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Abstract

We revisit the problem of estimating an unknown parameter of a pure quantum
state, and investigate ‘null-measurement’ strategies in which the experimenter
aims to measure in a basis that contains a vector close to the true system state.
Such strategies are known to approach the quantum Fisher information for
models where the quantum Cramér-Rao bound (QCRB) is achievable but a
detailed adaptive strategy for achieving the bound in the multi-copy setting
has been lacking. We first show that the following naive null-measurement
implementation fails to attain even the standard estimation scaling: estimate
the parameter on a small sub-sample, and apply the null-measurement cor-
responding to the estimated value on the rest of the systems. This is due to
non-identifiability issues specific to null-measurements, which arise when
the true and reference parameters are close to each other. To avoid this, we
propose the alternative displaced-null measurement strategy in which the ref-
erence parameter is altered by a small amount which is sufficient to ensure
parameter identifiability. We use this strategy to devise asymptotically optimal
measurements for models where the QCRB is achievable. More generally, we
extend the method to arbitrary multi-parameter models and prove the asymp-
totic achievability of the the Holevo bound. An important tool in our analysis
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is the theory of quantum local asymptotic normality which provides a clear
intuition about the design of the proposed estimators, and shows that they have
asymptotically normal distributions.

Keywords: quantum statistics, pure statistical model,
quantum Cramér-Rao bound, Holevo bound,
quantum local asymptotic normality

1. Introduction and main results

The estimation of unknown parameters from measurement data is the central task of quantum
statistical inference [1-7]. In recent decades, the area has witnessed an explosive growth cov-
ering a wealth of topics such as quantum state tomography [8—16], multi-parameter estimation
[4, 6, 17-20], sufficiency [21, 22], local asymptotic normality [23-30], shadow tomography
[31, 32], Bayesian methods [33-36], quantum metrology [37—47], error correction methods
[48, 49], hamiltonian learning [50, 51], thermometry [52, 53], gravitational waves detection
[54, 55], magnetometry [56-59], quantum sensing [60-62], imaging [63—67], semi-parametric
estimation [68, 69] estimation of open systems [13, 70-76], waveform [77, 78] and noise [79—
83] estimation.

A common feature of many quantum estimation problems is that ‘optimal’ measurements
depend on the unknown parameter, so they can only be implemented approximately, and the
optimality is at best achieved in the limit of large ‘sample size’. This raises the question of
how to interpret theoretical results such as the quantum Cramér-Rao bound (QCRB) [84-89]
and how to design adaptive measurement strategies which attain the optimal statistical errors
in the asymptotic limit. When multiple copies of the state are available, the standard strategy
is to use a sub-sample to compute a rough estimator and then apply the optimal measurement
corresponding to the estimated value. Indeed this works well for the case of the symmetric
logarithmic derivative (SLD) [90], an operator which saturates the QCRB for one-dimensional
parameters. However, the QCRB fails to predict the correct attainable error for quantum met-
rology models which consist of correlated states and exhibit Heisenberg (quadratic) scaling for
the mean square error (MSE) [91]. This is due to the fact that in order to saturate the QCRB
one needs to know the parameter to a precision comparable to what one ultimately hopes to
achieve.

In this paper we uncover a somewhat complementary phenomenon, where the usual adapt-
ive strategy fails precisely because it is applied to a ‘good’ guess of the true parameter value.
This happens in the standard multi-copy setting when estimating a pure state by means of
‘null measurements’, which form a distinct class from that of SLD based measurements, and
where the experimenter aims to measure in a basis that contains the unknown state. While
this can only be implemented approximately, the technique is known to exhibit certain Fisher-
optimality properties [20, 92, 93] and has the intuitive appeal of ‘locking’ onto the correct value
as outcomes corresponding to other measurement vectors become more and more unlikely.

In theorem 1, which is our first main result, we show that the standard adaptive strategy
in which the parameter is first estimated on a sub-sample and then the null-measurement for
this rough value is applied to the rest of the ensemble, fails to saturate the QCRB, and indeed
does not attain the standard rate of precision. Our result shows the importance of accompa-
nying mathematical properties with clear operational procedures that allow us to draw stat-
istical conclusions; this provides another example of the limitations of the ‘local’ estimation
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approach based on the QCRB [94]. Indeed the reason behind the failure of the standard adapt-
ive strategy is the fact that null-measurements suffer from non-identifiability issues when the
true parameter and the rough preliminary estimator are too close to each other, i.e. when the
latter is a reasonable estimator of the former.

Fortunately, it turns out that the issue can be resolved by deliberately shifting the meas-
urement reference parameter away from the estimated value by a vanishingly small but suf-
ficiently large amount to resolve the non-identifiabilty issue. Using this insight we devise a
novel adaptive measurement strategy which achieves the Holevo bound for arbitrary multi-
parameter models, asymptotically with the sample size. This second main result is described
in theorem 2. In particular our method can be used to achieve the quantum Cramér-Rao bound
for models where this is achievable, which was the original theme of [20, 92, 93]. The validity
of the displaced-null strategy goes beyond the setting of the estimation with independent cop-
ies and has already been employed for optimal estimation of dynamical parameters of open
quantum systems by counting measurements [95]. The extension of our present results to the
setting of quantum Markov chains will be presented in a forthcoming publication [96]. In the
rest of this section we give a brief review of the main results of the paper.

1.1. The QCRB and the SLD

The quantum estimation problem is formulated as follows: given a quantum system prepared in
a state pp which depends on an unknown (finite dimensional) parameter 6 € O, one would like
to estimate 6 by performing a measurement M and constructing an estimator 6= é(X) based
on the (stochastic) outcome X. The Cramér-Rao bound [97, 98] shows that for a given meas-
urement M, the covariance of any unbiased estimator is lower bounded as Cov(6) > I,' (0)
where I);(6) is the classical Fisher information (CFI) of the measurement outcome.

Since the right side depends on the measurement, this prompts a fundamental and distinct-
ive question in quantum statistics: what are the ultimate bounds on estimation accuracy and
what measurement designs achieve these limits? The cornerstone result in this area is that, irre-
spective of the measurement M, the CFI I},(#) is upper bounded by the quantum Fisher inform-
ation F(#), the latter being an intrinsic property of the quantum statistical model {py }9co- By
combining the two bounds we obtain the celebrated QCRB [84-89] Cov(d) > F~!(6). For
one dimensional parameters the QFI can be (formally) achieved by measuring an observable
Ly called the SLD, defined as the solution of the Lyapunov equation %9 = %( poLo+ Lopg).
However, since the SLD depends on the unknown parameter 6, this measurement cannot be
performed without its prior knowledge, and the formal achievability is unclear without further
operational specifications.

Fortunately, this apparent circularity issue can be solved in the context of asymptotic
estimation [1]. In most practical applications one does not measure a single system but deals
with (large) ensembles of identically prepared systems, or multi-partite correlated states as in
quantum enhanced metrology [45, 99] and continuous time estimation of Markov dynamics
[13, 73, 95, 100]. Here one considers issues such as the scaling of errors with sample size,
collective versus separable measurements, and whether one needs fixed or adaptive meas-
urements. In particular, in the case of one-dimensional models, the QCRB can be achieved
asymptotically with respect to the size n of an ensemble of independent identically prepared
systems, by using a two steps adaptive measurement strategy [90]. In the first step, a prelim-
inary ‘rough’ estimator ), is computed by measuring a sub-ensemble of 72 = o(n) systems,
after which the SLD for parameter value 6,, (our best guess at the optimal observable Ly) is
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measured on each of the remaining systems. In the limit of large sample size n, the preliminary
estimator 6, approaches ¢ and the two step procedure achieves the QCRB in the sense that the
MSE of the final estimator scales as (nF(0))~!.

By implicitly invoking the above adaptive measurement argument, the quantum estimation
literature has largely focused on computing or estimating the QFI of specific models, or design-
ing input states which maximise the QFI in quantum metrology settings. However, as shown in
[91], the adaptive argument breaks down for models exhibiting quadratic (or Heisenberg) scal-
ing of the QFI where the achievable MSE is larger by a constant factor compared to the QCRB
prediction, even asymptotically. In this work we show that similar care needs to be taken even
when considering standard estimation problems involving ensembles of independent quantum
systems and standard error scaling.

1.2. Null measurements and their standard adaptive implementation

Specifically, we revisit the problem of estimating a parameter of a pure state model {|19) }gco
and analyse a measurement strategy [20, 92, 93], which we broadly refer to as null measure-
ment. The premise of the null measurement is the observation that if one measures |1)y) in
an orthonormal basis (ONB) B(0) := {|v1),...,|v4)} such that |v;) = [¢g) then the only pos-
sible outcome is X = 1 and all other outcomes have probability zero. Since 6 is unknown, in
practice one would measure in a basis B (5) corresponding to an approximate value 6 of the
true parameter 6, and exploit the occurrence of low probability outcomes X # 1 in order to
estimate the deviation of 6 from 6. This intuition is supported by the following property which
is a specialisation to one-dimensional parameters of a more general result derived in [20, 92,
93]: as 6 approaches 6, the CFI 15(0) associated with B (8) converges to the QFI F(6). This
implies that null measurements can achieve MSE rates scaling as n~! with constants that are
arbitrarily close to F~'(6), by simply measuring all n systems of an ensemble in a basis B(6)
with a fixed 6 that is close to 6:

nlky {(én —9)1 =11 (0) ~ F~' (6).

Do null measurements actually achieve the QCRB (asymptotically) or just ‘come close’ to it?
In absence of a detailed multi-copy operational interpretation in [20, 92, 93], the most natural
strategy is to apply the same two step adaptive procedure which worked well in the case of the
SLD measurement. A preliminary estimator 0, is first computed by measuring 7 systems and
the rest of the ensemble is subsequently measured in the basis B (é,,). Since I (0) converges

to F(0) as 6, approaches 6, it would appear that the QCRB is achieved asymptotically. One
of our main results is to show that this adaptive procedure actually fails to achieve the QCRB
even in the simple qubit model

|tbg) = cos0]0) + sinf|1), (D

thus providing another example where caution is needed when using arguments based on
Fisher information, see [94] for other examples.

More precisely, we show that if the preliminary estimator 0, is reasonably good (cf section 3
for precise formulation), any final estimator 6, computed from the outcomes of the null meas-
urement B (én) is not only suboptimal but does not even achieve the standard n~! estima-
tion MSE rate. The reason for the radically different behaviors of the SLD and null meaure-
ment settings is that the latter suffers from a non-identifiability problem when the parameter
0 (which determines the null basis) is close to . Indeed, since at 0 = 0 the null measurement

4
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Figure 1. The figure illustrates the non-identifiability problem occurring with null meas-
urement (first row) and how it is fixed by displaced-null measurement (second row). In
the first column the red arc on the xz Bloch sphere circle (in blue) represents the set
of parameters after localisation (confidence interval), the green disk represents the true
parameter value 6 = 6 and the blue disk (panel (a)) is the parameter §_ which is indis-
tinguishable from the true one, in the null basis. The black arrow represents the chosen
measurement basis. The second column displays a plot of the single count probability as
a function of the parameter: in the null measurement case such a function is not injective
on the set of parameters determined after the localisation (panel (b)). The third column
shows the phase space of a Gaussian model consisting of coherent states with unknown
displacement along the Q axis: the red interval is the parameter space, the black dot
corresponds to the number operator measured, the green disk to the true coherent state
and the blue disk (panel (c)) is the coherent state which is indistinguishable from the
true one in the null measurement case. The last column plots the intensity of the number
operator as a function of the coherent state amplitude.

has a deterministic outcome, for 8 ~ 6 the outcome probabilities are quadratic in e = 6 — 6 and
therefore, the parameters 6. = 0 + ¢ cannot be distinguished (at least in second order). If 0, is
areasonably good estimator, then ¢, = |6 — 9~,,| is of the order 7~'/2, so the error in estimating
0 is at least of the order of the distance |, — 6_| between the two undistinguishable candid-
ate parameters 0.+ = 6, & ¢,, which scales as 7~ /2 instead of n~'/2. Since = o(n) the MSE
decreases slower that the standard rate n~!. This argument is illustrated in figure 1(a). for the
simple case of the qubit rotation model (1) which is discussed in detail in section 3.

1.3. Asymptotic optimality of displaced-null measurements

Fortunately, the above explanation offers an intuitive solution to the non-identifiability prob-
lem. Assuming that the preliminary estimator 0, satisfies standard concentration properties
(e.g. asymptotic normality), one finds that 6 belongs (with high probability) to a confidence
interval I, centered at 6, whose length is slightly larger than the estimation uncertainty 7~ '/2.
Therefore by displacing 0, by a (vanishingly small) amount §, > 0 that is larger than this
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uncertainty, we can make sure that I, lies at the left side of 6, := én + 9, and therefore meas-
uring in the basis B(6,) circumvents the non-identifiability issue. This is illustrated in panels
(e) and (f) of figure 1.

The main aim of the paper is to investigate this method which we call a displaced-null
measurement strategy and derive asymptotic optimality results for the resulting estimators.
In section 4.1 we show that the displaced-null measurement achieves the QCRB in the one-
parameter qubit model for which the standard adaptive procedure failed; the corresponding
second stage estimator is a simple average of measurement outcomes and satisfies asymptotic
normality, thus allowing practitioners to define asymptotic confidence intervals.

