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Abstract

Power-counting non-renormalizable theories should not be dismissed a priori as fun-
damental theories. The practical inconvenient of having in�nitely many independent
couplings can be faced in certain cases performing a reduction of couplings. First
we study the usage of a special reduction based on the relations imposed by the
renormalization group. Then, we analyze the renormalizability of a family of theo-
ries containing quantum �elds interacting with a a classical gravitational �eld and
that contain a certain class of irrelevant operators. The reduction is this case is
guided by a map that also indicates that these models exhibit an acausal behavior
at high energies. Finally, we investigate the renormalizability of models which, al-
though containing irrelevant operators, are renormalizable with a �nite number of
couplings due to the presence of Lorentz-violating kinetic term. Along this work
we consider models that can violate some principle as the Lorentz symmetry or
causality, but all of them preserve unitarity. The guidelines of this thesis aim to
get a better understanding of the role of renormalization as classi�cation tool, and
guide the search of a generalization of the Power-Counting criterion that allows the
enlargement of the set of candidate fundamental theories.
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Introduction

Renormalization is a central topic in Quantum Field Theory that historically has
motivated opposite attitudes. Even some of its precursors like Richard Feynman
showed themselves sceptical regarding the mathematical grounds and meaning of
the technique designed to save Quantum Electrodynamics (QED) from in�nities
that appear in perturbative calculations and prevent to obtain �nite results to com-
pare to the experiment. As late as 1985 Feynman said �It's surprising that the
theory still hasn't been proved self-consistent one way or the other by now; I sus-
pect that renormalization is not mathematically legitimate�[1]. On the other hand,
the impressive precision with which the experimental data was predicted in QED,
for example the electron gyromagnetic ratio, was enough to many scientists to con-
sider as validated the method used �to sweep the dust under the carpet�. Moreover,
the use of Power Counting (PC) as renormalizability criterion served to guide the
evolution from the four-fermions model proposed by Enrico Fermi to explain the
electroweak interaction, which happens to be non-renormalizable, to a renormaliz-
able model including intermediate bosons, that lead to the discover of the W and Z
bosons.

The striking success of QED, the application of renormalization concepts to
statistical mechanics due mainly to Kenneth Wilson, and the development of the
electroweak theory placed renormalization and in particular Power Counting in a
better position. Power Counting became an essential tool to classify, and most im-
portantly, to rule out models to be considered fundamental theories. Its strength
is based in two points. First, its application is extremely simple: to determine the
renormalizability of a model it is enough to perform a dimensional analysis. Nev-
ertheless, behind PC there are very elaborated all-order demonstrations, involving
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combinatorics and the study of divergent diagrams, that give renormalization a �bad
reputation�, in particular the treatment of overlapping divergences. Second, unlike
any other criterion (as symmetries for example), PC allows a vertical classi�cation,
that is to say it reduces the number of possible interactions (and thus theories) from
in�nitely many to a �nite set. This classi�cation leaves outside most models, being
quantum gravity the most remarkable example.

Nevertheless, it seems clear that PC can not be the ultimate criterion for renor-
malizability. Certainly all models it approves are renormalizable, but some of
the dismissed model could eventually renormalized. The standard example is the
three dimensional four-fermion model studied by Parisi [2], where renormalization is
achieved by means of a expansion of Green functions in 1/N where N is the number
of �eld copies, instead of the usual expansion in the coupling constant. The renor-
malizability of PC non-renormalizable models should motivate the search of a new
criterion, an extension of PC to open the possibility of new interactions, hopefully
also quantum gravity.

Renormalization, considered in a wider perspective should still serve as a vertical
classi�cation tool. That is the aim of this work.

Along these lines, we constantly keep an eye in the possible applications or
implications of these ideas in a quantum theory of gravitation, one of the most
important unsolved puzzles of theoretical physics.

In Chapter 1, we present some results of standard renormalization theory that
will be useful in the rest of the work.

The main problem of non-renormalizable models is the need of in�nitely many
types of interactions and independent couplings to obtain a coherent renormalization
structure when the standard renormalization program is used. In Chapter 2 we face
this problem directly using the in�nite reduction of couplings, namely the search for
relations between the in�nitely many couplings, guided by the consistence with the
renormalization group. When some particular conditions are satis�ed, the reduction
is applicable and the model can be renormalized by means of rede�nitions of �elds,
masses and a �nite number of independent couplings. Dimensional regularization
is used to explore the reduction from a di�erent angle, and it provides the clearest
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way to obtain some of the results and all-order theorems, although the equivalence
with other regularization is proved.

In chapter 3 we study the renormalizability of models containing quantum �elds
interaction with classical gravity. The models considered are non-renormalizable in
the Power Counting sense, and contain a �nite set of matter operators of dimension-
ality four or less coupled to purely gravitational operator of arbitrary dimensionality.
The renormalization is achieved by means of a rede�nition of �elds, masses and a
�nite set of couplings, without generating higher derivatives in the kinetic term of
the gravitational �eld, responsible of instabilities. The renormalizability is proved
using a special map that relates the renormalization of a higher-derivative model,
to the renormalization of a model that present causality violations.

In chapter 4, we discuss renormalization aspects of theories that contains a mod-
i�ed kinetic term that breaks explicitly the Lorentz-invariance and produces more
convergent propagators, improving the behavior of diagrams in the ultraviolet re-
gion. Unitarity is preserved, since we add only space higher-derivatives (and no
time higher-derivative) to the usual kinetic term. To prove the renormalizability of
these (PC)non-renormalizable models we de�ne a modi�ed version of PC, adapted
to theories that present this particular form of the kinetic term, called Weighted
Power Counting.

Each chapter contains its own introduction, while the general conclusions are col-
lected in a separated section. The Appendices contain some calculations and results
that are used in Chapter 2 and 3. In Appendix A the analytical properties of the
solutions of a certain family of di�erential equations are studied using perturbative
expansions, while in Appendix B we present a theorem that allows to �nd, in certain
circumstances, the perturbative version of the map that relates a higher derivative
model with an acausal one.

Along all this work we make an intensive use of dimensional analysis in di�erent
circumstances. For instance, in Chapter 2 it helps to �nd the general form of the
beta-functions and restricts the form of the reduction at renormalized and bare
levels. In Chapter 4 it is useful to determine the scaling properties of Green functions
under a weighted scale transformation.



Chapter 1

Preliminaries

This chapter is devoted to review general results in renormalization theory that are
used or generalized in the rest of this work. It also serves to �x some nomenclature
and terminology. It is not intended to be complete or self-contained. Here the
standard renormalization program and the study of renormalizability based on power
counting analysis are brie�y reviewed for theories containing both fermions and
bosons. Then, some special features of the renormalization group and beta-functions
in dimensional regularization are exposed. Special attention is devoted to issues that
are generalized in Chapter 4 to deal with Lorentz-violating models.

1.1 Renormalization Program

One of the �rst approaches to show that the divergences of quantum �eld theories
may be absorbed into local counterterms to all orders in perturbation theory was due
to Dyson [3]. We say that a theory is renormalizable if such subtractions are local,
i.e. polynomials in momentum space, and implemented by counterterms through
the rede�nition of parameters and �elds contained in the theory. Therefore, the
model should have the appropriate number and type of interactions to carry out
this program.

In many circumstances we will talk indistinctly of integrals and diagrams. No
ambiguity should arise according to the context. For instance, the subdivergences of
a diagram refers to the divergences of the integrals associated with subdiagrams.

Let G a one-particle irreducible (1PI) divergent Feynman diagram and G the

4
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same diagram with all the subdivergences subtracted. G may still have a divergence,
called the overall divergence G

(∞)
.

The demonstration of renormalizability consists basically of three steps:

i) Demonstrate that for all G, G
(∞) is a polynomial in external momenta and its

degree is equal to the super�cial degree of divergence ω (G) (de�ned below) regardless
of the number of loops of G.

ii) Prove that lower-order counterterms cancel out the subdivergences of G, i.e.
the combinatoric factors have the precise value such that

div


G +

∑

{γ}
G{γ}


 = G

(∞)

with G{γ} is a diagram similar to G where the subdiagrams γi has been replaced by
vertices representing suitable counterterms, and the sum is over all possible sets of
proper divergent subdiagrams.

iii) Show that the lagrangian contains the appropriate interactions to provide
counterterms required to cancel all the divergences. In other words, that the rede�-
nition of coupling constants,masses and �elds is enough to produce �nite correlation
functions to all orders.

Statements i) and ii) are undoubtedly the hard part and its demonstration re-
quires a very involved study of diagrams and convergence of integrals. The general
analysis was begun with the Bogoliubov-Parasiuk theorem [4, 5] which rigorous
demonstration was given by Hepp [6] and re�ned by Zimmerman [7] (commonly
designated as the acronym BPHZ) using his forest formula. Another essential con-
tribution was the proof of locality of counterterms, due to Weinberg [8].

In the next section we present the general analysis to deal with the point iii).

1.2 Power Counting
Power counting (PC) is a very simple and useful tool to rapidly determine the
renormalizability of models. It allows to know what kind of 1PI diagrams have an
overall divergence G

(∞)
.
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A fundamental diagrammatic identity used for power counting is

L + V − I = 1, (1.1)

with L the number of loops of the diagram, while V and I are the number of vertices
and internal lines it has, respectively. Here we study the renormalizability of theories
containing both fermion and boson �elds. The subscripts f and b label fermionic
and bosonic quantities respectively.

The super�cial degree of divergence ω (G) of a diagram G is de�ned in D dimen-
sions as

ω (G) = DL− 2Ib − If +
∑

i

δ(i)vi. (1.2)

Each vertex i is characterized by the integers N
(i)
b and N

(i)
f , the number of �elds

of each type it contains and δ(i), the number of derivatives present in it. The number
of such vertices contained in G is denoted by vi.

Normally, ω (G) coincides with the dimensionality of the integral1 [G]. The
dimensionality of a quantity, denoted here by square brackets, is the dimension it has
in mass units. For example, masses, coordinates and momenta have dimensionalities

[m] = 1, [xµ] = −1, [pµ] = 1.

In D spacetime dimensions, [ϕ] = (D − 2) /2, [ψ] = (D − 1) /2, where ϕ and ψ

bosonic and fermionic �elds respectively.
Calling E the number of external legs of G, we have that

Eb =
∑

i

N
(i)
b vi − 2Ib, Ef =

∑
i

N
(i)
f vi − 2If , (1.3)

Ib + If = I, Eb + Ef = E,
∑

i

vi = V, (1.4)

and (1.1), allows to rewrite (1.2) as

ω (G) = dD (Eb, Ef ) +
∑

i

viΩ
(i)
D , (1.5)

1When the coupling constants are not considered as part of a diagram G.
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where Ω
(i)
D = δ(i) − dD(N

(i)
b , N

(i)
f ) is the degree of divergence of the vertex i. The

quantity

dD (Xb, Xf ) =

(
1− Xb + Xf

2

)
D + Xb +

Xf

2
(1.6)

= D − Xb

2
(D − 2)− Xf

2
(D − 1)

will be very useful in the PC analysis of Lorentz-violating theories of Chapter 4 as
well. In a strictly renormalizable model (see below) we have ω (G) = dD (Eb, Ef ) .

To have a renormalizable model it is necessary to keep ω (G) under control to
ensure that the set of divergent correlation functions remains �nite. This means
that the super�cial degree of divergence of all diagrams that have the same external
legs in number and type, should be bounded. On the other hand, there should exist
a maximal number of legs Ê such as all diagrams with more external legs than Ê are
overall convergent, in other words, we require polynomiality of counterterms. From
(1.5) these requirements are translated into:

i) All vertices should satisfy Ω
(i)
D ≤ 0. If this condition is not ful�lled, it will

be necessary in the lagrangian an in�nite set of vertices with arbitrary number of
derivatives, and all correlation functions would be divergent at high enough order
in perturbative expansion.

ii) dD (Eb, Ef ) should be a decreasing function of its arguments. Expression (1.6)
tell us that this is possible only if D > 2 (or D > 1 when the theory is purely
fermionic).

Note that ii) is not a necessary condition, but we are interested in having renor-
malizability as a tool to restrict the number of �elds each vertex can have. If it is
not ful�lled, some vertices with arbitrarily high number of legs but without deriva-
tives satisfy i). It is possible to have, for instance, renormalizable theories in D = 2

dimensions that contain vertices with arbitrarily high number of legs. Thus ii) is
the requirement of polynomiality of the lagrangian.

Renormalizability, together with the restrictions imposed by symmetries, uni-
tarity, reality of the action, etc., provides an important guide in the process of
formulation of quantum �eld theory models. Indeed it can be regarded as the most
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important of the mentioned concepts because it reduces the set of allowed inter-
actions to a �nite number by limiting the number of �elds. In fact, the maximal
number of legs of each type that a renormalizable interaction can have is given by
i) considering no derivatives (δ(i) = 0), namely dD(N

(i)
b , N

(i)
f ) ≥ 0. Explicitly,

Nf (D − 1) + Nb (D − 2) ≤ D. (1.7)

When ii) holds, (1.7) shows that the maximal number of legs that a renormaliz-
able vertex can have increases when the number of spacetime dimensions decreases.

In chapter 4, where we consider Lorentz-violating models, the same expression
(1.7) limits the number of legs contained in renormalizable vertices, with D repre-
senting not the physical dimension but a quantity that can take non-integer values
and that is smaller than the actual physical dimension. This will open the possibility
of a new set of renormalizable interactions.

Assuming ii), we have D > 2 for models where bosons are present, so the maxi-
mum number of fermion �elds in a renormalizable vertex is 2.

The second part of the demonstration of renormalizability consists in showing
that for each super�cially divergent diagram G having Eb and Ef external legs and
super�cial degree of divergence ω (G) , there exist a vertex such as N

(i)
b = Eb, N

(i)
f =

Ef and δ(i) = ω (G) in the lagrangian able to provide the suitable counterterm. Of
course, if there are several boson or fermion �elds of di�erent type, the structure of
the external legs of G and the counterterm must coincide.

If the theory is renormalizable, from (1.5) and i) we have that G satis�es ω (G)−
dD (Eb, Ef ) ≤ 0. Therefore, according to the previous paragraph, the vertex that
absorbs the overall divergence of G satis�es δ(i)−dD(N

(i)
b , N

(i)
f ) ≤ 0, namely Ω

(i)
D ≤ 0,

so also this vertex satis�es i). This consistence check shows us that if some vertex
is not present from the beginning in a renormalizable model but it is required by
renormalization, its inclusion will not spoil the renormalizability of the theory.

1.3 Renormalizability
Depending on the type of vertices contained in theory, (1.5) allows to classify mod-
els according to their renormalizability. It is easy to verify that for each vertex
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i, Ω
(i)
D = −[λi] where λi is the minimal coupling constant related to the operator Oi

corresponding to the vertex i. Assuming that the kinetic terms of the �elds are mul-
tiplied by unity, a coupling is called minimal if it is the unique coe�cient of a vertex
and non-minimal if it is expressed as the product of more than one parameter.

Renormalizable: Ω
(i)
D ≤ 0 (or [λi] ≥ 0) for every vertex. Hence, ω (G) does not

increase when the number of vertices increases.
Strictly-renormalizable: Ω

(i)(i)
D = 0 (or [λi] = 0) for every vertex. ω (G) does

not depend on the number of vertices. If ii) holds, there is a �nite set of divergent
correlation functions, which contain divergences at all order in perturbative expan-
sion. If ii) is no ful�lled, the theory can be non renormalizable even when Ω

(i)
D = 0

for all i. This is the case of the edge renormalizability (see section 4.5).
Super-renormalizable: For every vertex, Ω

(i)
D < 0 (or [λi] > 0). Only a �nite

number of diagrams is divergent.
Non-renormalizable: For some vertex Ω

(i)
D > 0 (or [λi] < 0). In�nitely many

amplitudes are divergent at su�ciently high order in perturbation theory.

Marginal, relevant and irrelevant couplings: According to their dimension-
alities, coupling constants can be classi�ed in one of these 3 sets: marginal if it is
dimensionless, relevant or irrelevant if it has positive or negative dimensionality re-
spectively. They are related to strictly-, super- and non-renormalizable interactions,
in the same order.

1.4 Regularization
In almost all this work dimensional regularization is used, in the minimal sub-
straction scheme. The divergent integrals are regularized extending analytically the
number of spacetime dimensions d to complex values D = d− ε.

In this context, a quantity is called evanescent if it vanishes in the physical limit
D → d. It is not necessarily proportional to ε (see for example the Gauss-Bonnet
term for D = 4− ε in section 3.1). The dimensionality-defect [9] of a �eld, operator
or coupling χ is de�ned in dimensional regularization as

p(χ) =
[χ]D − [χ]d

d−D
,
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namely the di�erence of dimensionality between the extended spacetime and the
physical one, divided by ε. Normally it is a rational number. For a �eld, it is
determined by the kinetic term and it has the value

p(χ) =
N (χ)

2
− 1.

1.5 Overall Divergences And Subdivergences
Let us brie�y review the usual classi�cation of divergences and the proof of locality
of counterterms [10] in Lorentz symmetric theories. Consider the L-loop integral

I(k) =

∫ L∏
j=1

dDpj

(2π)D
Q(p1, ..., pL; k)

with Lorentz invariant propagators 1/(p2 + m2), where k denotes the external mo-
menta. De�ne q1, . . . , qI as the momentum associated to each propagator. Clearly,
each q is a linear combination of the loop momenta p and the external momenta
k. The ultraviolet behavior of I(k) is studied letting any (sub)set of the momenta
q1, ..., qI tend to in�nity with the same velocity. Proper subsets of the momenta
test the presence of subdivergences, while the whole set tests the presence of overall
divergences. i) When any subconvergence fails, counterterms corresponding to the
divergent subdiagrams have to be included to subtract the subdivergences. ii) Once
all subdivergences are removed, the subtracted integral Isub(k) can still be overall
divergent. Taking an appropriate number M of derivatives with respect to the ex-
ternal momenta k the integral ∂M

k Isub(k) becomes overall convergent. This proves
the locality of counterterms.

The overlapping divergences can be tested sending momenta to in�nity with dif-
ferent velocities. For example, rescale q1, ..., qI as λq1, ..., λqi, λ

2qi+1, ..., λ
2qI . This

test, however, is already covered by the previous ones, since there is always a (sub)set
sfast of momenta tending to in�nity with maximal velocity. In the example just given,
sfast = (qi+1, ..., qI). The other momenta sslow grow slower, so they can be consid-
ered �xed in the �rst analysis and taken to in�nity at a second stage. Weinberg's
theorem [8, 12] ensures that when sfast tends to in�nity the behavior of the relevant
subintegral is governed by power counting and can generate logarithmic corrections
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depending on the momenta of sslow. Then, when sslow tends to in�nity the behavior
of the integral over sslow is still governed by power counting, because the correc-
tions due to the integrals over sfast do not a�ect the powers of the momenta sslow.
The introduction of logarithms in the integral does not change the degree of the
polynomials, thus it does not a�ect the power counting.

1.6 Renormalization Group
The renormalization group (RG) indicates how quantities must vary to keep bare
amplitudes �xed when the scale parameter µ is shifted. In dimensional regulariza-
tion, the RG has some interesting features, which we review here.

The renormalization relation of a generic coupling α is given by

αB = µp(α)ε (α + ∆α(αi, ε)).

The subscript B is used to denote bare quantities, whereas renormalized ones do
not carry any special subscript in general (except in section 3.5 where the subscript
R is introduced to avoid confusion). ∆α(αi, ε) is a Laurent series in ε and a power
series on the couplings αi. Its form and its relation with the Gell-Mann-Low function
β̂α (from now called simply �beta-function�) is detailed below. The beta-function
de�nes the evolution of a coupling under the RG �ow,

β̂α = µ
dα

dµ
,

which is �nite, and its non-evanescent part is denoted by βα, being β̂α = βα− p(α)ε.

Analogously the renormalization of an operator O is written as OB = ZO(αi, ε)O,
and its evolution is given by the �gamma-function� γO = µd ln ZO

dµ
.

In cases where the renormalization is multiplicative, i.e. all divergent diagrams
are proportional to the coupling they renormalize, we can write directly

αB = µp(α)

αZα(αi, ε)

and
αBOB = µp(α)

αO, (1.8)
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so ZO = (Zα)−1 .Deriving (1.8) with respect to ln µ and considering that bare quan-
tities are µ-independent, we get

βα = −α
d ln Zα

d ln µ
, γO = −d ln Zα

d ln µ
, (1.9)

that is βα = αγO.

1.7 Beta-function Structure
In this section two interesting features of the renormalization constants and beta-
functions are shown when dimensional regularization is used. They are used for
example to derive the form of beta-functions, and to simplify the pole cancellation
in Chapter 2.

i) Beta-function structure: The structure of the beta-functions is inherited di-
rectly from divergent diagrams that renormalize the respective coupling. With
�structure� we mean the particular combination of powers of couplings in each term.
In general not all combinations are present (for example the term αη3 is absent in
(2.4)). There exist therefore a direct correspondence between the number and type
of vertices of divergent diagrams and some term in the beta-function. This allows
us to know the form of beta-function simply observing the diagrams involved.

ii) All the information of the renormalization constants is encoded in the residue
of its simple pole. This is a consequence of the RG equations. The residue of the
higher poles can be determined from the residue of the simple pole. In fact, the
renormalization constant and the beta-function can be completely reconstructed
from it. Recall that in general the simple pole has contributions from all order in
loop expansion.

Let us consider just two minimal couplings g and ρ of dimensionality-defects
1/2 and 1, multiplying three- and four-leg vertices respectively. The generalization
to arbitrary number of couplings is straightforward and the general formulas are
presented below. The bare constants can be written as

gB = µε/2gB, ρB = µερB, (1.10)

with
gB = g + ∆g(g, ρ, ε), ρB = ρ + ∆ρ(g, ρ, ε),
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From the general analysis we know that ∆g and ∆ρ are Laurent series in ε

∆g(g, ρ, ε) =
∞∑
i=1

g(i)(g, ρ)

εi
, ∆ρ(g, ρ, ε) =

∞∑
i=1

ρ(i)(g, ρ)

εi

where the residues g(i)(g, ρ) and ρ(i)(g, ρ) are power series in the couplings.
Deriving both expressions in (1.10) with respect to ln µ, considering that bare

quantities are independent of µ, and solving for β̂g, (for β̂ρ is analogous), we obtain

β̂g = Dgg
(1)(g, ρ)− 1

2
gε + poles that cancel out, (1.11)

Dg =

(
ρ

∂

∂ρ
+

1

2
g

∂

∂g
− 1

2

)
.

The part �poles that cancel out� is a restriction imposed by the �niteness of the
beta-function in the ε → 0 limit, and establish relations among the residue of higher
poles. From equation (1.11) we obtain two conclusions: only the residue of the
simple pole g(1)(g, ρ) is relevant, since it is the only one appearing in the expression
for β̂g. Indeed, ∆g can be completely reconstructed from β̂g or equivalently from
g(1)(g, ρ).

Writing
βg =

∑
i,j

bijg
iρj, g(1)(g, ρ) =

∑
i,j

Gij giρj, (1.12)

from (1.11) we have
Gij =

2bij

(i + 2j − 1)
,

so g(1)(g, ρ) is recovered from βg. The relation between the residues reads

Dg g(n) =

(
βg

∂

∂g
+ βη

∂

∂ρ

)
g(n−1) (1.13)

=

(
Dgg

(1) ∂

∂g
+Dρρ

(1) ∂

∂ρ

)
g(n−1),

for n > 1. We can solve for g(n) �inverting� the di�erential operator Dg just as we
did in (1.11) writing (1.12). The operator Dρ is given by Dρ = ρ ∂

∂ρ
+ 1

2
g ∂

∂g
− 1.

The second conclusion refers to the structure of divergent diagrams. A diagram
that renormalizes g having vg and vρ vertices of type g and ρ respectively, needs a
counterterm proportional to gvgρvρ . This implies that g(1)(g, ρ) contains a term Gvgvρ
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gvgρvρ . This term represents the sum of contributions of all similar diagrams. The
di�erential operator Dg in (1.11) do not rise or lower the powers of couplings, so the
structure is retained also in the beta-function. It is not the case of higher residues,
as seen in (1.13). Hence, we can read the structure of beta-functions directly from
the respective divergent diagrams.

The previous arguments easily generalizes to n couplings αk with renormalization
constants

∆k (α1, . . . , αn, ε) =
∞∑
i=1

α
(i)
k (α1, . . . , αn)

εi
.

The beta-function for αk and the generalization of (1.13) are

β̂k = Dkα
(1)
k (α1, . . . , αn)− p(k)αkε,

Dkα
(m)
k =

(
n∑

i=1

Diα
(1)
i

∂

∂αi

)
α

(m−1)
k , (1.14)

Dk =

(
n∑

j=1

p(j)αj
∂

∂αj

)
− p(k),

where p(i) is the dimensionality-defect of αi. The constants of integration of these
di�erential equations are �xed simply considering that the residues α

(m)
k are pertur-

bative quantities, so the di�erential operator Dk can be �inverted�, just as in (1.12).
The previous conclusions apply directly to the general case.

This analysis is completely general since it is not assumed that the couplings
are marginal or the renormalization is multiplicative. Another way to reconstruct
renormalization constants from beta-functions can be found in the appendix of [11].
There, taking advantage of the the particular form of counterterms (all propor-
tional to α) and using the reduction of couplings, the renormalization constants are
obtained directly integrating their beta-functions .

If the theory contains a single marginal constant, the renormalization constant
can be easily calculated integrating in (1.9) since Zα depends on µ only through α,

Zα (α, ε) = exp

(
−

∫ α

0

dα′
βα (α′)

β̂α (α′)

)
.



Chapter 2

In�nite Reduction of Couplings

As mentioned in the introduction, the role of renormalization as a tool for discrimi-
nating which theories are appropriate to describe physical interactions has not been
totally unveiled yet. The main di�culty to consider non-renormalizable models as
fundamental theories is that they need, in the usual renormalization program, in-
�nitely many independent couplings. However, we know that renormalizability as
we understand it, namely Power Counting (PC) analysis, can not be an ultimate
criteria to exclude models. For example, in models studied by Parisi [2], �nite Green
functions are obtained to all orders in the 1/N -expansion even when they are non-
renormalizable in the PC sense. As he noticed, the perturbative series in coupling
constants may not be suitable for the expansion of correlation functions, causing
the appearance of divergences that are absent in other type of treatment. The idea
developed in this chapter, rather than propose this kind of solutions for particu-
lar models, is to study a general framework to face directly the problem of having
in�nitely many couplings by considering that this in�nite set is nothing but an in-
accurate manner to describe a more fundamental theory which does have a �nite
number of parameters. Being more speci�c, we will try to establish relations among
the couplings to regard most of them as dependent or functions of a small, �nite
set. This kind of reduction happens naturally in theories that present symmetries.
Here instead, the reduction is based on the running of the couplings, i.e. the way
they change under the renormalization group �ow. Therefore the main feature of
the reduction is that it is RG-invariant.

15
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The RG-consistent reduction is obtained by means of the resolution of a di�er-
ential equation, the reduction equation. Nevertheless, to actually reduce the number
of independent parameters, we need to pick some special solution of this equation,
using some prescriptions which are motivated by physical arguments. The reduc-
tion could not be carried on in all cases; some invertibility conditions will indicate
whether it is possible or not depending on the parameters of the model.

The idea of the reduction of couplings was �rst applied by Zimmermann and
Oheme [13, 14, 15] to renormalizable models and it has been used historically as an
alternative to GUT theories and applied especially to supersymmetric models. The
most important phenomenological results obtained using this method [16] are the
masses of the top quark mt ' 81GeV and the Higgs boson mh ' 61GeV. Both are
out range of the present knowledge [17] mt = 171±2.1GeV and mh & 80GeV. These
disappointing results do not invalidate the reduction of couplings as technique, only
indicate that the reduction hypothesis is not applicable to this model.

A di�erent approach to reduce the number of independent couplings in non-
renormalizable theories is Weinberg's asymptotic safety [18]. Other investigations
of reductions of couplings in non-renormalizable theories have been performed by
Atance and Cortes [19, 20], Kubo and Nunami [21], Halpern and Huang [22, 23].

In the �rst two sections the method of reduction of couplings is introduced to-
gether with the criteria to select the suitable solutions to the reduction equation.
Then we review in section 2.3 the Zimmermann's model to illustrate the main fea-
tures of the method. There we solve exactly the leading-log approximation, and
analyze the series expansion of the complete solution.

