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Abstract: Conformal field theories (CFT5s) play a central role in theoretical physics
with many applications ranging from condensed matter to string theory. The confor-
mal bootstrap studies conformal field theories using mathematical consistency con-
ditions and has seen great progress over the last decade. In this thesis we present
an implementation of analytic bootstrap methods for perturbative conformal field
theories in dimensions greater than two, which we achieve by combining large spin
perturbation theory with the Lorentzian inversion formula. In the presence of a small
expansion parameter, not necessarily the coupling constant, we develop this into a
systematic framework, applicable to a wide range of theories.

The first two chapters provide the necessary background and a review of the
analytic bootstrap. This is followed by a chapter which describes the method in
detail, taking the form of a practical guide to large spin perturbation theory by means
of a step-by-step implementation. The goal is to compute the CFT-data that define
a given conformal field theory, and this is achieved by considering contributions from
operators in a four-point correlator through the crossing equation. We give a general
recipe for determining which operators to consider, how to find their contributions
from conformal blocks and how to compute the corresponding CFT-data through the

inversion formula.



The second part of the thesis presents several explicit implementations of the
framework, taking examples from a number of well-studied conformal field theories.
We show how many literature results can be reproduced from a purely bootstrap
perspective and how a variety of new results can be derived. We consider in depth
how to determine the CFT-data in the e expansion for the Wilson—Fisher model from
crossed-channel operators. All CFT-data to order € follow from only the identity and
the bilinear scalar operator, and by considering contributions from two infinite families
of operators we generate new results at order e*. We study in similar depth conformal
gauge theories in four dimensions, where we find a five-parameter solution for the most
general form of the one-loop four-point correlator of bilinear scalars. For particular
parameter values this reproduces the case of the Konishi operator and the stress tensor
multiplet in weakly coupled N = 4 super Yang—Mills theory. We then present more
briefly four additional examples. These include the critical O(/N) model in a large N
expansion, a solution for ¢* theory with any global symmetry, multicritical theories
to order €2 near their critical dimensions, including new results for the central charge,
and the four-point correlator of bilinear scalars in the € expansion. We conclude the

thesis with a discussion and some appendices.
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Chapter 1

Introduction

The main enterprise of theoretical physics is to construct mathematical models for
describing physical phenomena. These models are constructed from a supply of ex-
perimental data, and are judged based on their success in explaining previous obser-
vations and in particular on their ability to make predictions that can be confirmed
by new experiments. This approach, whose enormous success can be exemplified with
Maxwell’s equations for electromagnetism in the 1860’s and the theory of quantum
mechanics in the 1920’s, has remained successful into present days with the discovery
of the Higgs boson in 2012 [7,8] and gravitational waves in 2015 [9].

In parallel with the main line of development, a slightly different perspective
emerged and gained increasing popularity in the study of fundamental physics. The
idea is to identify some fundamental principles, and then explore the implications that
follow from imposing mathematical consistency. One example is Dirac’s attempt in
1928 to write down a linear equation of motion for the electron quantum field [10].
He found that the only way to write a consistent equation was to formulate it in
terms of matrices of size at least 4 x 4. This in turn introduced negative energy
solutions interpreted as positrons [11], which were experimentally observed a few
years later [12].

Another example is the study of statistics in quantum mechanics. Under spatial

rotation by 27, the wave function picks up a phase +1 for bosons and —1 for fermions.



Famously this corresponds to {41} being the pre-image of the identity in the univer-
sal cover of the rotation group: SU(2) over SO(3). In two dimensions the universal
cover of the rotation group SO(2) is non-compact, R, and it was noted in 1977 that
this would allow for a new kind of quantum statistics [13]. The corresponding par-
ticles were dubbed anyons, and were shown to play a role in the fractional quantum
Hall effect [14], discovered in 1982 [15]. However, even without the experimental re-
alisation, the discovery of anyons as a consistent theory is interesting on its own, as
it is investigating the boundaries for what kind of physics could at all possibly exist.

Instead of thinking about statistics, we may study the implications of spacetime
symmetry in a relativistic quantum field theory. It is believed that the maximal
extension with bosonic generators of the Poincaré group of spacetime symmetries for
interacting quantum field theories is the conformal group!. Theories with spacetime
symmetries given by the conformal group—the Poincaré group extended by scalings
and translations of the infinity—are called conformal field theories (CFTs).

In this thesis we are broadly interested in questions like what possible models for
physics are consistent with conformal symmetry? Again, the case of two dimensions
is special, and we will here focus on d > 2 spacetime dimensions.

Physics with conformal invariance has great importance. Apart from a large num-
ber of specific conformal field theories, some of which we will discuss shortly, CF'T
was given a special role at the heart of quantum field theory (QFT) through Wilso-
nian renormalisation [17-19]. In Wilson’s approach, physics at different energies—or
equivalently different length scales—are related through the renormalisation group
(RG), and it has been observed that the scale-invariant fixed-points of the renor-

malisation group flow in fact happen to be conformal field theories?>. An important

Tt is clear that the conformal group is an extension of the Poincaré group. In [16] it was shown
that for three-dimensional theories, the existence of a higher spin current makes the theory free. In
part of this thesis we will look at theories which contain infinitely many weakly broken higher spin
currents Jy.

2In two and four dimensions, it has been shown that for unitary theories scale invariance implies
conformal invariance [20,21], but it is not known if this holds in generic dimensions [22].



consequence of this fact is that theories with different microscopic descriptions might
flow to the same CFT at long distances (IR). The short-distance (UV) theory does not
even need to be a quantum field theory, but could for instance be a spin chain, which
is a statistical system defined on a lattice. An example is the Ising spin chain [23]
which consists of a spin chain in d dimensions whose Hamiltonian contains a nearest
neighbour interaction and a coupling to an external magnetic field. At zero magnetic
field, the system undergoes a second-order phase transition between an ordered, low-
temperature phase and a disordered, high-temperature phase. At the transition, the
system becomes scale-invariant and is described by a CFT: the Ising model CFT?. In
two dimensions, the Ising model was solved exactly [24], but, interestingly, there is
no exact solution to the 3d Ising model to this date.

Another way to reach the Ising model is to start from a Lagrangian quantum
field theory containing a single real scalar ¢ with ¢* interaction. In the context of
statistical physics this is said to give a Landau-Ginzburg description of the Ising
model. In three dimensions, for instance, this results in a “long RG flow” as depicted
in figure 1.1, where the spectrum of the 3d Ising model differs substantially from
that of the free theory where the flow started. This viewpoint was systematically
developed by the introduction of the € expansion by Wilson and Fisher [25]. They
considered the RG flow between the free theory and the interacting theory (Ising
model) in d = 4 — € dimensions. For small €, both fixed-points can be described
as a perturbation from the free 4d theory, illustrated by the “short RG flow” in
figure 1.1. In practice, quantities of interest are computed by Feynman diagrams
and are subsequently evaluated at the point of vanishing beta function, called the
Wilson—Fisher (WF) fixed-point. The results computed through the € expansion are
in general given by asymptotic series in €, but the evaluation of suitably truncated

series gives good predictions also at finite €, for instance at ¢ = 1 corresponding to

3In the following, we will refer to the CFT as just the Ising model, and use the phrase Ising spin
chain to describe the statistical system.
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Figure 1.1: The Wilson—Fisher fixed-point in d = 4 — ¢, and multicritical fixed-points in

d=d.(0)— e with d.(0) = 92Tel' Beyond the small € limit the theories are reached from free

theory by a long RG-flow tuning 6 parameters. The multicritical fixed-points are connected
to the unitary minimal models with (holomorphic) central charge ¢ =1 — WG(HQ)'

three dimensions. In chapter 4 we will study the € expansion from a CFT point of
view, without referring to Feynman diagrams. Generalisations of the Wilson—Fisher
fixed-point, called multicritical models, were soon found and can be described by ¢
interactions near appropriate critical dimensions d.(#). Each such theory requires
tuning ¢ — 1 different relevant couplings. We indicate the multicritical theories in
figure 1.1.

The fact that several systems with different microscopic descriptions exhibit the
same long-distance physics is referred to as universality. We say that systems with the
same IR behaviour belongs to a common universality class. Typically, universality
classes are characterised by the global symmetry group and the number of relevant
singlet scalar operators. For instance, the Ising universality class with Z, global sym-
metry contains, besides the Ising spin chain, some magnetic systems and some van der
Waals gases—such as water—near the critical point of their phase diagrams. Univer-

sality classes with other global symmetry groups are common in second order phase



transitions of certain materials, including structural phase transitions, and they also

describe quantum critical phase transitions.

From the beginning, the renormalisation group played an important role also in high-
energy physics, through the analysis of the strong force in deep inelastic scattering
experiments in terms of asymptotic freedom. High-energy theorists started to develop
conformal field theory as an independent subject. In an important paper by Ferrara,
Gatto and Grillo in 1973 [26], representations of the conformal group were discussed
and the operator product expansion (OPE) was analysed further in the CF'T context,
where it has a finite radius of convergence. Soon thereafter, Polyakov [27] studied
the implications of conformal symmetry on four-point correlators (as we will discuss
shortly, two- and three-point correlators are completely fixed up to some theory-
dependent constants called the CFT-data). The idea was to avoid any Lagrangian
description of the theory and instead use the crossing equation to generate non-trivial
equations for the CFT-data. The specific implementation of Polyakov, using OPE
consistency for crossing-symmetric expressions, was recently revived using Mellin am-
plitudes to create the conformal bootstrap in Mellin space [28,29].

The advent of string theory directed interest towards two-dimensional CF'Ts, and
a new version of the bootstrap appeared. In 1984 Belavin, Polyakov and A. Zamolod-
chikov studied the crossing equation for two-dimensional conformal field theories, with
a particular focus on theories with central charge ¢ < 1 [30]. This was very successful
and led to a complete classification of such theories, denoted minimal models. The
minimal models that satisfy unitarity, 0 < ¢ < 1, can be enumerated by an integer 0,
conjecturally connected to the Ising model and the multicritical theories as displayed
in figure 1.1.

Let us explain the key ideas of the bootstrap programme in a bit more detail. Un-

like in conventional field theory, in this approach it proves useful to focus on operators



rather than fields. Furthermore, the transformation properties of the correlators of
these operators can be taken as axioms for the CFT. A CFT contains a distinguished
set of operators called conformal primaries and the main observables are correlators
of these primary operators. The OPE between two operators is convergent away from
other operator insertions, which implies that we can reduce any n-point function to
a sum over (n — 1)-point functions,

(O1(x)02(0)0s(w3) - - On(wn)) = > 1ot C(, ) O4(0)Os(3) - - On() ), (1.1)

o)

where 0, = Sor

The coefficients c;;;, are theory-dependent OPE coefficients and
C(x,0) are theory-independent functions depending only on the scaling dimensions
and spins of the involved operators. Ultimately, any correlator can be reduced to a
sum of two- or three-point functions, which are given in terms of the OPE coefficients
and scaling dimensions in the theory, collectively referred to as the CFT-data.

From applying the OPE in two different ways within the four-point function, one

can extract the crossing equation,

—— | —— |
(O(21)O(22)O(3)O(4) ) = (O (1) O(w2) O(3) O (24) ). (1.2)

In this highly non-trivial equation the CFT-data enters in different ways in the left-
hand and right-hand sides, referred to as the direct and the crossed channel, and
as a functional equation it contains a vast amount of information. The goal of the
conformal bootstrap is to use the crossing equation to harvest as many constraints as
possible on the CFT-data, and ultimately to fix all involved quantities.

The bootstrap was particularly powerful in the case of two dimensions due to
enhanced symmetry from (global) conformal symmetry to Virasoro symmetry. This
means that the conformal multiplets, which contain a primary operator and its de-
scendants (constructed by action of 9), group into Virasoro multiplets. We illustrate

this in the top left corner of figure 1.2. For instance, the minimal models contain



only a finite number of Virasoro multiplets, whose CFT-data could be completely
determined. Conformal field theory in two dimensions has expanded to a large body
of knowledge—an important result is the construction of the Wess—Zumino-Witten
models [31,32]—and is now established textbook material®.

In higher dimensions the progress was slower. A set of conventions for higher-
dimensional CFTs was given by Osborn and Petkou in 1993 [40] and the conformal
field theories behind the critical phenomena, in particular the critical O(N) models,
were studied from a CFT perspective in a series of papers [41-43] identifying the set of
conformal primaries and computing the central charges. The computation of critical
exponents, which corresponds to a subset of the CF'T-data, using the € expansion was
pushed further [44], and the collective knowledge about critical phenomena around
the year 2000 was collected in [45].

One important motivation for increasing interest in CF'T came through the AdS-
CFT correspondence, or holography, relating gravity in (d+1)-dimensional anti de Sit-
ter spacetime to strongly coupled conformal field theory on the d-dimensional asymp-
totic boundary [46-48]. The involved CFTs often have superconformal symmetry,
combining conformal symmetry with supersymmetry, and the prime example is the
4d maximally supersymmetric Yang-Mills theory with gauge group SU(N) (N =4
SYM). In the large N limit it is dual to type IIB string theory in AdSs x S®, which
at infinite coupling reduces to supergravity. Superconformal symmetry facilitates a
variety of powerful methods such as integrability [49] and supersymmetric localisa-
tion [50]. The intense activity within holography also led to important technical
results, such as explicit results for conformal (and superconformal) blocks, which sum
up the contribution to a four-point function from a given (super)conformal primary

and its descendants. These results, many of which were obtained by Dolan and Os-

4The standard reference is [33], see also the lecture notes [34] and other textbooks [35-37].
Attempts to rigorously axiomatise 2d CFT have been made, for instance by Moore and Seiberg [38]
and by Segal [39].



born [51-53], are essential for what comes next, and for the computations in this

thesis.

In 2008 the ideas of conformal bootstrap were revived in higher dimensions—focussing
initially on four dimensions—in the seminal work of Rattazzi, Rychkov, Tonni and
Vichi [54]. The leading principle was to investigate the space of allowed CFT-data,
and therefore the space of allowed conformal field theories, by using the mathematical
consistency built into the crossing equation, without making use of any Lagrangians
or perturbative limits. More precisely, the crossing equation was studied numerically
in an expansion around a special kinematic configuration, and positivity of squares
of real-valued OPE coefficients was used to rule out whole regions of CF'T-data. This
idea, which we refer to as the numerical conformal bootstrap, has been refined and
generated a wealth of results over the past decade, see [55] for a review, [56] for a
brief summary and [57] for a comprehensive and pedagogical introduction. Flagship
results include the precise determination of the critical exponents in O(N) models in
three dimensions [58], where the results in the Ising [58,59] and O(2) [60] case are
the most precise available by any method.

In this thesis we will focus on a parallel development, namely analytic conformal
bootstrap. We introduce the main objectives of this programme by figure 1.2, where
we illustrate the spectrum of a conformal field theory, given in terms of the set of pri-
mary operators and their scaling dimensions. Without any further assumptions, the
axioms of CF'T allow for arbitrary and independent values of the scaling dimensions
of the various primary operators (up to certain unitarity bounds). This corresponds
to the top centre part of figure 1.2. In the cases of CFTs in two dimensions or super-
symmetric CF'Ts in any dimension, the existence of additional symmetries induces an
organisation of the conformal primaries into Virasoro multiplets or superconformal

multiplets respectively. The scaling dimensions and OPE coefficients of all opera-
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Figure 1.2: In the cases of 2d CFTs or SCFTs, additional symmetries relate properties of
different conformal primaries. In Lagrangian CFTs and holographic CFTs, there are direct
methods for constructing and labelling operators. In the generic case, all operators can a
priori have independent CFT-data. The purpose of analytic bootstrap is to bring structure
into this picture by studying operators with large spin.

tors within in such an enlarged multiplet are all related, reducing the number of free
parameters and facilitating a wider range of computational methods.

While two-dimensional CFTs and supersymmetric CFTs are highly structured,
one cannot a prior: infer much about the spectrum of a generic CFT. The goal of
the analytic conformal bootstrap in higher dimensions is to overcome this gap. There
are two main objectives: on the one hand, to make universal statements valid in any
CFT, and on the other hand, to use the power of conformal invariance to deduce
more properties of specific models.

A key concept in this quest is a twist family of operators®. This consists of a
family of operators, parametrised by spin, with approximately equal value of the

twist, defined as the difference between scaling dimension and spin: 7, = A, — /.

Such operators naturally occur in weakly coupled Lagrangian CFTs as well as in

5By “operator” we here refer to a conformal primary operator. Descendant operators will be
explicitly called descendants.



strongly coupled holographic CFTs. In the former case, twist families of operators
are constructed from the fundamental fields, taking the form ¢[00t ... 9#} ¢ with a
twist of 2A 4+ 2n4,, where 7, are small anomalous dimensions, [ = 9*9,,, and curly
brackets denote symmetrisation and removal of traces. In the latter case, operators
in a twist family have a natural definition as the operators dual to rotation modes of
weakly interacting multiparticle states in AdS.

In the examples studied, the operators in a twist family were observed to have
collective properties. In Lagrangian theories, the anomalous dimensions could be
parametrised in closed form in terms of the spin, and this played an important role
in deep inelastic scattering in QCD, even beyond the strictly conformal limit. In this
setting, Nachtmann’s theorem [61] further showed that the function v, of the leading
twist family takes a convex shape. Much later, important lessons were drawn in [62]
about the large spin limit in conformal gauge theories, where it was shown that the
logarithmic scaling of anomalous dimensions at large spin can be understood as the
corresponding linear scaling with energy of a flux tube in an auxiliary theory.

In two papers from 2012 [63,64] it was independently proven, using crossing sym-
metry, that such twist families of operators must exist in any CFT in dimension
d > 2. This result is usually taken as the starting point for the analytic conformal
bootstrap. The statement is that given any two operators O; and Oy with twists 7
and 7, there must exist an infinite family of operators with twists 7, approaching
Too = T1 + T2 as £ — 00. As we will describe in more detail in the next chapter, this
follows from the presence of the identity operator in the crossed channel of the corre-
lator (O;(x1)Os(x2)O2(x3)O1(x4)). Similarly, other operators in the crossed channel
induce corrections to the twist, which means that we can non-perturbatively define
anomalous dimensions by v, = 7, — (11 + 7T2).

Subsequently, more systematics were developed for the analytic bootstrap. In [65]

it was shown that the anomalous dimensions 7,, as well as corrections to OPE
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coefficients, naturally expand in inverse powers of the conformal spin, defined as
J?> = (Ay+0)(Ay+ ¢ —2)/4. In [66], these principles were used to reproduce anoma-
lous dimensions in a number of perturbative CFTs, and in [67], the methods, now
dubbed the lightcone bootstrap, were used to quantitatively explain a large part of
the spectrum of the 3d Ising model, computed in the same paper. In 2016, a com-
pletely systematic framework named large spin perturbation theory was introduced
by Alday [68,69]. This framework facilitates significant progress in both generic and
specific CFTs in the presence of a small expansion parameter, which may for instance
be a small coupling constant, a dimensional €, or the inverse number of degrees of
freedom. In this thesis we show that large spin perturbation theory not only eluci-
dates the structure of many conformal field theories, but it is also powerful enough
to generate new results beyond other methods.

The final ingredient to achieve this goal was given by Caron-Huot in the Lorentzian
inversion formula [70]. It puts on firm grounds the empirical observations from all
known examples that the functions ~, extend in exact form all the way down to some
finite spin, typically 0, 1 or 2. The anomalous dimensions and OPE coefficients,
collectively the CFT-data, are given in terms of an integral over a compact domain
of the double-discontinuity of the correlator weighted against a kernel. The double-
discontinuity restricts to terms containing enhanced singularities, which means that
the CFT-data can be computed without knowing the full correlator. This can be
phrased as a dispersion relation, meaning that the correlator can be reproduced from

its double-discontinuity, up to contributions from spin 0 or 1 [71].

The purpose of this thesis is to demonstrate how large spin perturbation theory can be
turned into a powerful and systematic framework for studying perturbative conformal
field theories, by which we mean CFTs equipped with any expansion parameter, not

necessarily the coupling constant. This is achieved through a number of examples
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where the method is successfully applied to some of the most well-studied CF'Ts. The
framework follows the analytic bootstrap approach, which means that it builds only
on consistency conditions and on the axioms of conformal field theory, without any
reference to Lagrangians or standard perturbation theory, and it does not make use
of specific methods such as supersymmetric localisation.

The thesis starts with a comprehensive review, which includes a practical guide
to large spin perturbation theory, followed by a number of concrete examples. These
examples are given as a demonstration of the method, but the results generated
there are also contributions to the literature. We do not aim to cover all aspects
of higher-dimensional CFTs and we refer instead to the excellent reviews on the
subject [55,56,72-74]. However, we do give the essential ingredients and present the
ideas that lead up to work in this thesis. This is the purpose of chapter 2, which

finishes by outlining the method in terms of the following procedure:

1. Find operators that contribute at each order in the expansion parameter.
2. Compute their double-discontinuity in the crossed channel.

3. Find the corresponding corrections to the CFT-data using the Lorentzian in-

version formula.

4. Where applicable, use consistency conditions to fix any undetermined constants

and /or iterate the procedure.

Chapter 2 also derives the precise version of the inversion formula used in large
spin perturbation theory from the more general formula in [70], and it contains a
presentation of some of the theories studied in detail in the later chapters.

Chapter 3 takes the form of a practical guide, giving more details on how to
execute each of the steps given above. The presentation is encyclopaedic, and the
purpose is to give a useful overview of the method, as an alternative to the often

technical original publications.
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The following chapters contain explicit examples. In chapter 4 we demonstrate
how large spin perturbation theory combined with the Lorentzian inversion formula
can be applied to the Wilson—Fisher fixed-point in the d = 4 — € expansion, where
new results are generated at order €*, for instance for the central charge. In chapter 5
we study conformal gauge theories and find the most general form of the order g
four-point function of a bilinear scalar operator. This reproduces known results in
the V' = 4 super Yang—Mills theory but applies to any theory satisfying a short list
of assumptions.

Chapter 6 is divided into smaller sections, each giving yet another application of
the framework but recycling some technical results from previous sections and chap-
ters. While sections 6.1 and 6.2—which cover critical ¢* theories with O(N) and
general global symmetry—are based on work presented elsewhere, sections 6.3 and
6.4 contain previously unpublished results. In section 6.3 we collectively study the
multicritical theories described in figure 1.1 and derive new results for OPE coeffi-
cients, including the central charge. In section 6.4 we show that the results from
chapter 5 can be used to compute the order e four-point function of the ¢? operator
in the Wilson-Fisher fixed-point.

We finish with a discussion in chapter 7, where we summarise and give some
outlook. This is followed by some appendices with technical details from the chapters

described above.
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Chapter 2

Analytic study of conformal field
theories

In this chapter we review the necessary background for the analytic study of confor-
mal field theories. After giving an overview of the fundamental definitions, we discuss
Lorentzian kinematics and give some references on conformal blocks. We then intro-
duce conventions regarding the operator content in CFTs and give three explicit
examples. This is followed by a review of the developments within the analytic boot-
strap, including the Lorentzian inversion formula. We give a precise derivation of the
perturbative inversion formula, which plays a central role in the following chapters,

and finish by outlining the principles of large spin perturbation theory.

2.1 What is a CFT?

A brief way of defining a conformal field theory is that it is a quantum field theory
invariant under conformal symmetry. This leads to a description of CFTs built on the
understanding of quantum field theory (QFT), where conformal symmetry is used to
distil properties that are special to CFTs. One such property is that all fields are
massless, i.e. the theory has no mass gap. However, while much of our understanding
of QFT relies on the possibility of writing down a Lagrangian that describes a given
theory, at least at weak coupling, it is possible to give a characterisation of conformal

field theory that is independent of this construction. It is this perspective that we
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will take here. It leads to a more concrete, but at the same time more mathematically
rigorous, definition of a conformal field theory.

We define a conformal field theory as a consistent set of operators together with
correlation functions (correlators) of these operators with appropriate transformation
properties under the conformal group. A conformal transformation between subsets

of Euclidean manifolds is an angle-preserving map

v r =P(), (g w(r) = Qa) g (@), (2.1)

where Q(x) is a positive scalar function and ¢*¢’ denotes the pullback of the metric.

A formal approach, as in Segal’s axiomatisation [39], is to view the CFT itself
as a set of operators together with a framework (a set of functors) which assigns,
to a given manifold, the set of correlators of its operators on that manifold. In this
sense, the CFT is a tool that can be used to probe the geometry of the manifold.
This philosophy is particularly useful in two dimensions, where any manifold is locally
conformally flat. In this thesis, which is restricted to the case of d > 2 dimensions, we
focus our considerations on conformally flat manifolds, and therefore study flat space
R?.  After removing the origin, this is also conformally equivalent to the cylinder
R x S% 1 through a radial foliation, which implies that correlators on the cylinder
are directly related to correlators on R? '. In addition, we will limit the set of
observables to correlators of local operators. This excludes for instance Wilson loops,
as well as some interesting non-local operators such as light-ray operators and shadow
operators [77].

The fundamentals of conformal field theories in flat R? are well-documented, for
instance briefly in [33] and in more detail in some lecture notes [72-74]2. We will not

repeat all details here, but instead just outline the main results.

IThe perhaps most important manifold not conformally equivalent to R? is S* x R?~!. Probing
this geometry gives access to observables at finite temperature, where the length of the circle can
be related to the inverse temperature. In [75] a bootstrap analysis was developed for this geometry
and in [76] observables for the Ising model at finite temperature were computed.

2See also [78] for some comprehensive but unfinished lecture notes.
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The conformal group of Euclidean R? is the Poincaré group extended by dilatations
x# +— Az# and special conformal transformations (translations of infinity), and it is
isomorphic to the special orthogonal group SO(d + 1,1). Local conformal operators,
according to Mack’s classification [79], are either primary operators (primaries) or
descendant operators. A conformal primary may be defined as an operator which
transforms locally under the conformal transformations (2.1). For a scalar primary

operator O this takes the form
O(z') = Q(z) "2 0(x), (2.2)

which defines the scaling dimension Ap. Primary operators also transform in irre-
ducible representations (irreps) of the Lorentz group and in irreps of any potential
global symmetry group. The transformation property (2.2) implies that primaries
inserted at the origin are annihilated by the generators K, of special conformal trans-
formations [73]. Descendant operators are generated by the action of the generator
of momentum, —iP, = 9, := 2, conjugate to K,: [P,, K"] = 2i(Do,” — M,"),
where D and M, " generate dilatation and Lorentz transformations respectively. For
descendants, the transformation rule (2.2) holds only for constant dilatations, and
it is corrected by derivatives in the case of more general transformations. The set
of descendants generated from a given primary forms a conformal multiplet, and all
properties of these operators are related to the corresponding primary. Therefore,
we limit our considerations to primaries, and in what follows we refer to primary
operators just as operators.

From invariance under dilatation and special conformal transformations it follows

that the two- and three-point correlation functions of scalar primaries take the form

i
(Oi(21)0j(x2)) = 547 (2.3)
T2
CO,0;0,
(0i(21)0j(22)Ok(23)) = 3758, 5,18 A BTa s T = (@ —25)%
5612 :CQ :C13 ’
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where the set of OPE coefficients co,0,0, and scaling dimensions Ao, forms the CFT-
data and carries the dynamical information of the CFT3.

The final essential ingredient needed to define a CFT is the state-operator cor-
respondence. It implies that any quantum state |¢) defined on a sphere S9! in
Euclidean R? can be written as a linear combination of primary and descendant op-

erators inserted at the centre zf) of the sphere:

) = ZO: Jo O(x0)]0) . (2.5)

If we take |¢) to be the state O1(x)O5(0)|0) for primaries O, Oq, we get the operator
product expansion (OPE) given in (1.1) in the introduction. Importantly, in a CF'T
the OPE coefficients of descendants are related to those of the primary, and the
coefficient functions C(z,d) in (1.1) depend only on the quantum numbers of the
involved primary operators. In the case of scalar operators O; and O,, the conformal
primaries in the OPE must transform in a traceless symmetric representation of the
Lorentz group, and can therefore be characterised by their scaling dimension A and
spin ¢, the latter defined as the rank of the representation. We write O#1#¢ and

assume that the symmetrisation and removal of traces is understood.

2.2 Lorentzian four-point functions

In the previous section we saw that the two- and three-point functions of conformal
primaries are completely fixed in terms of the CF'T-data. The first correlator to carry
non-trivial kinematics is therefore the four-point function. Moving from Fuclidean
R? to Lorentzian R4~1! spacetime introduces an interesting kinematic limit for four-
point functions, the lightcone limit, where operators become collinear. In this section

we describe this and other relevant limits for Lorentzian four-point functions.

3We have normalised scalar operators by choosing a diagonal basis (2.3). For spinning operators,
there are multiple conventions in the literature. Our conventions will be clear from the normalisation
of the conformal blocks below. Notice that in the presence of a global U(1) symmetry it is customary
to assign the non-vanishing two-point functions to charge conjugate pairs.
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Conformal symmetry can be used to map any four-point configuration onto a two-
dimensional plane, which means that the spacetime dependence can be parametrised

by two independent variables, called the conformal cross-ratios,

ozl B x2 22
u=zz="322 v=(1-2)(1-z) =32, (2.6)
L1324 L1324

Throughout this thesis we will use (u,v) and (z, z) interchangeably. In slight abuse
of notation, we will therefore write G(u,v) = G(z, z) for the four-point function of

identical external scalar operators ¢, as defined by

1
(0(21)(22)(3)9(24)) = =55 —5,9(u, v). (2.7)
T12 T34
Here we factored out a pair of two-point functions such that the contribution from
the identity operator 1 in the pairwise OPEs ¢(x1) X ¢(z2) and ¢(z3) X ¢(x4) is just 1.

In this notation, the crossing equation (1.2) takes the form*

Glu,v) = (U)A¢Q(v,u). (2.8)

v

The OPE expansions within the four-point function can be organised as
d
G(u,v) = Z Cid)OG(A()Q’ZO (u,v), (2.9)
o

where we have introduced the conformal blocks Ggl’)z(u,v). In the OPE expansion
of the four-point function they sum up the contributions from the primary O and
all its descendants, and we refer to (2.9) as the conformal block expansion of the
correlator. The conformal blocks are theory-independent functions of the cross-ratios
and depend only on the scaling dimension A and spin ¢ of the exchanged operators.
The CFT-data enters the conformal block expansion through the parameters Ap and

lo ® of the primaries, and through the squared OPE coefficients ¢ .

4There is also another crossing equation which follows from exchanging the operators at z; and
3. It takes the form G(u,v) = G (%, 1) but it will not be important in this thesis.

5Since we are considering only scalar external operators ¢, the exchanged operators transform
in the traceless symmetric representations of the Lorentz group, uniquely labelled by an integer £

(corresponding to one-row Young tableaux of length ¢).
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Notice now the advantage of writing the crossing equation in the form (2.8). The
expressions in the direct channel (left-hand side) and the crossed channel (right-
hand side) take the same functional form, where both sides have an expansion (2.9),
just with u and v exchanged. The conformal bootstrap aims to harvest as much

information as possible about the CFT-data from this highly complicated equation.

2.2.1 Lorentzian kinematics

Let us take a closer look at the kinematics of the four-point function (2.7) in Lorentzian

signature. As described above, any configuration is conformally equivalent to one

where the four operator insertion points z; are confined to a plane. Restricting to

space-like separation, we can, up to permutation of the x;, parametrise the plane by
0

a time-like and a space-like direction (2°, 2') and use additional conformal symmetry

to place (gauge-fix) the operators at
1 =0, = (29,25,0,...), x3=(0,1,0,...), x4=o00. (2.10)

We define z = x4 — 29 and z = z}+ 9, by which the space-like separation corresponds
to the values z, z € (0,1). This is illustrated in figure 2.1. In this region the conformal
blocks are real-valued regular functions of z and z [54]. The Lorentzian configura-
tion (2.10) can be reached by a Wick-rotation from Euclidean signature, where (z, 2)
are complex and each other’s conjugate.

The convergence of the OPE in Euclidean signature is guaranteed by the operator-
state correspondence (2.5), and carries over to Lorentzian signature, see e.g. [80]. In
the limit 2,z < 1 %, operators with the smallest scaling dimensions dominate the
conformal block expansion, and we refer to this limit as the OPE limit. Conversely,

the limit 1 — 2,1 — z < 1 corresponds to the crossed-channel OPE limit.

6Tt is often necessary to separate the hierarchy between z and z, which can be realised from

the appearance of terms like (z — z)~! for instance in the four-dimensional conformal blocks (2.21)
below. In these cases we assume that we have z < z < 1.
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Figure 2.1: A spacelike configuration in Lorentzian kinematics with operators O;, O3 and
O, at fixed positions and Oy confined in the (z3, 29) plane. The cross-ratios and the relevant
kinematic limits are indicated.

In the OPE limit, the conformal blocks have the following expansion

G(ACZ?E(U, v) ~uz(1— ), T=A—-1, (2.11)

which has two important implications. Firstly, it shows that the twist 7 = A — /
is a useful label for operators since all operators with equal twist can be collected
into a common u power. Secondly, it means that given a correlator G(u,v) in closed
form, one can expand both sides of (2.9) order by order in u and 1 — v, and compute
the involved OPE coefficients and scaling dimensions one by one. We refer to this
procedure as performing the conformal block decomposition. This decomposition may
equally well be done in the variables (z, z) in the expansion z < z < 1.

For the purpose of the numerical bootstrap, an expansion around the crossing

symmetric point z = z = 1 is particularly useful, since it treats the direct and the

2
crossed channel on an equal footing. However, for this thesis we will instead make
use of an inherently Lorentzian regime, namely the lightcone limit. Since the notion

of the lightcone limit sometimes is ambiguous in the literature, we will always use the
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Table 2.1: Conventions for the kinematic variables, used throughout this thesis.

2 .2 2 .2
_ 12734 _ 147323
; =22 =22
Cross-ratios i3T5, i3T5y
u=2zz v=(1-2)(1-2)
. . _ 1—-2z
Auxiliary cross-ratios w=1-2, E=—
z

2,2 2,2
Harmonic superspace  aa = Y12Y34 l-a)(l—a)= Y14Y23

9%3954 B y%3y§4
OPE limit u—0 vl
z—0 z—0
Collinear limit u—=0 any 1,)
z—0 any z
Double lightcone limit u—0 v -0
z—0 z—1
Crossin urv v
& 21—z Z—1—z

two notions collinear limit and double lightcone limit, and for additional clarity we
summarise our conventions for kinematic variables in table 2.1 as well as in figure 2.1.

The collinear limit is defined as z — 0 for any value of z. This corresponds to the
point x5 becoming null separated from z;. Defining x = z9; we see that this limit

2 5 0 in a limit where

is characterised by the vanishing of the four-vector norm x
some of the components x* remain finite. The importance of this limit dates back to
deep inelastic scattering experiments with hadrons, where an approximate conformal
invariance was understood to control the operator product expansion, see e.g. [81,82].

In the collinear limit, the OPE is dominated by the operator with the lowest value of

twist for each spin. This can be seen from the detailed form of the OPE,

Ao=81-42 pHl... M — traces

Os(2)04(0) = ; coo(x?)” 2 L (O (0) 4 desc.), (2.12)

from which one can read off that the leading singularities as 22 — 0, keeping x* finite,
scale as 7 = Ap — /.
The double lightcone limit is relevant when we discuss crossing in Lorentzian

kinematics. It occurs when x5 becomes collinear with both z; and x3. The double
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lightcone limit is dominated by operators of large spin, and studying the crossing
equation in this limit has become known as lightcone bootstrap, of which we can
view large spin perturbation theory (LSPT) as a special case.

When dealing with expansions in the double lightcone limit we should take

1l -zx 1. (2.13)

This explicitly breaks the symmetry of the double lightcone towards the direct chan-
nel collinear limit. This means that in this thesis we will treat the direct channel
and crossed channel differently. In the direct channel, we are always free to restrict
ourselves to the leading twist family. When considering crossed-channel operators,
however, we have to be careful. In the expansion of the crossed channel in the
limit (2.13), it is in general not enough to expand conformal blocks one by one.
Instead, one needs to compute sums over twist families before taking z — 0. We
indicate this in figure 2.1.

Both the collinear and the double lightcone limit translate to corresponding limits
for the cross-ratios v and v, and all conventions for kinematics used in this thesis are
collected in table 2.1. From the conformal blocks in the collinear limit, (2.25) below,
we can derive an approximate relation between z and the spins that dominate the
contribution to the four-point function. The dominant contributions come from spins

¢ of order
1
1 _

€N

(2.14)

i

and we give more detail on this in section 2.4.2 and 5.3.4.2.

Apart from the lightcone limit, which plays the central role in this thesis, there is
another important intrinsically Lorentzian limit, denoted the Regge limit [83,84]. In
a CFT four-point configuration with pairwise timelike separated operators at 29 >
and xJ > xJ, the Regge limit arises when both pairs (z1,z) and (x3,z4) approach

null separation. In holographic theories, this corresponds to high-energy scattering
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in the dual AdS space. As explained in e.g. [77], in terms of the cross-rations this
projects onto the OPE limit 2z, z — 0, but with z evaluated on the second sheet after
analytically continuing around the point z = 1. The OPE is not convergent since the
points x; and o are not near each other. Instead each conformal block has a scaling

that schematically looks like
GO, (z,2) ~ Vaz (2.15)

However, any physical correlator is expected to be bounded in this limit”. We will not
review the various applications of the Regge limit, but will refer back to the scaling

(2.15) when we discuss the Lorentzian inversion formula in section 2.5.

2.2.2 Conformal blockology

From the discussion above, it should be clear that any method in conformal bootstrap
will rely heavily on the conformal blocks G(Ad?g(u, v) appearing in the decomposition
(2.9). In general, these functions are not known in closed form, which means that we
depend on various technologies for evaluating the blocks in certain expansions.

In the most general setting, the conformal blocks are functions of the cross-ratios,
depending on the scaling dimensions of the exchanged and the external operators,
and on the spacetime dimension d. In the case of identical external scalar operators
¢, the blocks are independent of A,® and we reserve the notion G(Ad,)e(u, v) for this
case.

By definition, the conformal block for a conformal primary operator of dimension
A and spin ¢ sums up the contribution to the four-point function of that operator
together with all its descendants. Since descendants of a given primary are related

by the generator of translations, d,, all terms making up the conformal block have

"More precisely by a scaling of the form (2.15), where ¢ is taken to be the Regge/Pomeron
intercept £o, which has a value ¢y < 2 [77].
8For generic external scalars they depend on the combinations A; — Ay and Az — Ay.
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identical eigenvalues under the action of the Casimir operators of the conformal group.

This leads to a set of differential equations satisfied by the blocks,

1
CoGRy(uv) = 3 (U +d = 2) + AA = ) Gy (u, ), (2.16)
CaGRy(u,v) = (0 +d — 2)(A — 1)(A — d+ 1)GWy(u, v), (2.17)

for the quadratic and quartic Casimir operators [85]°

Cy :DZ+D2+(d—2)%((1—z)GZ— (1-2)9:), (2.18)

Cy = < zz_)H (D. — D) ( Z2_>2_d (D. - D), (2.19)

z—2z z2—2Z
respectively, where

D, = (1 — 2)2*0? — 2°0,. (2.20)

By solving the Casimir equations with appropriate boundary conditions, the confor-
mal blocks in four dimensions were computed in a closed form by Dolan and Osborn

in 2000 [51]1°

Gralz,2) = G2, 2) = == (kzre(@hz1(2) = kzueDhza(2),  (2:21)

where

ks(z) = %2 F1(B, B;26; ), (2.22)
in which oF(a,b;c; x) is GauB’s hypergeometric function as defined in (A.5) in ap-
pendix A.2. Dolan and Osborn also showed that the conformal block for a scalar

operator in arbitrary dimension d = 2y is given by the infinite double-sum [51]

A & A/2)2 (A[2)) u™(1l—wv)"
G(d) _ .5 ( m m+n
Ap(u, b= m,Xn:O (A+1—p), (A>2m+n m!nl

, (2.23)

9Written in terms of generators of the Lorentzian conformal group SO(d,2), the Casimirs take
the form Co = JABJBA and €, = JABJBC JCP JPA [26]. Note that the Casimir eigenvalues satisfy
a symmetry generated by {£ + 2 —d —{,A + d — A, A + 1 — {}, corresponding to the dihedral
group of eight elements [70,77].