In section 6 we extend the null-measurement strategy to multi-parameter models of pure
qudit states. In this case, the QCRB is typically not attainable even asymptotically due to the
incompatibility of optimal measurements corresponding to different parameter components
(and SLDs corresponding to different parameters might not be simultaneously measureable).
However, we show that the Holevo bound [84] can be achieved asymptotically. We first con-
sider the task of estimating a completely unknown pure state with respect to the the Bures
(fidelity) distance. In this case we show that the Holevo bound can be achieved by using two
separate displaced-null measurements, for the real and imaginary parts of the state coefficients
with respect to a basis containing [t)g,) as a vector. The second task is to estimate a general
m-dimensional model with respect to an arbitrary locally quadratic distance on the parameter
space. Here we show that the Holevo bound is achievable by applying displaced-null meas-
urements on copies of the systems coupled with an ancilla in a fixed state. The proof relies
on the intuition gained from quantum local asymptotic normality (QLAN) theory and its use
in establishing the achievability of the Holevo bound [4, 26] by mapping the ensemble onto a
continuous variables (cv) system. However, unlike the latter, the displaced-null technique only
involves separate projective measurements on system-ancilla pairs.

Finally, in section 6.6 we show that for multiparameter models where the QCRB is achiev-
able, this can be done using displaced-null measurements. This puts related results of [20, 92,
93] on a firm operational basis.

14. Local asymptotic normality perspective

The theory of QLAN [23-26] offers an alternative perspective on the displaced-null meas-
urements strategy outlined above. In broad terms, QLAN is a statistical tool that allows us
to approximate the i.i.d. model describing the joint state of an ensemble of systems, by a
single CV Gaussian state whose mean encodes information about the unknown parameter (cf
sections 5.1 and 6.2 for more details). By applying this approximation, the null measurement
problem discussed earlier can be cast into a Gaussian version formulated as follows. Suppose
we are given a one-mode CV system prepared in a coherent state |u) with unknown displace-
ment # € R along the Q axis, and assume that |u| < a, for some bound a, which diverges with
n. At u =0, the system state is the vacuum, and the measurement of the number operator N
is a null measurement (see figure 1(c).). However, for a given u # 0 the number operator has
Poisson distribution with intensity |u|?, and therefore cannot distinguish between parameters
uy := =u, cf figure 1(d). This means that any estimator will have large MSEs of order a2 for
large values of u. In contrast, measuring the quadrature Q produces (optimal) estimators with
fixed MSE given by the vacuum fluctuations. However, the non-identifiability problem of the
counting measurement can be lifted by displacing the coherent state along the Q axis by an
amount A, > a, and then measuring N. Equivalently, one can measure the corresponding dis-
placed number operator on the original coherent state as illustrated in panels (g) and (h) of
figure 1. In this case the intensity (z — A,)? is in one-to-one correspondence with u so the

6
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parameter is identifiable. Moreover, for large n, the counting measurement can be linearised
and becomes equivalent to measuring the quadrature Q, a well known fact from homodyne
detection [101].

QLAN shows that the Gaussian problem discussed above is the asymptotic version of the
one-parameter qubit rotation model (1) which we used earlier to illustrate the concept of
approximate and displaced null measurements. The coherent state |u) corresponds to all qubits
in the state |1/, /) (assuming for simplicity that 6, = 0 and writing 6 = u/+/n). The number
operator corresponds to measuring in the standard basis, which is an exact null measurement
at u=0. On the other hand, the displaced number operator corresponds to measuring in the
rotated basis with angle d, = n~'/2A,,.

The same Gaussian correspondence is used in section 6 for more general problems involving
multiparameter estimation for pure qudit state models and establishing the achievability of
the Holevo bound, cf theorem 2. The general strategy is to translate the i.i.d. problem into a
Gaussian one, solve the latter by using displaced number operators in a specific mode decom-
position and then translate this into qudit measurement with respect to specific rotated bases.

This paper is organised as follows. Section 2 reviews the QCRB and the conditions for
its achievability. In section 3 we show that null measurements based at reasonable prelimin-
ary estimators fail to achieve the standard error scaling. In section 4.1 we introduce the idea
of displaced-null measurement and prove its optimality in the paradigmatic case of a one-
parameter qubit model. In section 6 we treat the general case of d dimensional systems and
show how the Holevo bound is achieved on general models, and deal with the case where the
multi-parameter QCRB is achievable.

2. Achievability of the QCRB for pure states

In this section we review the QCRB and the conditions for its achievability in the case of
models with one-dimensional parameters, which will be relevant for the first part of the paper.

The estimation of multidimensional models and the corresponding Holevo bound is dis-
cussed in section 6.

Consider a quantum statistical model given by a family of d-dimensional density matrices
pe wWhich depend smoothly on an unknown parameter 6 € R. Let M be a measurement on C¢
with positive operator valued measure (POVM) elements {My, ..., M,}. By measuring py we
obtain an outcome X € {0,...,p} with probabilities

po(X=1)=pp (i) =Tr(Mipg), i=0,...,p.

The classical Cramér-Rao bound states that the variance of any unbiased estimator 0 = 0(X)
of  is lower bounded as

Var (é) — K, [(é—e)z] > 1 (6) )
where I (0) is the CFI

Ip (0) = Eg [(dkﬁ“)z] = 3 p;‘(i)(dpje(i))z. 3)

i:pg (i)>0

The CFI associated to any measurement is upper bounded by the quantum Fisher information
(QFI) [88, 102]

I (0) <F(0) “4)
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where F(0) = Tr(pgL3) and Ly is the SLD defined by the Lyapunov equation

dpg o 1
0 =2 (Lopo +poLo) -

By putting together (2) and (4) we obtain the QCRB [84, 87]
R R 2
Var(e) —F, [(9—9) ] >F0)". (5)

which sets a fundamental limit to the estimation precision. A similar bound on the covariance
matrix of an unbiased estimator holds for multidimensional models, cf section 6.

An important question is which measurements saturate the bound (4), and what is the stat-
istical interpretation of the corresponding QCRB (5). For completeness, we state the exact
conditions in the following Proposition whose formulation is adapted from [99]. The proof is
included in appendix A.

Proposition 1. Let py be a one-dimensional quantum statistical model and let M :=
{My,...,M,} be a measurement with probabilities py(i) := Tr(pgM;). Then M achieves the
bound (4) if and only if the following conditions hold:

(1) if po(i) > O there exists \; € R such that

M; i/ = N Lopy? (©)

1

(2) if po(i) = O for some i then Tr(M; LopyLy) = 0.

One can check that the conditions in proposition 1 are satisfied, and hence the bound (4) is
saturated, if M is the measurement of the observable L£y. However, in general this observable
depends on the unknown parameter, so achieving the QFI does not have an immediate statist-
ical interpretation. Nevertheless, one can provide a meaningful operational interpretation in the
scenario in which a large number n of copies of py is available. In this case one can apply the
adaptive scheme presented in the introduction: using a (small) sub-sample to obtain a ‘rough’
preliminary estimator 0 of  and then measuring L; on the remaining copies. This adaptive
procedure provides estimators 6, which achieve the Cramér-Rao bound asymptotically in the
sense that (see e.g. [26, 90])

nEg {(én - 9)1 ~FL(0).

Pure state models. While for full rank states (pg > 0) the second condition in proposition 1
is irrelevant, this is not the case for rank deficient states, and in particular for pure state models.

Indeed let us assume that the model consists of pure states pg = |1bg) (1g| and let us choose
the phase dependence of the vector state such that <¢9|¢9> = 0 (alternatively, one can use
[1bg) := |1be) — (10g|1bg)|1be) instead of |1)g) in the equations below). Then

£0=2(1do) (ol + o) (o]}, and  F(6) = 4|1 doll>.

Let M to be a projective measurement with M; = |v;)(v;| where B := {|vo),...,|vs—1)} is an
ONB. Without loss of generality we can choose the phase factors such that (v;|1yg) € R at the
particular value of interest §. Equation (6) in proposition 1 becomes (v;|tg) € R, i.e. in the

8
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first order, the statistical model is in the real span of the basis vectors. Condition 2 requires
that if (v;|tpg) = 0 then (v;|1)p) = 0. Intuitively, this implies that, in the first order, the model
is restricted to the real subspace spanned by the basis vectors with positive probabilities. For
example if

|1bg) := cos]0) +sinf|1) € C?, @)

then any measurement with respect to an ONB consisting of superpositions of |0) and |1) with
nonzero real coefficients achieves the QCRB at # = 0, and no other measurement does so. This
model will be discussed in detail in sections 3 and 4.

Null measurements. We now formally introduce the concept of a null measurement which
will be the focus of our investigation. The general idea is to choose a measurement basis such
that one of its vectors is equal or close to the unknown state. In this case, the corresponding
outcome has probability close to one while the occurrence of other outcomes can serve as a
‘signal’ about the deviation from the true state. Let us consider first an exact null measure-
ment, i.e. one in which the measurement basis B = B(60) is chosen such that |vy) = |1y), e.g
in the example in equation (7) the null measurement at # =0 is determined by the standard
basis. Such a measurement does not satisfy the conditions for achieving the QCRB. Indeed,
we have pg (i) = dy ; and condition 2 implies (v;|1pg) =0 foralli =1,...,d — 1. However this
is impossible given that |v) = |1bg) and (1g|thg) = 0. In fact, the exact null measurement has
zero CFI, which implies that there exists no (locally) unbiased estimator. Indeed, since prob-
abilities belong to [0, 1], and pg (i) is either O or 1 for a null measurement, all first derivatives
at 6 are zero so the CFI (3) is equal to zero, i.e. Ig4)(€) = 0.

One can rightly argue that the exact null measurement as defined above is not an operation-
ally useful concept and cannot be implemented experimentally as it requires the exact know-
ledge of the unknown parameter. However, in a multi-copy setting the measurement can incor-
porate information about the parameter, as this can be obtained by measuring a sub-ensemble
of systems in a preliminary estimation step, similarly to the SLD case. It is therefore mean-
ingful to consider approximate null measurements, which satisfy the null property at 6~0,
i.e. we measure in a basis B(0) = {|v),...,[v§_,)} with p§) = |1hg) . Interestingly, while the
exact null measurement has zero CFI, an approximate null measurement B (6‘~) ‘almost achieve’
the QCRB in the sense that the corresponding CFI /5 5, (6) converges to F(6) as 6 approaches
0 [20, 92, 93]. This means that by using an approximate null measurement we can achieve
asymptotic error rates arbitrarily close (but not equal) to the QCRB, by measuring in a basis
B(6) with a fixed 6 close to 6.

The question is then, is it possible to achieve the QCRB asymptotically with respect to the
sample size by employing null measurements determined by an estimated parameter value, as
in the case of the SLD measurement? References [20, 92, 93] do not address this question,
aside from the above Fisher information convergence argument.

To answer the question we allow for measurements which have the null property at
parameter values determined by reasonable preliminary estimators based on measuring a
sub-sample of a large ensemble of identically prepared systems (cf section 3 for precise
definition). We investigate such measurement strategies and show that the natural two step
implementation—use the rough estimator as a vector in the second step measurement basis —
fails to achieve the standard rate n~'/2 on simple qubit models. We will see that this is closely
related to the fact that the CFI of the exact null measurement is zero, unlike the SLD case.

Nevertheless, in section 4.1 we show that a modified strategy which we call a displaced-null
measurement does achieve asymptotic optimality in the simple qubit model discussed above.

9
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This scheme is then extended to general multidimensional qudit models in section 6 and shown
to achieve the Holevo bound for general multiparameter models.

3. Why the naive implementation of a null measurement does not work

In this section we analyse the null measurement scheme described in section 2, for the case of
a simple one-parameter qubit rotation model. The main result is theorem 1 which shows that
the naive/natural implementation of the null-fails to achieve the QCRB.

Let

[$6) = e71%|0) = cos (6) |0) + sin (6) 1) ®)

be a one-parameter family of pure states which describes a circle in the xz plane of the Bloch
sphere. To simplify some of the arguments below we will assume that  is known to be in the
open interval © = (—m/8,7/8), but the analysis can be extended to completely unknown 6.
The QFI is

F(0) = 4Var(a,) = 4(yg|07 1hg) — 4{1bg|oy|he)* = 4.

We now consider the specific value 6 = 0, so [¢)o) = |0) and |¢) = |1). According to propos-
ition 1 any measurement with respect to a basis consisting of real combinations of |0) and |1)
achieves the QCRB, with the exception of the basis {|0),|1)} itself. Indeed, let

Vo) = exp(—iray)[0), ) = exp(—iToy)[1) ©
be such a basis (7 # 0), then the probability distribution is

po(0) =cos* (0 — 1), pg(l):sinz(G—T)

dlogpe \*| 4
() =
However, at 7 =0 we have Ip(f = 0) = 0 in agreement with the general fact that exact null
measurements have zero CFI. This reveals a curious singularity in the space of optimal meas-
urements, and our goal is to understand to what extent this is mathematical artefact or it has a
deeper statistical significance.

To start, we note that the failure of the standard basis measurement can also be understood
as a consequence of parameter non-identifiability around the parameter value 0. Indeed, for
7 =0 we have py(i) = p_g(i) so this measurement cannot distinguish 6 from —6. A similar
issue exists for 7 # 0, if 6 is assumed to be completely unknown, or in an interval containing
T, cf figure 1. On the other hand, if 6 is known to belong to an interval I and 7 is outside
this interval, then the parameter is identifiable and the standard asymptotic theory applies. For
instance, measuring o, leads to an identifiable statistical model for our quantum qubit model.

Consider now the following two step procedure, which arguably is the most natural way
of implementing approximate-null measurements. A sub-ensemble of 7 systems is used to
compute a preliminary estimator 0,, and subsequently the remaining samples are measured
in the null-basis at angle 7 = 6,. For concreteness we assume that 77 = n'~¢ for some small
constant € > 0, but our results hold more generally for 7 = o(n) and 72 — oo with n.

