(1)(z, z̄) .=
∑
τ0

z

z̄ − z
∑
ρ

(
Aτ0,ρ k τ02 −1(z) +Bτ0,ρ

(
∂

∂τ
k τ

2−1(z)
) ∣∣∣

τ→τ0

)
H

ρ
τ0(z̄), (5.77)

where ρ = (m, log) or ρ = (m), m = 0, 1, 2, . . . and we have used the definition of

H-functions (5.37). This is the most important formula of this section and in the

following we will use it to completely fix the form of G(1)(z, z̄).

5.3.6 Using H-functions: toy example

We present a simple example of how to use H-functions to extract the asymptotic

spin dependence of CFT-data given a particular function with power divergences. In

order to simplify our discussion we focus here only on the z̄ dependence. In analogy

with the actual computations in the next section, we will assume that the sum of

H-functions produces a divergent expression containing a constant term and a term

proportional to log(1− z̄):

∞∑
m=0

1∑
n=0

C(m,logn)H
(m,logn)
2 (z̄) .= λ1 log(1− z̄) + λ0

1− z̄ c. (5.78)
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We will work iteratively and fix coefficients C(m,logn) by repeatedly applying the

Casimir operator (5.39) on both sides of (5.78) and keeping only power divergent

terms. As a first step let us analyse the power divergent terms of (5.78) itself. In this

case only two terms in the sum on the left hand side are power divergent as z̄ → 1,

namely H(0)
2 (z̄) and H(0,log)

2 (z̄). Therefore we get

C(0)
1

1− z̄ c+ C(0,log)

(
− γE

1− z̄ −
log(1− z̄)
2(1− z̄)

)
c = λ1 log(1− z̄) + λ0

1− z̄ c, (5.79)

where we used the explicit form of H(0)
2 (z̄) and H(0,log)

2 (z̄). Solving this equation we

get

C(0) = λ0 − 2λ1γE, C(0,log) = −2λ1. (5.80)

To compute higher coefficients we act with the Casimir D on both sides of (5.78) and

again compare power divergent terms. On the left hand side, using the recurrence

(5.40), the Casimir brings the previously undetermined coefficients C(1) and C(1,log)

into the problem. This renders
1∑

m=0

1∑
n=0

C(m,logn)H
(m−1,logn)
2 (z̄) .= D

(
λ1 log(1− z̄) + λ0

1− z̄ c

)
. (5.81)

Using the explicit form of the H-functions

H
(−1)
2 (z̄) = DH(0)

2 (z̄) .= 1
(1− z̄)2 c−

3
1− z̄ c, (5.82)

H
(−1,log)
2 (z̄) = DH(0,log)

2 (z̄) .= 2− 2γE − log(1− z̄)
2(1− z̄)2 c+ 18γE − 19 + 9 log(1− z̄)

6(1− z̄) c,

(5.83)

and plugging in the solutions (5.80), the term proportional to (1− z̄)−2 vanishes, and

the term proportional to (1− z̄) provides

C(1) = −λ1

3 , C(1,log) = 0. (5.84)

We can continue in this fashion, and determine the coefficients C(m) and C(m,log) after

acting m times with the Casimir D. The results for m = 1, 2, . . . are

C(m) = −2λ1

{1
6 , −

1
30 ,

4
315 , −

1
105 , . . .

}
, C(m,log) = 0. (5.85)
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We identify the C(m) together with C(0,log) as coefficients in the large ` expansion

(2.60) of the harmonic sum S1(`) expanded in inverse powers of J2 = `(`+ 1). They

therefore describe a function

∑
m,n

C(m,logn)
logn J
J2m = λ0 − 2λ1S1(`). (5.86)

This computation proves the following relation, which can also be shown by explicit

computation,

∑
`

〈a(0)
2,`〉 z̄ k`+1(z̄)(λ0 − 2λ1S1(`)) .= λ1 log(1− z̄) + λ0

1− z̄ c. (5.87)

In the following we will apply this method to more complicated functions, but the

general idea will stay exactly the same.

5.4 Four-point correlator from H-functions

In this section we use the H-functions to construct the one-loop correction to the four-

point function of four identical scalar operators. Again, we think of the correlator of

four Konishi operators as our example, but the method applies to a large family of

scalar operators.

5.4.1 The strategy

We remind the reader that the four-point correlation function in weakly coupled gauge

theories admits an expansion in the coupling constant g of the form

G(u, v) = G(0)(u, v) + g G(1)(u, v) + . . . . (5.88)

The contributions to the one-loop correlator G(1)(u, v) come from two different sources.

First of all, there are infinite towers of operators for which the CFT-data can be

expanded as a power series at large spin `, with possible log ` insertions. Such towers

of operators necessarily produce power divergent contributions to the correlator and

we can study them using the H-functions. Secondly, there are terms in the four-point

147



correlator which after performing the conformal block decomposition render CFT-

data that is truncated in spin. Such terms are always regular as v → 0. Importantly,

these two kinds of contributions are partially interchanged under crossing. In fact,

the interchange is such that all contributions from infinite towers, at any twists,

are completely determined by the twist-two operators. Therefore we will start our

analysis from general ansatz for the twist-two operators, and then use the crossing

symmetry and the H-function method to extend the ansatz to a full solution for

the one-loop four-point correlator. In the process we will assume that there are no

truncated solutions of the form found in [105].

Our strategy to find the one-loop correlation function is the following:

• Using the explicit form of conformal blocks (5.8) and the bootstrap equation

(5.6) we find a general form of the power divergent part of G(1)(u, v) in the

limit v → 0. We show using crossing symmetry that this is fully described by

operators at leading twist, namely τ0 = 2. Subsequently, we use the H-function

method to constrain the form of the contributions from infinite towers of leading

twist operators. Supplementing this with terms truncated in spin we arrive

at the most general leading twist contribution to the correlator GL.T.(u, v) ∼

uf(log u, v), where f(log u, v) is expressed to all orders in v in terms of a finite

number of unknowns.

• Crossing symmetry maps uf(log u, v) to the power divergent part of the com-

plete four-point correlator. This allows us to use the H-function method to find

the large spin expansion of the CFT-data for all twists, which can be resummed

to closed-form functions of spin. Plugging this result back to the conformal

block expansion we find the complete form of the four-point correlator in terms

of a finite number of unknowns.
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• As a final step we check that such obtained function satisfy all necessary con-

straints. In particular, consistency with the bootstrap equation reduces the

number of unknowns to just four.

5.4.2 The ansatz

We focus first on the most general form of the power divergent terms in the limit

v → 0 and show that the bootstrap equation implies that all such contributions are

encoded by the twist-two operators.

Let us start by writing down an explicit form of the bootstrap equation in the

perturbative expansion

v2+g γext(G(0)(u, v) + g G(1)(u, v)) = u2+g γext(G(0)(v, u) + g G(1)(v, u)), (5.89)

where γext is the one-loop anomalous dimension of the external operators, which we at

the moment will keep unspecified. The one-loop part of this equation can be written

in the form

G̃(1)(u, v) = u2

v2 G̃
(1)(v, u), (5.90)

where for convenience we defined G̃(1)(u, v) = G(1)(u, v) + γext log v G(0)(u, v). Both

functions G(0)(u, v) and G(1)(u, v) can be expanded in conformal blocks. Let us then

look at the expansion of a single conformal block in the small g limit,

Gτ,`(u, v) = Gτ0,`(u, v) + g (∂τGτ,`(u, v))|τ=τ0 +O(g2). (5.91)

From the explicit form of the conformal blocks we notice that at one loop there is

a contribution proportional to log u in this expansion but no higher powers of the

logarithm. We also notice that in the small u limit we have Gτ0,`(u, v) ∼ uτ0/2. Thus

the first non-trivial part of G̃(1)(u, v) at small u comes exclusively from the twist-two

operators and is of the form

G̃(1)(u, v) = γext log v + u
(
Q(1)(v, log v) log u+Q(2)(v, log v)

)
+O(u2), (5.92)
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where the first trivial term comes from the identity operator contribution to G(0)(u, v)

and Q(i)(v, log v) are arbitrary functions. The bootstrap equation (5.90) used for

(5.92) now gives

G̃(1)(u, v) = γext
u2

v2 log u+ u2

v

(
Q(1)(u, log u) log v +Q(2)(u, log u)

)
+O(v0). (5.93)

We notice in particular that, when crossed, (5.92) produces a power divergence for

v → 0. It is easy to see that also the opposite statement is true: any divergent

part of G̃(1)(u, v) is mapped to the first two leading u powers under crossing. Fi-

nally, by comparing the formulae (5.92) and (5.93) we conclude that we must have

Q(i)(u, log u) ∼ 1
u

+ . . ..

Since the term proportional to u0 is completely determined by the tree-level, we

will focus here on the term proportional to u. Therefore, we start our analysis by

considering the most general ansatz for twist-two operators. There are two distin-

guished terms: the contributions containing a power divergent part at v → 0, and

contributions truncated in the spin. From the discussion above, we conclude that the

former takes the form

G(1)
inf,L.T.(u, v) ∼ u

v
(α11 log u log v + α10 log u+ α01 log v + α00) c+ . . . . (5.94)

where α00, α10, α01, α11 are arbitrary constants and we introduced an explicit depen-

dence on c for later convenience. In the subsequent part of this section, we will use

the H-function method to extend this to all subleading orders in v.

For the truncated contributions, let us take L such that〈a
(1)
2,`〉 = 〈a(1)

2,`〉inf + 〈a(0)
2,`〉µ` ,

〈γ2,`〉 = 〈γ2,`〉inf + ν` ,
` = 0, 2, . . . , L , (5.95)

and that for spins ` > L we have only contributions from infinite towers of operators.

In this case the truncated part of the one-loop answer is given by

G(1)
trunc,L.T.(u, v) =

L∑
`=0
〈a(0)

2,`〉
(
µ`G2,`(u, v) + ν` (∂τGτ,`(u, v))

∣∣∣
τ→2

)
. (5.96)
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Let us go back to the term containing a divergence as v → 0 in (5.94). It originates

purely from an infinite tower of twist-two operators and can be expanded using H-

functions as in (5.77):

z

1− z̄ (α11 log z log(1− z̄) + α10 log z + α01 log(1− z̄) + α00) c .=

.= z
∑
ρ

(
A2,ρ + 1

2B2,ρ log z
)
H
ρ
2(z̄) , (5.97)

where A2,ρ and B2,ρ are large-J expansion coefficients, as in (5.75) and (5.76), of

the modified structure constants and anomalous dimensions, respectively, with ρ =

(m, logn) for n = 0, 1 and m = 0, 1, . . .. Using the H-function method described in

section 5.3.6 we find

A2,(0,log) = −2α01, A2,(0) = −2α01γE + α00, A2,(m) = −2α01

{1
6 ,
−1
30 ,

4
315 , . . .

}
,

(5.98)

B2,(0,log) = −4α11, B2,(0) = −4α11γE + 2α10, B2,(m) = −4α11

{1
6 ,
−1
30 ,

4
315 , . . .

}
.

(5.99)

From these values we can find an explicit form of the anomalous dimension and one-

loop structure constants coming from an infinite tower of twist-two operators:

〈γ2,`〉inf = −4α11 S1(`) + 2α10 , (5.100)

〈α̂2,`〉inf = −2α01 S1(`) + α00 . (5.101)

In the next step we will take the results (5.100), (5.101) and plug them into the

conformal block expansion (5.7). We can perform a resummation of the complete

leading z expansion of the four-point correlator G(1)
inf,L.T.(u, v) and arrive at

G(1)
inf,L.T.(u, v) = zz̄ (α11F11(z, z̄) + α10F10(z, z̄) + α01F01(z, z̄) + α00F00(z, z̄)) ,

(5.102)
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where

F11(z, z̄) = c
z̄

1− z̄ log(1− z̄) log(zz̄) + 2c
(

z̄

1− z̄Li2(z̄)− 2− z̄
1− z̄ ζ2

)
, (5.103)

F10(z, z̄) = c
( 1

1− z̄ + 1
)

log(zz̄)− c log(1− z̄) , (5.104)

F01(z, z̄) = c
( 1

1− z̄ − 1
)

log(1− z̄) , (5.105)

F00(z, z̄) = c
( 1

1− z̄ + 1
)
. (5.106)

It is easy to confirm that the power divergent part of (5.102) indeed equals (5.94).

We emphasise that the expansion (5.102) is valid only at the leading order in z → 0

but is exact to all orders in z̄.