10A similar expression was also derived in two dimensions and through a recursion relation the
blocks in all even dimensions can be generated [53]. In two dimensions there is also the notion of
Virasoro conformal blocks, summing up contributions from an entire Virasoro multiplet. They are
much more complicated, but can be generated to arbitrary order [86].
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I'(a+n)
I'(a)

where (a), = is the Pochhammer symbol.

We have already stressed the importance of the collinear limit, and in fact, in this
limit both the Casimir operators and the conformal blocks simplify dramatically. We
are effectively left with one cross-ratio and the conformal group reduces to SL(2,R).
Theories with this symmetry group are referred to as one-dimensional CFTs. The
corresponding Casimir operator, called the collinear or SL(2,R) Casimir, takes the
1

form?

D= D;=(1-2)z°0% — 720, (2.24)

and the conformal blocks expand as

GO)(2,2) = 27 kaw(2) + 0 (277 1) (2.25)

2

We refer to 27/2k;(Z) as the collinear blocks and kj(z) as the SL(2,R) blocks. The
collinear blocks, or equivalently the SL(2,R) blocks, have eigenvalue J? = h(h — 1)

under the Casimir action,
Dkj(2) = h(h — 1)k;(2). (2.26)

The expansion (2.25) suggests that in the collinear limit it is natural to introduce
variables h = %, h = %, in analogy with two dimensions. In fact, h will be very
important in what follows, as we discuss in section 2.4. We will however not employ
the notation (h, ]_”L) for individual operators; instead we will use h as an independent
variable, parametrising operators with approximately equal value of h. We also keep
the twist as a label rather than h, since 7 = 2h and the twist is more commonly used
in the literature.

The subleading corrections in z of (2.25) can be computed and at each order in 2z

they take the form of a finite sum of SL(2,R) blocks with shifted arguments, where

The form of the collinear Casimir, up to a constant shift, follows from acting with the Cy on an
ansatz for the blocks given as a series expansion in z starting at 2%, with coefficients as functions of
z.
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the coefficients depend on A, ¢ and d. In appendix A.1 we give more detail on this
expansion. Notice that the explicit form of the collinear blocks is independent of the
spacetime dimension d, following from the one-dimensional nature of the collinear
expansion. Nevertheless, the subleading corrections do depend on d.

Finally, for completeness we give the collinear blocks in the case of non-identical

external scalar operators. In this case we evaluate (2.25) under the replacement

ki (2) ~ 2% Fy (h 4 82580 b 4 8s581,0p; 7). (2.27)
2.2.3 Conserved currents and unitarity bounds

A main object of interest is the spectrum of operators that appear in the OPE ex-
pansion of a four-point function. In section 2.3 below we will discuss this in detail in
the case of CFTs with a small expansion parameter, and we will look at a few explicit
examples. Here, we instead make some universal statements valid in any CFT.

We have seen that the collinear limit emphasises the contribution from the leading
twist family in the OPE. In a unitary CFT there is a minimal twist that such any

spinning operator can admit [79]
To,=>d—2, (>0 (2.28)

Operators saturating this bound are referred to as conserved currents, since they are
subject to a conservation equation 9, O*#* = 0. Equivalently, we can view this as
a shortening of the conformal multiplet, since this equation means that a subset of
the possible descendant operators vanishes. For the conformal blocks this translates

into a differential equation [69]
(d) — _ 2 =24 =(3 :
Dyt Gy oy g(t,v) =0, Deoy = (d — 2) (z 0, —Z 8Z> +222(Z2 — 2)0,05, (2.29)

which will be used in section 6.1. For scalar operators the corresponding bound is

d—2
Ao> 5= (=0, 0#1 (2.30)
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The bounds (2.30) and (2.29) are saturated by the operators ¢ and ¢d‘¢ in the theory
of a free scalar in d dimensions.

The unitarity bounds are not the only way a Lorentzian CF'T can fail to be unitary,
and typically unitarity is broken by some OPE coefficients or scaling dimensions
taking values off the real axis. In [87] it was shown that the Ising model, described by
the top curve in figure 1.1, is in fact non-unitary away from any integer dimension.

A generic interacting conformal field theory contains only a finite number of con-
served currents, namely the stress tensor 7}, related to the generators of Poincaré
invariance, and, where applicable, global symmetry currents J,. In addition, super-
symmetry adds further conserved currents. Correlators involving conserved currents
satisfy conformal Ward identities, which introduce physically meaningful normalisa-
tion constants called central charges [43], see also [51].

The central charge, Cr, determines the OPE coefficient with the stress tensor and
is of the same order of magnitude as the number of degrees of freedom in the theory!2.

In our conventions the stress tensor OPE coefficient takes the form

dAo. 1
0.7 = — : i 2.31
Co,0,T d— 1 2\/C_T J ( )
These conventions correspond to
Nd
CT,free = d—1 (232)

for N free scalars in d dimensions.

The current central charge Cj, related to the normalisation of global symmetry
currents J#, roughly corresponds to the amount of degrees of freedom charged under
the corresponding symmetry. The exact normalisations for current central charges

depend on conventions for the group generators and the normalisations of the adjoint

2However, Cr is not a precise measure of the number of degrees of freedom of the theory, and
it does not always decrease under RG-flow as in Cardy’s c-theorem. However, in two dimensions,
Ct = 2c has this role [88]. In higher dimensions, the statements corresponding to the ¢ theorem are
the a-theorem in four dimensions [89] and the conjectured F-theorem in three dimensions [90,91].
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representation. In this thesis we take the conventions such that for global O(N)

symmetry we have

1 2
A== O = . 2.33
00) = T, Hree = 19 (2.33)

The negative sign for the squared OPE coefficient is a consequence of our convention

for the conformal blocks, which differs by a factor (—2)¢ from the conventions given

in [51].
2.2.4 Conformal bootstrap

Before we move on to discuss conformal field theories with small expansion pa-
rameters, let us briefly review the developments within non-perturbative conformal
bootstrap. The mainstream numerical approach relies on writing the crossing equa-
tion (2.8) as

Z C?¢¢0A ZFA,z(U, v) =0, Fa(u,v) = ’UA¢GA’5(U, v) — UA¢GA7[<U, w). (2.34)
A

The interpretation is that the left-hand side consists of a convex hull of vectors in an
infinite-dimensional vector space spanned by the functions Fa ,(u,v). By acting with
functionals F on (2.34), one derives strict bounds on the dimensions and spins of the
exchanged operators. Typically, these functionals consist of acting with derivatives
at the crossing symmetric point

oP 01

Fpa(Fae) = @@FAJ(

z,%) : (2.35)

—z=1
z=zZ=35

This idea was presented in 2008 by Rattazzi, Rychkov, Tonni and Vichi [54] and has
since led to numerous applications and refinements, as reviewed in [55]. Important
early results were the determination of 3d Ising exponents [59], including ¢ mini-
mization [92] and a set of universal bounds in 4d theories [93]. The framework was
subsequently applied to supersymmetric theories [94,95] and extended to systems of
mixed correlators, the latter leading to high precision results for the 3d O(/N) mod-

els [58], and particularly high precision in the cases of Ising [58] and O(2) [60]. There
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have also been implementations for non-scalar external operators such as fermions [96]
and vector currents [97]. Finally, let us mention the paper [98] which studies the Ising
model in interpolating dimensions along the top curve of figure 1.1, making interest-
ing observations on the interplay between the large spin expansion (valid for d > 2)
and the 2d Virasoro symmetry.

Apart from the mainstream numerical bootstrap, other numerical techniques have
been developed. Gliozzi [99] proposed a truncation method where the idea is to search
for approximate solutions to crossing using only a small set of conformal primary
operators. The method does not rely on the positivity of the squared OPE coefficients
céw and therefore also applies to non-unitary theories such as the Yang—Lee edge
singularity.

More recently, analytic functionals have been developed, which replace the nu-
meric functionals (2.35). By varying these functionals, one can get constraints on the
spectrum for one-dimensional CFTs [100, 101], generating an interesting relation to
the problem of sphere packings [102]. Some generalisations to higher dimensions have

also been made [103,104].

2.3 Perturbative structure of conformal field the-
ories

So far, we have discussed the structure of the OPE and the conformal block decom-
position in a generic conformal field theory. We now focus the discussion onto CFTs
which admit a small expansion parameter g. We will from time to time refer to the
expansion in g as a perturbative expansion, but it does not need to be a coupling con-
stant in the traditional, Lagrangian, sense. Indeed, for g we can take the ¢ = d.—d in
an € expansion, 1/N in a planar expansion, or 1/ for the 't Hooft coupling in strongly
coupled holographic CFTs. However, we will assume that g = 0 corresponds to twist

degeneracy, namely that all operators in a twist family has identical twist. We keep g
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as a generic name and assume that all quantities in the theory of consideration admit
expansions in powers of g. In general, such series might be asymptotic and may need
to be complemented by non-perturbative corrections.

Let us focus on the contribution within the four-point function from a single twist

3

family. We assume that there is one operator O, for each even spin'®. This means

that we can parametrise the CFT-data in terms of the spin
Ag == 7-0 + 6 + ’YZ, Ci¢o€ - a/(, <236)

where the anomalous dimensions 7, are of order g. Here we have introduced a ref-
erence twist Top. A natural choice of reference twist is 7., chosen such that v, — 0
as { — oo, but other choices are also allowed as long as they are consistent with
anomalous dimensions of order g.

In (2.36) we also introduced the notion a, to denote the squared OPE coefficients.
As such, they are positive in unitary theories. By abuse of notation we will often
refer to the a, as just the OPE coefficients. We assumed that both a, and v, admit

expansions in g, so we write

ar= 9" (af” + g’ + Pa? + ) w=gu + a0+ (2.37)

where we have taken out a possible overall factor ¢g®. Inserting this in the conformal

block expansion (2.9) and expanding in the collinear limit gives

S G () = 2% 3 0¥y, (2) + O3, (2.38)
)4 )4

where h = %+ L. For reasons that will become clear in section 2.4.1, we refer to h

as the bare conformal spin, often omitting the word “bare”. Expanding each term in

13The spin takes either even or odd values, depending on the transformation properties under the
global symmetry group.

30



(2.38) in powers of g, we can write the sum as

> aGR) o(u,v) (2.39)
l
™ 1 0
—zag§:(@+g@ﬁ+2@%ém%w+@ﬂ+wx¢0kﬂa+0@2“»

where evaluation at h = %+ ¢ is understood. An important observation is that
terms proportional to log z are multiplied by the leading order anomalous dimensions
%gl). Similarly, higher powers of log 2z will have leading terms corresponding to higher
powers of the anomalous dimensions. At subleading orders in g, the contributions
from anomalous dimensions and OPE coefficients are mixed and need to be resolved.
In section 5.3.5 we describe a straight-forward way of resolving this at leading order in
g, by introducing a shift in the OPE coefficients. In the majority of this thesis we will
instead make use of the formula (2.80), or rather (2.90), which more transparently

generalises to arbitrary orders.

2.3.1 Generalised free field theory

We discussed above a family of operators O, parametrised by spin ¢. A natural place
where such operators appear is in what is called the generalised free field (GFF)
theory, which is also known as “mean field theory” It is the theory of a single
non-interacting field ¢ with arbitrary dimension A,. Correlators are computed via

pair-wise Wick contractions, using the CFT two-point function (2.3)

oleote = (1) (2.40)

L12
This means that the four-point function of ¢ can be constructed from three contribu-
tions, corresponding to s-channel, ¢-channel and u-channel contractions. Normalising
with respect to the s-channel, in agreement with (2.7), we get that the four-point

function takes the form

G(u,v) =1+ u + <Z)A¢ : (2.41)
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From this expression we can perform a conformal block decomposition. The powers
of u indicate that there must be operators of twist 7 = 2A,, + 2n for integer n, which
we refer to as GFF operators and denote by [¢, ¢],,,. We write the OPE schematically

as

dx =1+ [0, ¢l (2.42)
n,l

»

and denote the corresponding OPE coefficients agEF. These OPE coefficients, which

were worked out in two and four dimensions in [105] and in full generality in [106],
take the form
GFF 2(8p +1 — )7 (Ag)n 4

Gt 150 = T (04 p)n(28g + 1+ 1= 20)0(28¢ + £+ 1 — 1) (284 + 20 + £ — 1),
(2.43)

for pu = dJ/2.

Despite having well-defined scaling dimensions, correlators and OPE, the gener-
alised free field theory is not a local conformal field theory, since, unless ¢ is the free
scalar (A, = p1—1) the theory lacks a stress tensor. Such a theory is sometimes called
a conformal theory. However, the GFF theory is often a useful tool in understand-
ing CFTs. Firstly, its operator content is exactly dual to freely propagating fields
in AdS, where the lack of stress tensor signals the lack of gravitational interaction.
Secondly, the spectrum of GFF operators and the OPE (2.42) is a useful starting

point in describing spectra of many CF'Ts, as we will see in the examples below.

2.3.2 Operators, labels and mixing

In order to discuss the spectra of actual CFTs we need to introduce some language
to precisely describe the primary operators in a conformal block expansion. Even in
the cases where we can construct primary operators from the fundamental fields of
the Lagrangian, it is often too cumbersome to write down the explicit form of these
operators, since this involves projecting away terms that are descendants of other

primaries. We have already noted that operators come in twist families labelled by

32



some 7y and that the OPE expansions sometimes involve the whole tower of GFF
operators [¢, ¢, . We will build on these ideas to formulate some universal naming
conventions which could be used to describe any perturbative CF'T. The name of a
primary operator should be as short as possible but still carry the essential information
about that operator, such as its spin and its belonging to a twist family. At the
same time, our conventions need to be flexible enough in order to describe a variety
of theories, which means that sometimes a given operator may be assigned several

different names. We adopt the following conventions.

Definition 2.1. We use the following types of symbols to denote primary operators.
Each symbol comes with a convention for the reference twist 7y of the twist family

the that the operator belongs to.

e Unique names for scalar operators, generically O, Oy etc., where the scaling
dimension is denoted Ap,, Ap, etc. Some of these operators are referred to
as fields, or fundamental fields, since in a Lagrangian description they corre-
spond to fields integrated over in the path integral. In that case, we define the
anomalous dimension of these operators as the difference between the scaling
dimension and the canonical dimension: Ap = Ag) + v0. We often use the
letter ¢ in the case of weakly coupled scalar fields with A® = ;1 —1, but we will

sometimes let ¢ denote a generic external operator without any assumptions

about its scaling dimension.

e Universal names for conserved currents, T*” and J*, as well as weakly broken

higher spin currents J; with 70 = d — 2 + O(g), i.e. near the unitarity bound.

e Composite operators (or, in the terminology of [106], conglomerate operators)

written as D"@eolfl (9]52 .- M with reference twist 7o = 2n+k Ao, +ka Ao, +. . ..

14This should be read as the following: An operator constructed from 2n contracted and ¢ un-
contracted gradients acting on k; operators O; etc., distributed in such a way that it is not a
descendant.
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When there are exactly two fields involved we write the derivatives between the

operators.

o GFF operators [0y, O], with 70 = Ap, + Ap, + 2n. In composite operator

notation we would write O;0"9°Os.

The choice of 7y is arbitrary up to terms of order g. We will often be explicit with
the choice made for a given twist family, especially when using conventions which do
not agree with the definitions above. The consequence of changing reference twist is
simply an order g redefinition of anomalous dimension.

In the presence of global symmetry, operators transform in irreducible represen-
tations of the global symmetry group. We then add a label R denoting the irrep, and

write the corresponding operators names as Jr, [O1, O2)rne, (O"0°¢%)r ete.

Let us now describe the important concept of operator mixing. The existence of
mixing arises naturally from the following considerations. By the naming conventions
above, we may parametrise all operators in a theory by their reference twist 7y and
spin ¢. Assuming this, and focussing on a given twist family, the conformal block
decomposition of a correlator and a re-expansion in g would generate a sum like

(2.39)

> agG(Adzl(u, v) =27 > (ag—l—;amg(log z+8h)+;ag’y§(log 2+05)* + .. ) ki (Z)+. ...

e e (2.44)
The conformal blocks now depend only on 7y and ¢, and the expansion is blind to any
additional information about the involved operators. In particular, there may exist d
different degenerate operators with equal 75 and ¢. By our naming convention, such
operators would share the name, say O,. To distinguish them we need to employ an

additional label and write Op;, ¢ = 1,...d,. In the expansion above we define
d
{aey]) =D anints s (2.45)
i=1
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by which (2.44) takes the form

70

35 (fae) + 5 ) (log =+ 35) + ¢ (and) (og =+ 05 + .. ) i() + ..
Z (2.46)
Mixing has some severe consequences. For instance, without mixing, knowing
(aé0)> and (aﬁ‘”%ﬁ”) would give access to all (al(zo) (yé”)%, i.e. to the leading power
of log z at all orders in perturbation. With degenerate operators, the mixing must
be resolved before one can compute even the sum of anomalous dimensions squared.
Resolving the mixing problem in a given theory requires knowledge of the individual

anomalous dimensions and/or considerations of mixed correlators and it is, in general,

a difficult task.

2.3.3 Spectrum of the Wilson—Fisher model

As a first example of a fully interacting conformal field theory, we review the spectrum
of the Wilson—Fisher (WF) model in d = 4 — ¢ dimensions [17,25]. Here € serves as
the expansion parameter g. As discussed briefly in the introduction in connection to
figure 1.1, one can view this CFT as the IR fixed-point of a short RG flow starting
from the theory with a free scalar field ¢ perturbed by a quartic interaction \¢*. At
the fixed-point, A takes a value of order e. Another point of view is that the € ex-
pansion follows from a limit of a family of conformal field theories non-perturbatively
defined in d dimensions—the d-dimensional Ising model-—which approaches the free
theory as d — 4. A more concrete description follows from studying the multiplet
recombination induced by the equation of motion ¢ o< ¢3. This equation generates
¢* as a descendant of ¢, and it was shown in [107] how this simple statement can be
used to deduce several properties of the Wilson-Fisher fixed-point.

We focus on the operators that appear in the conformal block decomposition of

the four-point function

Glu,v) = x5 w3y ((w1)d(2) D () (w4)) (2.47)
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Here Ay = p— 1+ =1—-5+ 62’)/(;2) + ..., where 7(;2) = 1—(1)8 and where we have
indicated the well-known fact that ¢ has no anomalous dimension at order € *. Other
conformal primaries in the theory can be explicitly constructed from ¢ and 0, and
are defined up to contribution from descendants. Due to the global Zy; symmetry
¢ — —¢, only Zs even operators, constructed from an even number of fields, appear
in the OPE.

The scaling dimensions of ¢, ¢? and ¢* can be computed from standard dimen-
sional regularisation, where the coupling is evaluated at the fixed-point. The dimen-
sions of the first two operators ¢ and ¢? are often presented in terms of a pair of
critical exponents, such as 7 and v using the relations n = 2A, — d + 2 = 27, and

4 soon after the WF model was

vt =d— Ay ' They were computed to order €
proposed [108] in order to generate estimates for the critical exponents of the 3d Ising
model, and have since been computed to order €’ [109]'7.

At leading twist, the OPE ¢ x ¢ contains weakly broken currents J, = ¢9¢, with

62

sy RaCy 249

as derived in [17,111]. In [112] they were computed to order ¢! and we provide
an independent computation in chapter 4 based on [2]. At higher reference twist
mixing occurs and in figure 2.2 we illustrate the spectrum of operators in the OPE
decomposition of the four-point function (2.47). The identity operator A =0, £ =0
and the operators ¢9‘¢ are the only operators with (squared) OPE coefficients at
leading order, as illustrated by the black dots. In the figure we have indicated the

anomalous dimensions in terms of grey bands of width € and €2, centred around twists

15From a Lagrangian point of view, Ayél) = 0 corresponds to the fact that there is no one-loop field

renormalisation.

16Other critical exponents for the Ising model can be related to 7 and v through scaling relations,
see e.g. [45]. The exception is the exponent w, defined through w = Ay —d.

1"The results for the Ising exponents were not added to [109] until after the €% results appeared
in [110]. I thank Erik Panzer for making me aware of [109] and providing me with the explicit results
for future reference.
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Figure 2.2: Operators, labels and mixing in the Wilson—Fisher fixed-point in the e ex-
pansion. We display the number of degenerate operators as one, two, three or more than
three.

2A4 + 2n, n € N. Of the bilinear operators ¢pd‘¢p, the scalar ¢? is the only one that
has an anomalous dimension at order e. The positions of the grey bands, as well
as the corresponding ones for the theories we consider below, depend on which four-
point function we study and will be very important when we develop the analytic
bootstrap approach later. It is instructive to compare figure 2.2 with figure 1 of [67],
which gives a similar display of the operator spectrum in the 3d Ising model as found
by the numerical bootstrap.

Now we take a look at the operators of higher twist. Since Ay = 1+ O(e), and
the Zs symmetry enforces an even number of fields ¢, all operators in the ¢ x ¢ OPE
will have twists of the form 7 = 2A, 4+ 2n+ O(e) for n =0,1,2,.... It is possible to
compute the order e anomalous dimension of an arbitrary operator of this kind [113],
and in [114] the spectrum was systematically investigated. The leading anomalous
dimensions of arbitrary composite operators may also be computed using conformal

perturbation theory [87]'%.

18See appendix C of [115] for more details, and [116] for an alternative method based on the
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At n = 1, the operators take the schematic form 9‘¢*, and are now subject to
mixing. At spins 0 and 2 there is a unique operator, but at spin 4 there are two
different operators, with dimensions Agags), = 8 — 2¢ + %6 + O(€?) and Agrgry, =
8 —2e+ %e + O(€?). The degeneracy keeps growing for each subsequent spin and in
figure 2.2 we only indicate the precise degeneracy d; when d, < 4.

At higher n the situation is even more complicated, with mixing between operators
of different number of fields, for instance ¢® and [0%2¢* . The only non-degenerate
point for n > 2 is n = 2, £ = 0, where the operator is ¢° with Ay = 6 + 2¢ + O(€?).
This is the only point with n > 1 where no operator of the form 91" '¢* takes part

in the mixing, a fact that will have an interesting consequence in section 6.4.

2.3.4 Spectrum of N' = 4 SYM at weak coupling

In preparation for chapter 5, we give a short description of the weak coupling spec-
trum of operators in the N' = 4 supersymmetric Yang-Mills (SYM) theory in four
dimensions. Due to its properties as a highly complex but still well-structured the-
ory, the literature on the topic is vast and we will not be able to review it. Here we
only give the minimum amount of information needed to use the theory as a test and
prototype for the methods of chapter 5.

The N = 4 SYM theory is the maximally supersymmetric quantum field theory
in four dimension. The field content consists of one vector multiplet in the adjoint
representation of the gauge group, which we will take to be SU(N). The vector
multiplet contains a gauge field A, € 1, four Majorana spinors \* € 4 and six real
scalars ®' € 6, transforming in the indicated irreps of the R-symmetry SU(4) =

SO(6). The theory has an exactly marginal coupling gyy, and is thus conformal at

multiplet recombination. I thank M. Hogervorst and P. Liendo for detailed discussions on these two
methods.

9Recall that we discuss mixing here in meaning of having equal reference twist, in the context of
our discussion in section 2.3.2. In constructing the explicit form of the conformal primary operators,
there is no order € mixing between operators with different number of fields.
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Figure 2.3: Operators, labels and mixing in N' = 4 SYM at weak coupling, displaying
operators in the 1 representation. At each even spin and near each even twist, there are
operators with OPE coefficients at order g%M.

all values of this coupling. Here we look at the weak coupling limit and define

2
g N
g= Zﬁ? (2.49)

as our expansion parameter.

Conformal primary operators are constructed from gauge-invariant combinations
of the fields, and transform in irreducible representations of the R-symmetry. Super-
symmetry further groups the operators into supermultiplets, labelled by superconfor-
mal primaries. The conformal primaries are generated from the superconformal pri-
maries by the supersymmetry generators and transform in Lorentz and R-symmetry
irreps related to their superprimaries. In particular, the scaling dimensions are related
and all superdescendants share the same anomalous dimensions.

The theory contains a number of superconformal primary operators whose di-
mensions are protected by supersymmetry, typically on some BPS-bound. They are
referred to as short multiplets due to various shortening conditions, which means

that a fraction of the operator content of these multiplets is annihilated. In addition
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to the short multiplets, the theory contains long multiplets with unprotected scal-
ing dimensions. A detailed presentation of the various supermultiplets can be found
in [52].

We will be interested in four-point correlators of the simplest possible scalar
operators, which are constructed from bilinears in ®, with a SU(N) trace to ren-
der them gauge-invariant. There are two such operators: the Konishi operator
K = Tr(®'®") € 1, and half-BPS operator Oyy = Tr(®H®7}) € 20’, where the
latter is the rank two traceless symmetric representation of SO(6).

The Konishi operator is the superconformal primary of a long multiplet and has
scaling dimension Ax = 2 + 3g + O(g?). Its anomalous dimension is known to order
g* [117], and non-perturbatively in the planar limit N — oo [118]. The operator Oy
with Ap, , = 2 is the superconformal primary of the short supermultiplet, which in
addition contains amongst others the stress tensor and the R-symmetry currents. In
the OPE decomposition of the Konishi four-point function, only R-symmetry sing-
lets contribute, whereas the decomposition of the Oyy four-point function contains

operators in all SU(4) irreps in the tensor product
200220 =1®15® 20" $ 84 ¢ 105 ® 175, (2.50)

where we used the notation of [119] for the irreps. Since both correlators contain
R-symmetry singlets, we will focus on them. In fact, the only unprotected super-
conformal primaries in the Oy four-point function are in the singlet representation,
which means that the singlet representation contains all dynamical information of the
perturbative correlator.

Figure 2.3 contains a plot similar to figure 2.2, displaying the singlet conformal
primaries, where we have shaded regions within order g from 7 =4+ 2n, n € N. At

the leading twist, there are three conformal primaries at each even spin, denoted Ty,
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¥, and Z,. They have anomalous dimensions 7 = A — (2 + ¢) of the form
o =280-2), g/ =280 a5 =280+2),  (25])

where Sy (n) = >p_; = denotes the harmonic numbers, defined in appendix B.1. These
operators, called leading twist operators, or twist-2 operators, follow from diagonal-
isation of the one-loop perturbative anomalous dimension in the space of bilinears
in @, A\ and F),, respectively [120,121]*. At ¢ = 0, the operator is non-degenerate:
Zo = K. T5 is the stress tensor. In fact, the operators belong to superconformal mul-
tiplets in groups of three, which explains why the anomalous dimensions are related
to the universal function Yy (¢) = 251(¢). In the four-point function of the Konishi

operator they appear with an average given by

2¢T(0+ 1)?

F(Qﬁ T 1) Yuniv. (6) + 2c 35@70, (252)

<am> = Z ao, Yo, =
O=T¢,3¢,=¢

2

Where CcC = m

The operators just discussed constitute the leading twist family in NV = 4 SYM,
but let us emphasise that they are not double-twist operators. Since they have twist
below the double twist of the external operator, they lie outside the grey bands
displayed in figure 2.3. At the double twist, as well as at higher twists, a large
number of operators contribute, and to resolve the mixing problem is a difficult task.
This was, however accomplished in the four-point function of Oy¢ case in [123-125]

and more generally in [126].

2.3.5 Spectrum of the critical O(/N) model

As a final example, let us discuss the spectrum of the critical O(N) model, where
O(N) denotes the orthogonal group. This theory is a generalisation of the Ising

model and admits a 4 — € expansion with a similar Lagrangian A¢? ~~ \(pip?)?,

20More details can be found in [122], where the matrix elements of the one-loop dilatation operator
are given. Notice, however, a typo in that paper; the proper form is Aygg\) = —451(j)+8/5—-8/(j+1).
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Figure 2.4: Various limits for the critical O(N) model. The CFT-data agrees in the over-
lapping regions between two expansion limits.

where 7 runs from 1 to N. Likewise, in three dimensions the critical model follows
from a long RG flow from the theory of N free scalars, and describes a range of
interesting critical phenomena [45]. However, it is possible to treat the number of
fields N as an additional parameter of the theory, and indeed many observables
can be seen as analytic functions of N. This group parameter expansion has been
common practice for a long time and was recently put on more firm ground using
Deligne categories [127]. Thanks to the continuation in NNV, the theory admits various
overlapping perturbative limits, displayed in figure 2.4, which we will now describe.
Important for this thesis are the 4 — € expansion and the large N expansion, which
we will discuss shortly. In addition, there is an expansion in d = 2 + ¢ dimensions,
where the critical O(N) model for N > 2 is related to the UV fixed-point of a
non-linear sigma model with target space O(N), see e.g. chapter 31 of [128]. In that
expansion, anomalous dimensions [129] and central charges [130] have been computed

in a series in €. The behaviour near N = d = 2 is not fully understood, and the limits
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d — 2 and N — 2 do not appear to commute [131]?'. The large N expansion can
be continued beyond d = 4 to match a cubic model of N + 1 fields in d = 6 — ¢
dimensions [132], where perturbative CFT-data is known [129]. Unitarity in the
five-dimensional theory a disputed topic, see [133] for a recent discussion taking into
account instanton contributions.

In the 4 — € expansion, the spectrum of operators in the ¢ four-point function
is similar to the N = 1 case described in section 2.3.3. The ¢* x ¢/ OPE contains
three irreducible representations: singlet (S) and rank two traceless symmetric (7')
and antisymmetric (A) tensors, where the latter is odd under ¢ <» j and therefore
contains intermediate operators of odd rather than even spin. We focus on the singlet
representation, which has the most interesting operator content. In the ¢ expansion,
the spectrum of singlet operators looks similar to figure 2.2, with the modification
that the degeneracy of higher twist operators grows faster. However, at large N the
spectrum shows an interesting behaviour which we will now describe.

It has for long been understood how to develop a Lagrangian description for the
critical O(N) model at large N and generic spacetime dimension d = 2u, through
the introduction of the Hubbard-Stratonovich auxiliary field o, see e.g. [132] for a
detailed discussion. This is accomplished by adding to the Lagrangian of N free

scalars ¢° the interaction terms

Sy = /ddx (miﬁagoigoi — 4)\1]\/02> ) (2.53)
One can check that integrating out the field o gives back the usual A(¢?)? interaction.
Alternatively, o can be promoted to a dynamical field and a perturbation theory can
be developed with 1/ VN as the effective coupling constant, where the second term

becomes irrelevant in the IR. The large N expansion of the O(N) model can be

used to generate approximate results at finite NV, but it has also been conjectured to

21T thank Slava Rychkov for mentioning this reference to me.
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have a holographic dual given by type A Vasiliev theory hs, [134] when limiting to
correlators of O(N) singlets.

In the spectrum, the operator % = '’ gets replaced by o, which has dimension
A, =2+ O(N™'). Generic operators are then constructed from o, ¢' (with A =
i—1) and 0*. In the overlap between the 4 — e expansion and the large N expansion,
the operators in the two descriptions are in one-to-one correspondence with each
other, and the scaling dimensions agree. For instance, for the first non-trivial singlet

scalar we have

N+2 , (N+2)(44+13N) ,
€
N +38 2(N +8)3

_ 1AW
A —g_ M= DEr-1)7

Ay =2—¢€+ +O(€*), (e expansion),  (2.54)

o N + O(N™?), (large N expansion).
(2.55)
Inserting the literature value
—2)I'(2u—1
NP (it LG L) (2.56)
I(p+ DE(p)?T(1 = p)
we can explicitly check that for 4 = 2— £ both expressions expand to 2 — % + 123132 +...

In table 2.2 we list a few operators and give their names in the different expansions,
including their conventional names in the 3d Ising model.

In figure 2.5 we display the large N spectrum of O(/N) singlet operators, displaying
bands corresponding to twists within 2A, + 2n 4+ O(N™!) for n € N. It is clear that
o is outside the first of these bands, whereas all the spinning weakly broken currents
Tse = 90" have twist 2(u — 1) + O(N~1) and fall within the first band.

It is more interesting to look at what happens near the next band, n = 1. This
corresponds to the O(N) version of the n = 1 band in figure 2.2, where now the
number of degenerate operators is d?(N) =1,2,4,6,8 instead of d¥=* = 1,1,2,3,4 for
¢ =0,2,4,6,8. By using the techniques from [87,115] to find the order ¢ anomalous

dimension of a set of operators of the schematic form 9‘p% = pipippl, we can

study the fate of these operators upon expanding at large N. It turns out that exactly
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Figure 2.5: Operators, labels and mixing in the critical O(/N) model at large N, displaying
operators in the singlet representation.

one operator at each spin gets 7, = 4 + O(N 1), which we interpret as the leading
GFF operator [0, 0]pe. Other (degenerate) operators have 7, = 2 + 2A, + O(N 1)
and we identify them as subleading GFF operators of the form [p, ¢]si,. Finally,
the remaining (degenerate) operators have 7, = 4A, 4+ O(1/N), for which we use the
notation 9“p}.

Near the band corresponding to n = 2 in figure 2.2 the situation is similar, where
now operators in the large N limit take one of the following twists: 6, 2A, + 4,
4A, + 4 and 6A,. We have omitted it in figure 2.5 to keep the figure less cluttered.
Also at higher values of n the situation is similar. The only operators at the bands
with n > 1 that will play a role in this thesis are the GFF operators [o, 0], .. In
figure 2.5 we have also indicated at what order in 1/N the various (squared) OPE
coefficients enter within the ¢ four-point function. The essential assumption needed
is that a, = ¢2, is of order 1/N. This will in fact imply that all operators [0, o],

have (squared) OPE coefficients at order 1/N?.

The O(N) model is also a prototype for ¢* theories with various global symmetries,
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Table 2.2: Some operators with low twist in the critical O(N) model and their conventional

names in the different regimes.

Irrep  Spin € expansion Large N 3d Ising (N =1)
S 0 1 1 1
% 0 @ @t o
S 0 0% = Pt o €
S 2 Tso2 =T T2 =TH e
S 4 TJsa=@ 0% Jea=@0te'  CHro
S Leven Jsp= 00 Tse = 10 Oprke
T Leven Jre=l0%t Jrp=liofpst —
A Lodd  Jap=ld'el)  Jup =l —
S 0 ¢5=(¢'¢)" looJoo=0> ¢

some of which admit expansions similar to the large N here. Based on the results
in this thesis and in [4], we can treat all such theories in a unified way, which we

describe in section 6.2.

2.4 Large spin and the lightcone

The lightcone bootstrap, and therefore large spin perturbation theory, is developed
from an interplay between large spin expansions of CFT-data and an expansion of
the crossing equation near the double lightcone limit. In this section we will review
the development of these ideas to be able to provide a full description of the method

in the subsequent sections.

2.4.1 Large spin expansion of CFT-data

Although the scaling dimension A and the spin ¢ are natural labels for primary
operators based on the conformal algebra, we have seen that the collinear expansion
of the conformal blocks (2.25) motivated the introduction of another pair of labels:

the twist 7 = A — ¢, and the variable h = 2££.

5 The introduction of twist implies

that we can parametrise the operators in a given twist family by the spin ¢. In this
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section we will give further motivation for the linear change of variable to h = 5+ L

In relation to the experiments on deep inelastic scattering of hadrons, anomalous
dimensions were computed for leading twist operators in QCD in the early 1970’s.
There, as well as in some other theories, the anomalous dimension of operators within
a twist family could we written as a function in spin; they were “analytic in spin”.
These functions 7, were observed to have some universal properties. For instance,
based on high-energy bounds on the scattering cross-section, Nachtmann proved that
v, must be an upward convex function, referred to as Nachtmann’s theorem or con-
vexity [61].

Another empirically motivated result from that time is reciprocity, formulated in
the context of deep inelastic scattering by Gribov and Lipatov [135]. It concerns the
large spin expansion of vy, i.e. the potentially asymptotic expansion around the point
¢ = oo. In this limit, the spin dependence of v, was found to come purely through

the combination

J2:j(j+1):ﬁ(ﬁ—1):(A;€><A;€—1). (2.57)

This combination is exactly the eigenvalue of the collinear Casimir (2.24), and due to
the equivalence on the level of complexified Lie algebras of SL(2,R) and the three-
dimensional rotation group SO(3) it was later referred to as the conformal spin®?* 3.

The Gribov—Lipatov reciprocity was originally phrased in terms of splitting func-

tions P(x), which are dual to the anomalous dimensions through a Mellin transform?!

1
v; = —/dx 11 P(x), (2.58)
0

22Tt is difficult to find the first use of the expression conformal spin. The use dates back far, for
instance in [136] it is used with clear reference to the collinear Casimir equation. I thank V.M.
Braun and A.N. Manashov for discussions on this topic.

23Gimilar to the SO(3) case, there is a slight abuse of notation, where both j and J? are referred
to as the conformal spin. Notice, however, that we are now considering a non-compact real form of
the algebra, which means that j is no longer restricted to integer values.

24T his is a peculiar use of the word Mellin transform, and it does not agree with the usual definition
used in the context of Mellin amplitudes and Mellin space bootstrap. The Mellin transform (2.58)
is defined up to some regularisation of the x — 1 limit, see e.g. [137] for a precise definition.
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where z is the Bjorken variable. Then reciprocity takes the form

P(z) = —2 P (1> . (2.59)

X

A proof of the equivalence between the two statements can be found in [138]. We
illustrate the reciprocity principle by the anomalous dimension iy, (¢) = 251(¢) in
N =4 SYM, where now j = h+ 1 = ¢ to leading order. We have for the harmonic

numbers

) e 1 1 4
$1) = e+l U+ D+ gy GG T T angg op T (20

where ~g is the Euler—Mascheroni constant. The exact form of this and similar
expansions at large spin is discussed in [139].

Reciprocity was initially thought to be broken at two-loop order in QCD, but the
principle was restored by realising that the correct variable to use is the full conformal
spin, he = 79/2 + £ 4 ~¢/2 rather than the bare counterpart hy, = 7/2 + £ [140]. It

can thus be phrased in the following way.

Proposition 2.1. Anomalous dimensions of operators in a twist family with approx-

imate twist 7y satisfy the equation

T 1
=g (20 Ny 27@) , (2.61)

where g(h) has a large h expansion symmetric under h < 1 — h.

By the assumption 7, = O(g), the relation (2.61) can be studied order by order in g
and the expression for v, beyond leading orders will contain derivatives of the function
g. Reciprocity therefore assumes that there exists an analytic continuation in spin
making these derivatives well-defined.

The reciprocity relation was subsequently observed to hold in perturbative results

at higher order, such as QCD and N = 4 SYM at three loops [141,142] and N = 4
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SYM at seven loops in the planar (N — oo) limit [143]. Indeed, reciprocity and the
related principle of transcendentality was a leading organisational principle in this
work [144]. Reciprocity was also observed to persist recursively in other conformal
field theories such as the critical O(/N) model, in the spirit of proposition 2.1.

While traditional diagrammatic methods have generated results at high loop order
for anomalous dimensions, OPE coefficients are much harder to compute. However,
explicit results for correlators at loop order in N’ = 4 SYM generated OPE coefficients
of spinning operators by direct conformal block decomposition [145], for instance in
the Oqy correlator at three-loops [146]. It was realised that the large spin expansion
of OPE coefficients has similar properties to the anomalous dimensions [147], and a
combined reciprocity principle was proven in [65] for any conformal field theory. We

will re-derive this and give a precise statement in theorem 2.2 in section 2.5.3.