To formulate our theoretical result, we use the language of Bayesian statistics which we
temporarily adopt for this purpose. We consider that the unknown parameter 6 is random and is

and the CFI is

L (0 =0) = Eg_

10
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drawn from the uniform prior distribution w(df) = %d@ over the parameter space ©. Adopting

a Bayesian notation we let p(d6,]0) := pg(dh,) be the distribution of 6, given 0. The joint
distribution of (6,6,) is then

p (de,dén) —7(df)p (dé,,w) —p (dé) r (d9|§n)

where 7(df)0,) is the posterior distribution of 6 given 0,.

Reasonable estimator hypothesis: we assume that 0, is a reasonable estimator in the sense
that the following conditions are satisfied for every n > 1:

1. 7(df|f,) has a density 7(6]6,) with respect to the Lebesgue measure;
2. For each n there exist a set A, C © such that P(6, € A,) > ¢ for some constant ¢ > 0, and
the following condition holds: for each 6, € A, the positive symmetric function

8,5 (1) = min{w (én + r|§n) T (én — r|§n)}

sYn

satisfies

/ 8,5 (nNdr=C (10)
2Ty

sYn

where 7, := n~1/2t¢/4 and C > 0 is a constant independent on n and 0,,.

Condition 2 means that the posterior distribution has significant mass on both sides of the
preliminary estimator 0, at a distance which is larger than n—'/2+¢/4  as illustrated in figure 2.
Since standard estimators such as maximum likelihood have asymptotically normal posterior
distribution with standard deviation 1= 1/2 = p=1/2+¢/2 5 n=(1=¢/2)/2 condition 2 is expected
to hold quite generally, hence the name reasonable estimator. The following lemma shows that
the natural estimator in our model is indeed reasonable.

Lemma 1. Consider the measurement of o, on a sub-ensemble of it = n'~¢

0, be the maximum likelihood estimator. Then 0, is a reasonable estimator.

systems, and let

The proof of lemma 1 can be found in appendix C. The method can be extended to a wide
class of estimators, since it essentially relies on assumptions which are quite standard in usual
statistical problems.

The next Theorem is the main result of this section and shows that if a reasonable (prelim-
inary) estimator is used as reference for a null measurement on the remaining samples, the
MSE of the final estimator cannot achieve the QCRB, indeed it cannot even achieve standard
scaling.

Theorem 1. Assume that 6, is a reasonable estimator as defined above, obtained by measuring

a sub-ensemble of size it := n' ~¢. Let 8, be an estimator of § based on measuring the remaining

n — n'=¢ sub-ensemble in the basis corresponding to angle 6,,. Then

lim nR, (én> =00

n— o0

Re (0,) = [ m@oEs |(6,-0)]

is the average MSE risk.

where

1
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Figure 2. For a reasonable estimator én, the posterior distribution of 6 is centred around
6,, and has width of order n=(1=9/2 The assumption amounts to the fact that the pos-

terior has non-vanishing mass on either side of 6, at distance larger than n=(1=¢/2)/2
which is much smaller that the typical standard deviation.

The proof of theorem 1 can be found in appendix D.

The fact that a reasonable estimator has a ‘balanced’ posterior was key in obtaining the neg-
ative result in theorem 1. This encodes the fact that the null measurement cannot distinguish
between possible parameter values # = 6, 4+ 7, and 6 = 6,, — 7;, leading to errors that are larger
than n~'/2. In section 4 we show how we can go around this problem by deliberately choos-
ing the reference parameter of the null measurement to be displaced away from a reasonable
estimator #,, by an amount J,, that is large enough to insure identifiability, but small enough to
still be in a shrinking neighbourhood of 6.

In the proof of theorem 1 we made use of the fact that, for the statistical model defined
in equation (8), the law of the measurement in the basis containing \w§n> could not distin-

guish between 6, +r. Although for general pure state models this might not be the case, in
the appendix E we show that under some mild additional assumptions, the result of theorem 1
extends to weaker notions of non-identifiability.

4. Displaced-null estimation scheme for optimal estimation of pure qubit
states

In section 3 we showed that a null measurement that uses a reasonable preliminary estimator
as reference parameter is sub-optimal. We will now show that one can achieve the asymptotic
version of the QCRB (5) by employing a null measurement at a reference parameter that is
deliberately shifted away from the reasonable estimator by a certain amount. We will call these
displaced-null measurements.

4.1. The displaced-null measurement for one parameter qubit models

We consider the one parameter model |1)y) defined in equation (8) and assume that we are given
n identical copies of |1)g). We apply the usual two step adaptive procedure: in the first step we
use a vanishingly small proportion of the samples containing 7 = n'~¢ copies (where € > 0 is
a small parameter) to perform a preliminary (non-optimal) estimation producing a reasonable
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estimator én. For concreteness we assume that én is the estimator described in lemma 1. Using
Hoeffding’s bound we find that 6, satisfies the concentration bound

P, (|é,, —0 > n—‘/2+f) < C—nr (1)

for some constants C,r > 0. This means that with high probability, 6 belongs to the confidence
interval I, = (6, — n=\/2+e g, 4n~/ 2+¢) whose size shrinks at a slightly slower rate than
n=1/2,

In the second step we would like to measure all remaining qubits in a basis which contains
a vector that is close to |1~b9>. However, as argued in section 3, the null measurement basis
{vdy, o)} satisfying [vi") = |1g,) is suboptimal. More generally, for any angle 7 € I,, the
basis defined by equation (9) suffers an identifiability problem as illustrated in panels (a) and
(b) of figure 1. For this reason, in the second step we choose the reference value

0! :=0,+06,, 0p:= n~ /23

such that 6 is well outside I, but nevertheless, 6, — 0 for large n (assuming € < 1/6). The
3¢ factor in the exponent is chosen such that the result of proposition 2 below holds, but any
factor larger than 2e suffices. We measure all remaining samples in the basis {|vg” ) |vf” )} (cf
equation (9)) to obtain outcomes Xj,...,X, € {0, 1} with probability distribution

Pén) — (l_p‘(gn)vpén))v pén) :Sil’l2 (9_9':)

Proposition 2. Assume that © is bounded and € < 1/10 is fixed, and let 0, be the preliminary
estimator based on n = n'=¢ samples.
Let 0,, be the estimator

R o l/243e /23

en::n - An
L 2 P

where D, is the empirical estimator of pén), i.e.

) itX;=1,i=1,....n

Then 0, is asymptotically optimal in the sense that

lim nEq {(9 - 9)2] — ) =1,

n— 00 4

Moreover, 0, is asymptotically normal, i.e.

A 1
\/ﬁ(en—a) —>N<O,4>
where the convergence holds in distribution.

The proof of proposition 2 can be found in appendix F. Note that we chose to identify
nand n’ =n —n'~¢ in order to simplify the notation and the proofs, but it is immediate to
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adapt the reasoning in order to deal with this technicality. We also remark that the assumption
€ < 1/10 is not essential and could be removed at the price of using more involved analysis of
the concentration properties of 6, and the definition of the displacement parameter §,,.

5. Displaced-null measurements in the asymptotic Gaussian picture

In this section we cast the null-measurement problem into a companion Gaussian estima-
tion problem which arises in the limit of large sample sizes. The Gaussian approximation is
described by the theory of QLAN developed in [23-26]. For reader’s convenience we review
the special case of pure qubit states in section 5.1.

5.1 Brief review of local asymptotic normality for pure qubit states

The QLAN theory is closely related to the quantum Central Limit Theorem (QCLT) and shows
that for large n the statistical model describing ensembles of n identically prepared qubits can
be approximated (locally in the parameter space) by a single coherent state of a one-mode
CV system, whose mean encodes the unknown qubit rotation angle. We refer to [23, 103] for
mathematical details and focus here on the intuitive correspondence between qubit ensembles
and the cv mode.

We start with a completely unknown pure qubit state described by a one-dimensional pro-
jection P = |¢)) (¢)|. In the first step we measure a sub-sample of 7 = n' ~¢ systems and obtain a
preliminary estimator P, = [1)) (1] We assume that P, satisfies a concentration bound sim-
ilar to the one in equation (11) so that P lies within a ball of size n~'/2%¢ around P, with high
probability. For more about the localisation procedure we refer to appendix B.

We now choose the ONB {|0),|1)} such that |0) := [¢),).

Thanks to parameter localisation we can focus our attention on ‘small’ rotations around |0)
whose magnitude is of the order n~'/2*¢ where n is the sample size and € >0 is small. We
parametrise such states as

u —i(ujoy—uroy n
Wu/\m ::U<\/ﬁ) 0) =e (woy—ur )/\f|0>7

where u = (u1,u,) is a two-dimensional local parameter of magnitude |u| < n¢. The joint state
of the ensemble of n identically prepared qubits is then

P2) = [y )"

We now describe the Gaussian shift model which approximates the i.i.d. qubit model in
the large sample size limit. A one mode cv system is specified by canonical coordinates Q, P
satisfying [Q, P] = i1l. These act on a Hilbert space H with a orthonormal Fock basis {|k) :
k >0}, such that a|k) = v/k|k — 1), where a is the annihilation operator a = (Q + iP)//2.
The coherent states are defined as

©  k
2 <
z) = —|z|7/2 —1k), ze€C
|2) 2%/ ;:0 hk!|>
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and satisfy (z]a|z) = z. In the coherent state |z), the canonical coordinates Q, P have normal
distributions N (\fZRez, %) and N (\ﬁlmz, %) , respectively. In addition, the number operator

N := a*a has Poisson distribution with intensity |z|?.

We now outline two approaches to QLAN embodying different ways to express the
closeness of the multiqubits model {|¥?) : [u| < n¢} to the quantum Gaussian shift model
{Juy + iuz) : |u| < n°}. By applying the QCLT [104], one shows that the collective spin in the
‘transverse’ directions X and y have asymptotically normal distributions

\/%an = \/27120 %N(\[ul, )

S ()= fzg %N<fu2,>

where the arrows represent convergence in distribution with respect to |¥”). In fact the con-
vergence holds for the whole ‘joint distribution’ which we write symbolically as

1 1 \ o
(<08, 0+ 198 ) = (@.P s ).

So, in what concerns the collective spin observables, the joint qubit state converges to a coher-
ent state whose displacement is linear with respect to the local rotation parameters.

An alternative way to formulate the convergence to the Gaussian model is to show that the
two models can be mapped into each other by means of physical operations (quantum channels)
with asymptotically vanishing error, uniformly over all local parameters |u| < n¢. Consider the
isometric embedding of the symmetric subspace S, = (C2)%: of the tensor product (C?)®"
into the Fock space

V,=S,—H
|k, n) — [k)

where |k, n) is the normalised projection of the vector |1)®* @ |0)®"~* onto S,,. The following
limits hold [23]

lim  sup ||Va|¥h) —|u; +iup)|| =0,

n—oo |u|<n1/2,"

lim  sup |||Ph) — Vi|ug +iup)|| =0

n—o00 || <nl /2=

where 1 >0 is an arbitrary fixed parameter. In particular, for 77 < 1/2 — ¢ the supremum is
taken over regions that contain all |u| < n¢, which means that the Gaussian approximation
holds uniformly over all values of the local parameter arising from the preliminary estimation
step.

We now move to describe the relationship between qubit rotations and Gaussian displace-
ments in the QLAN approximation. Let U"(A) := U(n~'/2A)®" be a qubit rotation by small
angles § :=n~'/2A andlet D(A) = exp(—iv/2(AP — A,Q)) be the corresponding displace-
ment operator. Then the following commutative diagram shows how QLAN translates (small)
rotations into displacements (asymptotically with n and uniformly over local parameters)
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1Y) l) |1 + dup)
l”’“‘A) lDH)

v, )
‘TZ—A> R ‘Ml - M +1(M2—A2)>

Notice that also the vertical arrow on the left of the diagram is true asymptotically with n
and has to be intended as lim,,_, o, || U"(—A)|W2) — [T2_ A )| =0.

Finally, we note that while the transverse spin components S, S, converge to the canon-
ical coordinates of the cv mode, the collective operator related to the total spin in direc-
tion z becomes the number operator N. Indeed if E, := (nl — S;)/2 then E,|k,n) = k|k,n)
so E, = V;NV,. This correspondence can be extended to small rotations of such operators.
Consider the collective operator

Np :=U"(A)(nl =S,)U" (—A)
which corresponds to measuring individual qubits in the basis
V) =U(8)[0), ) =U(d)1)
and adding the resulting {0, 1} outcomes. In the limit Gaussian model, this corresponds to

measuring the displaced number operator Na = D(A)ND(—A). More precisely, the binomial
(n)

distribution p, /s of N’y computed in the state ¥, ) converges to the Poisson distribution of
Na with respect to the state |u; + iuy)
2%
)y A2 Al <
Tim pU5 () = —u - AR k>0

5.2. Asymptotic perspective on displaced-null measurements via local asymptotic normality

We now offer a complementary picture of the displaced-null measurement schemes outlined in
section 4.1, using the QLAN theory of section 5.1. In the Gaussian limit, the qubits ensemble
is replaced by a single coherent state while the qubit null measurement becomes the number
operator measurement. The Gaussian picture will illustrate why the null measurement does
not work and how this problem can be overcome by using the displaced null strategy.

Consider first the one dimensional model given by equation (8), and let us assume for sim-
plicity that the preliminary estimator takes the value 8, = 0. The general case can be reduced
to this by a rotation of the Bloch sphere. ~

We write € in terms of the local parameter u as 6 = 6, + u/+/n = u/+/n with |u| < n¢. By
employing QLAN we map the i.i.d. model |W};) (approximately) into the limit coherent state
model |u). At 6, = 0 the null measurement for an individual qubit is that of o, (standard basis).
On the ensemble level this translates into measuring the collective spin observable S,, which
converges to the number operator N in the limit model, cf section 5.1. Indeed, at u =0 the
coherent state is the vacuum which is an eigenstate of N.