We add together (5.96) and (5.102) to get the most general form of the one-loop

correlator at the leading order in u→ 0 expansion

G(1)
L.T.(u, v) = G(1)

inf,L.T.(u, v) + G(1)
trunc,L.T.(u, v). (5.107)

This answer depends on 2L + 4 unspecified coefficients and concludes the first step

in our strategy.

5.4.3 Higher twist operators

In the next step we will use the complete form of the leading twist four-point function

G
(1)
L.T.(u, v) together with the crossing equation to study implications for higher twist

operators. As we already have pointed out, the term proportional to u are, apart from

the trivial contribution from the identity operator, the only ones which can produce

power divergent terms after the crossing. It implies that after we apply the crossing

symmetry to the function (5.107) we get the complete power divergence of the full

one-loop answer.

In order to make our results more transparent, let us assume at the moment that

L = 0, namely only spin ` = 0 contributes to the truncated ansatz (5.96). We will
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come back to the general case later. Let us look again at the crossing equation (5.89)

at order g, which gives the following equation for the one-loop correlation function:

G(1)(u, v) = u2

v2G
(1)(v, u) + γextG(0)(u, v) (log u− log v) . (5.108)

From our previous computations, on the right hand side we know explicitly all power

divergent contributions in the limit v → 0. First of all, we can expand (5.108) at

leading v → 0 and u→ 0 to get

G(1)(z, z̄) ∼ z

(1− z̄) (α11 log z log(1− z̄) + (α01 + γext) log z

+(α10 − γext) log(1− z̄) + α00) c+ . . . . (5.109)

Comparing it with (5.94) we find the constraint

α01 = α10 − γext. (5.110)

After substituting this into (5.108) we notice that the divergent part of G(1)(u, v)

depends on the anomalous dimension of external operator γext and the five parameters

(α11, α10, α00, µ0, ν0). We use this function to find the unbounded CFT-data for higher

twist operators by solving (5.77). Applying the method explained in section 5.3.6 we

can compute as many coefficients Aτ0,(m,logk) and Bτ0,(m,logk) as necessary. Similar to

the case of twist-two operators, we plug it back to (5.75), (5.76) and we are able to

perform the sum to find an explicit form of the CFT-data coming from infinite towers

of operators as a function of spin. The result for the anomalous dimensions is

〈γτ0,`〉 = c

Pτ0,`

(
4α11η

[
S1( τ02 − 2) + S1( τ02 + `− 1) + 1

2δτ0,4
]
− 4η α10 + 2η γext

− 4µ0 − 4ν0
[
S1( τ02 − 2)− S1( τ02 + `− 1) + 1

] )
+ 2γext, for τ0 > 2,

(5.111)

where η = (−1)
τ0
2 and Pτ0,` = c η + (τ0 + ` − 2)(` + 1) is the factor that appears in

the tree-level structure constants (5.11). The result for 〈α̂τ0,`〉 is more involved and
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we present here only its schematic form

〈α̂τ0,`〉 = α11〈α̂τ0,`〉11+α10〈α̂τ0,`〉10+α00〈α̂τ0,`〉00+γext〈α̂τ0,`〉ext+µ0〈α̂τ0,`〉µ0
+ν0〈α̂τ0,`〉ν0

.

(5.112)

The explicit expressions for 〈α̂τ0,`〉i can be found in the appendix C.3. In order to

get the one-loop structure constants 〈a(1)
τ0,`〉 one again needs to use the formula (5.74).

We can observe that the explicit results for 〈γτ0,`〉 and 〈a
(1)
τ0,`〉 at higher twist satisfy

an interesting symmetry, where formally exchanging τ0
2 − 1 by τ0

2 + ` gives the same

expression up to a sign. We also note that the conformal blocks have the same

symmetry, but it is not clear to us if this carries any meaning.

5.4.4 Complete one-loop resummation

In the previous section we found the CFT-data for all twists and spins. We can now

insert it into the conformal block expansion (5.7) and reproduce the full one-loop

correlation function. After we do that we need to check the obtained function indeed

satisfies the bootstrap equation (5.89). We have performed this calculation explicitly

and have found that the crossing relation for such obtained function implies one more

constraint on the parameters of our ansatz, namely

µ0 = −ν0. (5.113)

Implementing this constraint we end up with the function

G(1)(u, v)

= α11G11(u, v) + α10G10(u, v) + (α00 − 2 ζ2 α11)G00(u, v) + ν0Gν0(u, v) + γextGext(u, v),
(5.114)
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where the individual functions are given by

G11(u, v) = c
u(1 + u2 + v2 − 2u− 2v − 2uv)

v
Φ(u, v), (5.115)

G10(u, v) = c
u ((1 + v − 2u) log u+ (1 + u− 2v) log v)

v
, (5.116)

G00(u, v) = c
u

v
(1 + u+ v), (5.117)

Gν0(u, v) = −cu(u+ v + uv)
v

Φ(u, v), (5.118)

Gext(u, v) =
(
u2 + u2

v2 + c
2u2

v

)
log u+

(
cu− u2

v2 − c
u

v
− cu

2

v

)
log v. (5.119)

Here we introduced the usual box function [191]

Φ(u, v) =
log

(
1−z
1−z̄

)
log (z z̄) + 2 (Li2(z)− Li2(z̄))

z − z̄
. (5.120)

Notice that we may interpret the contribution G00(u, v) in (5.114) as a one-loop renor-

malisation of the constant c. We also emphasise that the solution Gν0(u, v), which

produces truncated CFT-data for leading twist, does not belong to the family of

truncated solutions found in [105] since it contributes to all spins for τ0 > 2.

Let us now come back to a general ansatz for the truncated solution with L > 0.

We can repeat all the calculations we performed in this section and we find that the

solution is even more constrained than in the L = 0 case. Working with the general

ansatz we find that there is no new solution to the bootstrap equation for higher

truncated spins. Namely, we find

µ` = 0, ν` = 0, for ` = 2, 4, . . . , L. (5.121)

Notice that this agrees with the range ` > 1 of analyticity in spin from the inversion

integral [70].

5.4.5 Comparing with Konishi

In the previous section we have found the most general one-loop four-point correlator

of four identical scalars with classical dimension ∆0 = 2. In this section we will find
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the values for all the constants which selects the Konishi solution from the family

(5.114). The best case scenario would be to use the properties of conformal field

theories to do that. One additional piece of information which we could use is the

fact that the CFT-data for the stress tensor, which is present in the OPE of two

Konishi operators, are known. It is, however, often difficult to access this information

since the stress tensor is not the only operator with twist τ0 = 2 and spin ` = 2

present in the OPE of two Konishi operators. For that reason we are not able to fix

the Konishi four-point correlator directly from conformal symmetry and we will need

to refer to some explicit results of direct perturbative calculations which can be found

in the literature.

In particular, we start by noticing that the Konishi operator is the only operator

of twist τ0 = 2 and spin ` = 0 in the OPE of two Konishi operators. For that reason

the average 〈a(1)
2,0〉 = a

(1)
KKK := 2 c(0)

KKKc
(1)
KKK is the one-loop structure constant of three

Konishi operators and 〈γ2,0〉 = γ
(1)
K is the one-loop anomalous dimension of Konishi

operator. These can be extracted from the results in [192] and in the normalisation

we use in this chapter they take the values

γext = 〈γ2,0〉 = 3, 〈a(1)
2,0〉 = −18c. (5.122)

for c = 2
3(N2−1) . Moreover, the averages of leading twist anomalous dimensions for all

spins can be calculated using the results from [120], given in (2.52) in section 2.3.4,

〈γ2,`〉 = 2S1(`), for ` > 0. (5.123)

In fact, the first two values of (5.123), together with (5.122), are enough to fix all the

constants and we get

α11 = −1
2 , α10 = 0, α00 = −6− ζ2, ν0 = 3, γext = 3. (5.124)
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Substituting this in (5.114) we find

G(1)
KKKK(u, v) = −c u2v

(
1 + 4u+ 4v + 4uv + u2 + v2

)
Φ(u, v)− 6c u

v
(1 + u+ v)

+ 3u
v

(
u

v
+ uv + 2cu

)
log u+ 3u

v

(
−u
v
− c− cu+ cv

)
log v, (5.125)

which exactly agrees with the result in [192]. We have therefore shown that the one-

loop four-point correlation function of four Konishi operators belongs to our family

of solutions, and we have found the explicit values of the constants describing this

solution.

5.5 The superconformal case

In this section we will focus on the four-point function of half-BPS operators. We

follow very closely the logic from the previous section and adapt it to the case of su-

perconformal block expansion. Following the observations in section 5.2.2, the com-

putations in this case are very similar and here we will only highlight the differences

and the results.

The most relevant difference compared to the Konishi case is that the conformal

blocks take a different form, we need to replace the ordinary blocks by superconformal

blocks. From (5.21) it boils down to the replacement

Gτ,`(u, v)→ u−2Gτ+4,`(u, v). (5.126)

Importantly, the superconformal blocks are eigenvectors of the shifted quadratic

Casimir operator of the superconformal group

CS(u−2Gτ0+4,`(u, v)) = J 2
τ0u
−2Gτ0+4,`(u, v). (5.127)

Here we have defined

CS = u−2Cu2 + τ0(τ0 − 6)
4 − (τ0 + 4)(τ0 − 2)

4 = u−2Cu2 − 2τ0 + 2, (5.128)
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so that the eigenvalue is

J 2
τ0 = J2

τ0+4 =
(
τ0

2 + `+ 1
)(

τ0

2 + `+ 2
)
. (5.129)

Led by these observations we define H-functions in the supersymmetric case to be

H(m,logn)
τ0 (u, v) =

∑
`=0
〈A(0)

τ0,`〉
(logJτ0)n
J 2m
τ0

u−2Gτ0+4,`(u, v), (5.130)

where 〈A(0)
τ0,`〉 are the structure constants (5.20). The H-functions satisfy again a

recursion relation

H(m,logn)
τ0 (u, v) = CSH(m+1,logn)

τ0 (u, v). (5.131)

Following similar arguments to the ones presented in section 5.3 one can prove that

the power divergent part of H-functions factorises

H(m,logn)
τ0 (z, z̄) .= z−1

z̄ − z
k τ0

2 +1(z)H(m,logn)
τ0 (z̄), (5.132)

where we have again defined H-function depending only on z̄ as

H
(m,logn)
τ0 (z̄) = z̄−1∑

`=0
〈A(0)

τ0,`〉
logn Jτ0
J 2m
τ0

k τ0
2 +`+2(z̄). (5.133)

Also, the action of Casimir operator (5.128) simplifies when acting on the power

divergent part

CSH(m,logn)
τ0 (z, z̄) .= z−1

z̄ − z
k τ0

2 +1(z)DSH
(m,logn)
τ0 (z̄), (5.134)

where we defined

DS = z̄−2D z̄2 = −z̄ + (2− 3z̄)z̄∂z̄ + (1− z̄)z̄2∂2
z̄ . (5.135)

Finally, the H-functions H(m,logn)(z̄) satisfy the following recursion relation

H
(m,logn)
τ0 (z̄) = DSH

(m+1,logn)
τ0 (z̄). (5.136)

In the following, we will compute the one-loop perturbative correction to the func-

tion H(u, v), in exactly the same way as we did in the ordinary, non-superconformal
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case. In particular, in analogy with (5.77) its power divergent part can be expanded

using H-functions as

H(z, z̄) .=
∑
τ0

z−1

z̄ − z
∑
ρ

(
Aτ0,ρ k τ02 +1(z) +Bτ0,ρ

(
∂

∂τ
k τ

2 +1(z)
) ∣∣∣

τ→τ0

)
H

ρ

τ0(z̄). (5.137)

Here, Aτ0,ρ and Bτ0,ρ are large-J expansion coefficients of the modified structure

constants and the anomalous dimensions, respectively. Again, in order to extract

the CFT-data, we will need only an explicit form of the power divergent part of the

H-functions for ρ = (m, logn) with m 6 0 and n = 0, 1. All these functions can be

easily obtained from H
(0)
2 (z̄) and H(0,log)

2 (z̄) using the recursion relation (5.136) and

H
(m,logn)
τ0 (z̄) .=

Γ( τ02 + 1)2

Γ(τ0 + 1)
1
c̃

((
c̃(−1)

τ0
2 − τ0

2 ( τ02 + 1)
)
H

(m,logn)
2 (z̄) +H(m−1,logn)

2 (z̄)
)
.