The in�nite reduction, i.e. the process designed to establish dependence rela-
tions among couplings in non-renormalizable theories, is discussed in the rest of the
chapter. There, the invertibility conditions and the reduction itself are obtained
also from the bare reduction equation, which establishes the dependence between
the bare couplings. In section 2.4.6 is shown how the invertibility condition can be
re�ned in the case where there is no three-leg marginal vertices. Section 2.4.9 shows
how relevant parameters as the masses can be included perturbatively. In section
2.4.3 we examine how the reduction is a�ected by the renormalization mixing in the
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non-renormalizable sector. In section 2.4.7 we solve explicitly the in�nite reduction
in the leading-log approximation, which contains enough information about the ex-
istence and uniqueness of the solution to all orders, while in section 2.4.8 the in�nite
reduction in the presence of several marginal couplings is analyzed.

Since the reduction criteria are formulated in terms of the extended-space pa-
rameter ε, we use exclusively dimensional regularization in this chapter to de�ne
divergent integrals.

Along this chapter we will �nd ourselves repeatedly in the situation of studying
the analytic properties of solutions of certain di�erential equations. Although in
some of them it is possible to obtain explicit closed expressions [11], we prefer
to consider all at once studying generically its series solutions as explained in the
Appendix A.

2.1 Reduction Of Couplings
Let α and η be two independent coupling constants. From renormalization group
analysis we know they are not actually constant but they depend on the RG scale µ

η = η(µ), α = α(µ).

In some circumstances this relations can be inverted, being possible to �nd a depen-
dence η = η̌(α) such as

η(µ) = η(µ (α)) ≡ η̌(α(µ)). (2.1)

Because η̌(α) does not depend explicitly on µ, the main feature of the reduction
is that is invariant under the RG �ow, so η = η̌(α) holds for every choice of the
renormalization point. This is an essential requirement because the RG parameter
µ has no direct physical implication. Once the reduction η̌(α) is determined, we
can substitute in the lagrangian η by η̌(α). In this way the renormalization of the
reduced theory is achieved rede�ning �elds and the single coupling α.

Deriving (2.1) with respect to ln µ, we obtain a di�erential equation, the reduction
equation,

β̂α
dη̌(α, ε)

dα
= β̂η. (2.2)
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Equation (2.2) does not represent by itself a reduction because the constant of
integration ξ is precisely the degree of freedom we want to suppress. Keeping it
arbitrary amounts only to a reparametrization (α, η) → (α, ξ) . This reparametriza-
tion can be regarded as a change of scheme, with not physical consequences. The
mentioned change of variables has the particularity that the new �coupling� ξ is
RG-invariant and this property is used in section 2.4.8, where the renormalizable
sector has several marginal couplings. The core of this chapter is the study of this
equation and physical arguments to select some particular solution of it to represent
the reduction. Appendix A.1 will be useful for this objective.

All equations in this chapter, included (2.2) are written in continued space of
D = 4 − ε dimensions. The reduction can be carried on with other regularizations
leading to similar conclusions [9]. Precisely one of the objectives of this chapter is
to show the equivalence of the treatment in dimensional regularization, where some
computations are in some sense more transparent and natural, respect to other
regularizations. We work in four physical dimensions, but the generalization to
arbitrary number of dimensions is straightforward. Recall from Chapter 1 that the
hat over the beta-function indicates that it has also an evanescent part.

To select a particular solution of (2.2) some prescription or criterion is needed.
Some special conditions will indicate if the criterion successfully select a single so-
lution or not. If they are not ful�lled, either there exist no solution satisfying the
criterion or there are in�nitely many (i.e. the general solution satis�es the criterion).
These conditions, called invertibility conditions depend only on the leading-log co-
e�cients of the theory. This fact corroborates that the reduction is RG-invariant
since these parameters do not depend on the substraction scheme. The special value
of the integration constant that make the solution satisfy the criteria will be denoted
by ξ, and

η̌ (α, ε) = η̌
(
α, ε, ξ

)

is such a solution.

Similar notation will be used in the in�nite reduction.
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2.2 Reduction Criteria
Here we enunciate two prescriptions to select the particular solution of (2.2) that
represents the reduction and present their physical motivations. We postpone the
demonstration of the equivalence to the next section. The criteria are formulated
in terms of two constants α and η and the dimensionally extended parameter ε.

For more of two couplings see the discussion of section 2.4.8. The criteria for the
reduction are:

i) The function η̌(α, ε) has to be perturbatively meromorphic in α and analytic
in ε. Considering the reduction as a manifestation of a more fundamental theory,
it is clear that if the relation between the two theories is perturbative, only integer
powers of the independent coupling can appear. Perturbative meromorphy [9] means
that negative powers can be arbitrarily high, but the maximal negative power grows
linearly with the order of some expansion. As explained in section 2.4.4,. this
feature allows to de�ne an �e�ective Planck mass� MPe� that gives sense to the
perturbative expansion of the reduced version of a non-renormalizable theory at
energies E ¿ MPe�. For reductions inside a renormalizable sector (as in section
2.3.) we can impose the stronger condition of analyticity in α instead of perturbative
meromorphy.

On the other hand, the renormalized quantum action Γ[Φ, α, η, ε] is �nite at
physical dimensions, so η̌(α, ε) should be regular at ε → 0. Regular in perturbation
theory means analytic.

ii) The fact that η and α are related at renormalized level implies they are
related also at bare level. This is a trivial statement in most regularizations since
bare quantities can be regarded as quantities de�ned at the cuto�. As the reduction
is RG invariant, the very same relation holds at all energies, in particular, at the
cuto�. This is not the case of dimensional regularization. Thus, a di�erent non-
trivial criterion can be formulated as follows: The reduction has to be an analytic
function of ε at renormalized and bare levels . In general satisfying this requirement
will be enough to complete the reduction, regardless the α- or αB-dependence.

The analyticity at ε = 0 of the reduction at renormalized level is justi�ed in
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i). The bare lagrangian L(ϕB, ηB, αB, ε), on the other hand, becomes the classical
lagrangian in the �naive� limit, that is the limit ε → 0 at �xed bare couplings
and �elds. If a reduction η̌B (αB, ε) is consistent, then the reduced bare action
L(ϕB, αB, η̌B(αB, ε), ε) should converge to the reduced classical lagrangian in the
naive limit. Thus also η̌B(αB, ε) should be regular for ε → 0.

In most cases any of these criteria i) and ii) will serve us to select one appro-
priate solution to (2.2). Indeed it will be shown explicitly that they are completely
equivalent.

2.3 Zimmermann Model (Renormalizable Theories)
Zimmermann and Oheme [14] studied the reduction of couplings in the realm of
renormalizable theories. Let us review their simpler model to illustrate the reduction
mechanism and how the analyticity criteria enunciated in the previous section are
equivalent, leading to the same unique reduction when it exists.

We test the criteria in the leading-log approximation �rst, where the general
solution of the reduction equation is known, and then repeat the analysis in the
complete solution using the series method of Appendix B.

Consider a massless Yukawa model with quartic interaction, or scalar electrody-
namics

LY =
1

2
(∂ϕ)2 + ψ∂/ψ + gϕψψ +

ρ

4!
ϕ4,

LSE =
1

4
F 2

µν + |Dµϕ|2 +
ρ

4
(ϕϕ)2,

with Dµϕ = ∂µϕ + igAµϕ and Fµν = ∂µAν − ∂νAµ. In both models the reduction
follows the same lines. A very convenient (but not indispensable) step that will be
very useful for the in�nite reduction as well, is to perform a reparametrization of
couplings previous to the reduction. The idea is to choose the independent coupling
such that it has no dimensionality-defect. For this goal we de�ne α = g2 and η = ρ/α

(so p(α) = 1 and p(η) = 0). Then according to the notation of Chapter 1, we have

β̂ρ = ηβ̂α + αβ̂η, β̂α = 2gβ̂g. (2.3)
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Figure 2.1: One-loop diagrams contributing to beta functions β̂g and β̂ρ.

The structure of βη and β̂g comes1 directly from the structure of divergent di-
agrams that renormalize each coupling, as explained in section 1.7. The one-loop
diagrams contributing to (2.3) shown in Figure 2.1 allows us to write the leading
terms of β̂α and β̂ρ. To all order βα and βη have the form

βα

α
= β1α +

∞∑
L=2

αLPL(η), βη = α
(
a + bη + cη2

)
+

∞∑
L=2

αLQL+1(η), (2.4)

where PL(η) and QL(η) are polynomials in η of degree L. We assume that β1, a, b

and c are nonzero constants.
The form of (2.4) can be inferred just tracking dimensionalities in bare dia-

grams. First note that a bare diagram and the bare constant it renormalizes have
the same dimensionality-defect. To visualize this, observe the contribution of a di-
vergent diagram G to the 1-PI generating functional Γ shown in equation (4.18),
where the quantity inside the parenthesis is a bare coupling. The only two sources
of dimensionality-defect in a diagram2 are the measure dDp that contributes with
−ε for each loop, and the coupling αB (since p(η) = 0). Therefore, matching di-
mensionalities and recalling that renormalized and bare diagrams have the same
structure, it follows that in a L-loop divergent diagram that renormalizes α there
are L+1 powers of α. Analogously, diagrams that renormalize η are proportional to
αL. In the other hand, using (1.1), (1.4) and (1.3), the number of four-legs vertices
contained in a diagram is

vρ =
E

2
+ L− 1− vg

2
.

1Note that β̂η = βη.
2Here we consider the coupling constants as part of the diagram.
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Thus, for diagrams renormalizing ρ we have

vρ ≤ L + 1,

indicating that the L-loop contributions to βρ is a polynomial of degree L + 1 in η.

2.3.1 Leading-log Approximation
Using only the one-loop contribution of beta-functions (2.4),

βα = β1α
2, βη = α

(
a + bη + cη2

)
. (2.5)

we can solve exactly the reduction equation (2.2), obtaining

η̌±(α, ξ, ε) = − 1

2c

[
b∓ s

1 + ξ · (αβ1 − ε)±s/β1

1− ξ · (αβ1 − ε)±s/β1

]
, for s 6= 0

η̌0(α, ξ, ε) = − 1

2c

[
b +

2β1

ξ + ln(αβ1 − ε)

]
, for s = 0, (2.6)

with s the positive square root of b2 − 4ac and ξ the constant of integration.
The solutions labelled with ± are actually two di�erent ways of writing the same

general solution, as can be seen substituting ξ = 1/ξ′.

First Criterion In the �rst criterion we look for an analytic behavior in both
α and ε. Depending on the values of the beta-function coe�cients, two situations
could occur:

i) The exponent ±s/β1 is a positive integer
The solution is doubly-analytic for every value of the constant of integration ξ.

As every solution is equally valid, the criterion is useless in determining the actual
reduction. Keeping ξ arbitrary is equivalent to a reparametrization of couplings
(α, η) → (α, ξ) .

ii) The exponent ±s/β1 is not a positive integer,

± s

β1

/∈ N+, (2.7)
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In this case, only ξ = 0,∞ give doubly-analytic solutions,

η̌±(α, ε) = −b∓ s

2c
. (2.8)

For s = 0 the only analytic solution is η̌0(α, ε) = − b
2c

(setting ξ →∞).

Second Criterion In general, the relation between ηB and αB can be computed
using the solution of the renormalized reduction (2.6) and the inverting the relations

αB = µεα Zα(α, η, ε), ηB = η + α∆η(α, η, ε). (2.9)

The constants Zα and ∆η can be reconstructed from beta-functions as shown in
Chapter 1. However, it is possible to avoid this calculation thanks to three peculiar
features of the treatment made:

i) ηB has no dimensionality-defect.
ii) αB does have dimensionality-defect (equal to 1).
iii) The counterterms that renormalize η are all proportional to α.

When the model has two couplings we can on most cases choose a reparametriza-
tion, as we did, to have two non-minimal couplings satisfying i) and ii). The third
statement is consequence of the other two and the discussion of the paragraph below
the equation (2.4).

Applying the renormalized reduction inside ηB = ηB(α, η, ε), we de�ne

η̌B(α, ξ, ε) ≡ ηB(α, η̌(α, ξ, ε), ε).

Generally both η̌B and ηB should depend explicitly on µ, but they do not due to i).
Then, since all dependence on µ is through α and bare quantities are µ-independent,
we conclude that η̌B(α, ξ, ε) can not depend on α neither:

µ
dηB

dµ
= 0 =

dη̌B

dα
β̂α.

Then, as η̌B do not depend on α,

η̌B(α, ξ, ε) = lim
α→0

η̌B(α, ξ, ε) (2.10)

= lim
α→0

[η̌(α, ξ, ε) + α∆η(α, η̌(α, ξ, ε), ε)]

= η̌(0, ξ, ε) .
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Where iii) was used, the fact that ∆η is a power series in couplings and that η̌(0, ξ, ε)

is �nite. Therefore, without making any new calculation other than simply taking
the α → 0 limit of (2.6) we get

η̌±B(αB, ξ, ε) = − 1

2c

[
b∓ s

1 + ξ · (−ε)±s/β1

1− ξ · (−ε)±s/β1

]
, for s 6= 0, (2.11)

η̌0B(αB, ξ, ε) = − 1

2c

[
b +

2β1

ξ + ln(−ε)

]
, for s = 0.

Using this method, the αB-dependence is trivial: η̌B simply can not depend on
αB due to dimensionality arguments.

Let us examine now the analytic properties of (2.11) with respect to ε. As before,
we have two sensibly di�erent cases

I) The exponent ±s/β1 is a positive integer, any ξ provides a solution which is
analytic in ε.

II) The exponent ±s/β1 is not a positive integer, the unique analytic solutions
are found for ξ = 0,∞.

It is pretty clear that the criteria lead to the same conclusion, that is, for having
a unique reduction the condition (2.7) must hold. In the �rst criterion it ensures
that (2.6) will have a unique doubly-analytic (in α and ε) reduction at renormalized
level. In the second one instead, it guarantees that there are only one reduction
analytic in ε in both renormalized and bare level.

The trick of taking the limit (2.10) for �nding the bare reduction makes evident
the connection between the criteria:

In the second prescription, ε-analyticity is required in (2.6) and in (2.11). Since
the bare relation is nothing but the renormalized one in the α → 0 limit, the second
criterion is summarized in analyticity with respect to ε of the renormalized relation
(2.6) and its α → 0 limit should exist.

In the �rst criterion instead, we look for analyticity in both α and ε simulta-
neously in the renormalized reduction (2.6). This prescription is apparently more
restrictive than the above statement, since it requires (2.6) to be not only regular in
α, but analytic. The equivalence is evident if we realize that α and ε have exchange-
able roles in the solution. This can be seen explicitly from the reduction equation
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using the change of variables u = α − ε/β1. More precisely, in general the solution
can be expressed (see section 2.3.2) as a function of u (α, ε) = α + O (ε) which is
analytic in its arguments, thus

Analyticity in ε (at α = 0) ⇒ Analyticity in u ⇐⇒ Analyticity in α (for all ε).

because the solution depends on α only through u. Therefore a reduction which is
analytic in ε is automatically analytic in α, for all ε.

This connection holds in the complete solution of the Zimmermann model as
in the in�nite reduction, and would not be apparent if the bare relation had been
calculated through the inversion of the renormalization constants.

Note that if the dimensionality-defect p(η) of ηB were di�erent from zero, the
equation above (2.10) would read

µ
dηB (α, η, ε , µ)

dµ
= µ

∂η̌B (α, ξ, ε , µ)

∂µ
+

dη̌B (α, ξ, ε, µ)

dα
β̂α = 0,

having the solution

η̌B (α, ξ, ε , µ) = µp(η)εF
(
ξ, ε, p(η)

)
exp

{
−p(η)ε

∫ α dα′

β̂α(α′, η̌(α′, ξ, ε))

}
.

In this manner the α-dependence is obtained, but not the dependence on ξ or
ε. The lower limit in the integral is redundant since it can be absorbed by the
F

(
ξ, ε, p(η)

)
. Clearly F (ξ, ε, 0) corresponds to (2.11).

2.3.2 Complete Solution
We are ready to look for η̌(α, ξ, ε) beyond the leading-log approximation. Since it is
not possible to give a closed generic solution of the reduction equation when (2.4)
are used, we study its properties using the series method explained in Appendix A,
but �rst de�ne for convenience the variables u and v

u = α− α∗(ε), v = η − η±∗(ε),

where α∗(ε), η±∗(ε) are the non-trivial RG �xed point at ε 6= 0, namely the solution
of

β̂α

α
(α, η, ε) = 0,

βη

α
(α, η, ε) = 0.
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For the expressions (2.4) they have the values

α∗(ε) =
ε

β1

+O(ε2), η±∗(ε) = −b∓ s

2c
+O(ε),

Write expansions

β̂α

α
≡ f(u, v) = f1u+f2v+O(u2, uv, v2),

βη

α
≡ g(u, v) = g1u+g2v+O(u2, uv, v2),

where f1 = β1 +O(ε), f2 = O(ε2), g1 = O(1), g2 = ±s +O(ε).
The reduction of couplings is expressed by a function v(u) that satis�es

f(u, v(u))
dv(u)

du
= g(u, v(u)).

This equation can be transformed into an equation with the same features as the
one studied in Appendix A by performing the change of variables w(u) ≡ v(u)/u:

[
f1 + f2w + uQ1(w) + u2Q2(w) + . . .

]
[w+u

dw(u)

du
] = g1+g2w+uP1(w)+u2P2(w)+. . .

(2.12)
where Pn(w) and Qn(w) are polynomials of order n in w.

Organizing the equation (2.12) properly, it has the same form as (A.1) identifying

A = −g1, B = (f1 − g2) , C = f2, D = −(f1 + f2w0±).

With w0± the solution of A + Bw + Cw2 = 0.
Consequently the solution for w(u, ξ) can be expressed as a in�nite series as in

(A.5), with the relevant quantity r given by

r = −

√
(f1 − g2)

2 + 4g1 f2

(f1 + f2w0±)
= −(f1 − g2)

f1

+O(ε)

≡ r(0) +O(ε),

where r(0) = ± s
β1
− 1 is the non-evanescent part of r.

Multiplying the solution (A.5) for w (u, ξ) by u we recover the series solution for
v(u, ξ)

v(u, ξ) =
∞∑
i=0

v±i ui+1 +
∞∑

n=1

∞∑
m=0

v±mn ξn u
m+n

(
± s

β1
+O(ε)

)
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The coe�cients v±i and v±mn are polynomial on fi and gi, that are themselves
analytic in ε. As can be seen from (A.3), when r(0) is a positive integer n̂, v±n̂ and
successive coe�cients are singular at ε → 0. In other words, when

± s

β1

− 1 /∈ N+ (2.13)

all coe�cients v±i and v±mn are analytical in ε and determinable recursively.

Finally, in terms of η and α,

η̌(α, ξ, ε) = η±∗(ε) +
∞∑
i=0

v±i(ε) (α− α∗(ε))i+1 (2.14)

+
∞∑

n=1

∞∑
m=0

v±mn(ε) ξn (α− α∗(ε))
m+n

(
± s

β1
+O(ε)

)
.

First criterion If (2.13) holds, the solution (2.14) is analytic in α at ε = 0 only for
ξ = 0. Observing that α∗(ε) and η±∗(ε) are analytic in ε, the unique doubly-analytic
solution is

η̌(α, ξ, ε) = η±∗(ε) +
∞∑
i=0

v±i(ε) (α− α∗(ε))i+1.

On the other hand, if (2.13) is violated, that is r(0) is a positive integer n̂, there
is no choice of ξ able to cancel out the singularity in ε → 0 of the coe�cient v±n̂(ε),

so does not exist any solution analytic in ε.

The condition (2.13) is similar to the one obtained in the leading-log approxi-
mation. The only di�erence is that here also ±s/β1 = 1 allows a unique reduction.

Second criterion Since the arguments i), ii) and iii) of section 2.3.1 are still
valid, we can again use the limit (2.10) to obtain the bare reduction

η̌±B(αB, ε, ξ) = η±∗(ε) +
∞∑
i=0

v±i(ε) (−α∗(ε))i+1 (2.15)

+
∞∑

n=1

∞∑
m=0

v±mn(ε) ξn(−α∗(ε))
m+n

(
± s

β1
+O(ε)

)
.
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If (2.13) holds, the bare reduction (2.15) is analytic in ε only for ξ = 0, and
this choice makes also the renormalized reduction analytic in ε, determining the
reduction uniquely.

Summarizing, both criteria i) and ii) show that (2.13) is a su�cient condition
for performing a reduction of couplings to all orders in the Zimmermann and it reads

η̌(α, ε) = η±∗(ε) +
∞∑
i=0

v±i(ε) (α− α∗(ε))i+1,

η̌±B(αB, ε) = η±∗(ε) +
∞∑
i=0

v±i(ε) (−α∗(ε))i+1.

Note that η±∗(ε) is the leading-log analytic reduction (2.8) plus evanescent cor-
rections.

2.4 In�nite Reduction
In the usual renormalization program non-renormalizable theories need an in�nite
number of di�erent interactions to provide the appropriate set of counterterms to
absorb all in�nities generated by divergent Feynman diagrams. In this chapter
we recover some results of the application of the reduction of couplings to non-
renormalizable models [9] through dimensional regularization techniques where some
features are more transparent.

We study a generic massless model in four dimensions although the extension to
arbitrary number of dimensions is straightforward. We do not include any parameter
with positive dimensionality, in particular no mass terms or relevant interactions.
They can be added in a second stage, as shown in section 2.4.9. The lagrangian is
divided in three pieces:

i) An interacting renormalizable sector denoted R,
ii) the head, made of irrelevant operators with lowest dimensionality and
iii) the queue, made of all other irrelevant operators of higher dimensionality

needed for a consistent renormalization structure.

Irrelevant operators are classi�ed by their �level�, that is, the dimensionality of
their coupling constants (at ε = 0). The dimensionality of the coupling of the
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head is denoted by −`, with ` a positive number, and the corresponding operator is
written as O`. It is easy to verify that all vertices generated by renormalization due
to the presence of the head have couplings with dimensionalities which are integer
multiples of −`. The generic lagrangian then reads

L[ϕ] = LR[ϕ, α] + αp(`)

λ`O`(ϕ) +
∑
n>1

αp(n`)

λn`On`(ϕ). (2.16)

where [α] = 0 and [λn`] = −n` with n ≥ 1. Therefore, On` is a level-n operator,
with n > 1 a positive integer.

The couplings of the head and the queue are written in a non-minimal way
such that the only bare coupling with non-vanishing dimensionality-defect is αB,
with p(α) = 1. Just as in Zimmermann's model, this parametrization facilitates
computations and allows to use a limit similar to (2.10) to �nd rapidly the bare
reduction.

Although normally there are several operators with the same level, we �rst make
the simplifying assumption that there is only one operator for any level, and subse-
quently study the general case where operator mixing is present, in section 2.4.3.

The reduction we are looking for is an a sense maximal: all couplings are ex-
pressed as a function of the marginal coupling α and a single coupling in the head
λ`.

As example, take the Yang-Mills model in four dimensions as the renormalizable
sector R coupled with massless fermions, and deform it with a Pauli term [24],

LR[ϕ, α] = − 1

4α
F a

µνF
µνa + ψiD/ijψj,

λ`O` = λ1F
a
µνψiT

a
ijσµνψj,

with F a
µν = ∂µA

a
ν−∂νA

a
µ+fabcAb

µA
c
ν , D/ijψj = γµ

(
∂µψi + Aa

µT
a
ijψj

)
, σµν = −i[γµ, γν ]/2.

The Pauli term is the unique operator in the head; other operators of the same
dimensionality as ψD2ψ, are equivalent to it (plus equations of motion and operator
of higher levels).

The independent operators of level 2 are 11 in total,
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αλ
(1)
2 fabcF a

µνF
b
νσF

c
σµ, αλ

(2)
2

(
ψiψi

)2
, αλ

(3)
2

(
ψiγ5ψi

)2
,

αλ
(4)
2

(
ψiγµψi

)2
, αλ

(5)
2

(
ψiγ5γµψi

)2
, αλ

(6)
2

(
ψiσµνψi

)2
,

αλ
(7)
2

(
ψiψj

) (
ψjψi

)
, αλ

(8)
2

(
ψiγ5γµψj

) (
ψjγ5γµψi

)
, αλ

(9)
2

(
ψiγ5ψj

) (
ψjγ5ψi

)
,

αλ
(10)
2

(
ψiγµψj

) (
ψjγµψi

)
, αλ

(11)
2

(
ψiσµνψj

) (
ψjσµνψi

)
.

while other operators of dimensionality six can be converted in some combination of
the above listed plus operator of higher dimensionality (up to equations of motion)
by using the Bianchi identities.

Back to the generic lagrangian (2.16), the renormalization relations and beta-
functions have the form

αB = µεαZα(α, ε), βα = β
(1)
α α2 +O(α3),

λ`B = z`(α, ε)λ`, β`(λ, α) = γ`(α)λ`,

λn`B = zn`(α, ε)λn` + α∆n`(α, λm`, ε), βn`(λ, α) = γn`(α)λn` + αδn`(α, λm`),

(2.17)
where γn`(α) is the anomalous dimension of the operator On` in the theory R.
As seen in section 1.7, the structures in (2.17) are closely related, indeed

γ` (α) = α
∂

∂α
z

(1)
` (α), γn` (α) = α

∂

∂α
z

(1)
n` (α), δn`(α, λ) =

∂

∂α

(
α∆

(1)
n` (α, λm`)

)
,

(2.18)
where the superscripts refers to the residue of the simple pole, as in (1.11). The
form of the expressions in (2.17) is due to:

i) There are no positive dimensionality constants in these models. Renormal-
ization constants are power series in couplings, so by dimensionality matching, ∆n`

and δn` depend polynomially, at least quadratically on λm` with m < n and do not
depend on λm` with m ≥ n.

ii) In the undeformed theory, the renormalization of the operator On` can be
read from (2.17), so we have λn`B = zn`(α, ε)λn`. Hence, according to the section
1.7, the coe�cient of λn`B in the beta-function βn`(λ, α) is the anomalous dimension
γn`(α).
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iii) By the same arguments explained in paragraph below the equation (2.4), L-
loop diagrams renormalizing αB or λn`B are proportional to αL+1 and αL respectively,
so all counterterms are proportional to α. This fact justify the α-factor in front of
∆n` and δn` and implies that γn`(α) = γ

(1)
n` α +O (α2) .

2.4.1 Reduction
By dimensionality matching, the renormalized reduction relations read

λn`(α, λ`, ε) = λn
` fn(α, ε), n > 1. (2.19)

As the λ`-dependence is �xed, the reduction equation is an ordinary di�erential
equation, instead of a partial di�erential equation. The reason why we have chosen
massless theories and no relevant interactions is now evident. If some positive di-
mensionality parameter is present the dependence on λ` could not be �xed a priori
as in (2.19) due to the possibility of arbitrary functions of dimensionless combination
of parameters.

Deriving (2.19) with respect to ln µ we obtain the set of di�erential equations

f ′n(α, ε) β̂α = fn(α, ε) γ̃n`
(α) + αδ̌n`(α, ε). (2.20)

which solutions determine the reduction. We have de�ned for shorten

γ̃n`(α) = γn`(α)− nγ`(α), δ̌n`(α, ε) = δn`(α, fm(α, ε))

with m < n, and fm(α, ε) = fm(α, ξm, ε) is the analytic solution for the level m.
It is assumed in (2.20) that lower levels (m < n) have been already reduced by
(2.19), therefore the solution can be worked out algorithmically. The constant of
integration for each equation labelled with n is denoted by ξn.

Using the method of the Appendix A, we study now the analyticity properties
of the solutions of (2.20). Writing

δ̌n`(α) = δ̌
(0)
n` +O(α), γ̃n`(α) = γ̃

(1)
n` α +O(α2),

and using the change of variables u = α− α∗ as in (2.12), equation (2.20) becomes

δ̌
(0)
n` + γ̃

(1)
n` f + u P (f, u) = u

df

du

(
β(1)

α + u Q(f, u)
)
. (2.21)
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which is like (A.1) with the replacements

A = δ̌
(0)
n` , B = γ̃

(1)
n` , C = 0, D = β(1)

α .

Therefore the invertibility condition for the coupling of the level n` is given by

rn ≡ γ̃
(1)
n`

β
(1)
α

/∈ N, n > 1. (2.22)

2.4.2 Integrated Bare Equations

Dimensionality matching in extended spacetime is doubly useful since it �xes two
quantities: the physical and the evanescent part of the dimensionality. In cases
where the bare marginal coupling has non-vanishing dimensionality-defect, this fact
determines the form of the bare reduction:

λn`B (λ`B, αB) = ζn (ε) λn
`B, (2.23)

where ζn is a dimensionless constant. Here, as in (2.11) or (2.15) the form of the
bare reduction is constrained to be αB-independent.