As in the qubit case, the number measurement suffers from the non-identifiabilty issue since
both | £ ) states produce the same Poisson distribution (see panels (c) and (d) in figure 1).

We now interpret the displaced-null measurement in the QLAN picture. Recall that if we
measure each qubit in the rotated basis

Vo) = U((6:,0))10), ") = U((6,,0)) 1),

16
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then the non-identifiability is lifted and the parameter can be estimated optimally. The collect-
ive spin in this rotated basis is

Nia, 0 = U ((An,0)) (1 =S:) U" ((=A4,0)),

where A, = n'/25, = n*¢ and by the QLAN correspondence it maps to the displaced number
operator

Na,0) =D ((An,0)) ND((=A,,0)).

In this case the distribution with respect to the state |u) is Poisson(|A, — u|?), and since A, =
n3¢ >> |ul, the model is identifiable, i.e. the correspondence the intensity |A, — u|? and u is one-
to-one (see panels (g) and (h) in figure 1). Moreover, for large n the measurement provides an
optimal estimator of u. Indeed by writing

Na, 0 =(a=A0)" (a—Ad)=a*a— A, (a+a*) + A?1 (13)
and noting that the term a*a is O(n*¢) (for |u| < n°) we get

1 1
EAn_KN(An,O) :%+0(1) (14)

where we recover the well known fact that quadrature (homodyne) measurement can be imple-
mented by displacement and counting. By measuring the operator on the lefthand side of (14)
we obtain an asymptotically optimal estimator of u#, which corresponds to the qubit estimator
constructed in section 4.1.

6. Multiparameter estimation for pure qudit states

In this section we discuss the general case of a multidimensional statistical model for a d-
dimensional quantum system (qudit).

The first three subsections review the theory of multiparameter estimation and how QLAN
is used to establish the asymptotic achievability of the Holevo bound. This circle of ideas will
be helpful in understanding the results in the following sections which deal with displaced-null
estimation of qudit models. In particular we show that displaced-null measurements achieve
the following:

1. The Holevo bound for completely unknown pure state models where the figure of merit is
given by the Bures distance (proposition 3);

2. The quantum Cramér-Rao bound in statistical models where the parameters can be estim-
ated simultaneously (proposition 4), providing an operational implementation for the results
in [20, 92, 93];

3. The Holevo bound for completely general pure state models and figures of merit
(theorem 2).

Since the two stage strategy is discussed in detail in appendix B, we do not give a detailed
account of the preliminary stage and assume that the parameter has been localised in a neigh-
bourhood of size n~ !/ around a preliminary estimator with probability that converges to 1
exponentially fast in n.
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6.1. Multiparameter estimation

Let us consider the problem of estimating the parameter 8 belonging to an open set © C R”
given the corresponding family of states pg of a d-dimensional quantum system. Given a meas-
urement with POVM M := {M,..., M, }, the CFI matrix is given by

1rm(0);=Eq [810gp9 310gp9}

o6, 06;

The QFI matrix is F(8);; = Tr(pe L} o [Z’é) where L’é are the SLDs satisfying 0;pg = L"é o pe
and o denotes the symmetric product A o B = (AB+ BA) /2. If 0 is an unbiased estimator then
the multidimensional QCRB states that its covariance matrix is lower bounded as

Cova (8) =20 |(6-0) (0-0)'| > 1 (6) " = F(0) " (1s)

In general, the second lower bound is not achievable even asymptotically. Roughly, this is
due to the fact that the optimal measurements for estimating the different components of 6
are incompatible with each other. The precise condition for the achievability of the QCRB
is [4, 105]

Tr (pg [ﬁ"g,ﬁéb -0, ij=1,...,m. (16)

which in the case of a pure statistical model |1)g) becomes

Im ((9p,|090)) =0, i,j=1,...,m. (17)

When the QCRB is not achievable, one may look for measurements that optimise a spe-
cific figure of merit. The simplest example is that of a quadratic form with positive weight
matrix W

R (6.0) =5 |(6-0) w(6-0)].

This choice is not as restrictive as it may seem since many interesting loss functions have a
local quadratic approximation which determines the leading term of the asymptotic risk. A
straightforward lower bound on Ry can be obtained by taking the trace with W in (15), but in
general this bound is not achievable either (it is in the case in some particular instances, for
example when W has rank 1, see the discussion about nuisance parameters in section 2.7 in
[4]. A better one is the Holevo bound [84]

Tr (WCOVo (é)) > H" (0) :=minTr (Re (Z(X)) W) + Tr W'/ Im (z (X)) W'/2 (18)

where the minimum runs over m-tuples of selfadjoint operators X = (X, ..., X,,)? acting on the
system, which satisfy the constraints Tr(VgpeX') = 1, and Z(X) is the m x m complex matrix
with entries Z(X);; = Tr(peX;X;). Unlike the multidimensional QCRB, the Holevo bound is
achievable asymptotically in the i.i.d. scenario [4, 26]. In the next two section we will give an
intuitive explanation based on the QLAN theory.
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6.2. Gaussian shift models and QLAN

Quantum Gaussian shift models play a fundamental role in quantum estimation theory [84].
Such models are fairly tractable in that the Holevo bound is achievable with simple linear
measurements. More importantly, Gaussian shift models arise as limits of i.i.d. models in the
QLAN theory, which offers a recipe for constructing estimators which achieve the Holevo
bound asymptotically in the i.i.d. setting.

For the purposes of this work, the asymptotic Gaussian limit offers a clean intuition about
the working of the proposed estimators, but is not explicitly used in deriving the mathematical
results. We therefore keep the presentation on a intuitive level and refer to the papers [4, 26,
271 for more details.

In this subsection we recall the essentials of multiparameter estimation in a pure quantum
Gaussian shift model and of QLAN theory for pure states of finite dimensional quantum sys-
tems, extending what we already presented in the case of qubits in section 5.

6.2.1. Achieving the Holevo bound in a pure Gaussian shift model.  Consider a cv system
consisting of (d — 1) modes. The corresponding Hilbert space H is the multimode Fock space
which will be identified with the tensor product of d — 1 copies of the single mode spaces, with
ONB given by the Fock vectors [K) := |k;) ® -+ ® |kg_1), with k = (ky,...,ks—1) € NI~1,
The creation/annihilation operators, canonical coordinates and number operator of the indi-
vidual modes are denoted a}, a;, Q; = (a; +a})/V/2, P; = (a; — a*)/(v/2i) and N; = a’*a; for
i=1,...,d-1.

We denote by |z)=|z1)®---®|z4—1) the multimode coherent states with z=
(z15...,24-1) € C?71, so that Q; and P; have normal distribution with variance 1/2 and mean
V/2Re(z;) and v/2Im(z;), respectively, while N; have Poisson distributions with intensities |z;|?.
We denote by R:= (Q1,...,Q4_1,P1,...,P4_1)T the vector of canonical coordinates which
satisfy commutation relations [R;,R;] = i€); where 2 is the 2(d — 1) x 2(d — 1) symplectic

matrix
0 1
o= (% )

Let u € R™ be an unknown parameter and let G be the quantum Gaussian shift model
G :={|Cu) :u cR"}

where C: R” — C¢~! is a linear map. The goal is to estimate u optimally for a given figure of
merit.

Denoting the entries of C as Cy; = ch—l—icJZj for k=1,....d—1 and j=1,...,m, we
call D the real 2(d — 1) x m matrix with elements Dy j = v/2¢};, Diy-(4-1); = V2¢}; with k =
1,...d — 1; notice that E,[R] = Du. We remark that u is identifiable if and only if D has rank
equal to m. The QFI matrix is independent of u and is given by F = 2D"D > 0.

Let us first consider the case when the QCRB is achievable (in which case it leads to the
Holevo bound by tracing with W). Condition (17) amounts to C*C being a real matrix which
is equivalent to DTQ2D = 0 and the fact that the generators of the Gaussian shift model G

19
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d—1

Si=» ciPi—cfQ=(D'OR),, j=1...m
k=1

commute with each other.
An optimal unbiased measurement consists of simultaneously measuring the commuting
operators Z = . D'R, where ¥ := D'D = F/2. Indeed

e (2,27 =X"'DTQODY ! = 0 (commutativity),
e E,[Z] = X~'D"Du = u (unbiasedeness),
e Cov,(Z) =X""/2 (achieves the QCRB).

Consider now the case when the QCRB is not achievable. For a given positive weight matrix
W, the corresponding Holevo bound is given by

Tt (Cov, (&) W) = H" (G) := mgn% (e (WBB") + Tr (|VWBRBVW]) ), (19)

where # is an unbiased estimator and the minimum is taken over real m x 2(d — 1) matrices
B such that BD = 1. The Holevo bound can be saturated by coupling the system with another
ancillary d — 1-dimensional cv system in the vacuum state and with position and momentum
vector that we denote by R’ = (Q1,...,Q/_,P{,...,P,_)T. In order to estimate u, we con-
sider a vector of quadratures of the form Z = BR + B'R’ for B,B’ m x (d — 1) real matrices
and we require that Z is unbiased and belongs to a commutative family:

e B'OB'"T = —BOB" (commutativity of the Z;’s),
e (Cu®0|Z|Cu®0)=u < BD =1 (unbiasedeness).

The corresponding risk is

Ry = = (Tr (WBB") +Tr (WB'B'"))

N =

and by minimizing over B and B’ one obtains the expression of the Holevo bound in
equation (19). Therefore, given a minimiser (B*,B’*), the corresponding vector of quadrat-
ures Z* is an optimal estimator for any u.

In order to see that the minization over B and B’ achieves the Holevo bound, it is enough to
show that, given an optimal B*, i.e. such that

1" (G) = % (T (WB*BT) +Tr (IVWB* QB TVW) ),

we can find B’ such that
B'BT +iB' OB = W 2|V WB* QB TVWIW /2 —iB*QB* T =:A.  (20)

Notice that A € M,,(C) is positive semidefinite, hence it admits a spectral decomposition A =
Sl pailai)(ail; if we denote by C= """ \/&i|a;){a;|, then C*C = A. Let us consider the
matrices R and / having as entries the real part and the imaginary part of the entries of C, i.e.
C = R +il. Notice that

20
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C*C= (R"—il") (R+il) = (R'/R+I'T) +i (R'"I—-I'R)

=(-I" 0 R" 0) +i(=I" 0 R" 0)Q

~I
0 .
R )
0

|
c%@,\

therefore we can take
B'=(-I' 0 R 0).

Such a construction of the optimal measurement has been inspired by the alternative formula-
tion of the Holevo bound in equation (33) in [4]. Alternative ways of constructing the optimal
measurement for Gaussian shift models can be found in [4, section 3.2] and [26, section 4.4].
Notice that the number of auxiliary modes that are actually used is not bigger than the rank of
A (which is related to the rank of B*QB*T and is 0 when the QCRB is achievable), but for the
sake of keeping notation simple in the rest of the paper, we will always consider d — 1-auxiliary
modes.

To summarise, in the pure Gaussian shift model there always exists a set of commuting
quadratures Z* of a doubled up system that achieves the Holevo bound; in the case when the
QCRB is achievable, one does not need an ancilla.

For the discussion in section 6.4 it is useful to consider the following implementation of
the optimal measurement. Let (Ql, e Qz(d—l) Pi,... ,Pz(d—l)) be a choice of vacuum modes
of the doubled-up cv system such that Z* = TQ where Q = (Q1,...,0)" for some m x m
invertible matrix T with real entries. Up to classical post-processing, measuring Z,...,Z,, is
equivalent to measuring Q1. . ., Q.. If we denote the outcomes of the latter by q := (Q1y--Gm)
then an optimal unbiased estimator of u is given by & = 7q.

6.2.2. QLAN fori.i.d. pure qudit models. The idea of QLAN is that the states in a shrinking
neigbourhood of a fixed state can be approximated by a Gaussian shift model. In the next
section we will show how this can be used as an estimation tool, but here we describe the
general structure of QLAN for pure qudit states.

We choose the centre of the neighbourhood to be the first vector of an ONB {|0),...,
|d — 1)}, and parametrise the local neighborhood of states around |0) as

d—1
[y ym) exp( i (ot —bot /f) 10) 1)
k=1

foru = (uy,u2) € R2@=D ||| < n¢, o = i[k) (0] —i|0) (k| and ¥ = |k) (0| + |0) (k|. As in the
qubit case, the approprlately rescaled collectlve variables converge to position, momentum and
number operators in ‘joint distribution” with respect to [Wy,) := [t ﬁ>®"

L g ! k " C|z=uy +iuy
(@sxm S =) |wu>)e<Qk,Pk,Nk.| ).

where S¥ (n) = Y"1, (0%)® for a € {x,y,z}. More generally, we have a (real) linear map
between the orthogonal complement of |0) and Gaussian quadratures: for every vector
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[v) = 2;11 (vt +ivf,)|k> we construct the corresponding Pauli operator o(v) = [v) (0] + |0)(v|
and the following CLT holds
1
—S,(n): V) | = (X(v):|lz=u,+iu 22
(s 0:1900) = (4 0) s o=+ ) @)

where S,(n) := >/ o (v)) and X(v) := >3 KO + VAP
In addition to the QCLT, the following strong QLAN statement holds: the statistical model
{|¥2)} can be approximated by a pure Gaussian shift model in the sense that

lim  sup ||V,|¥5) — |u; +ius)|| =0, (23)
n_>oolu|<nl/2*"
lim  sup |||¥0) — Vi|uy +iuy)||=0 (24)

n—oo |u|<n1/2,"

for any fixed 0 < < 1/2.V,, is the isometric embedding of the symmetric subspace S é") =
(C9) “" into a (d — 1)-mode Fock space H (cf previous section) characterised by

V,: 8™
k;n) — |k) (25)

where |k;n) denotes the normalised vector obtained by symmetrising
‘1>®k‘ R R |d_ 1>®kd—1 ® |0>®("—(k1+'--+kd—l)).