(5.138)

In the superconformal case, we have not been able to compute the exact form of

the complete H(0)
2 (u, v), in contrast to the conformal case. Therefore, in principle,

both H(0)
2 (z̄) and H(0,log)

2 (z̄) could contain enhanced divergent terms proportional to

log2(1 − z̄). It turns out that this is not the case1 and we end up with expressions

analogous to the conformal case

H
(0)
2 (z̄) = c̃

1− z̄ , (5.139)

H
(0,log)
2 (z̄) = − log(1− z̄)

2(1− z̄) c̃− γE
1− z̄ c̃+

(
− 1

12 −
1− z̄

15 + . . .
)
c̃ log2(1− z̄). (5.140)

More terms in the expansion of H(0,log)
2 (z̄) can be found in appendix C.2.

Equipped with the supersymmetric H-functions we are now ready to find the form

of one-loop correction to the function H(u, v). Following a similar discussion as in

section 5.4.2, we start by observing that again all power divergent contributions to

H(u, v) are completely captured by the twist-two operators. These terms come either

1The fact that we can take H(0)
2 (z̄) free from powers of logarithms can be seen by explicitly

computing the power divergent terms of H(m)
2 (z̄) for some m < 0 using the kernel method, and see

that they can be obtained by acting m times with DS on H(0)
2 (z̄).
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from an infinite towers of twist-two operators or from solution truncated in spin. The

general ansatz for leading-u contribution of H(u, v) is therefore

H(1)
L.T.(u, v) = u

v
(β11 log u log v + β10 log u+ β01 log v + β00) c̃+ . . . (5.141)

+
L∑
`=0
〈A(0)

2,`〉u−2
(
κ`G6,`(u, v) + λ` (∂τGτ+4,`(u, v))

∣∣∣
τ→2

)
. (5.142)

for some L. The bootstrap equation (5.17) immediately implies that

β10 = β01. (5.143)

Moreover, by direct application of the method described in the previous section, one

can check that the truncated solutions cannot be completed to a crossing symmetric

function. It implies that

κ` = 0, λ` = 0, for ` = 0, 2, 4, . . . , L. (5.144)

This stays in contrast to the ordinary conformal case where the spin-zero truncated

solution was allowed.

We now use the H-function method explained in section 5.3.6 to complete the

power divergent part of (5.141) to a full leading-u answer. In particular, the H-

function method allows us to find the CFT-data for twist-two operators

〈γ2,`〉 = −4β11S1(`+ 2) + 2β10, (5.145)

〈α̂2,`〉 = −2β10S1(`+ 2) + β00. (5.146)

We could in principle continue as in the previous section and find a general solution

as a function of three constants (β11, β10, β00). Instead we will focus purely on the

case of four half-BPS operators for which we can use additional information about

the CFT-data found in the literature. In particular, it is known that the twist-two

operators are not degenerate and the anomalous dimensions γ2,` have been found by

direct calculations in e.g. [193]

γ2,` = 2S1(`+ 2), ` = 0, 2, 4, . . . . (5.147)
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Additionally, the structure constants for two half-BPS operators and twist-two oper-

ators can also be found in [193] and for ` = 0 it is

a
(1)
2,0 = −c̃. (5.148)

Using the first two values in (5.147) together with (5.148) we can fix our constants

to2

β11 = −1
2 , β10 = 0, β00 = −ζ2. (5.149)

Then the leading-u result takes the form

HL.T.(u, v) = −c̃ z (2 Li2(z̄) + (log (z) + log (z̄)) log (1− z̄))
2 (1− z̄) . (5.150)

Now we can use the bootstrap equation (5.17) to find the complete power divergent

part of the function H(u, v). Subsequently, we use the H-function method to find the

CFT-data for all twists which we collect in appendix C.5. Plugging it back to the

superconformal block decomposition we can find the complete one-loop correlator

which takes the form

H(u, v) = − c̃ u2 vΦ(u, v). (5.151)

This agrees with the known one-loop result for the four-point correlation function of

four half-BPS operators in N = 4 SYM found in [194].

5.6 Conclusions and outlook

In this chapter we found a family of solutions to the conformal bootstrap equation

relevant for the one-loop perturbation of four-dimensional conformal gauge theories.

We employed twist conformal blocks which allow a systematic expansion around the

double lightcone limit, namely u = 0, v = 0. Starting from the most general leading
2Notice that these values could also be found by considering (5.145) and (5.146) for ` = −2. This

should correspond to a BPS current in the symmetric traceless representation of R-symmetry which
implies γ2,−2 = 0 and a(1)

2,−2 = 0. It leads to β10 = 0 and β00 = 2 ζ2 β11. The remaining constant can
be reabsorbed into the definition of the coupling constant, leading to the result (5.149).
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expansion (5.107) we were able to complete it to a full crossing symmetric function

of the cross-ratios. For four-point correlator of scalar operators with dimension ∆ =

2 + g γext + O(g2) we found a four-parameter family of solutions. By supplementing

this by a few additional pieces of CFT-data for the leading-twist spectrum of the

theory, we extracted the known form of one-loop correlator of four Konishi operators.

Repeating this analysis for half-BPS operators O20′ inN = 4 SYM and employing the

superconformal block expansion we have also found an explicit form of the one-loop

correlator of four such operators.

There are many directions one could pursue using the method we described in

this chapter. First of all, the four-point correlator of Konishi operators is only one

representative of the family of solutions we found. A natural question is whether we

can identify how other scalar correlators fit into our solution. Secondly, it should

be possible to generalise our construction and apply it to correlation functions of

operators with higher classical dimension. This would allow to find a large class of

one-loop correlation functions in conformal gauge theories. Furthermore, there should

be no conceptual obstruction to generalise it to mixed correlators.

The H-function technology can be in principle applied also to higher orders in the

perturbation theory. Also in this case, the CFT-data can be expanded around the

infinite spin and one can extract expansion coefficients for infinite towers of operators

by focusing on the enhanced divergent part of the four-point function. In contrast

with the one-loop case, where the complete enhanced divergent part was captured by

power divergent terms, at higher orders it is possible to get other types of enhanced

divergences. For example, at two loops there can be terms proportional to log2 v

which were prohibited by the conformal block expansion and bootstrap equation at

one loop, see section 5.4.2. By examining an explicit form of conformal blocks and

using the bootstrap equation it is easy to see that all such contributions come from

〈(γ(1)
τ0,`)

2〉. They are therefore determined by the one-loop CFT-data. Unfortunately,

162



we are unable to access this information from our previous discussion since there is

a degeneracy in the spectrum. It implies that, in general, 〈(γ(1)
τ0,`)

2〉 6= 〈(γ(1)
τ0,`)〉

2 and

therefore we cannot use the one-loop averages we have calculated to determine the

enhanced divergent part of the two-loop answer. In order to find it we would need

to solve the mixing problem at one loop completely. This has been successfully done

for the large-N expansion of the correlators of four half-BPS operators in [123–125].

There, it has been possible to solve the mixing problem by using the knowledge of

an infinite family of one-loop four-point correlators 〈Op(x1)Op(x2)Oq(x3)Oq(x4)〉, for

p, q > 2, where Op(x) is an N = 4 SYM half-BPS operator with R-symmetry labels

[0, p, 0]. Similar analysis should be possible also at weak coupling. In particular, it

would allow us to find the two-loop correlation function of four Konishi operators,

which is not known at the moment. We postpone it to future work.
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Chapter 6

More applications

6.1 The O(N) model at large N

In this section, which is a summary of [4], we show how large spin perturbation theory

can be used to study the critical O(N) model in the large N expansion. Contrary to

chapters 4 and 5, which followed the presentation of the respective publications, we

will here make direct reference to the formalism laid out in chapters 2 and 3.

In section 2.3.5 we gave an overview of the operator content of the critical O(N)

model. We will consider the four-point function of ϕi transforming in the vector

representation V , which means that operators in the OPE transform in irreps in the

tensor product V ⊗ V = S ⊕ T ⊕ A. Using tensor structures

Tijkl
S = δijδkl, Tijkl

T = δikδjl + δilδjk

2 − 1
N
δijδkl, Tijkl

A = δikδjl − δilδjk

2 , (6.1)

the crossing matrix takes the form

MO(N) =



1
N

(N + 2)(N − 1)
2N2

1−N
2N

1 N − 2
2N

1
2

−1 N + 2
2N

1
2


. (6.2)

Since we work in an expansion in 1/N , the crossing matrix itself will affect the order

at which crossed-channel operators appear with a non-zero double-discontinuity. To
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make this more clear, we write

GS(u, v) =
(
u

v

)∆ϕ
(
GS(v, u)
N

+GT (v, u)− GA(v, u)
2 +GT (v, u) + GA(v, u)

2N − GT (v, u)
N2

)
,

(6.3)

GT/A(u, v) =
(
u

v

)∆ϕ
(
±GS(v, u) + GT (v, u) + GA(v, u)

2 ∓ 1
N
GT (v, u)

)
, (6.4)

where the upper sign refers to T and the lower to A.

The first operator to contribute is the identity, which gives GFF OPE coefficients

(2.43)

aT,n,` = −aA,n,` = NaS,n,` = aGFF
n,` |∆ϕ . (6.5)

As discussed immediately after proposition 3.1 in section 3.2.1, from the explicit

expansion of these OPE coefficients with ∆ϕ = µ − 1 + γ(1)
ϕ /N + . . ., it follows that

the OPE coefficients for n > 1 are suppressed by an additional order 1/N . To the

order we consider, they will not contribute to the double-discontinuity and therefore

decouple from the problem. In the following, we concentrate on the operators at

n = 0, which are the weakly broken currents JR,`.

The next crossed-channel operator to generate a double-discontinuity is the aux-

iliary field σ, where we assume that

∆σ = 2 +O(N−1), aσ = c2
ϕϕσ = a(0)

σ

N
+O(N−2). (6.6)

Because of the particular value of the scaling dimension, the contribution from σ can

be computed using inversion 3.3. In the T and A representations, 1 and σ are the only

operators contributing to order 1/N , and the CFT-data to this order can therefore be

extracted. From (6.4) we see that between T and A, the function UR(log z, h̄) only

differs by a sign, which has the important consequence that the leading anomalous

dimensions agree,

γT,` = γA,` = −2(µ− 2)2

J2
a(0)
σ

N
+O(N−2), (6.7)

where J2 = (µ− 1 + `)(µ− 2 + `) to this order.
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So far, we have introduced two free parameters in the problem: the OPE coefficient

a(0)
σ and the anomalous dimension γ(1)

ϕ . We can now use conservation of the global

symmetry current, γA,1 = −2γϕ, to deduce an equation relating these parameters,

a(0)
σ = µ(µ− 1)

(µ− 2)2 γ
(1)
ϕ . (6.8)

Next we consider corrections to the currents in the S representation. Here the

contribution from σ appears at the same order as the first contribution from the

weakly broken currents in the T and A representations. Recall that by proposition 3.4,

the contribution from these currents is proportional to the square of their anomalous

dimensions. This means that first we need to first compute an infinite sum of the

form

IT−A =
(

z̄

1− z̄

)∆ϕ 1
2

 ∑
`=0,2,...

aT,0,`γ
2
T,`G

(d)
2µ−2+`,`(1− z̄, 1− z) (6.9)

−
∑

`=1,3,...
aA,0,`γ

2
A,`G

(d)
2µ−2+`,`(1− z̄, 1− z)

 log2(1− z̄)
8 +O(N−3).

This sum is computed by invoking the twist conformal blocks that we introduced in

section 3.3.3. More precisely, IT−A corresponds to the double-lightcone limit of the

difference of the level 2 twist conformal blocks in the T and A representations. It can

therefore be found by solving the differential equation

C2H(2)
T−A(u, v) = H(0)

T−A(u, v) =
(
u

v

)µ−1
, (6.10)

where we used the explicit form of the T − A tree-level correlator. Since the sum

(6.9) is evaluated at the unitarity bound, equation (6.10) can be supplemented by

the equation DsatH(m) = 0 for Dsat in (2.29). The combined system of differential

equations was solved in the appropriate limit in [4]. A similar computation can be

done for H(2)
T+A(u, v), and we reproduce the result in the following inversion.
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Inversion 6.1. Consider the contribution from an infinite sum over ` of broken

currents J` with anomalous dimensions γ` := τ` − 2∆φ = κ
J2 and OPE coefficients

αaGFF
0,` |µ−1. In the φ four-point function, the leading contribution takes the form

U(log z, h̄) = − 1
2(µ− 2)2J2 [±1 + (µ− 2)π csc(πµ)] log z + E±, (6.11)

where we use the + (−) sign if the broken currents have even (odd) spin, and where

E± are some rather lengthy expressions1.