Replacing (2.17) in (2.23) we obtain an algebraic equation for fn(α, ε)

fn(α, ε) = z−1
n` (α, ε)

[−α∆̌n`(α, ε) + ζnz
n
` (α, ε)

]
, (2.24)

with ∆̌n`(α, ε) = ∆n`(α, fm (α, ε) , ε).

Equivalence of Criteria The bare reduction, i.e. the determination of ζn(ε) can
be achieved just as we did in section 2, from the renormalized reduction simply
taking the α → 0 limit of equation (2.24) considering that zn`(α, ε) and z`(α, ε) are
1 +O(α), and that limα→0 ∆̌n`(α, ε) < ∞ at ε 6= 0 ,

ζn (ε) = lim
α→0

fn(α, ξn, ε). (2.25)

The rest of the discussion about the equivalence of criteria in Zimmermann's
model applies here unaltered.
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Pole Cancellation In in�nite reduction there is a new way to derive the invert-
ibility conditions (2.22) and the analytic reduction. This method is not totally
independent of studying the solutions of (2.20). Basically, equation (2.24) is the
solution of (2.20), which can be veri�ed deriving (2.24) with respect to ln µ, using
(2.18) and the relation between poles as in (1.13). To make fn(α, ε) analytic in
ε, the poles present in zn`(α, ε), ∆̌n`(α, ε) and z`(α, ε) in the right side of (2.24)
should cancel out. This requirement determines ζn(ε) if the invertibility conditions
are ful�lled.

As in the series treatment of Appendix A, we start writing

ζn(ε) =
∞∑

k=0

ζn,kε
k,

and look for conditions to determinate univocally the coe�cients ζn,k to cancel the
poles. If it is possible, criterion ii) is automatically satis�ed: both renormalized and
bare reduction are analytic in ε.

In cancelling the poles, it is not necessary to care about all the poles of (2.24)
because they are related by RG to the simple pole as in (1.14). Cancelling the simple
pole ensures that all the poles vanish.

In (2.24), ζn,k is multiplied by a sum of objects as

εk
(α

ε

)m

αr,

so the simple pole has the form

1

ε
α1+k+r. (2.26)

The simple pole of ∆̌ is an analytic function of α. In total, the simple poles of (2.24)
have the form

α

ε

(∑
s≥0

asα
s +

∑

k,r≥0

ζn,kck,rα
k+r

)
, (2.27)

where as and ck,r are known numerical factors. Thus, if the coe�cients of ζn,jα
j are

nonzero it is possible to determine ζn,j iteratively in j from the cancellation of the
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pole. The coe�cient of ζn,jα
j depends only on the leading-log contributions to the

wave-function renormalization constants, given by the standard formulas

Zα =

(
1− β

(1)
α α

ε

)−1

, z` = Z
γ
(1)
` /β

(1)
α

α , zn` = Z
γ
(1)
n` /β

(1)
α

α . (2.28)

Finally, inside the parenthesis of (2.27) ζn,jα
j is multiplied by the coe�cient

(
−β

(1)
α

)j+1

(j + 1)!

j∏
i=0

(
γ

(1)
n` − nγ

(1)
`

β
(1)
α

− i

)
. (2.29)

Assuming β
(1)
α 6= 0, all ζn,k can be univocally determined by recursion if and only

if the factor (2.29) is not zero, or equivalently, the condition (2.22) is satis�ed.

2.4.3 Operator Mixing

Normally each level contains more than a single operator. The reduction in this
case can be worked out with the following modi�cations. When there is only one
operator in the head of the deformation, the n-th level is a sum of operators of same
dimensionality, labelled with I,

∑
I αp(n,I)

λI
n`OI

n` (ϕ) and the reduction is speci�ed
by the functions f I

n (α, ε) such that

λI
n` = f I

n (α, ε) λn
`

The beta-functions are expressed as

βI
n` = γIJ

n` (α) λJ
n` + αδI

n` (α, λm`) .

The reduction equation is then replaced by a system of coupled di�erential equa-
tion as (A.6) which admits a series solution only if the matrix

rIJ
n =

(
γIJ

n`

)(1) − nδIJγ
(1)
`

β
(1)
α

, (2.30)

has no non-negative integer eigenvalue, where δIJ is the identity matrix.
A variation of the above case is presented when the head itself is made of several

operators
∑

I αp(I)
λ

(I)
` OI

` (ϕ). Then the �rst step is to perform a reduction between
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these couplings, which is very similar to the Zimmermann's example. Just to il-
lustrate, consider two operators in the head with couplings λ

(1)
` and λ

(2)
` . Their

beta-functions are
β

(I)
` = γIJ

` λ
(J)
` . (2.31)

Taking λ
(2)
` as independent coupling and deriving

λ
(2)
` = f (α, ε) λ

(1)
`

with respect to ln (µ) , the reduction equation is obtained

β̂αf ′ = γ21
` + (γ22

` − γ11
` )f + γ12

` f 2.

This equation has the same form of (A.1) with

A =
(
γ21

`

)(1)
, B =

(
γ22

`

)(1) − (
γ11

`

)(1)
, C =

(
γ12

`

)(1)
, D = β(1)

α ,

so the analytic solution is given by the coe�cients (A.3) if the condition r =
√

∆
D

/∈
N+ holds. Nevertheless, It is possible to avoid the condition that involves the square
of the discriminant if we perform a previous linear rede�nition of couplings λ

(I)
` →

M IJλ
(J)
` with M IJ a constant matrix to put

(
γIJ

`

)(1) into its Jordan canonical form.
Let us study the general case where there are N operators in the head. Calling γ

(1)
`

a real eigenvalue of
(
γIJ

`

)(1) with multiplicity one, we have after the rede�nition is(
γNN

)(1)
= γ

(1)
` , (γNJ)(1) = (γIN)(1) = 0. The overlined indices range from 1 to

N − 1. Take λ` = λ
(N)
` as the independent coupling and reduce the other couplings

of the head as
λ
(I)
` = λ`f

I (α, ε) .

The level-` beta-functions (2.31) give

β` = β
(N)
` =

(
γNN

` + γNI
` f I

)
λ`, β̂α

df I

dα
=

(
γIJ

` − δIJγNN
`

)
fJ +γIN

` −f IγNJ
` fJ .

(2.32)
The unique doubly analytic solution for head operators is found iteratively in α and
ε if the matrix (

γIJ
`

)(1)

− δIJγ
(1)
`

β
(1)
α
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has non-negative integer eigenvalue.
This new reduction equation (2.32) has C = 0 since γNJ

` isO(α2) by construction,
so there is no square root in the invertibility condition.

At higher levels the reduction proceeds as usual and the invertibility conditions
are still that the matrices (2.30) have no non-negative integer eigenvalue for n > 1.

If the eigenvalue γ
(1)
` is complex it is necessary to consider a two-head deformation

involving also its complex conjugate [9].
In Zimmermann's model it is not possible to avoid the square root in the invert-

ibility condition since there is not linear transformation of couplings able to make
disappear the term αη2 from βη.

The reduction with operator mixing can be worked out without new complica-
tions through bare reduction and pole cancellation as well.

2.4.4 Perturbative Meromorphy

The reduced theory reads

L[ϕ] = LR[ϕ, α] +
∞∑

n=1

αp(n`)

λn
` fn(α, ε) On`(ϕ). (2.33)

Since p(n`) > 0 every term of the irrelevant deformation is parameterized in a non-
minimal way and in the α → 0 limit at �xed λ` the theory becomes free. In this
parametrization, λ` = 1/M `

P eff de�nes the e�ective Planck mass MP eff such that the
perturbative expansion in powers of the energy E is meaningful for E ¿ MP eff . On
the other hand, de�ning the Planck mass MP = α−p/`λ

−1/`
` , in such a way that the

irrelevant terms with dimensionality-defect p are coupled in a minimal way, we get

L[ϕ] = LR[ϕ, α] +
∞∑

n=1

αp̃(n`)

fn(α, ε) M−n`
P On`(ϕ),

where p̃(n`) = p(n`) − np. Most of the numbers p̃(n`) are negative, so the α → 0 limit
at �xed MP is singular. Nevertheless, the singularity is bounded by the order of the
perturbative expansion and indeed can be reabsorbed into the e�ective Planck mass.
For this reason, the reduction is said to be perturbatively meromorphic [9]. Since
the α-singularities can be reabsorbed only in a non-minimal parametrization, there
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is no way to turn the marginal interaction o�, keeping the irrelevant interaction on.
That is the reason why the renormalizable sector R needs to be fully interacting.

2.4.5 Violation Of Invertibility Conditions
When the condition (2.22) is violated for some n, say rn = r ∈ N, the constant λn`

can not be reduced and it must be regarded as an independent coupling. Another
possibility is to write

fn(α, ε) =
∞∑
i=0

εif i,n(α), δ̌i,n` (α, ε) =
∞∑
i=0

εiδ̌i,n` (α) . (2.34)

and solve the reduction equation perturbatively in α and ε. At order εi we have

βα

df i,n(α)

dα
= f i,n(α)γ̃n` (α) + α

df i−1,n(α)

dα
+ αδ̌i,n (α) . (2.35)

The solution f 0,n(α) can be worked out in power series of α until the order αr−1,

while the coe�cient of αr is ill-de�ned. Similarly, the solutions f i,n(α), 0 < i < r,

can be worked out up to orders αr−i−1. The coupling λn` can be written as

λn` = fn (α, ε) λn
` +

r∑
i=0

αr−iεiλ
(i)
n` , β

(i)
n` = γ

(i)
n` λ

(i)
n` + ε (r − i) λ

(i)
n` + α λn

` δ̌
(i)
n` (α, ε),

(2.36)
where fn (α, ε) is determined up to orders αr−i−1εi, i = 0, 1, ..., r − 1 and λ

(i)
n` , i =

0, 1, ..., r are new independent parameters introduced to have a consistent solution.
However, only λ

(0)
n` is a physical coupling; all others belong to the evanescent sector

of the theory, so they do not a�ect the physical quantities. Moreover, γ
(i)
n` = γn` −

(r − i) βa/α = O (α) and δ̌
(i)
n` are analytic in α.

In terms of these couplings, couplings of higher levels n > n can be expressed as

λn` =
∑

{m}
fn,{m} (α, ε) λm̂

`

r∏
i=i

(
αr−iεiλ

(i)
n`

)mi

where m̂, mi are integers such that m̂ + n
∑r

i=0 mi = n, and consequently

δn` (α, λ) =
∑

{m}
δn,{m} (α, ε) λm̂

`

r∏
i=i

(
αr−iεiλ

(i)
n`

)mi

.
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The reduction equation for fn,{m} reads

β̂α

dfn,{m}
dα

=

(
γn` − m̂γ` −

r∑
j=0

mjγn`

)
fn,{m} + αδ̌n,{m} (α, f, ε) , (2.37)

where δ̌n,{m} (α, f, ε) depends on the functions fk,{m′} with k < n and fn,{m} with
m̂′ < m̂. The invertibility conditions for n > n are still (2.22) because the one-loop
coe�cient of the combination of anomalous dimensions inside the parenthesis in
(2.37) is

γ̃
(1)
n` − β(1)

α r

r∑
j=0

mj.

When the invertibility condition (2.22) is ful�lled, (2.37) can be solved recursively
in m̂ for given n and there exist unique solutions fn,{m} (α, ε) that are analytic in α

and ε.

The advantage of carrying on the reduction as in (2.36) even when (2.22) is
violated is a practical one. It allows low-order predictions with a relatively small
number of independent couplings [9].

2.4.6 Absence Of Three-leg Marginal Vertices: Physical In-
vertibility Conditions

In some circumstances the expansion of f i,0(α) in powers of α does not start from
order zero. This fact produces a modi�cation in the invertibility conditions rendering
them less restrictive. It is precisely what happens when the theory has no three-leg
marginal coupling, as in the case where R is the theory ϕ4 in four dimensions (but
similar arguments apply if R is the theory ϕ6 in three dimensions).

De�ne the integers

p̃n ≡ p(n`) − np(`), qn ≡ max(−k + 1− p̃n, 0). (2.38)

According to the de�nition of the dimensionality-defect, the quantity p̃n relates
the number of the �elds present in the vertex of level n with the number of �elds of
the operator on the head,

p̃n =
N (n`) − nN (`)

2
+ n− 1.
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Here is clear that p̃n is an integer: N (n`) − nN (`) is an even number since N (n`)

and nN (`) are both even or both odd. Recalling that operators on the queue are
those �generated� by renormalization due to the presence of the head operator, we
prove that

N (n`) odd ⇐⇒ n odd and N (`) odd.

Consider �rst diagrams that renormalize λn` made of marginal and head vertices
only. Since there is no three-leg marginal vertex, a diagram can have an odd number
of external legs if and only if the head has an odd number of legs and there is an
odd number of such vertices in the diagram. Diagrams containing vertices λm` con
m < n do not change the argument, since for each such diagram there exist also a
diagram where the each vertices λm` is replaced by a subdiagram containing only
marginal and head vertices.

Using an inductive method, we will show that in the situation described,

fn(α, ε) = αqn

qn∑

k=0

fk,n(α, ε)
( ε

α

)k

, (2.39)

where fk,n(α, ε) is a power series in α and ε that involves only non-negative powers.
Moreover (as can be proved using (2.25)),

ζn(ε) = εqn

∞∑

k=0

ζn,kε
k. (2.40)

The demonstration is based in the pole cancellation of (2.24). The contributions
to ∆̌(α, ε) from the diagrams G with vk` irrelevant vertices of level k, L loops, v4

marginal four-leg vertices and V = v4 +
∑

k<n vk` the total number of vertices, have
the form

∆̌n`(α, ε) =
∑

G

αL−1

εmin(L,V−1)−s

∏

k<n

f
vk`

k (α, ε)

=
∑

G

αL−1+t+
∑

k<n vk`qk

εmin(L,V−1)−s′

∏

k<n

( ε

α

)jk

, (2.41)

where s, s′, t, jk are non-negative integers, jk ≤ vk`qk and
∑

k<n kvk` = n.
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The factor αL−1 comes from the α-powers attached to the vertices (considering
that a α-factor is left outside in (2.17)). According to a theorem proved in [9], the
maximal order of a pole of a diagram is min(L, V − 1), so εmin(L,V−1)−s represents
this fact and s′ takes care of powers of ε coming from fk(α, ε). Similarly, αt take
into account the α-powers coming from fk(α, ε).

Using the same argument that in paragraph below (2.4), the number of powers
of α of a diagram that renormalizes αp(n`)

λn` is
∑

k<n

vk`p
(k`) + v4 = p(n`) + L.

With the de�nitions (2.38) this relation reads
∑

k<n

vk`qk = qn − L + (V − 1) . (2.42)

The simple pole of (2.41) has the form

1

ε
αL−min(V−1,L)+t+s′+

∑
k<n vk`qk .

Therefore, the powers of α in the simple pole, using (2.42) are

(V − 1)−min(V − 1, L) + t + s′ + qn ≥ qn,

so the α-exponent of the simple pole is always ≥ qn. Thus the simple poles of
∆̌n`(α, ε) are multiplied by powers αqn+s, s ≥ 0.

With the ansatz (2.40) in (2.24), the coe�cient ζn,k is multiplied by a sum of
objects of the form

εqn+k
(α

ε

)m

αr, (2.43)

with m, r ≥ 0. The simple pole is

1

ε
αqn+1+k+r.

In total, the simple poles of (2.24) have the form

αqn+1

ε

(∑
s≥0

asα
s +

∑

k,r≥0

ζn,kck,rα
k+r

)
, (2.44)
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where as and ck,r are known numerical factors. Thus, if the coe�cients of ζn,jα
j

are nonzero it is possible to determine ζn,j iteratively in j from the cancellation of
the pole. Finally, using (2.28) the term ζn,jα

j inside the parenthesis of (2.44) is
multiplied by the coe�cient

(
−β

(1)
α

)qn+j+1

(qn + j + 1)!

qn+j∏
i=0

(
γ

(1)
n` − nγ

(1)
`

β
(1)
α

− i

)
,

thus the invertibility conditions are again (2.22). Nevertheless, these conditions are
more restrictive than they should be.

Writing (2.39) as

fn(α, ε) = αqn

qn∑
i=0

f i,n(α)
( ε

α

)i

+
∞∑

i=qn+1

f i,n(α)
( ε

α

)i

it is clear that the �rst qn terms of the expansion of fn(α, ε) in ε have the form
(A.4), thus for the determination of the coe�cients in f i,n(α), i < qn it is enough to
satisfy

γ̃
(1)
n`

β
(1)
α

− (qn + i) /∈ N.

Since all f i,n(α) but f 0,n(α) belong to the evanescent sector, the physical invertibility
condition reads

γ̃
(1)
n`

β
(1)
α

− qn /∈ N. (2.45)

Therefore, the violation of (2.22) when (2.45) holds, implies the inclusion of a
new coupling that a�ects only the evanescent sector of the theory, as explained in
the previous section.

Once the poles have been cancelled out and the constants ζn,k have been deter-
mined, collecting (2.41) and (2.43) we obtain

fn ∼ αqn




∑
L≥1, u,s,in≥0

L+in≤qn+s′+u

( ε

α

)qn−L−in
αtεs′+u +

∑
m,r,j≥0
m≤qn+j

ζn,jε
jαr

( ε

α

)qn−m


 , (2.46)

having written
∑

k<n jkvk` =
∑

k<n qkvk` − in, in ≥ 0, and
∑

k<n qkvk` − min(V −
1, L) = qn − L + u, u ≥ 0 (see (2.42)). We see that fn(α, ε) has the form (2.39),
which reproduces the inductive hypothesis.
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2.4.7 Leading-log Solution
In this section the in�nite reduction is solved in the leading-log approximation. We
use the minimal subtraction scheme in the unreduced theory, while the subtraction
scheme of the reduced theory is the one induced by the reduction itself. We recall
that the leading-log approximation is su�cient to derive the invertibility conditions
for the existence of the in�nite reduction to all orders.

In the leading-log approximation δ̌n`(α, ε) has the form

δ̌n`(α, ε) = αqn

qn∑

k=0

dk,n

( ε

α

)k

where qn is an integer and dk,n are constants. In this approximation the solution
can be easily worked out and reads

fn(α, ξn, ε) = −αqn

β
(1)
α

qn∑

k=0

dk,nεk

αk(rn − qn + k)
2F1

[
1, k − qn, rn − qn + k + 1,

ε

αβ
(1)
α

]

+ξn

(
αβ(1)

α − ε
)rn

. (2.47)

with rn = γ̃
(1)
n` /β

(1)
α . Observe that the hypergeometric functions appearing in the

sum are polynomial, since qn − k is a non-negative integer.
At the level of bare couplings, the reduction has the form (2.23). Manipulating

the formulas given above and using (2.25), the formula for ζn(ξn, ε) can be derived.
The result is

ζn(ξn, ε) = εqn

qn∑

k=0

dk,n

(−β(1)
α

)k−qn−1 Γ (rn − qn + k) Γ (qn − k + 1)

Γ (rn + 1)
+ ξn(−ε)rn .

(2.48)
Both fn(α, ε) and ζn(ε) are analytic in ε (for all α) only for ξn(ε) = 0. This

formula uniquely determines the reduction. Moreover, the invertibility conditions
for the existence of the reduction to all orders can be read from (2.48) and coincide
with (2.22).

Violations of the invertibility conditions. It is interesting to describe the
appearance of new parameters, when the invertibility conditions are violated, using
the pole-cancellation mechanism in the leading-log approximation. Assume that
some regularized invertibility conditions (2.22) are violated, i.e. rn = r ∈ N. To
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study this situation it is convenient to approach it continuously from rn = r + δ

and then take the limit δ → 0. If r > qn this limit is trivial in the leading-log
approximation, so we just need to discuss the case r ≤ qn.

Collecting the singular terms of (2.47) we get an expression of the form

fn(α, ξn, ε) =
(
αβ(1)

α − ε
)r

{a

δ
εqn−r + ξn

[
1 + δ ln

(
αβ(1)

α − ε
)]}

+ αqnPn(ε/α) +O(δ, ξnδ
2),

where a is a known numerical factor and Pn(α, ε) is a certain ξ- and δ-independent
polynomial of degree qn. The δ-singularity can be removed rede�ning ξn as

ξn = −a

δ
εqn−r + ξ

′
n,

thus obtaining a non-singular expression

fn(α, ξn, ε) =
(
αβ(1)

α − ε
)r {

ξ′n − aεqn−r ln
(
αβ(1)

α − ε
)}

+ αqnPn(ε/α).

Finally, the relations between the bare and renormalized constants ζ and ξ

ζn(ξ, ε) = lim
α→0

fn(α, ξn, ε) = (−ε)r
[
ξ
′
n − aεqn−r ln(−ε) + bεqn−r

]
, (2.49)

where b is another known numerical factor, originated by αqnPn(ε/α).
We see that no choice of the constant ξ

′
n is able to remove the analyticity violation

in both the bare and renormalized reduction relations. The violation can be hidden
in a new independent coupling, but since the ln(−ε) is multiplied by εqn−r it is
su�cient to write ξ

′
n = εrξ

′′
n and associate the new coupling with ξ

′′
n.

2.4.8 Several Marginal Couplings

For illustrative purposes we use the Zimmermann's model in the leading-log ap-
proximation for the renormalizable sector. For α and η small, the lowest-order
beta-functions of λ` and λ2` have generically the forms

β` = λ`α(d + eη), β2` = λ2`α(f + gη) + hλ2
` , (2.50)
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where d, e, f, g, h are unspeci�ed numerical factors. We use a trick to transform the
reduction equation which is a partial di�erential equation into an ordinary di�eren-
tial one. For doing so, use the transformation (2.6) to reparametrize the couplings
(α, η) → (α, ξ) . Thus the reduction of the queue operator is expresses in terms of
f̃ (α, ξ, ε) , with

f(α, η̌ (α, ξ, ε) , ε) = f̃ (α, ξ, ε) ,

where ξ is the constant of integration. For instance, for f2 we obtain the ordinary
di�erential equation

β̂1
df̃2(α, ξ, ε)

dα
+ 2αf̃2(α, ξ, ε)

(
d̃ + ẽη̌(α, ξ, ε)

)
− εf̃2(α, ξ, ε) = h, (2.51)

where d̃ = d− f/2 and ẽ = e− g/2. Solving for ξ in (2.6)

ξ = (αβ1 − ε)−s/β1 z, z =
b− s + 2cη

b + s + 2cη
, (2.52)

and replacing it in f̃2 (α, ξ, ε) , we recover f2(α, η, ε). For de�niteness we choose the
positive sign in front of s.

The solution of (2.51) is

f2(α, η, ε) = f 2(α, η) + k2 (ξ, ε) s2(α, η, ε), (2.53)

where

f 2(α, η) =
h(1− z)

αs(γ − 1)
2F1[1, γ−2ẽ/c, γ, z], s2(α, η, ε) =

1

α
z1−γ(1−z)2ẽ/c, (2.54)

with
γ = 1 +

ẽ

c
+

1

s

(
2d̃− β1 − b

ẽ

c

)
,

and k2 is the constant of integration, which is a function of ε and ξ.The solution is
meromorphic instead of analytic in α because we have used the minimal coupling in
this example (note that β2` in (2.50) is not proportional to α as (2.17)).

The extension of criteria i) is simple: we require meromorphy in α and analyticity
in η and ε. Noting that z is analytic in η (see (2.52)), we realize that the particular
solution f 2(α, η) satis�es these requirement. Let us examine in which cases also the
general solution does. Writing z = ξ (αβ1 − ε)s/β1 ,

k2 (ξ, ε) s2(α, η, ε) =
1

α
k2 (ξ, ε) ξ1−γ (αβ1 − ε)s(1−γ)/β1 (1− z)2ẽ/c.
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The only possibility to have a general solution satisfying the criterion is given
by k2 (ξ, ε) = k′2ξ

γ−1+nεq when
s (1− γ)

β1

= n
s

β1

+ m (2.55)

where k′2 is a constant and m,n, q are non-negative integers. In that case,

k2 (ξ, ε) s2(α, η, ε) =
k′2
α

εq (αβ1 − ε)m zn(1− z)2ẽ/c

which is meromorphic in α and analytic in η and ε for every k′2. Therefore, here
the invertibility condition is that there should be no pair of non-negative integers m

and n such that (2.55) holds. Since s is in most cases irrational or complex and the
ratios of the one-loop coe�cients are rational numbers, the invertibility conditions
can be rephrased as

− ẽ

c
/∈ N or 1 +

bẽ

cβ1

− 2d̃

β1

/∈ N. (2.56)

It is enough to ful�ll one of these conditions to �x k2 (ξ, ε) = 0 and uniquely deter-
mine the reduction.

We can obtain the same conclusion from the bare reduction. Matching dimen-
sionalities,

λ2`B = ζ2 (ηB, ε)
λ2

`B

αB

,

and writing the bare couplings in terms of the renormalization constants, we �nd
that

ζ2 (ηB, ε) = lim
α→0

αf̃2(α, ξ, ε)

=
h(1− zB)

αs(γ − 1)
2F1[1, γ − 2ẽ/c, γ, zB] + k2 (ξ, ε)

1

α
z1−γ
B (1− zB)2ẽ/c,

with
zB = ξ (−ε)s/β1 =

b− s + 2cηB

b + s + 2cηB

.

It is natural to ask to the bare reduction to be analytical in ηB and ε. With a
reasoning analogous to the one presented above, if one of the conditions (2.56) is
ful�lled the reduction is uniquely determined setting k′2 = 0.

The reduction in the presence of more marginal couplings follows the same line.
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2.4.9 Including Mass

Mass and other parameters with positive dimensionality can be included in a per-
turbative manner.

It will be shown how to organize the series in powers of mass to have a �triangular
structure� that allows the determination of all coe�cients, order by order recursively.
In each new equation there is only one new unknown.

The perturbative series for the mass is equivalent to treat the mass term of the
lagrangian as a two-leg vertex, which is consistent for renormalization purposes, since
divergent part of diagrams is polynomial in the masses. In general, the momentum
integrals should be regularized with an infrared regulator, e.g. a �ctitious mass δ

sent to zero right after the computation of the divergent part.
In the generic perturbed lagrangian (2.16) the unique dimensionless combination

is λ`m
`, thus the reduction relation can contain arbitrary functions of this combi-

nation in the reduction. Criterion i) tell us that the reduction should be analytic in
couplings, so for n > 1 λn` will be expressed as a function of m,α and λ`:

λn` = λn
`

∞∑
p=0

(λ`m
`)pf (p)

n (α, ε) (2.57)

Replacing (2.57) in the expressions for the beta-functions βα, βn`, β` (2.17) and
βm which are suppose to be all known, they can be written as

βn` = λn
`

∞∑
q=0

(λ`m
`)qB(q)

n , β` = λ`

∞∑
q=0

(λ`m
`)qB

(q)
1 ,

βα =
∞∑

q=0

(λ`m
`)qB

(q)
0 , βm = m

∞∑
q=0

(λ`m
`)qM (q), (2.58)

where βm is the beta-function of the �vertex� m. The explicit form of B(q)
p (α, f

(j)
i (α, ε))

is not calculated, but what is important here is to know on what functions f
(j)
i (α, ε)

they depend, namely those with

i + j ≤ p + q

j ≤ q.
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The function M (q) instead depends on α and f
(j)
i (α, ε) such as

i + j ≤ q.

Deriving (2.57) respect ln(µ) and replacing the beta-functions with (2.58) we
get

∞∑
r=0

(λ`m
`)rB(r)

n =
∞∑

p,q=0

(λ`m
`)p+qf (p)

n


(n + p) B

(q)
1 + (p`) M (q) +

d ln
(
f

(p)
n

)

dα
B

(q)
0


 .

Matching coe�cients of the same order in λ`m
` starting from below, and then

ascending also in n, all f
(p)
n (α, ε) can be computed iteratively. For example, for

r = 0 we have the massless equations (2.20), determining in this way f
(0)
n , for all

n. Then, for r = 1 and n = 2 we obtain an equation that involves only f
(0)
2 , f

(0)
3

and f
(1)
2 . For r = 1 and n = 3, it depends on f

(0)
2 , f

(0)
3 , f

(0)
4 , f

(1)
2 and f

(1)
3 and so on.

Proceeding in this way every new equation has only one unknown.