As in the qubits case, the Gaussian approximation maps small rotations into displacements of
the coherent states. Consider collective qubit rotations by small angles 8 := n~ /2 A

d—1 ®n
U'(A):= (exp (—iz (n_'/zA’fJ;f - n_l/2A§U§)>>

k=1
and the corresponding displacement operators

1

d—
D(A) =exp <i (A]ka - AéQ,J) .
k=1

The diagram below conveys the asymptotic covariance between rotations and displace-
ments, where the arrows should be interpreted in the same way as the strong convergence
equations (23) and (24)

Y5 SN |ug + iuy)
lll"(fA) lD(fA)

v, :
¥y a) — |m— D1 +i(ux — A7)

A similar correspondence holds for measurements with respect to rotated bases and dis-
placed number operators
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Vu .
[yn —— |y + iug)

| My |

p"(u,A) — Poisson([|ug — Ay + i(uz — As)|2)

More precisely, suppose we measure the commuting family of operators {N' (n),i =
l,...,d— 1} given by

N (n) :=U"(-A) (nl = SL(n)) U*(A) i=1,...,d—1,
which amounts to measuring individual qudits in the basis

WY =U(8)]i) i=0,...,d—1

1

and collecting the total counts for individual outcomes in {0, ...,d — 1}. In the Gaussian model
this corresponds to measuring the displaced number operators N\y = D(—A)N' D(A), and by
QLAN, the multinomial distribution p"(u, A) of N'y (1) converges to the law of the vector of
Poisson random variables obtained by measuring N’y with respect to the state |u; + iu,).

6.3. Achieving the Holevo bound for pure qudit states via QLAN

We will now treat a general pure states statistical model and show how one can use QLAN
to achieve the Holevo bound (18) asymptotically with the sample size. Let |1g) be a statist-
ical model where 6 = (#/)7_, belongs to some open set © C R” with m < 2(d — 1) and the
parameter is assumed to be identifiable. Given an ensemble of n copies of the unknown state,
we would like to devise a measurement strategy and estimation procedure which attains the
smallest average error (risk), asymptotically with n. For mixed states, a general solution has
been discussed in [4] where it is shown how the Holevo bound can be achieved asymptotically
using the QLAN machinery. Here we adapt this method to the case of pure state models.

In brief, the procedure involves three steps. We first use n = n!~¢ samples to produce a
preliminary estimator 6, and write @ = 0, +u /+/n where u is the local parameter satisfying
||| < n° (with high probability). We chooose an ONB {|0),...|d — 1)} such that [y ) =
|0) and use the QLAN isometry V, (cf equation (25)) to map the remaining qubits |U”) :=
V8, +u \/ﬁ>®” approximately into the Gaussian state |Cu). We then use the method described
in section 6.2.1 to estimate the unknown parameter and achieve the Holevo bound.

We start by expressing the local states as small rotations around |0)

196, +uym) = eXP (1;{2_‘; (qu (%) oy =" (%) a")> 0) (26)

where f9; and f7; are real functions and a§‘ and o* are the Pauli matrices of equation (21). We
now °‘linearise’ the generators of the rotations and define

m

(Vi) i=exp | =D _wiS;/ Vi | 10) @7
j=1
where
d—1
Sj= (CZJ y o ci,(ff) ’ CZ}P = O (W)]zg-
k=1
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We denote the ensemble state of the linearised model |U7) := |¢), /i) ®". The following
lemma shows that the original and the ‘linearised’ models are locally undistinguishable in
the asymptotic limit.

Lemma 2. With the above notations if € < 1/6 one has

lim sup ||[)(Th| — [ L0 (2]l =0

7O lul| <ne

where || - |1 denotes the trace distance.

The proof of lemma 2 can be found in appendix G. Thanks to such uniform approxima-
tion results, one can replace the original model with the linearised one without affecting the
asymptotic estimation analysis. We denote the latter by

Q, = {\(173> u R |u <nf}.

Let us now consider the second ingredient of the estimation problem, the risk (figure of
merit). We fix a loss function L: © x © — R, so that the risk of an estimator 9;1 at 0 is
R(6,,0) = Eg[L(0,,0)]. We assume that the loss function is locally quadratic around any point
and in particular

L (én +u,0, —|—v) ~ Zm: wij (én) (ui —vi) (j —vy)
ij=1

for a strictly positive weight matrix function 8’ — W(8') = (w;(8")) (which we assume to
be continuous in @’). In asymptotics, 6, — 0 and the loss function can be replaced by its
quadratic approximation at the true parameter 8 without affecting the leading contribution to
the estimation risk. We denote W := W(0).

Returning to the original estimation problem, we now show how QLAN can be used to
construct an estimator which achieves the Holevo bound asymptotically.

We couple each system with a d-dimensional ancillary system in state |0’) and fix an ONB
for the ancilla B’ = {|0"),...,|d — 1’)}. The extended i.i.d. statistical model is |¥”) @ |0')*".
By quantum LAN, the joint ensemble can be approximated by a pure Gaussian shift model
coupled with an ancillary (d — 1)-modes cv system prepared in the vacuum: |Cu) ® |0) where
C is the (d— 1) x m complex matrix with entries Cy; = czj + ic,f].; more precisely we map
the two qudit ensembles into their Fock spaces by means of a tensor of isometries as in
equation (25) and we consider the 2(d — 1) modes which correspond to the linear space £ :=
Lin{|0) ® |i"),|{) ® 0"y :i=1,...d — 1} (which contains {|g) ® |0’) }gco). Alternatively,
one can map the original ensemble to the the cv space and then add a second cv system in the
vacuum state. The reason we chose to add an ancillary ensemble at the beginning is because
this same setup will be used in the next section in the context of displaced-null measurements.

We now apply the optimal measurement for the Gaussian shift model |Cu) with weight
matrix W, as described in section 6.2.1. This involves measuring commuting quadratures of
the doubled up cv system, such that the resulting estimator &, achieves the Gaussian Holevo
bound (19) in the limit of large n.
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Thanks to the parameter localisation and LAN, the asymptotic (rescaled) risk of the corres-
ponding ‘global’ estimator 0, = 6, + @, /+/n satisfies

lim nR (én,e) =H"(G).

n— o0

Finally we note that the expressions of the Holevo bound (18) in i.i.d. model |¢g) with
loss function L, and the corresponding Gaussian shift model |Cu) with weight matrix W
coincide: H"(0) = HY(G). Indeed, since pg = |tg)(10g| is a pure state, the minimisation
in (18) can be restricted to operators X = (Xj,...,X,,) such that PX; P = P1X; Pt =0 where
P = pg,P+ =1 — P. In this case the two Holevo bounds coincide after making the identifica-
tion B; ; = v/2Re(k|X;|0), Bj 141 x = V2Im(k|X;|0).

6.4. Achieving the Holevo bound with displaced-null measurements

In this section we show how displaced-null measurements offer an alternative strategy to the
one presented in the previous section, for optimal estimation in a general finite dimensional
pure statistical model [ig) with 8 € © C R™. As before, we assume that the risk function
L:0© x © — R, has a continuous quadratic local approximation given by the matrix valued
function W(0).

The first steps are the same as in the estimation procedure in section 6.3: we use 1=
n'=¢ samples to produce a preliminary estimator 6, and we write 8 = 6, +u/./n where u
is the local parameter such that ||u| < n¢ with high probability. We choose an ONB B =
{10),...,|d — 1)} such that |0) := [t ) and apply lemma 2 to approximate the local model
as in equation (27). We couple each system with an ancillary qudit in state [0’). By QLAN,
the joint model is approximated by the Gaussian shift model consisting of coherent states
|Cu) ® |0) of a 2(d — 1)-modes cv system.

As detailed in section 6.2.1, the Holevo bound for the (jaussiag shift can be attained
by measuring a certain set of canonical coordinates 0:= (Q1,...,0m) of the doubled-up
systems. In turn, this provides an asymptotically optimal measurement for the i.i.d. qudit
model as explained in section 6.3. Instead of measuring these quadratures, here we adopt the
displaced-null measurements philosophy used in section 4, which achieves the same asymp-
totic risk. This means that one measures the commuting set of displaced number operators
N’A” =D(—A,)ND(A,) where N = @;a; is the number operator corresponding to the mode

(épﬁ]) and

D(An) = exp (-lAn Zi)k> s An = \/ﬁ(sn = n35'

k=1

‘We note that

N, = (Zij 7n361)* (Aa'j—nkl) =nb1— \fZéjn36 +N,

n

so for large n, measuring IVA” is equivalent to measuring éj. We recall that by measuring Z* :=

T(~) we obtain an optimal unbiased estimator of u, where 7 is the invertible matrix defined at the
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end of section 6.2.1. Therefore, using the above equation we can construct an (asymptotically)
optimal estimator given by the outcomes of the following set of commuting operators

m n3e n—SGNk
§ Ty | —=1—— ~Z;.
- f"(ﬁ V2 A">

We are now ready to translate the above cv measurement into its corresponding projective qudit
measurement using the correspondence between displaced number operators measurements
and rotated bases, described in section 6.2.2.

Using the general CLT map (22), we identify vectors {|1),...,|)} in the orthogonal com-
plement of |0) = [0) @ [0’) such that their corresponding limit quadratures are X(|k)) = Qx, for
k=1,...,m. By virtue of the CLT the vectors |0),|1),...,|#) are normalised and orthogonal

to each other, so we can complete the set to an ONB B 1= {10),...|d® — 1)} of C¢ ® C* where
the remaining vectors are chosen arbitrarily. Now let 3, be the rotated basis

(#)

for 8, = n='/>+3¢ and o (ik) := —i|0(k| + i|k)(0|. Note that B, is a small rotation of the basis
BB which contains the reference state |0) = |0) ® |0"), so the corresponding measurement is a
of the displaced-null type.

We measure each of the qudits in the basis B,, and obtain i.i.d. outcomes X1, ..., X, taking

values in {0,...,d* — 1}, and let i be their distribution:

P () = (uyyn ® 0" 1))

The following Theorem is one of the main results of the paper and shows that the Holevo
bound can be attained by using displaced-null measurements.

m

‘Vjén> - U((Sn) l;> = exp (i(sn

k=1

2 j=0,....d—1.

Theorem 2. Assume we are given n samples of the qudit state |1pg) where 0 € © C R™ is
unknown. We further assume that assume that © is bounded and € < 1/10. Using it = n'~¢
samples, we compute a preliminary estimator 0,, and we measure the rest of the systems in
the ONB l”;’,,, as defined above. Let

be the estimator with

) 3e n173e

- n

=S (- p ), j=1,....m
A k; Jk(ﬁ AP ( )) j

where p,(j) is the empirical estimator of p,(,") (j), i.e

_MisXi=ji=1,...,n}]
n )

Pn(J)

Jorj=1,....m.
Then 8, is asymptotically optimal in the sense that for every 6 € ©

lim nR, (én,e)) —HYO) ().

n— o0
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Moreover; \/?z(én — 0) converges in law to a centered normal random variable with covariance
given by TT" /2.

The proof of theorem 2 can be found in appendix H.

Our measurement has been obtained by modifying the optimal linear measurement for the
limiting Gaussian shift to displaced counting one, and translating this to a qudit and ancilla
measurement with repect to a displaced-null basis. Interestingly, this resulting measurement is
closely connected to the optimal measurement described in [106]. The connection is discussed
in appendix L.

6.5. Estimating a completely unknown pure state with respect to the Bures distance

In this section we consider the problem of estimating a completely unknown pure qudit state,
when the loss function (figure of merit) is defined as the squared Bures distance

dy (1) (W], [9) (o) = 2(1 = [(¥ld)]) -

In this particular case, we will show that one can asymptotically achieve the Holevo bound
using diplaced-null measurement without the need of using any ancillary system.
We parametrise a neighbourhood of the preliminary estimator |0) := |¢,) as

d—1
[y ym) = exp (—iZ (ujoy —uot) /ﬁ) 0)
k=1

where u = (u},ul, ..., ud"" ui~") € R~ satisfies ||u|| < n° with high probability.
For small deviations from |0) the Bures distance has the quadratic approximation

1
& (W) W L s 1) = 2= 0 (714%)

which determines the optimal measurement and error rate in the asymptotic regime.

The Gaussian approximation consists in the model |u; + iu;) and the optimal measurement
with respect to the identity cost matrix would be to measure the Q’s and P;’s. In order to estim-
ate u, instead of using an ancilla, we split the ensemble of n qudits in two equal sub-ensembles
and perform separate ‘displaced-null’ measurements on each of them in the following bases
which are obtained by rotating {|0),...|d — 1)} by (small) angles of size &, = n—1/?*3¢

d—1
‘V;S”> = U (62)]j) = exp <15nzo'f> i) (28)
k=1

d—1
Wiy = Uy (6,) lj) = exp (ié,,Za!?) [j)- (29)
k=1
Therefore in the asymptotic picture, the proposed measurements are effectively joint meas-
urements of {Q;,i =1,...d— 1} and respectively {P;,i =1,...d— 1} which are known to
be optimal measurements for the local parameter u in the Gaussian shift model when per-
formed on two separate copies of |(u; + iu;)/+/2) obtained from the original state by using a
beamsplitter.
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Let Xy,...,X,/2 and Yi,...,Y,» be the independent outcomes of the two types of

measurements, taking values in {0,...,d — 1}, and let p,(‘") and q,(,") be their respective

distributions

P () = [yl )Py al” () = by gl P (30)
Proposition 3. Assume ¢ < 1/10 and let

) == [Yay ym)
be the state estimator with local parameter u,, defined as
3e 1-3e 3e 1—3e
L L S N ¥ S L L S W DU B
= 5 Pa()), W= 5 (i), J=1d=1,

where p,, g, are the empirical estimator of p,(,") and q,(,"), respectively, i.e.