This inversion is used to find the anomalous dimensions in the S representation,

γ
(1)
S,` = −

2γ(1)
ϕ

J2

(
(µ− 1)µ+ γ(1)

ϕ

π csc(πµ)Γ(µ+ 1)2Γ(`+ 1)
(µ− 2)Γ(`+ 2µ− 3)

)
, (6.12)

where we used the relation (6.8) to eliminate a(0)
σ . Conservation of the stress tensor,

γS,2 = −2γϕ now gives a quadratic equation for γ(1)
ϕ , which has the solutions

γ
(1)
ϕ,free = 0, γ

(1)
ϕ,O(N) = (µ− 2)Γ(2µ− 1)

Γ(µ+ 1)Γ(µ)2Γ(1− µ) . (6.13)

The second of these solutions exactly agrees with the result (2.56) in the critical O(N)

model. Notice that this equation fixes all parameters that enter the problem at order

1/N , and has followed simply from analytic bootstrap considerations2.

Finally, the anomalous dimension of σ can be extracted from our results by as-

suming the shadow relation

∆σ = d−∆S,`=0. (6.14)
1More precisely,

E± = ακ2

4

[2π csc(πµ)
(
(µ− 2)(S1[µ− 1](h̄) + π cot(πµ))− 1

)
± 2

(
3−µ
µ−2 − S1(µ− 2)

)
J2(µ− 2)2

±
µ(µ− 1)B(h̄, µ) + 2(S2(µ− 2)− ζ2) + 2(µ−3)

(µ−2)2

(J2 − (µ− 1)(µ− 2))(µ− 2) − 2π csc(πµ)
J4(µ− 2)

]
,

where

B(h̄, µ) =
4F3

(
1, 1, 2, µ+ 1
3, 3− h̄, h̄+ 2

∣∣∣∣ 1)
J2(J2 − 2) − 2πΓ(h̄)Γ(µ+ h̄− 1)

J2Γ(µ+ 1) sin(πh̄)Γ(2h̄) 3F2

(
h̄− 1, h̄, h̄+ µ− 1

2h̄, h̄+ 1

∣∣∣∣ 1) .
2This was shown already in [69], which focussed completely on computing anomalous dimensions.
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Pluggin in the anomalous dimensions (6.12), evaluated at spin zero, reproduces ex-

actly the literature value (2.55) for ∆σ. Although (6.14) clearly holds at tree-level,

it is not obvious why this should survive in perturbation theory. Perhaps this ques-

tion can be addressed using the framework of [195], which treated deformations like

the Hubbard–Stratonovich transform in a unified way, reproducing for instance the

relation (6.8) for aσ from general considerations.

In [4] one further step was worked out, namely the contribution to the CFT-

data in the T and A representations at order 1/N2. Now we have the same terms as

described above, including subleading corrections to the contribution from σ, but also

a new contribution from the operators [σ, σ]n,`. This involves a rather complicated

sum, and unfortunately the contributions to U (0)
T/A,h̄

was only determined numerically,

giving a numerical prediction for the current central charge at order 1/N2. All scaling

dimensions computed in [4] agree perfectly with the literature [182, 196], and many

of the OPE coefficients were new results3.

6.2 φ4 theories with any global symmetry

In [5] it was realised that the considerations for the critical O(N) model, both in sec-

tion 4.2.5 for the ε expansion and in section 6.1 for the large N expansion, will gener-

alise to φ4 theories in any global symmetry group. There is a variety of interesting such

models, some of which correspond to critical phenomena in three dimensions [45,199],

and relevant symmetry groups are for instance (hyper)cubic models [200] and product

groups such as O(m)×O(n)/Z2 [5] and O(m)n o Sn 4 [201].

The existence of an expansion corresponding to the large N limit of O(N) depends

on the group in question, and can be determined by studying the scaling dimensions
3More precisely, the only results for OPE coefficients in the literature prior to [4] were the order

1/N corrections to the central charges [43] (CJ in 3d already in [197]), the order 1/N OPE coefficients
in the T and A irreps [181], and the correction a(1)

σ to the σ OPE coefficient [198].
4Sn denotes the permutation group which acts by permuting the O(m) factors.
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of the bilinear scalars φ2
R in the various representations. If a large N expansion exists

for a given fixed-point, the scaling dimensions of the bilinear scalars will approach

either ∆ = 2+O(N−1) or ∆ = 2∆φ+O(N−1). The first case signals that the operator

should be promoted to an auxiliary field R. We have seen that this happens in the

singlet representation in the critical O(N) model, where S = σ. The second case

happens in the T representation, where we have that ∆ϕ2
T

= 2 − ε + O(N−1) using

(4.48). If the bilinear scalars approach any other value than these two, the fixed-point

does not admit a large N expansion described by a Hubbard–Stratonovich field. It is

therefore recommended to consider a specific model first in the ε expansion, even if

one is primarily interested in the behaviour at large N in e.g. three dimensions.

6.2.1 General solution in the d = 4− ε expansion

Consider first the contribution from the identity operator, appearing in the singlet

representation. This will give rise to the leading contribution to U (0)
R,h̄

in all repre-

sentations. Since this is the only operator contributing until order ε2, we get, using

inversion 3.1,

UR(log z, h̄) = MRSA[∆φ](h̄) +O(ε2), (6.15)

where ∆φ = 1 − ε/2 + γφ and γφ = O(ε2). From this expression, the leading order

OPE coefficients can be extracted:

c2
φφJR,` = 2Γ(`+ 1)2

Γ(2`+ 1) MRS +O(ε). (6.16)

Here ` takes even (odd) values for R being an even (odd) representation. The scalar

bilinears φ2
R in the even representations have OPE coefficients

c2
φφφ2

R
= 2MRS +O(ε). (6.17)

These scalars are the next operators to contribute to the double-discontinuity. Assume

that they have dimension ∆φ2
R

= 2∆φ + gRε+O(ε2). Then, using inversion 3.2 we get
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the order ε2 corrections

UR(log z, h̄) = MRSA[∆φ](h̄)−MRSΓ{2}R
(

1
J4 + log z

J2

)
ε2 +O(ε3), (6.18)

where

Γ{2}R = 1
MRS

∑
R̃ even

M
RR̃
g2
R̃
M

R̃S
. (6.19)

Using (2.90) we can thus write down the leading correction to the anomalous dimen-

sion,

∆R,` = 2∆φ + `+ γR(h̄), γR(h̄) = −Γ{2}R ε2

J2 , (6.20)

where J2 = h̄(h̄− 1) and h̄ = ∆φ + `.

Next, as observed in chapter 4 for the Wilson–Fisher fixed-point, we assume that

it is possible to analytically continue the result γR(h̄) to spin zero, by making the

change of variables h̄ → h̄f = ∆+`
2 , i.e. by replacing the bare with the full conformal

spin. For spin zero we should evaluate this at h̄f = ∆φ2
R
/2 = 1− ε/2 + gRε/2 +O(ε2).

This leads to a system of equations

gR
!= γR(h̄)

∣∣∣
h̄=∆φ+ gR

2
, R even, (6.21)

at order ε, where now one power of ε in the γR(h̄) cancels against the factor h̄f − 1 =

(gR − 1)ε/2 in the denominator. This simplifies to

MRS gR(gR − 1) + 2
∑

R̃ even

M
RR̃
M

R̃S
g2
R̃

= 0, R even, (6.22)

which is a system of k quadratic equations for the k constants gR, where k is the

number of even representations, or equivalently the number of scalar bilinears. Solving

(6.22) gives all possible fixed-points in the ε expansion with the given symmetry.

As an example, we go back to the O(N) model with crossing matrix (6.2). The

even representations are S and T , and the bilinear scalars are ϕ2
S = ϕiϕi and ϕ2

T =

ϕ{iφj}. There are two solutions to (6.22), gS = gT = 0, which is the theory of N free

fields, and

gS = N + 2
N + 8 , gT = 2

N + 8 . (6.23)
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which is exactly the values for the critical O(N) model [3] quoted in (4.48).

The singlet spin-two current in any global symmetry group is the stress tensor

with dimension ∆S,2 = 4− ε. This gives the constraint

γ
(2)
φ = 1

12Γ{2}S , (6.24)

where ∆φ = 1− ε/2 + γ
(2)
φ ε2 +O(ε3). Using this we write down the full dimension of

the broken currents to order ε2

∆R,` = 2− ε+ `+ 2γ(2)
φ ε2 − Γ{2}R ε2

`(`+ 1) , (6.25)

determined completely by the solutions to (6.22). The OPE coefficients are extracted

using (2.90) and (2.91),

aR,` = MRSa
GFF
0,` |∆φ

+MRS
2Γ(`+ 1)2

Γ(2`+ 1)
Γ{2}R ε2

`(`+ 1)

(
S1(2`)− S1(`) + 1

`+ 1

)
+O(ε3),

(6.26)

where we evaluate the GFF OPE coefficients (2.43) at ∆φ = 1 − ε/2 + γ
(2)
φ ε2 and

expand to order ε2.

From the ` = 2 OPE coefficient in the singlet representation we extract the central

charge correction using (3.39),

CT
CT,free

= 1−
5γ(2)

φ

3 ε2 +O(ε3) = 1− 5Γ{2}S
36 ε2 +O(ε3), (6.27)

which is consistent with (E.1) of [199]. We emphasise that the considerations here

are valid with any global symmetry group. The input needed to specialise to a given

symmetry group is the crossing matrix M
RR̃

and the division of the representations

into even and odd. By solving the system of equations (6.22), one finds all fixed-

points in the ε expansion compatible with that symmetry group and derives the

leading (order ε) anomalous dimensions of the bilinear scalars. Conservation of the

stress tensor allows one to compute the leading (order ε2) anomalous dimension of φ.

In one or several of the odd representations R, the current at spin ` = 1 may be

conserved, being the Noether current of a continuous global symmetry. This gives
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further constraints ∆R,` = d−1, which must be explicitly checked. The corresponding

OPE coefficient is related to the CJ of that symmetry current:

CJR
CJR,free

= 1− 3γ(2)
φ ε2 +O(ε3) = 1− 3Γ{2}R

4 ε2 +O(ε3). (6.28)

Let us discuss the extension to higher orders in the ε expansion. To order ε3,

the operators contributing with a nonzero double-discontinuity are the same as at

the previous order, namely the bilinear scalars φ2
R. At higher orders, infinite families

of operators contribute. In the O(N) model, the only such families at order ε4 are

operators of approximate twist 2 and 4, and we expect that this generalises to any

global symmetry. However, to compute the contribution from approximate twist 4

requires detailed knowledge of the operator content of the theory in question. This

was worked out in the O(N) model in [3].

All constants that enter the problem at order ε2 can be fixed using continuation

to spin zero and conservation of the stress tensor. This is no longer true at higher

orders. At order ε3 a total of 2k + 1 new constants appear: γ(3)
φ , the second order

correction to γφ2
R

= gRε(1+g(2)
R ε)+ . . ., and the corrections αR to the OPE coefficients

defined by

c2
φφφ2

R
= 2MRS(1 + αRε) +O(ε2). (6.29)

Based on experience from the O(N) model, the order ε2 continuation to spin zero

requires order ε4 results for the currents, so the only new equations at order ε3 are

the conservation of the symmetry currents (including the stress tensor). In general,

this will not provide enough equations to fix all constants, but in many cases we can

still make progress. Firstly, from the crossing analysis of (4.46), it follows that we

must have αR = −gR. Secondly, the second order corrections g(2)
R to the bilinear

scalar dimensions, as well as γ(3)
φ , are in many cases known in the literature, and can

be taken as input.
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Using inversion 3.2, it is then straightforward to derive expressions for U (p)
R,h̄

at

order ε3. The anomalous dimensions extracted from these expressions take the form

γR(h̄) = −Γ{2}R
J2 ε

2 +
Γ{2}R − 2Γ{2,1}R +

(
Γ{3}R − Γ{2}R

)
S1(h̄− 1)

J2 ε3 +O(ε4), (6.30)

where h̄ = 1− ε
2 + `+O(ε2) and

Γ{3}R = 1
MRS

∑
R̃ even

M
RR̃
g3
R̃
M

R̃S
, Γ{2,1}R = 1

MRS

∑
R̃ even

M
RR̃
g2
R̃
g

(2)
R̃
M

R̃S
. (6.31)

From the corresponding expression for the OPE coefficients using inversion 3.2,

we can extract the central charge correction,

CT
CT,free

= 1− 5
3
(
γ

(2)
φ ε2 + γ

(3)
φ ε3

)
− 29

18γ
(2)
φ ε3 + 5

48Γ{3}S ε3 +O(ε4). (6.32)

Here we used that the stress tensor conservation eliminates the dependence on g(2)
R in

favour of γ(3)
φ . Similarly, for the current central charges we derive the expression

CJR
CJR,free

= 1− 3
(
γ

(2)
φ ε2 + γ

(3)
φ ε3

)
− 9

4γ
(2)
φ ε3 + 1

4Γ{3}R ε3 +O(ε4). (6.33)

6.2.2 General solution in the large N expansion

We will now derive the form of the CFT-data in the large N expansion for a generic

symmetry group, parametrised by some number N . Compared to the ε expansion,

the situation is a bit more complicated, since the parameter N enters in the crossing

matrix M
RR̃

itself. In a given even representation R, there are two options for the

smallest dimension scalar. As discussed above, it is either a scalar bilinear φ2
R with

dimension 2∆φ + O(N−1), or a Hubbard–Stratonovich field R with dimension 2 +

O(N−1). We assume that the Hubbard–Stratonovich fields R have OPE coefficients

c2
φφR = aR/N +O(N−2), which will generate corrections to the free theory.