2.4.10 Scheme Reduction
In the renormalization process, in�nities are subtracted from the bare quantities
to obtain �nite renormalized quantities. There is, of course, a freedom of adding
an arbitrary �nite part to this subtraction. RG equation guarantees that physical
quantities do not depend on the choice of the substraction point. Moreover, the
behavior at any other energy is �xed by the RG to keep the physical quantities
independent of the choice. In our approach, this freedom is explicitly manifested on
the integration constant ξ, so once it is �xed by the analyticity criteria, we have lost
the freedom of choosing the point of renormalization for that coupling. After the
reduction the only freedom remained are those corresponding to the independent
couplings.
Equivalently, a change of scheme can be regarded as a reparametrization of cou-
plings, because a �nite part is subtracted to them, so after the reduction we can
reparameterize arbitrarily only the independent ones and the others will follow them
coherently.



Chapter 3

Causality Violations of Quantum
Matter Interacting With Classical
Gravity

The quantization of gravity is still one of the greatest challenges of the modern
theoretical physics. Although there is no de�nitive evidence, most of the scienti�c
community believes that all interactions should present a quantum behavior at high
energies. Precisely because there is not experimental or theoretical evidence [25, 26,
27]that gravity should be of quantum nature, it still has sense to study a coherent
framework where classical gravity is coupled to quantum �elds. In particular, the
standard model is ready to the coupling with gravity, in the sense that anomalies
still cancel when it is embedded in a curved background. Quantization in a curved
background has been widely studied in the last 30 years, giving a mathematically
rigorous formulation of quantum �eld theory in curved spacetime [28] in particular
for interacting �elds (for a review, see [29]). Eppley and Hannah [25] showed that the
interaction of quantum matter with classical gravity, assuming the "Copenhagen"
interpretation of quantum mechanics, leads to one of the following scenarios: if the
gravitational interaction does not collapse the wave-function, gravity can be used
to propagate information at superluminal velocity. On the other hand, if gravity
collapses the wave-function, either the uncertainty principle or energy-momentum
conservation can be violated.

The most natural choice to represent the gravitational interaction, the Hilbert-
Einstein action using the �uctuations of the metric around �at space gµν = ηµν +

48
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2κφµν as quantum �eld, happens to be renormalizable only at one loop when no
matter is present. At two loops, or even at one loop when gravity is coupled with
matter �elds, it becomes non-renormalizable [30].

We start with the action

S[φ; g] =
1

2κ2

∫
d4x

√−gR + Sm[φ; g], (3.1)

where Sm[φ; g] is a renormalizable four-dimensional matter action embedded in a
gravitational background, and φ represents generically the matter �elds.

When quantized, the purely gravitational divergences of (3.1) are proportional to
di�eomorphism-invariant terms of dimensionality four made of the metric, namely
R2, R2

µν and (Rα
βµν)

2. In four dimensions the integral of the last term can be trans-
formed in a combination of the other two thanks to the Gauss-Bonnet identity.

∫
d4x

√−gGB = boundary term, GB = RαβµνR
αβµν − 4RµνR

µν + R2.

If such terms are included in the action to provide counterterms,

SHD[φ; g] =
1

2κ2

∫
d4x

√−gR +

∫
d4x

√−g
(
aR2

µν + bR2
)

+ Sm[φ; g], (3.2)

where a, b are new coupling constants, the behavior of the graviton propagator falls
o� at high energies rapidly enough to improve the power counting and make the
theory renormalizable [31]. Nevertheless, its inclusion also allows the propagation
of ghosts with the consequent loss of unitarity. Higher time-derivatives produce
instabilities in classical models, so even if the gravitational �eld were left classical,
(3.2) is not a good action. The central idea of this chapter is to absorb these
purely gravitational divergences not in a rede�nition of constants (a, b), but in a
rede�nition of the classical metric tensor gµν . This kind of rede�nition de�nes a
map that relates the renormalization of two di�erent theories, a higher-derivative
one (HD) and another which do not present higher derivative terms, but causality
violations, detectable in principle at high energies. For some class of HD theories
that include (3.2), there exist a theorem [32] that allows to compute iteratively the
perturbative version of the map. The causality violations produced by the map
di�er in origin and nature from those presented by Eppley and Hannah: while the
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latter is intrinsic to the interaction of quantum and classical �elds, the former is the
e�ect of a particular non-local coupling between a quantum operator and a classical
source.

Although the map is de�ned for a classical metric gµν and it does not extend to
quantum gravity, this work could serve to motivate some lines of research in quantum
gravity, if the ultimate theory of gravitation needs to be of quantum nature. One
of the main features of the map is that new vertices that couple matter and gravity
�elds are created. In particular, the stress tensor is coupled to the Ricci tensor.
Another consequence of the map is that the metric gµν is renormalized (so it becomes
running) even when it is a classical �eld.

Since the gravitational �eld and the map are classic while other �elds are of
quantum nature, in section 3.1 it is explained how the semiclassical models are
formulated and in particular, how to obtain quantum-corrected equations of motion.

As should be clear from the example of the Lorentz-Abrahams force of section
3.2, the origin of the causality violation is the non-local rede�nition of functions
representing the map required to lower the degree of the di�erential equation. This
motivates the treatment to lower the order of the equation of motion of the gravi-
tational �eld.

In section 3.3 we study the map and its causality implications. Section 3.5
explains how to use the map to renormalize theories without generating higher-
derivative kinetic terms, while in section 3.4 the perturbative map is applied explic-
itly to renormalize the theory (3.1). The map is explicitly applied to the acausal
Einstein-Yang-Mills model in section 3.6. In sections 3.7 we prove the renormal-
ization of more general acausal theories, using the Einstein-Yang-Mills model as
prototype. In the �rst class, we consider models that admit some vertices that can
not be generated by a map, while in the second class the matter sector contains all
composite operators that have dimensionalities smaller than or equal to four. We
prove the existence of consistent reductions of couplings and the renormalizability of
the models obtained giving a R-dependence to the couplings of PC renormalizable
models. The Batalin-Vilkovisky formalism is adapted to treat a curvature-dependent
coupling for the Yang-Mills theory.
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In the Appendix B it is shown how to compute functional derivatives of the
action without working with bitensors, and the explicit perturbative map is worked
out up to third order.

3.1 Semiclassical Models
Let us consider a generic theory characterized by a classical action S[φ; ϕ], where φ

represents generically the quantum �elds and ϕ is a classical �eld.
The generating functional Z[J ; ϕ] depends on the sources JI and on the classical

�eld ϕ since it is not integrated

Z[J ; ϕ] =

∫
Dφ ei(S[φ,ϕ]−φIJI) (3.3)

= exp (iW [J ; ϕ])

where W [J ; ϕ] is the sum of all connected vacuum-vacuum amplitudes. The 1PI-
generating functional Γ[Φ; ϕ] is obtained through the Legendre transform of W [J ; ϕ]

that involve only the quantum �elds. Deriving Γ[Φ; ϕ] with respect to the �elds
Φ = 〈φ〉 , correlation functions in the presence of the external �eld ϕ are obtained.

The 1PI-generating functional Γ[Φ; ϕ], also called quantum e�ective action pro-
vides the quantum-corrected equations of motion for the external �elds. The prob-
lem is that due to the iε-prescription, the functionals Z, W, and Γ are in general
complex quantities, thus the corrections to �eld equations are complex. For instance,
the equation of motion of gµν obtained from Γ is

δΓ[Φ; ϕ]

δgµν
= 0 =⇒ Gµν = 〈Tµν〉 (3.4)

where Gµν = Rµν − 1
2
gµνR is the Einstein tensor and 〈Tµν〉 = 2√−g

δΓm

δgµν is the expec-
tation value of the canonical stress-tensor of Sm, which in general is complex.

This problem can be avoided at least in two ways. The expectation value in
(3.4) can be replaced by the �in-in� expectation value of the stress tensor, which is
another approach to semi-classical models due to Schwinger and Keldish [33, 34]. It
is argued that it is a better generalization of the quantum mechanics expectation
value since it is de�ned using the same initial and �nal state, while the usual QFT
expectation value uses di�erent asymptotic �in� and �out� states. Moreover, it is
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real and causal, and functional methods have been developed to compute it [35, 36],
but it has the inconvenient that it does not provide an action.

Another possibility is to de�ne a quantum action as

Sq[φq; ϕ] = Re(Γ[Φ; ϕ]), (3.5)

where φq = Φ is real if the �elds φ are real bosonic, while Φ is the conjugate of
Φ =

〈
φ
〉
if the �elds φ are fermionic or complex. The �eld equations are obtained

functionally variating Sq with respect to φq and ϕ.

Using (3.5), the equation of motion for gµν
δSq

δgµν = 0 reads

Gµν = Re 〈Tµν〉 .

It is important to note that for the study of causality violations produced by the
map, it is not relevant what real prescription is used to substitute the expectation
value of the stress tensor in (3.4).

3.2 Motivation: The Abraham-Lorentz Force
Some of the features of the map and its consequences can be easily understood
through an example extracted from classical electrodynamics: the Abraham-Lorentz
force. There, the order of a di�erential equation is reduced at the price of introducing
a violation of causality. As in Chapter 2, the suppression of a parameter requires
to give to some constant a physically meaningful value. Also it is illustrated how
the Green function method is idoneous to invert the di�erential operator and then
determining the map, �xing in this way the constant of integration.

The physical situation is a particle of mass m and charge e driven by an external
force Fext. The force produces changes in the velocity of the particle making it
irradiate, thus losing kinetic energy with the consequent deceleration. The velocity
of the particle is determined by a second order di�erential equation, or equivalently,
�rst order for the acceleration a(t). We could reduce the order of this equation
pretending that the deceleration by radiation is caused by a �ctitious force Frad :

ma(t) = Fext + Frad.
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The value of the force Frad is calculated equating the work it makes and the
energy lost by radiation (see for example [37]),

∫ t1

t0

dt Frad (t) v (t) = −mτ

∫ t1

t0

dt a (t)2 , (3.6)

where v (t) is the velocity of the particle and τ = 2
3

e2

mc3
. For some velocity and

acceleration conditions at the initial t0 and �nal instant t1, or for a periodic motion,
the equation (3.6) is veri�ed for Frad = mτȧ. Note this is an e�ective, time-averaged
representation. The equation of motion then reads

(
1− τ

d

dt

)
ma(t) = Fext. (3.7)

We can symbolically invert the di�erential operator and de�ne a new external
force F ′

ext

ma(t) =

(
1− τ

d

dt

)−1

Fext (3.8)

= F ′
ext.

This operation can be made explicit using the Green function G (t, t′) of the
operator, that satis�es

(
1− τ

d

dt

)
G (t, t′) = δ (t− t′) . (3.9)

This equation admits in�nitely many solutions. Indeed, for each particular solu-
tion GP (t, t′) , we have also the solution GP ′ (t, t

′) = GP (t, t′) + G0 (t) , with G0 in
the kernel of the operator (

1− τ
d

dt

)
G0 (t) = 0.

The equation of motion is then reduced to

ma (t) =

∫ ∞

−∞
dt′ G (t, t′) Fext (t′) . (3.10)

Solving (3.9) in Fourier space we have G̃ (ω) = 1/ (1− iωτ), so

G (t, t′) =
1

2τ
e−(t′−t)/τ 2θ (t′ − t) , (3.11)

which gives the correct limit for τ → 0+, a physical requirement for the inversion.
That is, when e → 0, (τ → 0+) the particle does not irradiate, so we should recover
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the Newton equation Fext (t) = ma (t) from (3.7). This can veri�ed in (3.10) realizing
that the limit τ → 0+of (3.11) is a representation of the Dirac delta distribution
δ (t− t′) .

In this example the Green function found through its Fourier transform is unique.
Other solutions can be written as

GP ′ (t, t
′) = G (t, t′) + ξ (t′, τ) G0 (t)

with G0 (t) = 1
τ
et/τ .

If we use GP ′ (t, t
′) in (3.10),

ma (t) =

∫ ∞

−∞
dt′ G (t, t′) Fext (t′) + ζ (τ) G0 (t) ,

with ζ (τ) =
∫

dt′ξ (t′, τ) , we see that runaway solutions are present, namely the
acceleration increases monotonically with time even when there is no external force.
The �τ → 0+� criteria is enough to determinate the map since the τ → 0+ limit
of GP ′ (t, t

′) is in�nite for t > 0 unless ξ (t′, τ) = 0. For this choice, the runaway
solutions are automatically eliminated. In this case, the physical requirements that
the equation should tend to Newton equation at e → 0 and that there should be no
runaway solutions, univocally determine the map Fext (t) → F ′

ext (t) .

Writing explicitly (3.11) in (3.10),

ma (t) =
1

τ

∫ ∞

t

dt′ e(t−t′)/τFext (t′) ,

we realize that our solution is acausal. To know the acceleration in the instant t0 we
need to integrate the external force Fext over all future times t > t0. Nevertheless,
this violation of causality should be observed only at scales of order of τ (= 6.24×
10−24s), where quantum e�ects should be taken into account. In electrodynamics
this phenomenon is called preacceleration, and has not been experimentally observed.
The fact that there is no experimental evidence of preacceleration is however not
meaningful because it is a classical prediction for a situation where quantum e�ects
predominate.

Sometimes the inverse Fourier transform requires a prescription due to the pres-
ence of poles or branch cuts over the contour of integration in the complex plane.
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Figure 3.1: Contours for the advanced, retarded, Feynman and conjugated prescrip-
tions for the Green function.

This gives several Green functions G(i) (t, t′) , all of which have the right limit be-
havior.

Example:
G̃ (ω) =

1

1− α2ω2
,

with α2 > 0 has poles in the real axis at ±1/α. The Green functions

G(+) (t, t′) = − 1

α
sin

(
t− t′

α

)
θ (t′ − t) , G(−) (t, t′) =

1

α
sin

(
t− t′

α

)
θ (t− t′)

G (t, t′) = − i

2α
ei|t−t′|/α, G∗ (t, t′) =

i

2α
e−i|t−t′|/α. (3.12)

de�ned over the contours of the �gure 3.1 satisfy
(

1 + α2 d2

dt2

)
G (t, t′) = δ (t− t′) .

and they are all equally valid, since they have the correct α → 0 limit and do not
present runaway solutions.

Summarizing, we have reduced the order of a di�erential equation (3.7) by means
of a non-local (acausal) rede�nition Fext → F ′

ext to obtain

ma (t) = F ′
ext (t) .

3.3 The Map
We will use a non-local rede�nition similar to the one used in the Abrahams-Lorentz
example to eliminate higher-derivatives in kinetic terms in lagrangian formalism.
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Consider �rst the simpler higher-derivative lagrangian in one dimension, plus
a term proportional to the square of the equation of motion of the undeformed
lagrangian,

L(q) =
m

2
q̇2 + α2m

2
q̈2. (3.13)

The equation of motion and its general solution are

q̈ − α2q(4) = 0, q (t) = a + bt + cet/α + de−t/α.

As we can see, it presents runaway solutions, which are absent in the case α2 < 0,

since the above exponential functions become complex. It is our intention to reduce
the order of the equation performing a rede�nition of the dynamical variable q (Q)

such as

∫
dt

(
q̇2 + α2q̈2

)
=

∫
dt Q̇2.

Using the Green function method, we have

q (t) =

∫
dt′G (t, t′) Q(t′)

with

G (t, t′) =

∫
dω

2π

eiω(t−t′)
√

1 + α2ω2
=

1

π|α|K0

( |t− t′|
|α|

)
, α2 > 0. (3.14)

This function is real and, as seen in Figure 3.2, acausal because has non zero
values for t− t′ < 0.

If α2 is negative, α2 = −α2 < 0, a prescription is needed to avoid the branch cut
in the complex plane. In that case there exist a real and causal prescription, namely
the retarded Green function

Gret (t, t′) =

∫
dω

2π

e−iω(t−t′)
√

1− α2(ω + iε)2
=

θ (t− t′)
π|α| J0

( |t− t′|
|α|

)
, α2 > 0, (3.15)

This kind of Green functions is the central ingredient of the map. Its form (and
the prescription chosen) determines whether the model generated by the map is
acausal or not
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Figure 3.2: Function K0 (|t|) , which is non-zero at negative times, so it is acausal.

For certain class of higher-derivative theories the method of Appendix B gives di-
rectly the perturbative series corresponding to the expansion of (3.15) in α. Clearly,
all prescriptions have the same perturbative expansion, which is real.

Although the lagrangian (3.13) has higher derivatives, is still compatible with a
variational treatment. In a usual lagrangian, the kinetic term is proportional to q̇2,

producing a term q̈2 in the equation of motion, which is a second order di�erential
equation. In the variational method we need two border conditions δq|t1and δq|t0 ,
whose number is consistent with the order of the equation of motion.

In the hypothetical case of a term qq̈ in the lagrangian, four conditions are
needed: δq and (δq̇) should vanish in the extremes. This is not compatible with
the equation of motion which is of order two, thus the variational method is not
applicable.

In (3.13) this problem is absent because four conditions are required for the
variational method, namely that δq and (δq̇) vanish at the ends, and the equation
of motion is of order four.

3.3.1 Fields

The map is also applied to �eld without major modi�cations. Consider for example
the following lagrangian in a four-dimensional Minkowski space
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L[ϕ] =
1

2
∂µϕ∂µϕ + α2 1

2
(¤ϕ)2 − ϕJ

where J is a classical source. We search for a function ϕ (ϕ′) such that

L[ϕ] = L′[ϕ′] =
1

2
∂µϕ

′∂µϕ′ − ϕ′J ′.

As before, the map is expressed as

ϕ (x) =

∫
d4x′G (x, x′) ϕ′ (x′) , J ′ (x) =

∫
d4x′G (x, x′) J (x′) ,(3.16)

G (x, x′) =

∫
d4k

(2π)4

e−ik·(x−x′)
√

1 + α2k2
.

Therefore, all the analysis relies on the prescription chosen to evaluate G (x, x′) .

One of them,

GF (x, x′) =

∫
d4k

(2π)4

e−ik·(x−x′)
√

1 + α2k2 + iε
= i

sign (α2)

4π2|α|4
exp

(
−

√
x2

α2 − iε

)

(
x2

α2 − iε
)3/2

(
1 +

√
x2

α2
− iε

)

tends to zero or oscillates rapidly for |x2| À |α2|. So causality violations could be
experimentally tested only at distances of order

∆x ∼ 2π|α|.

When α2 = −α2 < 0, a real causal prescription exists

Gret (x, x′) =

∫
d4k

(2π)4

e−ik·(x−x′)
√

1− α2 (k0 + iε)2 + α2k2

.

The branch cuts are located in the lower half of the k0-plane so Gret (x, x′) vanish
for t < 0, as can be seen closing the contour of integration in the upper half. By
Lorentz invariance, every point outside the lightcone admits a reference frame where
t < 0, thus causality is preserved. For α2 > 0 instead, no causal prescription exists.

The equation of motion for the new �eld ϕ′ is

¤ϕ′ = J ′ =
∫

d4x′G (x, x′) J (x′) . (3.17)

This equation of motion violates causality if the physical source corresponds to
J . This example is specially interesting because (3.16) is the same Green function
found in the map of higher-derivative gravity.
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3.4 Map For Gravity
The intrinsic di�culties of gravity prevent us from �nding the explicit map as in
(3.16) to transform away the higher-derivative terms in (3.2). However, due to the
particular form of these terms, which are squarely proportional to the equation of
motion of the Hilbert-Einstein action, it is possible to �nd the perturbative version
of the map using the theorem demonstrated in Appendix B. Calling

SHD[g] =
1

2κ2

∫ √−g
[
R(g) + aRµνR

µν + bR2
]
,

SE[g] =
1

2κ2

∫ √−gR(g),

the objective is to �nd g′ (g) such as

SHD[g] = SE[g′].

To quadratic order (a2, b2, ab) the method gives

g′αβ (g, a, b) = gαβ − aRαβ +
1

2
(a + 2b) gαβR + (3.18)

−ab

2
∇α∇βR− a2

2
(∇µ∇α + 2Rαµ) Rβµ +

a2

4
(¤− 2R) Rαβ

+
gαβ

8

[
a2

(
R2 − 2R2

µν

)
+

(
a2 + 8ab + 12b2

)
¤R

]
.

Third-order terms are listed at the end of Appendix B. Applying the pertur-
bative map to a generic theory (3.2) new vertices are generated due to the metric
rede�nition in the renormalizable matter sector Sm(ϕ, g, λ) :

Sm(ϕ, g, λ) = Sm(ϕ, g′, λ) + ∆Sm(ϕ, g′, λ) (3.19)

∆Sm(ϕ, g′, λ) =

∫
d4x

√
−g′

[
−a

2
T µν

m Rµν (g′) +
1

4
(a + 2b)R (g′) Tm

]
+O(a2, b2, ab),

where T µν
m = −(2/

√−g)(δSm/δgµν) is the (canonical) stress-tensor and Tm denotes
its trace.

In the expansion of the metric around the �at space, gµν = ηµν +2κφµν , the map
is expressed as [32]

φµν =
1√

1− a¤

(
φ′µν −

1

3
ηµνφ

′ +
1

3¤ηµν∂
α∂βφ′αβ

)
+

ηµν

3
√

1− b′¤

(
φ′ − 1

¤∂α∂βφ′αβ

)
,

(3.20)
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where φ is the trace of φµν and b′ = −2 (a + 3b) . The components of φ′µν in (3.20)
are multiplied by 1/

√
1− a¤ or 1/

√
1− b′¤, thus the causality violation should be

detectable at distances of order of
√
|a|,

√
|b′| or smaller.

3.5 Renormalization Through The Map
The map can be used to relate the renormalization of two di�erent theories. Start
with a renormalizable semiclassical model which contains higher derivatives (HD)
in the kinetic term of the classic �eld. These higher derivatives, even when corre-
spond to a classical �eld are undesirable because they lead to instabilities. Then,
applying the map to the bare and renormalized HD action, we obtain the bare and
renormalized actions of a theory that presents an acausal (AC) behavior.

Consider a HD renormalizable model in a classical background ϕ that can be
written as the sum of two terms

SHD = SHD
ϕ [α, ϕ] + SHD

m [α, φ, ϕ] (3.21)

where SHD
ϕ contains the (higher) kinetic term of the classical �eld ϕ and does not

depend on the matter �elds φ, while SHD
m is a renormalizable matter action that

depends on the couplings and the matter �elds generically denoted by α and φ, and
the background �led ϕ. The superscript HD stands only to indicate that the matter
action belongs to the higher-derivative model, indeed it is assumed that kinetic terms
of the matter �elds are not higher-derivative.

When the map is real, for example the perturbative map of the previous sec-
tion, the relation between the renormalization of two models can be demonstrated
applying the map directly to the classical action SHD. More explicitly, apply a map
ϕ′ = F (ϕ, α) such that ϕ = F (ϕ, 0) is the identity map and

SHD
ϕ [α; ϕ] = SAC

ϕ [α; ϕ′]

where SAC
ϕ contains no higher derivatives in the kinetic term of ϕ. This change

modi�es also the matter action in (3.21), namely

SHD
m [α, φ, ϕ] = SAC

m [α, φ, ϕ′].
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A similar map ϕ′′ = F (ϕ, αB) transforms away the higher derivatives contained
in the ϕ-kinetic term of the bare action,

SHD
ϕ [αB; ϕ] = SAC

ϕ [αB; ϕ′′],

producing changes in the bare matter action,

SHD
mB[αB, φB, ϕ] = SAC

mB[αB, φB, ϕ′′].

As always, the subscript B stands for bare quantities.
Applying the �renormalized� and the �bare� map to each side of the relation

between the renormalized and bare HD action,

SHD[α, φ, ϕ] = SHD
B [αB, φB, ϕ],

it is possible to write

SAC
ϕ [αB; ϕB] + SAC

mB[αB, φB, ϕB] = SAC
ϕ [α; ϕR] + SAC

m [α, φ, ϕR], (3.22)

namely the relation of renormalization of the bare acausal model

SAC = SAC
ϕ [α, ϕ] + SAC

m [α, φ, ϕ]. (3.23)

In (3.22) we have renamed ϕB ≡ ϕ′′ and ϕR ≡ ϕ′.
The renormalization of the AC theory (3.23) is then achieved by the same redef-

initions of quantum �elds and coupling constants as in the related HD model, plus
the renormalization of the classical �eld

ϕB = F
(
F−1 (ϕR, α) , αB

)
. (3.24)

This rede�nition is clearly non-local and in most cases acausal, as can be seen
in the following example. Taking (1 − α2∂2) as the di�erential operator in one
dimension, the function F is given schematically by

F (ϕ, α) =
1

1 + α2∂2
ϕ

so (3.24) can be expressed as



62

ϕB =
1 + α2

B∂2

1 + α2∂2
ϕR =

∫
dx′G (x− x′) ϕR (x′)

with

G (x) =

(
α2

B

α2

)
δ (x) +

(
1− α2

B

α2

)
Gα (x) .

where Gα (x) is the one of the Green functions of (3.12) depending of the contour of
Figure 3.1 chosen. Observe that the classical �eld is not renormalized in the α → 0

limit, namely ϕB = ϕR as expected because limα→0+ Gα (x) = δ (x). Some of the
prescriptions present an acausal behavior of order of α. The fact that the renormal-
ization of the classical �eld is acausal does not represent by itself a problem, after
all bare quantities are not observable. What is physically relevant is the causality
violation in the equation of motion (3.17).

The equivalence of renormalizability of both theories (3.21) and (3.23) is evident
since the theories HD and AC di�er only by the external �eld.

If the map is complex, to avoid having a complex action, the map is applied to
the HD quantum e�ective action ΓHD and then the real part is taken to de�ne an
action Sq and obtain from it real equations of motion [32], which are the classical
equations plus quantum corrections.

The steps to obtain the real acausal equations from the HD theory are shown
schematically in the following table,

SHD[ϕ] → ΓHD[ϕ] ∈ C → SHD
q [ϕ] = Re

{
ΓHD[ϕ]

}

l ϕ (ϕ′)

ΓAC[ϕ′] ∈ C → SAC
q [ϕ′] = Re

{
ΓAC[ϕ′]

} →Eq.Motion(AC)

where for clarity we have written explicitly only the dependence on the classical
�eld. Note that in general SHD

q [ϕ] and SAC
q [ϕ′] are not related by the map.

The action Sq contains all the information of the quantum e�ective action Γ,

which indeed can be reconstructed perturbatively from Sq [32]
The renormalization through the map is possible only because the �eld ϕ is kept

classic. If it is not, we should include in the functional integral (3.3) the determinant
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of the Jacobian of the transformation ϕ → ϕ′. This implies the appearance of ghosts
that no symmetry forbid their existence on �nal states, so unitarity is lost.

In gravity, the renormalization of the metric gµν is given by (3.24) is, for the
perturbative map (3.18)

gαβB (g, a, b) = gαβ + x1 Rαβ + x2 Rgαβ + x3∇α∇βR (3.25)

+ (x4∇µ∇α + x5Rαµ) Rβµ + (x6¤ + x7R) Rαβ

+
gαβ

8

[
x8R

2 + x9R
2
µν + x10¤R

]
+O(a2, b2, ab)

where is understood that in th right side gαβ is the renormalized metric tensor, and
the coe�cients are

x1 = a− aB, x6 = −1
4
(3a2 − 2aaB − a2

B) ,

x2 = −1
2
((a− aB) + 2 (b− bB)) , x7 = −1

2
(2ab− 2abB − aaB + a2

B) ,

x3 = −1
2
(3a2 − 2aaB − a2

B) , x8 = a2
B − a2,

x4 = 1
2
(3ab− 2aBb− aBbB) , x9 = 2 (4ab + 3a2 − 4abB − 2aaB − a2

B) ,

x5 = −1
2
(a2 − a2

B) ,

and x10 = −36b2 − 24ab− 3a2 + 24bbB + 8abB + 12b2
B + 8aBb + 2aaB + 8aBbB + a2

B.

3.6 Acausal Einsten-Yang-Mills
As an example of the usage of the perturbative map, we prove the renormalization of
the acausal Einstein-Yang-Mills model through the renormalization of the following
HD model

LHD
YM =

√−g

(
R

2κ2
+ ξW 2 + ζGB +

η

(D − 1)2R2

)
− 1

4α

√−gF a
µνF

µν
a , (3.26)

where
W 2 = RαβµνR

αβµν − 4

D − 2
RµνR

µν +
2

(D − 1) (D − 2)
R2,

is the squared Weyl tensor and GB the Gauss-Bonnet (GB) density. The relation
between the constants ξ, ζ, η are a, b from (3.2) is
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a

2κ2
=

4 (D − 3)

D − 2
ξ,

b

2κ2
=

η

(D − 1)2 −
D (D − 3)

(D − 1) (D − 2)
ξ.

Since the integral of the GB density in four dimensions is a total derivative, for
a metric that tends to �at space at in�nity rapidly enough, the term

∫
dDx

√−gGB

in (3.26) is evanescent at 4-ε dimensions. Therefore, the constant ζ belongs to the
evanescent sector and have not physical consequences.