. it X;=j,i=1,...,n/2 .. itYi=j,i=1,...,n/2
pn(J):H /}|7 qu(J):H /}|a

n/2 n/2
forj=1,...,d—1.
Then under Py, \/n(it, —u) is asymptotically distributed as a centered Gaussian random

vector with covariance 1/2 and |1ﬁn> is asymptotically optimal in the sense that it achieves the
Holevo bound:

Jim B [ (1) (L 1) () | = = 1.

The proof of proposition 3 can be found in see appendix J.

We note that splitting the sample in the qubit ensemble model, corresponds to combining the
corresponding coherent mode with the vacuum of an ancillary mode, by means of a balanced
beamsplitter and measuring canonical coordinates of the two ‘output beams’. While this is
optimal for a weight matrix W which is proportional to the identity, in the case of a general
weight matrix, the optimal ancilla state is squeezed and it is not clear whether the optimal
measurement on the ensemble level can be implemented by splitting the ensemble only.

6.6. Achieving the QCRB with displaced-null measurements

We now consider quantum statistical models for which the QCRB is (asymptotically) achiev-
able. In contrast to models discussed in sections 6.4 and 6.5, in this case all parameter com-
ponents can be estimated simultaneously at maximum precision. We will provide a class a
displaced-null measurements which achieve the QCRB asymptotically.

Let us consider the statistical model {|y9)}, 0 € © C R" withm < (d — 1) and assume that
the parameter is identifiable and that the QCRB is achievable for all § € ©. This is equivalent
to condition (17) for all @ € ©. The QFI is given by

F(0); = 4(0:ve|01e) — 4(te|01t0a) (i be|tbe),
fori,j =1,...,m.Let|0) := |¢)5 ) be the preliminary estimator. We write 6 = 6, +u/\/n with

u the local parameter satisfying ||u|| < n¢ with high probability. We assume that the phase of
|19) has been chosen such that (;]0) = 0 for all i, and denote ¥; := 0; g, .
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We now describe a class of measurements that will be shown to achieve the QCRB asymp-
totically. We choose an ONB B := {|0),|1),...,|d — 1)} whose first vector is |0) and the other
vectors satisfy

cii= (k) eR,  i=1,....m, k=1,....d—1. (31
This condition is similar to equation (7) in [93], but unlike this reference we do not impose
additional conditions for the case when (k|¢);) = 0 for all i = 1,...,m. If we assume that the

parameter 0 is identifiable, then the matrix C = (¢;) needs to have rank m.
We will further rotate B with a unitary U = exp(—id,G) where §, = n~'/2+3¢ and

d—1
G= g0k, ok =—il0)K| +ilk) 0]
k=1

where g # 0 are arbitrary real coefficients. We obtain the ONB {|v3"),...|[vY" )} with
vy =Ulk),  k=0,...d—1.

We measure all the systems in the basis BB and obtain i.i.d. outcomes Xi,...,X,€40,...,d—1}
and denote by p, the corresponding empirical frequency. We denote by 7'= (T};) the m x (d —
1) matrix defined as

1

T=(c'c) .

Proposition 4. Assume that © be bounded and € < 1/10. Let 0,=0,+ i, /+/n be the estim-
ator determined by

ood-l g’ nlo
i = Ty | =—— — p, (k) ).
' kZT ’k< 2 2 )>

Then én achieves the QCRB, i.e.

. . T
lim nEq [(0,, ~6) (6.-0) } —F(0)"".
n—oo

The proof of proposition 4 can be found in appendix K.

We now give a QLAN interpretation of the above construction. The fact that ¢y, are real
implies that the linearisation of the model around the preliminary estimation is given by

m

Gy ym) =exp | =i > _uS;/v/n | |0)

j=1
with
d—1
Si=> chot,  cy=(kli).
k=1

By QLAN, the corresponding Gaussian model consists of coherent states |Cu) of a (d — 1)-
modes cv system where C:R™ — C?~! is given by the real coefficients ¢ = (k|¢);). This
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means that each of the (d — 1) modes is in a coherent state whose displacement is along the Q
axis, so {Cu|P;|Cu) = 0 for all k, while

m
qi = (Cu|Qi|Cu) = V2> " cyju;.
j=1

As we mentioned in section 6.2.1, the QCRB is achievable for the limit model too and the
simultaneous measurement of all Oy is optimal. This is asymptotically obtained by the counting
in the rotated basis.

7. Conclusions and outlook

In this paper we showed that the framework of displaced-null measurements provides a
general scheme for optimal estimation of unknown parameters 8 € R™ of pure states mod-
els |g) € C. In particular, displaced-null measurements achieve the quantum Cramér-Rao
bound (QCRB) for models in which the bound is achievable, and the Holevo bound for gen-
eral qudit models.

Our method is related to previous works [20, 92, 93] that deal with the achivebility of
the QCRB for pure state models |ig). These works exhibit a class of parameter-dependent
orthonormal bases B() whose associated CFI I5(8) converges to the QFI F(8) of |1)g) as 0
approaches the true unknown state parameter 6. The measurement basis 5 (é) has the special
feature that it contains the state |+)5) as one of its elements, so that at 6 = 6 the measurement
has only one outcome, while for 6 ~ 0 the occurrence of other outcomes can be interpreted as
signaling the deviation from the reference value 6. With this in mind we called such measure-
ments, null measurements.

However, the [20, 92, 93] do not provide an explicit operational implementation of a strategy
that achieves the QCRB. The naive solution would be to choose the reference parameter as
a preliminary estimator 6, obtained by measuring a sub-sample of 7 < n systems, and to
apply the approximate null measurement B to the rest of the systems. Surprisingly, it turned
out that this adaptive strategy fails to achieve the QCRB, and indeed does not even reach
the standard n~! scaling of precision, when the preliminary estimator satisfies certain natural
assumptions. This is due to the fact that 0, lies in the interior of a confidence interval of € and
the measurement cannot distinguish positive and negative deviations from the reference since
probabilities depend on the square of the deviations. This is an important finding which shows
the pitfalls of drawing statistical conclusions based solely on Fisher information arguments.

To avoid this issue, we proposed to displace the preliminary estimator by a small amount
d, which is however sufficiently large to ensure that the new reference parameter 0, + 0, is
outside the confidence interval of 6. Building on this idea we showed the achievability of the
QCRB in the setting of [20, 92, 93]. Furthermore, for general pure state models and locally
quadratic loss functions, we devised displaced-null measurements which achieve the Holevo
bound asymptotically for arbitrary qudit models.

The theory of QLAN has played an important role in our investigations. The QLAN
machinery translates the multi-copy estimation problem into one about estimating the mean
of a multi-mode coherent state. In the latter case, counting measurements are paradigmatic
example of null-measurements, while appropriately displacing the number operators provides
the basis for displaced-null measurements. Using the QLAN correspondence, this translates
into a simple prescription for rotating a basis containing the preliminary estimator \1/1(;") into
that of the displaced-null measurement. Interestingly, the obtained measurement turned out to

30



J. Phys. A: Math. Theor. 57 (2024) 245304 F Girotti et al

be closely related to the parameter-dependent measurements proposed by Matsumoto in [106],
and our approach offers an alternative asymptotic perspective on this work.

An exciting area of applications for displaced-null measurements is that of optimal estim-
ation of dynamical parameters of open systems [13, 70-76]. Recent works [95, 107] have
shown out that quantum post-processing by means of coherent absorbers allows for optimal
estimation of such parameters. In particular [95] pointed out that a basic measurement such as
photon counting constitutes a null-measurement, thus opening the route for devising optimal
measurements for multidimensional estimation of Markov dynamics. An asymptotic ana-
lysis of displaced null measurements in this context will be the subject of a forthcoming
publication [96].

Another area of future interest is to extend the method to models consisting of mixed states.
While this will probably not work in general, the ideas presented here may be useful for models
consisting of states with a high degree of purity which is the relevant setup in many quantum
technology applications. Another important extension is towards refining the methodology for
optimal estimation in the finite sample rather than asymptotic regime. Finally, we would like
to better understand how displaced-null measurements can be used in the context of quantum
metrology and interferometry [108, 109].
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Appendix A. Proof of the QCRB-saturating POVM

In this appendix we present the necessary and sufficient conditions for a quantum Cramér-Rao
bound saturating POVM, based on the proof by Zhou et al [99], highlighting the features that
allow this POVM to saturate the bound. The CFI corresponding to the measurement M = {M;}
is given by

Im(0)= > w: 3 (Re[Tr(M; Lopy)])*

Tr (Mi py) Tr (Mi o)

i:Tr(Mipg )70 iTr(Mipg )70

where we have used the Lyapunov equation, see section 2, and identified that the resulting
term corresponds to the above real component. Clearly

> (Re[Tr (M; Lops)))* _ T | Tr (M; Lope) |*

Te (M po) Tr (M, po)

i:Tr(Mipe ) #0 iTr(Mipo ) #0
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where we have equality when Im[Tr(M; Lgpg)] = 0. We now use the Cauchy-Schwarz inequal-

11 1 1
ity to cancel the denominator, identifying the terms M; p; and M; Lyp; within the expression
above, finding

Tr M,'E 2
s ML) S e Lopeco). (A1)
- Tr (M; po) )
i:Tr(Mipg ) #0 i:Tr(M;pg ) #0
The equality holds if
11 1 1
M} o} = \M: Lo (A2)

for all i such that Tr(M;pg) # 0 for some A; € C. Finally, since M; represents a POVM we have

> Tr(MiLopeLe) < Tr(Ljps) =F(6), (A3)

i:Tr(M;pg ) #0

where F(0) is the QFIL. Equality is achieved when Tr(M; LopgLy) =0 for all i such that
Tr(M;pe) = 0. Note: this ensures that all the information on the parameter is contained in
measurable outcomes with non-zero probabilities.

In summary, to achieve the QFI the POVM {M; } needs to satisfy the 3 following conditions:

1. If Tr(M;pg) > 0 then Im[Tr(M Egpg)] O

2. If Tr(M;pg) > OthenM’pg =\ Mzﬁgpe, A €C,
3. IfTI'( lpg) 0 then TI'(M ﬁgpgﬁg)

We can combine conditions 1. and 2. into the following condition:

1
4. If Tr(Mipg) > 0 then M} p} )\M Egpa,/\ eR.

Appendix B. Parameter localisation via a two step adaptive procedure

Here we discuss in more detail the general parameter localisation principle to which we refer
repeatedly in the paper. The principle is formulated for one-dimensional models, but can be
extended staightforwardly to multidimensional ones.

Suppose we are given a large number n of independent, identically prepared systems in
the state pg, depending smoothly on a parameter 6 which lies in an open set © C R. To avoid
pathological cases we assume that F(6) > f > 0 for all § € O. Even though the set © is a priori
‘large’, we can ‘localise’ the parameter and subsequently perform measurements adapted to
the parameter value, by using the following two step procedure.

Consider a measurement M such that 6 is identifiable, i.e. no two different parameters pro-
duce outcomes with identical probability distributions. In the first step we apply M to each
system belonging to a vanishingly small proportion 7 = o(n) of the samples, with 77 growing
with n. For concreteness we assume that 77 = n! ~¢ < n, with € > 0 a small number, but the argu-
ments hold for a generic choice. Using the data obtained from measuring this sub-ensemble
we construct a preliminary rough estimator 0, of 0.

Naturally, one would like the estimator 0, to be ‘pretty good’ (given the used sample size),
but not necessarily optimal. There are several properties that could embody this requirement;
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for example one could require that the MSE scales at the standard rate 7' = n~!*€ and 0, is
asymptotically normal, i.e. it concentrates around 6 at rate 2~/ with

Vit (én - 9) S N(0,Vp)

where the convergence to the normal distribution holds in law as n — oo and the variance
satisfies Vy > F()~'. Standard estimators such as maximum likelihood typically satisfy this
property [97]. In particular, this implies that the (confidence) interval

I, = (én _ n71/2+67 g, +n71/2+e)

contains ¢ with probability converging to one exponentially fast. This follows from the fact that
the ratio between the size of I, and the standard deviation of 8, — @ diverges as |I,| /n{~11€)/? =
n/?.

On the other hand, if one adopts a Bayesian viewpoint and assumes the existence of a prior
distribution on © with density 7(6), then it is natural to require the asymptotic normality of
the posterior density

6,

p(o18) = (é)

where p(6,]0) = pg(6,) and p(6, =[p (6,,]0)7(d6). Intuitively this follows from the asymp-
totic normality of 0,,. Indeed if the prior 7(6) and the variance Vy are sufficiently regular with
respect to # and Vj is bounded away from zero, then p(66,) o exp(—7(, — 0)/2V,) con-
centrates around 6, with approximately normal distribution. For more details on asymptotic
normality theory we refer to [98, 110]. For our purposes, it will suffice to assume that 0, is a
‘reasonable’ estimator in the sense that the posterior distribution is ‘balanced’ with respect to
0, in a sense that is precisely defined in section 3. In particular, this means that we exclude
‘dishonest’ estimators for which the mass of the posterior distribution lies largely on one side
of the estimator. For instance, taking a reasonable estimator 6, and adding a constant §,, such
that 8, /f~'/? — oo for large n would be an example of a dishonest estimator. As we will see
later this distinction becomes important since the preliminary estimator enters the definition
of the second stage estimator, and the performance of null measurements based on reason-
able/dishonest estimators is radically different.