2.4.2 Lightcone limit and crossing

The relation between the large spin limit of CFT-data and the double lightcone
expansion of conformal four-point functions is the key ingredient in this thesis. In the
discussion until this point, we have mostly focussed on the whole twist family and the
collinear limit z — 0. Let us now specialise further and look at the double lightcone
limit z — 0, z — 1. This limit emphasises the asymptotic behaviour at large spin of
the CFT-data, which corresponds to expansions like (2.60).

In [62], this limit was investigated for N' = 4 SYM, where the anomalous di-
mensions of leading twist operators admit the particular expansion (2.60), which is
dominated by the term log ¢ 5. In that paper, configurations corresponding to opera-
tors of large spin £ were analysed in terms of states in an auxiliary theory in AdSs x S*
consisting of two particles at a given separation distance x = log¢. In this picture,

twists in A/ = 4 SYM correspond to energies in the auxiliary theory. For leading twist

25The prefactor of this leading logarithm agrees with the cusp anomalous dimension and is known
at four loops [148], and non-perturbatively in the planar limit [144].
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operators, which are single-trace, a flux tube connecting the operators gives rise to an
energy linear in y, explaining the logarithmic scaling of ~,. Double-trace operators,
on the contrary, correspond to configurations of where the interaction energy decays
as E ~ e X, where « is equal to the smallest twist in the CFT spectrum: a = Typin.
This gives the generic scaling v, ~ ¢~ Tmin,

In two important papers from 2012 [63,64], the observations from [62] were gener-
alised to arbitrary CFTs and were proved using explicit computations in the double
lightcone limit. In [64] connections were made between the picture of [62] and the
older results from deep inelastic scattering and Nachtmann’s theorem. In [63] a more
direct approach was taken, and the results were then related to physics in AdS, noting
that in any CF'T, even beyond the usual holographic limits, double-trace operators
for sufficiently large spin can be interpreted as states which correspond to two dis-
joint “blobs” orbiting each other. The most important results in the two almost

simultaneous papers were the same, and we review and prove two of them here.

Proposition 2.2. In any conformal field theory in d > 2 dimensions, containing
operators O, Oy with twists 73 and 7, the value 7., = 7 + 7 is an accumulation

point in twist, i.e. there is a family of operators O, where 7, — 7 + 75 as { — o0.

Proof. Consider the mixed correlator Gay12(u, v) ~ (Oz(x1)O1(x2)O1(x3)O2(x4)). In

the standard normalisation®®, crossing for this correlator reads

A1ty
u- 2
Gorn2(u, v) = S Gri22(v, u). (2.62)

In the direct channel (left-hand side), the collinear conformal blocks, using (2.27),

—I'(2h)
(h+212)0(h—234)

expand in the double lightcone limit as 27/? log(1—Z) plus regular and

higher order terms®”. The crossed channel (right-hand side), contains the contribution

. . Ai+A; —A A A
26More precisely, we use conventions such that G;jp(u,v) = z7; Ja:?ﬁerAlxlAf A’w24J X

Ai—Aj—Ap+A
vy TR (0i(21) O (w2) Ok (w3) O (4)).
2TFor the case A; = Ay we give the complete expansion in (A.7).
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1 from the identity operator, multiplied by the crossing factors. This leads to the
equation

Z ’TO/Q F(Q_O) log(l - 2) ZA12A2 + (2 63)
— apz = = = - reg., .
577 T(ho+ 52)T(ho - 8 (1—2)™ " °°

where we sum over all possible direct-channel operators. Since each term on the left-
hand side only contain a log divergence, the power divergence on the right-hand side
must arise from infinitely many terms. By further matching the correct z dependence
we find that we must have, for any interval 71 + 75+ 6, an infinite number of operators

O with 7o in that interval. This proves proposition 2.2.

The involved expansions around large spin were analysed quantitatively in [63,64] by
approximating the sums (2.63) over spin with an integral, which is valid up terms
regular or at most logarithmically divergent in w = 1 —2z — 0. We refer to this as the
kernel method, and provide more details in section 5.3.4.2. The leading w divergence

in the corresponding expansion can be computed by

> %u(hm — 1)) k(1= w) ~ O/dj t] " (f) Ko(2), (2.64)
where u(J?) denotes any additional spin dependence relative to the free theory OPE
coefficients in four dimensions®® and K, is a modified Bessel function of the second
kind. A direct application of the kernel method for the case u(J?) =1 gives the sum

i. Taking instead u(J?) ~ J?* we get a sum which generates a leading divergence of

the form ——. We will use this result to prove the next proposition.
w

Proposition 2.3. The double-twist operators [0y, Os)o according to proposition 2.2

have anomalous dimensions which have asymptotic behaviour at large ¢ of the form

Amin
Yo ~ — s (265)

ngin

#We note how the ratios of Gamma functions cancel between (2.63) (restricted to identical ex-
ternal operators) and (2.64), up to from a factor 2h — 1. That factor is in turn consumed by the

Jacobian of the change of variables i ~ J = \/h(h — 1) /w.
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where T, is the twist of the smallest twist operator O,,;, # 1 appearing in both OPEs

01 x 01 and Oy x Oy, and a;, is the corresponding OPE coefficient @i = €11minC22min-

Proof. For this proof we consider the divergence in w introduced by the contributions
from the operators 1 and O,,;, appearing in the crossed channel. Including crossing

factors these contributions take the form

A1+4 A1+A2  Tmin
z 2 zZ 2 W 2
1: W, Omin . (lminT (— ].OgZ + reg.) s (266)

where w = 1 — z. We match this with an expansion of the form of (2.44): >; a; (1 +
%75 log 2)2™/2k; (Z). We see that the anomalous dimensions correspond to the relative
POWEr —ammw 2 between the terms aj, and aj7y;, which translates exactly to the

result (2.65) using the kernel method.

The principles behind [63,64], essentially the argument in the proof of proposition 2.3,
were subsequently refined and extended to higher orders in the large spin expansion,
providing understanding of which crossed-channel operators correspond to particular
terms in the anomalous dimensions in various theories [66, 149]. Collectively these
methods became known as the lightcone bootstrap, used in parallel with the more gen-
eral analytic bootstrap. Thanks to its universal assumptions, the lightcone bootstrap
could be used for rigid derivations of facts valid in a wide range of theories. Starting
from some considerations in [64], this was used to rederive general properties of cor-
relators in holographic CFTs, where the expansion parameter is 1/Cr [150]. If one
further assumes that the only light operator corresponding to a single-particle state
in AdS is the stress tensor, one gets a CFT definition of Einstein gravity. In [151]
CFT-data were derived for the double-twist operators in such a theory, the “double
stress tensors”. Another fruitful direction has been the relation to conformal collider
physics [152], leading to a proof of the average null energy condition [80]. Finally, a
demonstration of the lightcone bootstrap beyond any perturbative limit came in the

elegant paper [67]. There the CFT-data was computed for a large number of operators
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in the 3d Ising model using numerical bootstrap, and the spectrum was then analysed
from the lightcone bootstrap. While the twist family [0, 0]o, was easily understood,
the two families [e, €]o, and [0, 0|1, have approximately equal 7., 2 and participate
in a non-trivial non-perturbative mixing, which generates an eigenvalue repulsion of
the two families at low spin.

Large spin perturbation theory (LSPT), proposed in 2016 in [68] and demonstrated
with a number of examples in [69], builds on the lightcone bootstrap with the following
additional ingredients. In LSPT, the anomalous dimensions and OPE coefficients are
treated on the same footing, whereas previous work had focussed mostly on the
former. Another feature is that the crossed-channel operators generating corrections
to the CFT-data may be introduced in terms of an ansatz where no assumptions
need to be made on for instance their anomalous dimensions. This introduces free
parameters in the theory, which can be fixed at later stages through consistency
conditions. These ingredients are tied together with a computational procedure of
computing CFT-data from the crossed-channel operators, which we call an inversion
procedure. We will give a more concrete presentation of large spin perturbation theory
at the end of this chapter, after we have introduced Caron-Huot’s Lorentzian inversion
formula [70], which provides one such inversion procedure.

The ideas generated from the analytic bootstrap and lightcone bootstrap have
become a powerful tool for practical computations. This has become particularly
useful in applications to holographic CFTs, in particular N' = 4 SYM at strong
coupling. Specifically, studying the boundary CFT at second order perturbation
theory in the planar and strong coupling limit has generated results corresponding
to loop supergravity and string corrections in AdS [123-126, 153-157]. The main

obstacle that was overcome in these works was the resolution of mixing of degenerate

29 As indicated in table 2.2, the operators o and e in the 3d Ising model are identified with ¢ and
#? in the € expansion. The values A, = 0.5181489(10) and A, = 1.412625(10) [58] generate the two
values 7o, = 2.825 and 7, = 3.036.

93



operators, and it was shown on general grounds in [158] that the growth in degeneracy

is related to the number of extra dimensions in the dual gravity/string theory.

2.5 The Lorentzian inversion formula

A major concern with the lightcone bootstrap, and indeed large spin perturbation
theory, was the assumption, based on empirical observation, that CFT-data could
be written as analytic functions of spin, however with spin zero often excluded. For
instance, the reciprocity statement in proposition 2.1 relies on being able to differen-
tiate the function g. At best, the lightcone bootstrap could argue that the expansions
around infinite spin correspond to the asymptotic behaviour. Even with a large spin
expansion like (2.60) known to all orders, it would not be certain that the anomalous
dimension would take the precise value S;(¢) for small or any finite value of /.

The situation was greatly improved by a paper by Caron-Huot in 2017 with the
title Analyticity in spin in conformal theories [70]. There it was not only shown that
the CFT-data is analytic in spin, but an explicit integral formula was provided for
performing the inversion procedures described above. With such a formula, one can
directly check that asymptotic series like (2.60), with appropriate non-perturbative
completions, indeed correspond to functions which give correct values at finite spin®.

The inversion formula plays a central role in this thesis, we will devote this whole
section to it. We start with an overview of its derivation, leaving the details to [70].
Then we will extract from the general formula a specific, one-dimensional formula
adopted for CFTs with a small expansion parameter. Since this is the main formula
of the thesis, we give a detailed derivation keeping track of all factors. Finally, the
Lorentzian inversion formula will allow us to rederive reciprocity and give a precise

formulation thereof.

30We refer generically to the large spin expansion as the asymptotic behaviour of CFT-data.
However, here we use asymptotic in the precise meaning of a series expansion with zero radius of
convergence.
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2.5.1 Caron-Huot’s inversion formula

We begin by summarising the derivation of the Lorentzian inversion formula in [70].
For simplicity we consider the case of external identical scalar operators. Details of
the computation, as well as the extension to non-identical scalars, can be found in
the original reference.

The starting point is the Fuclidean inversion formula, which follows as a property
of harmonic analysis on the Euclidean conformal group SO(d + 1,1) [159], for a
recent treatment see [160]. The objects of study there are conformal partial waves,
which form a basis for the space of Euclidean correlators. Each conformal partial
wave Wa 4(z, Z) is a function labelled by an positive integer spin ¢ and a continuous
dimension A taking values on the principal series A € % +tR. The conformal partial
wave can be constructed from the corresponding conformal block, together with the

conformal block with the shadow dimension:
1 d _ d) ~(d _
Uy = 5 (G(A?é(z, z)+ Né’)zGéjA7e(z, z)) , (2.67)

for some relative constant N@. The conformal partial waves satisfy an orthogonality
relation (Wa g, Yarp) ~ Oppd(—i(A — A')), where the inner product is given by a
two-dimensional integration over the complex Fuclidean z plane with an appropri-
ate measure factor. The Euclidean inversion formula is the corresponding Fourier

transform for a Euclidean correlator and results in a function C'(A, ¢) given by
O(A,0) ~ / d2d? (2, 2)Ua (2, 2) e, (2, 2), (2.68)

where p(z, 2) is a measure factor. The function C'(A, () carries the dynamical infor-
mation of the correlator; for each spin / it has residues at physical operator dimensions
A = Ay and the residues are proportional to the OPE coefficients of the correspond-

ing operators within the correlator G(z,2). We give the precise relation in (2.75)
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below. By looking at the inverse transform

el (2, 2) Z / fc AT (2, 7) (2.69)

“Onedtim
one can reproduce the Euclidean correlator. By closing the A contour, evaluating the
residues, and disentangling the contributions from the shadow blocks one recovers the
usual conformal block decomposition (2.9) in the OPE limit.
The Lorentzian inversion formula presented by Caron-Huot for identical scalar

external operators ¢ takes the form [70]

1
C(A,0) = (1% (=1)) "2 [ az [ azu(z, )G, 01 ayalz 2)aDiscld (2, 2)],
vl (2.70)
where we now keep track of all factors, given by u(z,2) = |z — z|972(22)"¢ and
Kg = % The kernel Géd_)l ve1-asa(2,2) is functionally a conformal block,
but it corresponds to a non-physical operator with scaling dimension d — 1 4+ ¢ and
spin analytically continued to the value A 4+ 1 — d. This combination has the same
eigenvalues (2.16) and (2.17) under the Casimir operators as the block for dimension
A and spin /. The integration domain is now the spacelike Lorentzian kinematics,
i.e. the square in figure 2.1. Finally, the + sign is the same as the transformation of
the correlator under 1 <+ 2.

The derivation of the Lorentzian inversion integral takes as a starting point the
Euclidean formula, (2.68), with the correct normalisation factors inserted. The idea is
to analytically continue z and z to independent complex variables, and perform con-
tour deformations. This requires dropping contributions from arcs at infinity, which
turns out to be valid for ¢ > 1 and relies on analytic properties of the conformal partial
wave and of the correlator. While the conformal partial waves have known analytic
properties, the constraints from the correlator require physical input. Specifically, we

require that the correlator belongs to a unitary CFT, and as such it is bounded in

the Regge limit. More precisely, the correlator is more bounded than any individual
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block (2.15) for £ > 1, which means that the contributions from operators with spin
¢ > 2 must all be related.

The result of the contour manipulations is a sum over four terms, where the
correlator is evaluated at Lorentzian kinematics z, 2z € (0,1), but on different sheets

in the complex z plane. The terms combine into the double-discontinuity
- > N P YIRS oy
leSC[g(Z, Z)} = g(Z, Z) - ig (Za Z) - §g (27 Z)a (271)

defined as the correlator minus its two analytic continuations around z = 1. From a
spacetime point of view, the double-discontinuity corresponds to the double commu-

tator of the correlator

dDisc[G(z, 2)] = (22)2% (0][¢(0,0), (=, 2)][6(1, 1), 6(c0)]|0) . (2.72)

The appearance of the double commutator is more obvious from the alternative deriva-
tion of the inversion formula given in [161]. Also there, the starting point is the
Euclidean inversion formula (2.68). The conformal partial wave is given a shadow
representation, introducing a further integral over a point zs. Under some partial
gauge fixing, the integral variables become x3 and x4. Subsequent contour deforma-
tions move these points from the Euclidean configuration via a Wick rotation to their
Lorentzian configuration. This results in four terms that combine into the double
commutator (2.72). Following the contour deformations in terms of the cross-ratios
shows that for two of the terms, z moves in its complex plane around branch cut at

z > 1 (in opposite directions), which produces the double-discontinuity (2.71).

2.5.2 The perturbative inversion formula

We now derive a one-dimensional version of the inversion formula (2.70), which will
be the main formula of this thesis. In particular, by focussing on a particular power
27/2 the one-dimensional inversion formula will give the CFT-data corresponding to

a twist family of reference twist 75. We will present two equivalent versions, (2.79)
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and (2.89), which are valid in perturbation theory, and give an explicit form of the
CF'T-data for a family of operators with that reference twist.

We simplify the discussion by looking at the leading twist family, which dominates
the small 2z limit. Higher twist families are found by suitable projections, and we defer
this to section 3.2.4.2. We follow the manipulations of section 4 of [70] and write (2.70)

asSl

C(A,0) = dz S5 / 22K a 4(z, 7)dDisc[G(z, 2)], (2.73)

where we have factored out a potentially non-integer power of z such that the re-
maining z dependence can be expanded in a power series:
Kaylz,2) Z FEL)(2). (2.74)
k=0
This means that for each power 27/2 in dDisc[G(z, Z)], the integral over z results in a

pole
(g

C(A,0) ~ A oo

(2.75)

as well as poles from k£ > 0. Taking the residue in A for fixed integer ¢ shows the
existence of an operator with dimension 7 + ¢ and OPE coefficient a,.

The kernel contains the non-physical conformal block G’Eld_)l ve1-asa(2,2), which

we expand in the collinear limit, (2.25). Changing variables to h = % and h = %,
this leads to an integral of the form
Fdz dz
Chh) = [ = / iy (£)ADise[g (2, 7), (2.76)
0 0

where C(A, 0) = 1C (A— M) and we extended the limit of the inner integral to 0.

1
2 2

When using (2.76) to read off the OPE coefficients, there will be an extra Jacobian

factor induced by the change of variables. If we are interested in the OPE coefficient

31'We have limited the integral to z > z, at the expense of an extra factor of 2, see [70] for details.
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for a particular spin £y, we integrate the residue of C(A,¢) against a delta function

g, = — /dﬁf—(]AE (0 — £o)

:—/dh%—Chh (h—h— t). (2.77)

The locus hy, of the pole in k will depend on h, and evaluating the ¢ function means

that we need to divide by the factor Jac = a%(ﬁ — hy(h)) evaluated at h = hy, + lo:

A —

1
ag, =——— res_ C(h,h

2.78
Jac h=h(h) ( )

)‘BZhL-i-fo ’

Let us now specify to the case where we have a small expansion parameter g, which
means that we can derive an explicit relation between the integral and the CFT-data.
More precisely, we assume that the spectrum of the theory expands in a series in g,
where ¢ = 0 corresponds to twist degeneracy, i.e. at ¢ = 0 all operators in a twist
family has identical twist. With this assumption, we collect in the correlator G(z, 2)
all powers 2" that are infinitesimally close to some value 2™, i.e. h = hg + hig + . . .,
at the expense of introducing logarithms 2" = 2"0(1 + ghylog z + ...). This defines a

generating function

T(log 2, h) = T +

1
3 Tllogz—kgT}—Ez)long—k...

DN | —

1

— %%y / 42 1 (2) dDisc[G (2, )] n, (2.79)

72

where we have chosen the rational prefactors of T,—Ep ) as 277 /p!. We will refer to (2.79)
as the perturbative inversion formula. The exact relation to the CFT-data is given

by the following theorem, formulated in analogy with [162].

Theorem 2.1. Study a correlator G(z, z) of identical scalar operators ¢ in an expan-
sion in g, in a theory where g = 0 corresponds to twist degeneracy. If the double-
discontinuity dDisc[G(z, Z)] of a correlator of identical scalars ¢, in an expansion in

g, contains a leading power 2z then the following holds.
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1. The OPE ¢ x ¢ contains an infinite family of operators O, for ¢ = 2,4, ..., of

twist 7 = 2hg + ¢ with v, ~ O(g).

2. The OPE coefficients a, = Cid)oé and the anomalous dimensions 7, of these

operators are analytic functions of spin, given by the formula

1 _
ST ol hg=ho+l,  (2.80)

1
ag(ve)’ = T;Ep) + 58;LT,—EP+1) + 3 .
=ho

for T;Ep ) given by (2.79).

In the case of mixing of operators within the twist 7 = 2h, family, (2.80) is modified
by
dg
ar(Ye)? ~ (ary]) ==Y agivgs, (2.81)
i=1
where a;; and 2hy + v,; denote the OPE coefficients and twists of the d, operators

of equal spin and approximate twist 2hg. The statement is now that the functions

(ayyy) are analytic in spin.

Proof. Performing the z integral in (2.76) with G(z,2) = 3, 2" G, (2) log? = gives

1 1
. d dz
Chh) =Y / fz—h“m log? » / éQRQBk;L(E)dDiSC[Gp(E)]
P o 0

oy 2w (2.82)
(B hgyri '

P
Assume now that each function T]—Ep ) admits an expansion in g starting at order g? 32.
To make this dependence visible we will make the temporary replacement T;Ep ) s

gP T ,—Ep ) , and omit terms higher order in g at each p. This means that (2.82) takes the

form
. T 1 g7V 1 ¢*T®
C(h,h) = ——h — — — h __ _ — h 2.83
) = = = S th— o =ty (2.83)

Non-perturbatively, we expect only single-poles, which means that the presence of

higher order poles must be a result of the expansion in g. Consider the function

32It may be that the leading contribution is not at ¢ but at some g®. Such overall contribution
can be factored out and the argument below holds.
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C (h, i_l) near the d, degenerate operators at spin ¢. Assuming twist degeneracy we

expect the dependence

, 2.84
o h—(ho+ 4m) ( )

where we have explicitly factored out g and where we omit in 7; the terms higher

order in g. Expanding this around small g gives

2 2
AT a; g A% g° @i
C(h,h) ~> = — : 2.85

(h, ) Z.h—hoJr2(h—ho)2+4(h—ho)3+ ’ (2.85)

matching the pole structure of (2.83). In principle, we can now use (2.78) to read off
the OPE coefficients. This, however, requires computing the Jacobian factor, which
becomes complicated at higher order in g. Instead we will make direct use of (2.77)
to extract (a,). When evaluating the contour integrals in h, the higher order poles

generate derivatives of the integrand:

(o (2.86)
= i (105051 0+ 00— ] (4) o 0] )

When integrating against h, the delta function turns the derivatives into derivatives

with respect to h, and we arrive at

2
0 g 1 g 2
(ag) = T + 50,1, + ST (2.87)

ho +0

This proves the p = 0 case of (2.80). The case for higher p can be shown by multiplying
the integrand in (2.77) by (h — ho)?, and performing the same contour integration.

From (2.85) we see that this now corresponds to extracting (a,y)), and we get

p+1 p+2
(arf) = ¢"T" + 792 o7 4 I < e RN (2.88)
ho+¥¢
which finishes our proof.
For later convenience we define
- 1
h dz
U(log 2, h) / ?22 %) dDisc[G(z, 2)]|ng (2.89)
0



where U(log z, h) = U;(LO) + %U;(Ll) log z + %U;(LQ) log® z+. ... The CFT-data is now given

by
1 1 -
Aol = U + S0V 4 SO ] he=hot, (2.90)
2 8 h=hg
where A, are related to the usual OPE coefficients by
2
r (%)
= Ap. 2.91
“=FaTioDN (2.91)

The normalisation of U(log z, h) is defined such that the OPE coefficients of a free
scalar field in four dimensions correspond to A, = 2 33, The functions T and U carry

the same information, but in the following we find it useful to work with the U.

2.5.3 Reciprocity revisited

As promised, let us now return to the statement about reciprocity, namely that
CFT-data admit expansions around large spin organised in terms of integer powers
of J2 = h(h —1). From the discussion above, we have concluded that the CFT-
data of a twist family can be described by the function U(log z, h) computed from
the perturbative inversion formula (2.89). We assume that the double-discontinuity
dDisc[G(z, Z)]|,n, takes the form of a power series expansion in (1 — Z), multiplied by
an overall factor (1 — 2)®, however in general it can be a sum of several superimposed
such series, potentially with logarithmic insertions. Since it is the z — 1 limit that is

responsible for the large spin expansion, we can always re-expand this series in terms

of =%, giving

z

00 1—2 a+k
Z) . (2.92)

dDisc[G(z, 2)]|no = D e ( z

k=0

In section 3.4 we will explicitly show that integrating the terms in this sum against

the kernel in (2.89) gives the result

T(h)? /dg o) (1_5)&% T (h=(a+k+1)T(a+k+ 1)2- -

r(2n) ) z z T (h+(a+k+1))

33In the original articles [2-4], the normalisation of U. ;(Lp ) differs from here with a factor of 2k — 1.

62



Thus expanding the integral of the sum (2.92) gives a sum of terms (2.93). Each such
term expands for large J = /h(h — 1) as J~272%"2% times integer powers of J 2. We
therefore conclude that the whole sum (2.92) expands as J~* multiplied by integer
powers of J~2, where v = 2 + 2a, which may not be an even integer.

Allowing for logarithms and superimposed series we have in general

up (log J)

ZJWZ% o (2.94)

This will be used to derive the following precise version of the reciprocity principle,

equivalent to [65].

Theorem 2.2. For non-degenerate operators in a twist family, parametrised by ¢, the

anomalous dimensions v, and the OPE coefficients a, satisfy the recursive relations

e =g(h+3n), (2.95)
1, _
A, = (1 — §g’(h + ;w>> A(h + %w) , (2.96)
with ay and A, are related by (2.91), where the functions A, g have asymptotic

expansions of the form

a;k(log J) b x(log J) -
Z Jou z_: kJ2k ’ Z JBs z_: kJQk ’ )= h(h—1).
(2.97)

Proof sketch. Notice that both the functions U;(Lp ) and the functions g and A admit
the same kind of reciprocity-respecting expansions. However, any derivative of such
functions will break this, since 0;.J 2 = 9h —1 = 1+ 4J2. We therefore need to
check that these violating terms are exactly cancelled by the process of extracting the
CFT-data from U,—Ep ) and re-packaging it in the form (2.95) and (2.96)

We need to perform this proof order by order in perturbation theory, using the
fact that 7., and therefore g, are of order g. The leading dependence of g and A is

given by v, and A, respectively. They are in turn related to the functions U;(Lp ) at
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leading order in (2.90), which is free from derivatives with respect to h: A, = U;(LO)
and vy, = U}—EI) / U}—(ZO). Hence the correct expansions of g and A at leading order follow
directly from the expansions (2.94) of the U;(Lp ),

At subleading order in the expansion parameter g, the derivatives with respect
to h in (2.90) induce terms that break the J? expansion. By carefully following the
propagation of all terms one can check that these terms cancel if and only if one
assumes that the operators are non-degenerate. This is because we have to impose

2
relations like U}—(Lz) / U}—(LO) =2 = (U}—(Ll) / U}—(LO)> which are not true for operators with

mixing.
2.6 Large spin perturbation theory

Large spin perturbation theory aims to produce perturbative results in conformal
field theories by using the crossing equation and inversion procedures for CFT-data.
These results are either specific for a given model, or generic for classes of CFTs
satisfying some stipulated assumptions. This is achieved through an initial ansatz of
crossed-channel operators generating the entire double-discontinuity of the four-point
function at a given order in perturbation theory, and through a systematic inversion
procedure. These steps are supplemented by imposing consistency conditions and
may be iterated at higher orders in the perturbation.

The results of large spin perturbation theory consist of a set of CFT-data, or
alternatively of an explicit expression for the correlator. These are essentially equiva-
lent; given the correlator, the CFT-data is found by a conformal block decomposition,
and given the CFT-data the correlator can be reconstructed by explicitly summing
conformal blocks, often referred to as resummation. The discovery of the Lorentzian
inversion formula adds a new dimension to this equivalence, as depicted in figure 2.6,

where we now note that the double-discontinuity of the correlator is equivalent to the
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Input: crossed-channel operators

__ Inversion integral

U(log z, h) dDisc[G (u, v)]

Spin zero
contribution
ao, 70

\ Resummation

A
Qe, Yo g(u, ’U) 4—‘> (%) ¢g(v,u)
Conformal block Crossing
l decomposition J
Result Result

Figure 2.6: A flowchart describing the method of large spin perturbation theory. The
input is CFT-data for a small set of crossed-channel operators. The output is results for
the CFT-data or various twist families, or by resummation expressions for the correlator.
Using crossing, the twist families contribute in the crossed channel and the process can be
iterated.

function U(log z, h) through the Lorentzian inversion formula®. This leads to the
a commuting diagram, where the central rectangle of figure 2.6 conveys the picture
that the whole correlator G(u,v) is essentially determined by its double-discontinity
dDisc|G(u,v)]. This fact was formulated in [71] in terms of a dispersion relation. The
only ambiguities come from terms at low spin, which are beyond the range of validity
of the Lorentzian inversion formula (spin 0 and potentially spin 1).

It is now clear why large spin perturbation theory turns out to be an effective
method. At each order in perturbation theory, the entire double-discontinuity can be
generated from just a small subset of crossed-channel operators. The reason is that
the double-twist operators themselves have suppressed double-discontinuities in the
crossed-channel. This can be realised by considering a crossed-channel operator with

twist 2A4 4 2n + 7,0 in the double lightcone limit. By making the same expansion as

34The reverse arrow corresponds to the kernel method.
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in the proof of proposition 2.3, and taking the double-discontinuity, we get the term

EA‘b 2

| FT (et ntne) | L 506 T 2
dDisc (1—2)A¢(1 zZ)2 S (V)™ s (2.98)

where we used that dDisc[log(1 — z)?] = 47%. Hence we can see that the first non-
zero double-discontinuity appears at an order suppressed by the squared anomalous
dimension. In the theories that we reviewed in section 2.3, we marked out these
operators in the respective spectra by the grey bands in the figures 2.2, 2.3 and 2.5.

Our strategy will thus be as follows. Work at a given order in perturbation theory
and identify which operators have a non-zero double-discontinuity in the crossed
channel. Then create an ansatz for the double-discontinuity generated by these
operators—in a specific theory one may want to use additional information about
these operators, in a generic theory this introduces some undetermined constants.
Following through the inversion procedure gives the CFT-data of twist families at
this order. Next one can proceed to higher orders. New operators may appear, which
expand the ansatz. Eventually the double-twist operators themselves will also appear
but their contribution can be derived from results at lower order through crossing.
This induces an iterative procedure, cycling through the diagram in figure 2.6 multiple
times.

We have presented the Lorentzian inversion integral as the prototype way of re-
covering the CFT-data from the correlator. However, there are other inversion pro-
cedures as well, such as those used in the original papers on large spin perturbation
theory [68,69]. In this thesis we will use such alternative procedures in chapter 5.
Before the role of the double-discontinuity was made clear, terms in the double light-
cone limit were classified as either regular or singular, where singular terms referred
to those that cannot be constructed from a finite sum of direct-channel blocks. In
chapter 5 we refer to these terms as having an enhanced singularity. These terms are

exactly those which develop a power-divergence in z — 1 after repeated action by
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the collinear Casimir [66,67]. By constructing building blocks, called twist conformal
blocks or H-functions, as sums of conformal blocks modulated by powers of J~2, the
enhanced singularities can be matched between a correlator and the corresponding
CFT-data, turning the inversion into an algebraic problem [66,69].

After giving a practical guide to large spin perturbation theory in the next chapter,
we demonstrate the power of the method in chapter 4, where we apply it to the
Wilson-Fisher fixed-point and derive results up to order ¢* [2]. We comment on the
generalisation to O(N) symmetry [3]. Then we show in chapter 5 how the method
facilitates the computation of the most general four-point function at order g ~ g2y,
of a scalar of dimension 2 + O(g) in a four-dimensional conformal gauge theory [1].
We give further applications in chapter 6: The O(N) model at large N [4], general
¢* theories in both an € expansion and a large N expansion [5], multicritical theories

and an adaptation of chapter 5 to the Wilson-Fisher model.
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Chapter 3

A practical guide to large spin
perturbation theory

The previous chapter contained background material leading up to a formulation of
large spin perturbation theory in section 2.6, where the main idea was presented in
the diagram of figure 2.6. Large spin perturbation theory is a systematic framework
for studying perturbative conformal field theories and the procedure applies to a wide
range of theories. Anyone who wants to apply it to a new theory with a new set of
assumptions will follow through the diagram by executing the steps listed at the end
of chapter 1.

In the later chapters of this thesis we will give complete examples of applying
large spin perturbation theory to specific cases. However, heading straight into these
examples would obscure the many common features that emerge only after studying
several different theories. The purpose of the present chapter is therefore to high-
light these general aspects in order to give more information about each part of the
procedure outlined above. This includes introducing useful notation and giving some
specific statements in terms of some propositions and standard inversions.

At the centre of the diagram in figure 2.6 sits the the perturbative inversion for-

mula. Although other inversion procedures exist, it is the main tool of this thesis and

68



we repeat it here:

o,
N I

N

1
U(log 2, h) / S k() dDisc[G (2, 2)]no » (3.1)
O

where 79 = 2hyg is the reference twist of the twist family under consideration. To
appreciate how the formula works in practice, we give some concrete computational
examples in the first section of this chapter. In the subsequent sections we then
follow the steps of chapter 1. In section 3.2 we give some generic statements about
the structure of the OPE, both in the direct and the crossed channel. In section 3.3
we focus on how to compute the double-discontinuities that arise from the crossed-
channel operators. In section 3.4 we survey the most useful ways of executing the
inversion integral (3.1) and give some concrete examples of inversions. We finish the
chapter with section 3.5 containing a literature review of applications of large spin

perturbation theory to date.

3.1 Invitation: sums and inversions

The inversion formula (3.1) is the main tool for performing the inversion procedure
that plays the central role in large spin perturbation theory. In this section we will
give some concrete examples of how the inversion procedures work in practice. The
examples we consider here will be used later in the thesis, typically for leading order
computations. At higher order in g, more complicated functions will appear and to
explicitly perform the inversion procedure will require a variety of methods, explained
later on.

The central square of figure 2.6 represents the computational machinery of large
spin perturbation theory. Working in the collinear limit, the z dependence decouples
and we are in practice left with sums and inversions of SL(2,R) blocks. This is

essentially a one-dimensional problem, where the CFT-data is parametrised by spin
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¢, or equivalently by h = 7 /2 4+ £, and the correlator is a function of z. The CFT-

data of operators with spin ¢ > 0 is represented by U(h), which is computed by the

inversion integral
1

DR fdE,
U = 0/ i (2)dDisclG(2)] (3.2)

where the double-discontinuity is still taken around z = 1. We will now give some
explicit examples of the second line of figure 2.6, namely resummation and conformal
block decomposition. For simplicity we assume that we are working with operators
on the unitarity bound in four dimensions, which means that the SL(2,R) block

decomposition corresponding to (3.2) is

Ll +1)°
2 [(20+1)

l=Llo,lo+2,...

U+ 1)ke1(2) = G(2). (3.3)

In the free four-dimensional theory, it is natural to begin the sum at ¢, = 0. However,
since J? = (({ + 1) becomes zero for £ = 0 we take £, = 2. The difference would be

the spin zero SL(2,R) block: k;(2) = —log(1 — 2).

3.1.1 Elementary sums of SL(2, R) blocks

Let us start with the simplest possible sum, where U(h) is a constant. For later
convenience, we choose the constant to be 2. In this case, the sum (3.3) can be
performed directly with computer algebra software like Mathematica [163], by using
the following manipulations. First we use a convenient integral representation for the

SL(2,R) block in the integral kernel,

k,;(@:”?f%hj dt (t(l_t)>h. (3.4)

t1—t) \ 1—tz

Then the sum over ¢ = 2,4, ... can be performed to give a rational function in ¢ and

z. Finally, integrating over t gives the result

L0+ 1)
2 T(20+1)

0=24,...

+2z—142log(1l — 2), (3.5)

regular

_ 1
2k (2) = 1

-z
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where we have marked the terms that are regular in the limit 2 — 1. By regular we
mean terms which have no double-discontinuity in this limit, corresponding to terms
which have a regular series expansion at z — 1, or a series expansion multiplied by
a single factor of log(1 — z). Notice that we could have absorbed the logarithm by
extending the sum to include the ¢ = 0 block k;(2z) = —log(1 — Z2).

Another explicit example of a sum is the case where U(h) = 2/J% for J* =
h(h — 1). We have

L0+ 1)2 9 i
k
£=24,... L20+1)00+1) 0+1(2)

1
=3 log?(1 — 2) + 2Liy(2) + 2log(1 — 2),  (3.6)

regular

where Li,(z) denotes the polylogarithm. This sum is in fact much harder to find
than (3.5) by explicit computations. Indeed, very few sums of conformal blocks can
be computed directly, which means that typically resummation is a more difficult
task than conformal block decomposition'. A practical way of performing the sum
(3.6) is therefore to make use of the conformal block decomposition. It turns out
that in some cases, sums of SL(2,R) blocks kj(Z) organise according to a transcen-
dentality principle, and in general take the form of rational functions of z multiplied
by polylogarithms. From the result it is clear that an ansatz of polylogarithms of
maximal combined degree 2 would be enough to perform the sum (3.6) (recall that
Li;(2) = —log(1 — %2)).

We finish by giving a couple of examples of sums, computable in the same way,

where U(h) involve the harmonic numbers:

oty SOk = ) S0 Aes -2, @)
2T (L +1)* Si(¢) L log®(1 — 2)
oa. D20+ 1) (e +1) ke (2) = 12 (3.8)

'However, the conformal block decomposition gives only the OPE coefficients, here corresponding
to U(£+ 1), one by one in ¢, and it may be a non-trivial task to deduce the closed form. In practice,
these tasks are often accomplished by a combination of educated guessing, the use of functions such
as Mathematica’s FindSequenceFunction [163] and searches in the Online encyclopedia of integer
sequences [164].
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Here the latter sum has no regular part.

3.1.2 Elementary inversions for SL(2, R) blocks

In the explicit sums given above, we have indicated the regular parts, which have no
double-discontinuity. Let us now show how the functions U(h) used to produce these
sums can be recovered from the inversion integral, using only the enhanced singular
part.

It is easiest to start with the terms involving no negative powers of 1 — z, and we
begin by analysing the sum in (3.6). Welet G(z) = £ log*(1 — 2)+2 Lis(2)+2log(1—2)
and start by computing the double-discontinuity. As discussed above, only the first

term has a double-discontinuity, and a direct use of the definition (2.71) gives

dDiscllog?(1 — 2)] = log?(1— %) — ; (log(1 — 2) + 2i)? ; (log(1 — 2) — 2i)? = dr,
(3.9)

which implies that dDisc[G(Z)] = 272. This means that U(h) is given by the integral
- Lo _ \h
- I'(h)? zZ, dtdz t(1—1t)z
h) = _ / k(2202 = 2 / 10
U( ) J h(Z) ™ t(l _ t)EQ ( 1 — 3 ’ (3 )

where we used the integral representation (3.4) for k;. Evaluating first the z integral

and then the ¢ integral gives U(h) = in exact agreement with (3.6). To

2
h(h—1)’
systematise the notation it is useful to write the result of the inversion as

INV[G(2)] h / 2 .- (7)dDisc|G(2)]. (3.11)

(o
N |

2

N

In this notation we have shown that

INV[log*(1 — 2)] = (3.12)

ﬁ.
Using dDisc[log®(1—2)] = 1272 log(1 — z) we can use the same integral representation

as in (3.10) to show that

log®(1 — 2) B 251( 1)
INV lu] R AT (3.13)
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We now turn to the inversion problem corresponding to the sum (3.5). The in-
version of negative integer powers of 1 — 2z requires a regularisation, and we therefore

start by considering the inversion of the general power G(z) = (é)p. Since we have

dDisc Kligﬂ = 2sin®(7mp) (1 : )p, (3.14)

-z
we get, again using the integral representation (3.4),

U(h) = 2Sin2(ﬁp)r(17r_21{)()hr—(};ipl)_ 1).

(3.15)

We see that this expression vanishes for p = 0, —1, —2, ... which corresponds exactly
to the cases where G(Z) becomes regular. In the limit p — 1 the pole at I'(0) cancels

with the zero at 1 sinm, and we recover U(h) = 2, in agreement with (3.5). This can

also we written

INV [1 ! ] _9. (3.16)

—Zz
We save the inversion corresponding to the sum (3.7) until we have discussed the

SL(2,R) Casimir operator.