Most of the properties showed here are valid, with minor modi�cation, to every
power-counting renormalizable theory coupled with classical gravity.

The renormalization of the Yang-Mills model in a gravitational background (3.26)
gives at lowest-order [38]

βα = −22

3

α2C (G)

(4π)2 +O (
α3

)
,

βζ = −dim G

(4π)2

(
− 31

180
+

17

12

α2C2 (G)

(4π)4

)
+O (

α3
)
,

βξ =
dim G

(4π)2

(
− 1

10
+

2

9

αC (G)

(4π)2

)
+O (

α2
)
,

βη =
dim G

(4π)2

(
187

54

α3C3 (G)

(4π)6

)
+O (

α4
)
.

Applying the map (3.18) to (3.26), we obtain the theory

LAC
YM =

1

2κ2

√−gR−1

4

√−g
{
F a

µνF
aµν H(g) + TµνK

µν(g) + ΥµνρσL
µνρσ(g)

}
, (3.27)

which is renormalized by means of the rede�nition of the �eld Aµ, the constants
α, ξ, ζ, η and the metric (see expression (3.25)). The Newton constant κ2 is not
renormalized (if there is no cosmological term) Tµν is the unperturbed stress tensor
and Υµνρσ is the traceless operator FµνFρσ,

Tµν = −F a
µαF a α

ν +
1

4
gµνF

2, (3.28)

Υµνρσ = F a
µνF

a
ρσ +

1

2
(gµρTνσ − gµσTνρ − gνρTµσ + gνσTµρ)− 1

12
(gµρgνσ − gµσgνρ) F 2.
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where F 2 ≡ F a
αβF aαβ.

Thus, the acausal Einstein-Yang-Mills theory is just Yang-Mills theory with two
composite operators, besides F 2, coupled with suitable external sources. Up to the
second order, the external sources are

H(g) = 1 +
1

6
a2RαβRαβ − 1

24
a2R2, Lµνρσ = a2RµρRνσ, (3.29)

Kµν(g) = 2aRµν +
3

2
a2¤Rµν + a2RRµν − 3a2RµανβRαβ − 3a(a + 2b)

2
∇µ∇νR.

Due to the renormalization of the metric gαβ (3.25), it becomes running even if
it a classical �eld,

µ
dgαβB

dµ
= 0 ⇒ µ

dgαβR

dµ
= −βaRαβ +

1

2
(βa + 2βb)gαβR +O (

aκ2, bκ2
)
.

3.7 Other Types Of Renormalizable Acausal Mod-
els

In this section we prove the renormalizability of certain families of acausal models
that are not included in the classi�cation of the previous sections. In particular,
they do not have the form (3.19) so they can not be considered as the result of the
application of the map to a model as (3.2). Nevertheless, the map will be useful in
demonstrating the renormalizability of these models.

The �rst class of models we study here are the generalization of the model (3.1)
with a matter action (3.19). In these models, the deformation has a head that is still
proportional to the stress tensor, but now multiplied by more general functions of
the metric than in (3.19). In other words, we prove the renormalizability of acausal
models having actions as

SAC =
1

2κ2

∫
d4x

√−gR + S0 (φ, g, λ) + S1 (φ, g, λ′) + S2 (φ, g, λ′′) . (3.30)

where S0 (φ, g, λ) is a four dimensional renormalizable matter action in a gravita-
tional background that depend on �elds and couplings generically denoted by φ and
λ. It is perturbed with two other actions S1 and S2 that have following special form.
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They both are di�eomorphism invariant and have matter operators of dimension-
ality less than or equal to 4, are gauge invariant, covariant under di�eomorphisms,
invariant under the global symmetries of the theory, not necessarily scalar, and can
be contracted with tensors constructed with the metric in a non-trivial way. S1 rep-
resents the head of the perturbation and is proportional to the stress-tensor of S0

denoted T µν
0 , and linearly proportional to Ricci tensor or its covariant derivatives1.

Explicitly,
S1 =

∫
d4x

√−gfµν(gρσ)T µν
0 , (3.31)

with

fµν(gρσ) = λ′1Rµν + λ′2Rgµν +O(∇2Rρσ).

On the other hand, S2 is the queue that renormalizes coherently with S1 and it
is proportional to the square of the Ricci tensor or superior S2 = O(R2

µν , φ).
The renormalizability of (3.30) is proved in two steps:
I) Demonstrating the renormalizability of this HD theory

SHD = Sg[g] + S0[φ, g, λ] + S1[φ, g, λ′] + S2[φ, g, λ′′], (3.32)

Sg [g] =
1

2κ2

∫
d4x

√−g
(
R + RµνT µναβ (λ′, λ′′) Rαβ

)
,

where S0 (φ, g, λ) is the same as above, instead S1 and S2 have the same restrictions
as in (3.30), so we use the same names. The tensor T µναβ is a di�erential operator
that can depend on the metric, covariant derivatives and the couplings contained in
S1 and S2

II) Demonstrating (3.30) and (3.32) are related by a perturbative map as
(3.18) .

We basically demonstrate that the action (3.32) keeps its form under renormal-
ization, even if it contains an in�nite number of constants. Working inductively, let
Γ(n) be the generating functional of 1PI diagrams which has been renormalized up
to order n in loop expansion2. Its divergent part Γ

(n)
∞ which is local and of order

1To be more speci�c, an even number of derivatives to be contracted with the Ricci tensor, the
stress-tensor or themselves.

2Or equivalently, of order hn.
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(n + 1) has the form

Γ(n)
∞ = (δS0)

(n) +

∫ (
δR2

)(n)

︸ ︷︷ ︸
i)

+

∫
fµν (g) 〈T µν

0 〉(n)
∞

︸ ︷︷ ︸
ii)

+

∫
Rµν

(T µναβ
)(n)

Rαβ + (δS2)
(n)

︸ ︷︷ ︸
iii)

(3.33)
plus BRST exact terms treated in the next section. Here

∫
denotes

∫
d4x

√−g for
shorten. Γ

(n)
∞ is separated in three parts according to the type of divergent diagrams

that contribute to each part. First we show explicitly the form of these parts,
and then we explain how the divergences are absorbed in suitable rede�nitions of
couplings and �elds.

The terms collected in i) come from divergent diagrams that do not contain any
λ′ or λ′′ vertices. They are the divergences of the unperturbed theory, and can be
written as

(δS0)
(n) =

∂S0

∂λ
∆

(n)
λ + φ

δS0

δφ
∆

(n)
φ , (3.34)

(
δR2

)(n)
= ∆(n)

a RµνR
µν + ∆

(n)
b R2,

where ∆
(n)
λ , ∆

(n)
φ , ∆

(n)
a , ∆

(n)
b are divergent coe�cients corresponding to the order-

(n + 1) part of the renormalization constant of λ, φ, a and b.

The part denoted ii) is made of contributions from diagrams with only one
insertion of a S1 vertex and no S2-vertex insertion. They are collected in

∫
d4x

√−gfµν(gρσ) 〈T µν
0 〉 , (3.35)

with
〈T µν

0 〉 = − 2√−g

δΓ[Φ, gµν ]

δgµν(x)

∣∣∣∣
λ′=λ′′=0

+
2√−g

δSg[gµν ]

δgµν(x)
(3.36)

The couplings λ′ and λ′′ are set to zero in (3.36) to extract the unperturbed part
of the stress-tensor. The divergent part of (3.35) of order n + 1 is obtained substi-
tuting Γ[Φ, gµν ] by Γ

(n)
∞ in (3.36). Hence, from (3.36), (3.33), (3.34) and recalling

that T µν
0 = − 2√−g

δS0[gµν ]

δgµν(x)
, we have

〈T µν
0 〉(n)

∞ =
∂T µν

0

∂λ
∆

(n)
λ + φ

δT µν
0

δφ
∆

(n)
φ +

d (δR2)
(n)

dgµν

. (3.37)
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The divergences coming from diagrams that contain at least two vertices of type
S1 or at least one vertex S2 are all proportional to the square of Ricci tensor, so
those purely gravitational are contained in Rµν

(T µναβ
)(n)

Rαβ, while those that have
a matter operator are contained in (δS2)

(n) , so they are all collected in iii).
In this classi�cation, we have considered all possible diagrams and veri�ed that

(3.33) contains all possible contribution of order n.
The elimination of the divergences of order n + 1 proceeds as follows. Those

collected in i) are the divergences of the unperturbed theory S0, absorbed by redef-
initions

λ → λ−∆
(n)
λ , φ → φ− φ∆

(n)
φ , a → a−∆(n)

a , b → b−∆
(n)
b . (3.38)

These rede�nition cancel the divergences i) because

S0 → S0 − (δS0)
(n) +O

(
h2(n+1)

)
,

aRµνR
µν + bR2 → aRµνR

µν + bR2 − (
δR2

)(n)
,

but also a�ect the rest of the action SHD (3.32). Inside the action S1, the unper-
turbed stress tensor changes as

T µν
0 → T µν

0 − ∂T µν
0

∂λ
∆

(n)
λ − φ

δT µν
0

δφ
∆

(n)
φ +O

(
h2(n+1)

)

cancelling out exactly the non-purely gravitational part of ii) (see (3.37)). The
rede�nitions (3.38) applied to S2 generate divergent terms of the same form as S2,

which are regrouped in (δS2)
(n) .

All divergences remaining in (3.33) are squarely proportional to the Ricci tensor.
The purely gravitational ones are absorbed in rede�nitions of constants in T µναβ

while the rest have the form as S2 so they are eliminated through a rede�nition of
the couplings λ′′. The constants λ′ are not renormalized; this is consequence of the
�niteness of the stress tensor3.

Removing the (n + 1)-divergences we obtain Γ(n+1), and remove the (n + 2)
divergences as explained and proceed inductively. This prove the renormalizability
of (3.32) to all order.

3Deriving Γ [Φ, g] with respect to gαβ produces an insertion of the operator Tαβ
0 in a renormal-

ized correlation function, which remains �nite.
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As far as the point II) is concerned, the theorem enunciated in Appendix B
ensures that there exist a map g′ (g) such that

1

2κ2

∫
d4x

√−g
[
R + RµνT µναβRαβ

]
=

1

2κ2

∫
d4x

√
−g′R (g′)

This map relates the HD theory (3.32) to the acausal model (3.30). Under this
perturbative rede�nition of the metric the actions S0, S1 and S2 are mapped into
terms that can be classi�ed again in S0, S1 and S2. To �rst order in ∆gαβ we have,

1) the terms generated varying S0 are proportional to the energy-momentum
tensor of S0, T µν

0 and proportional to the Ricci tensor, so they fall in the class S1.

2) the terms coming from the variation of S1 are of two types:
a) those obtained varying the metric outside T µν

0 are still proportional to
T µν

0 and at least linearly proportional to the Ricci tensor, so they fall in the class
S1 or S2

b) those obtained varying the metric inside T µν
0 are not necessarily propor-

tional to T µν
0 , but they are at least squarely proportional to the Ricci tensor, so they

fall in the class S2

3) the terms generated varying S2 are necessarily in the class S2.
The second and higher orders in ∆gαβ are quadratic in the Ricci tensor, or its

covariant derivatives, so they all fall in the class S2.
We have therefore proved that the theory (3.30) of classical gravity coupled with

quantum matter is renormalizable in the form (3.30). The matter action S0 + S1 +

S2 is non-polynomial and S1 + S2 contains in�nitely many independent couplings.
The set of independent couplings, however, is considerably smaller than the set of
independent couplings of quantum gravity, since S1 + S2 contains only lagrangian
terms of the speci�ed form.

More general acausal models The non-renormalizable perturbation S1 (3.31)
of the theories considered in the previous section has a special form. Precisely, it
contains a unique matter operator, the energy-momentum tensor T µν

0 of the unper-
turbed matter action S0. In this section we prove the renormalizability of more
general theories. Speci�cally, we study the renormalizability of a class of theories
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that have the same form as (3.32) but where S1 and S2 are more general, namely
their only restriction is that they can contain matter operators of dimensionality
four or less. As consequence, the purely gravitational sector can have terms that
are not squarely proportional to Ricci tensor. The action of these models can be
written as

SHD =
1

2κ2

∫
d4x

√−g
[
R + RµνT µναβRαβ + V (g)

]

+ S0 +

∫
d4x

√−g
∑

OI (φ, g) KI (g) , (3.39)

where V (g) collects all purely gravitational terms not squarely proportional to the
Ricci tensor. S0 is a power-counting renormalizable matter action embedded in
curved space and OI is a basis of covariant gauge- (or BRST-) invariant local op-
erator, not necessary scalar, of dimensionality smaller than or equal to four. The
sources KI are arbitrary tensorial functions of the metric.

For instance, we can obtain a generalization of the Yang-Mills model using

S0 = − 1

4α

∫
d4x

√−gF a
µνF

µν
a ,

∑
OI (φ, g) KI (g) = −1

4

{
F a

µνF
aµν H(g) + TµνK

µν(g) + ΥµνρσL
µνρσ(g)

}
,

where the operators Tµν and Υµνρσ are de�ned in (3.28) and H(g), Kµν(g), Lµνρσ(g)

are unconstrained functions of the metric.
The kinetic term for the gravitational �eld in the action (3.39), namely the term

quadratic in φαβ when the metric is expanded around �at space gαβ (x) = ηαβ +

κφαβ (x) , comes exclusively from the curvature scalar R and from terms squarely
proportional to equation of motion [39, 40]. Thus, the higher derivatives contained
in V (g) do not need to be transformed away since V (g) contains only vertices. We
can obtain an acausal renormalizable model from (3.39) simply applying a map

∫
d4x

√−g
[
R + RµνT µναβRαβ

]
=

∫
d4x

√
−g′R[g′]. (3.40)

The terms in V (g) are mapped into terms that could be eventually squarely
proportional to the equations of motion. It is possible to apply the map iteratively
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to eliminate every newly-generated term of this kind [40], but it is not necessary
since the terms coming from the transformation of V (g) are certainly vertices. The
discussion about violations of causality is exactly the same as before, since the map
g (g′) is the same.

The theory (3.39) is renormalizable in the sense �closed under renormalization�.
Its renormalizability can be easily proved realizing that the gravity content is the
more general at all and no matter operator with dimensionality greater than four can
be generated by renormalization. This can veri�ed noting that divergent diagrams
are the same as those found in �at space, except that there are external �elds
attached to the vertices. The same PC analysis of Chapter 1 works here, so the
same matter operators that are needed as counterterms in �at space are needed
here, but coupled to purely gravitational tensors to form di�eomorphism-invariant
combinations.

Taking (3.39) as reference, we can construct models with a reduced number
of couplings. For instance, starting with a renormalizable theory and letting the
couplings depend on the curvature of the spacetime. In a second stage we will
apply the perturbative map to obtain an renormalizable acausal model. To be more
speci�c, once again consider our prototype HD Yang-Mills in curved space, plus the
special head operator F a

µνF
aµν R, which is not proportional to the stress tensor of

S0,

SHD =

∫
dDx

√−g

[
R

2κ2
+ ξW 2 + ζGB +

η

(D − 1)2R2 − 1

4α
F a

µνF
aµν − θ

4
F a

µνF
aµν R

]
.

(3.41)
The deformation could be absorbed in a Weyl rescaling of gαβ

g′µν = gµνe
2φ, φ =

1

D − 4
ln(1 + θR).

In four dimension, the Yang-Mills (YM) model is invariant under conformal
transformations, so (3.41) can not be obtained from YM through a rede�nition of
the metric, as can be veri�ed observing the singularity of the Weyl scaling factor φ

at D = 4. The new vertex is therefore not trivial.
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Analyzing divergent diagrams we will include progressively all the terms required
by renormalization. Let us study them as in the previous section, grouping the
diagrams by the number of θ- vertex insertions. Diagrams without θ insertions are
those of the undeformed YM, so their divergences are absorbed in rede�nitions of
ζ, ξ, η, α, Aµ, and BRST sources.

Divergent diagrams with only one insertion of θ are proportional to the renor-
malization of the operator F a

µνF
aµν in curved space,

− 1

4α
[F a

µνF
aµν ] = − εαµε

4β̂ααB

F a
BµνF

aµν
B +

α

β̂α

[
(ε∆ξ − βξ) W 2 + (ε∆ζ − βζ) GB

+ (ε∆η − βη)
R2

(D − 1)2 +
4

(D − 1)

(
ε∆η − αβη

βα

)
2R

]

+σX , (3.42)

This result is formally identical to the one found by Hathrell [41] for quantum
electrodynamics, except by the σ-exact terms, speci�ed in the next section. Here
we can read the renormalization of F 2 in �at space

ZF 2 = Zα

(
1− βa

εα

)
.

The renormalization of θ is then

θB = µ−εθZ−1
F 2 , βθ = θ

(
dβα

dα
− 2

βα

α

)
.

To absorb the purely gravitational divergences of (3.42) we should add to (3.41)

∫
d4x

√−g

[
γRW 2 + ρRGB +

υ

(D − 1)2R3 +
τ

(D − 1)
R¤R

]
.

The renormalization of these new constants can be read from (3.42),

γB = µ−ε

(
γ − θ

α2

β̂
(ε∆ξ − βξ)

)
, ρB = µ−ε

(
ρ− θ

α2

β̂
(ε∆ζ − βζ)

)

υB = µ−ε

(
υ − θ

α2

β̂
(ε∆η − βη)

)
, τB = µ−ε

(
τ − 4θ

α2

β̂

(
∆η − αβη

βα

))
.
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And their beta-functions (see section 1.7) read

β̂γ = εγ − θα2dβξ

dα
, β̂ρ = ερ− θα2dβζ

dα
,

β̂υ = ευ − θα2dβη

dα
, β̂τ = ετ − 4θα

d

dα

(
α2βη

β

)
.

Now consider Feynman diagrams of higher order in θ, obtained with multiple
insertions of RF 2 and its BRST completion RσX . Since these insertions are pro-
portional to R, diagrams with no gauge �elds, ghost and BRST sources on the
external legs, purely gravitational counterterms with multiple insertions are cer-
tainly squarely proportional to the Ricci tensor and can be absorbed in a term
RµνT µναβRαβ.BRST invariance, parity invariance and power counting, ensure that
divergent diagrams that carry gauge, ghost or BRST sources on the external legs
can give only counterterms proportional to F 2 plus σ-exact contributions, and carry
a power of R at least equal to the number of insertions. As shown below with the
Batalin-Vilkovisky formalism, this means that α and the gauge �eld Aa

µ renormalizes
as

α → L (R) α

Aa
µ → LA (R) Aa

µ

where L,LA are function of the curvature scalar R. Therefore, completing (3.41),
we study the renormalizability of

SHD =

∫
dDx

√−g

[
R

2κ2
+ (ξ + γR) W 2 + (ζ + ρR) GB +

(η + υR)

(D − 1)2 R2

+
τ

(D − 1)
R¤R + RµνT µναβRαβ − 1

4αL
F a

µν (LAA) F aµν (LAA)

]
(3.43)

For certain functions T µναβ, L, LA, containing a set of new couplings, the action
(3.43) is renormalizable, and we examine its renormalizability using the Batalin-
Vilkovisky formalism in the next section. This theory can be mapped into an acausal
one, which is renormalizable, using the map (3.40). The only term not squarely
proportional to Ricci tensor multiplies ρ, and corresponds to a vertex, collected in
V (g) in (3.39), and as explained above, it is mapped into vertices so they do not
present instability problems.
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Batalin-Vilkovisky In the renormalization of gauge theories the terms in bare
lagrangian do no have the appropriate form to absorb the divergences simply rede�n-
ing couplings or scaling �elds. What is needed there is a transformation of �elds
that rede�nes the symmetry transformation. The Batalin-Vilkovisky formalism [42]
provides general tools to face this problem. In the following we brie�y review it and
generalize it to prove the renormalizability of (3.43).

In this section and the deWitt notation is used. Each index represents a set of
indices, discrete or continuous and sum4 over repeated indices is understood. The
symbol φI represents a generic �eld, that can be scalar, spinor, gauge, ghost, etc.
Also suitable √−g factors are understood in appropriated places to form di�eomor-
phism invariants. For instance,

∑
µ,ν

∫
d4x

√−g

(
1√−g

δS

δgµν (x)

)
Xµν (x) =

δS

δgI

XI

Let s be the BRST operator, being sφI the in�nitesimal transformation of φI .

The extended action S is de�ned adding the gauge-�xing term sΨ and the BRST
source terms to the action S, namely

S = S + sΨ +
(
sφI

)
KI ,

Over the matter and gauge �elds, the action of s corresponds to an in�nitesimal
gauge transformation with the ghost �eld used as the parameter of the transforma-
tion. The action of the operator s over the ghost and auxiliary �elds is de�ned to
be nilpotent s2 = 0.

sAa
µ = ∂µC

a + fabcAb
µC

c, sCa = −1

2
fabcCbCc, sC

a
= Ba, sBa = 0,

where Aa
µ, C

a, C
a
, Ba are the gauge, ghost, antighost and Lagrange multiplier �elds.

The new extended action S is not gauge invariant, but invariant under the BRST
transformation, since S is gauge-invariant and do not contain ghosts, thus sS = 0.

The gauge-�xing term is invariant by the nilpotence of s.

4Integrals over continuous indices, like spacetime coordinates.
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For two functionals X and Y depending on φI and KI , de�ne the antiparenthesis

(X ,Y) =
δRX
δφI

δLY
δKI

− δRX
δKI

δLY
δφI

.

It is necessary to distinguish between the left and right derivatives, because
functionals, �elds and sources can be fermionic or bosonic. Note if the functionals
B1,B2 are bosonic,

(B1,B2) = 2
δB1

δφI

δB2

δKI

,

since each BRST source has the opposite statistic respect to its corresponding �eld.
A canonical transformation is a rede�nition of functionals depending on �elds

and sources, that preserves the antiparenthesis. It can be generated by a generating
functional F (φ,K ′) such as

φ′I =
δF
δK ′

I

, KI =
δF
δφI

.

The (classical) invariance of S with respect to BRST transformations is expressed
as

(S,S) = 2
δS
δφI

(
sφI

)
= 2sS = 0. (3.44)

and is called the master equation. In regularizations that preserves the BRST in-
variance and the functional measure, as dimensional regularization, the expression
(3.44) implies that

(Γ, Γ) = 0, (3.45)

where Γ is the 1PI generating functional of the completed action S, including BRST
sources and ghost terms

Now, using the antiparenthesis de�ne the generalized BRST operator σ such as

σX = (S,X )

which is nilpotent σ2 = 0 due to the master equation (3.44) and the Jacobi identity
satis�ed by the antiparenthesis.

Proceeding inductively, order by order in loop expansion as in the previous sec-
tion, call Γ(n) the generating functional of 1PI diagrams which has been renormalized
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up to order n in loop expansion and separate it as

Γ(n) = Γ
(n)
fin + Γ(n)

∞ (3.46)

where Γ
(n)
fin is the �nite part of Γ(n) and Γ

(n)
∞ is the divergent part, which is of order

n + 1.
Writing (3.46) in (3.45), we conclude that the order-n divergent part of the Γ is

σ-closed σΓ
(n)
∞ = 0. Then, it can be expressed as the sum of a gauge invariant part

plus a σ-exact term

Γ(n)
∞ = Gn + σRn,

where G is gauge invariant, therefore these divergences can be absorbed in rede�ni-
tions of couplings and �elds present in S. The σ-exact part can be absorbed through
a canonical transformation of �elds and BRST sources.

The canonical transformation required in our case to eliminate the σRn term is
given by

F (φ,K ′) = φIK ′
I +Rn, φI′ = φI +

δR
δK ′

I

, K ′
I = KI − δR

δφI
.

Before studying the model (3.43) where the coupling constant depend on R, let
us review the Batalin-Vilkovisky for the Yang-Mills model in a curved background,

S =

∫
dDx

√−g

[
R

2κ2
+ ξW 2 + ζGB +

η

(D − 1)2R2 − 1

4α
F a

µνF
aµν

]

+sΨ (φ, g)−
∫

dDx
√−g

[(
sAa

µ

)
Kµ

a +
(
sC

a)
Ka

C
+ (sCa) Ka

C + (sBa) Ka
B

]
.

We choose a gauge �xing term that break only gauge invariance and not general
covariance, ∇µAa

µ = 0.

Ψ (φ, g) =

∫
d4x

√−g

[
−λ

2
C

a
Ba + C

a∇µAa
µ

]
.

Let us examine the σ-exact terms. Simply considering that Rn should be co-
variant combination of �elds and sources with ghost number equal to −1 and of
dimensionality 3 or less (because they can be coupled to functions of the metric),
there are 17 candidates,
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Kµ
a Aa

ν , Ka
CCa, Ka

C
C

a
, Ka

BBa, C
a
Ba, C

a∇µA
a
ν ,

∇µC
a
Aa

ν , C
a
Aa

µ, fabcC
a
Ab

µA
c
ν , fabcC

a
C

b
Cc,

fabcKa
BAb

µA
c
ν , fabcKa

BC
b
Cc, fabcKa

BKb
BCc, Ka

BKa
c ,

Ka
B∇µA

a
ν , ∇µK

a
BAa

ν , Ka
BAa

µ. (3.47)

Note that in the case where there is no functions of R inside the integral, some terms
with covariant derivatives listed above are equivalent. Since the action provides no
vertices with Ba, Ka

B or Ka
C

�elds on the external legs, σXi should not contain
Ba, Ka

B or Ka
C
, where Xi is some linear combination of the above terms. There are

only three such combinations, namely

X1 = Ka
CCa,

(X2)
µ
ν = ∇µC

a
Aa

ν + Kµ
a Aa

ν ,

X3 = λC
a
Ba + Ka

BBa + Ka
C
C

a − C
a∇µAa

µ.

Actually, it is enough to consider only two of them, since X3 is σ-closed, indeed
it is exact X3 = σ

(
Ka

BC
a)

.

In the unperturbed theory it is convenient to use X1 and

X4 = X3 − (X2)
µ
µ +∇µ(C

a
Aa

µ)

= λC
a
Ba + Ka

BBa + Ka
C
C

a −Kµ
a Aa

µ

as a basis. Note that σX4 contains a Ba-�eld, but it is a total derivative. With this
choice,

Rn =

∫
d4x

√−g
[
δ
(n)
C X1 − δ

(n)
A X4

]
,

where δ
(n)
C and δ

(n)
A are divergent constants. This basis is such that σ-exact countert-

erms are reabsorbed by a renormalization λ′ = λZn λ of the gauge-�xing parameter
λ and the canonical transformation

φi = Z
1/2
n i φ

i, K ′
i = Z

−1/2
n i Ki,
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generated by

F (φ,K ′) =

∫
d4x

√−g
∑

i

Z
1/2
n i φ

iK ′
i = φIK ′

I −Rn (φ,K ′) + higher orders,

where

Zn C = Zn B = Z−1
n A = Z−1

n λ, Zn Ki
= Z−1

n i, Z
1/2
n A = 1− δ

(n)
A , Z

1/2
n C = 1− δ

(n)
C

In the perturbed model (3.43), the matter operators in (3.47) are coupled to
functions of R. If we choose

J1 = X1, J2 = X2

as a basis, then
Rn =

∫
d4x

√−g
[
δ
(n)
C J1 + δ

(n)
A J2

]
,

where δ
(n)
C , and δ

(n)
A are now functions R with divergent coe�cients. The generating

functional reads

F (φ,K ′) =

∫
d4x

√−g
[
Z

1/2
n AAa

µK
′µ
a + C

a
K ′a

C
+ BaK ′a

B

+Z
1/2
n CCaK ′a

C +
(
Z

1/2
n A − 1

)
(∇µC

a
)Aa

µ

]

where Zn C and Zn A are de�ned above. Here C
a
, Ba, Ka

B and λ are not renormal-
ized, and the unique non-trivial rede�nitions are

Aa
µ → Z

1/2
n AAa

µ, Ca → Z
1/2
n CCa, Ka

C → Z
−1/2
n C Ka

C

Ka
C

→ Ka
C
−∇µAa

µ +∇µ
(
Z

1/2
n AAa

µ

)
,

Kµ
a → Z

−1/2
n A Kµ

a +∇µC
a
(
Z
−1/2
n A − 1

)
,

besides the renormalization of the gauge coupling.