In order to provide some structure of the subsequent computations we define the

following subsets of the representations in V ⊗ V = I ∪ II:
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• Group I: Representations whose only corrections at order 1/N come from

crossed-channel Hubbard–Stratonovich fields.

• Group II: Representations where the corrections at order 1/N come from

Hubbard–Stratonovich fields as well as from broken currents in group I rep-

resentations in the crossed channel.

• Group III: Representations that admit a Hubbard–Stratonovich field. Typically

III ⊂ II.

For instance, in the O(N) model we have S ∈ II ∩ III and T,A ∈ I. Our strat-

egy will then be the following. First, as in the ε expansion, the identity operator

creates the leading contribution to U
(0)
R,h̄

for all representations. Next, we turn to

the representations in Group I. The contributions from Hubbard–Stratonovich fields

will give the order 1/N anomalous dimensions in these representations. Using in-

version 3.3 we see that these corrections will be proportional to 1/J2. Finally, we

consider the representations in the Group II. Here we get contributions from both

the Hubbard–Stratonovich fields, using inversion 3.3, and from the currents in Group

I. Due to the particular form of the anomalous dimensions of these currents, we can

use inversion 6.1 to find the complete order 1/N CFT-data.

The expressions will depend on |III| + 1 free parameters: the OPE coefficients

aR = c2
φφR for R ∈ III, as well as the leading order anomalous dimension of φ. The

consistency conditions available to fix these constants are the conservation of the

symmetry currents (including the stress tensor), and depending on the number of

conserved currents this may or may not be enough. As in the order ε3 results above,

literature values can be used to fix the remaining constants if the conservation equa-

tions are not sufficient. Finally, the leading anomalous dimensions of the Hubbard–

Stratonovich fields may be extracted by imposing the shadow relation ∆R+∆R,0
!= d

in similarity with (6.14) in the O(N) model.
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Let us now execute the strategy in full generality. The contribution from the

identity operator gives

UR(log z, h̄) = MRSA[∆φ](h̄), (6.34)

where ∆φ = µ − 1 + γ
(1)
φ /N + O(N−2) and µ = d/2. For the representations in

group I we have contributions from Hubbard–Stratonovich fields in group III. Using

inversion 3.3 we get

U
(1)
R,h̄

= −
∑
R̃∈III

M
RR̃

2(µ− 2)2 aR̃
N

A[µ− 1](h̄)
J2 , R ∈ I, (6.35)

and a corresponding expression for U (0)
R,h̄

. From this we can extract the order N−1

anomalous dimensions of currents in group I representations:

γR,h̄ = −2(µ− 2)2KR

J2N
+O(N−2), KR = 1

MRS

∑
R̃∈III

M
RR̃

aR̃, R ∈ I. (6.36)

In step 3 we consider the second group of operators, II. They get contributions both

from R for R ∈ III and from JR,` for R ∈ I. We get

U
(1)
R,h̄

= −
∑
R̃∈III

2M
RR̃

(µ− 2)2aR̃
N

A[µ− 1](h̄)
J2

−
∑
R̃±∈I

4M
RR̃
K2
R̃
M

R̃S

(µ− 2)2(2h̄− 1)
J2N2 (±1 + (µ− 2)π csc(πµ)) , R ∈ II,

(6.37)

where the + (−) sign is used if the operators in the R̃ representations have even (odd)

spin. This means that the dimensions of the group II double-twist operators are

∆R,` = 2(µ−1)+`+
2γ(1)

φ

N
−2(µ− 2)2KR

J2N
− K̂R

J2N2
(µ− 2)2Γ(µ− 1)2Γ(`+ 1)

Γ(2µ+ `− 3) , R ∈ II,

(6.38)

where in the above expressions we have J2 = (µ− 1 + `)(µ− 2 + `) and

K̂R = 1
MRS

∑
R̃±∈I

2M
RR̃
K2
R̃
M

R̃S
(±1 + (µ− 2)π csc(πµ)) , R ∈ II. (6.39)

Conservation equations for the stress-tensor and for global symmetry currents may

now be used to fix the free parameters γ(1)
φ and aR for R ∈ III.
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6.3 Multicritical theories in dc(θ)− ε dimensions

In this section we apply large spin perturbation theory to the multicritical theories

in an ε expansion near their critical dimensions. As far as we are aware, this has not

previously been done in the literature. Let us recall from figure 1.1 in the introductory

chapter, that the multicritical theories, labelled by integers θ, correspond to scalar

theories with λφ2θ interactions and are defined below the critical dimensions 2µθ :=

dc(θ) = 2θ
θ−1 where these interactions become marginal. The interacting fixed-points

in 2µθ − ε dimensions have θ − 1 relevant deformations and are individually referred

to as tricritical (θ = 3), tetracritical (θ = 4) etc. In an ε expansion near the critical

dimension, λ takes a value of order ε at the fixed-points, which are reached by short

RG flows.

Despite not being defined in any integer dimension > 3, these theories have re-

ceived some attention from the conformal bootstrap. In particular, the methods

of [107] using multiplet recombination have been generalised to the tricritical [202]

and general multicritical case [203]5. Using traditional diagrammatic techniques, some

scaling dimensions have been computed. Here we only need the anomalous dimension

for φ, which is given by [204]

∆ϕ = µ− 1 + ε2γ
(2)
φ +O(ε3), γ

(2)
φ = 2(θ − 1)2Γ(θ + 1)6

Γ(2θ + 1)3 . (6.40)

We now follow the procedure of large spin perturbation theory for these theories.

We are interested in computing CFT-data of weakly broken currents J` = φ∂`φ in

the direct channel, given by inverting contributions from crossed-channel operators.

Clearly the identity operator 1 appears, and from proposition 3.4 we know that

the contribution from the currents themselves is suppressed. To determine the next

operator to contribute, we use the heuristic diagrammatic method of section 3.3.1.1.

From studying some possible diagrams we realise that the next operator after 1 to
5I thank G. P. Vacca for useful discussions of the literature on multicritical theories.
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φ φ

φ φ

φ2θ−2

λ λ

Figure 6.1: Feynman diagram for operators in the crossed channel, showing that the oper-
ator φ2θ−2 contributes at order λ2, or equivalently at order ε2.

consider is φ2θ−2, where the corresponding diagram is displayed in figure 6.1. This

operator has dimension ∆φ2θ−2 = (2θ−2)∆φ+O(ε) = 2+O(ε), and from the diagram

it follows that its OPE coefficient is of order ε2. The contributions from 1 and φ2θ−2

can this be readily computed using inversions 3.1 and 3.3, and take the form

U
(1)
h̄

= −2(µθ − 2)2 A[µθ − 1](h̄)
J2 a

(0)
φ2θ−2ε

2 +O(ε3), (6.41)

U
(0)
h̄

= A[∆φ](h̄) + (µθ − 2)2 A[µθ − 1](h̄)
J2 a

(0)
φ2θ−2ε

2
(
S1[µθ − 1](h̄)− 1

J2

)
+O(ε3).

(6.42)

From these functions, the anomalous dimensions, and therefore the scaling dimen-

sions, of the weakly broken currents are extracted:

∆` = 2(µ− 1) + `+ 2ε2γ(2)
φ −

2(µθ − 2)2a
(0)
φ2θ−2ε2

(µθ − 1 + `)(µθ − 2 + `) +O(ε3), (6.43)

where µ = µθ − ε
2 . Solving ∆2 = 2µ for the stress tensor at spin 2 gives the relation

a
(0)
φ2θ−2 = θ(2θ − 1)

(θ − 2)2 γ
(2)
φ . (6.44)

Plugging this into (6.43), as well as the corresponding expression for the OPE coef-

ficients, gives a complete determination of the CFT-data at order ε2 in terms of γ(2)
φ .

The scaling dimensions (6.43) precisely reproduce the result derived in [205], whereas

the corresponding OPE coefficients are new.
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Assuming that the CFT-data can be extended to spin zero generates the dimension

of φ2, which reproduces the relation derived in [206]

γ
(2)
φ2 = 2θ(2θ − 1)

θ − 2 γ
(2)
φ , (6.45)

where ∆φ2 = 2∆φ + γφ2 . Finally, from the OPE coefficient of the stress tensor we can

extract the correction to the central charge,

CT
CT,free

= 1− 2(θ − 1)(3θ − 1)
θ(2θ − 1) ε2γ

(2)
φ +O(ε3). (6.46)

We believe that this is a new result.

6.3.1 Generalisations

The generalisation to multicritical theories with global O(N) symmetry follows in a

straightforward way. We use the crossing matrix (6.2), and scalar operators in both

S and T representations contribute. Conservation of the global symmetry current

and the stress tensor gives two constraints solved by

a
(0)
S =

θ(2Nθ − 2N + 1)γ(2)
ϕ

(θ − 2)2N
, a

(0)
T =

2θ(2Nθ −N + 1)γ(2)
ϕ

(θ − 2)2(N + 2) , (6.47)

which again fix all CFT-data in terms of the anomalous dimension of ϕ. For this we

use the literature value [207]

γ(2)
ϕ =

(θ − 1)2Γ(θ)2Γ(θ + 1)Γ(θ + N
2 )

4Γ(2θ)2Γ(1 + N
2 ) 3F2

(
1− N

2 − θ,
1
2 −

θ
2 ,−

θ
2

1, 1
2 − θ

∣∣∣∣∣1
)−2

, (6.48)

where for any integer θ the hypergeometric function truncates and gives a polynomial

in N . The relations (6.45) and (6.46) are unchanged, and the current central charge

is given by
CJ
CJ,free

= 1− 2(θ2 − 1)
θ

ε2γ(2)
ϕ +O(ε3). (6.49)

Contrary to the critical (θ = 2) O(N) model, it is believed that a large N expansion

of the multicritical theories does not exist for odd θ. In the tricritical case, there is

evidence for a curve with approximate equation Nc = 3.6
3−d , at which the fixed-point
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vanishes by annihilating a non-perturbative fixed point. In [208] it was argued that

this curve ends near the point (N, d) = (19, 2.8), and that passing below this point and

then towards large N for d < 2.8 corresponds to reaching another non-perturbative

fixed-point. It would be interesting to investigate this using numerical bootstrap.

We could also extend the analysis to interactions with an odd number of fields,

by looking at theories with interaction λφ2t+1. These fixed-points are non-unitary,

and are believed to be related to non-unitary minimal models in two dimensions,

although the mapping is not completely resolved [206]. Now λ ∼ i
√
ε and we have

a similar diagram to figure 6.1. The results for these theories can be recovered from

the considerations above by the substitutions θ  t + 1
2 and γ

(2)
φ ε2  γ

(1)
φ ε, where

γ
(1)
φ is negative. No closed form expression exists for γ(1)

φ , but it is given as a sum

representation in [206] which can be evaluated case by case in t. Relations like (6.45)

still hold in these cases.

Finally, we would like to mention a couple of interesting aspects of multicritical

theories with global symmetries. As discussed in section 2.3.5, the critical O(N)

model is related to a cubic theory in 6 − ε dimensions, and a generalisation of this

relation has been suggested involving multicritical theories for even θ and theories

with odd power interactions [209]. Theories with φ5 interactions (t = 2) are also

interesting since their critical dimension 10
3 is above three dimensions, which suggests

that physical theories in 3d may be reached starting from theories with φ5 interactions

in 10
3 − ε dimensions [210].

6.4 Four-point function of ϕ2 in the ε expansion

Our final example is an application of the result from chapter 5 to the four-point

function of bilinear scalars ϕ2 = ϕ2
S in the critical O(N) model 4 − ε dimensions6.