3.1.3 Inversion integral and the Casimir

A very important tool in computing inversions is the SL(2, R) Casimir operator D =
(1 — 2)z%202 — z?0;, introduced in section 2.2.2, which on the SL(2,R) blocks has
eigenvalue J? = h(h — 1):

Dkj(2) = J* kz(2). (3.17)

Acting with D on a sum of (3.3) for a given U (h) will therefore give the corresponding
sum with U(h) replaced by h(h — 1)U(h). The same holds for the inversion integral,

and we get the useful equation

INV [DG(2)| = J2INV[G(2)]. (3.18)
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Table 3.1: Some elementary inversion results, where w = 1 — 2z and J? = h(h — 1), showing

pairs G(z) and U(h) = INV[G(2)].

G(2) U(h) DG(%) J2U(h)
4 2
2
log= w 7 " + reg. 4
2481 (h — 1 1 .
logw | — 5152 ) | Glosw +reg. | —2451(h—1)

This can be used to demonstrate the last of the four sums discussed in section 3.1.1.

We note first that Dlog(1 — z) = 8U=2  Then the relation (3.18) combined with

1-z

the inversion (3.13) gives that

log(1 — %)

INV[ 3

1 ~ PINV B log'(1-2)| = —4si(h-1). (319

We summarise the four elementary inversions discussed in this section in table 3.1.
In appendix B.1 we collect more results of this kind, useful for inversions near four
dimensions and in particular for chapter 4.

In fact, the relation (3.18) between the Casimir D and its eigenvalue J? can be
used to derive the exact form of the SL(2,R) inversion integral (3.11). We give this
argument in section 4.2.2. However, such derivation relies on the assumption that the
CFT-data of the underlying theory is analytic in spin down to some finite value. The
extraction of the perturbative inversion formula from Caron-Huot’s general formula,
which we worked out in section 2.5.2, is therefore necessary to establish analyticity

and to determine the limit ¢, below which we can not trust the result.

3.1.4 An algebraic method

The discussion so far shows that there is a direct correspondence between the func-
tions U(h) and the enhanced divergent part of G(Z). This implies that by matching
appropriate terms on both sides we can turn the inversion problem into an algebraic

problem. This programme was initiated in [66] and was the main method used in the

original papers on large spin perturbation theory [68,69]. In chapter 5 based on [1],
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we develop this idea further. We define what we call H-functions, which are a special
case of the more general twist conformal blocks introduced in [68]. The H-functions

are sums of conformal blocks modulated by a specified function of J? 2

I'(h)? log"J

Fy(milog") _
H = = k7 (Z) + reg. 3.20
O =% iy e )+ s (3.20)
By expanding the CFT-data as
- log" J
we can write the sum (3.3) as
> Ao H ™) (2) = G() + reg. (3.22)

The H-functions can be computed by various techniques, but once they have been
found the inversion procedure can be turned into a simple algebraic problem involving
solving systems of linear equations. We give further details of this method, including

an explicit toy example, in section 5.3.

3.1.5 The free 4d scalar

We finish this section by a concrete example, namely the free scalar field theory in
four dimensions. Using Wick contractions the four-point function of the field ¢ takes
the form

G(u,v) =1+ % + u. (3.23)

We will now demonstrate that this correlator can be determined completely from its
double-discontinuity, which is the middle term 7. This term corresponds precisely to
the exchange of the identity operator in the crossed channel, which demonstrates the
machinery of large spin perturbation theory as prescribed in figure 2.6: The identity

operator generates a double-discontinuity, inverting this produces the CFT-data of

2The H-functions used in chapter 5 have an additional factor 2cz compared to here.
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direct-channel operators which resums into the correlator (3.23), constituting our
result.

Expanding dDisc[G(u,v)] in the collinear limit we get

z

dDisc[G(u, v)] = dDisc [1 } +0(2?). (3.24)

-z
From the power z we see that the double-discontinuity must correspond to operators
of reference twist 79 = 2, and from the lack of dependence on log z we see that U}—(Lp ) =

0 for p = 1,2,..., meaning that the corresponding operators have no anomalous

dimension. The inversion (3.16) gives immediately that
0
U\ =2, (3.25)

from which we derive the four-dimensional free field OPE coefficients using (2.90) and
(2.91):
2I(0 + 1)?
= —_—". 2
YT TR (3:26)

The next step is to perform the resummation of the correlator. The four-dimensional
conformal blocks were given in (2.21) and for 7 = 2 they take the particularly simple
form

Gaal:2) =~ (hen(2) — keaa(2)). (3.27)

This means that we can use the sum (3.5) to compute®

21 (0 +1)2 _ 2Z _
Tiry A = ooy T 52

Adding the direct-channel term 1 corresponding to the identity operator, we have re-

D

0=0,2,...

constructed the correlator (3.23). We shall also check subleading powers in z omitted
in (3.24). A careful analysis shows that they correspond to subleading contributions

of the 7 = 2 operators, which means that no further operators need to be considered.

3In the free theory, the formula (3.26) analytically continues to spin zero. In principle, this
OPE coefficient could take any other value, and the ambiguity at spin zero must be checked by
independent methods such as a direct analysis of crossing.
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We conclude this section by discussing how to generate corrections to the free
theory. From (2.98) it is clear that any new double-discontinuity must arise at order
g? for some coupling ¢g. This means that no operator in the leading twist family will
receive anomalous dimensions until order g?. The only exception is at spin zero, where
analyticity in spin does not hold. We can therefore define g = 7,2 and conclude that all
CFT-data at order g? will be depending on this constant. The leading contribution
to U,—gl) from the operator ¢? is proportional to —g?dDisc[log?(1 — 2)]. Using the
inversion (3.12) we get U}—EI) ~ —g*/J? and ultimately we get

2

Ve = _é(ﬁgﬂ) +0(g%). (3.29)

Noting that v, = £ 4 O(€®) this agrees precisely with the result (2.48) quoted in
section 2.3.3. In chapter 4 we continue reconstructing the Wilson-Fisher model from
large spin perturbation theory and ultimately compute all CFT-data of the spinning

4

operators to order €¢*. Further explicit results in the Wilson—Fisher model can be

found in [165], where the whole correlator at order €? is given.

3.2 Correlators and twist families

The first step in an application of large spin perturbation theory is to specify a given
conformal field theory and a correlator to study. Large spin perturbation theory will
then generate CFT-data for twist families in this correlator. Of course, the details
depend on the specific choice of theory and correlator, but there are some universal

features that we will describe here.

3.2.1 Direct channel structure

We limit ourselves to the simplest case and consider the four-point function of identical
external operators. The generic content of twist families appearing in such a correlator

is described by the following three propositions, however any specific theory may of
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course contain other twist families as well. In these propositions, we allow ¢ to have

generic dimensions, not necessarily close to the unitarity bound.

Proposition 3.1. The ¢ x ¢ OPE contains operators ¢d‘¢p = [¢, ¢o, with 7, =

2A¢ + Ye-

This is essentially the statement we proved in proposition 2.2. In addition, unless we
are in the free theory, we have GFF operators with twists 7,,, = 2A4 + 2n + v, ¢ for
all positive n. If ¢ is near the unitarity bound, i.e. Ay = p— 1+ O(g) with p = d/2,
the OPE coefficients of the GFF operators for n > 1 are suppressed with a factor g

compared to n = 0. This can be seen from the explicit expression (2.42).

Proposition 3.2. In theories where the expansion parameter g corresponds to a
coupling constant, the ¢ x ¢ OPE contains weakly broken conserved currents 7, with

T¢ = d — 2 4 7, where in the non-degenerate case we have 4, = 0.

Proposition 3.2 can be proved by the following argument. Analyticity in spin means
that any operator with spin ¢ > {3 = 1 must be member of a twist family. Since
the stress tensor always appears in the OPE of any two identical operators, with a
non-zero OPE coefficient given by (2.31), it must be a member of the leading twist
family. If 74, is order g, proposition 3.2 follows. However, in expansions around
strong coupling the argument may break down. The reason is that at each order
in the strong coupling expansion, the limit ¢, of analyticity may be shifted upwards
to another small integer [162]. Non-perturbatively, as well as in a weak coupling
expansion, the limit ¢, = 1 holds. In section 5.1 of [70], this is discussed further in
the context of a CFT dual to Einstein gravity, where it is only non-perturbatively

that the stress tensor belongs to a twist family.

Proposition 3.3. Assume that the ¢ x ¢ OPE contains an operator O with OPE

coefficient ap = ¢}4p, where Ap # 24, + O(g) and Ap # Ay +m+ O(g) for m € Z.
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Then the ¢ x ¢ OPE contains the operators [0, O], with OPE coefficients at order

az).

Proof. We follow the approach of appendix E of [4] and consider the mixed correlator

(P(x1)p(29)O(x3)O(x4)). The crossing equation reads

ule
Gooo0 (U, V) = —5 755 Gosso (v, u). (3.30)
VT 2

By assumption cyps = Cgpo is non-zero, which means that the crossed-channel OPE
contains the operator ¢. It contributes to the double-discontinuity with a term pro-

portional to its conformal block, which in the mixed correlator takes the form [51]

A+A12> (A*A?A) (A*Am) <A+A34)
S 21234 m n
( 2 m 2 m 2 m+n 2 m4n U (1 B U)

G(d) _ .5
A01A v Z (A)Zern(A +1- :u)m m!n!

m,n=0
with A;; = A; — A represent the crossed-channel external operator dimensions A; =

(3.31)

Ay = Ap, Ay = Ag = A,. We focus on the leading contribution to the CFT-data,
which comes from the m = 0 term. For this term, the sum over n can be computed

and gives, together with the crossing factor,

A A
use d use Ao Ao _Ap
S AytAp (A,)O\Ai = TOQFl <A¢> - 7: A¢ - 75 A¢§ I u) + O(U 2 +1)' (3-32)
v 2 v 2

Using (A.8) to expand the hypergeometric for small u, which is equivalent to small

z, we get two contributions,

ute ute uho
S G =G (Y o) ra (Mg row). 63
v 2 vV 2 V2

for some constants C; and Cy depending only on the involved operator dimensions.
(5 is regular and non-zero as long as the assumptions in the proposition are satisfied.
This term signals the existence of operators [O, O]y, in the direct channel, with OPE
coefficients

460,010, CO0[0,0]0.0 ~ Ci&ﬁ = ap. (3.34)
Using that cooj0,0),, are of order 1 by proposition 3.1, we conclude that Céq&[@,@]o,g ~

a%. The case n > 0 follows by projections to higher twist and is valid as long as

Ao # p—1+0(g).
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3.2.2 Spin zero

As we reviewed in section 2.5, an important step in the derivation of the Lorentzian
inversion formula [70] is the contour deformations from the Euclidean integration
domain C to the Lorentzian region z, z € [0, 1], a manipulation that is valid for spin
¢ > 1. This means that the analytic expressions for CFT-data that result from the
inversion formula may not correctly reproduce the CFT-data for operators at spin
¢ =0or ¢=1. Indeed, it is the case in some examples that the spin zero operator of
a given twist family explicitly breaks the formula for e.g. anomalous dimensions. On
the other hand, there are also many examples where the spin zero operator appears
to obey the generic spin formula. A systematic determination of the conditions under
which this happens remains an open problem. We summarise here a number of
observations made in connection with the theories studied in this thesis.

As a first attempt to analyse the situation, we can study the convergence properties
of the inversion integral from the one-dimensional perturbative inversion formula
(3.1). The limit 2 — 0 in the integration domain induces a pole at h = 1. This has
two implications: Firstly, the evaluation of the CF'T-data at the spin corresponding to
value of h ~ 1 may not be defined, or least needs to be suitably regularised. Secondly,
for any spin corresponding to A < 1, the CFT-data has to be evaluated in its analytic
continuation beyond the first pole, which is beyond the region of convergence of the
inversion integral.

From the relation h = G+ it is clear that the pole at h = 1 in many cases affects
only the leading twist family. This is for instance the case in N' = 4 SYM, where we
observed in section 2.3.4 that the leading twist anomalous dimension in the average
(2.52) has a finite support solution at spin zero. In chapter 5 we will assume that the
CFT-data in the higher twist families can be extended to spin zero with no ambiguity.
For instance, at the subleading twist, 79 = 4, the pole is at £ = —1 which is beyond the

physical values of spin. However, there exist solutions to crossing which have finite
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support in spin at all twists. They were first constructed in [105] and correspond
via holography to higher derivative interactions in AdS. For such theories, the Regge
bounds used in establishing the inversion formula must be suitably modified.

The critical and multicritical models offer another venue for exploring spin zero.
In the multicritical theories, i.e. the A\¢?® theories for § > 3 as displayed in figure 1.1,
the operator ¢? can be included in the family of weakly broken currents ¢d‘¢p, and
the CFT-data correctly extends to spin zero. Since h = p— 1 + £ and pu < %, this
leads to an evaluation to the left of the pole at h = 1, but the result is still consistent
with the literature. We give more details of this in section 6.3.

In the ¢! case with O(NN) symmetry, the situation is more subtle, but it turns
out that in both the € expansion and in large N expansion, the CF'T-data of broken
currents can be extended to spin zero in a suitable way. In the € expansion, spin zero
appears at the pole h = 1, but by shifting from the bare conformal spin h to the full
conformal spin hy = %, the pole can be resolved at the expense of a factor of €. This
means that the spin zero operator ¢? has an anomalous dimension of one order lower
in € than the broken currents, which is in agreement with the literature. We discuss
this further in section 4.2.4 based on [2]. In the large N expansion, the behaviour at
spin zero depends on whether the representation contains an auxiliary field at spin
zero. In the traceless symmetric, T', representation the CFT-data trivially extends to
spin zero as in the multicritical models. In the singlet, S, representation, the scaling
dimension extended to spin zero satisfies instead a shadow relation with respect to
the auxiliary field o:

Ago=d—A,. (3.35)

This relation, trivial at infinite N, appears to holds also in perturbation theory in
1/N. We use this to analyse ¢* theories in section 6.1 for O(NN) case and section 6.2

in a generalised large N expansion for generic global symmetry.

81



Finally, in [71] it was discussed how the inversion formula can be improved by
suitably subtracting the terms that determine the limit of convergence ¢y. Of course,
also in this approach the spin zero operators need to be added by hand, but the
discussion may be useful in explaining why the operators at spin zero in the cases

described above do inherit properties from the corresponding twist family.

3.2.3 Global symmetries and crossing

In the case of global symmetry, the formalism introduced here can be easily modified
by introducing an extra label R representing the irreducible representations involved
in a given correlator. We typically consider the correlator of ¢!, where I is an index
for the vector representation V' of a global symmetry group. Then the correlator can
be projected onto the irreps R in the tensor product V ® V by introducing tensor

structures TE XL, This means that we write the correlator as

1
<¢](ZE1)¢J($2)¢K($3)¢L($4)> = T9A, 9A, Z TEJKLQR(% U)a (3-36)
L9 T34 ReVRV
where each function Ggr(u,v) has a conformal block decomposition of the form (2.9),
d
Gr(u,v) = ; Go0nCian to, (1:). (3.37)
R

The representations R will have different parity transformations under z; <> x5, and
TEJKL

if the tensor structure is even (odd) under I <> J, the operators in the sum

(3.37) have even (odd) spin. The crossing equation can be written on the form

gR(u,v):(Z‘)A“’ S M, G=(v,u), (3.38)

ReVeV
where the exact form of the matrix M = has to be worked out from the tensor
structures TEXL for a given symmetry group. We give the matrix for the O(N) case
in (6.2) in section 6.1.
The types of operators described above now exist in various different represen-

tations. Double-twist operators [¢, ¢|rne according to proposition 3.1 exist in all

82



representations R € V ® V. In addition, for operators R; and R, in irreps R; and
R, respectively, proposition 3.3 generalises to operators [Rq, Ra|rne in all represen-
tations RE R Q@ RNV V.

The twist families containing conserved currents are more interesting. Proposi-
tion 3.2 only applies to the singlet S representation. If this representation is nor-
malised such that the contribution from the identity operator is 1, then the OPE
coefficient of the stress tensor at spin two in (3.36) has exactly the same relation to

the central charge as in (2.31) above, namely
d*A
4(d —1)2Cr

If the global symmetry is continuous, there are conserved currents in one or several of

Ago=d, ags= (3.39)

the odd representations, with Ar; = d—1, and corresponding current central charges

related to the normalisations of the irreps.

3.2.4 Further aspects
3.2.4.1 Mixing

Mixing of operators within a twist family is a major hurdle for the analytic bootstrap
and it has two serious consequences. One consequence affects the goal of large spin
perturbation theory, namely to derive explicit results for the CFT-data. The existence
of mixing means that one can, in general, only access averages such as (a7y) in (2.45).
Since these averages are defined within the specific correlator, they are not very
meaningful observables of the theory. On the other hand, these averages are precisely
the building blocks needed to compute the mentioned correlator, which hence can be
computed without resolving the mixing.

The second consequence happens when large spin perturbation theory is iterated
to subleading orders in ¢g. For instance, the contribution from the double-twist oper-

ators themselves is proportional to
dg
(7)) =D aris (3.40)
i=1
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If dy > 1, knowing the averages (a) and (a7y) does not lead to (3.40) without knowing
the individual anomalous dimensions.

As we saw in section 2.3.4, the mixing of leading twist operators in N' =4 SYM
can be explicitly resolved, since the individual anomalous dimensions are known and
related to the universal function yuiv.(¢). In section 2.4.2, we mentioned that in
addition, for correlators of half-BPS operators in the planar expansion, the mixing
has been resolved also for higher-twist operators. There, the structure of individual
anomalous dimensions has a lot of symmetry, and has in fact been explained in terms
of a, potentially accidental, ten-dimensional conformal symmetry [154].

In chapter 4 we encounter the same difficulty, in this case involving mixing within
the operators 9°¢* in the Wilson-Fisher fixed-point. In that case, a transcendentality
principle facilitates an ansatz for the sum of the twist family, consistent with the

non-degenerate cases at spins £ = 0 and ¢ = 2.
3.2.4.2 Projections onto higher twist families

So far, we have been concerned with extracting CF'T-data for the leading twist fam-
ily in a given CFT. Specifically, the perturbative inversion formula (3.1) involves a
projection to the power z2¢, which corresponds to studying CFT-data of operators
with reference twist 79 = 2A,. By instead projecting onto another power, say 2 one
can extract CFT-data for a family with reference twist 79 = 2hy. Everything that we
have described so far translates to the general case when hy and A, are not related
by an integer, i.e. when hy # Ay +n + O(g) for n € Z. We will now outline what
happens when hy and A, are related by an integer.

Let us assume that the inversion problem has been studied at reference twist
To = 2hg, which could be 2A,, and that we are interested in operators in a subleading

twist family with 79 = 2hg + 2n for some positive integer n. To this end we define a
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new function
o) 1 d—
T ¥ _ . _
Tnoy (2, log z,h) = > 2h°+"2'fﬁ/§kﬁ(2) dDisc[G (2, 2)]|ng+n

=Y 2Ty, 1 (log 2, ), (3.41)

n=0

computed from the double-discontinuity of all powers of z related to 2" by an integer
multiple. In this notation T(logz,h) of (2.79) corresponds to the n = 0 term for
ho = Ag.

Assume that we are interested in the reference twist 2hg + 2 and that we have
computed both T, (log 2, k) and Tj,.1(log z, h). In the direct channel at the power
2"+1 we have both contributions from subleading collinear blocks of the twist 2hq
operators, and contributions from the new operators at twist 2hg + 2. Using the form

of the subcollinear blocks, given explicitly in appendix A.1, we get

5 (S(log . }_z)kh(i)le: c1.i(ho+3, B) Ty (log 2. B)khﬂ.(z)) = 3T a(log 2. Bk (2),
' - " (3.42)
where S(logz, h) denotes the contribution due to new primary operators at twist
2ho+2, and 7 is the anomalous dimensions at twist 2hg. The trick to extract S(log z, ﬁ)
is to use a linear change in variables in the sum such that all terms in (3.42) multiply
k;(Z). Ignoring regular terms, this re-writing means that we can read off the equation
_ _ 1 _ _
S(log z, h) = Tpyr1(log z,h) — > c1(ho + L, h — i) Ty (log 2z, h — 7). (3.43)
i=—1

The change in variables in the sum is allowed, because the difference between a sum
and its shifted version corresponds to a single conformal block and therefore contains
no enhanced divergence. The procedure outlined here generalises to higher order

ho+n

powers z , where corrections from subcollinear blocks of all lower twist families

need to be projected away.
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3.3 Contributions from crossed-channel operators

In this section we give some more details on how to compute the double-discontinuity
of a correlator in a given theory from crossed-channel operators. As outlined in
figure 2.6 in section 2.6, at any given order in the expansion parameter g, the double-
discontinuity will be computed by considering operators appearing in the crossed-
channel conformal block decomposition. Let us now refer back to figure 2.1, displaying
the kinematic limits in Lorentzian signature. The conformal blocks of crossed-channel
operators naturally expand in the crossed-channel OPE limit, i.e. for small 1 — z and
small w = 1 — z. The small w expansion is convenient, since it can be carried over to
the double-lightcone limit where it generates a large J? expansion for the CFT-data.
The small 1 — 2z expansion, however, is problematic, since the perturbative inversion
formula (3.1) requires expanding in small z and extracting the coefficient of a given
power. This requires a summation and re-expansion of powers of 1 — z.

In summary, our strategy is therefore as follows:

1. At each order in g, identify which operators contribute with a non-zero double-

discontinuity at that order.

2. Find expressions for the conformal blocks in the crossed-channel OPE limit for

these operators.
3. Compute full sums over powers (1—2)*, and then re-expand the result in small 2.

4. Select an appropriate power 2™, and construct the corresponding function G(Z)

to invert, either in closed form or as a series in w =1 — z.

The headings below give some details about each step. Importantly, due to the re-
expansion in z, the contribution to the double-discontinuity from operators in a twist
family must be treated collectively. Since the crossed-channel large spin limit exactly

corresponds to the direct-channel small z limit, performing the sum over spins can
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introduce new non-trivial behaviour at small z not exhibited by a single crossed-
channel block. We will therefore separate the case of contribution from individual

operators, which will be predominantly scalars, and from entire twist families.

3.3.1 Crossed channel structure in perturbation theory

Recall that a crossed-channel operator O with twist 7o and OPE coefficient ap = C?M)O
appears in the inversion integral with a prefactor ap sin?(70/2 — A,). This followed
from the discussion in section 2.6 leading up to (2.98). From the linear expansion

around the zeros of the sine function, the proposition below follows.

Proposition 3.4. If 7o = 2A4 + 2n + rg° + O(¢g°*™!), with n € Z and we allow
for the case § = 0, and if ap = &g® + O(g®*!), then the operator O has the first

non-vanishing double-discontinuity at order g*, where
l.a=20+aifn >0,

2. a=aifn <0.

Proposition 3.4 implies that the order at which an operator contributes is completely
determined by the order of its OPE coefficient and the distance to the nearest double-
twist dimension. Step 1 of the strategy is therefore to analyse the leading contribution
of the OPE coefficients of particular operators in the theory, i.e. to identify o above.
In general, this task requires some knowledge of or assumptions about the theory of
consideration and here we give some general guiding principles.

For the contribution from crossed-channel twist families, the considerations in
section 3.2.1 apply. Double-twist operators and GFF operators [0, O],,, appear with
suppressions of order 7* and a2, respectively. Therefore the first operators (different
from 1) to appear are typically either scalars, or twist families with reference twist

70 < 2A4+ O(g). If a scalar operator is the leading contribution, its OPE coefficient

87



becomes an effective coupling constant of the perturbative expansion. This is for
instance the case in the O(N) model at large N in section 6.1. In the case of a
twist family below the double-twist threshold, one has to introduce an appropriate
crossing symmetric ansatz for its contribution. This is the philosophy of our approach

in chapter 5.
3.3.1.1 Heuristic diagrammatic method

If one studies a CFT with a Lagrangian description, information about « of the
(squared) OPE coefficient of a given operator can be extracted from a heuristic di-
agrammatic method, similar to the cuts in Witten diagrams in AdS as described
in [106]. The idea relies on drawing position space Feynman diagrams contributing
to the four-point function such that it is possible to make a cut through the diagram
corresponding to the operator under consideration. From this the following rule can
be formulated: If there is a cut through ki lines of Oy, ko lines of Os etc. in a diagram
at order g%, then the operator "O*OMO% - .. contributes in the OPE at order g“.
There are two exceptions to this rule. If the dimensions of the O; are near the scalar
unitarity bound, operators with n > 1 are further suppressed. If all field lines join to
a single point at both sides of the cut, only the scalar O¥ @52 ... operator contributes
at that order. We give an explicit example in figure 6.1 in the case of multicritical

theories.

3.3.2 Individual operators

The contribution from individual operators is given by considering the crossed-channel
conformal block and re-expanding it in the direct-channel small z limit. Of course, in
even integer dimensions any conformal block can be evaluated exactly, by which the
re-expansion in small z is a trivial task. In generic dimension, explicit forms of the

conformal blocks are not known except in specific cases.
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The single most important case is the scalar, where the conformal block takes the
form (2.23) given in section 2.2.2. Taking this expression with « and v interchanged
and performing the sum over m, the small 2z limit can be computed. The sum over n

subsequently gives the result

_ () rA) 10 . ‘ _
v A/2 GA,O(/Uyu) small z - _1—\(%)2 %QFI (% +a/7%7A + 1-— 22 1— Z) 00
+ (251(% —-1)+ log(zi)) o Fy (%, SIA+1— 1l — 2) },
(3.44)

The details of these manipulations can be found in [4]. In section 3.4.3 we will make
use of this expression evaluated at A = 2. In expansions around four dimensions,
the hypergeometric functions reduce to polylogarithms similar to those encountered
in section 3.1.

The double light-cone expansion of crossed-channel blocks for general spinning
operators was considered in [166], and in particular, explicit expressions were derived

for operators at the unitarity bound. We reproduce here the stress tensor case,

i F(2u+2)[ <2>
— l-nu Ji R
s = 2 T(u+1)2 log 2 251 ()

(4p —2)(1 - 2)
p(p+1)

v G (v, u)

where p = d/2.

3.3.3 Families of operators

Let us emphasise again that large spin perturbation theory requires that the contri-
bution from operators in the same twist family be summed up before the re-expansion
in small z is performed. This is in general a formidable task requiring a variety of

techniques. The general form of such a sum is given by the following proposition:

Proposition 3.5. Let O, be a family of crossed-channel operators. Then the sum

over the corresponding crossed-channel blocks with GFF OPE coefficients (2.43),
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modulated by J7", has the small z expansion which takes the form
Z GFF|A G2A+M( — 72,1 —2) =222 F(2,2) + Fy(z, 2). (3.46)
¢

In this expression, each of the Fj(z, 2) expands in non-negative integer powers of z

and log z: Fy(z,2) = > ;. 2/ log® 2 fijr(2).

The first term, Fj(z, z), follows from the kernel method, (2.64), combined with the
fact that the case k = 0 reproduces the correct dependence z~* for the GFF theory.
The second term exists in each conformal block (see (A.7)) and can therefore not be
excluded from the sum?*.

Proposition 3.5 is very useful for determining what direct-channel families a crossed-
channel family of operators gives rise to. Consider for instance the contribution from

the leading twist singlet operators Js, in the O(N) model. In section 6.1 we show

that their anomalous dimension takes the form

2 ((u=p | gymese(mm)T(p+1)*T(+ 1)
TSET TN 72 e T R — )0+ 2 — 3)

> +O(N7?),  (3.47)

where J? = (u — 1+ €)(pn — 2 + £) and where the second term expands as J 2+,
The operators Jg, contribute with a leading order double-discontinuity that arises
from a sum of anomalous dimensions squared. This gives rise to three terms of the
form (3.46), with k = 4, k = 2pu and kK = 4 — 4 respectively. Let us identify what
direct-channel singlet operators this corresponds to. We need to multiply by the
factor z2¢ Mgg from crossing, where A, = p—14O0(N~1) and where Mgg = % is the
matrix element in the O(/N) model crossing matrix (6.2). Since to leading order ag, =
~ag ¥ |a=u—1, we get that the contribution must happen at order 1/N*. Multiplying
the prefactor of Fi(z,z) in (3.46) by 2#~! from crossing, we get contributions of the

form 2%/, which correspond to twists & for the values given above. We identify

4“When considering mixed correlators, Fy(z,Z) gets an additional contribution proportional to
A1 —Ax—A3+Ay
2

, which exists in each collinear block (2.27), expanded using (A.8).
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the three values of x with twist families [0, d]oy, [, ¢]s1.e and (9%p?)s respectively.
Finally, the term corresponding to Fi(z,Z) contributes to the operators [p, ¢]so.s
themselves. All of this is consistent with figure 2.5.

Proposition 3.5 has an important practical consequence for the organisation of
the inversion problem. In the sum over a twist family, it enables the sum to be
computed using subcollinear blocks in the crossed channel. The reason is that the
crossed-channel collinear limit z — 1 generates a series in w = 1 — z. Under the
inversion integral, this in turn produces a series in large J2. This means that the
inversion can proceed without finding the explicit form of the sums (3.46), and if the
resulting large .J? series can be matched to an explicit function, the goal is achieved.

Various refinements of the kernel method can be used to compute relevant limits
of the function Fi(z, z) of proposition 3.5. This played an important role in [67] and
is described there. The term Fy(z, Z), however, is in general harder to extract. In [4],
as we will return to in section 6.1, this was achieved by the method of twist conformal
blocks, combined with an additional differential equation on the unitarity bound.

A twist conformal block is defined as a sum over a single twist family: H(?(z, z) =
) agGgff)JrM(z,i) [68]. This generalises to the level m twist conformal block defined
by

H(2,2) = 3 3 Gila(=.2). (3.48)
The definition is similar to the H-functions introduced in section 3.1.4, but we now
consider complete functions of both z and z rather than just the singular part. By
making a shift in the quadratic Casimir Cy, given in (2.18), such that the eigenvalue
is the conformal spin J?2, the twist conformal blocks at different levels are related by

a differential equation

To(TO + 2 — 2d>

C"H™ (2,2) = HV(2,2), C=0Cy— ;

(3.49)

If HO)(z,2) is known, the first few functions H(™(z, Z) may be computed by solving

the relation (3.49) in specific limits.
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3.4 Inversion procedures

After identifying the operators that contribute at a given order and computing their
double-discontinuities, the job is in principle done. The corresponding CFT-data is
packaged in the function U(log z, h) which is given by the inversion integral (3.1). In
practice, however, the extraction of the CFT-data requires the integral to be explicitly
computed, which in general is a difficult task. In particular, it is desirable to extract
U(log z, }_z) as a closed-form expression in h, especially since the actual CFT-data is
given in terms of derivatives of this function through (2.90).

The formulation of the inversion procedure as a one-dimensional integral over a
compact domain has an important advantage compared to earlier and alternative
procedures. Any candidate result for a specific inversion problem, regardless how it
was extracted, can and should be checked by a direct numerical integration. This is
done by high-precision evaluation of the integral for a number of finite values of h,
not necessarily related to integer spin. This is especially important when the result

has been derived using an indirect method such as a large spin expansion.

3.4.1 Direct evaluation

We start by giving some examples of how the inversion integral can be solved by
direct evaluation. The first is the result quoted already in section 2.5.3 and discussed
again in section 3.1.2, namely the inversion of a power { P where £ = (1—2)/z. Since
the crossing factor <%>A¢ takes exactly this form in the collinear limit for p = Ay,
this result corresponds to inverting the identity operator. We summarise it in the

following way:

Inversion 3.1. The identity operator 1 appearing in the crossed-channel OPE in the

¢ four-point function generates CFT-data given by U(log z, h) = A[Ay](h), where we
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define
S (h+ Ay 1)
Alddg](h) = T(A)2T(h— Ay +1)

(3.50)

We show this by first noting that dDisc[é~2¢] = 2sin?(7A,)¢ 2. Then, the integral

representation (3.4) gives that

sin?(m z —1)\" zheth-2
INV]e~2¢] = 2 752 £o) / tgti 5 (til_ t?) == (3.51)

(0,1]2
The Z integral can be computed using the integral (A.14) in appendix A.2. The re-
sulting hypergeometric function collapses since o Fi(a, b;b;x) = (1 — 2)~*, by which
the t integral takes the form of the Euler integral of first kind (Beta function), (A.13).
Finally, using the identity (A.15) we replace the factors of sin(rA,) by Gamma func-

tions and arrive at the result A[Ay](h). We may write this result on a general form

as

INVIEZ] = A[-](B). (3.52)
The simplicity of the result (3.52) can be compared to the situation for a general
factor (1 — z)Pz79, where the result is [166]

(1— z)pl _ 2(h —q—1) _I‘(E)2 . (h,h,h —q—1 ‘ 1)
z4 T(—p)2T(h+p—q) DRI (L +p) > *\ 2h,h+p—q '

INV [
(3.53)

For p = ¢ this reduces to (3.52) using the identity (A.9).

3.4.2 Large conformal spin expansions

While direct evaluation of the inversion integral is limited to cases where suitable
integral identities exist, the result for the inversion of a single power of £ = % can
be used to generate a large J? expansion for the inversion of any function G(z). First,
we require that G(z) admits an expansion in powers of w = 1 — z. This is a natural

expansion for crossed-channel conformal blocks, since it corresponds to the crossed-

channel OPE limit. Order by order, this expansion can be converted into a series
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expansion in { = ;*-. Then inversion 3.1, or equivalently (3.53), gives

—w "’

INV {i;o cpfp_o‘] = i;o cpAla — pl. (3.54)

Since term Afa — p] expands as

2 L motp (p—a)l+p—a)2+p—a)
A[a—p]—w<ﬂ> (1+ ENE +...>,

(3.55)
any truncated sum of the form (3.54) will generate the same number of terms in the
large J expansion.

This method applies also to expansions of G(z) which contain logarithmic terms.
For instance, a term &P log & can be generated from applying a derivative of the ex-

ponent. Using this, we get
INV[”log¢] = =0, Ala —pl|,— - (3.56)

The method described here therefore generates a large J expansion for the functions
U}—Ep ) that takes the form (2.94). However, the ultimate goal is find these functions
in a closed form. In a number of situations, this can be achieved by comparing with
expansions of known functions. In theories near four dimensions, for instance, CFT-
data typically takes the form of rational functions in J?, multiplied by the harmonic
number Sl(ﬁ — 1) and its generalisations. In practice, this is done by creating an
ansatz consisting of suitable functions and matching this with the expansion created
through (3.54).

One example of this is the inversion of the contribution from the scalar bilinear

¢? in the e expansion.

Inversion 3.2. In the d = 4 — € expansion, the bilinear scalar Ay = 2A, + v with

OPE coefficient cid)d)z, assuming v = YMe + v@e% + .., has the following inversion
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expanded to order €3
N Coss a1 ;
U(log z,h) = 5 V' (—1 —v4+e+S1(h— 1)) log 2z

2
B (U (PG4 Vet (Sih—1) = PG - 1)), (357

where (,, denote Riemann’s zeta function.

We derive this in section 4.2.3, starting from the scalar conformal block (2.23), putting
d=4—e, A =2A44vand Ay = 1-5+0(€*). In that case the sums defining the scalar
conformal block can be explicitly computed and generate the type of polylogarithms

encountered in section 3.1. Expanding to order €3 we get

. u A¢ 4—e
dDisc l(v) C¢¢¢2 GgA¢_)|_-y,O(U7 U,) )ZA¢1

2 3 2 _ .3
= dDisc [c¢¢¢2 log®(1 — 2) <( — % — 1—8 log(1 — z) + 677)

N v log Z N (ev* —7°)(G — log 2) I 7—3(6 Liy(1 — 2) + log(1 — 2) log 5))}

8 8 48
(3.58)

log 2z

The techniques described above are then used to generate a large J series for the
inversion of this expression, which can be matched with a suitable ansatz of terms
of the form J=2 and J~?"S;(h — 1). The result is the expression (3.57) quoted in
inversion 3.2. Alternatively, the large J series can be generated by the H-function
method. Of course, the results for the various inversions of single terms, for instance
INV[log®(1 — 2)log z] = —4/J*, can be recorded for later use by extending table 3.1.
We give such an extension in appendix B.1, containing all inversions needed for study-
ing the € expansion to order €*.

We stress again the importance of checking the inversion results by numerical inte-
gration. The large J? expansions generated by the series method are often asymptotic,

meaning that they have zero radius of convergence around J=—2 = (. For instance,

this is the case with the expansion (2.60) of the harmonic number S;(h — 1) and
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similar functions. It is therefore possible that the true result of the inversion integral
contains additional terms, exponentially suppressed as J — oo. Fortunately, this is
not the case for the harmonic number and its generalisations, where the expansions
generated by the series (3.54) agree with the standard large spin expansions given in
e.g. [139]. When extracting CFT-data at finite spin, one should always use the closed
form expression and not the large J expansion. For instance, in [167] it was shown
that taking into account the finite spin corrections in the case of the the 3d Ising
model improved the precision of the computations in [67], which were derived using

the large spin asymptotics.

3.4.3 Inversion and the SL(2,R) Casimir

In section 3.1.3 we demonstrated how the SL(2, R) Casimir operator D = (1—2)z292—
z20; was used to relate the inversion INV[G(Z)] to the inversion INV[DG(Z)] by a
simple division by .J?. This principle can be very useful in proving the exact form of
some inversions.

To give another example, consider the inversion of a scalar operator of dimension
A = 2 in the correlator of external operators of dimension Ay = p—1, where = d/2.

In (3.44) we gave the double lightcone expansion of a single crossed-channel conformal

_\pu-1
block. Multiplying by ( = )M and specialising to A = 2 we need to invert

-z
z
1—-2z

G(logz,2) = — ( )M_l (1-2) {(logz +logz)oFy (1,1;3 — ;1 — 2)

0
+25-2F (1 +a, 153 — i1 = )azo |- (3.59)

While integrating these hypergeometric functions against the kj(Z) appearing in the
inversion integral appears to be a difficult task, the situation simplifies drastically

when acting on this function by D:

DG(log z,2) = — <1 i 5>ﬂ1<(,u —2)*(log z+log 2) + (1 — 2)o 1 (1,153 — ;1 — 2)) .
(3.60)
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It is now trivial to invert the term proportional to log z, since it is just a pure power

of ¢ = =2, The result for Uél) is therefore

Al 1))

2y INV[= (1 — 26 #] = ~2( — 2 20

J2 (3.61)
Also the inversion of the last term follows straightforwardly, since it takes the same
form as the original log z term. By acting once again by the Casimir D it is clear that
it inverts to (u — 2)2A[u — 1](h)/J*. Finally, the term proportional to log z can be

inverted by expanding the inversion integrand in powers of z where k;(2) is regular,

and inverting term by term. The result is given in terms of the combination®

We can summarise our findings, first derived in [4], in the following way.

Inversion 3.3. The contribution from a scalar O with Ap = 2 in the ¢ four-point

function, where Ay, = p1 — 1, in generic spacetime dimension d = 24 takes the form

Alp —1](h)

A 2.2
U(log z, h) = (1 — 2)"¢e0 72

<— log z + Sz [ — 1] (h) — J12> . (3.63)
3.5 Applications of large spin perturbation theory

We finish the practical guide to large spin perturbation theory by reviewing the
numerous applications of the framework that have appeared in the literature. We
limit ourselves to the work in the direct spirit of [68] and its companion paper [69],
with or without the inversion integral, and we do not aim to cover the whole range
of analytic bootstrap work that we briefly summarised in section 2.4.2.

In [69] the leading order implications of large spin perturbation theory were studied

in a variety of examples. This included leading corrections to anomalous dimensions

5This combination of harmonic numbers is closely related to the function A[a](h) noting that

doAla](h) = Ale](h) (281 (a = 1) + S1(h— 2+ a) + Si(h— a)).