Adaptive step. We pass now to the second step of the estimation procedure in which one
measures the remaining n’ = n — i systems, taking into account the information provided
by the first step. We distinguish two measurement strategies, the SLD measurement and the
approximative null measurement.

For one-dimensional parameters, an optimal procedure is to measure the SLD £; sep-
arately on each system and then construct the (final) estimator é =9~ +X, JF( Nn) where
X, = % f X; is the average of the measurement outcomes. Assuming that the prelimin-
ary estimator is consistent (i.e. 6, — 6 for large n), we obtain that 0, achieves the multicopy
(asymptotic) version of the QCRB in the sense that

lim nE, {(én — 9)2] —F(9)".

n— 00
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Moreover, 6, is asymptotically normal
Jn (én - 0) N N(O,F(a)*‘)

thus providing us with simple asymptotic confidence intervals.

Let us consider now the case of null measurements. In section 2 we showed that if we
measure in a basis B(0) = {|v1),...,|vq) } such that |v;) = |1)g) then the CFI is zero. However,
at 0 ~ 6 (A # 0) the approximate null measurement with respect to a basis B(é ) has CFI1 B@)
F(0). As anticipated in section 2, the adaptive strategy use for the SLD measurement does not
work in the case of null measurements when the initial estimator is reasonable. Proving this
will be the subject of section 3.

Finally, let us briefly consider the case of multidimensional parameter models. In this set-
ting, separate measurements may not be optimal in the second step due to non-commutativity
of the SLD operators for different parameter components. However, using the information
contained in 6, we can devise collective measurements procedures which are asymptotically
optimal in the sense of achieving the Holevo bound [84]. This can be understood by employing
the local asymptotic normality (LAN) theory [23-25], which we briefly recall in section 6.2.

Note that since step one uses a vanishing proportion of the samples, the asymptotic result
remains the same if we assume that n samples are available in the second step. Therefore, in
order to simplify notation, in the sequel we will replace n’ = n — i1 by n.

Appendix C. Proof of lemma 1 on existence of reasonable estimators

The outcomes X1,. .., X; have probabilities
po(0) =cos? (0 —7/4), pe(1)=sin*(0—7/4).

The maximum likelihood estimator is 6, = 7 /4 +f~'(X,) where X,, = %Zf’:l X; and f(x) =
sin®(x) (which is invertible on (—7/2,0)).

For every k=0,...,7 and 6 € [—7/8,7/8], the density of the posterior at time # is given
by

sin® (6 — 7 /4) cos? K (0 — 7 /4)
JE sin™ (¢ = m/4)cos?1) (¢ — m/4)d

and the unconditional distribution of 8, is given by

Tr(9|§,, :7r/4+f1(k/ﬁ)> - 1)

P (én —r/Atf! (k/ﬁ)) - % (Z) [ 7 sin? (6 — 7 /4) cos? R (9 — 1 /4) do.

B

Consistency of 6, and the dominated convergence theorem imply that for every Borel set
¥

lim P(éneA) :%[EXA(G)dH.

n—-+oo

This allows us to consider for instance A,:= (—m/8,7/8). Moreover, we can rewrite
equation (C1) as

—i (sin® (8, — =/4) , sin® (6 - 7/4))
flﬂ e—ﬂH(sinz(é,,—‘n—/4),sinz((—‘n—/4))d<

3

0|
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where H(p,q) = —plog(q) — (1 —p)log(1 —g). Notice that if 6, € (—7/8,7/8), then
H(sin(, — 7 /4), sin*(@ — 7 /4)) admits a unique minimum in [—7 /8,7 /8] at 6 = 6§, where
it vanishes and where the value of the second derivative is equal to 4. Therefore, for n big
enough (uniformly in 6, € (—7/8,7/8)) one has that

On /it _ i D=2 1
/ e—ﬁH(sinz(Gy,—‘n'/él),sin‘(@—w/él))de > / e_Mda _ LN/ e_#de
Bt 7 Gt Vit Jyers

and analogously for the integral in the interval [én —n,0, — 7). Moreover

/

o3

efﬁH(sinz(é,lfﬂ'/4),sin2(§77r/4))d<

jus
8

_ / o H(sin? (B =m/4).sin (=7 /4)) g ¢
|C=u|zn=1/24e

_|_/ e—ﬂH(sinz(én—rr/4),sinz(C—ﬂ'/4))dc
‘<_§’l|<,rl/2+e
Outn™ '3 g, 1 )
. 3i(¢—6n € 3¢
Le ™ /2+/ e" 7 d(=e ™" /2+—~ e~ 2.d¢
Op—n—1/2+e \/I; _p—e/2

and we are done, since we just proved that for n big enough (uniformly in 0, € (—m/8,7/8)),
one has

562

1 502
N
- —7 o >c>0
Ve /iy "7 e de

P(@é,,i@ >

for some ¢ independent on n and 0. g

Appendix D. Proof of theorem 1 on suboptimality of the null measurement
with reasonable preliminary estimator

Taking into account the two step procedure we write

Eq [(én—eﬂ :/Rp (dénw) (én—9)2:/R2p(d9~n|9>p<dén\9,§n> (én—e)z

where p(df, |) is the distribution of the preliminary estimator at @ and p(dd,|0,6,) is the distri-
bution of the final estimator given 6 and 0,.. Since the final estimator is obtained by measuring
at angle 6, its distribution depends only on r = |6, — ], so p(d6,|,,6) = p,(dd,).

The Bayesian risk of the final estimator 0, is

R, (0,) =E [(én_aﬂ _ /@ _lanyp (ad1o) p (a6,10.8,) (3 )’
= [o(an) [ (@) (s00.i) (5.-0)
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We have

[, (w0 (s i) (o)
_ /r>0dr jaaca [w (6118, (80— =r) 7 (3.~ 16, (4, _gn+,)2]
By assumption, 7 (6, = r|6,) > 8,.4,(r) and since
(én_én —r)2+ (én—én—i—r)z > 2/

we get that for every 0, €A,

/@XRTF (d9|§n)p (dé,,|9,é,l> (én — 9)2 > /;n—(1/2—</4) 8n.3, () 2r2dr/]Rp, (dén>

r

> Q'Cvn—]-‘,-e/Z7

where the last inequality follows from point 2. in the definition of the reasonable estimator.
Finally, since P(6, € A,,) > ¢, we get

R, (én) > 2cCn~ 1 te/?

which implies the result. d

Appendix E. Proof of theorem 1 for weaker notions of unidentifiability

As we already mentioned, in the proof of proposition 1 we made use of the fact that for the
statistical model defined in equation (8), the law of the measurements in the basis containing
|g,) could not distinguish between 0, +r.

In the qubit case, we can still prove theorem 1 for a wider class of one-parameter models
under two additional assumptions. The first one is asking that unidentifiable parameters con-
centrate around the preliminary estimate at the same speed on both sides; more precisely, let us
consider a general (smooth) one parameter model |¢5 . ) for r € (—a,a); the corresponding

probabilities describing the measurement in the 0,-null-basis are given by

pr(1) = (v, 15, )P = 1= p:(0).

In general, there is no reason why p, = p_,, however at r = 0 the function p,(1) has a global
minimum and we can pick a neighborhood (—a’,b’) such that

1. p,(1) is invertible on (—a’,0] and [0,b"),
2. pr(1) maps both (—a’,0] and [0,b") onto the same interval.

A priori, the neighborhood depends on 6,, but if the preliminary estimator takes value in
a compact set, we can find a nonempty neighborhood (—a’,b’) that works for every value of
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0,.. If we denote by r/(r) the unique value in (—a’, 0] such that p,./(,) (1) = p.(1) for r € [0,b"),
we require

r— 1’ (r) and its inverse to be Lipschitz with a

Lipschitz constant L that is uniform in 0~,,. (ED)

The second assumption consists in replacing the condition in equation (10) with

Tn/ L‘rn'
min{/ 8.4 (r)dr,/ 8,4 (1) dr} >C (E2)
T o Tu/L o

4

where 7, :=n~(17+0)/2 71— p=(1=¢=B)/2 for some a, 3 such that 7/ = o(1), and C >0 is
a constant independent on n. The additional requirement is that the posterior measure con-
centrates around the preliminary estimator. Under assumptions (E1) and (E2), the proof of
theorem 1 can be adapted quite straightforwardly. This reparametrisation trick, however, can-
not be repeated in the qudit case.

More generally, if instead of conditions (10) and (E2), we assume that

’

TY!
/ 8n.3, (r)dr=C (E3)
Tn
where 7,, 7,/ and C > 0 satisfy the same conditions above and, moreover, we require the pre-
liminary estimator to be enough accurate, i.e. € < 1/3 — (2a.+ 508) /3, we can prove theorem
1 without any assumption on the statistical model. We will make use of the fact that the con-
ditional law of the measurements jn the 6,-null basis conditional to the parameter § = 6, + r

does not distinguish between 6 = 6,, + r locally (which is the condition equivalent to have zero
Fisher information), i.e.

Po(0) =po(1)=0,

where the derivative is taken with respect to 7.

Proposition 5. Consider any one-parameter qudit model {|1pg) } and assume that 0, is a reas-
onably good estimator satisfying condition (E3), obtained by measuring a sub-ensemble of size
n'=¢withe < 1/3 — (2a+58) /3. Let 0, be an estimator of 0 based on measuring the remain-
ing n — n'=¢ sub-ensemble in a basis containing |¢§n>. Then

lim nR, (én> = 00.

n— o0

Proof. First notice that

E [(9 - 9)1 >P (16, -6/> 7)) 72 +E {Xénegn, = 9)2] .

37



J. Phys. A: Math. Theor. 57 (2024) 245304 F Girotti et al

Moreover we can write

/ 7(d0]6,)p(db,10,0,)(6, — 0)?
16, —6|<T)
0 ) 0\(A 2
g /Tn<\e_é,l\<7,{ m(d016,)p(d0,|0,0,)(0 —0)
16,—0|<T,
> [, cerr 8, (1) (pr(d0,) (0, — 6, — r)* 4+ p_.(d6,) (6, — 6, +1r)?)
|9,,—9\§Tn'
= -rngré‘rn/ g”vén (r)(pr(dan) +p7r(dén))((én - é”)z + r2))+
|é'l_9‘<7—/x/
- 2 Tng,gn’ gn,é‘,l( )(Pr(dén) P—r(dén))(én - é,,)r
1, —0]<T,

The first addend can be lower bounded by
Jocre 82000 (01) - (80)) 7
|6, —0|<T,

The second addend will be negligible in the final analysis. Indeed, we have that

Y I ipr (6) = I p—r ()

x€{0,1}"
<Y D pr@) e pr @) e (1) = Py () - g (Ri1) - g ()
I=1 xe{0,1}"
=n Y Ipr(0) —p—r ()| S,
x=0,1

where in the last inequality we used that

Po (x) = po (x) = po (x) + po (x) = po (x) — po (x) =0

for x =0, 1 and the symbol < means that the left hand side is less or equal than a constant
times the right hand side. Therefore, the second term can be upper bounded by a constant
times n7> = n=3/23(+8)/2 which is o(72) if € < 1/3 — (2a+58) /3. To sum up, one has
that

s 7 (082) 85,00 (e (082) - (082) ) 7240 ()

16,—0]<,
> / T (dé,,) 8 d, (r) (p, (dén) +p_r (dén)) 7',,2 +o0 (’T,%) > CCTnZ +o (7'”2) .
<<,
O
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We remark that, if all the derivatives of p, up to the 2s — 1-th order for some s > 1 vanish
at 0, then we get that

Z Ipr(x) —p_r(x)| S 7_n/2s.4.1

x=0,1

and we obtain the statement under the assumption that e < (2s—1)/(2s+1) — 2a+ (25 +
3)8)/(2s+ 1). Notice that in general we can pick « and 3 arbitrarily small, hence the restric-
tion on e effectively becomes € < (25 — 1)/(2s + 1), which does not preclude any value in the
limit s — +o00.

Appendix F. Proof of proposition 2 on optimality of displaced null
measurements

Since this measurement setting depends on n, we need to look in more detail at the asymptotic
behaviour of the estimation problem.

We start by assuming that 6 € I,, and at the end of the proof we treat the case 6 ¢ I, by
employing the concentration bound in equation (11).

Since § € I, we can write § = 6, + u/n'/? with local parameter u satisfying |u| < n¢. Then

90 = un—V2 _ 1243 _ <n—1/2+3e)
and
pé") =sin® (0 —0!) = (6 — 9,;)2 +0(n ) =n"" (u— n36)2 +0 (n~t1%).

From this we get that

n35 n173e

T T

where the u? term is negligible compared to un>¢ and the remainder is O(n=¢) for € < 1/10.

The probability pé") can be estimated by the empirical frequency (12) whose distribution is

the binomial Bin(pé") ,n). Taking into account that § = 6, + u/n'/? and using (F1) we define
the estimator

Py +0(n°) (F1)

243 pl/2-3e
0, =0,+ ) - ) Pn (F2)

with p,, as in (12). Now from (F1) we get

1-3e

ﬁ(én - 0) _ 5 (pé”) —ﬁn> +0(n°).