Now de�ne a map ΣL, (L,LA, LC) made of a rede�nition

α → α (θR) = αL (θR) (3.48)
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of the gauge coupling, plus the addition of purely gravitational terms (described
below), plus the canonical transformation generated by

F (φ,K ′) =

∫
d4x

√−g
[
LAAa

µK
′µ
a + C

a
K ′a

C
+ BaK ′a

B

+LCCaK ′a
C + (LA − 1) (∇µC

a
)Aa

µ

]

where the functions on L depend on θR. The unique non-trivial rede�nition of �elds
and BRST sources are

Aa
µ → LAAa

µ, Ca → LCCa, Ka
C → L−1

C Ka
C (3.49)

Ka
C

→ Ka
C
−∇µAa

µ +∇µ
(
LAAa

µ

)
,

Kµ
a → L−1

A Kµ
a +∇µC

a (
L−1

A − 1
)
.

We assert that the perturbed theory obtained applying the map ΣL to the unper-
turbed one is renormalizable and that the subtraction of divergences is again a map
ΣL, namely a renormalization of the gauge coupling of the form (3.48), plus a canon-
ical transformation of the form (3.49), plus a suitable renormalization of the pure
gravitational terms.

The action of the perturbed Yang-Mills theory in curved space (3.43) for the
Batalin-Vilkovisky formalism is

SHD
YM−θ = ΣLSHD

YM =

∫
d4x

√−g

[
R

2κ2
− 1

4αL
F a

µν (LAA) F aµν (LAA)− λ

2
BaBa

+Ba∇µAa
µ + L−1

A

(
Kµ

a +∇µC
a) [

∂µ (LCCa) + fabcLALCAb
µC

c
]

+
LC

2
fabcKa

CCbCc −Ka
C
Ba

]
+ ∆Sg, (3.50)

where ∆Sg denotes pure gravitational terms, so far unspeci�ed. The Batalin-
Vilkovisky analysis has to be applied with the perturbed σ-operator σθ, de�ned
by

σθX =
(SHD

YM−θ,X
)
.

It easy to verify that σθ is nilpotent, namely

(SHD
YM−θ,SHD

YM−θ

)
= 0.
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Calling ΓYM−θ the generating functional of the one-particle irreducible diagrams,
we have also

(ΓYM−θ, ΓYM−θ) = 0.

Thus, analogously to the unperturbed model,

Γ
(n)
YM−θ,∞ = Gn θ + σθRn θ. (3.51)

Let us analyze the vertices of the theory (3.50). We can write

SHD
YM−θ = SHD

YM +

∫
d4x

√−g
[
K1O1 + K2µO

µ
2 + K3µνO

µν
3

]
+ ∆Sg,

where O1, Oµ
2 and Oµν

3 are θ-independent operators with dimensionality 4, 3 and
2 respectively, constructed with the �elds, the BRST sources and their derivatives,
while the gravitational sources read

K1 = P1 (θR) , K2µ = θP2 (θR)∇µR, K3µν = θ2P1 (θR)∇µR∇νR.

Every θ-dependence is contained in the K's. The counterterms (3.51) are local,
covariant, have dimensionality four and are constructed with the K's, the matter
�elds φI , the BRST sources KI , the curvature tensor and their covariant derivatives.

Let us study the σθ-cohomology. The σθ-closed terms of type Gn θ can contain
F 2, Tµν and Υµναβ, with Aa

µ replaced by LAAa
µ. However, PC excludes both Tµν

and Υµναβ because they have dimensionality four and the only dimensionless K is
scalar. Therefore, only F 2 remains. The functional Rn θ is a linear combination of
the terms listed in (3.47), with coe�cients constructed with the sources K's, the
curvature tensors and their covariant derivative, such that σθRn θ does not contain
Ba, Ka

B or Ka
C
. There no σθ-exact term with dimensionality two or less, so K3µν

can be dropped. We can drop also K2µ together with the terms C
a
Aa

µ and Ka
BA

of (3.47), because the counterterms constructed with these objects can be easily
converted, by means of partial integration, into products of a scalar function times
a combination of the other terms of (3.47).

Using the canonical transformation (3.49) to relate the σ- and σθ-cohomologies,
we demonstrate that the generic functional Rn θ can be written in terms of the basis
J1, and J2. Start applying the canonical transformation to

σX =
(SHD

YM,X ) ≡ Y .



81

Denoting the transformed functionals with a tilde and using the invariance of
the antiparenthesis, we have (

S̃HD
YM, X̃

)
≡ Ỹ . (3.52)

The transformed action S̃HD
YM di�ers from SHD

YM−θ because of the coupling rede�-
nition:

S̃HD
YM = SHD

YM−θ +

∫
d4x

√−g
1− L

4αL
F a

µν (LAA) F aµν (LAA) ≡ SHD
YM−θ + ∆̃L,

therefore (3.52) can be written as

σθX̃ = Ỹ −
(
∆̃L, X̃

)
= Ỹ − ˜(∆L,X ).

Assume that X is a combination of the terms (3.47). Since ∆L depends only on
Aa

µ, only the term proportional to Kµ
a Aa

µ in X contributes to (∆L,X ) . So, (∆L,X )

does not contain Ba, Ka
B or Ka

C
. Moreover, the canonical transformation (3.49) is

such that functionals (not) containing Ba, Ka
B or Ka

C
are mapped into functional

(not) containing Ba, Ka
B or Ka

C
. Thus, an X such that σX does (not) contain

Ba, Ka
B or Ka

C
is mapped into a X̃ such that σθX̃ does (not) contain Ba, Ka

B or
Ka

C
, and viceversa. Having dropped both K2µ and K3µν , we can focus on scalars

functionals X , X̃ .

These properties ensures that the most general X̃ can be obtained applying the
canonical transformation (3.49) to the most general X . Since the latter is a linear
combination of J1, and J2, and

J̃1 = J1, J̃2 = J2,

also the former is a linear combination of J1 and J2.

On the other hand, the pure gravitational counterterms,which are trivially σθ-
closed, can be constructed with the K's , the curvature tensors and their covariant
derivatives. The list of independent terms is

Q1RµναβRµναβ, Q2RµνR
µν , Q3R

2, Q4¤R, θ2Q5R
µν∇µR∇νR,

θ3Q6∇µR∇µR¤R, θ4Q7 (∇µR∇µR)2 , θ2Q8 (¤R)2 ,
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where Qi, i = 1, ..., 8 are functions of θR. Thus ∆Sg is a linear combination of
such terms. We see that there is only one vertex, RRµναβRµναβ that is not squarely
proportional to the Ricci tensor.

Finally, we have

Γ
(n)
YM−θ,∞ = UnF

a
µν (LAA) F aµν (LAA)+σθ (VnJ1 + WnJ2)+pure gravitational terms,

where Un, Vn, and Wn are functions of θR. The divergences are inductively subtracted
by a map of the form of ΣL with L = (1− 4αLUn, 1− Vn, 1−Wn)



Chapter 4

Renormalizable Lorentz-Violating
Theories

While in Chapter 2, we studied how to give sense to (PC) non-renormalizable models
as fundamental theories by means of a RG-consistent reduction of couplings, in this
chapter we use a modi�ed version of PC, adapted to a particular class models that
have only higher spatial derivatives in the kinetic term, to prove its renormalizability.

The inclusion of higher-derivative terms improves the power counting making the
propagator fall faster at high energies [47]. However, (as in Chapter 3) higher time-
derivatives should be avoided since they produce instabilities (in classical models)
or loss of unitarity in QFT (see for example [31] for higher-derivative gravity).

Recalling that the loss of unitarity is due to the presence of higher time-derivatives,
in this chapter we study the renormalizability of models where higher derivatives are
present, but only the spatial ones, thus the PC is improved without implying a loss
of unitarity. In particular it is shown that higher time-derivatives are not turned on
by renormalization in these models. Thus, we obtain a renormalizable and unitarity
model but at the price of losing the Lorentz invariance.

In the usual PC, the number of types of vertices allowed in a renormalizable
theory increases when the number of spacetime dimensions decreases, because the
maximal number of legs that a vertex can have increases (see the inequality (1.7)).
The net e�ect of including higher spatial-derivatives in the quadratic part of the
lagrangian, is that the spacetime dimension D is replaced in some equations of PC
analysis (in particular in (1.5) and (1.7) by a fractional number which is smaller than

83
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the physical number of dimensions. Therefore, the use of spatial higher-derivatives
opens the possibility of a new set of interactions for renormalizable theories. The
set of consistent theories is still very restricted, yet considerably larger than the set
of Lorentz invariant theories. Renormalizable models exist in arbitrary spacetime
dimensions.

Renormalizability follows from a modi�ed Power-Counting criterion, which weights
time and space di�erently. In this weighted PC, some concepts and quantities of
normal PC (Chapter 1) are suitably generalized. With the intention of making
the analysis clearer, we suggest a parallelism between Lorentz-invariant models and
spatial higher-derivative (SHD) Lorentz-violating theories, where concepts as scale
transformation, dimensionality, super�cial degree of divergence, etc., are mapped
into weighted scale transformation, weighted dimensionality, weighted super�cial de-
gree of divergence, etc.

The mathematical framework used to the study the divergent integrals coming
from Feynman diagrams with Lorentz-violating propagators is based on the scaling
properties of weighted polynomials de�ned in section 4.1 and section 4.9.

In the weighted PC analysis we consider models containing fermion and boson
�elds. In a recent work, the weighted PC is applied to generalized gauge theories
[48]. It is not evident how to extend this kind of Lorentz-violating terms to gravity
without losing the di�eomorphism invariance. Lorentz-violating models with higher
space derivatives might be useful to de�ne the ultraviolet limit of theories that are
otherwise non-renormalizable, including quantum gravity, removing the divergences
through the rede�nition of a �nite number of independent couplings. Other do-
mains where the models of this paper might �nd applications are Lorentz-violating
extensions of the Standard Model [49, 50], e�ective �eld theory [51], RG methods
for the search of asymptotically safe �xed points [52, 53], non-relativistic quantum
�eld theory for nuclear physics [54], condensed matter physics and the theory of
critical phenomena [55]. E�ects of Lorentz and CPT violations on stability and mi-
crocausality have been studied [56], as well as the induction of Lorentz violations by
the radiative corrections [57, 58, 59, 60, 61, 62, 63, 64, 65]. The renormalization of
gauge theories containing Lorentz violating terms has been studied in [48, 66, 67, 68].
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For a recent review on astrophysical constraints on the Lorentz violation at high en-
ergy see ref. [69].

In section 4.1 the concept of weighted polynomial is de�ned, and used in section
4.2 to extend the power counting analysis to treat this kind of Lorentz violating
theories. Also the dimensional regularization technique has to be adapted to ex-
tended separately di�erent subspaces, as explained in 4.4. In section 4.3 a series
of examples are displayed, where special emphasis is put on homogeneous models,
a class of renormalizable models which present a classical invariance. This symme-
try is anomalous at quantum level; the anomaly is calculated explicitly in section
4.8. The concept of edge renormalizability is introduced in section 4.5 to name a
special type of theories that although require an in�nite number of interactions,
the structure in derivatives of such vertices is preserved. In section 4.7 we analyze
the renormalization structure and the renormalization group. The renormalizability
of non-relativistic theories with higher space-derivatives is studied in section 4.10.
In fermionic theories, a new set of invariant vertices are allowed by the remaining
symmetries, which are not generated by renormalization if they are not included
from the beginning. How the weighted PC gives correctly the weighted degree of
divergence and the extension of the prove of locality of counterterms, is shown in
section 4.9. In that section is explained also the relation between the (weighted)
scaling properties of polynomials and the determination of the zone of the multi-
dimensional momentum space where the integrals has the most divergent behavior.
This analysis is what motivate the de�nition of weighted polynomial in the weighted
PC.

4.1 Weighted Polynomials
For the study of the Lorentz violation, the spacetime manifold is split into two
submanifolds. The �rst one, that contains the time coordinate and some or none
of the spatial coordinates, is denoted by hat µ̂ over the indices, while the second
submanifold, containing all other coordinates, is denoted by a bar µ. Later, in
section 4.4 the analysis is generalized to the case where the spacetime is split into
an arbitrary number of submanifolds (a positive integer number less than or equal
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to the number of spacetime dimensions). The coordinates of a vector p are then
written in one of the following forms

pµ = (p̂µ, pµ) =
(
pµ̂, pµ

)
.

We use also the symbols

4̂ = ∂̂µ∂̂
µ = ∂µ̂∂

µ̂, 4 = ∂µ∂
µ

= ∂µ∂
µ.

for the contracted derivatives (d'Alembertian / Laplacian) in each subspace. We
call Pk,n (p̂, p) a weighted polynomial of degree k and weight n if scaling separately
both sets of coordinates, Pk,n(ξp̂, ξ1/np) is a polynomial of degree k in ξ.

In a similar way, the polynomial Hk,n (p̂, p) is called homogeneous if Hk,n(ξp̂, ξ1/np) =

ξkHk,n (p̂, p) . Clearly the product of weighted polynomials (of same weight) is a
weighted polynomial with degree equal to the sum of the degree of the factors,

Pk1,n (p̂, p) Qk2,n (p̂, p) = Rk1+k2,n (p̂, p) .

If the factors are homogeneous, so its product also is.
We use the concept of weighted degree for some non-polynomials functions as

well, for example the quotient of two polynomials

fk1−k2,n (p̂, p) =
Pk1,n (p̂, p)

Qk2,n (p̂, p)
.

All these de�nitions based in the scaling properties are motivated by the study of
divergent integrals required to extend the PC analysis to Lorentz-violating theories.

4.2 Weighted Power-Counting Analysis
We consider bosonic and fermionic models where the kinetic term has been replaced
by

Lϕ =
1

2
(∂̂ϕ)2 +

1

2

1

Λ2n−2
L

(
∂

n
ϕ
)2

, (4.1)

Lψ = ψ∂̂/ ψ +
1

Λn−1
L

ψ∂/
n
ψ,
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respectively, where ΛL is a constant with unit mass dimension and the bosonic and
fermionic �elds are represented by ϕ and ψ respectively. It is possible to include
also other quadratic terms as

1

2

am

ΛL2m−2

(
∂

m
ϕ
)2

, m < n, (4.2)

or a mass term. They do not carry the leading divergent behavior in momentum
integrals, hence for renormalization purposes is more convenient to treat them per-
turbatively as two-leg vertices without loss of generality. As explained in section
4.9, a �ctitious mass that is set to zero in the end, can be introduced in momentum
integrals to avoid infrared divergences.

To denote a particular spacetime splitting, we use the following nomenclature:
(d̂, d)n indicates that the spacetime is divided into two subspaces of d̂ and d dimen-
sions respectively, and that all polynomials of the theory are considered as of weight
n.

In Fourier space, the bosonic propagator is the inverse of a weighted polynomial of
degree 2 and weight n. Similarly, the fermionic propagator is the quotient between
a weighted polynomial of degree 1 and a weighted polynomial of degree 2, i.e. a
weighted function of degree -1. Explicitly the propagators are

1

p̂2 + (p2)n

Λ2n−2
L

,
−ip̂/ + (−i)n p/ n

Λn−1
L

p̂2 + (p2)n

Λ2n−2
L

.

Now we extend the concepts and quantities of section 1.2 for weighted polyno-
mials. Consider a generic vertex, with Nb and Nf bosonic and fermionic �elds, with
p1 and p2 derivatives of each type,

[
∂̂p1∂

p2
ϕNb

(
ψψ

)Nf /2
]
. (4.3)

The square bracket represents all possible fully contracted combination of �elds
and derivatives. Other elements, di�erent from �elds or derivatives as gamma ma-
trices,which are not relevant for the renormalizability analysis, are omitted. For
renormalization analysis it is enough to consider only one �eld of each type.

De�ne the weighted number of derivatives δ−(i) of the vertex labelled with i, in
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analogy to δ(i) of (1.2) as the weighted degree of the Fourier polynomial associated
to the vertex (4.3)

δ− = p1 +
p2

n
.

To �nd the generalization of (1.5) let us examine the scaling properties of diver-
gent integrals.

The integral associated to a L-loop diagram G with I propagators and V vertices
has the form

IG(k) =

∫
dLD̂p̂

(2π)LD̂

∫
dLDp

(2π)LD

Ib∏
i=1

B(i)
−2,n(p, k)

If∏
j=1

F (j)
−1,n(p, k)

V∏

`=1

V(`)
δ−,n(p, k),

where B(i)
−2,n(p, k) and F (j)

−1,n(p, k) are the bosonic and fermionic propagators, weighted
functions of degree −2 and −1 respectively, while V(`)

δ−,n is a weighted polynomial of
degree δ− . The weight of all of these quantities is considered to be n.

The scaling of IG(k) is tested letting (k̂, k) → (ξk̂, ξ1/nk) and making a similar
change of variables for the internal momenta generically called p. The degree of
IG(k), namely the generalization of (1.2) is then

ÐL− 2Ib − If +
V∑
i

δ−(i) vi, (4.4)

where we de�ne Ð = D̂ + D/n, the e�ective dimension.
In dimensional regularization, as explained in 4.4 we extend separately the di-

mension of each submanifold,

D̂ = d̂− ε1, D = d− ε2,

where d = d̂ + d is the physical dimension.
Once the subtraction of subdivergences is made, by locality of counterterms the

overall divergence is local and corresponds to a weighted polynomial of degree1

ω (G) = �L− 2Ib − If +
∑

i

δ−(i) vi, (4.5)

1It is simply the non evanescent part of (4.4).
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and weight n, where � = d̂ + d/n is the physical e�ective dimension. The e�ective
dimension and the physical e�ective dimension are only names to relate equations of
the PC analysis in the ultraviolet region to those of the Lorentz invariant theories.
Indeed, the treatment of infrared divergences is the same as in the Lorentz invariant
theories, using the actual spacetime dimension d.

If the theory contains several �elds, all kinetic terms should be weighted poly-
nomial of the same weight n, otherwise the naive PC analysis gives erroneous con-
clusions, as discussed in the Appendix. The expression (4.5) is exactly the same as
(1.5) if we interpret � as the physical dimension and δ−(i) as the degree of divergence
of vertices. Thus all the conclusions about renormalizability of section 1.3 apply
here directly. As before we can write

ω (G) = d� (Eb, Ef ) +
∑

i

viΩ−(i)
� , (4.6)

with Ω−(i)
� = δ−(i) −d�(N

(i)
b , N

(i)
f ). According to (1.7), since the e�ective dimension

� is smaller than the physical dimension, renormalizable Lorentz-violating models
admit vertices with more legs than Lorentz-invariant models, opening the possibility
for new interactions, some of them studied in the next section. To avoid unitarity
problems, it is important to prove that when these new vertices are included, no
counterterms with time derivatives are generated by renormalization, other than
those proportional to kinetic terms.

For having a renormalizable model, just as in section 1.3, Ω−(i)
� ≤ 0 for all i is

required. Thus, from (4.6) we have

ω (G) ≤ d�(Eb, Ef ) ≤ Eb +
Ef

2
,

where the inequality of right hand comes from (1.6) realizing that each diagram has
at least two external legs2. Therefore, ω (G) ≤ 2 if the model contain bosons, or
ω (G) ≤ 1 if there are only fermions. The equality holds only for two-point correla-
tion functions, namely the renormalization of kinetic terms. Since time-derivatives
are weighted monomials of degree one, renormalization can generate terms with

2It is enough to consider only correlation functions of two or more �elds, since the expectation
value of a �eld can be set to zero by renormalization conditions.
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two time-derivatives in bosonic models or one time-derivative in the fermionic case.
These terms are quadratic in �elds, so they correspond to kinetic terms. The only
possibility of presence of time derivative other than in kinetic terms, is having ver-
tices with only one time derivative in a bosonic theory, but they can be ruled out
imposing time reversal symmetry.

All other divergent diagrams have ω (G) < 2 (or ω (G) < 1 for purely fermionic
theories) and thus renormalize vertices that can have only spatial derivatives. The
absence of kinetic terms with higher time derivatives ensures perturbative unitarity.

4.3 Examples
4.3.1 Homogeneous Models

Homogeneous models are those where propagators and all vertices are homogeneous
weighted polynomials (which degree depends on the number and type of legs, see
(4.8)). In general, besides the continuous spacetime symmetries remaining of the
Lorentz breaking, we usually ask parity, time reversal and the U -parity that trans-
forms every �eld into its opposite ϕ → −ϕ, ψ → −ψ.

Homogeneous theories can be de�ned as models that present classically a weighted
scale invariance. A weighed scaling is de�ned by the transformations

x̂ → x̂ e−Ω, x → x e−Ω/n, ϕ → ϕ e
Ω
2
(�−2), ψ → ψ e

Ω
2
(�−1), (4.7)

where Ω is a scaling factor. Due to this invariance, it is convenient in these models
to use the following trick: de�ne the weighted dimensionality denoted by [X]∗ such
that the constant ΛL is dimensionless while for the hatted coordinates coincides
with the dimensionality [x̂]∗ = [x̂]. Other quantities have weighted dimensionalities
assigned consistently

[ΛL]∗ = 0, [p]∗ = 1/n, [x]∗ = −1/n, [ϕ]∗ = (�−2)/2 [ψ]∗ = (�−1)/2.

The su�x remind us that the square brackets does not represent the actual dimen-
sionality. This interpretation is not necessary but it makes easier and clearer the
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expressions. In this way we get the following simpli�cations and analogies with
Lorentz invariant models:

I) All quantities scale according to its weighted dimensionality. This will be very
useful in the study of the anomaly of the scaling symmetry.

II) The operators and couplings can be classi�ed by its weighted dimensionalities,
because Ω−(i) = − [λi]∗ , giving sense to the terms weighted marginal, relevant or
irrelevant couplings.

III) The renormalizability analysis is simpli�ed because ω (G) = [G]∗ .

Note that the �elds in (4.7) scale according to their weighted dimensionality,
which is equal to the usual dimensionality replacing d by �.

In homogeneous models all couplings are dimensionless 3 as can be easily veri�ed
considering that these models are scale invariant and using I). Moreover, II) tells
us that they are strictly renormalizable, because δ−(i) = d�(N

(i)
b , N

(i)
f ). In particular

they are massless. Thus,

Homogeneous Model ⇐⇒ Weighted scale invariance ⇐⇒ Strictly Renormalizable.

This invariance is present in Feynman diagrams and in the 1PI generating func-
tional and also in the counterterms in a appropriate subtraction scheme. Thus,
dimensional regularization in the minimal subtraction scheme, no non-homogeneous
counterterms can be generated by renormalization.

In theories having fermionic �elds, there exist other homogeneous renormalizable
interactions allowed by all symmetries present, but they not included in models
above. Renormalization do not generate them if they are not in the bare lagrangian,
as discussed in 4.11.

The general form of a homogeneous bosonic-fermionic theory is

L = ψ∂̂/ ψ +
η

Λn−1
L

ψ∂/
n
ψ +

1

2
(∂̂ϕ)2 +

1

2Λ2n−2
L

(∂
n
ϕ)2

+
∑

i

λi

[
H

(i)
δ−,n

(
∂̂, ∂

)
ϕN

(i)
b

(
ψψ

)N
(i)
f /2

]
, (4.8)

where H
(i)
δ−

(
∂̂, ∂

)
is a homogeneous weighted polynomial with δ−(i) = d�(N

(i)
b , N

(i)
f )

and η a dimensionless constant.
3In this section the word �weighted� is implicitly understood for concepts as dimensionality,

scaling transformation, marginal couplings, etc.
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Let us start with a purely bosonic model. Requiring dD (Nb, 0) = 0, we obtain
the maximal number of legs that strictly renormalizable vertex can have, as function
of the dimension D.

There are only three possibilities: ϕ6 in D = 2, ϕ4 in D = 4 and ϕ3 in D = 6.

Vertices that satisfy dD (Nb, 0) > 0 are super-renormalizable, and can be trans-
formed into renormalizable ones adding a suitable number of derivatives as in (4.8).

A ϕ4-vertex is marginal in 4 dimensions. Interpreting it as the e�ective dimen-
sion, Ð= 4 can be obtained from

i) (1, 3n)n splitting in 3n + 1 dimensions,
ii) (2, 2n)n splitting in 2(n + 1) dimensions,
iii) (3, n)n splitting in 3 + n dimensions.
That is, in every dimension greater than or equal to 3 there exist at least one

splitting that makes the ϕ4-interaction marginal. For instance, using ii) in six
dimensions with n = 2, we have

L(2,4)2 =
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(4ϕ)2 +
λ

4!
ϕ4. (4.9)

This model is used to study the critical behavior at Lifshitz points [70, 71, 72].
On the other hand, for every strictly renormalizable Lorentz-invariant model

in four dimensions there exist a family of homogeneous renormalizable Lorentz-
violating models in higher dimensions, using some of the splittings i), ii) or iii)

Let us focus our attention in models in four dimensions. The e�ective dimension
� has a value between 2 and 4 for renormalizable models, due to ii) of section 1.2.
and the de�nition of �. For theories without bosons, 1 < � < 4. Analyzing one by
one the possibilities, we have the splittings

(0, 4)n : It contains higher time derivatives, so it is not unitary
(4, 0)n: It represents the usual Lorentz-invariant splitting (no splitting at all).
(1, 3)n: When bosons are present, � > 2. This implies n < 3 and the unique

non-trivial splitting has n = 2. In this case, the vertices with maximal number
of �elds are those that satisfy d1+3/2(Nb, Nf ) = 0, namely (Nb, Nf ) = (4, 2) and
(Nb, Nf ) = (10, 0) . Other marginal vertices, are those that satisfy
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d1+3/2(Nb, Nf ) = δ−(i) =
k

2

and contain k spatial derivatives
(
∂
)
, where k is a positive integer. The only com-

bination allowed by the symmetries are (Nb, Nf , k) = (6, 0, 2) and (Nb, Nf , k) =

(2, 2, 1) .

The model then reads

L(1,3)2 = ψ∂̂/ψ +
η

ΛL

ψ∆ψ +
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(∆ϕ)2 +
λ2

2
ϕ2(ψ

←→
∂/ ψ) +

λ′2
2

ϕ2∂ · (ψγψ)

+
λ4

4!
ϕ4ψψ +

λ6

6!
ϕ4(∂ϕ)2 +

λ10

10!
ϕ10. (4.10)

Note that the couplings λ2, λ
′
2, λ4, λ6, λ10 in (4.10) have all zero weighted dimen-

sionality as expected. Their actual dimensionalities are non zero, for instance

[λ10]∗ = 0, [λ10] = −6.

In purely fermionic models, many other vertices are allowed, because we require
only 1 < � . Homogeneous vertices in the (1, 3)n splitting satisfy d1+3/n(0, Nf ) = 0,

namely
n

3
=

Nf

2
− 1,

so taking n = 3m with m a positive integer, the operator with the maximal number
of �elds is

(
ψψ

)m+1. For example, the �rst two models corresponding to m = 1, 2

are

L′(1,3)3
= ψ∂̂/ψ +

1

Λ2
L

ψ∆∂/ψ + λi

[(
ψψ

)2
]

i
, (4.11)

L′′(1,3)6
= ψ∂̂/ψ +

1

Λ5
L

ψ∆
3
ψ + λi

[
∂

3 (
ψψ

)2
]

i
+ λ′i

[(
ψψ

)3
]

i
, (4.12)

where the square bracket has the same meaning as in (4.3), labelling with i vertices
that are di�erent combinations of �elds and derivatives inside the brackets.

(2, 2)n : Here the restriction � > 2 does not add any information because is
trivially satis�ed, so n is an arbitrary positive integer. The �rst one, corresponding
to n = 2, has marginal vertices (Nb, Nf ) = (6, 0) , (Nb, Nf ) = (2, 2) , and (Nb, Nf ) =

(4, 0) with two spatial derivatives. The corresponding lagrangian reads

L(2,2)2 = ψ∂̂/ ψ +
η

ΛL

ψ∆ψ +
1

2
(∂̂ϕ)2 +

1

2Λ2
L

(∆ϕ)2 +
λ2

2
ϕ2ψψ +

λ4

4!
ϕ2(∂ϕ)2 +

λ6

6!
ϕ6.

(4.13)
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Another possible term is ϕψ∂/ψ, but can be excluded by the U -parity ϕ → −ϕ.As
mentioned above, the interaction ϕ6 is marginal in D = 3, which is the e�ective
dimension for (2, 2)2. In the same sense there is an in�nite family of homogeneous
models with the ϕ4 vertex, ϕ6 models are homogeneous in 2(n + 1) dimensions with
a (2, 2n)n splitting (� = 3).

(3, 1)n : For n = 2 there is no marginal vertex without derivatives. Only ∂ϕ4 is
homogeneous, but there is no way of contracting the derivative without losing the
parity invariance and SO(d̂).

For n = 3, the model reads

L(3,1)3 = ψ∂̂/ ψ +
η

ΛL

ψ∆∂/ψ +
1

2
(∂̂ϕ)2 +

1

2Λ4
L

(
∂4ϕ

)2
+

λ′3
3!