Moreover, S1[a](h) has a large J expansion that is free from terms log J. This is in agreement with
the fact that the function G(log z, Z) has no terms scaling as log(1 — z) in the limit z — 1.
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in the O(N) model at order € and order 1/N, as well as the leading order corrections
to dimensions and OPE coefficients in a generic conformal guage theory.

The € expansion is particularly suitable for large spin perturbation theory, which
can be realised by studying figure 2.2 in section 2.3.3 in connection with the con-
siderations in proposition 3.4 above. Since all crossed-channel operators, except the
identity, have twists of the form 2A,+2n+ O(e), illustrated by the grey bands in fig-
ure 2.2, their contributions to the double-discontinuity are suppressed by at least an
order €2. In addition, the weakly broken currents are not corrected until order €2, and
the higher twist operators have OPE coefficients of order €2 or higher, and therefore
the vast majority of operators do not contribute until order e*. This means that the
whole double-discontinuity up to order €* is generated from the identity operator 1
and the bilinear scalar ¢?. All CFT-data to this order therefore follow from a direct
application of inversions 3.1 and 3.2. As we describe in detail in chapter 4, based
on [2], the whole double-discontinuity at order ¢* can also be computed in terms of
the CFT-data at lower orders, by an iterative procedure in the spirit of figure 2.6.
This consists of two contributions: the weakly broken currents themselves and oper-
ators of approximate twist four (the n = 1 case in the discussion in section 2.3.3).
The latter contribution is found through an ansatz based on transcendentality, and
some input from the literature is needed to fix some coefficients.

In [3], which we do not have room to reproduce in this thesis, the problem at
order e! was revisited in the O(N) symmetric case, and by using the projections to
subleading twists in the spirit of our section 3.2.4.2, all dependence on literature values
was circumvented. The resulting OPE coefficients of broken currents Jr, at order et
were all new results, as well as the scaling dimensions in the rank two representations
T and A. From the OPE coefficients, new results at order e* for the central charges
Cr and C; were computed, which we give at the end of chapter 4.

A different approach is needed to study conformal gauge theories, where the sim-
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plest operator in the spectrum is a bilinear scalar of dimension Ap = 2+ O(g). The
perturbative structure of the four-point of such an operator was determined already
in [147], and was revisited in [69]. In the double lightcone limit, the most general

expression at order g takes the form

2

GW(u,v) = = (a11 logulogv + aiglogu + agi logv + age) + O(u?), (3.64)
v

where crossing relates ayy and ag; through the external anomalous dimensions g7vexy =
Ap—2. In chapter 5, based on [1], we will show that this expression, complemented by
a contribution at spin zero, generates the entire double-discontinuity of the correlator
and can be completed to an explicit expression for the whole correlator. To understand
why this is possible we refer back to figure 2.3 in section 2.3.4 for the special case of
N = 4 SYM; the structure of the spectrum in a general conformal gauge theory is
similar. From this figure it is clear that the identity operator together with the leading
twist operators generate the entire double-discontinuity to order g. All other operators
are suppressed by proposition 3.4, as indicated by the grey bands in figure 2.3. Since
the CFT-data for leading twist operators can be extracted from the ansatz (3.64),
the four constants a;; together with the anomalous dimension at spin zero generate a
five-dimensional solution space for all CF'T-data entering the correlator, and therefore
for the most general form of the four-point function.

It is natural to extend this to next order, where the higher-twist operators them-
selves contribute to the double-discontinuity. Due to the complicated mixing of op-
erators, this has not yet been achieved. However, as we mentioned already in sec-
tion 2.4.2, more progress has been made in the planar limit at strong coupling. There,

the expansion is typically phrased in holographic language and written as

1 1
g(u7 U) = gdisc.(u7 U) + ﬁgtree(uu U) + ﬁgloop(uy U) + O(N76)7 (365>

where the subscripts refer to disconnected, tree-level and one-loop diagrams in su-

pergravity. By studying systems of tree-level supergravity correlators of half-BPS
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operators O, in the traceless symmetric [0, p, 0] representations of the R-symmetry
SU(4), the mixing problem was resolved, and subsequently the loop supergravity cor-
relator could be determined. This was first done for the [0, 2,0] = 20’ case [123-125]
and later for general half-BPS operators [126, 156, 157], as well as with string theory
corrections [155], the latter corresponding to 1/ for the ‘t Hooft coupling A = g2, N.

CFTs in three dimensions were studied in [168], which considered CFTs with
weakly broken higher spin symmetry and gauge group SU(N) for large N, the main
example being Chern—Simons theories coupled to a fundamental complex scalar or
a Dirac fermion. The object of study was the four-point function of the smallest-
dimension scalar Jy, with dimension Ay = 1 or Ay = 2 depending on theory. Similar
to weakly coupled 4d N' = 4 SYM, the OPE contains broken currents 7, which
generate the double-discontinuity at order 1/N, as well as GFF operators [Jy, Jo]n.¢-
Also here, mixing amongst the higher twist operators prevents a full determination
at order 1/N?, which can only be determined in the case where there is no mixing.
The general case at order 1/N? remains an open problem.

In [4], which we summarise in section 6.1, we studied the critical O(/N) model at
large N based on some initial considerations in [66] and [69]. Referring to figure 2.5
in section 2.3.5, we see that the leading double-discontinuities are generated by the
identity operator 1 and the auxiliary field o. At subleading orders, the contribution
from the broken currents Jg, needs to be computed, as well as contributions from
the GFF operators [0,0],¢. As we review in section 6.2, based on [5], the leading
computations in the large N expansion, as well as the e expansion, generalise to ¢*
theories with other global symmetries.

The tools developed for the O(N) model can in fact be used to study multicritical
¢?° theories near their critical dimensions d.(f). We describe how to do this in
section 6.3. Also cubic theories in 6 — e dimensions have been studied using large spin

perturbation theory in [69] and [169].
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The inversion formula has been used to reproduce results in the heavy-light boot-
strap [170]. The purpose is to study universal properties of CFTs with holographic
interpretation, where the expansion parameter is the inverse of the number of degrees
of freedom, or equivalently 1/C7. The operators are divided into light £ and heavy
H, where Ay = O(1) and Ay = O(Cr), and the starting point of the bootstrap anal-
ysis is the mixed correlator (HLLH). The contributions from the identity operator
1 and the stress tensor 7}, in the crossed-channel generate double-twist operators
[H, L], with anomalous dimensions of the order v, , ~ J —(d=2) /Cr. The next step
is to look at crossing for the correlator (CLHH), where the minimal set of direct-
channel operators are 1, 7, and the double-stress tensors [T,T]o,. In [170] it was
shown how the OPE coefficients for the double-stress tensors can be computed from
the large spin perturbation theory, matching with the results of [151]. More precisely,
the kernel method can be used to determine the crossed-channel contribution from

4=2 which exactly matches the

[H, L],,. By proposition 3.5 this gives the power z
reference twist of the double stress tensors. The OPE coefficients are proportional to
1/C% by proposition 3.4 and finally the twists of [H, L], ¢ correspond to the correct
asymptotic spin dependence of the double stress tensor OPE coefficients®.

Some further applications and generalisations of large spin perturbation theory
have been made. In [171], scalar correlators in fermionic theories were considered,
with specific applications to the Gross—Neveu model in 24¢ dimensions and the Gross—
Neveu—Yukawa model in 4 — € dimensions. Interestingly, the former case admits an
all twist result that is very similar to our results in chapter 5, where the spacetime
dimensionality is 2 rather than 4. In [172] conformal blocks, crossing equation and
large spin expansion were developed for the (¢t ¢1p) correlator for a scalar ¢ and

a fermion ¢ in four dimensions. Similarly, in [167] some initial considerations were

made for the fermion four-point function in three dimensions. Alternative versions of

6As mentioned in [170], an important assumption in deriving this result is that the operators
[H, L] ¢ are non-degenerate.
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the Lorentzian inversion formula have also been derived in the case of defect CFTs
[173,174] and CFTs at finite temperature [75], where the latter was used in [76] to
study the thermal 3d Ising model.

In connection to the lightcone bootstrap, one might attempt to determine in full
generality the exact contribution from a crossed-channel operator to a given direct-
channel operator. This is known as the crossing kernel, or 65 symbol [175-178]. The
results derived in these references are non-perturbative and do not simply translate to
large spin perturbation theory. Often they are phrased as a contribution to 7., but in
the language of this thesis, the results rather match U;(Ll) /A[A,](h), which, contrary
to 7y, is additive in crossed-channel contributions. As we stressed in section 3.3, in
a perturbative setting, the contribution from twist families cannot be computed by
inverting operators one by one, so crossing kernels are not enough to perform large

spin perturbation theory beyond leading order in perturbation.
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Chapter 4

Wilson—Fisher model in the €
expansion

4.1 Introduction

In this chapter we will apply the method of large spin perturbation theory to the
Wilson-Fisher (WF) model in d = 4 — € dimensions. In [69] results were obtained for
the anomalous dimensions of weakly broken currents to the first non-trivial order in e.
In a series of papers [28,179-181] a proposal has been put forward for an alternative
method to compute CFT-data analytically. In this approach one uses Mellin space
and crossing symmetry is built in. Consistency with the OPE then constrains the
CFT-data. This method has been applied to the WF model in the € expansion leading
to impressive results. More precisely, the CFT-data for weakly broken currents has
been obtained to cubic order in €. The purpose of this chapter is first to show how
these results can be recovered from the perspective of large spin perturbation theory
using the Lorentzian inversion formula. To cubic order the relevant divergences of
the correlator arise, via crossing symmetry, from just two operators in the crossed
channel: the identity operator and the bilinear scalar operator. This makes our
derivation very simple: in the present framework it essentially involves a first-order
computation. The simplicity of our method is also manifest when dealing with the

O(N) model where the results to cubic order follow straightforwardly from those for
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N = 1. A remarkable feature of our computation is that the convergence properties of
the inversion integral allow to extrapolate the results down to spin zero. Conservation
of the stress tensor together with a matching condition for spin zero lead to two non-
trivial constraints, that allow to fix not only the dimension of the external operator
but also the dimension of the scalar operator ¢?. We then move on to the computation
at fourth order. In this case the divergences of the correlator are more involved and
arise from infinite towers of operators with arbitrarily large spins. The computation
is complicated by the appearance of new operators in the OPE at quadratic order.
A remarkable feature of these operators, together with intuition from perturbation
theory, makes it possible to guess their contribution to the divergence, and hence to
determine the CFT-data of weakly broken currents to fourth order. The results for
the anomalous dimensions agree with those in the literature, computed by Feynman
techniques, while the OPE coefficients are a new result. From the latter we deduce

the central charge of the WF model to fourth order in the € expansion:

C 5 233 100651 95
T 2 3 _ ( Cg) e+

1 —
3779136 2916

~ T 394 T 8748 4.1
CT,free 324 ¢ 8748 ¢ ( )

where we stress the fact that the contribution proportional to e is also negative.
This chapter is organised as follows. The computation up to cubic order is pre-
sented in section 4.2. After introducing the basic ingredients we explain the connec-
tion between the inversion formula and large spin perturbation theory. Since we are
dealing with leading twist operators, the inversion problem for SL(2, R) suffices, and
we give a quick derivation of the SL(2,R) inversion formula. Then we proceed to
obtain the CFT-data for leading twist operators, up to this order, from the double-
discontinuity of the correlator. We also show how to generalise these results to the
O(N) model. In section 4.3 we tackle the problem to fourth order and give the full
answer for the anomalous dimensions and OPE coefficients of leading twist operators.

We finish with some conclusions. Appendix B.1 contains a database of the necessary
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inversion integrals to compute the CFT-data at hand, while appendix B.2 contains

expressions for double discontinuities at fourth order.

4.2 Lorentzian OPE inversion in the € expansion

4.2.1 Generalities

Consider the four-point correlator of a scalar field ¢ in a d-dimensional CF'T

G(z,2)
(0(21)p(w2)p(23)(24)) = SR, (4.2)
L12 T3q
It admits a decomposition in conformal blocks, which in the direct channel decompo-

sition reads

g(Z,E) - ZGA,ZG(A(i?£<272)7 (43)

At
where Gg?g(z, z) are the d—dimensional conformal blocks defined in section 2.2.2. We
assume that there is a free point where the correlator reduces to that of generalised

free fields (GFF)

74 A¢
GO(2,2) =1+ (22)% + <(1_Z)<1_Z>> : (4.4)

The intermediate operators are the identity and towers of bilinear operators of twist

2A4 + 2n and spin £. We will be interested in leading twist operators with n = 0. In
this case the GFF OPE coefficients (2.43) reduce to

0 2((Ag))?
@’ = 0+ 2A¢¢ ), (4:5)

As we show below, these OPE coefficients are fixed by the structure of divergences
of the correlator. Next we consider perturbations by a small parameter g. This
introduces a correction to the scaling dimensions and OPE coefficients of the leading-

twist operators
Ap = 205+ 0479+ (4.6)
ay = ago) + agl)g +.... (4.7)
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We will assume that at this order no new operators appear in the OPE ¢ x ¢. From
the analysis of [68] it follows that the only solutions consistent with crossing symmetry
have finite support in the spin. For generic A, these solutions can be constructed
following [105]. For the present chapter we will be interested in the case A, = %2 at
leading order in g. In this case it was proven in [69] that crossing symmetry admits
a non-trivial solution only around d = 4, with support for spin zero. We define the

coupling constant g as the anomalous dimension of the bilinear operator with spin

Z€ero
Ag =20, + g. (4.8)

All other quantities will be computed in terms of this coupling constant. In [69]

it was also shown that Ay can receive corrections only at order g?. Note that the

dimensionality of space-time can differ from four by at most something of order g,

so that d = 4 — € with g ~ €. The correction to the OPE coefficients can be found

through an extension of the analysis of [69]. Again, the corresponding solution has
(0)

support only for spin zero and one finds ap = ay (1 — g + ...). In summary, for spin

two and higher the corrections start at order g?

Ay = 20,40+ ..., (=24, .,

ay = aéo)—l—af)gQ%—..., (=24,..., (4.9)

and the same is true for the external operator

d—2

We would like to find the corrections consistent with crossing symmetry. Our method
relies on the fact that the double-discontinuity of the correlator contains all the rele-

vant physical information. Let us explain this in more detail.

106



4.2.2 From large spin perturbation theory to an inversion
formula

Consider a basis of SL(2,R) conformal blocks fa ¢(2). We find it convenient to intro-

duce the following normalisation

fau(Z) =raphau(z),  Th= F(géhzl) (4.11)

with kp,(2) = 2" Fy(h, h,2h,Z). We are interested in solving the following inversion

problem: find A, such that

Y. Adfadz) =G(2), (4.12)
A=2A 4+,
0=0,2,...

for a given G(Z) containing an enhanced singularity as z — 1. By enhanced singu-
larity we mean a contribution which becomes power-law divergent upon applying the
Casimir operator a finite number of times, and as such it cannot be obtained by a
finite number of conformal blocks. This is equivalent to saying that G(Z) contains a

double-discontinuity. For a correlator the double-discontinuity is defined in (2.71)

dDisc[G(2)] = G(2) — ;G%) _ ;Go(z). (4.13)

An algorithm to find Ay as a series in 1/¢ to all orders was developed in [68]. The idea
is the following. First recall that the SL(2,R) conformal blocks are eigenfunctions of

a quadratic Casimir operator (2.26)
Dfau(2) = J* fau(2), (4.14)

where D = z20(1—z2)0 and J? = L(A+0)(A+(—2). We then assume that A, = A(J)
admits an expansion in inverse powers of the conformal spin
Am

AJ) =) Tam (4.15)

m

and define the following family of functions

e = S f}ggf ) (4.16)



From the explicit form of the blocks we can compute

h9(z) = S fau(z) = li_ + regular, (4.17)

A=27 4+, 21-=%
(=0,2,...

where the regular terms do depend on A, but are not important for us. The sequence

of functions (™ (%) can then be generated by the inverse action of the Casimir
DhmH (z) = A (7). (4.18)

The inversion problem (4.12) then amounts to decomposing G(z) in the basis of
functions h(™(Z). The precise range of m depends on the specific form of G(z). The
recursion (4.18) can be used to systematically construct the functions h(™(z) and
hence find the coefficients a,,. More specifically, one matches the double-discontinuity
on both sides of (4.12). To make contact with the inversion formula of [70] assume

there exists a family of projectors K (™ (z) such that
1
/ dzK ™ (z)dDisc [h™(z)] = 5™ (4.19)
0

Having the projectors K™ (Z) we can write

A = [ " 42K (2, J)dDisc [G(2)] (4.20)
where
(m)(z
Kz =Y KJ%E ). (4.21)

As will be clear momentarily, the precise form of these projectors will not be necessary.
Acting on both sides of (4.12) with the Casimir operator D and integrating by parts

we obtain

(DT- ) K(z.) =0 (4.22)

where we have assumed the absence of boundary terms and Dt = (1 — 2)072.

Introducing the notation J? = h(h — 1) we find two independent solutions related by

h <+ 1 — h. We will be interested in the one regular for positive h. Requiring the
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inversion formula to give A(J) = 1 for G(z) = h¥)(Z) fixes the overall normalisation.
We find it convenient to use the integral representation (3.4) which leads to the

following result

A(h) = 732 / 1 dtdzzh_Q((lt(l —0)

>

~ dDise [G(2)]. (4.23)

Integrating over ¢ leads to the inversion formula (2.89). For all the inversions needed
in this chapter it will be convenient to integrate first over z.

While this discussion is not a rigorous derivation of the inversion formula, it
explains its relation to large spin perturbation theory in the original approach of
[68,69]. In appendix B.1 we give several results relevant for our computations below.
In all cases the integral is convergent in the region A > 1. For our application below
this means the integral converges and is expected to give the right answer for ¢ > 0.

Below we will discuss the case ¢ = 0 in more detail.

4.2.3 Inverting discontinuities in the € expansion

Let us return to the correlator introduced at the beginning of this section. We will
use the inversion formula to compute the CFT-data of leading twist operators in an

expansion to cubic order in € (or rather g). Crossing symmetry implies

S A fa (2) = 200 ( : > G(1—21—2) , (4.24)
%:Tﬁe, l-z
—0,2,...

small z

where the sum runs over leading twist operators with 7, = 2A4 + 92%@ + ..

. and
the OPE coefficients are related to A, by a, = Ay 7y According to our discussion
above, the CFT-data appearing on the left-hand side of (4.24) can be recovered from
the double-discontinuities of the right-hand side. Up to cubic order in g those are

straightforward to compute, as they only arise from the identity operator and the
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bilinear operator of spin zero, so that

Ag
> Agz™2 fa o(Z) = 259 ( : _> (1 + aOG(ﬁ_S)(l —-z,1—2)+ regular) :
A ' 1—2z o
=7p+4, small z
£=0,2,...
(4.25)

where we remind that Ay = 2A, 4+ ¢ we defined in (4.8). The regular terms do
not contribute to the double-discontinuity to the order we are considering. The
d-dimensional conformal block for a scalar exchange between two identical scalar

operators was given in (2.23)

G(Ad’)O(l_z 1=2)= 2 m!n! ((AA-/F?WL_(CZA/;)?:EX)%HM [(1—2)(1 - 2)]m+% (1—z2)".

m,n=0

(4.26)
Note that in order to extract the small z dependence the sum over n has to be
performed. Expanding the right-hand side of (4.24) in powers of g up to cubic order

and keeping only terms that contribute to the double-discontinuity we obtain

Ay
S AP fag(z) = 28 ( ) + (4.27)
JN— 1—z
0=0,2,...
9 g9° 4d
+ 2Bez8eq, (8 log®(1 — 2) (1 + €d. + gOa) + 15 log®(1 — 2)) gé’o)(l —z,1—2),
where ag =2(1 — g+ ...) and
log z — 1
g (1—21-2) = 28555,
logz —1 logz —2)+2
DgiiD(1 — 2,1 — 2y = 1082 ng)g?gz ) £2 (4.28)
’ Z
Lis(1 —2) + logz — 1 —
Ongfi (1~ 2,1 — ) = P2 T AT IBE T 822G

and only the small z limit has been considered. We would like to recover the CFT-data
for leading twist operators from these singularities. This data admits the following

decomposition

Ap=A0 4+ 2AP 1

T =20+ P+ (4.29)
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where ~
20 (h+ Ay — 1) _
h =10+ Ay, (4.30)

) _
5 (AT (h—Ap+1)

ie. Ay = A[Ay](A, + ) by the notion of (3.50). In order to apply the inversion

procedure to this order we introduce

1
A = U+ 500,70,

A = U, (4.31)

where we have made clear that the natural variable in which to express U;(LO), U}—(Ll)

is h = ( + A, as opposed to ¢. These combinations are the ones that preserve the

reciprocity principle proven in [65]':

(0) 1)
[7(0) _ Uy U—(l) _ Uy
h Z J2m’ h Z J2m’ (4.32)

where in principle these expansions could contain both even and odd powers of 1/.J

as well as logarithmic insertions. In terms of these expansions we obtain

)A¢ 4 (4.33)

1
> (6 + 5 tog zull) ) ™) (2) = 25 (2

3

2
4 Bezheg <98 log2(1 — 2) (1 + €0, + gda) + %8 log(1 — z)) g1 —2,1-2).

This has exactly the form of the inversion problem discussed above. With the inver-

sion formulas given in appendix B.1 we find

0 7 9 C2<}_l_ 1>B+1 2 <2(B_ 1)}_1_51 3
Uim = Aldl(h) + <_(B I T R R § 7 >

2 2 25
USl) —_ _ 2 + _— 2 + 7717 3 + ey 4-34
h RN AR (4.34)

where S; denotes the harmonic number with argument s — 1. These results encode

the full CFT-data for leading twist operators to cubic order. They translate easily

'For the present computation we find it convenient to work with this “bare” h as opposed to
the “full” one, given by hs = %. The standard reciprocity principle for the CFT-data is usually
expressed in terms of the full conformal spin h¢(hs — 1). Note that h¢ and h coincide to leading
order.
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into the standard anomalous dimensions and OPE coefficients and agree exactly with

4

those obtained previously in [179]. The explicit results, including order ¢* and for

O(N) symmetry are available in the ancillary data of the Arxiv submission of [3].

4.2.4 Matching conditions at low spin

Let us write the result we have just obtained for the anomalous dimensions in terms

of the full k¢, defined as hy = ¢ + Ay + %w. We obtain

A= 9, 40— — g gt (g’ — g5
(bt — 1) (he — 1)y

(4.35)

These results followed only from crossing symmetry of a single correlator and the
inversion procedure used in this work shows that they basically follow from a one-
loop computation (since squares of anomalous dimensions will generate discontinuities
only at quartic order). We now impose two further matching conditions at low values

of the spin

Ay = d, (4.36)

Ao = 20,+g. (4.37)

The first condition is implied by the existence of a conserved stress tensor and fixes

the dimension of the external operator

11 1 11
Ay=1— €+ —¢>— >+ —q%+.... 4.38
¢ 26T 120 TgY et (4.38)

The second condition arises from the requirement that the inversion results can be
extrapolated down to spin zero®. For €, g # 0, in order to reach ¢ = 0 we need to
continue A, to the left of the pole at k¢ = 1. We will assume the standard continuation
across a pole, i.e. that the expression (4.35) remains valid also in this region. This is

summarised in Figure 4.1. Note that in the € expansion hy — 1 ~ ¢, so that the limit

2We would like to thank Aninda Sinha for suggesting this idea.
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Figure 4.1: Schematic graph of 7. As we move from spin two to spin zero we move to the
left of the pole at hy = 1, denoted by a red line. Note the change of sign in the correction.

Assuming the standard continuation in (4.35), we reproduce the correct dimension on both
sides.

is somewhat subtle. To leading order we obtain the following relation
—ge+3g° =0. (4.39)

This equation has two solutions. One corresponds to the free theory with g = 0 and

the other corresponds to

1
g:§e+..., (4.40)

fixing the relation between g and e. Plugging this into the expression for A, we obtain

1 1
Ay=1— €+ —e>+... 4.41
@ 26+1086 + 5 ( )

which exactly agrees with the well-known value for the WF model! The order g¢*
results obtained in the next section allow us to go one order further, and find the
relation

1 8

g:§e+ge2+.... (4.42)

This fixes the relation between g and ¢, and therefore all the quantities entering the

problem.
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4.2.5 O(N) model

The method used in this chapter generalises to the O(N) model immediately. Let us
consider the WF model with N scalar fields ¢ with global O(N) symmetry in d = 4—¢
dimensions. We can now consider the four-point correlator of the fundamental field
¢'. Intermediate operators decompose into the singlet (5), symmetric traceless (T')
and anti-symmetric (A) representations of O(NN). It is convenient to write the crossing

equations as

2 _ _
fo(z2) = ohsl-21 -+ e T 0o D s -2,
h@xyzﬁﬂ—zﬂ—z%%%&%ﬁﬂ—@l—@+;hﬂ—zl—@, (4.43)
24+ N

fA(Z, 2) = —fS(l — 5, 1-— Z) +

1
1—7,1- “fa(l—2,1—

where fr(z,2) = ((1 — 2)(1 — 2))**Gg(z, z). The crossing equations at leading order
have been analysed in [69] with the methods of large spin perturbation theory. Again,

at leading order the fundamental field does not acquire any corrections while

2
1
7;123) g =:9s, 750%) o NI T T (4.44)

In order to reconstruct the CFT-data from double discontinuities we note that these
arise from the identity operator, present in the singlet representation, and the bilinear
operators in the singlet and traceless-symmetric representations, which acquire an
anomalous dimension at order g. By looking at the double-discontinuity of the identity
operator on the right-hand side of the crossing equations (4.43) we see that at leading
order the OPE coefficients of the T and A representations are exactly as before, up

to a sign for A, while those of the S representation have an extra factor of 1/N.

Agro/)A,e = £A[A](h), quo,

)= CAIL) (4.45)

where ¢ is even for the symmetric-traceless and singlet representations and odd for

the anti-symmetric representation. A careful analysis of the crossing conditions also
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determines the corrections to order g of the OPE coefficients for the spin zero opera-

tors:
apy = agh(l = gr+...), (4.46)

which in fact holds for ¢* theories in any global symmetry group. By looking at the
crossing equations (4.43) and comparing them with our computation for the N = 1
case, it is then straightforward to write down the result for U;(Ll) = Ay, for each

representation. We obtain

2
1y 2 2, 2 3 2 N°+N-2 2 2 3
US,E_N2J2 (—gs+g56+9551+...>+ﬁ e (—gT+gTe—|—gTSl—|—...),
m _ 2 2 2 3 2 N-2 2 2 3
UTJ—Z—NJQ(—gs+gse+gsSl+...)+ﬁ o (—gt+ghe+giSi+...)
u 2 2, 9 3 224N 2 | 2 3
Ush =N 2 (—gs+gse+9551+---)—;W(—9T+9T6+9T51+---),

(4.47)

where J? = h(h — 1) and as before the harmonic number S; is evaluated at h — 1.
Similar expressions for U 153031 can be obtained in exactly the same way. All the results
are in full agreement with those obtained in [181,182] after substituting the literature

values

24N  (N+2)(N+3), 2 36+ 4N — N?

— 6 g
s N T Vs Tt TR Nt T (vysp O

gs
(4.48)

4.3 Results to fourth order

4.3.1 New operators at second order

Before proceeding to solve the crossing constraints to higher order, we would like
to make the following crucial observation. At order ¢g? new intermediate operators
are expected to appear, which are of the schematic form ¢*0"9,, ...d,,¢* and have
twist 7 = 4 + 2n and spin /. These operators are expected to acquire an anomalous
dimension to order €. Hence, they generate a double-discontinuity, proportional to the

square of their anomalous dimension, to order g*. Furthermore, these operators are
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highly degenerate in perturbation theory, so that computing this double-discontinuity
would require solving a mixing problem. The statement that the CFT-data can be
reconstructed from the double-discontinuities of the correlator is not restricted to
leading twist operators and the projection methods to higher twist, described in
section 3.2.4.2, can be used to find the leading OPE coefficients of these operators?.

The steps are very similar to the ones above, and to second order in g we find

D((+2)° 243048
FE2€+25) 12(@11)&;2)92 + for n = 0,

QA4+2n,0 = (4.49)
O(g") for n # 0.

This is a somewhat surprising result: only operators with approximate twist four
appear at this order*. As we will see, this constrains the possible structure of double-
discontinuities at fourth order and it will allow us to solve the problem completely.
Given the convergence of the inversion integrals we expect these results to be valid

down to spin zero.

4.3.2 Solving the inversion problem at fourth order

The contribution arising from leading twist operators in a perturbative e expansion

can be encoded as follows
_ N LA (0 ] WLy 2 e (m) (5
G(2,2) | gpan » = D_ 277 (uby +§logzum —i—glog zuy + ... ) A (2),  (4.50)

where u®) ~ g% for small g. As before, the u®) are the coefficients in the large J

expansions of U;(Lp ), whose relation to the usual OPE data is given by (2.90),

1 y o1 )
Ay (1)’ = U + ié‘ﬁU,{” )+ ga,%U;Ep* N (4.51)

3Since we are near four dimensions, the problem simplifies and one can use the four-dimensional
conformal blocks instead of the subcollinear blocks. The details are explicitly worked out in [3].

4As a byproduct, this result justifies an ansatz made in [183], where the vanishing of OPE
coefficients involving operators with n # 0 was assumed.
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To order g* the double-discontinuity of the correlator arises from four distinct contri-

butions, so that

z

Ao
G(2,2)|qan - = 2 ((1 — z> + 1y + 1+ 14+ regular) : (4.52)

I,> denotes the contribution from the scalar bilinear operator. To cubic order it
was given in the previous section. It is straightforward to compute it to fourth
order and the result is given in appendix B.2. I, denotes the contribution arising
from leading twist operators of spin two and higher: the square of their anomalous
dimension generates a double-discontinuity at fourth order. Since these operators are
non-degenerate, this contribution can be readily computed and it is given in appendix
B.2. As already mentioned, a direct computation of I, would require solving a mixing

problem, for instance by considering more general correlators®

. However, note that
at fourth order I, involves four-dimensional conformal blocks evaluated at reference

twist four. This implies the following structure
I, = (log zg(%) — log Zg(2)) log®(1 — %), (4.53)

where g(z) arises from a sum over twist-four operators
_ 1 _
9(2) = 3 Y ka1 —2) (4.54)
1=02,...
for some 7, equal to the weighted average, over degenerate operators, of the square
anomalous dimensions 7, = <a47mig> =3 a47g77;’72747i. As such it is regular around

z = 1. Furthermore, the structure of the OPE to this order implies the following

5The contribution from twist-four operators to the anomalous dimension of leading twist operators
starts at order 1/¢%, see [62], so that the leading terms in a 1/¢ expansion can still be computed
without its knowledge. This was done in [184] by applying directly the methods of [66] for isolated
operators. Since there is an accumulation point at twist two, one should be careful. In principle the
correct procedure from the large spin perspective would be to compute the double-discontinuity due
to the tower of twist-two operators and then compute the anomalous dimensions from there. The
procedure of [184] is justified since the resulting series are convergent.
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expansion around z =0 6
g(2) = aglog® 24+ oy logz + ag + ... (4.55)

We will now discuss how to fix U}—(LO), Ul—gl), U;(LQ) to quartic order. Before we proceed,
note that the term log zg(z) in I will only contribute to U,—gl). Hence U}—(LO) and U;(LQ)
only require minimal information about ¢(z), namely only its limit as z — 0. As
a result, they could be fully determined in terms of oy and «s, even without any
knowledge of twist-four operators. We will be able to do even better than this.

Let us start with U,—EQ). From the expressions in appendix B.2, it follows that I,
and I do not contribute to U}—EQ), as they do not contain a log? z piece. The whole
contribution arises then from I, and is proportional to —aglog zlog®(1 — z). From

the results in appendix B.1 this immediately gives

U,—EQ) = — QO]HQ4, (4.56)
which exactly agrees with Ay(v,)? to order ¢g* provided oy = 1/16.

To compute U}—EI) one needs to know g(z). The full results for double discontinu-
ities up to cubic order as well as the double discontinuities in appendix B.2 suggest
that perturbative results for the present correlator organise themselves in pure tran-
scendental functions with discontinuities around z = 0 and regular around z = 1.
Furthermore, the degree of these functions increases with the perturbative order in a

prescribed way’. If this principle holds then we expect g(z) to be given by a linear

combination of the following building blocks

z—1
{log? 7, Lis(1 — 2), log® 2, log Z Lia(1 — 2), Lis(1 — %), Lis <2 - )}. (4.57)

6Specifically, note that in equation (3.4), on the left-hand side any higher powers logk z would
have to be generated by higher powers 757 ¢ of anomalous dimensions, which contribute only at order
g%* and higher.

"More precisely, up to this order we will assume that the answer can be written as combinations
of polylogarithms of z and 1 — z, without rational functions in front, such that the total degree
increases linearly with the loop order. This structure is very familiar in other perturbative contexts.
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These blocks form a basis of functions as described above. Any other function with the
same features can be related to combinations of these by identities for polylogarithms
such as (A.11) and (A.12). The fact that g(z) arises from twist-four operators in the
dual channel, constrains the possibilities. Furthermore, consistency with (4.54) and

(4.55) leads us to the following result

g(z) = 11610g22 +a (—élog?)i — glogzLig(l —Z)+ Lig(1 — 2) + Lis (z;l)) :

(4.58)
with a single undetermined coefficient. We would like to stress that this expression can
be systematically tested as an expansion around z = 1. Since ko o(1—2) ~ (1—2)*,
to any given order in (1 — Z) only a finite number of operators contribute and the
mixing problem is finite. For instance, twist-four operators with spin zero and two
are non-degenerate. The anomalous dimensions for these operators are known, see
section 2.3.3, and in the conventions used here they take the form 4,9 = 39 + ...
and 40 = 4/3g + ... 8. From (4.49) we can also read off a;o = ¢*/6 + ... and
asz2 = ¢g*/160 + .. .. These values are exactly consistent with the expression for g(z)

up to fifth order in (1 — 2) and furthermore fix « = —3/2. With this we find

1 1 3
9(z) = 16 10@;2 z— 5(2 log z — 5('3 +..., around z = 0. (4.59)

We have now all the ingredients to compute U,—EO) and U}—(Zl) to fourth order. Using the

inversion formulae in appendix B.1 we find

R —?9 J?

M —2, 2B+S8) 4 1 [6 T+485,
v ! S\t T

—9¢y — 65 — 365, —125_, — 58) gt + ... (4.60)

8 Alternatively, these anomalous dimensions can be computed from the discontinuities of the
correlator at cubic order by a projection from the leading twist family [3].
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and

=2 1 /348 : 1 (2
U = A[A)(B) + ——d* + — (ﬂl + 2@) R ATVE (ﬂ — 106¢,

h J4 g J2
56+ 3G + 72¢3 + 67 + 365; — 125,
J2

+ 7205 — 2405, — 5453) .

(4.61)
where the argument of all nested sums, defined in appendix B.1, is h — 1. In these
expressions we have traded the dependence on € in favour of g. The CFT-data can
then be recovered from (4.51). In particular

g® 15 @
©) 19 77D
Uy "+ 30,07 + .0

Ve = ; (4.62)

and the result can be seen to exactly agree with that obtained in [185]?. In order to fix
Ay and g(e€) to this order one could proceed exactly as before: Ay follows again from
conservation of the stress tensor while g(¢) follows from the matching condition at spin
zero. However, the later result to cubic order would require going to higher orders in

our computation. Instead, we will take a shortcut and assume the known value of the

dimension of the fundamental field Ay = 1—5+ %8 + 110576 + (pors — 235G )et +. . .
This together with the conservation of the stress tensor gives the relation between ¢
and e:

8 , ( 305

€ 4 3
_fL° o2 463
9=3% 1% T\ 27<3>€ + (4.63)

Let us emphasise however, that the first two orders follow completely from our results,
without any additional input, and also the next term could be in principle computed
in our formalism if extended to order €%. The result for the OPE coefficients is
completely new. The most interesting quantity that can be extracted from them is
the central charge, related to the OPE coefficient for ¢ = 2. In terms of ¢ we find
exactly the fourth order result (4.1) quoted at the beginning of this chapter. The

result to cubic order exactly reproduces what was found in [179]. The result to fourth

9We would like to thank the authors of [184] for making us aware of a typo in [185].
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order is new. Setting ¢ = 1 we observe that this new contribution gets us closer to

the highly precise numerical result for the 3d Ising model found in [58,92].

4.3.3 O(N) model at order €*

Before we conclude, let us summarise briefly the results of [3], which considered the
O(N) model. Also there, the new operators to contribute at order ¢* were families
of weakly broken currents and of operators of approximate twist four, but now in
all three representations S, T and A. The contributions from twist-four operators
required an ansatz similar to (4.57), but now the anomalous dimensions of non-
degenerate operators (spin zero in S and 7', and spin one in A) was computed using
a projection at order € along the lines of section 3.2.4.2. For completeness, we give

here the results from [3] for the central charges in the critical O(/N) model in the 4 —¢

expansion:
Cr o 5(N +2) 2 (N +2) (TN? + 382N + 1708)63
(N +2) (65N* + 5998 N3 + 309036 N2 + 2396800N + 5440832) ,
— €
1728(N + 8)6
(N +2) (2N3 + 43N? 4+ 922N + 3488) (3 , 5
@) 4.64
+ 12(N +8)° € +0(), (4.64)
and
Cy o 3(N +2) 2 (N +2)(N?+ 132]\H—632)63
C'Jfree 4(N + 8)2 8(N + 8)4
N (N +2) (11N* + 246 N3 — 13124N? — 126976 N — 310976) ,
€
64(N + 8)6
(N +2) (TN? + 442N +1792) (3 4 5
O(e”). 4.65
* A(N +8)7 € +0) (4.65)

4.4 Conclusions

We have used analytic bootstrap techniques to derive the anomalous dimensions and

OPE coefficients of bilinear operators (weakly broken currents) in the WF model
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in d = 4 — € dimensions, to fourth order in the e expansion. To cubic order the
computation is essentially straightforward, since the double-discontinuity arises solely
from the identity operator and the bilinear scalar. This simplicity is also manifest
in the results of the O(N) model, and in section 6.2.1 we will generalise this to any
global symmetry. At fourth order the situation is much more interesting, since two
towers of high spin operators, of twist two and four respectively, contribute to the
discontinuity. The contribution from twist two operators can be readily computed,
while the structure of perturbation theory, together with the explicit form of four-
dimensional conformal blocks, allows to make a proposal for the double-discontinuity
due to twist-four operators. This proposal can be systematically tested order by
order in powers of (1 — Z), by solving a finite order mixing problem. This satisfies
all possible consistency conditions and is compatible with features of perturbation
theory from other CFTs. With this result, we have found the CFT-data to fourth
order. Two further constraints, namely conservation of the stress tensor, together
with a continuation to spin zero, allowed to fix the anomalous dimensions of both the
scalar operator ¢? as well as the dimension of the external operator.

There are several interesting open problems. A remarkable feature of our compu-
tation is the apparent analyticity down to spin zero. This allowed us to reproduce
constraints analogous to those of a vanishing beta function. It would be interesting
to understand the systematics of this to higher orders, and even non-perturbatively.
It would also be interesting to understand the structure of double-discontinuities to
higher orders in the € expansion. Up to fourth order we have observed that the func-
tions that appear have pure transcendentality. It is tantalising to propose that this
persists to higher orders which would greatly simplify the computation of CFT-data.
The extension to order e* requires detailed knowledge of the operator content of the
theory in question, such as the degeneracy of the operators at approximate twist four.

As mentioned above, this has been done for the O(/N) model in [3], but not in theories
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with other global symmetry groups.