At first, this does not seem to be a allowed, since the ε expansion neither is a gauge
6I thank M. van Loon for suggesting this idea.
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theory nor defined in four dimensions. However, by comparing figures 2.27 and 2.3,

we see that the spectrum of operators in the singlet representation has the same

structure as in N = 4 SYM, and furthermore, by Wick contractions, the tree-level

correlator 〈ϕ2
Sϕ

2
Sϕ

2
Sϕ

2
S〉 takes the form

G(0)(u, v) = 1 + u2

v2 + u2 + 4
N

(
u+ u

v
+ u2

v

)
, (6.50)

which exactly matches (5.10) for c = 4
N
. Working at leading order in ε, the conformal

blocks can be evaluated in four dimensions, and finally, the ε expansion is consistent

with the perturbative structure (3.64), or equivalently (5.94), which was derived in

[147] for conformal gauge theories.

The only piece of CFT-data that can not be extracted by this method are the

corrections to the OPE coefficients 〈a(1)
τ0,`〉 for τ0 > 4. This is because the expression

(5.112), from which they would follow, corresponds to expanding the 〈ϕ2
Sϕ

2
Sϕ

2
Sϕ

2
S〉

correlator in terms of four-dimensional conformal blocks, whereas a proper decompo-

sition should be in terms of (4−ε)-dimensional blocks. At leading twist, τ0 = 2, we do

not have this issue since the collinear blocks are independent of spacetime dimension.

We will now determine the values of the constants in the results of chapter 5 by

matching with CFT-data of leading twist operators, i.e. the weakly broken currents.

We compare their dimensions with respect to the free four-dimensional theory, and

we therefore have

γext = −1 + γ
(1)
ϕ2
S

= − 6
N + 8 , γLT

` = −ε+ (1 + γext)εδ`0, (6.51)

from which it follows that

α11 = 0, α10 = −1
2 , ν0 = 1 + γext = N + 2

N + 8 . (6.52)

7Figure 2.2 shows the N = 1 case, but as discussed in section 2.3.5, the corresponding spectrum
for general N takes the same form but with larger number of degenerate operators at each point.
When studying the

〈
ϕ2
Sϕ

2
Sϕ

2
Sϕ

2
S

〉
correlator, the grey bands of figure 2.2 will be adjusted to match

those of figure 2.3.
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The central charge gives the final constraint. Since by (4.64), the central charge is not

corrected until order ε2, this corresponds to a purely dimensional correction which we

can extract from CT = N 4−ε
3−ε by (2.32). Matching with (5.101) gives

α00 = −2(1 + γext) = −2N + 4
N + 8 . (6.53)

There are some consistency conditions we can check for our result, namely for

operators where there is no mixing. For instance, we get γ4,0 = 0, which is consistent

with ∆ϕ4
S

= 4 +O(ε2). In the N = 1 case we can also check that γ4,2 = −5
9 , which is

consistent with ∆∂2ϕ4
S

= 4 − 2ε + 13
9 ε + O(ε2), and that a6,0 = 0, which is consistent

with the fact mentioned at the end of section 2.3.3 that there is no operator at this

point constructed from four fields φ.

Finally, let us give two pieces of our results on explicit form, namely the leading

twist OPE coefficients,

aLT
` = c2

ϕ2
Sϕ

2
SJS,`

= 8Γ(`+ 1)2

NΓ(2`+ 1)
(
1 + ε (S1(2`)− 2− δ`0) + γextε (2S1(`)− 2− δ`0)

)
,

(6.54)

and the whole correlator,

G(1)(u, v) = −(1 + γext)
4u
Nv

[(u+ v + uv) Φ(u, v) + 2 + 2u+ 2v]

+ γext

[
u

v

(
u

v
+ uv + 8u

N

)
log u+ u

v

(
−u
v
− 4
N
− 4u
N

+ 4v
N

)
log v

]
+ 4u
Nv

[(
u− v

2 −
1
2

)
log u+

(
v − u

2 −
1
2

)
log v

]
, (6.55)

where Φ(u, v) is given in (5.120).
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Chapter 7

Discussion

In this thesis we have aimed to give a comprehensive account of large spin perturba-

tion theory and its application to conformal field theories with a suitable expansion

parameter. In chapter 1 we gave an introduction where we said that the goal of

the analytic bootstrap is to make general statements about the spectrum, the OPE

and the correlators in a CFT, without any reference to additional tools such as a

Lagrangians or supersymmetry. Chapter 2 contained a technical background where

we fixed some essential conventions and definitions, reviewed the developments that

led to the proposal of large spin perturbation theory and gave a precise derivation

of the perturbative inversion formula. It also contained a short exposition of three

commonly studied CFTs, which were revisited in the later chapters. Chapter 3 took

the form of a practical guide providing the tools needed for a step-by-step application

of the computational framework. The three following chapters gave explicit examples

of how large spin perturbation theory can be applied to generate a variety of new

results and insights. Following closely the original publications, we derived in detail

new results for the Wilson–Fisher fixed-point at order ε4 [2], and the most general

perturbative four-point function of bilinear scalars in a conformal gauge theory [1].

Chapter 6 was more linked to the earlier chapters and made direct use of several

results derived there. Sections 6.1 and 6.2 studied critical φ4 theories with O(N) and

generic global symmetry group, based on [4] and [5] respectively. Section 6.3 contained
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a previously unpublished computation of the leading CFT-data at the multicritical

fixed-points in an ε expansion near their critical dimensions, including new results

for OPE coefficients and the central charge. Finally, section 6.4 was an adaptation of

the results of chapter 5 to the correlator of bilinear singlet scalars in the ε expansion,

also that a previously unpublished result.

Let us recapitulate the main line of arguments in slightly new words. Thinking

about CFT correlators as constructed from a sum of conformal blocks, it appears as if

there would be an enormous amount of freedom in a generic CFT, where all pieces of

CFT-data in principle could be uncorrelated. The crossing equation, which is equiv-

alent to associativity of the OPE, massively reduces this freedom. The Lorentzian

inversion formula, developed in analogy with similar dispersion relations in scattering

amplitudes in generic quantum field theories, shows that physical considerations in

the form of a bounded Regge limit constrains the CFT-data even more. Specifically,

the inversion formula connects data of all spinning operators into analytic functions.

Of course, such functions could in principle be very complicated, but at lower or-

ders in perturbation theory they tend to take simple forms, often guided by some

transcendentality principle.

In some contexts, the transcendentality principle is comparatively well understood,

for instance in scaling dimensions of individual operators in the Wilson–Fisher model.

The transcendental numbers appearing there can be viewed as the result of Feynman

integrals computed to high order—collectively known as periods—and the order at

which each number appears has been analysed in terms of a Galois coaction principle

[211]. For the CFT-data of entire twist families, transcendentality was an important

organisational principle in computing leading twist anomalous dimensions in QCD

and N = 4 SYM, and there is a dictionary between the generalisations of harmonic

numbers and harmonic polylogarithms through the Mellin transform (2.58) [212]. It is

an interesting direction for future research to connect these two cases in order to give
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a deeper theoretical explanation for the structure of the inversion dictionary worked

out in appendix B.1.

The fact that the CFT-data of spinning operators is captured in the double-

discontinuity of the correlator has interesting physical interpretations. It means that

the intuition from holography, where multi-trace operators on the boundary corre-

spond to multi-particle states in the bulk, in a suitable approximation extends beyond

holographic CFTs. This was referred to as superhorizon locality in [63]. From a more

practical point of view, it means that we are able to capture the whole CFT-data

in terms of a few parameters. As we have seen, in perturbative CFTs this can be

developed in a systematic way, where it is possible to make precise statements about

exactly which operators contribute at a given order. However, many ideas from this

approach persist non-perturbatively, as demonstrated in [67].

Two main types of applications emerge from the framework described in this thesis,

although there is some overlap. On the one hand, the analytic bootstrap can be used

to make universal statements, valid in all or a wide range of conformal field theories.

Here, large spin perturbation theory is very suitable, since it relies only on the CFT

axioms and the existence of an expansion parameter g such that the spectrum at

g = 0 has twist degeneracy. By explicitly stating what further assumptions are made,

one can prove statements of the form any CFTs satisfying A, also has properties B.

Chapter 5 is an obvious example of this, where we find most general perturbative

four-point function of bilinear scalars in a conformal gauge theory. From the simple

assumption that such a theory admits a global symmetry singlet O with dimension

∆O = 2+O(g), it follows that the space of possible four-point functions is constrained

to a five-parameter family. However, also the work in chapter 4 and section 6.1 on

the Wilson–Fisher and O(N) models can be said to adhere to this principle. In these

cases, we initially only make some crude assumptions on the theory, which in principle
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could apply to a larger range of models. Yet we saw that these assumptions led to

quadratic equations—(4.39) in the ε expansion and (6.13) in the large N expansion—

which precisely single out the only two known possibilities: the free theory and the

critical Ising or O(N) model. In section 6.2 we proposed that this principle can be

used to classify fixed-points with any global symmetry group. The only input needed

is the crossing matrix M
RR̃

and the parity of the respective irreps R.

On the other hand, we have also demonstrated how large spin perturbation theory

can be used to derive new quantities in a number of theories. In particular, it treats

anomalous dimensions and OPE coefficients on an almost equal level and is therefore

particularly useful for the latter, where diagrammatic approaches such as the skele-

ton expansion [43] become very complicated. For instance, until five years ago the

central charge CT was only known to order ε2 in the Wilson–Fisher [213] and O(N)

models [43]. It was then computed to order ε3 in [179] and [181] respectively, and

to order ε4 in [2] and [3], reproduced in chapter 4. An extension to order ε5 may be

possible in the near future; the main obstacle is to determine the exact contribution

from the operators ∂`φ4, which participate in a non-trivial mixing. When using large

spin perturbation theory to generate new results in a given theory, one can follow a

less purist approach, and allow oneself to rely on existing results in the literature and

on methods specific to the theory under consideration. As we reviewed in section 3.5,

this combination of methods has generated many results in the case of strongly cou-

pled N = 4 SYM.

While we have aimed to present a consistent and coherent account of analytic con-

formal bootstrap and large spin perturbation theory, one aspect is not completely

addressed, namely the question about analyticity in spin at spin zero. At first, the

statement made in [70] and repeated in section 2.5 seems decisive—the Lorentzian

inversion formula will give the correct result for ` > 1, and one would expect there to
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be a non-analytic contribution at spin zero1. However, as reviewed in section 3.2.2,

we have seen that in many cases, analyticity can in fact be extended to spin zero,

albeit sometimes in a subtle way2. It remains as an open problem to clear up exactly

when and why this is possible.

A particularly interesting case is the Wilson–Fisher model, where we analysed the

analytic continuation in section 4.2.4, as illustrated in figure 4.1. If one expands the

scaling dimensions (4.35) of the weakly broken currents in the coupling constant, one

gets a pole ∼ g2

`
, as in (2.48). If one instead evaluates the full conformal spin at ` = 0,

assuming an anomalous dimension of order g, the pole gets cancelled at the cost of

one factor g, and one arrives at the quadratic equation (4.39). Conjecturing that this

extends to φ4 theories in any symmetry group underpins the method of section 6.2,

and so far no counterexamples have been found3. It is interesting to compare with the

situation in the multicritical case for generic θ, where such continuation to spin zero

also passes beyond the pole h̄ = 1 but generates γφ2 correctly without any subtleties.

This may be explained through the observation made in [69] by explicitly studying

crossing in almost free theories, that a solution truncated in spin is allowed only in

four dimensions. Perhaps more can be learnt by investigating various limits in the

(θ, d) plane near the point (θ = 2, d = 4). This idea is inspired by the interpolation

made in [214] between universal non-perturbative behaviour at large O(2) charge and

the 4− ε expansion (see also [215,216]).

Holographic CFTs in a strong coupling expansion explicitly violate analyticity at

spin two, since they are assumed to have a stress tensor but no other single-trace
1Of course, similar considerations would apply at spin one, but we limit the discussion here to

spin zero.
2The most obvious exception is the Konishi four-point function in chapter 5, where we explicitly

had to supplement the averaged anomalous dimensions 〈γ2,`〉inf = γuniv.(`) with a contribution at
spin zero. However, there the spin zero anomalous dimension, corresponding to the Konishi operator,
matches instead the dimension of the spin zero operator in the Ξ family: γK = γΞ0 in (2.51).