ϕ242
ϕ +

λ3

3!
ϕ

(4ϕ
)2

+
λ4

4!
ϕ2(∂ϕ)2 +

λ5

5!
ϕ5 +

λ′

2
ϕψ∂/ψ,

which is clearly unstable. Imposing the U -parity we have the modi�ed ϕ4-theory

Leven
(3,1)3

= ψ∂̂/ ψ +
η

ΛL

ψ∆∂/ψ +
1

2
(∂̂ϕ)2 +

1

2Λ4
L

(
∂4ϕ

)2
+

λ4

4!
ϕ2(∂ϕ)2,

4.3.2 Non-Homogeneous Models
Non homogeneous models can be constructed simply adding to an homogeneous
lagrangian some super-renormalizable vertices, kinetic terms with a number space
derivatives smaller than n or a mass term. For example, keeping the U -parity, the
non-homogeneous extension of (4.9) is just

Lnh
(2,4)2

=
1

2
(∂̂ϕ)2 +

a

2
(∂ϕ)2 +

m2

2
ϕ2 +

1

2Λ2
L

(4ϕ)2 +
λ

4!
ϕ4

and the non-homogeneous one of the bosonic part of (4.13) is

Lnh
(2,2)2

=
1

2
(∂̂ϕ)2 +

a

2
(∂ϕ)2 +

m2

2
ϕ2 +

1

2Λ2
L

(4ϕ
)2

+
λ4

4!
ϕ2(∂ϕ)2 +

λ′4
4!

ϕ4 +
λ6

6!
ϕ6.

4.4 Splitting The Spacetime In More Sectors
In a similar way, the spacetime could be split into more submanifolds, eventually
one for each coordinate. Calling Md the spacetime manifold, it can be considered
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as the tensor product of the submanifolds Md̂ and Mdi
,

Md = Md̂ ⊗
∏̀
i=1

Mdi
,

corresponding to a splitting into ` + 1 subspaces. The kinetic term (for bosonic
�elds) for such splitting is

Lkin =
1

2
(∂̂ϕ)2 +

1

2
ϕP2(∂i, ΛL)ϕ,

where P2(∂i, ΛL) is the most general weighted homogeneous polynomial of degree 2
in the spatial derivatives, P2(ξ

1/ni∂i, ΛL) = ξ2P2(∂i, ΛL), invariant under rotations
in the subspaces Mdi

. The ΛL-dependence is arranged so that P2 has dimensionality
2.

The usage of dimensional regularization requires the analytic continuation of the
dimension of each subspace separately D̂ = d̂ − ε1, Di = di − εi+1. The quantity
called e�ective dimension is extended to

� = d̂ +
∑̀
i=1

di

ni

and has the same role as in normal weighted PC analysis. In this scheme, the
divergence in renormalization constants is due exclusively to poles in ε, with

ε = ε1 +
∑̀
i=1

εi+1

ni

.

This can be veri�ed with the same dimensional argument presented in section 4.7,
in the paragraph below 4.21. However, the residues of such poles could depend on
εi separately.

4.5 Edge Renormalizability
In some theories, renormalization generates vertices that preserve the number of
derivatives, but the number of �elds in each vertex is not restricted. This situation is
called edge renormalizability because although the number of vertices and couplings
is in�nity, not all possible vertices are admitted.



96

In a purely bosonic theory, equations (4.6) and (1.6) tell us that if �= 2 and all
vertices are marginal, the degree of divergence ω (G) is always 2, independently of
the number of external legs of G. Hence all correlation functions are divergent, even
when all couplings are marginal.

Something similar occurs when the Einstein-Hilbert term is expanded around
the �at metric: it is a sum of in�nitely many terms each one with two derivatives
and an arbitrary number of �elds φµν (x). Due to di�eomorphism invariance, there
is only one way to sum all this terms to form a scalar quantity4.

Using the Lorentz splitting, we have the same e�ect in every physical dimension
for a suitable n. In four dimensions is (1, 3)3 and the general form is

L = Lfree + LI, (4.14)

where
Lfree =

1

2
(∂̂ϕ)2 +

1

2Λ4
L

(
∂4ϕ

)2
.

The interaction lagrangian can be written generically applying the derivatives in all
possible combinations,

LI = V1(ϕ)(∂̂ϕ)2 + V2(ϕ)[(∂iϕ)2]3 + V3(ϕ)4ϕ(∂iϕ)2(∂jϕ)2

+ V4(ϕ)(∂i∂jϕ)(∂i∂j4ϕ) + V5(ϕ)42
ϕ(∂iϕ)2 + V6(ϕ)(4ϕ)3

+ V7(ϕ)(∂i4ϕ)2 + V8(ϕ)(∂i∂j∂kϕ)2 + V9(ϕ)43
ϕ, (4.15)

where the Vi's are unspeci�ed functions of ϕ with V1(ϕ) = O(ϕ), V4(ϕ), V7(ϕ), V8(ϕ), V9(ϕ) =

O(ϕ2). Note from (4.7) that the dimensionality of the �eld ϕ is zero, thus the theory
is scale invariant even when the vertices have arbitrarily many �elds.

The lagrangian of the most general non-homogeneous theory is (4.14) with

Lfree =
1

2
(∂̂ϕ)2 − 1

2
ϕ

(
a4+ b

42

Λ2
L

+
43

Λ4
L

)
ϕ

and LI equal to (4.15) plus

V10(ϕ) + V11(ϕ)4ϕ + V12(ϕ)42
ϕ + V13(ϕ)(4ϕ)2 + V14(ϕ)[(∂iϕ)2]2,

4It can considered as a reduction of couplings, but di�erently from chapter 2, here the reduction
is originated by a symmetry.
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with V11(ϕ), V12(ϕ) = O(ϕ2), V13(ϕ) = O(ϕ).
If fermions are included in this theory, correlation functions with more than four

external fermions are �nite. The reason is that d2 (Eb, Ef ) < 0 if Ef > 4, thus
ω (G) < 0, indicating that the diagram G is overall convergent.

In a purely fermionic model, the e�ective dimension for edge renormalization is
1. The only splitting possible for it in four dimension is (0, 4)4 , which is ruled out
because it is HD.

4.6 Remaining Symmetries
Due to the particular way in which Lorentz symmetry is broken by the kinetic
term, it is clear that each subspace keeps a reduced version of Lorentz or rotation
symmetry. Here we study what kind of symmetry involving all coordinates can still
remain after the splitting.

For the sake of simplicity we consider the kinetic term of a bosonic model in a
(1, 1)2 splitting in a two-dimensional Euclidean space,

Lfree =

(
∂ϕ (x)

∂x

)2

+

(
∂2ϕ (x)

∂y2

)2

,

with x = (x, y) .

Under an arbitrary in�nitesimal coordinate transformation, the coordinates and
the �eld changes as

x′ = x + ε δx (x) , y′ = y + ε δy (x) , ϕ′ (x′) = ϕ (x) + ε δϕ (x) .

The action S =
∫

d2x Lfree transforms into

S ′ =

∫
d2x

[(
∂ϕ′ (x)

∂x

)2

+

(
∂2ϕ′ (x)

∂y2

)2
]

=

∫
d2x

[
1 + ε

(
∂ (δx)

∂x
+

∂ (δy)

∂y

)]

×
[(

∂ϕ (x)

∂x

)2

+ 2ε
∂ϕ

∂x

(
∂ (δϕ)

∂x
− ∂ϕ

∂x

∂ (δx)

∂x
− ∂ϕ

∂y

∂ (δy)

∂x

)
+

(
∂2ϕ′ (x)

∂y2

)2
]

where the square bracket in the second line corresponds to the determinant of the
Jacobian of the transformation, and S ′ is written up to order ε. To have an invariant
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action, the factor coming from the Jacobian has to be cancelled out. The only
possibility is

δϕ = C +
λ

4
ϕ, δx = A + λx, δy = B +

λ

2
y, (4.16)

where A, B,C are constants. The transformation (4.16) corresponds to an in�nites-
imal translation plus a weighted scaling, as we already knew. When the action
contains �elds ϕ without derivatives, for example a mass term, the constant C is set
to zero to have SO(d̂) or SO(d) invariance. The scaling factor of the �eld ϕ is its
weighted dimensionality [ϕ]∗ =�/2−1

Summarizing, there exist no continuous symmetry that mixes the coordinates of
di�erent subspaces.

4.7 Renormalization Group Structure
The �ux of renormalization group is closely related to the dilatation transformation
when the theory is scale invariant. This symmetry, which requires a lagrangian
having no dimensionful parameters, is broken at quantum level by renormalization
by the introduction of the energy scale µ. In the models studied, we already have
an energy scale ΛL at classical level (and dimensionful couplings λi ) but they do
not spoil the invariance because they all have zero weighted dimensionality, what is
actually relevant for the weighted dilatation invariance.

The connection between a dilatation and a change of renormalization scale in
models that present classical weighted dilatation, as the homogeneous models of
section 4.3.1 can be made explicit giving to the RG parameter µ scaling proper-
ties according to its dimensionality. Using again the weighted dimensionalities, the
quantities scale under a weighted dilatation in D spacetime dimensions as

x̂ → x̂ e−Ω, x → x e−Ω/n, ϕ → ϕ eΩ(Ð−2)/2, ψ → ψ e
Ω
2
(Ð−1),(4.17)

ΛL → ΛL, µ → µeΩ.

This transformation leaves invariant the renormalized action, but it does not
constitute a symmetry; it only speci�es how a change on µ compensates a dilatation,
or in other words, how such change is equivalent to a dilatation.
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Consider a generic vertex as (4.8). The weighted dimensionality of its bare
coupling is evanescent since it is marginal in physical dimensions

[λiB]∗ = −Ω−(i)
Ð = −δ−(i) +dÐ(N

(i)
b , N

(i)
f ) = ε

(
N (i)

2
− 1

)
= εp(i),

with N (i) = N
(i)
b + N

(i)
f the total number of �elds of the vertex i.

Omitting the ΛL dependence for a while, the contributions of diagrams to the
1PI-generating functional Γ have the form

I =

∫
dDx

∏
j

(
λjµ

ε

(
N(j)

2
−1

))vj

G ϕEb
(
ψψ

)Ef /2
. (4.18)

As other quantities, the scaling of G corresponds to its weighted dimensionality,

[G]∗ = dÐ(Eb, Ef ) +
∑

j

Ω−(j)
Ð vj

= ω (G)− εL,

which is easily veri�ed. In physical dimensions, [G]∗ = ω (G), and the only source
of dimensionality defect5 in G is the measure dDp, contributes with −ε for each
integral, or what is the same, for each loop.

By locality of counterterms and the scaling properties under (4.17), G∞ is an
homogeneous weighted polynomial of degree ω (G) and weight n in derivatives,

G∞ = µ−εLHω(G),n(∂̂, ∂)

where Hω(G),n(∂̂, ∂) contains divergent coe�cients. Hence the divergent contribu-
tions to Γ are of the form

I∞ = −
∫

dDx
∏

j

(λj)
vj µε(E

2
−1)[Hω(G),n(∂̂, ∂))ϕEb

(
ψψ

)Ef /2
], (4.19)

where we have used
∑

i

(
N(i)

2
− 1

)
vi − L = E

2
− 1,

Summing the contributions of the same kind,
5The coupling constants are not considered as part the diagram.
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λiB = µ
ε

(
N(i)

2
−1

) (
λi + Λ

[λi]
L

∑

k

ck

∏
j

(
λjΛ

−[λj ]
L

)vj

)
, (4.20)

with
(

N(i)

2
− 1

)
the weighted dimensionality defect, which coincides with the de�-

nition in section 1.4. In (4.20) we have restored the ΛL-dependence matching the
physical dimensionality. The dimensionality of the coupling λi is

[λi] = (1− n) dd(N
(i)
b , N

(i)
f ). (4.21)

The renormalization expression (4.20) has the same form as in section 1.7 so
the same arguments and properties of beta-function apply. In particular, something
that is not trivial at all, is that all poles in renormalization constants are in one
special combination of ε1 and ε2, namely ε = ε1 +ε2/n. Similar arguments are used
to demonstrate that also non-homogeneous models presents poles only in ε in their
renormalization constants. In the action, the dimensionality of integration measure
dDx has an evanescent part proportional to ε. Looking at the kinetic terms, also the
�elds will have an evanescent part proportional to ε, and thus the bare constants.
Therefore its renormalization, as in (4.20) will be proportional to µεp(i)

. By �niteness
of their beta-functions, all poles are in ε.

The constant ΛL does renormalize, as can be seen from divergences of two-
point correlation function. The divergent part of diagrams quadratic in �elds are
polynomials H2,n(∂̂, ∂) which coe�cients multiplying ∂̂ and ∂

n are not constrained
to have the same value, so these divergences are absorbed in general by a rede�nition
of the �eld ϕ and ΛL. The form of the relation (4.20) could be guessed from the
beginning simply matching the dimensionalities and the scale properties (or what is
the same, the weighted dimensionality). Similarly,

ΛLB = ΛLZL, ZΛ = 1 +
∑

k

dk

∏
j

(
λjΛ

−[λj ]
L

)vj

,

ηL =
1

ΛL

dΛL

d ln µ
= −d ln ZΛ

d ln µ
.

The Callan-Symanzik equation has the same form as usual. For instance, for the
model (4.9), we have

Gk(x̂1, · · · , x̂k; x1, · · · , xk; λ, ΛL, µ) = 〈ϕ(x1) · · ·ϕ(xk)〉 ,
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we have
(

µ
∂

∂µ
+ β̂λ

∂

∂λ
+ ηLΛL

∂

∂ΛL

+ kγϕ

)
Gk(x̂1, · · · , x̂k; x1, · · · , xk; λ, ΛL, µ) = 0.

(4.22)
The equation can be immediately integrated to give

Gk(x̂1, · · · , x̂k; x1, · · · , xk; λ, ΛL, ξµ) = z−k(t)Gk(x̂1, · · · , x̂k; x1, · · · , xk; λ(t), ΛL(t), µ),

where t = ln ξ and

z(t) = exp

(∫ t

0

γϕ(λ(t′))dt′
)

,
dλ(t)

dt
= −β̂λ(λ(t)), ΛL(t) = ΛL exp

(
−

∫ t

0

ηL(λ(t′))dt′
)

,

with λ(0) = λ. Now the renormalization-group �ow speci�es how the correlation
functions changes under a weighted overall rescaling. Indeed, the weighted scale
invariance (4.17) tells us that

Gk(x̂1, · · · , x̂k; x1, · · · , xk; λ, ΛL, ξµ) = ξω(G)Gk(ξx̂1, · · · , ξx̂k; ξ
1/nx1, · · · , ξ1/nxk; λ, ΛL, µ).

A one-loop calculation for the model as (4.9) in a (2, 2n)n splitting gives

β̂λ = −ελ +
3λ2

(4π)n+1n!
+O(λ3), γϕ = O(λ2), ηL = O(λ2),

so these models are IR free. Only the beta-function has a non-vanishing one-loop
contribution. Indeed, using the dimensional-regularization technique tadpoles van-
ish in homogeneous models, so γϕ and ηL start from two loops.

Let us now consider the model (4.13) without fermionic �elds. The bare la-
grangian reads

L(2,2)2B =
1

2
(∂̂ϕB)2 +

1

2Λ2
LB

(4ϕB

)2
+

λ4B

4!
ϕ2

B(∂ϕB)2 +
λ6B

6!
ϕ6

B,

where

ϕB = Z1/2
ϕ ϕ, ΛLB = ZΛΛL, λ4B = µε (λ4 + ∆4) ,

λ6B = µ2ε (λ6 + ∆6) , ε ≡ ε1 +
ε2

2
.

The theory is invariant under the scale transformation (4.17) with n = 2. At one-
loop we �nd Zϕ = 1, ZΛ = 1 and

∆4 =
5λ2

4

2(12π)2ε
, ∆6 =

5λ4λ6

(8π)2ε
− 5λ3

4

(48π)2ε
,
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so the beta-functions read

β̂4 = −ελ4 +
5λ2

4

2(12π)2
, β̂6 = −2ελ6 +

5λ4λ6

(8π)2
− 5λ3

4

(48π)2
.

The asymptotic solutions of the RG �ow equations are

λ4 ∼ 2(12π)2

5t
, λ6 ∼ 1

20
λ2

4,

where t = ln |x|µ and |x| is a typical weighted scale of the process. Since λ4 and λ6

must be non-negative, the theory is IR free.

4.8 Weighted Trace Anomaly

The weighted scale invariance (4.7) of the homogeneous models can be anomalous
due to the radiative corrections. In this section we calculate the weighted trace
anomaly, following [41, 43] . For de�niteness, we work with the model (4.9), but the
discussion generalizes immediately to the other models.

Before going forward with the study of the anomaly, we should take into consid-
eration some issues about the variational treatment of HD theories. The lagrangian
does not depend on the �eld and its �rst derivatives only L = L (ϕ, ∂µϕ) as usual, but
also on their successive derivatives, thus Euler-Lagrange equations and the Noether
current will have a di�erent form.

The variation of the action S with respect to a variation δϕ of the �elds is

δS =

∫
d4x


∂L

∂ϕ
− ∂̂µ

∂L
∂

(
∂̂µϕ

) +
(−∂

)n ∂L
∂

(
∂

n
ϕ
)


 δϕ (4.23)

+

∫
d4x ∂µ


 ∂L

∂
(
∂̂µϕ

)δϕ +
n−1∑
i=0

(−∂
)i


 ∂L

∂
(
∂

n
ϕ
)


 (

∂
)n−2−i

∂
µ
δϕ


 ,

The square bracket of the �rst line represents the equation of motion of the �eld
ϕ. If δϕ is the in�nitesimal variation due to a symmetry transformation, the variation
of the lagrangian can be written as δL = ∂µK

µ. The Noether current related to the
symmetry transformation is the di�erence between Kµ and the square brackets of
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the second line of (4.23),

Jµ =
∂L

∂
(
∂̂µϕ

)δϕ +
n−1∑
i=0

(−∂
)i


 ∂L

∂
(
∂

n
ϕ
)


 (

∂
)n−2−i

∂
µ
δϕ−Kµ, (4.24)

and is conserved ∂µJ
µ = 0 when the equation of motion is satis�ed.

Continuous symmetry transformations related to spacetime as translations, ro-
tations, boosts and dilatations have conserved currents expressible in terms of the
canonical energy-momentum tensor Tµν . For instance, the Noether current Sν for a
continuous dilatation is

Sν = xµT̃ ν
µ , (4.25)

where T̃µν is the improved energy-momentum tensor, namely the canonical stress
tensor plus conserved terms that makes its trace vanish. Therefore the divergence
of the current Sν (4.25) is

∂νS
ν = T̃ µ

µ

in Lorentz invariant theories. In the models with Lorentz splitting, the dilatation
current is

Sν =

(
x̂µ +

1

n
xµ

)
T̃ ν

µ ,

so its divergence is the weighted trace of the improved energy momentum tensor

Θ = ∂νS
ν = T̃ µ̂

µ̂ +
1

n
T̃ µ

µ ,

which is explicitly calculated in the next section.

Weighted dilatation. In the case of the model (4.9), write the lagrangian as
L(ϕ, ∂̂µϕ,4ϕ). The in�nitesimal version of the transformation (4.7) reads

δϕ = Ω

(
1 + x̂ · ∂̂ +

1

2
x · ∂

)
ϕ ≡ Ω�ϕ, (4.26)

with Ω ¿ 1.The �1� in the parenthesis is the weighted dimensionality of ϕ in phys-
ical dimensions and the rest, the weighted trace of the operator Dµν = xµ∂ν . The
conserved Noether current Sµ = (Ŝµ, S

µ
) according to (4.24)

Ŝµ = −x̂µL+
∂L

∂(∂̂µϕ)
�ϕ, S

µ
= −1

2
xµL+

∂L
∂(4ϕ)

←→
∂

µ�ϕ.
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We continue the spacetime dimensions to complex values as explained in 4.4. The
continued transformation δϕ′ and the continued current S ′µ are obtained replacing
�ϕ in δϕ and Sµ with the extension of (4.26) to D dimensions

�′ϕ =

(Ð
2
− 1 + x̂ · ∂̂ +

1

2
x · ∂

)
ϕ (4.27)

(see (4.17)), where Ð= 4− ε. At the bare level, the anomaly of (4.27) is expressed
by the divergence of S ′µ. We �nd

∂µS
′µ = −ε

λB

4!
ϕ4

B. (4.28)

Improved energy-momentum tensor and its weighted trace. The anomaly
of the weighted dilatation is encoded also in the energy-momentum tensor, precisely
in its �weighted trace�. Let us start from the energy-momentum tensor given by the
Noether method6. For the model (4.9), equation (4.24) gives

Tµν =
∂L

∂(∂̂µϕ)
∂νϕ +

∂L
∂(4ϕ)

←→
∂µ∂νϕ− δµνL. (4.29)

This tensor is not symmetric, but conserved: it is easy to check that ∂µTµν = 0,
using the �eld equations. Next, de�ne the improved energy-momentum tensor

T̃µν = ∂̂µϕ∂νϕ− 1

Λ2
L

∂νϕ
←→
∂µ4ϕ− δµνL+

3Ð− 2DÐ + 3D − 5

(D − 1)Λ2
L

πµν

(
ϕ4ϕ

)

+
3− 2Ð

2(D − 1)Λ2
L

πµν

(
∂αϕ

)2
+

3− 2Ð
Λ2

L

πµα (ϕπανϕ)− Ð− 2

4(D̂ − 1)
π̂µνϕ

2(4.30)

where π̂µν = ∂̂µ∂̂ν − δ̂µν ∂̂
2 and πµν = ∂µ∂ν − δµν∂

2. The �rst three terms of (4.30)
correspond to the Noether tensor (4.29), while the rest collects the improvement
terms, identically conserved.

Using the �eld equations, it is easy to show that T̃µν is conserved and that its
weighted trace Θ vanishes in the physical spacetime dimension d = d̂+d. Moreover,
T̃µν is conserved also in the continued spacetime dimension. The coe�cients of the
improvement terms are chosen so that in the free-�eld limit Θ vanishes also in the
continued dimension D = D̂+D. Finally, it is immediate to check that the weighted
trace Θ coincides with the divergence (4.28) of the current S ′µ.

6The Noether current related to the in�nitesimal translation δϕ = aµ∂µϕ.
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Anomaly. We need to write Θ in terms of renormalized operators. When we
di�erentiate a renormalized correlation function with respect to λ or ΛL we obtain
a renormalized correlation function containing additional insertions of −∂S/∂λ or
−∂S/∂ΛL, respectively. Thus, −∂S/∂λ and −∂S/∂ΛL are renormalized operators.
Following a standard procedure [43] we can �nd which operators O they are the
renormalized versions of. In the minimal subtraction scheme, it is su�cient to
express the renormalized operators as bare operators OB plus poles. Schematically,

finite = OB + poles ⇒ finite = [O].

where [O] denotes the renormalized version of the operator O. We �nd

∂S

∂λ
= finite =

1

β̂λ

(
γϕ[Eϕ]− ΛLηL

∂S

∂ΛL

− ε
λB

4!

∫
ϕ4

B

)
=

µε

4!

∫
[ϕ4],

−ΛL
∂S

∂ΛL

= finite =
1

Λ2
BL

∫
(4ϕB)2 =

1

2Λ2
L

∫
[(4ϕ)2],

where [Eϕ] =
∫

ϕ(δS/δϕ) is the operator that counts the number of ϕ-insertions.
Thus, ∫

Θ = −
∫

ε
λB

4!
ϕ4

B =
µε

4!
β̂λ

∫
[ϕ4]− ηL

Λ2
L

∫
[(4ϕ)2]− γϕ[Eϕ].

The result agrees with the Callan-Symanzik equation (4.22), which can be expressed
as 〈∫

Θ ϕ(x1) · · ·ϕ(xk)

〉
= µ

∂

∂µ
〈ϕ(x1) · · ·ϕ(xk)〉 .

Indeed, ∫
Θ = −µ

∂S

∂µ
= β̂λ

∂S

∂λ
+ ηLΛL

∂S

∂ΛL

− γϕ[Eϕ].

4.9 Renormalization
In this section we study the structure of Feynman diagrams, their divergences and
subdivergences and the locality of counterterms. For de�niteness, we work with
scalar �elds, but the conclusions are general.

One loop Consider the most general one-loop Feynman diagram G, with E ex-
ternal legs, I internal legs and v

(α)
N vertices of type (N, α) and weighted degree δ

(α)
N .
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Collectively denote the external momenta by k. The divergent part of G can be
calculated expanding the integral in powers of k. We obtain a linear combination of
contributions of the form

I(I,n)
µ1···µ2r|j1···j2s

k̂ν1 · · · k̂νu ki1 · · · kiv , (4.31)

where

I(I,n)
µ1···µ2r|j1···j2s

=

∫
dD̂p̂

(2π)D̂

∫
dDp

(2π)D

p̂µ1 · · · p̂µ2r pj1 · · · pj2s(
p̂2 + (p2)

n
/Λ

2(n−1)
L + m2

)I
.

To avoid infrared problems we insert a mass m in the denominators. For the purposes
of renormalization, it is not necessary to think of m as the real mass. It can be
considered as a �ctitious parameter, introduced to calculate the divergent part of
the integral and set to zero afterwards. The real mass, as well as the other parameters
am of (4.2), can be treated perturbatively, so they are included in the set of �vertices�.

From the weighted power-counting analysis of section 2 we know that the nu-
merator of (4.31), namely

p̂µ1 · · · p̂µ2r pj1 · · · pj2s
k̂ν1 · · · k̂νu ki1 · · · kiv ,

is a weighted monomial Pq,n(p̂, k̂; p, k) of weight n and degree

q = u + 2r +
v

n
+

2s

n
=

∑
i

δ(i)vi.

If the theory is PC renormalizable, according to (4.7), δ(i) ≤ dÐ(Nb, 0), thus

u +
v

n
≤ 2

(
I − r − s

n

)
+ E

(
1− �

2

)
. (4.32)

By symmetric integration we can write

I(I,n)
µ1···µ2r|j1···j2s

= δ(1)
µ1···µ2r

δ
(2)
j1···j2s

I(I,n)
r,s , I(I,n)

r,s

=

∫
dD̂p̂

(2π)D̂

∫
dDp

(2π)D

(p̂2)
r
(p2)

s

(
p̂2 + (p2)

n
/Λ

2(n−1)
L + m2

)I
, (4.33)
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where δ
(1)
µ1···µ2r and δ

(2)
j1···j2s

are appropriately normalized completely symmetric tensors
constructed with the Kronecker tensors of M D̂ and MD, respectively. Performing
the change of variables

pi = p′i

(
Λ2

L

p′2

)(n−1)/(2n)

, (4.34)

the integral I(I,n)
r,s can be calculated using the standard formulas of the dimensional-

regularization technique. We obtain

I(I,n)
r,s =

1

n
Λ

(2s+D)(n−1)/n
L

∫
dD̂p̂

(2π)D̂

∫
dDp′

(2π)D

(p̂2)r(p′2)(2s+D−nD)/(2n)

(p̂2 + p′2 + m2)I

=
Λ

(2s+D)(n−1)/n
L (m2)r−I+s/n+Ð/2Γ

(
2s+D

2n

)
Γ

(
2r+D̂

2

)
Γ

(
I − r − s

n
− Ð

2

)

n(4π)D/2Γ(D̂/2)Γ
(
D/2

)
Γ (I)

.

The factor 1/n is due to the Jacobian determinant of the transformation (4.34). The
singularities occur7 for

I ≤ r +
s

n
+

�
2

(4.35)

Combining this inequality with (4.32) we �nd that the divergent contributions
satisfy

u +
v

n
≤ � + E

(
1− �

2

)
= d�(E, 0), (4.36)

that is, the consistence condition (see the �nal paragraph of section 1.2

w (G) ≤ d�(E, 0),

which ensures that divergent contributions can be absorbed by counterterms. The
counterterms are a Pu+v/n,n(k̂, k):

1

ε
k̂ν1 · · · k̂νu ki1 · · · kiv , where ε = �− Ð = ε1 +

ε2

n
.