A natural direction would be to extend these results to higher orders. At order
€® the same operators contribute as at order €*. The challenge, again, is to find the
contribution from the twist-four operators. It would also be interesting to consider
analytic constraints arising from mixed correlators. In the present case one could
consider correlators of the fundamental field and the bilinear scalar. The crossing
constraints for such a system are expected to be stronger than the ones considered in

this chapter.
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Chapter 5

Weakly coupled gauge theories

5.1 Introduction

In this chapter we apply this method to weakly coupled conformal field theories in

four space-time dimensions. We study four-point correlation functions
G(x) = (v1,230) (O (1) O(22) O(3) O(4)) (5.1)

of identical operators built out of fundamental scalar fields of the theory in the small
coupling g expansion. Here, Ay is the conformal dimension of the operator O and
x;; denotes the distance between two space-time points. A prototypical example of
such theory is N' =4 SYM. In order to focus our attention we will discuss two very
particular scalar operators in N/ = 4 SYM: the Konishi operator K and the half-
BPS operator O, in the [0,2,0] representation of the SU(4) R-symmetry. Both
of them are the simplest gauge invariant scalar operators and have the schematic
form O = Tr(®?), where ® is a fundamental scalar field of the theory. The methods
developed here will however apply to a large class of conformal field theories satisfying
a set of assumptions spelled out at the end of this section.

In the following we study four-point correlation functions in the perturbation

theory around vanishing coupling constant g = 0,

G(x) =G92) +gGW(z)+.... (5.2)
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The leading-order answers G () can be found by directly performing Wick contrac-
tions and depend on a single parameter related to the central charge of the theory. In
this chapter we focus most of our attention on the one-loop function G)(z) and find
its general form using only conformal symmetry, crossing symmetry and the structure
of the operator product expansion (OPE). In the two cases that we study we find a
family of crossing-symmetric solutions which depend on a small number of free param-
eters. The most transcendental part of the answer is given by the scalar box function
times a rational function. These have to be supplemented by lower transcendental
functions. We find the explicit form of these functions without referring to Feynman
diagram calculations. In particular, we will avoid introducing any regularisation or
any redundancies fundamentally bound to the Feynman approach. In order to find a
particular four-point correlator we supplement our general solution with a few explicit
values of the CFT-data for operators with small classical conformal dimension and
spin.

Our method will be based on only a few assumptions:

e We study unitary weakly coupled conformal gauge theories in four dimensions.
In particular, unitarity implies that the operators in the OPE expansion sat-
isfy the unitarity bound and have non-negative (squared) OPE coefficient with
O = Tr(®?). Moreover, the fact that we study gauge theories implies that the
fundamental field ® is not part of the spectrum, and therefore the correlator of

O provides the strongest constraint on the CFT-data.

e We assume that infinite towers of operators parametrised by spin ¢ have a
regular expansion of the CFT-data at large spin, i.e. the CFT-data can be

written as a Taylor expansion of % with possible log ¢ insertions.
Furthermore we will use the following properties of conformal field theories:

e We use the fact that four-point correlation functions are crossing symmetric.
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e We use the knowledge of the OPE structure. Furthermore, we rely on an explicit
form of the conformal blocks in four dimensions and the superconformal blocks

for the half-BPS operators Qg in N =4 SYM.

It was already found in [105, 186] that there exists a class of crossing symmetric
solutions which correspond to CFT-data that is truncated in spin. In particular, the
instanton solutions are of this type, as shown in [187]. Our analysis extends these
results by including also solutions unbounded in spin. Since crossing at one loop in
perturbation theory is a linear problem, we can treat these two types of solutions
separately and focus only on the latter.

The chapter is organised as follows: in section 5.2 we collect basic information
about four-point correlation functions and their properties. In section 5.3 we intro-
duce the notion of twist conformal blocks and H-functions and study their properties.
In section 5.4 we use H-functions to find a family of solutions to the conformal boot-
strap equation and in particular recover the known form of the four-point correlator
of Konishi operators. In section 5.5 we repeat the analysis from the previous two
sections in the case of the correlation function of four half-BPS operators Oyy in
N = 4 SYM. We end the chapter with conclusions and outlook and supplement it

with a few appendices containing the more technical ingredients of our results.

5.2 Four-point correlators

In this section we collect all relevant information about four-point correlation func-
tions of operators that we will study in the rest of this chapter. In the first part we
describe four-point correlators of four identical scalar operators with classical dimen-
sion Ay = 2. This is relevant for the Konishi operator in N' = 4 SYM, which is of the
form

K(z) = Tr(®!(2)®'(2)), (5.3)
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where I is the SO(6) R-symmetry index. We study the correlation function of four
Konishi operators using the ordinary conformal block decomposition in four dimen-
sions [51].

In the second part we study the N'=4 SYM half-BPS operator in the [0,2,0] =

20’ representation of the SU(4) R-symmetry
Oz0(,y) = yr ys Te(P! (2) @7 (2)) , (5:4)

where we have introduced an auxiliary six-dimensional complex null vector y;, namely
y-y = yryl = 0. In order to properly accommodate for a non-trivial R-symmetry
structure of the correlation function of four half-BPS operators we employ the super-

conformal blocks introduced in [145].

5.2.1 Conformal block decomposition for Konishi operators

First, let us consider the case relevant for the Konishi operator I, namely a scalar
operator with the conformal dimension
Ar=2+Y 14" (5.5)
i=1
The crossing equations for the four-point correlator of Konishi operators are
u 1 A A
Glu0) =G (%) v*G(u) = u Gl ). (5.6)
vov
In the following, we will solve these equations and study their solutions as pertur-
bations in the double lightcone limit. While the first equation in (5.6) can easily be
expanded using the conformal block decomposition, the second equation has to be
treated more carefully. In order to do that we will need to employ the twist conformal
blocks introduced in [68]. We refer to the second equation in (5.6) as the conformal

bootstrap equation.
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| [~ X X

Figure 5.1: Wick contractions relevant for the tree-level calculation.

The conformally invariant function G(u,v) entering (5.6) admits a decomposition
into conformal blocks obtained by considering the OPE expansion in the limit z; — x5
G(u,v) = Z argi Gro(u,v). (5.7)
i

Here the sum runs over all conformal primaries of twist 7 = A — ¢, where A is the
conformal dimension, and even spin ¢ present in the OPE decomposition of two Kon-
ishi operators and the index ¢ = 1, ..., d, o runs over a possible additional degeneracy
in the spectrum of operators with a given twist and spin. We denote the square of
OPE coefficients by a4, = c,zc,coﬂe’i. The conformal blocks G ¢(u,v), which resum
contributions coming from all descendants of a given conformal primary operator, can
be found explicitly for four dimensions [51]. For even spins they take the following

form (2.21):

ZZ

Gri(2,5) = —— (Fge(2)kz-1(2) = kg e(D)kz1(2)) . (5.8)

z

It is easy to check that each conformal block satisfies the first equation in (5.6).
On the other hand, in perturbative conformal gauge theories the four-point func-

tion admits a small coupling expansion
G(u,v) = GO (u,v) + g GV (u,v) + ... (5.9)

where ¢ is the gauge coupling. The tree-level term can be directly evaluated using

Wick contractions in the free theory as in figure 5.1 and renders

2 2
GO (u,v) = <1+u2+zb2>+c<u+z+1:)>, (5.10)
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where c is a theory-dependent constant which for example for N = 4 SYM with gauge
group SU(N) is proportional to the inverse of the central charge, ¢ ~ (N? —1)7L.
Performing the conformal block decomposition we find that for each reference twist
To = 2,4,6, ... there exists an infinite tower of operators contributing to the sum in
(5.7), labelled by spin ¢ and degeneracy index i. This twist degeneracy will be partially
lifted in the next sections, when we include perturbative corrections to the four-point
correlator. Using the conformal block decomposition of (5.10) we can compute the
tree-level structure constants, i.e. the OPE coefficients. They are non-zero only for

even spins ¢ and take the form
I(+2)?

T(20+m0-1)
I(2-1)°T (P +6) kil

2ttt (C(CDF + (o +L=2)((+1)), m>2,

where we have introduced an average of structure constants over operators with the

(0)

70,4

2c 7'0:2,

(i) = (5.11)

same reference twist and spin, (a, ;) = >, aig?u. Notice that from the correlator

(5.10) alone it is not possible to calculate individual structure constants by this pro-
cedure.

In the following sections we will find the most general one-loop correction to
(5.10) using the conformal symmetry, crossing symmetry and the structure of the

OPE. In particular, we will compute an explicit form of the perturbative corrections

(0) ( 1)

to the structure constants (a ,) — <aﬂ0)?£> + g{a,, ;) as well as to the twists 7o —

( 0) (1) )

a‘l’o,[’yﬂ'o,[

(@)

To+ g . The knowledge of results for individual operators O, ,; will not be
necessary to find the complete four-point correlator at one loop, they will become
relevant only at the two-loop order. We will comment on this matter in the outlook

of this chapter.

5.2.2 Superconformal block decomposition for half-BPS op-
erators

As the second example, we consider the four-point correlation function of four half-

BPS operators Oy in N' = 4 SYM, which are protected and their dimension is
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Aom, = 2. The four-point correlation function of such operators decomposes into the

following two contributions

<020' (1‘17 y1)020' (3327 yz)Ozo'(ﬂfs’ y3)020'(~”€47 y4)> = gfree(l'a y) + Qpert(x, fl/)a (5~12)

where Gpert(2,y) vanishes when g — 0. The part Gpee(,y) corresponds to the free
theory and is a rational function of space time and R-symmetry coordinates. Again,
it can be evaluated directly by Wick contractions and it boils down to the same set

of graphs as in figure 5.1. It renders

Ghree(,y) = d%2d§4 + d%3d34 + dﬂdég +c (d12d23d34d14 + diadasdsad;s + d13d24d23d14>,

(5.13)
where the superpropagator d;; is given by
y2
dij = 93%’ Yij = Yi - Yj, (5.14)

and ¢ is a theory-dependent constant which for SU(N) N = 4 SYM again depends
only on the central charge é ~ (N? —1)71.
From the superconformal Ward identities [188], the interacting part of the four-

point function can be written in a factorised form

H(u,v), (5.15)

where we have introduced a set of cross-ratios for the R-symmetry coordinates

2 .9 2 2
aa =L (1-a)1-a) = B (5.16)
Y13Y24 Yi3Y4

Similar to the four-point function of Konishi operators, crossing symmetry implies

that the function #H(u,v) satisfies the two equations

H(u,v) = i?—[ (u 1) : v*H (u,v) = u*H(v,u), (5.17)

v2 T \vw
where in the second equation we used explicitly the fact that A@m, = 2.
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On the other hand, the four-point correlation function (5.12) admits a supercon-
formal block decomposition, see e.g. [189]
gfree<x7 y) + gpert ('ru y) = d%2d§4 Z A’R,i S’R(Q?, y>7 (518>
R,i
where the sum runs over all superconformal primary operators appearing in the OPE

expansion of two half-BPS operators

0201 X 0201 s Z 0020,(920,(97{’1. (OR,Z + .. ) . (519)
R,z

Superconformal primaries in (5.19) are labelled by their twist 7 = A — ¢, spin ¢ and
a representation of the SU(4) R-symmetry of N' = 4 SYM, which we collectively
denote by R. Again, we also introduced the label ¢ which takes care of a possible
additional degeneracy of operators with the same twist, spin and the R-symmetry
label. Importantly, the superconformal blocks do not depend on the label 7. An
explicit description of superconformal multiplets and an explicit form of the super-
conformal blocks Sk can be found in the appendix C.1. As it is summarised there,
we distinguish three types of supermultiplets in (5.19): half-BPS, quarter-BPS and
long supermultiplets. All half-BPS and most quarter-BPS supermultiplets have their
conformal dimensions and structure constants protected by supersymmetry. Then,
their two-point and three-point correlation functions are completely determined by
the free part Gpe.. They will therefore not contribute to the interacting part H(u,v)
of the four-point correlation function. The only exception are quarter-BPS supermul-
tiplets at the unitarity bound. They can combine in the interacting theory to form
a long, non-protected supermultiplet [52,190]. This is exactly the case for the twist-
two operators. Together with the other long supermultiplets they form a complete
non-protected spectrum of operators present in the intermediate channel. Since we
want to find the one-loop correction to H(u,v), we will in the following be interested

only in the non-protected part of the spectrum.
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We can perform a superconformal block decomposition of the leading contribution

Gpree(, ) to the four-point function and get structure constants for all non-protected

multiplets
~ T(e+72+2)2 .
<A(0)e> _ {2 (T026+)20+7) . To = 27
70, r +1)°T + +2 ~ 70
T(1o+1)I(T0+26+3) (C (_1) >+ (7—0 + £+ 2)(6 + 1)) ; To=4%4,6,8,....

(5.20)
(0) ) = (a (0) )

70,¢ 7'0 N4

It is interesting to notice that (A i )
c—¢,To—T10+4

Furthermore, using the explicit form of superconformal blocks (C.9) and (C.11) for

non-protected multiplets, the interacting part of the four-point correlation function

can be expanded as

H(u,v) = > (A 0w Grian(z, 2), (5.21)

T,
where G, (z,Z%) is exactly the same conformal block as in (5.8) in section 5.2.1.

(0)

7.0) and superconformal

We notice that both leading-order structure constants (A
blocks for non-protected supermultiplets are related to the Konishi case by shifting
Tog — To + 4. For this reason, the one-loop calculation for the four-point correlator of

half-BPS operators is analogous to a similar analysis for four Konishi operators, after

this shift is implemented at the level of twist conformal blocks.

5.3 Twist conformal blocks

In this section we describe twist conformal blocks and their generalisations introduced
in [68] and use them to rewrite the conformal block decomposition of four-point
correlation functions from the previous section. We focus in this section exclusively
on the case of four Konishi operators, leaving the half-BPS case to section 5.5. We
start by defining twist conformal blocks relevant for the tree-level correlators and
then define their generalisations with spin-dependent insertions that will be relevant

for the perturbative expansion around the tree-level solution.

132



5.3.1 Twist conformal blocks

A motivation to study twist conformal blocks is the observation that in perturba-

tion theory there exists, for each even number 75 = 2,4,6, ..., an infinite family of
operators O, ¢, £ =0,2,4,...,i=1,...,d, with the reference twist equal to 7y:
T=1+0(g). (5.22)

Therefore, at tree-level we have an infinite twist degeneracy which is lifted only when
we turn on the coupling constant. In particular, it motivates us to resum contributions
coming from all intermediate operators with the same reference twist 7y. In this case,
the leading order four-point correlator (5.10) can be decomposed as
g(O)(u7U) = Z HTO(U’uU)a (523)
T0=2,4,...

where we have defined twist conformal blocks

H,, (u,v) = fxa(o) VGl (1, 0), (5.24)

70,¢
£=0

with (agﬁ given in (5.11). The sum in (5.24) can be performed for any 7y using the

explicit form of conformal blocks. For example for 75 = 2 it renders

Hy(u,v) = 4 e, (5.25)
v

For higher twists, the explicit form of H. (u,v) is more involved and we will not
present it here. However, in all subsequent calculations we will need only their power
divergent part as v — 0. Such divergent parts can be easily calculated and written

in a closed form as we will show below.

5.3.2 H-functions

In order to study perturbative corrections to the tree-level correlation function G (u, v)

we need to generalise the notion of twist conformal blocks. In particular, when the
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coupling constant g is not zero, the twist degeneracy we observed at the tree-level

is lifted and each O, ¢; gets individual corrections to their twists and structure con-

stants,
Troli = To T 97%,)“ + O(g), (5.26)
i = G T 9 Gyl + O(67). (5.27)
Here 7%7)&1- is the one-loop anomalous dimension of O, ¢, and a(72£7i is the one-loop

correction to the structure constants. In the conformal block decomposition, these
corrections will introduce an additional dependence on the spin and will modify the
sum in the definition of the twist conformal blocks. Therefore, we will need to calcu-

late sums of the form

imi‘;?m (0) Gry eu,v), (5.28)

=0
where k., (¢) stands for the spin dependence coming from either the anomalous di-

mensions or the OPE coefficients. In particular, these insertions can be of two kinds:
unbounded in spin ¢ or truncated contributions with finite support in . The trun-
cated contributions do not affect the enhanced divergent part of correlator and we
will postpone their study to the following section. On the other hand, for the inser-
tions unbounded in spin the sum (5.28) can be calculated as an expansion around the
infinite value of spin. In particular, in the unbounded case k., (¢) can be expanded in

inverse powers of the conformal spin J2 = (%2 +¢)(2 +(—1):

> C'm C’m,lo
fr(0) = 32 ( o 5 log Jr, +> (5.29)
70 70

m=0
as was shown in [65]. Then, in order to study perturbation theory beyond the tree-

level, we consider a set of functions [68]

n 1 T "
H(m,log )(U, U) — Z(a(O) >MGT0,Z<U7 7})7 (530)

i)
which we will refer to as H-functions. The H-functions describe contributions from an

infinite sum of conformal blocks with spin-dependent insertions. In the case m =n =
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0 the H-functions Hﬁg)(u, v) coincide with the twist conformal blocks. Importantly,

the functions (5.30) satisfy the following recursion relation

H(m,log")(u’ ’U) — CH7(_m+1’10gn)(U, 'U), (531)

70 0

where we defined the shifted quadratic Casimir (3.49)

Z (20— (-2 - Y

Z—Z 4

C=D,+ D;+2 , (5.32)

with D, = (1 — 2)2%9? — 2?0, . The relation (5.31) can be easily proven by notic-
ing that each individual conformal block G, (2, Z) is an eigenvector of the Casimir

operator C with the eigenvalue Jf_o.

5.3.3 Enhanced divergences

In the following we will not need an explicit form of the functions H{™"°") (u,v) but
only their enhanced divergent part as v — 0. Expanding (5.8) in this limit, one
can notice that the conformal blocks behave as a logarithm G, ,(u,v) ~ log(v) for
v — 0. By enhanced divergence we will mean terms which cannot be written as a
finite sum of conformal blocks. There are two kinds of enhanced divergences we will
encounter: inverse powers of v, and functions with higher powers of the logarithm,
that is functions of the form p(v)log"” v, n > 1, where p(v) is regular for v — 0. As
was shown in [65], the power divergent part of H,, (u,v) is completely determined by
operators with large spin ¢. In order to compute this divergent part it is therefore
sufficient to study the tail of the sum in (5.24). As explained in the following section

such computations can be done explicitly. For example, at 79 = 2 it renders
HO (u,0) = ¢ + 0(°). (5.33)
v

One notices that the power divergence agrees with the explicit calculation in (5.25).

Moreover, the finite term O(v°) will not be necessary in the following sections.
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Throughout the chapter we will often be interested in comparing only the enhanced

divergent part of various functions. For this reason we introduce a notation

flu,v) = g(u,v) if  f(u,v) = g(u,v) + p(u,v) + q(u,v)logwv, (5.34)

where p and ¢ are polynomials in v with coefficients that are functions of u. This is
to say that f(u,v) and g(u,v) are equal up to “regular terms”, by which we mean
contributions which can come from a finite number of conformal blocks. In particular,
regular terms can contain a single power of log v but no higher powers of the logarithm

nor inverse powers of v.

5.3.4 Computing H-functions

We now describe how to construct the power divergent part of the H-functions that
we will need in the subsequent calculations. First, we describe how to use the kernel
method, motivated by [62] and systematically developed in [63,64]. This method,
however, becomes inefficient very fast. For this reason we explain how to use an
alternative method based on the recursion relation (5.31). We start by focusing on
the case of operators with twist 7y = 2, and later on describe how H-functions for

higher twists arise naturally from the twist-two case.
5.3.4.1 Factorisation

We are only interested in the terms with a power divergence as v — 0. In the
following, it will be more convenient to use the coordinates (z,Zz) instead of the
cross-ratios (u,v). In these coordinates we are interested in the limit Z — 1. Using
the definition (5.24) and the explicit form of conformal blocks, any power divergent
contributions to twist conformal blocks must arise from an infinite sum over spins.
Moreover, they can only come from the second part of the conformal block (5.8).

Then the part of the twist conformal blocks with a power divergence as z — 1 can
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be written as
ZZ

22 k() @k 2) (5.35)

— 2
z z =0

Similar reasoning can be applied to all H-functions defined in (5.30). For this reason

the power divergent part of the H-functions takes a factorised form

H_I(_:l,log")(z’ 2) - - Zk%o_l(z)ﬁs—zl,logn)(g)’ (536)
where we have defined the functions
FpmIos™) oy _ oy, 108" Tr
70 (2) = ZZ<GTO,4>JT %OM(Z)- (5.37)
=0 T0

We notice now that the action of the quadratic Casimir (5.32) simplifies signifi-

cantly when applied only to the divergent part of the H-functions

m,log" =\ < = F7r(m,log™) , _
CHG""(z,2) = ———kn () DHy™(2), (5.38)
where
D=02-2)(1-20)+72*(1-202=zDz" (5.39)

where D is the SL(2,R) Casimir defined in (2.24). Additionally, due to (5.38), the

recursion (5.31) implies a similar recursion relation for ﬁign’logn)(i), taking the form

F(m,log”)(z) _ @F(erl,log”)(z) ] (5.40)

70 70

It is important to notice that the operator D maps regular terms to regular terms
and therefore does not introduce any enhanced divergence while acting on finite sums

of conformal blocks. More generally, for polynomial functions p(z) it acts as

n(n—1)zp(z)log(l — z)" 2
1—-2z

D(p(z)log(l —2)") = +0((1 = 2)%). (5.41)

It is clear that for n = 0, 1 no enhanced divergence is produced when acting with D.
On the other hand, expressions with higher powers of the logarithm, namely n > 1,
will always produce terms with negative powers of 1 — z after we act on them with
D a finite number of times. This property explains why we refer to such terms as

enhanced divergent.
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5.3.4.2 Derivation of H-functions: kernel method

Let us now focus on finding the power divergent part of the functions F(Tzn’logn) (2). In
principle, this is possible for any m and n. However, in order to solve the one-loop
problem we will see that it is sufficient to focus on Fg}n’bgn) (2) forn =10,1and m < 0.
Since we want to compute just the power divergent part of these functions we only
need to consider the tail of the sum over spins in (5.37). In this limit the sum is
well-approximated by an integral which can be explicitly computed using the method
described in [63,64], see also the appendix A of [66]. This method allows to capture
all power divergences, namely all terms of the form ~ % for k > 0.

Let us start by considering the twist conformal block H, 7Y )( ) and compute

z 1
zz (@S ke (2 22 ki i) 2R (04+ 1,0+ 1,20+ 2; 2). (5.42)
l

The divergent contributions come from large spins of order ¢ ~ ﬁ, where we have
introduced the notation € = 1 — Z in order to simplify the following formulae. There-
fore, we can define ¢ = % and convert the sum over ¢ into the integral % J %. We
also replace the hypergeometric function by its integral representation

o B F( tbll—t)Cbl
o Fi(a,b;c;x) = T (e =) /d 0=z (5.43)

Consecutively, we perform the change of variables

%(%j%):f, f=1—wyE. (5.44)

The integration limits of the w integral can safely be extended to [0,00) since this

does not add any power divergent term. Implementing these changes of variables

gives the result

£ ke (2) = (1—¢) C/OO diKs(J, ), (5.45)
7 0

where we have defined the integral kernel

=), vy _;—1) (w(guf\)/g_gf)f(H@)- (5.46)
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Expanding Ky(J, ) in powers of & we get
A A 1 4, A A N
Ko, e) = 4TKo(2)) - — 5 (JKo(2]) + (1427 K1 (2)) + ..., (5.47)

where K, (z) are the modified Bessel functions of the second kind.

In particular, this method allows us to find

—c+O((1 - 2)"), (5.48)

(27) =

which is exactly the previously mentioned result (5.33). Importantly, it agrees up
to regular terms with the direct calculation (5.25). Let us emphasise that for the
twist conformal block H;O)(Z) there are no additional enhanced divergences beyond
the power divergence, namely there are no terms with log"(1 — 2z) for n > 1. This
statement will become crucial when we use the recursion relation method in the
following section.

More generally, using this method we can find all negative powers of e = 1 — z of

the H-functions with m < 0 by modifying the integrand with suitable insertions

H™ME) (2) = (1 - o) / dj Ko (j, € )(;)mlogn (\k) (5.49)

For example for m = 0, n = 1 we find after an explicit calculation

—(0Jog) ,_ . 1
H, g(z)zl_zc

2.) (log j- ;log(l - z))

. __E log(1 — 2) 0
T 1 2(1 — 2) c+0((1—-2)), (5.50)

where v is Euler’s constant.
By studying the e-dependence in (5.49) we also immediately find a general schematic
form of the power divergent part of H lo” )( ) for m <0,

mlog - (mlo ") lOg (1 _ Z)

=0 j=0

where all coefficient kﬁ’bgn) in principle can be calculated from (5.49). This quickly
becomes very tedious and for this reason we present a different approach in the

following section.
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5.3.4.3 Derivation of H-functions: recursion relation method

We will now move to a more efficient approach, where we derive the H-functions

Fém’logn)(z) using the recursion relation (5.40). From (5.25) the complete enhanced
divergent part of twist conformal block for 7y = 2 is Fgo)(i) = 7%=. The recursion

relation (5.40) immediately allows us to find all divergent parts for all H-functions

Fém)(é) with m < 0 by simply using
7m)  —\ _ /—m77(0)
Hy,"(2)=D "H, (2), for m <O0. (5.52)

Also for positive m we could in principle find the enhanced divergent part of the H-
functions by solving differential equations (5.40). This becomes tedious very quickly
and moreover we would need to introduce two constants of integration every time we
increase m. However, as we already pointed out, we will not need H-functions with
positive m at all. Left to construct are therefore the H-functions with logarithmic
insertions. As described in the appendix A.4 of [69], these are given by differentiating

the ﬁém)(,?) with respect to the parameter m:

= (m,log™) , _ 10 —=(m,log" 1), _
Hy" % (2) = —57, ®(z). (5.53)

We will only need to consider the case n = 1, although the computation for n > 1 is
analogous. In order to find Hgo’bg)(z), we need to analytically continue Fém)(é) with
respect to the parameter m and then take the derivative. The most general form of
the enhanced divergent parts of Hgm)(i) for m < 0 is given by (5.51),
—m (m)
F7(m) o\ ki
H2 (Z) == ; (1—5)—_”5_'54'107 (554)

where all coefficients k’gm) can be found explicitly from (5.52). In particular, it allows

us to derive a recursion relation for the coefficients ki(m). For example for k(()m) we get

S = m? gl (5.55)
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which together with the initial condition &{”) = 1 coming from Féo)(é) =c(1-2)"!

allows us to find the general form
ki = D(—m+1)?, for m <0. (5.56)

Proceeding to subleading terms, and using as boundary conditions the explicit values
of k’z(_i) for i > 0 that can be calculated directly from (5.52), one can find all expansion

terms in (5.54). We present few first terms below

H(m)(z) N L(—m+1)%c m(2m?—6m + 1) T'(—m)?%c
2 (1—z)—m+ 3 (1—2z)m
(m — 1)m(m + 1)(20m?® — 54m? — 35m + 36) I'(—m — 1)%c
+ — +
90 (1—%z)—m-1

(5.57)

For all m < 0 this expansion is valid up to the order (1 — z)~!. Now, all expressions
in (5.57) are meromorphic functions and can be analytically continued to any value
of m. Taking the derivative with respect to m, as in (5.53), we obtain the divergent

part of Hy™'®(2)

" (2) = - im (log(1 = 2) = 281(=m) +2yp) + ..., (5.58)

where Sy(N) = I, & are harmonic sums. Again, for given m < 0, this expansion

is valid up to the order (1 — z)~L.
There exists a very compact way to encode all negative powers of 1 — z in the
(m;log)

functions H, (2) for m < 0 by constructing the complete enhanced divergent part

of Héo’log)(é). In order to do that we start with a general ansatz

Féo’log)(i) — f&clog(l —Z) + 16_1 c+ > el —z)elog’(l—2). (5.59)

< < =0

We can fix the coefficients e; and ey, by using the relation

F(m,log) (2) _ ﬁ—mﬁ(o,log) (2) 7 for m < O’ (560)

70 70
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and comparing it with the previously obtained expansion (5.58). This allows us to

find

—(0,log) , _ 1log(1l — %) YE 1 1—z 5(1—2)? 9 _
= — = - - T - o oe e l - .

Hy"(2) 2 1-z C 1-:° 12 10 504 clog”(1-2)

(5.61)

With this method arbitrarily many terms multiplying log®(1 — %) can be computed

if we use (5.60) for a sufficiently large —m. We refer the reader to the appendix C.2

where we have collected more orders of this expansion. Now, using the explicit form

of I (2) in (5.61) we can easily find all negative powers of Hy"'*? (%) for m < 0
F7(m,log™)

by applying the formula (5.60). A similar analysis can be done also for H, (2)

for n > 1, however we will not need these functions in solving the one-loop problem.
5.3.4.4 Higher twist H-functions

We end this section by describing how to compute the H-functions ﬁi;n’logn)(é) for
To > 2. First of all, notice that the tree-level structure constants for higher twists

(5.11) can be nicely written using the tree-level structure constants for twist-two

operators
(e —-1)21 0
0 < T T 0
= Tio—g e GV @ -2@F - D+ L) (@0 ) (662

where again J2 = (%0 + 6) (%0 +(— 1). When we plug this into the definition of twist
conformal blocks for higher twist and perform a change of variables j = ¢+ 2 — 1 we

get

(c(=1)%F = (3 = 2)(F = 1) + (2)?) (s ) k1 (2).
(5.63)
where (J5)? = j(j + 1). In the limit Z — 1 the sum over j can be replaced by a sum

from zero to infinity since the difference is a regular term. This leads to

A0 = Lt (0¥ -3 -23 - D) EYE +H@) . 5o
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This allows us to rewrite the twist conformal blocks for higher twists in terms of
functions we have already constructed. Similar analysis can be performed for all

H-functions leading to the explicit form for higher-twists

—mogm) o, . L(3 —1)*1 L . r(milog™) | Fr(m—1log") -

Ho (Z):F<72'0—3)C<(C(_1)2 —(30_2)(70—1))[{2 (2) + Hy (2’)>-
(5.65)

To summarise, all H-functions relevant for the one-loop problem can be constructed

(0) —=(0,log)

using just two functions: H, ' (z) and H g (2) whose explicit form can be found in

(5.33) and (5.61), respectively.

5.3.5 Decomposing one-loop correlator into H-functions

Knowing the explicit form of the H-functions, we focus now on the one-loop four-point
correlation function GV(z, z) and expand its power divergent part in terms of the H-
functions. By doing this we focus only on contributions to anomalous dimensions and
structure constants unbounded in spin ¢. Later on we will also include terms which
are truncated in spin. The latter do not interfere with our analysis of the power
divergent part of the correlator.

For each operator present in the intermediate channel we expand their conformal

dimension and structure constants as follows

Ti = To + 97%,)3,1' +0(g%), (5.66)
Urs = aloy; + galty + O(g?). (5.67)

Then the four-point correlation function G(z, z), up to the order g, can be written as

G9(z,2)+ gGW (2, 2)

_ 0 _
= 3 (b 900) (Groalei2) + 9780 Gtz 2)

H) (5.68)

70,440
0
0 — 1 — 0 1 _
= S G 2) 5 X (0G0 + ) (5 Gae2)) | ).
70,0 70,¢
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where we have again defined the averages (fr,¢) = >i fro..i-
In the last line of (5.68) the derivative with respect to twist 7 is understood as a
partial derivative of a function of two variables: 7 and £. It turns out that our further

analysis simplifies significantly if we instead use the variables (7,¢) defined as

(7.0) = <r,£ + ;) . (5.69)

Up to a constant factor, this is equivalent to a change of variables to (h, fb) as discussed
at the end of section 2.2.2. Then the partial derivatives in the new variables can be

related to the partial derivatives with respect to the twist and spin as

0 0 10 0 0
o =07 tagr  wai (5:70)

In particular, it implies that d:kz,,(2) = 0. We can now rewrite the derivative in the
last line of (5.68) as

0 _
5 (il (rGetz)

70,0

—Z( D) (;G o2, Z))

70,0

1 0
o) @ >
=70 + §<a7'0,[y7'0,f> (agGT()»e(Z? Z)))

. (< Gry Wﬁ?@)) GTO,E(272)> ,  (5.71)

T—T0 2 ag

where in the second line we dropped a total derivative with respect to ¢, which is a

regular term. Finally, we can rewrite the divergent part of G)(z, 2) as

2z

G0(:12) = Sl (kg 10+ T 5rs2))|

Z_ZTO7€

) k%"w(z),
(5.72)

T—T0

where we used the factorisation (5.35) of the divergent parts of the conformal blocks

and introduced

~ (@Ps)
<fYTO,E> = <a£§?é> ) (573)
(Gory W) = (i le) = 555 ({amerm )
oy L e 0/— 10 —
- <aTo,€> 2<a’7'0,€> ag <fy7'07£> 2 a£< 70, €> <’y7'07£>' (574)
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One can recognise the last formula in (5.74) as the one-loop perturbative expansion
of G, ¢ introduced in [69].

In weakly coupled CFTs at one loop, both the anomalous dimensions m and
the modified structure constants (&, ;) depend on spin as a single logarithm log ¢ at

large ¢. Therefore, in order to use the H-functions to constrain the unbounded parts

of the CFT-data we expand the modified structure constants (&, () and anomalous

dimensions (7, ¢) in the following way [65]:

TA \ = AT ,(m,lo, 0,

(Gro) = > 7(3](%” & log J,, + Z (]Ogm ; (5.75)
m=0 m=0

T\ = BT ,(m,lo 7' ,(m

Do) = ‘j](? Z8) Yog Ty + Z J‘;m Zrom), (5.76)
m=0

Inserting the expansions (5.75) and (5.76) into (5.72) we can finally rewrite the

divergent part of the one-loop correlator in terms of H-functions

GV(:1) = X 2 X (A 2(6) 4 By (b (2)

H (2 )
S 2= 25 T—)TO) 70 (2)7 (5 77)
where p = (m,log) or p = (m), m = 0,1,2,... and we have used the definition of

H-functions (5.37). This is the most important formula of this section and in the

following we will use it to completely fix the form of G (z, ).

5.3.6 Using H-functions: toy example

We present a simple example of how to use H-functions to extract the asymptotic
spin dependence of CFT-data given a particular function with power divergences. In
order to simplify our discussion we focus here only on the z dependence. In analogy
with the actual computations in the next section, we will assume that the sum of
H-functions produces a divergent expression containing a constant term and a term

proportional to log(1 — 2):

1—2)+ Ao
C.

— (5.78)

00 1

—7(m,log™) ,_\ . A1 IOg(
> 2 ClmpognyHy ™ (2) =
m=0 0
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We will work iteratively and fix coefficients Cp,10en) by repeatedly applying the
Casimir operator (5.39) on both sides of (5.78) and keeping only power divergent
terms. As a first step let us analyse the power divergent terms of (5.78) itself. In this
case only two terms in the sum on the left hand side are power divergent as z — 1,
namely ﬁéo)(i) and Féo’log)(i). Therefore we get

1 YE log(1 — 2) A log(l—2) + Ao
Closog) | ——22= — ~
=t ““g)( 1—-z  2(1—2) 1-2 ¢

Coo) , (5.79)

where we used the explicit form of Féo)( z) and Hg),log)

(%). Solving this equation we
get

C(O) = >\0 - 2)\17E7 C((O,IOg) = _2)\1 (580)

To compute higher coefficients we act with the Casimir D on both sides of (5.78) and
again compare power divergent terms. On the left hand side, using the recurrence
(5.40), the Casimir brings the previously undetermined coefficients C(1y and Ciy 1og)

into the problem. This renders

! L —(m—1,log" — ()1 1—2z2 by
S Clmpoen Hs" ™ (2) = D( ' Og(l s %) . (5.81)
m=0n=0 —Zz
Using the explicit form of the H-functions
(= S— 1 3
2z =pHEY(3) = c c, (5.82)

(1-22 1-z

. 2—2yg —log(l—2)  18yg — 19+ 9log(1l — 2)

- 21—z ¢ 6(1— 2) “
(5.83)

Hy () =DH ()

and plugging in the solutions (5.80), the term proportional to (1 — z)~2 vanishes, and

the term proportional to (1 — z) provides
Ci11og) = 0. (5.84)

We can continue in this fashion, and determine the coefficients C,,) and Ciy, 10g) after

acting m times with the Casimir D. The results for m = 1,2,... are
1 1 4 1
Cim) = —2A ,—,,—,...}, Cimilog) = 0. 5.85
o) 1{6 30" 315" 105 (mlog) (5.85)
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We identify the C,,) together with C(gog) as coefficients in the large ¢ expansion
(2.60) of the harmonic sum S;(¢) expanded in inverse powers of J* = (({ + 1). They

therefore describe a function

log™ J
> C(m,log")ﬁim = Ao — 2A151(0). (5.86)

This computation proves the following relation, which can also be shown by explicit

computation,

S () 2k (2) (o — 2050 (0)) = 2 log(ll - j) T, (5.87)
l

In the following we will apply this method to more complicated functions, but the

general idea will stay exactly the same.

5.4 Four-point correlator from H-functions

In this section we use the H-functions to construct the one-loop correction to the four-
point function of four identical scalar operators. Again, we think of the correlator of
four Konishi operators as our example, but the method applies to a large family of

scalar operators.

5.4.1 The strategy

We remind the reader that the four-point correlation function in weakly coupled gauge

theories admits an expansion in the coupling constant g of the form
G(u,v) = GO(u,v) + gGY(u,v) + .. .. (5.88)

The contributions to the one-loop correlator G (w, v) come from two different sources.
First of all, there are infinite towers of operators for which the CFT-data can be
expanded as a power series at large spin ¢, with possible log ¢ insertions. Such towers
of operators necessarily produce power divergent contributions to the correlator and

we can study them using the H-functions. Secondly, there are terms in the four-point
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correlator which after performing the conformal block decomposition render CFT-
data that is truncated in spin. Such terms are always regular as v — 0. Importantly,
these two kinds of contributions are partially interchanged under crossing. In fact,
the interchange is such that all contributions from infinite towers, at any twists,
are completely determined by the twist-two operators. Therefore we will start our
analysis from general ansatz for the twist-two operators, and then use the crossing
symmetry and the H-function method to extend the ansatz to a full solution for
the one-loop four-point correlator. In the process we will assume that there are no
truncated solutions of the form found in [105].

Our strategy to find the one-loop correlation function is the following:

e Using the explicit form of conformal blocks (5.8) and the bootstrap equation
(5.6) we find a general form of the power divergent part of GV)(u,v) in the
limit v — 0. We show using crossing symmetry that this is fully described by
operators at leading twist, namely 79 = 2. Subsequently, we use the H-function
method to constrain the form of the contributions from infinite towers of leading
twist operators. Supplementing this with terms truncated in spin we arrive
at the most general leading twist contribution to the correlator Gpr (u,v) ~
uf(logu,v), where f(logu,v) is expressed to all orders in v in terms of a finite

number of unknowns.

e Crossing symmetry maps uf(logu,v) to the power divergent part of the com-
plete four-point correlator. This allows us to use the H-function method to find
the large spin expansion of the CFT-data for all twists, which can be resummed
to closed-form functions of spin. Plugging this result back to the conformal
block expansion we find the complete form of the four-point correlator in terms

of a finite number of unknowns.
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e As a final step we check that such obtained function satisfy all necessary con-
straints. In particular, consistency with the bootstrap equation reduces the

number of unknowns to just four.

5.4.2 The ansatz

We focus first on the most general form of the power divergent terms in the limit
v — 0 and show that the bootstrap equation implies that all such contributions are
encoded by the twist-two operators.