3The case for O(m)×O(n)/Z2 symmetry is described in [5]. We have also checked this for theories
with O(m)n o Sn, hypercubic and hypertetrahedral symmetry, where the latter two do not admit a
Hubbard–Stratonovich description at large N .
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operators of spin ` > 2. This holds for both N = 4 SYM at strong coupling and

in the minimal gravity theories considered in the heavy-light bootstrap mentioned

in section 3.5. Indeed, in formulating proposition 3.2 we had to limit ourselves to

the case where the expansion parameter is the coupling constant and the weakly

broken currents can be explicitly constructed, since at strong coupling the range of

analyticity is raised from ` > 1 to some other small value [162]. We note that the

truncated solutions of [105, 186] which violate analyticity in spin also violate Regge

boundedness used in the derivation of the Lorentzian inversion formula.

A promising tool in addressing the question of spin zero is the notion of light-

ray operators [77]. They are non-local, intrinsically Lorentzian, operators, which can

take arbitrary values of spin. For integer spins, they reduce to the integration of local

operators along a null direction, called the light transform. In this perspective, the

function C(∆, `) generated from the Lorentzian inversion formula (2.70) should be

viewed as CFT-data for a family of such non-local operators. An integral transform

similar to the light transform is the shadow transform, which generates a non-local

operator with scaling dimension d − ∆. Perhaps a combination of these transforms

might explain our final example of analytic continuation to spin zero, namely the

shadow relation (6.14), which relates the dimension of a Hubbard–Stratonovich aux-

iliary field to the shadow dimension of the would-be ` = 0 operator in the leading

twist family. While such relation at tree-level is clear from the Lagrangian, it is not

obvious why it should hold in perturbation theory or if this continues to all orders4.

When twist additivity was derived, which opened up a new, analytic, direction of the

bootstrap, the authors of [63] said that the conformal bootstrap since its revival had

already “led to a great deal of progress, but perhaps the best is yet to come”. Now,
4We have checked that it holds at order 1/N2 in three dimensions, using the literature values for

γ
(2)
σ [217] and γ(2)

S,` [182]. Notice the typo in the expression γ2(s) in the published version of [182],
one of the harmonic numbers should read S1(s− 1

2 ) instead of S1(s+ 1
2 ).
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three quarters of a decade later, the research has gone into a more mature phase.

While there is certainly room for more numerical bootstrap, it is perhaps the analytic

techniques that will generate the greatest long-term impact on fundamental physics

as a whole. Conformal field theories will continue to play an important role, both

as toy models and as bona fide models for physics, and will be studied by a wide

range of existing and future techniques. It is my hope that the methods presented in

this thesis will become a part of the toolbox for anyone who is interested in studying

various conformal field theories. More precisely, a large spin analysis should be one of

the aspects considered when giving a presentation of the fundamental characteristics

of a given CFT.

Apart from obtaining a complete description of the situation around spin zero,

there is also room for other developments of large spin perturbation theory. This

includes applications to new specific models as well as theoretical and technical im-

provements. One such direction is to extend the inversion formula to non-scalar

correlators. While this may not be so conceptually hard—the essential ingredients

could perhaps be extracted from [77]—one has to reduce the setup to a manage-

able problem to facilitate a practical implementation. Initial examples to consider

may be correlators involving fermions [167,172] or conserved currents Jµ, for instance

analysing the ε expansion of the the 〈ϕϕJJ〉 correlator in the critical O(2) model,

which was studied numerically in three dimensions in [97].

More generally, the results and methods from the analytic bootstrap may be

used in combination with other methods for studying conformal field theories, both

within the bootstrap and more generally. One promising result is the systematic

study of twist families in two dimensional CFTs in [218]. It is also desirable to

make a more direct contact with the numerical bootstrap in the search for a more

powerful implementation to be used for finding non-perturbative CFTs. This direction

is connected with great challenges in combining the respective rigid assumptions on
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both sides—strict inequalities in the numerical bootstrap and perturbative expansion

in large spin perturbation theory as presented here.

In the future, mathematical consistency will continue to be a leading principle

within theoretical physics. This is increasingly true as the field develops in a direction

away from standard methods within perturbative Lagrangian quantum field theory.

In this thesis we have presented a complete framework for a perturbation theory

that is independent on any Lagrangian description, and therefore applies also to

expansion parameters different from the coupling constant. The future will show

what other results and technologies will follow from clever application of mathematical

consistency conditions.
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A

Appendices to chapters 2 and 3

A.1 Subleading corrections to collinear conformal
blocks

In this appendix we give some more details on the subleading corrections to the

conformal blocks in the collinear limit, referring back to section 2.2.2. We follow

closely appendix A of [3]. In the collinear limit the conformal blocks expand as [67]

G
(d)
2h+`,`(z, z̄) = zh

∞∑
k=0

zk
k∑

m=−k
ck,mkh+`+m(z̄). (A.1)

The coefficients ck,m can be computed order by order by solving the Casimir equation

CG(d)
2h+`,`(z, z̄) = (h+ `)(h+ `− 1)G(d)

2h+`,`(z, z̄), (A.2)

where

C = C2 − h(h+ 1− 2µ), (A.3)

and C is given in (2.18). The results for the first two subleading orders are

c0,0 = 1, c1,−1 = `(µ− 1)
`+ µ− 2 , c1,0 = h

2 ,

c1,1 = (µ− 1)(h+ `)2(2h+ `− 1)
4(2h+ 2`− 1)(2h+ 2`+ 1)(2h+ `− µ+ 1) ,
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c2,−2 = (`− 1)`(µ− 1)µ
2(`+ µ− 3)(`+ µ− 2) , c2,−1 = (h+ 1)`(µ− 1)

2(`+ µ− 2) ,

c2,0 = h(h+1)2(2h−3)(µ−2)(2h−µ+1)
4(2h+2`−3)(2h+2`+1)(`+µ−2)(2h+`−µ+1)

+ (2h−1)`(4h5+4h4(µ−2)+h3(46µ−10µ2−59)+h2(2µ3−31µ2+92µ−81)+h(8µ3−38µ2+64µ−37)+(µ−1)2(2µ−3))
4(2h+2`−3)(2h+2`+1)(2h−2µ+3)(`+µ−2)(2h+`−µ+1)

+ `2(20h5−12h4(µ−2)+h3(−2µ2+22µ−55)−h2(6µ3+11µ2−92µ+101)+h(16µ3−64µ2+90µ−41)−µ+1)
4(2h+2`−3)(2h+2`+1)(2h−2µ+3)(`+µ−2)(2h+`−µ+1)

+ `3(`+4h−2)(4h3−4h2(µ−3)+2h(µ2−5µ+6)−2µ3+7µ2−9µ+4)
4(2h+2`−3)(2h+2`+1)(2h−2µ+3)(`+µ−2)(2h+`−µ+1)

c2,1 = (h+ 1)(µ− 1)(h+ `)2(2h+ `− 1)
8(2h+ 2`− 1)(2h+ 2`+ 1)(2h+ `− µ+ 1) ,

c2,2 = (µ− 1)µ(h+ `)2(h+ `+ 1)2(2h+ `− 1)(2h+ `)
32(2h+ 2`− 1)(2h+ 2`+ 1)2(2h+ 2`+ 3)(2h+ `− µ+ 1)(2h+ `− µ+ 2) .

(A.4)

Unfortunately, we have not been able to find any closed form for the coefficients ck,m,

except for the four sequences c±k,±k and c±k,±k∓1.

A.2 Some useful identities

In this appendix we collect some useful identities used throughout the thesis. Some

of these are not symbolically implemented in Mathematica [163], but can be checked

numerically.

The hypergeometric function is defined by

p+1Fp

(
a1 . . . , ap+1

b1, . . . , bp

∣∣∣∣∣x
)

=
∞∑
k=0

∏p+1
i=1 (ai)k∏p
j=1(bj)k

xk

k! . (A.5)

The case p = 1 is referred to as Gauß’s hypergeometric function, for which we write

2F1(a, b; c;x). It satisfies the differential equation

x(1− x)F ′′(x) + (c− (a+ b+ 1)x)F ′(x)− abF (x) = 0. (A.6)

The special case a = b = c/2 = h̄ that appears in the collinear blocks has a series

expansion near unit argument which contains logarithms,

2F1(h̄, h̄; 2h̄; 1− w) =
∞∑
k=0

Γ(2h̄)
Γ(h̄)2

(
(h̄)k
k!

)2 (
2S1(k)− 2S1(k + h̄− 1)− logw

)
wk.

(A.7)
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For generic parameter values satisfying a + b 6= c, the expansion consists of two

superimposed power series:

2F1(a, b; c; 1− w) =
(

Γ(c)Γ(c− b− a)
Γ(c− a)Γ(c− b) +O(w)

)

− wc−a−b
(

Γ(c)Γ(c− a− b)Γ(1 + a+ b− c)
Γ(a)Γ(b)Γ(1 + c− a− b) +O(w)

)
. (A.8)

When a+ b < c, the limit w → 0 is finite and gives

2F1(a, b; c; 1) = Γ(c)Γ(c− b− a)
Γ(c− b)Γ(c− a) . (A.9)

For x ∈ (0, 1) the following holds for Gauß’s hypergeometric function

2F1

(
a, c− b; c; x

x− 1

)
= (1− x)a 2F1(a, b; c;x), (A.10)

and for the polylogarithms

Li2(x) = ζ2 − Li2(1− x)− log(1− x) log x, (A.11)

Li3(x) = ζ3 − Li3(1− x)− Li3
(
x− 1
x

)
+ ζ2 log x+ log3 x

6 − log(1− x) log2 x

2 .

(A.12)

Finally, we have the integrals

1∫
0

dx xa(1− x)b = B(a+ 1, b+ 1) = Γ(a+ 1)Γ(b+ 1)
Γ(a+ b+ 2) , (A.13)

1∫
0

dx xa(1− x)b(1− γx)c = Γ(a+ 1)Γ(b+ 1)
Γ(a+ b+ 2) 2F1(a+ 1,−c; a+ b+ 2; γ), (A.14)

for a, b > −1 and γ ∈ (0, 1), and the practical relation for the Γ function:

sin(πp) = π

Γ(p)Γ(1− p) . (A.15)
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B

Appendices to chapter 4

B.1 Some inversion integrals

In chapter 4 of the main text we arrived at the inversion integral

A(J) = 1
π2

∫ 1

0
dtdz̄ z̄

h̄−2(t(1− t))h̄−1

(1− tz̄)h̄
dDisc [G(z̄)] , (B.1)

where J2 = h̄(h̄−1). In table B.1 we present a number of inversions used in the main

text. In this table we use the nested harmonic sums Sa = Sa(h̄− 1) which for integer

arguments take the values

Sa1,a2,...(n) =
n∑

b1=1

(sgn a1)b1

b
|a1|
1

b1∑
b2=1

(sgn a2)b2

b
|a2|
2

b2∑
b3=1

(sgn a3)b3

b
|a3|
3

· · · . (B.2)

For non-integer values of h̄ we make the standard analytic continuation from even

arguments n, see e.g. [139], so that for instance

S−2(x) = 1
4
(
ψ(1)

(
x+1

2

)
− ψ(1)

(
x+2

2

))
− ζ2

2 , (B.3)

where ψ(1)(x) is the trigamma function.

Evaluating these inversion integrals is non-trivial, but one can proceed as follows.