Conditional to a certain value of 6,, Dn has a binomial distribution with parameters pé") and

the term O(n~¢) is deterministic, hence

nE [(9n—9)2|5n] = nzjepé") (1 —pén)) = % +o(1).
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In order to study the convergence in law of \/ﬁ(én —0), one can consider the conditional

characteristic function of n1_35(p((,") — pn)/2 instead (conditional to 6,, they only differ by a
deterministic vanishing quantity):
gn]

w5 (1 = pi®) +o<n-'>)

n

Ey [exp(ian“k(ﬁn fpén))/2)|§n] =g [exp <ian36 Z(X,- pén))/2>

i=1

—F, [exp(ia;ﬂf(x1 —piy /2|é,1}

Notice that for every a € R

Eg [6/(00)] e TR0 € 1) + / p (46,10) (Bs [V O0)]5,] %)
oel,

Since Py (6 ¢ I,) goes to zero, the first term goes to e%ﬂ and the third one vanishes. The second
term vanishes because | (Eg[e?V"(%—=0)|6,] — &5 )X {oes,} can be upper bounded uniformly in
0, by a sequence converging to 0. Therefore we obtain the convergence of \/ﬁ(én —0) to the
normal, in distribution. For the convergece of the rescaled MSE we note that since 6, é,, are
bounded, equation (F2) shows that the square error n(én —6)? does not grow more than n?;
using the fact that Py (6 ¢ I,,) decays exponentially fast, one can remove the conditioning also
in the convergence of the MSE. U

Appendix G. Proof of lemma 2

In the present section we want to show that the statistical models |¥7) and [¥) (which are the
ensemble states corresponding to the models in equations (26) and (27)) become equivalent in
Le Cam distance when the the neighborhood of parameters considered shrinks around 6,. Let
us first compute the overlaps between states corresponding to the same local parameter u in
the single copy scenario: expanding the unitary rotations one obtains

(Vuy iV, 1y i)

_ <o <1+iS\(f’:—S(Zlg2 +o<;)> <l+i

=1—i(0|T(w)0)/\/n+o0(1/n)=1+0(1/n),

—1i

ﬂ
—
=
N—
|

95}
=

[3e)
_|_

Q
VRS
S| -
N———
\/
()
=

95
=
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where
m d—1
S@)=>uwsS;, Tw)=> wu;y 0ff(0)ot— 0 (0)or.
j=1 ij=l k=1

Notice that the last equality in the computation of the overlap is true because T(u) has zero
expectation in |0). We remark that the error remains of the order of o(1/n) and is uniform in u
if ||u|| < n® with e < 1/6. Now we can conclude easily using the expressions of the trace norm
between two pure states in terms of the overlap of two representative vectors, and noticing that

(TLWL) = (o) il sy i) = (L+0(1/m))" = 1

uniformly in ||u|| < ne. O

Appendix H. Proof of theorem 2

We first assume that @ € I,, where
L= {0 ER": (606, gn—1/2+6}.

Recall that |0) = [¢)g ) is the preliminary estimator, and we denote 0 := |0) ® |0') the

first basis vector of an ONB B:={|0),...,|&#—1)} in C¢®C? which is chosen such that
[1),...,|m) are vectors corresponding to the canonical variables Qy,...,0,, which span the
elements of the optimal unbiased set of observables Z*. Without loss of generality we can
assume that {|1),...,|2d — 1)} form an ONB of the subspace £ := Lin{|0) ® |i’), |i) ®|0’) :
i =1,...d— 1}. The local state (of system and ancilla) can be written as

S ()5 R (5)7) ).

‘1;@,,+u/\/ﬁ> =¢€

where f¢ , are smooth real valued functions and &)’;y are the Pauli operators for the vectors in

the basis 5. ~
From the definition of the basis B, the subspace £ and of the matrix 7" defined at the end of
section 6.2.1 we have

(T7")y = V207 (0) forj=1,...m.

In particular, we note that

%Tr (W(é,,) TTT) =) (?)n) : (HD)
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Expanding the unitary rotation, one has

m m

[V 4 i) = fZ Z_:TIJ Tn k)
+iy Za,sz(O)\”—} &) + 0 (n~'+%). (H2)
k=1 \j=1 n

The Taylor expansion for the vectors in the rotated basis is

\vf“> =exp <—i6,, (f: N;‘))

=80y + 0 (n71H) if j=1,...,m )
R otherwise '

Therefore one obtain the following expression for the outcome probability measure

1 m rl 2 | m 2
P = | DL | 4 Yo | o (nm)
n\ 4 V2 n\ =

ifk=1,...,mand p{" (k) = O(n=172) otherwise. Using the fact that ||| < n° one can neg-

lect the quadratic terms in # and write

m <n35 nl—3e ) ( )
w=>» Tyl —=-— Py k>+0 n=°).
: Z;, 5 s m
Moreover, from explicit computations one can see that forevery j #k=1,...,m

2 6¢ 1—6

A G (10 () = 3 o (),

Ee[( () — p(")()) IG}

and

2—6¢

—Eo [ (5 (i)~ 2" () (n (k) — P (K)) 18] = ="~

I’l]

2

- P G () =0+ 0 (1),

Therefore

nEg [L(G,é,,)z\én} —E, [Tr((ﬁ,, — )T W(B) (itn — u))|én} +o(l)

" SN T (1) (
== Y (@ W@)TEs [(pa() —pi" (1) (ou(k) — P ()14 ) +o0(1)
jk=1

_ %Tr(W(é,,)TTT) — 1Y@ (@,) 1 o(1).
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In order to derive the asymptotic normality result for \/n (9 — 6), we first consider the char-
acteristic function of n!=3¢(p, — p") /3/2: for every a € R%~!, one has

Eg [exp (in'~*a- (p —pf:>) 1V2)184]
exp( 362\[ (X p(”)>) }
oo gy ) o (- s ) )

2 n
:(1——”1'1‘ +0(n71>) —e Il o).

Indeed, using that \/n(8 — 8) = n' ~3<T(p, —p(en))/\/i one has that for every a € R™

—]EG

—E, 6,

Eg [exp (i\/ﬁw (9—0)) |én} — e +o(1).

We can now remove the conditioning with respect to the preliminary estimate and take the
limit for n — 400 (we will only show the computations for the risk, but they are the same in
the case of the characteristic function):

nEe {L (0,9,,)2] — 1Y) (0)Py (0 € 1,) + /9 P (dé,,w) (HW@") (é,,) —HW®) (9))
+ [ p(ae) (s [ (0.0 ) 6] -1 (5,))
+ /0 7 (dé,,\@) nEg [ ]

The first term in the sum tends to H"(®), while all the other ones tend to 0 because of the
continuity of H"(®), the fact that nEg[L(8,0,)?|6,] — H"(®)(8,) is uniformly bounded by
a vanishing sequence on [, and that the last term can be upper bounded by a constant times
nPg (0 ¢ I,). The same reasoning shows unconditional asymptotic normality. g

Appendix I. Comparison between 5,, and 0,

In this section we elucidate the connection between the measurement strategy that we pro-
pose and the optimal measurement for pure statistical models pointed out in [106]. Theorems
1 and 2 in [106] show that for every parameter value 6, there exists a measurement basis
that allows to attain the Holevo bound at 6 in one shot: given the optimal estimator Z of the
limit Gaussian model at 6, one needs to consider the corresponding vectors |z1), ..., |z,) via
QCLT (see equation (22)) and pick any ONB {|by) }{*_, of spang{|t)g), |z1),...,|zm) } such that
(bi|te) # 0 for every k. The measurement in any ONB containing |by);._ is optimal and the
estimator achieving the Holevo bound is given by
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éi _ (bilzi) P
V2(bi|ve)
if k is observed for k =0, ...,m and O otherwise.
As in the case of the SLD, such an optimal measurement depends on the true parameter; in
order to come up with a concrete estimation strategy, one needs a two step procedure. After
producing a preliminary estimate 8, of the parameter, one would then choose an ONB {b;}}"_

of spang{|tg, ),[z1);.-.,|zm)} such that (bg|ig ) # O for every k and measure in any ONB
containing {by}}*,. The final estimator would be given by

bk|Z1 ~ ni
= k)+6
Zfbklwg P (k) + 65, an

where p, (k) is the empirical probability of observing k.

However, theorem 1 shows that if {b; }}*_ is too close to be a null-basis, such a strategy does
not even achieve a standard scaling due to identifiability problems. The basis {|[v") }7"_, that we
propose satisfies the assumptions above for being optjmal at @, and ensures an asymptotically

optimal estimation precision; moreover, in this case 8, and 8,, are equivalent in the following
sense.

Proposition 6. Let 0, and 0 the estimators defined in equation (11) and theorem 2, respect-
ively. Then the following holds true:

2 N 2
lim nEg {(0,, - an) ] —0.
n—-+oo
Proof. First we condition on én € I,,, where
={6eR": |98, <n '},

Using equation (H3) and |z;) = S}, Ti/k), one has that

(belai) = T =5 Z +0 () (bulig) = —0+ 0 (/)

fork=1,...,mand

m

<b0|zi> = 6nZTl]—|—0 (n—3/2+9€) ) <b0|'(/}é> — 1 + 0 (n—1+65) )
j=1

Therefore we can write

_ (brlzi) . k
Zfbk‘wg ( )

n71/2+36 zm: n1/2735 i: zm: —1/243e¢ z"’:
=——7%— ) TuPn(0)— ——F— > Tupn(k)+ Tij » pn(k)+R
ﬂ k=1 \/2 k=1 k=1
. . —1/243e ™M m 71/2+3e m
~ ~ n ~
:9;76;+R+TZ zk(pn 71 +Z ljzpﬂ(k)
k=1 k=1

) (i
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where R is a random variable whose standard deviation is O(n_3/ 2+9¢). Moreover, both (1)
and (IT) are negligible too: indeed, for every k =0,...,m

o | (a0 1)) 16, =01/
and
Py (k) = doi + 0 (n~17).

The statement follows removing the conditioning can be shown with the same technique as in
the proof of theorem 2. O

Appendix J. Proof of proposition 3

We denote by I, the set of states

{1 < dy (19) G019, (6] ) < 01072

and we assume that |¢)) belongs to I, (the converse can be dealt with as in the proof of theorem
2). Therefore, we can write

d—1
|9 _exp< i ”1‘7 _“20 /f) |1/Jn>

k=1

for some u = (u},u}, ..., u™" ud™")

.,d one has

€ R2(4=1) that satisfies |ju| = O(n¢). Notice that for j =
P () = [y gl P
d—1
— <j exp (i&nz:o;f) exp( 12 uioy — uso) /f) >
k=1 k=1
' : ' 2412
= (/v 0.) + (d/va) o),

where the last equality is obtained expanding the matrix exponential. Analogously one
obtains

2

(n) (j) = (u’ 2 s _s 2 —2+12¢
g (j) = (wh/Vn) + (62/Vn—3,) +0(n 1)
forj =1,...,d— 1. This implies that

n3e n1—3e

=" ) ko )
and
g T —
= 5 ()0 (n7).
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Moreover, for every j k= 1,...,d — 1 one has

2 6¢ 1—6 1

) (1P () = 5 o (1),

B [ (pu -5 ) 1) =

and

nZ;EE\w [(An(J) —p" (J)) (f’n (k) —pi” (k)> HW}

nl —6e

===’ ()p (k) =0+0(1).

Another consequence is that for a € R?~! one has

n/2
B [oxpln' e =)/ 21 =B [exp {07 D (6 —pl?) ) 1

By [expina- (X, ("))IIW}
lall* . (n) (n) -1 "
= lan pu (17pu )+0(l’l )

Jla|? "2 :
= <l o +0(n_1)> =e Il /% 1 o(1).

The same can be proved for the other batch. Notice that

ndy (146) (61, 1), ()= i~ + o 1)

- 4 Z (20— )+ (2 ) 42 () +0(1).
j=1

Therefore, if 1) € I,
AN S
B b (10011001, 60]) 16)] == 14001
and for every a € R>(¢~1)

Ejy) [ = >} =l o).

The rest of the proof is similar to the one of proposition 2.
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Appendix K. Proof of proposition 4

In order to avoid confusion and conversely to the main text, in this proof we stress the depend-
ence of C and B on the preliminary estimator 8,,.
As usual, we assume that 6 € I,,, where

I={0cR": 00, <n '/}

then one can write @ = 0, +u/+/n for some u such that ||u|| < n¢ and the probability law of
the X;’s is given by

2

P,(,n) (k) = Zij (én) ¢ —gib, | +0 (n—3+9e)
j=1

m

= gt 200 (3 ey (8,) o | gt 0 (1)
j=l1

fork=1,...,d — 1. Equivalently, using that B(6,)C(8,) = 1, we can write

1—-3e

=y (6.) (gk’jé - —p <k>) +0(n).
k=1

28k
Therefore
1o | (6,-6)" (6,-0)16,| =26 [ (@0 ) 3, ~) 6,
2—6¢

4

BGEy [(ﬁn o) (i —p;@)Tén} GB" +o0(1),

where G is the diagonal matrix with entries given by (1/ gk)Z;ll. Explicit computations show
that

n2766

Gao | (pu=) (52~ 147) 180] G = 1744001,

Therefore
nEe {(én ~0) (6. 0)T|én} =5(0,)B (é,,)r/4 +o(l).

Notice that B(6,)B(0,)7/4 = F(8,)~": indeed, using the explicit expression of B(8,)
5(6,)8(0,) = (c(a.) c(a)) =4 (o)

The rest of the proof is the same as in the one of theorem 2 and uses the continuity of F(8,).
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