Let us start by writing down an explicit form of the bootstrap equation in the

perturbative expansion
v2H97 (GO (4, v) + g GV (u, v)) = w297 (GO (v, u) + g GV (v, u)), (5.89)

where 7y is the one-loop anomalous dimension of the external operators, which we at
the moment will keep unspecified. The one-loop part of this equation can be written

in the form
2

G (u,v) =

‘ 4

GW(v,u), (5.90)

[\

v
where for convenience we defined G (u,v) = G (u,v) + Yext logv GO (u,v). Both
functions G (u,v) and GM(u, v) can be expanded in conformal blocks. Let us then

look at the expansion of a single conformal block in the small g limit,
Gﬂ@(u? U) = G‘Fol(uv U) +9g (aTGTl(u? U))|T=To + 0(92)' (591>

From the explicit form of the conformal blocks we notice that at one loop there is
a contribution proportional to logwu in this expansion but no higher powers of the
logarithm. We also notice that in the small u limit we have G, o(u,v) ~ u™/2. Thus
the first non-trivial part of GV (u,v) at small u comes exclusively from the twist-two

operators and is of the form

G (1, v) = Yext log v + u (Q(l)(v, logv) log u + Q@ (v, log v)) + O(u?), (5.92)
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where the first trivial term comes from the identity operator contribution to G (u, v)
and QW (v,logv) are arbitrary functions. The bootstrap equation (5.90) used for
(5.92) now gives

~ u2

2
G (u,v) = Yext —5 10g U + L (Q(l)(u, log u)logv + Q@ (u, log u)) +0@°). (5.93)
v v

We notice in particular that, when crossed, (5.92) produces a power divergence for
v — 0. It is easy to see that also the opposite statement is true: any divergent
part of G(l)(uw) is mapped to the first two leading u powers under crossing. Fi-
nally, by comparing the formulae (5.92) and (5.93) we conclude that we must have
QW (u,logu) ~ L+ ...

Since the term proportional to u° is completely determined by the tree-level, we
will focus here on the term proportional to u. Therefore, we start our analysis by
considering the most general ansatz for twist-two operators. There are two distin-
guished terms: the contributions containing a power divergent part at v — 0, and
contributions truncated in the spin. From the discussion above, we conclude that the

former takes the form
u
gi(jf)’L.T.(u, v) ~ " (11 logulogv + aqglog u + apy logv + ago) e+ .. . . (5.94)

where aqq, a1, g1, 11 are arbitrary constants and we introduced an explicit depen-
dence on ¢ for later convenience. In the subsequent part of this section, we will use
the H-function method to extend this to all subleading orders in v.

For the truncated contributions, let us take L such that

(a5d) = {abue +laSDme.  ,_ oy (5.95)
(v2.0) = (V200 + V25 B

and that for spins ¢ > L we have only contributions from infinite towers of operators.

In this case the truncated part of the one-loop answer is given by
) =, 0
gtrunc,L.T.(“? U) - Z<a2,€> (Me G27E<u7 U) + v (aTGT,e(U’J U)) ‘T_)2> : (596)

=0
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Let us go back to the term containing a divergence as v — 0 in (5.94). It originates
purely from an infinite tower of twist-two operators and can be expanded using H-

functions as in (5.77):

z
1% (a1 log zlog(1 — 2) + aqglog z + apy log(1 — 2) + ago) ¢ =

1 _
=% <A2,p + By log z) 7Z), (5.97)
p

where A, , and B, , are large-J expansion coefficients, as in (5.75) and (5.76), of
the modified structure constants and anomalous dimensions, respectively, with p =
(m,log") for n = 0,1 and m = 0,1,.... Using the H-function method described in

section 5.3.6 we find

1 -1 4
As010g) = =201, A 0) = —20017E + o0,  Asm) = —2001 { } :

6" 30 315"
(5.98)
1 -1 4
Bs (00g) = —4an1, B o) = —4anve + 2a10, Bam) = —4an {6’ 307 3157 }
(5.99)

From these values we can find an explicit form of the anomalous dimension and one-

loop structure constants coming from an infinite tower of twist-two operators:

(V2,0) 10 = —4o11 S1(0) + 200, (5.100)

—~

G2,0)inp = —2001 S1(£) + o - (5.101)

In the next step we will take the results (5.100), (5.101) and plug them into the
conformal block expansion (5.7). We can perform a resummation of the complete

leading z expansion of the four-point correlator gfnlf)’L_T. (u,v) and arrive at

gi(r}f),L,T,(U, v) = 2Z (1 F1a(z, 2) + a10F10(2, 2) + o1 Fon (2, 2) + o Foo(z, 2))
(5.102)
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where

Fu(s9)=c: Z_log(1 - 2)log(27) + 2 <1 : Lir(2) - i = i@,) C (5.103)
Fio(z,2) = (1 ! _+ 1) log(22) — clog(1 — 2), (5.104)
For(2,2) = ¢ (1 ! - 1) log(1 — %), (5.105)
Foo(2, %) :c<1i2+1>. (5.106)

It is easy to confirm that the power divergent part of (5.102) indeed equals (5.94).
We emphasise that the expansion (5.102) is valid only at the leading order in z — 0
but is exact to all orders in z.

We add together (5.96) and (5.102) to get the most general form of the one-loop

correlator at the leading order in u — 0 expansion
1 1 1
Lr (1,0) = Gl r (1,0) + Glidnep (1 0), (5.107)

This answer depends on 2L + 4 unspecified coefficients and concludes the first step

in our strategy.

5.4.3 Higher twist operators

In the next step we will use the complete form of the leading twist four-point function
GI(})T(u, v) together with the crossing equation to study implications for higher twist
operators. As we already have pointed out, the term proportional to u are, apart from
the trivial contribution from the identity operator, the only ones which can produce
power divergent terms after the crossing. It implies that after we apply the crossing
symmetry to the function (5.107) we get the complete power divergence of the full
one-loop answer.

In order to make our results more transparent, let us assume at the moment that

L = 0, namely only spin ¢ = 0 contributes to the truncated ansatz (5.96). We will
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come back to the general case later. Let us look again at the crossing equation (5.89)
at order g, which gives the following equation for the one-loop correlation function:
GW(u,v) = ng(l)(v, ) + Vet G (u, v) (log u — log v) . (5.108)
From our previous computations, on the right hand side we know explicitly all power
divergent contributions in the limit v — 0. First of all, we can expand (5.108) at

leading v — 0 and u — 0 to get

z

G (2, 2) ~ -9

(a11log zlog(1 — 2) + (o1 + Yext) log 2

+(0410 — ’Yext) 10g(1 — 5) + Oé()()) c+.... (5109)
Comparing it with (5.94) we find the constraint
Qo1 = 10 — Vext- (5.110)

After substituting this into (5.108) we notice that the divergent part of G (u,v)
depends on the anomalous dimension of external operator 7., and the five parameters
(a1, 10, o, o, Vo). We use this function to find the unbounded CFT-data for higher
twist operators by solving (5.77). Applying the method explained in section 5.3.6 we
can compute as many coefficients A

) and B as necessary. Similar to

70,(m,log" 70,(m,log")

the case of twist-two operators, we plug it back to (5.75), (5.76) and we are able to
perform the sum to find an explicit form of the CFT-data coming from infinite towers

of operators as a function of spin. The result for the anomalous dimensions is

C
PTO,K

Vi) = (4041177 {Sl(% —2)+5(F+-1)+ %57074} —4n ano + 21 Yexs

— 4pg — 41y {51(% —2)=Si(F+L—-1)+ 1} ) + 2%ext, for 19 > 2,
(5.111)

where = (=1)% and Py, = ¢n+ (10 4+ £ — 2)(€ + 1) is the factor that appears in

the tree-level structure constants (5.11). The result for (&, ) is more involved and
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we present here only its schematic form

<d7'(),€> - all<d7'0,€>11+a10<d’ro,€>10+a00<&70,€>00+’76xt <&To,€>ext+ﬂ0<@7'o,€>#o+V0<d’ro,€>,/0'
(5.112)
The explicit expressions for (G, ), can be found in the appendix C.3. In order to

(1)

get the one-loop structure constants (a,,

) one again needs to use the formula (5.74).

(1)

We can observe that the explicit results for (v, ) and {a;

) at higher twist satisfy
an interesting symmetry, where formally exchanging % — 1 by 2 + £ gives the same
expression up to a sign. We also note that the conformal blocks have the same

symmetry, but it is not clear to us if this carries any meaning.

5.4.4 Complete one-loop resummation

In the previous section we found the CFT-data for all twists and spins. We can now
insert it into the conformal block expansion (5.7) and reproduce the full one-loop
correlation function. After we do that we need to check the obtained function indeed
satisfies the bootstrap equation (5.89). We have performed this calculation explicitly
and have found that the crossing relation for such obtained function implies one more

constraint on the parameters of our ansatz, namely
Mo = — ). (5113)
Implementing this constraint we end up with the function

G (u,v)

= a11G11(u, v) + a10G10(u, v) + (o — 2 G oa1)Goo(w, v) + Gy, (U, V) + Yext Gext (U, V),
(5.114)
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where the individual functions are given by

uw(l+u? + v — 2u — 2v — 2uv)

Gi1(u,v) =c¢ . O (u,v), (5.115)
Guolun, v) = U (1 4+ v —2u) loguv—i— (14+u—2v) logv), (5.116)
Goo(u,v) :c%(l—l—u—l—v), (5.117)
Gy (u, v) = —chp(u,v), (5.118)
Gext (U, v) = <u2 + Zz + 02:2> log u + (cu — :jz — C% — cf) logv. (5.119)

Here we introduced the usual box function [191]

_ log (1=2) log (22) +2 (Lia(2) - Lio(2))

O (u,v)

5.120
po— (5.120)

Notice that we may interpret the contribution Goo(u, v) in (5.114) as a one-loop renor-
malisation of the constant ¢. We also emphasise that the solution G,,(u,v), which
produces truncated CFT-data for leading twist, does not belong to the family of
truncated solutions found in [105] since it contributes to all spins for 75 > 2.

Let us now come back to a general ansatz for the truncated solution with L > 0.
We can repeat all the calculations we performed in this section and we find that the
solution is even more constrained than in the L = 0 case. Working with the general
ansatz we find that there is no new solution to the bootstrap equation for higher

truncated spins. Namely, we find
e =0, vy =0, for ¢ =2,4,...,L. (5.121)

Notice that this agrees with the range ¢ > 1 of analyticity in spin from the inversion
integral [70].
5.4.5 Comparing with Konishi

In the previous section we have found the most general one-loop four-point correlator

of four identical scalars with classical dimension Ay = 2. In this section we will find
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the values for all the constants which selects the Konishi solution from the family
(5.114). The best case scenario would be to use the properties of conformal field
theories to do that. One additional piece of information which we could use is the
fact that the CFT-data for the stress tensor, which is present in the OPE of two
Konishi operators, are known. It is, however, often difficult to access this information
since the stress tensor is not the only operator with twist 7p = 2 and spin ¢ = 2
present in the OPE of two Konishi operators. For that reason we are not able to fix
the Konishi four-point correlator directly from conformal symmetry and we will need
to refer to some explicit results of direct perturbative calculations which can be found
in the literature.

In particular, we start by noticing that the Konishi operator is the only operator
of twist 79 = 2 and spin ¢ = 0 in the OPE of two Konishi operators. For that reason

the average (ag())) = a,(é,)c,c = 20,(3){,@,%)“ is the one-loop structure constant of three

Konishi operators and (vs0) = 7,(5 ) is the one-loop anomalous dimension of Konishi
operator. These can be extracted from the results in [192] and in the normalisation

we use in this chapter they take the values

Vet = (1200 = 3, (ad) = —18c. (5.122)

for ¢ = ﬁ Moreover, the averages of leading twist anomalous dimensions for all

spins can be calculated using the results from [120], given in (2.52) in section 2.3.4,

(12.0) = 25:(¢),  for (>0. (5.123)

In fact, the first two values of (5.123), together with (5.122), are enough to fix all the

constants and we get

1
11 = ) apo =0, ao=-6—-0C, =3 Fext =3 (5.124)
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Substituting this in (5.114) we find

g/(cl/)cwc(uav) == (1 + du + v + duv + u? +v2) O (u,v) — 6ﬂ (14 u+v)
v v

3
+ 2= (u + v + ch) log u + o (_u —c—cu+ cv> logv, (5.125)
v v v

which exactly agrees with the result in [192]. We have therefore shown that the one-
loop four-point correlation function of four Konishi operators belongs to our family
of solutions, and we have found the explicit values of the constants describing this

solution.

5.5 The superconformal case

In this section we will focus on the four-point function of half-BPS operators. We
follow very closely the logic from the previous section and adapt it to the case of su-
perconformal block expansion. Following the observations in section 5.2.2, the com-
putations in this case are very similar and here we will only highlight the differences
and the results.

The most relevant difference compared to the Konishi case is that the conformal
blocks take a different form, we need to replace the ordinary blocks by superconformal

blocks. From (5.21) it boils down to the replacement
Gro(u,v) = u 2Gryas(u,v). (5.126)

Importantly, the superconformal blocks are eigenvectors of the shifted quadratic

Casimir operator of the superconformal group
Cs(u2Gryrap(u,v)) = T2u>Grypae(u, v). (5.127)

Here we have defined

—6 4 -2
CS — u—QCUQ + 7—0(7—04 ) o (7—0 + ZTO ) _ u—QCUQ - 27_0 _|_ 2’ (5128)

157



so that the eigenvalue is

TE= 2, = (720+£+1) (720+12+2>. (5.129)

Led by these observations we define H-functions in the supersymmetric case to be

H(m,logn)(u’ U) _ Z(A(O) ><10g jq-o)n

0 0.4/ 72m u”?Gryyap(u, v), (5.130)
£=0 0

where (A(Tg?ﬁ are the structure constants (5.20). The H-functions satisfy again a

recursion relation

H) (0, 0) = CoH ) (). (5.131)

Following similar arguments to the ones presented in section 5.3 one can prove that

the power divergent part of H-functions factorises

-1 n
HOWE (2, 2) = Sk () HI (), (5.132)

o z—2z 2

where we have again defined H-function depending only on Zz as

k;@ reg2(2)- (5.133)

Also, the action of Casimir operator (5.128) simplifies when acting on the power

divergent part

-1

CsH™) (2, 5) = =k, (2)DsH ) (2), (5.134)
Z—2 2
where we defined
Ds=2z7°Dz*=—-2z+(2-32)20: + (1 — 2)2%02. (5.135)

Finally, the H-functions H(m’logn)(é) satisfy the following recursion relation

70

In the following, we will compute the one-loop perturbative correction to the func-

tion H(u,v), in exactly the same way as we did in the ordinary, non-superconformal
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case. In particular, in analogy with (5.77) its power divergent part can be expanded

using H-functions as

. z71 0
Hiz,2) = > (ATO,,) ko 1(2) + Bry,p ((%_kgﬂ(z))

TOZ_Z P

—p
T—m) H_ (z). (5.137)
Here, A, , and B, , are large-J expansion coefficients of the modified structure
constants and the anomalous dimensions, respectively. Again, in order to extract
the CFT-data, we will need only an explicit form of the power divergent part of the

H-functions for p = (m,log") with m < 0 and n = 0,1. All these functions can be

easily obtained from Héo)(i) and ﬁéo’log)(i) using the recursion relation (5.136) and

F(mJog") (2) -

; (-0 - 3@+ 0)E @ B E).
(5.138)

In the superconformal case, we have not been able to compute the exact form of
the complete H go)(u,v), in contrast to the conformal case. Therefore, in principle,
both ﬁgo)(é) and Hg”l"g)(z) could contain enhanced divergent terms proportional to

log?(1 — 2). It turns out that this is not the case' and we end up with expressions

analogous to the conformal case

+70) = ¢
Hy (2) = 17— (5.139)

7 (0log) _ log(1-2). 8 . < 1 1-z ) P
H S - L T E ) Elog¥(1— 7). (5.140
2 (2) 21—z 1Ty T)os (1=2). (5.140)

More terms in the expansion of ﬁéo’log)(i) can be found in appendix C.2.

Equipped with the supersymmetric H-functions we are now ready to find the form
of one-loop correction to the function H(u,v). Following a similar discussion as in
section 5.4.2, we start by observing that again all power divergent contributions to

H(u,v) are completely captured by the twist-two operators. These terms come either

IThe fact that we can take ﬁ;o)(i) free from powers of logarithms can be seen by explicitly

computing the power divergent terms of Fém)(i) for some m < 0 using the kernel method, and see

that they can be obtained by acting m times with Dg on Héo)(i).
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from an infinite towers of twist-two operators or from solution truncated in spin. The

general ansatz for leading-u contribution of H(u,v) is therefore

U _
’HLI.)T.(u, v) = p (P11 logulogv + Piglogu + Por logv + Boo) ¢+ . .. (5.141)
L
+ Y (AS) U (ke G e, 0) + A (0:Gryan(u,0)) | ). (5.142)
=0

for some L. The bootstrap equation (5.17) immediately implies that

Bio = Bor.- (5.143)

Moreover, by direct application of the method described in the previous section, one
can check that the truncated solutions cannot be completed to a crossing symmetric

function. It implies that
ke = 0, A =0, for £=0,2,4,... L. (5.144)

This stays in contrast to the ordinary conformal case where the spin-zero truncated
solution was allowed.

We now use the H-function method explained in section 5.3.6 to complete the
power divergent part of (5.141) to a full leading-u answer. In particular, the H-

function method allows us to find the CFT-data for twist-two operators

(V2,0) = —4B11.51(£ + 2) + 20, (5.145)

(Ga,0) = —201051(£ + 2) + Boo- (5.146)

We could in principle continue as in the previous section and find a general solution
as a function of three constants (511, 510, Bo0). Instead we will focus purely on the
case of four half-BPS operators for which we can use additional information about
the CFT-data found in the literature. In particular, it is known that the twist-two
operators are not degenerate and the anomalous dimensions v, have been found by

direct calculations in e.g. [193]
Yo =2S1(6+2), (=0,2,4,.... (5.147)
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Additionally, the structure constants for two half-BPS operators and twist-two oper-

ators can also be found in [193] and for ¢ = 0 it is
af) = —é. (5.148)

Using the first two values in (5.147) together with (5.148) we can fix our constants

t02

1
B = o B0 =0, Boo = —Ca- (5.149)
Then the leading-u result takes the form

_z(2Liy(2) + (log (2) +log (2)) log (1 — 2))
HL,T,(U, ’U) = —C 5 (1 — 2) .

(5.150)

Now we can use the bootstrap equation (5.17) to find the complete power divergent
part of the function H(u,v). Subsequently, we use the H-function method to find the
CFT-data for all twists which we collect in appendix C.5. Plugging it back to the
superconformal block decomposition we can find the complete one-loop correlator
which takes the form

H(u,v) = —;CI)(u,v). (5.151)

()

This agrees with the known one-loop result for the four-point correlation function of

four half-BPS operators in N/ =4 SYM found in [194].

5.6 Conclusions and outlook

In this chapter we found a family of solutions to the conformal bootstrap equation
relevant for the one-loop perturbation of four-dimensional conformal gauge theories.
We employed twist conformal blocks which allow a systematic expansion around the

double lightcone limit, namely v = 0, v = 0. Starting from the most general leading

ZNotice that these values could also be found by considering (5.145) and (5.146) for £ = —2. This
should correspond to a BPS current in the symmetric traceless representation of R-symmetry which

implies y2,—2 = 0 and agT)_Q = 0. It leads to B19 = 0 and Byp = 2 (2 f11- The remaining constant can
be reabsorbed into the definition of the coupling constant, leading to the result (5.149).
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expansion (5.107) we were able to complete it to a full crossing symmetric function
of the cross-ratios. For four-point correlator of scalar operators with dimension A =
2+ gYexs + O(g?) we found a four-parameter family of solutions. By supplementing
this by a few additional pieces of CFT-data for the leading-twist spectrum of the
theory, we extracted the known form of one-loop correlator of four Konishi operators.
Repeating this analysis for half-BPS operators O,y in N/ = 4 SYM and employing the
superconformal block expansion we have also found an explicit form of the one-loop
correlator of four such operators.

There are many directions one could pursue using the method we described in
this chapter. First of all, the four-point correlator of Konishi operators is only one
representative of the family of solutions we found. A natural question is whether we
can identify how other scalar correlators fit into our solution. Secondly, it should
be possible to generalise our construction and apply it to correlation functions of
operators with higher classical dimension. This would allow to find a large class of
one-loop correlation functions in conformal gauge theories. Furthermore, there should
be no conceptual obstruction to generalise it to mixed correlators.

The H-function technology can be in principle applied also to higher orders in the
perturbation theory. Also in this case, the CFT-data can be expanded around the
infinite spin and one can extract expansion coefficients for infinite towers of operators
by focusing on the enhanced divergent part of the four-point function. In contrast
with the one-loop case, where the complete enhanced divergent part was captured by
power divergent terms, at higher orders it is possible to get other types of enhanced
divergences. For example, at two loops there can be terms proportional to log®v
which were prohibited by the conformal block expansion and bootstrap equation at
one loop, see section 5.4.2. By examining an explicit form of conformal blocks and
using the bootstrap equation it is easy to see that all such contributions come from

((7(1) )?). They are therefore determined by the one-loop CFT-data. Unfortunately,

70,0
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we are unable to access this information from our previous discussion since there is
a degeneracy in the spectrum. It implies that, in general, ((753)4)2) +# ((753)6»2 and
therefore we cannot use the one-loop averages we have calculated to determine the
enhanced divergent part of the two-loop answer. In order to find it we would need
to solve the mixing problem at one loop completely. This has been successfully done
for the large-N expansion of the correlators of four half-BPS operators in [123-125].
There, it has been possible to solve the mixing problem by using the knowledge of
an infinite family of one-loop four-point correlators (O, (z1)Op(z2)O,4(x3)Oy(x4)), for
p,q = 2, where Op(z) is an N’ = 4 SYM half-BPS operator with R-symmetry labels
[0,p,0]. Similar analysis should be possible also at weak coupling. In particular, it

would allow us to find the two-loop correlation function of four Konishi operators,

which is not known at the moment. We postpone it to future work.
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Chapter 6

More applications

6.1 The O(NN) model at large N

In this section, which is a summary of [4], we show how large spin perturbation theory
can be used to study the critical O(N) model in the large N expansion. Contrary to
chapters 4 and 5, which followed the presentation of the respective publications, we
will here make direct reference to the formalism laid out in chapters 2 and 3.

In section 2.3.5 we gave an overview of the operator content of the critical O(N)
model. We will consider the four-point function of ¢’ transforming in the vector
representation V', which means that operators in the OPE transform in irreps in the

tensor product V@V =S @ T @ A. Using tensor structures

y y y 5ik§jl + 5il5jk 1 y y 5ik5jl o 52‘15]‘19
Tk giight, ik _ . _ N(g igkl Tk — — (6.1)
the crossing matrix takes the form
1 (N+2)(N-1) 1—-N
N 2N? 2N
MO — |4 N-2 1 (6.2)
2N 2
] N +2 1
2N 2

Since we work in an expansion in 1/N, the crossing matrix itself will affect the order

at which crossed-channel operators appear with a non-zero double-discontinuity. To
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make this more clear, we write

v N 2 2N N2
(6.3)

Golu,) = <U)A¢<Qs(v,u)+g:r(v,u) —Ga(v,u) +QT(U,u) +Galv,u) gT(v,u))

Gra(u,v) = (Z)A“’<igg(v,u) LIl +Gavy) 1, u)>, (6.4)

2 N

where the upper sign refers to 7" and the lower to A.
The first operator to contribute is the identity, which gives GFF OPE coefficients
(2.43)

arpe = —0ane = Nagne = CLS,IZFMSO- (6.5)

As discussed immediately after proposition 3.1 in section 3.2.1, from the explicit
expansion of these OPE coefficients with A, = ¢ — 1+ 'yfpl) /N + ..., it follows that
the OPE coefficients for n > 1 are suppressed by an additional order 1/N. To the
order we consider, they will not contribute to the double-discontinuity and therefore
decouple from the problem. In the following, we concentrate on the operators at
n = 0, which are the weakly broken currents Jr .

The next crossed-channel operator to generate a double-discontinuity is the aux-

iliary field o, where we assume that

(0)
A, =240(NY,  a,=E3, = % +O(N72). (6.6)

Because of the particular value of the scaling dimension, the contribution from o can
be computed using inversion 3.3. In the T" and A representations, 1 and o are the only
operators contributing to order 1/N, and the CFT-data to this order can therefore be
extracted. From (6.4) we see that between T and A, the function Ug(log 2, h) only
differs by a sign, which has the important consequence that the leading anomalous
dimensions agree,

2(p — 2)* al) —2
VT = VA =y TOWT), (6.7)

where J? = (u — 1+ £)(1n — 2 + £) to this order.
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So far, we have introduced two free parameters in the problem: the OPE coefficient

a® and the anomalous dimension 78(01). We can now use conservation of the global
symmetry current, v41 = —27,, to deduce an equation relating these parameters,
-1
A — p(p — 1) (1) (6.8)

T2
Next we consider corrections to the currents in the S representation. Here the
contribution from o appears at the same order as the first contribution from the
weakly broken currents in the 7" and A representations. Recall that by proposition 3.4,
the contribution from these currents is proportional to the square of their anomalous
dimensions. This means that first we need to first compute an infinite sum of the

form

£=0,2,...

> \A
z e 1 _
Ip_y = <1 — 2) 5 ( Z aT,O,EV%,EGgi)72+E,E(1 -2z,1-2) (6.9)

_ log®(1 — 2) _
d
Y a0 Oyl - 51 - z>) s 122 o,
(=13,...

This sum is computed by invoking the twist conformal blocks that we introduced in
section 3.3.3. More precisely, I7_4 corresponds to the double-lightcone limit of the
difference of the level 2 twist conformal blocks in the 7" and A representations. It can

therefore be found by solving the differential equation

pn—1
CPHY 4(u,v) = HE 4(u,v) = (Z) : (6.10)

where we used the explicit form of the T' — A tree-level correlator. Since the sum
(6.9) is evaluated at the unitarity bound, equation (6.10) can be supplemented by
the equation Dy H™ = 0 for Dy in (2.29). The combined system of differential
equations was solved in the appropriate limit in [4]. A similar computation can be

done for ”H%)r 4(u,v), and we reproduce the result in the following inversion.

166



Inversion 6.1. Consider the contribution from an infinite sum over ¢ of broken
currents J; with anomalous dimensions 7, := 7, — 2A, = 4z and OPE coefficients

aaf; |1 In the ¢ four-point function, the leading contribution takes the form

U(log z,h) = — [£1+ (u — 2)mese(mp)]logz + By, (6.11)

2(j — 2)2.2
where we use the + (—) sign if the broken currents have even (odd) spin, and where

E. are some rather lengthy expressions!.

This inversion is used to find the anomalous dimensions in the S representation,

T ese(mp)T(p + 1)°T(0 + 1))

75 72 ((u — D+, (DT 20~ 3) (6.12)

where we used the relation (6.8) to eliminate a{’). Conservation of the stress tensor,

Vs,2 = —27, now gives a quadratic equation for fyfpl), which has the solutions
M _ o (p=2p-1) 6.13
%p,free ) Vw,O(N) F(ILL 4 1)F('u)2r(1 — M) . ( . )

The second of these solutions exactly agrees with the result (2.56) in the critical O(N)
model. Notice that this equation fixes all parameters that enter the problem at order
1/N, and has followed simply from analytic bootstrap considerations?.

Finally, the anomalous dimension of ¢ can be extracted from our results by as-

suming the shadow relation

Ay =d— Agso. (6.14)

'More precisely,

a2 [2mesc(mp) (1 — 2)(S1lp — 1)(h) + w cot(mu)) — 1) +2 (% —S1(u— 2))
T T —2)?

plp = D)B(R, ) +2(Sa (1 = 2) = G2) + {58 2mese(rp)

(J2 = (p =) (p = 2)) (1 — 2) JH(p—2)
where
1,1,2, 041
B = 4 3(3,3—h,h+2‘ ) ~ 2aT(WT(p+h—1) (h—l,h,h+u—1 ‘1)
e J2(J? - 2) J2T(pu + 1) sin(rh)D(2h) > 2 2h,h + 1 '

2This was shown already in [69], which focussed completely on computing anomalous dimensions.
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Pluggin in the anomalous dimensions (6.12), evaluated at spin zero, reproduces ex-
actly the literature value (2.55) for A,. Although (6.14) clearly holds at tree-level,
it is not obvious why this should survive in perturbation theory. Perhaps this ques-
tion can be addressed using the framework of [195], which treated deformations like
the Hubbard-Stratonovich transform in a unified way, reproducing for instance the
relation (6.8) for a, from general considerations.

In [4] one further step was worked out, namely the contribution to the CFT-
data in the T" and A representations at order 1/N?. Now we have the same terms as
described above, including subleading corrections to the contribution from o, but also
a new contribution from the operators [0, 0], . This involves a rather complicated
sum, and unfortunately the contributions to U:(FO/)AJ—1 was only determined numerically,
giving a numerical prediction for the current central charge at order 1/N?2. All scaling

dimensions computed in [4] agree perfectly with the literature [182,196], and many

of the OPE coefficients were new results®.

6.2 ¢* theories with any global symmetry

In [5] it was realised that the considerations for the critical O(/N) model, both in sec-
tion 4.2.5 for the e expansion and in section 6.1 for the large N expansion, will gener-
alise to ¢* theories in any global symmetry group. There is a variety of interesting such
models, some of which correspond to critical phenomena in three dimensions [45,199],
and relevant symmetry groups are for instance (hyper)cubic models [200] and product
groups such as O(m) x O(n)/Zy [5] and O(m)" x S,, 4 [201].

The existence of an expansion corresponding to the large N limit of O(/N) depends

on the group in question, and can be determined by studying the scaling dimensions

3More precisely, the only results for OPE coefficients in the literature prior to [4] were the order
1/N corrections to the central charges [43] (Cy in 3d already in [197]), the order 1/N OPE coefficients

in the T" and A irreps [181], and the correction a8 to the o OPE coefficient [198].
4S,, denotes the permutation group which acts by permuting the O(m) factors.
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of the bilinear scalars ¢% in the various representations. If a large N expansion exists
for a given fixed-point, the scaling dimensions of the bilinear scalars will approach
either A =2+O(N~') or A = 2A4+O(N~'). The first case signals that the operator
should be promoted to an auxiliary field R. We have seen that this happens in the
singlet representation in the critical O(N) model, where S = o. The second case
happens in the T representation, where we have that szT =2—¢e+ O(N!) using
(4.48). If the bilinear scalars approach any other value than these two, the fixed-point
does not admit a large N expansion described by a Hubbard-Stratonovich field. It is
therefore recommended to consider a specific model first in the € expansion, even if

one is primarily interested in the behaviour at large IV in e.g. three dimensions.

6.2.1 General solution in the d = 4 — € expansion

Consider first the contribution from the identity operator, appearing in the singlet
representation. This will give rise to the leading contribution to U }(%07 % in all repre-
sentations. Since this is the only operator contributing until order €2, we get, using
inversion 3.1,

Ug(log z, h) = MrsA[A](h) + O(e?), (6.15)
where Ay = 1 —€/2 + 74 and 74 = O(e?). From this expression, the leading order
OPE coefficients can be extracted:

2I(0 + 1)?
63@\7}%,5 = F(zg + 1) MRS + O<€> (616)

Here ¢ takes even (odd) values for R being an even (odd) representation. The scalar

bilinears ¢% in the even representations have OPE coefficients
c@m = 2Mps + O(e). (6.17)

These scalars are the next operators to contribute to the double-discontinuity. Assume

that they have dimension Aq% = 2A,+ gre+ O(€?). Then, using inversion 3.2 we get
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the order €2 corrections

- 1 log 2
Ur(log z,h) = MpsA[Ag)(h) — MRSF{Z} ( N + ﬁ) & +0(e), (6.18)
where
= Z wRIEM (6.19)

R even

Using (2.90) we can thus write down the leading correction to the anomalous dimen-

sion,

Fg}EQ
J2

Ay =20y + L +7r(h), ~r(h)=— (6.20)

where J2 = h(h —1) and h = Ay + L.
Next, as observed in chapter 4 for the Wilson—Fisher fixed-point, we assume that

it is possible to analytically continue the result yz(h) to spin zero, by making the

A4l

change of variables h — hy = 5

i.e. by replacing the bare with the full conformal
spin. For spin zero we should evaluate this at hy = Ag2 /2 =1—€/2+ gre/2+ O(€?).
This leads to a system of equations

| —

9r = Vr(h) R even, (6.21)

‘E:Adﬂ-%? ’
at order €, where now one power of € in the ’yR(ﬁ) cancels against the factor hy — 1 =
(9r — 1)€/2 in the denominator. This simplifies to

Mgrsgr(gr —1)+2 > MMz gk =0,  Reven, (6.22)

R even

which is a system of k£ quadratic equations for the k constants gr, where k is the
number of even representations, or equivalently the number of scalar bilinears. Solving
(6.22) gives all possible fixed-points in the e expansion with the given symmetry.

As an example, we go back to the O(N) model with crossing matrix (6.2). The
even representations are S and 7', and the bilinear scalars are p% = '’ and p3 =
oligit. There are two solutions to (6.22), gs = gr = 0, which is the theory of N free

fields, and
N +2 2

= — = —. .2
gs Nig ar N 18 (6 3)
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which is exactly the values for the critical O(N) model [3] quoted in (4.48).
The singlet spin-two current in any global symmetry group is the stress tensor

with dimension Agy = 4 — €. This gives the constraint
7P = AT (6.24)

where Ay, =1—¢/2+ %(52)62 + O(€®). Using this we write down the full dimension of

the broken currents to order €2

{2} 2

r
Ape=2—e+l+277 - e(£R+€1)’ (6.25)

determined completely by the solutions to (6.22). The OPE coefficients are extracted
using (2.90) and (2.91),

(04 1) T
are = Mpsagy" |a, + Mps ( S s (

1 3
Tr ) i 0\ =S+ ) +0(é),

C+1
(6.26)
where we evaluate the GFF OPE coefficients (2.43) at Ay = 1 —€/2 + ’)/(;2)62 and
expand to order €.
From the ¢ = 2 OPE coefficient in the singlet representation we extract the central

charge correction using (3.39),

(2) {2}
Cr 5 o 50
—1_ OE)=1—"5 24 08 6.27
OTfree 3 € + (6 ) 36 € + (6 )7 ( )

which is consistent with (E.1) of [199]. We emphasise that the considerations here
are valid with any global symmetry group. The input needed to specialise to a given
symmetry group is the crossing matrix M= and the division of the representations
into even and odd. By solving the system of equations (6.22), one finds all fixed-
points in the e expansion compatible with that symmetry group and derives the
leading (order €) anomalous dimensions of the bilinear scalars. Conservation of the
stress tensor allows one to compute the leading (order ¢?) anomalous dimension of ¢.

In one or several of the odd representations R, the current at spin £ = 1 may be

conserved, being the Noether current of a continuous global symmetry. This gives
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further constraints Ag, = d—1, which must be explicitly checked. The corresponding
OPE coefficient is related to the C; of that symmetry current:

a2

C r
1P 0@ =1~ TR€2 +0(é). (6.28)

CJ R,free

Let us discuss the extension to higher orders in the e expansion. To order €,
the operators contributing with a nonzero double-discontinuity are the same as at
the previous order, namely the bilinear scalars ¢%. At higher orders, infinite families
of operators contribute. In the O(N) model, the only such families at order ¢! are
operators of approximate twist 2 and 4, and we expect that this generalises to any
global symmetry. However, to compute the contribution from approximate twist 4
requires detailed knowledge of the operator content of the theory in question. This
was worked out in the O(/N) model in [3].

All constants that enter the problem at order €? can be fixed using continuation
to spin zero and conservation of the stress tensor. This is no longer true at higher

orders. At order € a total of 2k + 1 new constants appear: 'yéf)), the second order

correction to v, = gre(l —i—gg)e) +..., and the corrections ay to the OPE coefficients

defined by
c;w% = 2Mps(1 + age) + O(€%). (6.29)

Based on experience from the O(N) model, the order €* continuation to spin zero

4 results for the currents, so the only new equations at order € are

requires order €
the conservation of the symmetry currents (including the stress tensor). In general,
this will not provide enough equations to fix all constants, but in many cases we can
still make progress. Firstly, from the crossing analysis of (4.46), it follows that we

must have arp = —gr. Secondly, the second order corrections gg) to the bilinear

. . 3 . . .
scalar dimensions, as well as fyd() ), are in many cases known in the literature, and can

be taken as input.
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Using inversion 3.2, it is then straightforward to derive expressions for U (p )— at

order €. The anomalous dimensions extracted from these expressions take the form

{2} {2,1} {3} {2} 7
) pizt i _opt2 (Pt _piEg (-1
O (fz O 4 o,

where h =1 — £ + £+ O(e?) and

3y _ 21y _ 1 2 @D
Iy = Z RgR RS” IR " Mps Z MRRQEQI; Mz, (6.31)

R even R even

From the corresponding expression for the OPE coefficients using inversion 3.2,

we can extract the central charge correction,

Cr

C’T,free

9() 5

2
T 187 ¢ T g

S5/ @2, (3.3

= ri¥e 1+ 0(eh). (6.32)

Here we used that the stress tensor conservation eliminates the dependence on gg) in

favour of 7(;3). Similarly, for the current central charges we derive the expression

Cin

9 1
’}/(2)63 - F{g} 51 0(eY). (6.33)
OJR,free

=1-3(1)¢ +97¢") = 100 +

6.2.2 General solution in the large N expansion

We will now derive the form of the CFT-data in the large N expansion for a generic
symmetry group, parametrised by some number N. Compared to the e expansion,
the situation is a bit more complicated, since the parameter N enters in the crossing
matrix M,z itself. In a given even representation R, there are two options for the
smallest dimension scalar. As discussed above, it is either a scalar bilinear ¢% with
dimension 2A4 + O(N™1), or a Hubbard-Stratonovich field R with dimension 2 +
O(N~1). We assume that the Hubbard-Stratonovich fields R have OPE coefficients
C%¢>¢>R = ar /N + O(N~?), which will generate corrections to the free theory.

In order to provide some structure of the subsequent computations we define the

following subsets of the representations in V @ V =1TUII:
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e Group I: Representations whose only corrections at order 1/N come from

crossed-channel Hubbard—Stratonovich fields.

e Group II: Representations where the corrections at order 1/N come from
Hubbard—Stratonovich fields as well as from broken currents in group I rep-

resentations in the crossed channel.

e Group III: Representations that admit a Hubbard—Stratonovich field. Typically
[T C 1II.

For instance, in the O(N) model we have S € II NIII and T, A € 1. Our strat-
egy will then be the following. First, as in the e expansion, the identity operator
creates the leading contribution to U 1(33 for all representations. Next, we turn to
the representations in Group I. The contributions from Hubbard—Stratonovich fields
will give the order 1/N anomalous dimensions in these representations. Using in-
version 3.3 we see that these corrections will be proportional to 1/J2. Finally, we
consider the representations in the Group II. Here we get contributions from both
the Hubbard—Stratonovich fields, using inversion 3.3, and from the currents in Group
I. Due to the particular form of the anomalous dimensions of these currents, we can
use inversion 6.1 to find the complete order 1/N CFT-data.