Expanding the function to invert in powers of 1−z̄
z̄

we are led to the integral entering

in (3.51). We then by (3.54) obtain a series expansion for large J2, which can be

identified as a linear combination of suitable functions. The final result is checked

numerically, for finite values of h̄, to very high precision.
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Table B.1: Inversions used in the ε expansion in chapter 4.
G(z̄) A(J)

log2 (1− z̄) 4
J2

log3(1− z̄) −24S1
J2

log4(1− z̄) 96
J2

(
S2

1 − ζ2 − S−2
)

log2 (1− z̄) Li2 (1− z̄) 4
J2 (ζ2 + 2S−2)

log3 (1− z̄) Li2 (1− z̄) 24
J2 ((S−3 − 2S−2,1)− 3 (S−3 − 2S1,−2) + 3ζ2S1 − 2S3)

log2 (1− z̄) Li3 (1− z̄) 4
J2 (−2 (S−3 − 2S1,−2) + ζ3 + 2ζ2S1 − 2S3)

log2 (1− z̄) Li3
(
z̄ − 1
z̄

) 4
J2

(
−2ζ3 −

1
J6 −

2
J4 + 2S3

)

log2 (1− z̄) log z̄ − 4
J4

log2 (1− z̄) log2 z̄
8
J2

(
−ζ2 + 1

J4 + 1
J2 − 2S−2

)

log2 (1− z̄) log3 z̄
24
J2

(
2 (S−3 − 2S1,−2) + ζ3 −

1
J6 −

2
J4 + ζ2

J2 + 2S−2
J2 − 2ζ2S1

)

log3 (1− z̄) log z̄ 24
J2

(
−ζ2 + S1

J2 − 2S−2

)

log4 (1− z̄) log z̄

48
J2

(
−2S2

1
J2 − 4 (S−3 − 2S−2,1) + 6 (S−3 − 2S1,−2)

+3ζ3 + 2ζ2
J2 + 2S−2

J2 − 6ζ2S1 + 2S3

)

log2(1− z̄)Li2(1− z̄)log z̄ 4
J2

(
−6 (S−3 − 2S1,−2)− ζ2

J2 − 3ζ3 −
2S−2
J2 + 6ζ2S1

)
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B.2 Double-discontinuity at fourth order

To order g4 the terms contributing to the double discontinuity from the bilinear

operators are

Iϕ2 = log4(1− z̄) log z̄ − log z
192 + log3(1− z̄) 1

24(Li2(1− z̄) + 3 log z − 3 log z̄ + 2ζ2)

+ log2(1− z̄)
5

8Li3(1− z̄)− log z46 + 3Li2(1− z̄) + log z̄ + 12ζ2

48 + 1
2Li3

(
z̄ − 1
z̄

)

+ 2(23 + 6ζ2) log z̄ − Li2(1− z̄)(21 log z̄ + 34)− 106ζ2 − 4 log3 z̄ + log2 z̄ + 24ζ3

48

,
(B.4)

I2 = log2(1− z̄)
8

(
log z(ζ2 − 2) + 2 log z̄ + 1

6 log3 z̄ + Li3(1− z̄)− Li3
(
z̄ − 1
z̄

)
− ζ3

)
.

(B.5)

In order to compute the first expression we used the value of the OPE coefficient for

the bilinear scalar operator, which takes the form a0 = 2(1− g − g2 + . . .), as well as

the precise relation between g and ε.
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C

Appendices to chapter 5

C.1 Superconformal blocks

In this appendix we present an explicit form of the superconformal blocks appearing

in the expansion of correlation functions of four half-BPS operators in N = 4 SYM.

We closely follow [189] and restrict to the case p1 = p2 = p3 = p4 = 2, which is the

one relevant for this thesis. All supermultiplets appearing in the intermediate channel

of such correlation functions can be labelled by a Young tableau λ = [λ1, λ2], with

λ1 ≥ λ2, consisting of maximally two rows, and a charge γ = 0, 2, 4. We distinguish

three types of multiplets: half-BPS, quarter-BPS and long, whose representation

labels are summarised in the table C.1. Notice that the only long multiplets are in

the singlet representation [0, 0, 0] of the SU(4) R-symmetry.

Table C.1: Supermultiplets appearing in the superconformal partial waves of
〈O20′O20′O20′O20′〉.

Young tableau λ twist τ spin ` R-symmetry representation multiplet type
[0, 0] γ 0 [0, γ, 0] half-BPS

[λ1, 0], λ1 ≥ 2 γ λ1 − 2 [0, γ − 2, 0] quarter-BPS
[λ1, 1], λ1 ≥ 2 γ λ1 − 2 [1, γ − 4, 1] quarter-BPS

[1, 0] γ 0 [1, γ − 2, 1] quarter-BPS
[1, 1] γ 0 [2, γ − 4, 2] quarter-BPS

[λ1, λ2], λ2 ≥ 2 2λ2 λ1 − λ2 [0, 0, 0] long
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The superconformal blocks are given by

SR(z, z̄, α, ᾱ) =
(
zz̄

αᾱ

)γ/2
Fγ,λ(z, z̄, α, ᾱ), (C.1)

where

Fγ,λ(z, z̄, α, ᾱ) = (−1)
γ
2−1D−1 det

(
FX
λ (z, z̄) R

Kλ F Y (α, ᾱ)

)
. (C.2)

The explicit form of all ingredients (with 1 ≤ i, j ≤ 2 and 1 ≤ m,n ≤ γ/2) is

(FX
λ (z, z̄))in = [xλn−ni 2F1(λn + 1− n+ γ

2 , λn + 1− n+ γ
2 , 2λn + 2− 2n+ γ;xi)],

(C.3)
(F Y (α, ᾱ))mj = (yj)m−1

2F1(m− γ
2 ,m−

γ
2 , 2m− γ; yj), (C.4)

where x1 = z, x2 = z̄ and y1 = α, y2 = ᾱ, and

(Kλ)mn = −δm,n−λn , (C.5)

R =
( 1
z−α

1
z−ᾱ

1
z̄−α

1
z̄−ᾱ

)
, (C.6)

D = (z − z̄)(α− ᾱ)
(z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ) . (C.7)

Here, the square bracket in the definition of FX indicates that we keep only the

regular part, namely

[x−α2F1(a, b, c;x)] = x−α2F1(a, b, c;x)−
α−1∑
k=0

(a)k(b)k
(c)kk! x

k−α =
∞∑
k=0

(a)k+α(b)k+α

(c)k+α(k + α)!x
k .

(C.8)

Importantly, for long multiplets have γ = 4, λ2 = τ
2 , λ1 = ` + τ

2 , τ ≥ 4 and α ≥ 0.

Then, the superconformal blocks can be written in a more explicit form as

Flong(z, z̄, α, ᾱ) = (z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)
(z z̄)4 Gτ+4,`(z, z̄) , (C.9)

where Gτ,`(z, z̄) is the ordinary conformal block in four dimensions (5.8) as found

in [219].

At the unitarity bound, quarter-BPS multiplets can combine to form a long mul-

tiplet in the interacting theory. This is exactly the case for the twist-two multiplets
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in the singlet representation

(γ = 2, λ = [`+ 2, 0])⊕ (γ = 4, λ = [`+ 1, 1]) −→ (γ = 4, λ = [`+ 1, 1])long . (C.10)

Using the explicit form of superconformal blocks one can write

αᾱ

zz̄
F2,[`+2,0](x, y) + F4,[`+1,1](x, y) = (z − α)(z − ᾱ)(z̄ − α)(z̄ − ᾱ)

(z z̄)4 G6,`(z, z̄), (C.11)

which agrees with (C.9) for τ = 2.

C.2 More details on H
(0,log)(z̄)

In the expression (5.61) forH(0,log)(z̄), the coefficients ei multiplying (1−z̄)i log2(1−z̄)

for i = {0, 1, 2, . . .} are given by the sequence

{
− 1

12 ,
1
10 ,−

5
504 ,−

8
2835 ,−

251
199584 ,−

55967
81081000 ,−

2499683
5837832000 ,−

50019793
173675502000 , . . .

}
.

(C.12)

The corresponding values in the superconformal case (5.140) are

{
− 1

12 ,−
1
15 ,−

151
2520 ,−

127
2268 ,−

53219
997920 ,−

8327609
162162000 ,−

290756381
5837832000 , . . .

}
. (C.13)
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C.3 Modified structure constants for the confor-
mal case

In this appendix we present an exact form of the modified structure constants that

appear in (5.112). The equations below are valid for τ0 > 2.

〈α̂τ0,`〉11 = 4 c η
Pτ0,`

(
− ζ2 + S1

(
τ0
2 − 2

)2
− S1

(
τ0
2 − 2

)
S1 (τ0 − 4)− 1

2S2
(
τ0
2 − 2

)
− δτ0,4

2 +
[
2S1

(
τ0
2 − 2

)
− S1 (τ0 − 4) + δτ0,4

4

]
S1
(
τ0
2 + `− 1

))
, (C.14)

〈α̂τ0,`〉10 = 2 c η
Pτ0,`

(
− 3S1

(
τ0
2 − 2

)
+ 2S1 (τ0 − 4)− 3δτ0,4

4 − S1
(
τ0
2 + `− 1

))
, (C.15)

〈α̂τ0,`〉00 = c η

Pτ0,`
, (C.16)

〈α̂τ0,`〉ext = 2 c η
Pτ0,`

(
1 + S1

(
τ0
2 − 2

)
− S1 (τ0 − 4) + δτ0,4

2

)
− τ0 − 3

Pτ0,`

+ 2
[
−1 + 2S1

(
τ0
2 − 2

)
− S1 (τ0 − 4) + S1

(
τ0
2 + `− 1

)]
, (C.17)

〈α̂τ0,`〉µ0
= 4 c
Pτ0,`

(
− S1

(
τ0
2 − 2

)
+ S1 (τ0 − 4)

)
, (C.18)

〈α̂τ0,`〉ν0
= 2 c
Pτ0,`

(
− ζ2 − 2S1

(
τ0
2 − 2

)
− 2S1

(
τ0
2 − 2

)2
+ 2S1 (τ0 − 4) + S2

(
τ0
2 − 2

)
+ 2S1

(
τ0
2 − 2

)
S1 (τ0 − 4) + 2

[
S1
(
τ0
2 − 2

)
− S1 (τ0 − 4)

]
S1
(
τ0
2 + `− 1

))
.

(C.19)

As in (5.111), we have η = (−1)
τ0
2 and Pτ0,` = cη + (τ0 + `− 2) (`+ 1).

C.4 Konishi CFT-data

We present here an explicit form of the CFT-data for operators present in the con-

formal partial wave decomposition of (5.125).

The anomalous dimensions are given by

〈γ2,`〉 = 2S1(`) + 3δ`,0, (C.20)

〈γτ0,`〉 = 6 + 12c
Pτ0,`

[
−S1

(
τ0
2 − 2

)
+ S1

(
τ0
2 + `− 1

)]
+ c η

Pτ0,`

[
6− δτ0,4 − 2S1

(
τ0
2 − 2

)
− 2

(
τ0
2 + `− 1

)]
, τ0 > 2, (C.21)
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and the modified structure constants take the form

〈α̂2,`〉 = −6− 3δ`,0 − ζ2 + 6S1(`), (C.22)

〈α̂τ0,`〉 = 6
[
−1 + 2S1

(
τ0
2 − 2

)
− S1 (τ0 − 4) + S1

(
τ0
2 + `− 1

)]
− 3
Pτ0,`

(τ0 − 3)

+ c

Pτ0,`

(
12
[
S1
(
τ0
2 − 2

)
− S1 (τ0 − 4)

]
+ η

[
−4S1

(
τ0
2 − 2

)
+ 2S1 (τ0 − 4)− δτ0,4

2

] )
S1
(
τ0
2 + `− 1

)
+ 6 c
Pτ0,`

(
− ζ2 − 2S1

(
τ0
2 − 2

)2
+ 2S1

(
τ0
2 − 2

)
S1 (τ0 − 4) + S2

(
τ0
2 − 2

) )
+ c η

Pτ0,`

(
ζ2 + 6S1

(
τ0
2 − 2

)
− 2S1

(
τ0
2 − 2

)2
− 6S1 (τ0 − 4)

+ 2S1
(
τ0
2 − 2

)
S1 (τ0 − 4) + S2

(
τ0
2 − 2

)
+ 4δτ0,4

)
, τ0 > 2.

(C.23)

Recall that the one-loop structure constants 〈a(1)
τ0,`〉 can be found using (5.74).

C.5 Half-BPS CFT-data

We present here an explicit form of the CFT-data for long supermultiplets present in

the superconformal block decomposition of (5.151).

The anomalous dimensions are given by

〈γ2,`〉 = 2S1(`+ 2), (C.24)

〈γτ0,`〉 = − 2 c̃
Pτ0,`

(
(η + 1)S1

(
τ0
2

)
+ (η − 1)S1

(
τ0
2 + `+ 1

))
, τ0 > 2 , (C.25)

and the modified structure constants by

〈α̂2,`〉 = −ζ2, (C.26)

〈α̂τ0,`〉 = − 2 c̃
Pτ0,`

( [
(2η − 1)S1

(
τ0
2

)
+ (1− η)S1(τ0)

]
S1
(
τ0
2 + `+ 1

)
+ (1 + η)S1

(
τ0
2

)2

− (1 + η)S1
(
τ0
2

)
S1(τ0)− 1 + η

2 S2
(
τ0
2

)
+ 1− η

2 ζ2

)
, τ0 > 2,

(C.27)
where Pτ0,` = c̃ η + (τ0 + ` + 2)(` + 1) is the factor appearing in the higher twist

structure constants (5.20). The one-loop structure constants 〈a(1)
τ0,`〉 can be found

using the supersymmetric version of (5.74).
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