The expressions will depend on [III| 4+ 1 free parameters: the OPE coefficients
aRr = cidﬂz for R € III, as well as the leading order anomalous dimension of ¢. The
consistency conditions available to fix these constants are the conservation of the
symmetry currents (including the stress tensor), and depending on the number of
conserved currents this may or may not be enough. As in the order €® results above,
literature values can be used to fix the remaining constants if the conservation equa-
tions are not sufficient. Finally, the leading anomalous dimensions of the Hubbard—
Stratonovich fields may be extracted by imposing the shadow relation Ag +Ag, = d

in similarity with (6.14) in the O(XN) model.
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Let us now execute the strategy in full generality. The contribution from the
identity operator gives

Ug(log z,h) = MpsA[Ay](h), (6.34)
where Ay, = p— 1+ 7 /N + O(N7%) and p = d/2. For the representations in
group I we have contributions from Hubbard—-Stratonovich fields in group III. Using
inversion 3.3 we get

— Y M 2(u—2)? EM, Rel, (6.35)
Relll

(1
UR

:.‘\/

. . 0 . _
and a corresponding expression for U 1(%% From this we can extract the order N~!
anomalous dimensions of currents in group I representations:

2(p — 2)*Kp

-2
TRE =TT N +O(N™), Mrs ~Z rp0n, REL (6.36)

Relll

In step 3 we consider the second group of operators, II. They get contributions both

from R for R € III and from Jgr, for R € I. We get

) _ paz Al — 1)(R)
RE Z 2M _2) ]([z J2
REHI
—2)2(2h — 1
Z AM - KE Mg (i (])2](\72 ) (£1+ (u—2)mwese(mp)), Rell,
RiGI

(6.37)

where the + (—) sign is used if the operators in the R representations have even (odd)

spin. This means that the dimensions of the group II double-twist operators are

2 2(u—22Kn  Kp (n—2)"T(n—1)T((+1)

Apy=2(p—1)+¢ — — Rell
re = 2u=DH+—y J2N J2N? T(2u 4 — 3) o e
(6.38)
where in the above expressions we have J? = (u — 1+ £)(u — 2 + ¢) and
Kp= > 2MpKEMp (£1+ (u— 2)wese(mp)), RelL (6.39)
Mps £
Ri€l

Conservation equations for the stress-tensor and for global symmetry currents may

now be used to fix the free parameters 7 ) and ar for R e III.
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6.3 Multicritical theories in d.(0) — € dimensions

In this section we apply large spin perturbation theory to the multicritical theories
in an € expansion near their critical dimensions. As far as we are aware, this has not
previously been done in the literature. Let us recall from figure 1.1 in the introductory
chapter, that the multicritical theories, labelled by integers 6, correspond to scalar
theories with A¢?? interactions and are defined below the critical dimensions 24y :=
d.(0) = % where these interactions become marginal. The interacting fixed-points
in 2p9 — € dimensions have § — 1 relevant deformations and are individually referred
to as tricritical (0 = 3), tetracritical (f = 4) etc. In an e expansion near the critical
dimension, \ takes a value of order € at the fixed-points, which are reached by short
RG flows.

Despite not being defined in any integer dimension > 3, these theories have re-
ceived some attention from the conformal bootstrap. In particular, the methods
of [107] using multiplet recombination have been generalised to the tricritical [202]
and general multicritical case [203]°. Using traditional diagrammatic techniques, some

scaling dimensions have been computed. Here we only need the anomalous dimension

for ¢, which is given by [204]

2@ 3 @ _ 2(0—-1)°T(O+1)°
Ay, =p—1+e€," +0(e), Yy = NETESI (6.40)

We now follow the procedure of large spin perturbation theory for these theories.
We are interested in computing CFT-data of weakly broken currents J; = ¢9‘¢ in
the direct channel, given by inverting contributions from crossed-channel operators.
Clearly the identity operator 1 appears, and from proposition 3.4 we know that
the contribution from the currents themselves is suppressed. To determine the next
operator to contribute, we use the heuristic diagrammatic method of section 3.3.1.1.

From studying some possible diagrams we realise that the next operator after 1 to

5T thank G. P. Vacca for useful discussions of the literature on multicritical theories.
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¢26—2

Figure 6.1: Feynman diagram for operators in the crossed channel, showing that the oper-
ator ¢*'=2 contributes at order A2, or equivalently at order €.

consider is ¢?*~2, where the corresponding diagram is displayed in figure 6.1. This
operator has dimension A -2 = (20 —2)Ay+O(€) = 2+0O(¢), and from the diagram

it follows that its OPE coefficient is of order €2. The contributions from 1 and ¢2¢—2

can this be readily computed using inversions 3.1 and 3.3, and take the form

Alpg — 1](h
wa;%LQEZ L O, (6.41)

U0 = AL + (o =220 (Sla = 1)~ 55) +0(E),

(6.42)

U = =2(ug - 2)°

From these functions, the anomalous dimensions, and therefore the scaling dimen-
sions, of the weakly broken currents are extracted:

2(pg — 2)%;%)9,262

(o1 000 270 ) (6.43)

Ap=2(p—1)+0+ 262’)/(5)2) -

where p = g — 5. Solving Ay = 2 for the stress tensor at spin 2 gives the relation

0(20 — 1)

0 2
agsz)e—z = (9_2)2’}/; ) (644)
Plugging this into (6.43), as well as the corresponding expression for the OPE coef-
ficients, gives a complete determination of the CFT-data at order € in terms of %;2).

The scaling dimensions (6.43) precisely reproduce the result derived in [205], whereas

the corresponding OPE coefficients are new.
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Assuming that the CF'T-data can be extended to spin zero generates the dimension

of ¢?, which reproduces the relation derived in [206]

@2 29(20 — 1) (2)

Tor = g _g9 o> (6.45)

where Age = 2A4 +742. Finally, from the OPE coefficient of the stress tensor we can

extract the correction to the central charge,

Cr . 20-1)B0-1) , o

3
Cree aoo—1) o O(€). (6.46)

We believe that this is a new result.

6.3.1 Generalisations

The generalisation to multicritical theories with global O(N) symmetry follows in a
straightforward way. We use the crossing matrix (6.2), and scalar operators in both
S and T representations contribute. Conservation of the global symmetry current

and the stress tensor gives two constraints solved by

0 0(2NO—2N + 1)79 ©  2002N6— N + 1)79
s = @—22N T T T 0-22N+2)

(6.47)

which again fix all CFT-data in terms of the anomalous dimension of (. For this we

use the literature value [207]

o _ (0 1)2C(0)°T(0 + 1)T(0 + %)BFQ (1 —-S_gl_8 ¢

ks AT(20)2T(1+ ) 1) , (6.48)

where for any integer 6 the hypergeometric function truncates and gives a polynomial
in N. The relations (6.45) and (6.46) are unchanged, and the current central charge

is given by
Cy 202 -1) ,

—1- "B L 0. 6.49

Clfrec g et ) (6.49)

Contrary to the critical (0 = 2) O(N) model, it is believed that a large N expansion
of the multicritical theories does not exist for odd 6. In the tricritical case, there is

evidence for a curve with approximate equation N, = %, at which the fixed-point
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vanishes by annihilating a non-perturbative fixed point. In [208] it was argued that
this curve ends near the point (NN, d) = (19, 2.8), and that passing below this point and
then towards large N for d < 2.8 corresponds to reaching another non-perturbative
fixed-point. It would be interesting to investigate this using numerical bootstrap.
We could also extend the analysis to interactions with an odd number of fields,
by looking at theories with interaction A¢?*!. These fixed-points are non-unitary,
and are believed to be related to non-unitary minimal models in two dimensions,
although the mapping is not completely resolved [206]. Now A ~ iy/e and we have
a similar diagram to figure 6.1. The results for these theories can be recovered from

) (1)

the considerations above by the substitutions 6 ~~ t + % and 'yf €2~ Yy '€, where

vf;) is negative. No closed form expression exists for 7(;1), but it is given as a sum
representation in [206] which can be evaluated case by case in ¢. Relations like (6.45)
still hold in these cases.

Finally, we would like to mention a couple of interesting aspects of multicritical
theories with global symmetries. As discussed in section 2.3.5, the critical O(N)
model is related to a cubic theory in 6 — e dimensions, and a generalisation of this

relation has been suggested involving multicritical theories for even 6 and theories

with odd power interactions [209]. Theories with ¢° interactions (¢ = 2) are also

10

interesting since their critical dimension 3

is above three dimensions, which suggests

that physical theories in 3d may be reached starting from theories with ¢° interactions

in & — ¢ dimensions [210].

6.4 Four-point function of p? in the € expansion

Our final example is an application of the result from chapter 5 to the four-point

function of bilinear scalars ¢* = % in the critical O(N) model 4 — ¢ dimensions®.

At first, this does not seem to be a allowed, since the € expansion neither is a gauge

6T thank M. van Loon for suggesting this idea.
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theory nor defined in four dimensions. However, by comparing figures 2.27 and 2.3,
we see that the spectrum of operators in the singlet representation has the same
structure as in NV = 4 SYM, and furthermore, by Wick contractions, the tree-level
correlator (p%p%p%p%) takes the form

2 2

O =14 % pw?y 2ty
G (u,v) 1+1}2—|—u +N<u+v+v ) (6.50)

which exactly matches (5.10) for ¢ = 4. Working at leading order in ¢, the conformal
blocks can be evaluated in four dimensions, and finally, the € expansion is consistent
with the perturbative structure (3.64), or equivalently (5.94), which was derived in
[147] for conformal gauge theories.

The only piece of CFT-data that can not be extracted by this method are the
(1

‘ro?€> for 7y > 4. This is because the expression

corrections to the OPE coefficients (a
(5.112), from which they would follow, corresponds to expanding the (p%p%p%p?)
correlator in terms of four-dimensional conformal blocks, whereas a proper decompo-
sition should be in terms of (4 —¢€)-dimensional blocks. At leading twist, 7o = 2, we do
not have this issue since the collinear blocks are independent of spacetime dimension.

We will now determine the values of the constants in the results of chapter 5 by
matching with CFT-data of leading twist operators, i.e. the weakly broken currents.

We compare their dimensions with respect to the free four-dimensional theory, and

we therefore have

6
1
T = =149 =~ T = e+ (b, (651)
from which it follows that
1 N+2
app =0, a0 = —57 Vo =14 Yext = m (6'52)

"Figure 2.2 shows the N = 1 case, but as discussed in section 2.3.5, the corresponding spectrum
for general N takes the same form but with larger number of degenerate operators at each point.
When studying the (p%p%p%e%) correlator, the grey bands of figure 2.2 will be adjusted to match
those of figure 2.3.
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The central charge gives the final constraint. Since by (4.64), the central charge is not

corrected until order €2, this corresponds to a purely dimensional correction which we

can extract from Cp = N3=5 by (2.32). Matching with (5.101) gives

2N + 4
N+8°

Qoo = _2(1 + PYext) = (653)

There are some consistency conditions we can check for our result, namely for
operators where there is no mixing. For instance, we get 740 = 0, which is consistent
with Ags =4+ O(e?). In the N =1 case we can also check that v42 = —2, which is
consistent with Agz,e =4 — 2¢ + Pe+ O(€?), and that ago = 0, which is consistent
with the fact mentioned at the end of section 2.3.3 that there is no operator at this
point constructed from four fields ¢.

Finally, let us give two pieces of our results on explicit form, namely the leading

twist OPE coefficients,

8L(C + 1)
a?T — Ci%@?gj&é = ]\7I‘((2£—|—>1)(1 + € (Sl (26) —2— (5(0) + Yext€ (251 (ﬁ) —2— (5@0) ),

(6.54)

and the whole correlator,

4u
G (u,v) = —(1+ %Xﬁ)va [(u+ v+ uv) ®(u,v) + 2 + 2u + 20]

Tt |y \y TN )T LU T N T N TN )Y

4u v 1 (T
—u-=-2)1 e .
+ No [(u 5 2) ogu + (v 5 2> ogv}, (6.55)

where ®(u,v) is given in (5.120).
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Chapter 7

Discussion

In this thesis we have aimed to give a comprehensive account of large spin perturba-
tion theory and its application to conformal field theories with a suitable expansion
parameter. In chapter 1 we gave an introduction where we said that the goal of
the analytic bootstrap is to make general statements about the spectrum, the OPE
and the correlators in a CFT, without any reference to additional tools such as a
Lagrangians or supersymmetry. Chapter 2 contained a technical background where
we fixed some essential conventions and definitions, reviewed the developments that
led to the proposal of large spin perturbation theory and gave a precise derivation
of the perturbative inversion formula. It also contained a short exposition of three
commonly studied CFTs, which were revisited in the later chapters. Chapter 3 took
the form of a practical guide providing the tools needed for a step-by-step application
of the computational framework. The three following chapters gave explicit examples
of how large spin perturbation theory can be applied to generate a variety of new
results and insights. Following closely the original publications, we derived in detail
new results for the Wilson—Fisher fixed-point at order ¢* [2], and the most general
perturbative four-point function of bilinear scalars in a conformal gauge theory [1].
Chapter 6 was more linked to the earlier chapters and made direct use of several
results derived there. Sections 6.1 and 6.2 studied critical ¢* theories with O(N) and

generic global symmetry group, based on [4] and [5] respectively. Section 6.3 contained
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a previously unpublished computation of the leading CFT-data at the multicritical
fixed-points in an € expansion near their critical dimensions, including new results
for OPE coefficients and the central charge. Finally, section 6.4 was an adaptation of
the results of chapter 5 to the correlator of bilinear singlet scalars in the e expansion,
also that a previously unpublished result.

Let us recapitulate the main line of arguments in slightly new words. Thinking
about CFT correlators as constructed from a sum of conformal blocks, it appears as if
there would be an enormous amount of freedom in a generic CFT, where all pieces of
CFT-data in principle could be uncorrelated. The crossing equation, which is equiv-
alent to associativity of the OPE, massively reduces this freedom. The Lorentzian
inversion formula, developed in analogy with similar dispersion relations in scattering
amplitudes in generic quantum field theories, shows that physical considerations in
the form of a bounded Regge limit constrains the CFT-data even more. Specifically,
the inversion formula connects data of all spinning operators into analytic functions.
Of course, such functions could in principle be very complicated, but at lower or-
ders in perturbation theory they tend to take simple forms, often guided by some
transcendentality principle.

In some contexts, the transcendentality principle is comparatively well understood,
for instance in scaling dimensions of individual operators in the Wilson—-Fisher model.
The transcendental numbers appearing there can be viewed as the result of Feynman
integrals computed to high order—collectively known as periods—and the order at
which each number appears has been analysed in terms of a Galois coaction principle
[211]. For the CFT-data of entire twist families, transcendentality was an important
organisational principle in computing leading twist anomalous dimensions in QCD
and N/ = 4 SYM, and there is a dictionary between the generalisations of harmonic
numbers and harmonic polylogarithms through the Mellin transform (2.58) [212]. It is

an interesting direction for future research to connect these two cases in order to give
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a deeper theoretical explanation for the structure of the inversion dictionary worked
out in appendix B.1.

The fact that the CFT-data of spinning operators is captured in the double-
discontinuity of the correlator has interesting physical interpretations. It means that
the intuition from holography, where multi-trace operators on the boundary corre-
spond to multi-particle states in the bulk, in a suitable approximation extends beyond
holographic CFTs. This was referred to as superhorizon locality in [63]. From a more
practical point of view, it means that we are able to capture the whole CFT-data
in terms of a few parameters. As we have seen, in perturbative CFTs this can be
developed in a systematic way, where it is possible to make precise statements about
exactly which operators contribute at a given order. However, many ideas from this

approach persist non-perturbatively, as demonstrated in [67].

Two main types of applications emerge from the framework described in this thesis,
although there is some overlap. On the one hand, the analytic bootstrap can be used
to make universal statements, valid in all or a wide range of conformal field theories.
Here, large spin perturbation theory is very suitable, since it relies only on the CFT
axioms and the existence of an expansion parameter g such that the spectrum at
g = 0 has twist degeneracy. By explicitly stating what further assumptions are made,
one can prove statements of the form any CFTs satisfying A, also has properties B.
Chapter 5 is an obvious example of this, where we find most general perturbative
four-point function of bilinear scalars in a conformal gauge theory. From the simple
assumption that such a theory admits a global symmetry singlet O with dimension
Ap = 2+0(g), it follows that the space of possible four-point functions is constrained
to a five-parameter family. However, also the work in chapter 4 and section 6.1 on
the Wilson—Fisher and O(/N) models can be said to adhere to this principle. In these

cases, we initially only make some crude assumptions on the theory, which in principle

184



could apply to a larger range of models. Yet we saw that these assumptions led to
quadratic equations—(4.39) in the e expansion and (6.13) in the large N expansion—
which precisely single out the only two known possibilities: the free theory and the
critical Ising or O(NN) model. In section 6.2 we proposed that this principle can be
used to classify fixed-points with any global symmetry group. The only input needed
is the crossing matrix M,z and the parity of the respective irreps R.

On the other hand, we have also demonstrated how large spin perturbation theory
can be used to derive new quantities in a number of theories. In particular, it treats
anomalous dimensions and OPE coefficients on an almost equal level and is therefore
particularly useful for the latter, where diagrammatic approaches such as the skele-
ton expansion [43] become very complicated. For instance, until five years ago the
central charge C7 was only known to order € in the Wilson-Fisher [213] and O(N)
models [43]. Tt was then computed to order €¢* in [179] and [181] respectively, and
to order € in [2] and [3], reproduced in chapter 4. An extension to order €® may be
possible in the near future; the main obstacle is to determine the exact contribution
from the operators 9‘¢*, which participate in a non-trivial mixing. When using large
spin perturbation theory to generate new results in a given theory, one can follow a
less purist approach, and allow oneself to rely on existing results in the literature and
on methods specific to the theory under consideration. As we reviewed in section 3.5,

this combination of methods has generated many results in the case of strongly cou-

pled N'=4 SYM.

While we have aimed to present a consistent and coherent account of analytic con-
formal bootstrap and large spin perturbation theory, one aspect is not completely
addressed, namely the question about analyticity in spin at spin zero. At first, the
statement made in [70] and repeated in section 2.5 seems decisive—the Lorentzian

inversion formula will give the correct result for £ > 1, and one would expect there to
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be a non-analytic contribution at spin zero'. However, as reviewed in section 3.2.2,
we have seen that in many cases, analyticity can in fact be extended to spin zero,
albeit sometimes in a subtle way?. It remains as an open problem to clear up exactly
when and why this is possible.

A particularly interesting case is the Wilson—Fisher model, where we analysed the
analytic continuation in section 4.2.4, as illustrated in figure 4.1. If one expands the
scaling dimensions (4.35) of the weakly broken currents in the coupling constant, one
gets a pole ~ %, as in (2.48). If one instead evaluates the full conformal spin at ¢ = 0,
assuming an anomalous dimension of order g, the pole gets cancelled at the cost of
one factor g, and one arrives at the quadratic equation (4.39). Conjecturing that this
extends to ¢* theories in any symmetry group underpins the method of section 6.2,
and so far no counterexamples have been found?. It is interesting to compare with the
situation in the multicritical case for generic 6, where such continuation to spin zero
also passes beyond the pole h = 1 but generates 742 correctly without any subtleties.
This may be explained through the observation made in [69] by explicitly studying
crossing in almost free theories, that a solution truncated in spin is allowed only in
four dimensions. Perhaps more can be learnt by investigating various limits in the
(0, d) plane near the point (6 = 2,d = 4). This idea is inspired by the interpolation
made in [214] between universal non-perturbative behaviour at large O(2) charge and
the 4 — € expansion (see also [215,216]).

Holographic CFTs in a strong coupling expansion explicitly violate analyticity at

spin two, since they are assumed to have a stress tensor but no other single-trace

LOf course, similar considerations would apply at spin one, but we limit the discussion here to
spin zero.

2The most obvious exception is the Konishi four-point function in chapter 5, where we explicitly
had to supplement the averaged anomalous dimensions <’Yg)g>inf = Yuniv.(£) with a contribution at
spin zero. However, there the spin zero anomalous dimension, corresponding to the Konishi operator,
matches instead the dimension of the spin zero operator in the = family: v = vz, in (2.51).

3The case for O(m) x O(n)/Zy symmetry is described in [5]. We have also checked this for theories
with O(m)™ x S,,, hypercubic and hypertetrahedral symmetry, where the latter two do not admit a
Hubbard—Stratonovich description at large N.
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operators of spin ¢ > 2. This holds for both N' = 4 SYM at strong coupling and
in the minimal gravity theories considered in the heavy-light bootstrap mentioned
in section 3.5. Indeed, in formulating proposition 3.2 we had to limit ourselves to
the case where the expansion parameter is the coupling constant and the weakly
broken currents can be explicitly constructed, since at strong coupling the range of
analyticity is raised from ¢ > 1 to some other small value [162]. We note that the
truncated solutions of [105,186] which violate analyticity in spin also violate Regge
boundedness used in the derivation of the Lorentzian inversion formula.

A promising tool in addressing the question of spin zero is the notion of light-
ray operators [77]. They are non-local, intrinsically Lorentzian, operators, which can
take arbitrary values of spin. For integer spins, they reduce to the integration of local
operators along a null direction, called the light transform. In this perspective, the
function C(A, ) generated from the Lorentzian inversion formula (2.70) should be
viewed as CFT-data for a family of such non-local operators. An integral transform
similar to the light transform is the shadow transform, which generates a non-local
operator with scaling dimension d — A. Perhaps a combination of these transforms
might explain our final example of analytic continuation to spin zero, namely the
shadow relation (6.14), which relates the dimension of a Hubbard—Stratonovich aux-
iliary field to the shadow dimension of the would-be ¢ = 0 operator in the leading
twist family. While such relation at tree-level is clear from the Lagrangian, it is not

obvious why it should hold in perturbation theory or if this continues to all orders®.

When twist additivity was derived, which opened up a new, analytic, direction of the
bootstrap, the authors of [63] said that the conformal bootstrap since its revival had

already “led to a great deal of progress, but perhaps the best is yet to come”. Now,

4We have checked that it holds at order 1/N? in three dimensions, using the literature values for
7((,-2) [217] and 7(52} [182]. Notice the typo in the expression y2(s) in the published version of [182],
one of the harmonic numbers should read S1(s — 3) instead of Si(s + 3).
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three quarters of a decade later, the research has gone into a more mature phase.
While there is certainly room for more numerical bootstrap, it is perhaps the analytic
techniques that will generate the greatest long-term impact on fundamental physics
as a whole. Conformal field theories will continue to play an important role, both
as toy models and as bona fide models for physics, and will be studied by a wide
range of existing and future techniques. It is my hope that the methods presented in
this thesis will become a part of the toolbox for anyone who is interested in studying
various conformal field theories. More precisely, a large spin analysis should be one of
the aspects considered when giving a presentation of the fundamental characteristics
of a given CFT.

Apart from obtaining a complete description of the situation around spin zero,
there is also room for other developments of large spin perturbation theory. This
includes applications to new specific models as well as theoretical and technical im-
provements. One such direction is to extend the inversion formula to non-scalar
correlators. While this may not be so conceptually hard—the essential ingredients
could perhaps be extracted from [77]—one has to reduce the setup to a manage-
able problem to facilitate a practical implementation. Initial examples to consider
may be correlators involving fermions [167,172] or conserved currents .J,,, for instance
analysing the e expansion of the the (pp.JJ) correlator in the critical O(2) model,
which was studied numerically in three dimensions in [97].

More generally, the results and methods from the analytic bootstrap may be
used in combination with other methods for studying conformal field theories, both
within the bootstrap and more generally. One promising result is the systematic
study of twist families in two dimensional CFTs in [218]. It is also desirable to
make a more direct contact with the numerical bootstrap in the search for a more
powerful implementation to be used for finding non-perturbative CFTs. This direction

is connected with great challenges in combining the respective rigid assumptions on
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both sides—strict inequalities in the numerical bootstrap and perturbative expansion
in large spin perturbation theory as presented here.

In the future, mathematical consistency will continue to be a leading principle
within theoretical physics. This is increasingly true as the field develops in a direction
away from standard methods within perturbative Lagrangian quantum field theory.
In this thesis we have presented a complete framework for a perturbation theory
that is independent on any Lagrangian description, and therefore applies also to
expansion parameters different from the coupling constant. The future will show
what other results and technologies will follow from clever application of mathematical

consistency conditions.
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A

Appendices to chapters 2 and 3

A.1 Subleading corrections to collinear conformal
blocks

In this appendix we give some more details on the subleading corrections to the
conformal blocks in the collinear limit, referring back to section 2.2.2. We follow

closely appendix A of [3]. In the collinear limit the conformal blocks expand as [67]

9] k
d _ _
G;h)JrZ,Z(Za z)=2" Z 2 Z ChomFho4m(Z). (A.1)
k=0 m=—k

The coefficients ¢y, can be computed order by order by solving the Casimir equation
CGS) (2,2) = (h+ O)(h+ € — 1G5, (2, %) (A.2)
2h+L,e\%s Z 2h40,0\ %5 %), :
where
C=Cy—h(h+1-—2u), (A.3)

and C is given in (2.18). The results for the first two subleading orders are

_ Mp—1)
O+ p—2’
(=1 (h+0)*2h+(-1)
4(2h +20—1)(2h + 204+ 1)(2h + € — p+ 1)’

C10 =

| >

coo = 1, C1,-1

11 =
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I G VI TR o D)
2l —=3)(l+p—2) . 20+p—2) 7
_ h(h+1)%(2h—3)(u—2) (2h—p+1)

0 7 4(2h+20—3)(2h+20+1) ((4u—2) (2hA-L—p+1)

Co

+ (2h—1)L(4h°+4h* (u—2)+h3 (46p—10u2—59)+h2 (2p3 —31 2 +92u—81)+h(8u3 —38u2+64u—37)+(u—1)?(2u—3))
4(2h+26—3)(2h+20+1) (2h—2p+3) (0+p—2) (2h4+-L—p+1)

+ £2(20h° —12R* (u—2)+h3(—2u2 +22u—55) —h2 (63 + 1142 —921+101) +h(16u° —64u2 +90u—41) —pu+1)
4(2h+20—3)(2h+20+1)(2h—2p~+3) (b+p—2) (2h+L—p+1)

+ 03(0+4h—2)(4h3 —4h2 (1—3)+2h(u? —5u+6)—2u3+7u? —9u+4)
4(2h+20—-3)(2h+20+1)(2h—2u+3) (£+p—2) (2h+-£—p+1)

(h+1)(p—1)(h+0)*(2h+ ¢ —1)
8(2h+20—1)(2h +20+1)(2h + L —p+ 1)’
(w—=Dpu(h+0*(h+€+1)2(2h+L—1)(2h + ()
322h + 20— 1)(2h + 20+ 1)2(2h + 20+ 3)(2h + 0 — u+ 1)(2h + € — p+ 2)°
(A.4)

Co1 =

C22 =

Unfortunately, we have not been able to find any closed form for the coefficients cy ,,

except for the four sequences ciy 1+ and cop 1.

A.2 Some useful identities

In this appendix we collect some useful identities used throughout the thesis. Some
of these are not symbolically implemented in Mathematica [163], but can be checked
numerically.

The hypergeometric function is defined by

ap ..., Qpt1
P+1FP< T

oo TTP+1l(,,. k
| = ZM‘E (A.5)
bi,...,bp

= T (b))k K

The case p = 1 is referred to as Gauf’s hypergeometric function, for which we write

o F(a,b; ¢; x). 1t satisfies the differential equation
z(l—z)F"(z)+ (¢c— (a+ b+ 1)x) F'(z) — abF(x) = 0. (A.6)

The special case a = b = ¢/2 = h that appears in the collinear blocks has a series

expansion near unit argument which contains logarithms,

r2h) (K )
Fih)g <)> (251(]{3) —2S51(k+h—1)—log w) wk.

Kl
(A7)

2Fi(hyh; 21 —w) =
k=0
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For generic parameter values satisfying a + b # ¢, the expansion consists of two

superimposed power series:

o _ (T(e)I(c—=b—a)
oFi(a,b;c;1 —w) = (F(c — T b) + O(w))
emab (F(C)F(c —a—bI'1+a+b—c)
v T(@)T(O)T(1+c—a—b)

+om0. (A.8)

When a + b < ¢, the limit w — 0 is finite and gives

L(e)'(c—b—a)

Fi(a,b;c;1) = . A.
2Fia b 1) I'(c—0)T(c—a) (4.9)
For x € (0, 1) the following holds for Gauf}’s hypergeometric function
o Fy (a, c—b;c; x1> =(1—2x)*9F(a,b;c;x), (A.10)
T —
and for the polylogarithms
Lig(x) = (o — Lig(1 — x) — log(1 — x) log z, (A.11)
—1 log’z  log(1l — z)log?
ng(l’) = C3 — ng(l — x) — L13 (x ) -+ CQ lOg.fC —+ Og6 T — Og( 2:6) o8 x.
(A.12)
Finally, we have the integrals
1
Cla+ Db+ 1)
dza*(1—2)"=Ba+1,b+1) = A.13
0/m< o) =Blat Lb+1) =~ —H T (A13)

T(a+ 1)T(b+1)

F; 1, —c; b+ 2; A.14
F(a—i—b—l—Z) 2 1(CL—|— 9 C,CL+ + 77)7 ( )

/1dx (1 — 2)°(1 — yx)¢ =

for a,b > —1 and v € (0,1), and the practical relation for the I" function:

™

(p)l'(1—p) (4.15)

sin(mp) =
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B

Appendices to chapter 4

B.1 Some inversion integrals

In chapter 4 of the main text we arrived at the inversion integral

A(T) = 7:2/01 dtdz"— ((f(i _th) — dDisc [G(2)] (B.1)

tz)

where J? = h(h—1). In table B.1 we present a number of inversions used in the main

text. In this table we use the nested harmonic sums S, = Sa(h — 1) which for integer
arguments take the values
by b1 bo b3

Sun(m) = 30 ERO)T §h (sgna) & (sgnagl g

at] laz| |as|
b1=1 bl ba=1 b2 b3=1 b3

For non-integer values of h we make the standard analytic continuation from even

arguments n, see e.g. [139], so that for instance

(4 (551) v () - § 3

1 =

S_2<(L') =

where ¢V (z) is the trigamma function.

Evaluating these inversion integrals is non-trivial, but one can proceed as follows.

1-z
z

Expanding the function to invert in powers of

we are led to the integral entering
in (3.51). We then by (3.54) obtain a series expansion for large J?, which can be
identified as a linear combination of suitable functions. The final result is checked

numerically, for finite values of h, to very high precision.
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Table B.1: Inversions used in the € expansion in chapter 4.

G(2) A(J)
_ 4
log? (1 — %) 7
245
3 — 1
log (1 — Z) —?
_ 96
log*(1 - 2) 72 (5% — G- 572>
2 T - 4
log® (1 —Zz)Liy (1 — 2) 72 (2 +25_9)
3 . _ 24
log (1 — Z) L12 (1 — Z) ﬁ ((S,5 — 25’,2,1) -3 (575 — 251772) + 3C251 — 253)
4
log2 (1 - 2) Lig (1 — 2) ﬁ (*2 (S,;g — 2517,2) + (3 + 20251 — 253)
2 .. (Z2—1 4 1 2
log (1—2)L13< E ) J2<—2C3—J6—J4+253
_ _ 4
log? (1 — z)log 2 ~ 71
_ _ 8 1 1
log? (1 — 2)log? 2 J2< C2+J4+J2—252)
_ _ 24 2 25_
log? (1 — z)log® 2 - (2 (S—3—2S12) +(3— 76 " i + % + J22 — 2(251)
_ _ 24 S
log® (1 — z)log 2 - (—CQ + j; — 25_2)
48 [ 25%
- <_JZI — (5_3 — 25’_271) +6 (5_3 — 251,—2)
log* (1 — 2)log z 9%, 28
3G+ G5+ Ty — 66281+ 25;»,)
s _ _| 4 25_
10g2<1 — z)LIQ(l - Z)lOgZ ﬁ (-6 (S_g - 2517_2) - % - 3C3 - TQ + 6<2S1>
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B.2 Double-discontinuity at fourth order

To order g* the terms contributing to the double discontinuity from the bilinear

operators are

log z — 1 1

Ie =log"(1— )% +1og’(1 = 2) - (Lin(1 - 2) + 3log = — 3log 2 4 26,)
46 + 3Lis(1 — 2) +1 12 1
+log*(1 — Z) (zLig(l—E) —log z 6+ 3Li( 42125+ gzt CQ L13< )

N 2(23 + 6() log Z — Lig(1 — 2)(211og Z + 34) — 106¢, — 4log® Z + log? Z + 24§3>
48

log®(1 — 2)

12: 8

A4)
— 1 3 — . _ . 2_1
(logZ(C2—2)+2logz—|—6log z+L13(1—z)—L13< — )—Cg).
z
(B.5)

In order to compute the first expression we used the value of the OPE coefficient for
the bilinear scalar operator, which takes the form ag = 2(1 —g —¢* +...), as well as

the precise relation between ¢ and e.
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C

Appendices to chapter 5

C.1 Superconformal blocks

In this appendix we present an explicit form of the superconformal blocks appearing
in the expansion of correlation functions of four half-BPS operators in N' = 4 SYM.
We closely follow [189] and restrict to the case p; = ps = p3 = ps = 2, which is the
one relevant for this thesis. All supermultiplets appearing in the intermediate channel
of such correlation functions can be labelled by a Young tableau A = [\, Ag], with
A1 > Ao, consisting of maximally two rows, and a charge v = 0,2,4. We distinguish
three types of multiplets: half-BPS, quarter-BPS and long, whose representation
labels are summarised in the table C.1. Notice that the only long multiplets are in

the singlet representation [0, 0, 0] of the SU(4) R-symmetry.

Table C.1: Supermultiplets appearing in the superconformal partial waves of
(O20/O20' O Oy )-
Young tableau A | twist 7 | spin ¢ | R-symmetry representation | multiplet type
[0, 0] 0% 0 [0,7,0] half-BPS
[A1,0], A1 > 2 ¥ A —2 (0,7 —2,0] quarter-BPS
A1, 1, A1 > 2 0% A1 —2 [1,v—4,1] quarter-BPS
[1,0] ~y 0 [1,v—2,1] quarter-BPS
[1,1] v 0 2,7 —4,2] quarter-BPS
(A1, A2], Ag > 2 29 A — Ao [0,0,0] long
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The superconformal blocks are given by

2Z\/?
Sn(zz0.8) = (=) FA(z2,0,0) (C.1)
aq
where
_ _ o FX(Z 5) R
VA —(_1\3-1p-1 A <
Fr2z,z,a,a) = (—1)27 "D det ( K, FY (0, ) (C.2)
The explicit form of all ingredients (with 1 <4,j <2 and 1 <m,n <~7/2) is

(FX(2,2))in = [2} " Fy( A\ + 1 —n + I +1=—n+Z2\ +2-2n+ ;1)

(C.3)
(FY(, @)y = ()" "2 Fr(m = 3,m = 3,2m — v, y;), (C.4)
where 1 = 2z, xo = z and y; = «, y» = @, and
(KA)mn = _5m,n Ans (C.5)
ne (% ). s
B (z—2)(a—a)
P e 0

Here, the square bracket in the definition of FX indicates that we keep only the

regular part, namely

—a — CL ]f k «a - (a')k:-i—a(b)k:—i-a k
[x7 % Fi(a,b,c;x)] = 27 F1(a, b, c; x) = z".
kz::o (©)k kz::o ()kralk +a)!
(C.8)
Importantly, for long multiplets have v =4, A\ = 5, Ay =+ 5, 7 > 4 and a > 0.

Then, the superconformal blocks can be written in a more explicit form as

(z-a)z-a)(Z-a)(z-a)
(22)*

GT+4,Z<Z72> ) (09)

Eong(*@ Z,Q, 6‘) =

where G, 4(z,z) is the ordinary conformal block in four dimensions (5.8) as found
in [219].
At the unitarity bound, quarter-BPS multiplets can combine to form a long mul-

tiplet in the interacting theory. This is exactly the case for the twist-two multiplets
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in the singlet representation
(y=2,2A=l+20)d(y=42A=+11]) — (y=42=[0+1,1])iong- (C.10)

Using the explicit form of superconformal blocks one can write

(z—a)z—a)(z—a)(z—a)
(22

ao
EfQ,[f-i-Q,O] (LU, y> 4 F4,[€+1,1] ([L', y) —

Geu(z,2), (C.11)

which agrees with (C.9) for 7 = 2.

C.2 More details on F(O’log)(i)

In the expression (5.61) for H'"'°? (%), the coefficients e; multiplying (1—2) log?(1—Z)

for i ={0,1,2,...} are given by the sequence

127107 5047 2835 199584 81081000° 58378320007 1736755020007
(C.12)

{ 1 1 > 8 251 55967 2499683 50019793 }

The corresponding values in the superconformal case (5.140) are

{_1 1 151 127 53219 8327609 200756381 } ©.13)
1215’ 2520 2268 997920° 162162000° 5837832000° S
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C.3 DModified structure constants for the confor-
mal case

In this appendix we present an exact form of the modified structure constants that

appear in (5.112). The equations below are valid for 7y > 2.

(@, o ( Grsi(3—2) —5 (2~ )31(70—4)—;5*2(7;— )
52 +[281 (2 —2) - S1 (o —4) + 82| S, (§J+€—1)), (C.14)
(G 19 = ffz (-351(3-2) +281 (-4 - 2p2 =5 (3 +¢-1) ), (C.15)
(@)oo = ;:K, (C.16)
() oy = ?fz (1 +51(2-2) =S (n—4)+ 575’4) - T;;j’
+2[-1+28 (2 -2) = Si(n—-4)+5 (2+¢-1)], (C.17)
(@), = ;T; < ~5 (2 —2)+ 5 (- 4)), (C.18)
(Gorot), = ;T;(—@ —25 (2 —2) =25 (2 —2) 425 (o —4) + S (2 —2)
+280 (2 —2)Si(ro—4) + 2[5 (2 —2) = Si (o — 4)] & (§]+£—1)).

(C.19)

As in (5.111), we have p = (=1)% and P, = en+ (10 + £ —2) ( + 1).
C.4 Konishi CFT-data

We present here an explicit form of the CFT-data for operators present in the con-
formal partial wave decomposition of (5.125).

The anomalous dimensions are given by

(V2,0) = 251(€) + 3de,, (C-20)
O =6+ 5o [-51 (3 = 2) +51 (3 +£ - )]
¢ fo-ta-25(3-2)-2(3 +-1)]. w2 (21
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and the modified structure constants take the form

(Gog) = —6 — 3000 — 2+ 651(0), (C.22)

—~

Grpt) =6[~1+28 (3 -2) = Si(n—4)+ S (p+(-1)] -

+ Pfo,g (12 {Sl (% — ) — Sl (7'0 — 4)}

o [-48 (3 - )+251(TO—4)—573»4D51(§)+4—1)
+P6T;(_€2_231<?_2)2+281<?_2>Sl(7—0_4)+52(720_ )>
b (o5, (3 -2) - 25 (3-2)" - 651 (- )

—f-QSl (%— )51(7'0—4)+Sg (?-2)+45¢074>, 7'0>2.
(C.23)

Recall that the one-loop structure constants (a%@ can be found using (5.74).

C.5 Half-BPS CFT-data

We present here an explicit form of the CFT-data for long supermultiplets present in
the superconformal block decomposition of (5.151).

The anomalous dimensions are given by

(Y2,0) = 251(£ + 2), (C.24)
ot = —7)2; ((n +1)S1(3) + = 1S (3 +0+1) ) 70>2, (C25)

and the modified structure constants by

(o) = —Co, (C.26)
() = _732766 ( (20— 1)1 () + (1= m)Si(ro)| Su (Z+£+1) + (1 +n)S (%0)2
—(1+n)S (%O) S1(70) — 1—;”52 (72(’)4—1;7]@), To > 2,

(C.27)
where P, = ¢én+ (10 + ¢ + 2)(¢ + 1) is the factor appearing in the higher twist
(1)

) can be found

structure constants (5.20). The one-loop structure constants (a

using the supersymmetric version of (5.74).
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