The poles are in ε as expected from the discussion of the paragraph below (4.21).
The residues instead, depend on ε1, ε2 separately.We know that taking a su�cient

7Since the gamma function Γ (x) is singular only for non-positive integers, that is

2 (s + nr) + nd̂ + d = 2nl,

with l a non-negative integer. This means that some divergent integrals are mapped to �nite values
by dimensional regularization. This is similar to what happens when this regularization is used in
Lorentz-invariant theories in odd-dimensions: no one-loop divergences appear.
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number of derivatives with respect to the masses, the external momenta and the
parameters am of (4.2), the integral becomes convergent. Therefore, the �nite parts
are regular in the limits ε1, ε2 → 0, which can be safely taken in any preferred order.
Objects such as ε1/ε and ε2/ε are �nite regardless of the path we choose to approach
to the origin of the (ε1, ε2) plane. Moreover, they multiply only local terms, so they
parametrize di�erent scheme choices and never enter the physical quantities. We
de�ne the minimal subtraction schemes as the schemes where

ε1 = αε, ε2 = n(1− α)ε,

with α=constant, and only the pure poles in ε are subtracted away, with no �nite
contributions.

Overall divergences and subdivergences. Generalizing the analysis of section
1.5 to Lorentz violating theories, we say that the components p̂ and p of each mo-
mentum are rescaled with the same �weighted velocity� when

p̂ → λp̂, p → λ1/np.

Step i) is modi�ed studying the convergence when any subset of momenta tend
to in�nity with the same weighted velocity. Whenever a subconvergence fails the
counterterms associated with the divergent subdiagrams have to be included. Once
the subdivergences are subtracted away, step ii) consists of taking an appropriate
number of �weighted derivatives� (see below) with respect to the external momenta,
to eliminate the overall divergences. It is easy to check that this procedure auto-
matically takes care of the overlapping divergences.

Weighted Taylor expansion. Every Taylor expansion

f(k̂, k) =
∞∑

u=0

∞∑
v=0

fν1···νu,i1···iv
u!v!

k̂ν1 · · · k̂νu ki1 · · · kiv

can be rearranged into a �weighted Taylor expansion�

f(k̂, k) =
∞∑

`=0

1

`!
f (`)(k̂, k),
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where

f (`)(k̂, k) =

[`/n]∑
u=0

`!

u!(`− nu)!
fν1···νu,i1···i`−nu

k̂ν1 · · · k̂νu ki1 · · · ki`−nu

is a weighted homogeneous polynomial of degree `/n:

f (`)(λk̂, λ1/nk) = λ`/nf (`)(k̂, k).

The `-th weighted derivatives with weight n are the coe�cients fν1···νu,i1···i`−nu
.

In the BPHZ subtraction scheme no regulator is needed since the integral is ren-
dered �nite subtracting from its integrand the ω �rst terms of its Taylor expansion
around zero momentum, where ω is the super�cial degree of divergence of the inte-
gral. In dimensional regularization, this procedure corresponds to a suitable schema
of subtraction which does not coincide with the minimal subtraction schema.

In Lorentz-violating models, analogous subtraction can be made to carry on the
renormalization process, but using the weighted Taylor expansion instead normal
Taylor expansion. The overall-subtracted version of an integral whose weighted
degree of divergence is ω reads

∫
dLD̂p̂

(2π)LD̂

dLDp

(2π)LD

[
Q(p̂, p; k̂, k)−

nω∑

`=0

1

`!
Q(`)(p̂, p; k̂, k)

]
,

where Q(`) denotes the `-th homogeneous polynomial of the weighted Taylor expan-
sion of Q in k̂, k. In this procedure, subdivergences are systematically subtracted
from integrals using a suitable subtraction algorithm.

4.10 Non-Relativistic Theories
Non-relativistic theories can be studied along the same lines. The action contains
only a single time derivative ∂̂,

L = ϕ

(
i∂̂ +

4
2m

+ ξ
42

m2
+ · · ·

)
ϕ + ζϕ24ϕ2 + · · ·+ λ(ϕϕ)2 + · · ·

so the theory is more divergent. The dimensional-regularization is not easy to use,
since there is no simple way to continue the single-derivative term ϕ∂̂ϕ to complex
dimensions. Thus we assume an ordinary cut-o� regularization.
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The propagator is de�ned by the term ϕ∂̂ϕ plus the lagrangian quadratic term
with the highest number of ∂-derivatives, say n,

Lfree = ϕ

(
i∂̂ +

∂
n

Λn−1
L

)
ϕ,

with n a even positive integer (to have rotational invariance). For the purposes of
renormalization, the other quadratic terms, if present, can be treated perturbatively,
as explained in section 4.2. Thus the non-relativistic propagator is the inverse of
a homogeneous weighted polynomial of degree 1 and weight n. Hence, all the PC
analysis is the same as purely fermionic theories, being possible to map each Lorentz-
violating purely fermionic theory into a non-relativistic model. For instance, in for
� = 2 we have a family of homogeneous models in d = n + 1 dimensions,

L(1,n)n = ϕi∂̂ϕ +
1

Λn−1
L

ϕ∂
n
ϕ +

λ

4
(ϕϕ)2, (4.37)

which is analogous to the four-fermionic model with (1, 3)3 splitting, (4.11).
The generalization of (4.12) to non-relativistic theories is, for � = 3/2 in d =

m + 1 dimensions reads

L(1,m)2m = ϕi∂̂ϕ +
1

Λ2m−1
L

ϕ∂
2m

ϕ +
λ6

36
(ϕϕ)3.

if m is odd.
In particular, we see that there exist four-dimensional (m = 3) non-relativistic

renormalizable ϕ6-theories. If m is even we must include additional vertices,

L(1,m)2m = ϕi∂̂ϕ +
1

Λ2m−1
L

ϕ∂
2m

ϕ +
∑

i

λi

4
[∂

m
ϕ2ϕ2]i +

λ6

36
(ϕϕ)3.

4.11 Invariants
When a symmetry is broken, the theory admits a new set of invariants. For example,
a Lorentz invariant made of the contraction of two vectors generates two new invari-
ants AµB

µ → Aµ̂B
µ̂, AµB

µ in a Lorentz-violating model, namely the scalar product
de�ned in each subspace. Only a particular combination of them is Lorentz invari-
ant. With spinor �elds is not simple to make such splitting since their components
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do not correspond to a speci�c subspace. In other words, every spinor changes under
any Lorentz transformation. This is not the case of vectors; in the above example
the vectors Aµ̂ and Bµ̂ do not change under a rotation in the MD submanifold.

We can �nd the invariants made of spinor or vector �elds studying the remain-
ing symmetries. In Lorentz-invariant models we can form invariants thanks to the
matrices η and γ0 such that

ΛT ηΛ = η, Λ†1/2γ0Λ1/2 = γ0, (4.38)

where Λ and Λ1/2 are representations of Lorentz transformations of spin 1 and 1/2
respectively. For instance, scalar bilinear quantities are

AµB
µ = AµBµ′η

µµ′ , ψψ = ψ†γ0ψ.

We look for two matrices η̃ and γ̃0, with η̃ real and symmetric and γ̃0 hermitian
such that they satisfy relations as (4.38) but only for the remaining symmetries. For
example, for a (2, 2)n splitting, Λ should be replaced by a (t-x)- boost or a (y-z)
-rotation, or a combination of them. Clearly, for vectors this analysis leads to the
invariants mentioned above.

De�ne as usual ψ = ψ†γ0, and X(d̂,d) = γ0γ̃0, recalling that (γ0)
2 = 1. The

fermionic scalar bilinear in d = d̂+ d dimensions is ψX(d̂,d)ψ. In the (2, 2)n splitting,
such matrix is

X(2,2) = a

(
c∗I 0

0 c I

)
+ a

(
d∗σ1 0

0 d σ1

)
,

where a , c , d are constants. In order to normalize
(
X(2,2)

)2
= 1, we require

cd = 0, (ac)2 = 1, (ac∗)2 = 1, (ad)2 = 1, (ad∗)2 = 1.

Without loss of generality we choose |a| = 1. Then a, c, d are all real or all imaginary.
The possible independent values for X(2,2) are

(
I 0

0 I

)
,

(
−I 0

0 I

)
,

(
−σ1 0

0 σ1

)
,

(
σ1 0

0 σ1

)
,
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where σi are the Pauli matrices and I is the 2x2 identity matrix. The �rst two ma-
trices are the 4x4 identity matrix and γ5 = iγ0γ1γ2γ3, which form Lorentz-invariant
bilinears. The other two matrices correspond to

γ̂5 = γ0γ1 =

(
−σ1 0

0 σ1

)
, γ5 = iγ2γ3 =

(
σ1 0

0 σ1

)
,

namely the matrices γ5 of each subspace. Some of the fermionic scalar invariants
constructed with these matrix violate some of the discrete symmetries: parity (P ),
time reversal (T ) or charge conjugation (C), as showed in the following table

P T C CPT

iψγ̂5ψ −1 +1 −1 +1

ψγ5ψ +1 −1 −1 +1

as can be veri�ed using the commutators and anticonmmutators

[γ̂5, γµ] = 0, {γ̂5, γµ̂} = 0,

[γ5, γµ̂] = 0, {γ5, γµ} = 0.

Analogously, in the (1, 3)n splitting, new invariants can be constructed using the
matrices

γ̂5 = γ0 =

(
0 I

I 0

)
, γ5 = γ1γ2γ3 = i

(
0 −I

I 0

)
.

The scalar fermionic Lorentz invariants behave under the discrete symmetries as

P T C CPT

ψγ̂5ψ +1 +1 −1 −1

ψγ5ψ −1 +1 +1 −1

while in the (3, 1)n splitting, the γ̂5 and γ5 matrices are

γ̂5 = iγ0γ1γ2 =

(
0 σ3

σ3 0

)
, γ5 = iγ3 = i

(
0 σ3

−σ3 0

)
,

and the discrete symmetries table reads
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P T C CPT

ψγ̂5ψ +1 −1 +1 −1

iψγ5ψ −1 −1 +1 −1

For the splitting (1, 3)n or (3, 1)n the commutation relations are

[γ̂5, γµ̂] = 0, {γ̂5, γµ} = 0,

[γ5, γµ] = 0, {γ5, γµ̂} = 0.

The values in the tables are calculated [44], for an interaction of type ψXψ,
observing if X, X∗, XT satisfy the following commutators or anticommutators,

P : [X, γ0]± = 0

T : [X∗, γ1γ3]± = 0

C : [XT , γ0γ2]± = 0 (4.39)

where X∗ and XT represent the complex conjugate and the transpose of X. The
signs (+) and (−) represent the anticommutator and the commutator respectively.
The change under each symmetry corresponds to the opposite sign for which the
respective equality in (4.39) is veri�ed. For example, if X commutates with γ0,

namely [X, γ0]− = 0, the interaction ψXψ is even under parity.
The results obtained for the CPT symmetry can be veri�ed using the CPT theo-

rem [45] that states that an hermitian interaction changes under the CPT symmetry
as (−1)s, where s is the number of Lorentz indices in the operator. Assuming that
the theory is CPT-symmetric, the bilinears with a odd number of Lorentz indices
can not be generated by renormalization. Other interactions with an even number
of Lorentz indices could be generated if they respect the other symmetries present
in the theory.

It is possible to construct other tensor quantities using the Levi-Civita tensor of
each subspace, de�ned as

ε̂µ̂1...µ̂
d̂ =

{
+1 if µ̂1...µ̂d̂ is an even permutation of {0, 1, ...d̂− 1},
−1 if µ̂1...µ̂d̂ is an odd permutation of {0, 1, ...d̂− 1},

εµ1...µd =

{
+1 if µ1...µd is an even permutation of {d̂, ...d̂ + d},
−1 if µ1...µd is an odd permutation of {d̂, ...d̂ + d},
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For instance, in the (1, 3)n splitting,

γ5 =
1

3!
εµνσγµγνγσ, γµν ≡ ε̂µνσγσγ5.

Since the transformation of the combination ψX(d̂,d) is ψX(d̂,d) → ψX(d̂,d)

(
Λ1/2

)−1
,

other (vector, tensor) invariants of higher dimensionality can be easily constructed,
for instance,

ψX(d̂,d)γ
µψ, ψX(d̂,d)σ

µνψ, ψX(d̂,d)γ
µψ, ψX(d̂,d)γ

µγ5ψ, ψX(d̂,d)γ5ψ.



Conclusions

Non-renormalizable models are normally excluded as valid candidates to represent
physical interactions even when they do not imply a violation of any fundamental
physical principle. They can be certainly used as e�ective models which are good
for most practical purposes, but unable to suggest new physics beyond them. The
adjective �non-renormalizable� is not absolute, it only indicates our incapacity to
remove all the in�nities that appear in perturbative calculations in quantum �eld
theories, and usually refers to Power Counting. It is a fact that some models consid-
ered as non-renormalizable by the PC criteria could be renormalized through some
special procedure. On the other hand, Power Counting is commonly trusted because
it had guided the construction of the Standard Model, indicating for example that
the non-renormalizable four-fermions interaction was only an e�ective description of
the weak interaction, and leading to the discover of the intermediate vector bosons.
In view of these elements, it is almost mandatory to direct some e�orts in the search
of a criterion to extend or supersede Power Counting as classi�cation tool. The �nal
version of this principle should leave room also to quantum gravity and new physics
beyond the Standard Model.

In this work we have �rst examined a general framework in which a wide class of
PC non-renormalizable models can be renormalized by a rede�nition of �elds, masses
and a �nite set of couplings by means of a RG-consistent reduction of couplings.
The in�nitely many terms in the lagrangian could be regarded as consequence of
writing it in �a wrong way�, for example in an inappropriate expansion or basis. It is
remarkable that the conditions that indicate which theories are reducible are not too
restrictive. Moreover, even in the cases where the reduction is not doable because of
the failure of some conditions, it is useful to introduce a new independent constant for
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each reduction failure, because low-order calculations can be made with a relatively
small number of couplings. All-order theorems and the in�nite reduction can be
carried out completely using some criteria based on dimensional regularization. In
this scheme, it becomes necessary to perform also the bare reduction, namely the
relation between bare couplings, which is not trivial. The equivalence with other
regularizations is proved.

It is showed that the invertibility conditions can be made more precise in cer-
tain circumstances, for example in the absence of three-leg marginal couplings. The
leading-log approximation is solved explicitly and contains su�cient information for
the existence and uniqueness of the reduction to all orders. One of the main fea-
tures of the models where the in�nite reduction can be applied is that the strictly-
renormalizable subsector of the theory must be fully interacting, because the reduc-
tion is perturbatively meromorphic in the marginal coupling. In a �rst approach we
have considered massless models without relevant parameters, but it is also shown
how to include them in a perturbative manner. The reduction can be applied also to
theories with several marginal couplings without important modi�cations. In quan-
tum gravity, an in�nite reduction of couplings could be tested, but di�erently from
the cases studied, dimensional analysis does not constrain the form of the reduction.
This means that the reduction contains an arbitrary function of the dimensionless
combination of the Newton constant and the cosmologic constant.

In Chapter 3 we have studied the renormalizability of a more speci�c class of
(PC) non-renormalizable theories. In these models, where quantum �elds interacts
with classical gravity �eld, the lagrangian contains a �nite set of matter operators of
dimensionality equal to or less than four coupled with purely gravitational operators
of dimensionality arbitrarily high. These theories are characterized by an acausal
behavior at high energies, which is not a problem in principle, since semiclassical
theories are known to have this kind of problems intrinsically. The renormalizability
is proved using a map that relates its own renormalization with the renormalization
of a physically di�erent theory that presents no causality violation (other than the
one relative to semiclassical models) but instabilities due to higher time-derivative
in its kinetic terms. As consequence of the map, the metric, although classical, is
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renormalized and thus it is running.
The renormalization is achieved rede�ning a �nite number of couplings plus

�eld rede�nitions, without introducing higher-derivative kinetic terms in the gravi-
tational sector. We have studied as a speci�c example, the Yang-Mills model with an
R-dependent gauge coupling. The perturbation induces extra gravitational terms,
one of which, RRαβµνR

αβµν is not squarely proportional to the Ricci tensor. Gen-
eral formulas for the beta-functions of the vertices of dimensionality six are derived.
They are expressed in terms of the trace-anomaly coe�cients of the matter sector
embedded in curved background. The renormalization-group �ow depends on the
scalar curvature of the spacetime. These results can be extended to all PC renor-
malizable theories with R-dependent coupling constants coupled to classical gravity.
Since the map is classical, the conclusions apply only if it is veri�ed that gravity is
not a quantum interaction, but could motivate research pointing to �nd a quantum
version of the map or causality violations in quantum gravity.

In Chapter 4, we considered theories that contain irrelevant operators, but are
certainly renormalizable thanks to a modi�ed kinetic term that renders the prop-
agators more convergent at high energies. This is achieved raising the order of a
subset of space derivatives, with the consequent breaking of the Lorentz symmetry.
Perturbative unitarity is preserved, since no higher time-derivative is generated by
renormalization. For this kind of theories, we propose a modi�ed version of Power
Counting called weighted Power Counting, which resembles usual power Counting
but with some quantities rede�ned. The set of renormalizable theories is enlarged,
but is still �nite, so the weighted PC is useful as classi�cation criterion. The space-
time manifold could be split eventually in many submanifolds. Some of the theories
studied present classically a weighted scale-symmetry (where di�erent coordinates
are weighted di�erently) which is anomalous at quantum level. Lorentz-violating
models could �nd applications in high-energy physics, e�ective �eld theory, nuclear
physics and the theory of critical phenomena. An interesting generalization to be
investigated is the application of the spacetime splitting to improve the renormaliz-
ability of quantum gravity.
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Appendix A Analytic properties of solutions of a
di�erential equation

For the discussion of Chapter 2, it is convenient to have at our disposal some
tools to study systematically the analytic behavior of the solutions of some di�er-
ential equations. There, the analysis of certain solutions plays a central role in the
reduction of couplings in renormalizable models as in the in�nite reduction as well
. Although some of the equations found can be solved in a closed expression (see
[11]), the same conclusions can be obtained in a uni�ed frame that include both
renormalizable and non-renormalizable models in physical or extended spacetime.
The method explained below is simply a series expansion of the solution of a generic
di�erential equation for f(x):

A + B f + C f 2 + x P (f, x) = x
df

dx
(D + x Q(f, x)) , (A.1)

with A,B, C, D non-vanishing constants. P (f, x) and Q(f, x) are polynomials or
series in f and x.

The strategy starts writing a particular solution of (A.1)

fs(x) =
∞∑
i=0

cix
i (A.2)

as a series and solve for ci matching the coe�cients of the same power of x when
placing (A.1) in (A.1). If it is possible to �nd univocally the value of all of them,
the equation admits an unique analytic particular solution. If it is not, it is a signal
that there is no analytic solution or there are in�nitely many (the general solution
is analytic). Proceeding in this way, we found that in principle two series fs+ and
fs− exist, which coe�cients are

c0± =
−B ±√∆

2C
, with ∆ = B2 − 4AC, (A.3)

cn± =
Kn

nD ∓√∆
=

Kn/D

n∓ r
, for n > 0, r ≡

√
∆

D
.

Kn is a polynomial in cm with m < n and the other constants appearing in
P (f, x) and Q(f, x). The discriminant ∆ must be greater than zero because only
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real solutions are physically meaningful. If the denominator in the expression for
cn± does not vanish for any n, both fs+ and fs− are the unique analytic solutions.
Therefore, depending on the value of r, three cases can occur:

i) r > 0:
The series fs− exists (the denominator can not be zero). If r is a positive integer

r = n̂ ∈ N+, the coe�cient cn̂+ remains undetermined. Instead of fs+ there is a
solution

n̂∑
i=0

ci+xi +
∞∑

j=n̂

dj+ xj lnj−n̂+1 (x) ,

where cn̂+ is arbitrary and the coe�cients dj+ depend on ci+ and dk+, with k < j. In
the exceptional case where also Kn̂ = 0, fs+ will exist but with cn̂+ arbitrary, namely
the general solution is analytic. On the other hand, if r /∈ N+, the denominator never
cancels and therefore also a unique fs+ exists.

ii) r < 0:
Analogously to the previous case, fs+ exists (its denominator can not cancel).

If −r = n̂ ∈ N+, the coe�cient cn̂− is undetermined. Instead of fs− we have the
non-analytic solution

n̂∑
i=0

ci−xi +
∞∑

j=n̂

dj− xj lnj−n̂+1 (x) .

where cn̂− is arbitrary and dj− depends on ci− and dk−, k < j. If also Kn̂ = 0, fs−

exists but with cn̂− arbitrary, thus the general solution is analytic.
If −r /∈ N+, the denominators never cancels, so we have both fs+ and fs−.

iii) r = 0:
From (A.3) it is evident that both series coincides. The denominator never

cancels, thus the series represents the unique analytic solution fs = fs+ = fs−.

The following table summarizes the above conclusions:
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Conditions Analytic solutions

r > 0

(D > 0)

r = n̂ ∈ N+

Kn̂ = 0

Kn̂ 6= 0

r /∈ N+

fs− and fs+ but with cn̂+ arbitrary.
fs−

fs− and fs+.

r < 0

(D < 0)

−r = n̂ ∈ N+

Kn̂ = 0

Kn̂ 6= 0

−r /∈ N+

fs+ and fs− but with cn̂− arbitrary.
fs+

fs− and fs+.

r = 0

(B2 = 4AC)
fs+ (= fs−) .

In the in�nite reduction, the equations have C = 0, which simpli�es expressions
to

c0 = −A

B
, cn =

Kn

nD −B
=

Kn/D

n− r
,

with r = B/D. Note that now there is only one series.

Repeating the analysis, we focus on the denominator of cn. Two cases can happen

i) r > 0:
If r = n̂ ∈ N+, the denominator is zero, thus there is no solution fs, but

n̂∑
i=0

cix
i +

∞∑

j=n̂

dj xj ln (x)j−n̂+1 ,

which is non analytic (cn̂ is arbitrary and dj depends on ci and dk, k < j). Again,
if Kn̂ = 0, there is one-parameter family of analytic solutions. If r /∈ N+, the series
solution fs is unique.

ii) r < 0:
For all n > 0 the denominator is non-vanishing, thus fs always exists. This is

the situation where B and D have opposite signs.
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If the expansion of f (x) starts at some power q, the condition of existence of the
series are modi�ed. Writing

f (x) = xqf̃ (x) , f̃(x) =
∞∑
i=0

cix
i, (A.4)

replacing in (A.1),

A + xq (B − qD) f̃ + xq+1 P ′( f̃ , x) = xq+1df̃

dx

(
D + xq+1 Q′( f̃ , x)

)
,

it is clear that the coe�cients are

cn =
Kn

(n + q) D −B
=

Kn/D

n− r + q
, n ≥ 0.

hence the invertibility condition changes into

r − q /∈ N

It is worth mentioning that in the cases where there is an unique analytic solution,
as (A.2), the general solution has the form

f±(x) =
∞∑
i=0

ci±xi +
∞∑

n=1

∞∑
m=0

dmn± ξn xm±nr, with d01± = 1, and r =

√
∆

D
,(A.5)

f(x) =
∞∑
i=0

cix
i +

∞∑
n=1

∞∑
m=0

dmn ξn xm+nr, with d01 = 1 and r =
B

D
,

for C 6= 0 and C = 0 respectively. ξ is arbitrary and all dmn± and dmn are
iteratively calculable. From (A.5) we see that when ±r is a positive integer, the
general solution is analytic, this is the reason why the coe�cients in (A.2) are not
uniquely determined.

Normally the non-renormalizable models have several operators by level. When
operator mixing occurs, the equation (A.1) is replaced by a system of equations that
can be studied in the same manner. Adding indices, we consider a set of functions
f (x)J , P I(f, x), QIJ(f, x) and constants AJ , BIJ and DIJ such as

AI + BIJ fJ + x P I(f, x) = x
dfJ

dx

(
DIJ + x QIJ(f, x)

)
, (A.6)
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with I, J = 1 . . . N0. N0 is the number of operators mixed at the level. We look for
analytic solutions

fJ
s (x) =

∞∑
i=0

cJ
i xi.

Now the coe�cients are obtained from the inversion of certain matrices

cI
0 = − (

B−1
)IJ

AJ , cI
n =

[
(nD −B)−1]IJ

KJ
n ,

with KJ
n de�ned analogously to Kn.The invertibility condition in this case comes

from requiring BIJ and (nD −B)IJ to be invertible matrices. The latter is equiv-
alent to det (nδ − r) 6= 0, where δ is the identity matrix and r ≡ BD−1. If the
matrix r has eigenvalues ri, the matrix (nδ − r) has eigenvalues (n− ri) , therefore
the invertibility conditions are translated to det (B) 6= 0 and r having no positive
integer eigenvalues.

Appendix B Explicit perturbative map

It is a known fact that terms in the lagrangian proportional to the equations of
motion can be removed with a �eld transformation, at least to �rst order. For some
class of theories, the HD kinetic term is proportional to the square of the equation of
motion of the unperturbed (low-derivative) action . In these cases the perturbative
transformation can be carried to all orders [9].

Write the HD action SHD[φ] as the sum of two parts

SHD[φ] = S[φ] + SiFijSj,

where Si = δS
δφi

is the equation of motion for φi, and Fij is in general a di�erential
operator that can depend on φ. Si1...in represents the n− th functional derivative of
S with respect to φ. For instance, Sijk = δ3S

δφiδφjδφk
. These indices have the deWitt

meaning explained in section 3.7. We are looking for a rede�nition φ′ = φ′ (φ) such
that

SHD[φ] = S[φ′]. (B.1)
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Writing
φ′i = φi + ∆ijSj,

replacing it in (B.1), and performing a Taylor expansion, we get

S[φ′] = S[φ + ∆S] (B.2)

S[φ] + SFS = S[φ] + S∆S +
1

2
S∆S∆S +

1

3!
Sklm (∆S)k (∆S)l (∆S)m + ...,

where for clarity some indices have been omitted using the matrix notation. Both
F and ∆ are assumed symmetric without loss of generality.

One solution for ∆ can be obtained solving recursively the equation

∆ij = Fij − 1

2
(∆S∆)ij −

1

3!
Sklm∆ki∆lj (∆S)m + ... (B.3)

Obviously this solution is not unique. Other solutions can be obtained replacing
Fij by Fij + F̃ij in (B.3), where F̃ij satis�es

SiF̃ijSj = 0.

Expressed in orders of F , ∆ = ∆(1) +∆(2) +∆(3) +∆(4) + ... the solution of (B.3)
reads

∆
(1)
ij = Fij (B.4)

∆
(2)
ij = −1

2
(FSF )ij

∆
(3)
ij = − 1

3!
SklmFkiFlj (FS)m +

1

2
(FSFSF )ij .

A practical problem found in this approach is that being S an integral, only its
�rst functional derivative is a tensor. All successive derivatives appearing in (B.2)
are bi-, tri-tensor densities and so on. They have several Dirac delta distribution,
and although this fact is not an impediment, it is cumbersome working with them
directly [73]. In the situation where we use the map, there is no need of doing so,
because in all our expressions they are integrated. Thus, a clearer and simpler way
to treat the functional derivatives of S is to change them into variations as follows.
We illustrate the method with functions and normal derivatives. For small ai,
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df

dxi

ai = δf |a ,

where δ (f)|a represents the variation of f(x) under the variation δxi = ai. In this
way, a Taylor expansion can be written in terms of variations,

f (x + a) = f (x) +
df

dxi

ai +
1

2

d2f

dxidxj

aiaj + ...

= f (x) + δf |a +
1

2
δ (δf |a)|a + ...

However, in the case we are interested in, the variation itself depends on x, a (x) .

Taking as example the second-order term,

d2f

dxidxj

ai (x) aj (x) =
d

dxj

(
df

dxi

ai (x)

)
aj (x)− df

dxi

dai

dxj

aj (x) (B.5)

= δ
(

δf |a(x)

)∣∣∣
a(x)

− δf | δa|a(x)
,

and similarly for all orders. It is possible to arrange terms in the Taylor expansion
to facilitate the computation of variations. Write

f(x + a (x)) = E0 + E1 + E2 + E3 + ...

where

E0 = f,

E1 = δE0|a(x) ,

E2 =
1

2

[
δE1|a(x) − δE0| δa|a(x)

]
,

E3 =
1

3

[
δE2|a(x) − δE1| δa|a(x)

+ δE0| δa| δa|a(x)

]
, etc.

As we can see, at each order only one new variation must be calculated, the
variation of the previous term.

To obtain the perturbative map we can use this kind of Taylor expansion in
(B.2), or directly transform the derivatives into variations as in (B.5) at the �nal
stage (B.4).
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Gravity. A minor consideration should be made to apply the method to gravity.
Due to its di�eomorphism invariance, the action is the spacetime integral of a scalar
quantity times the density scalar √−g, thus the functional derivative Si = δS

δgi
is

not a tensor. Neither ∆ij, Fij or Sij are bitensor. But is easy to de�ne tensorial
quantities from them

S̃i =
Si√−g

, ∆̃ij =
√−g∆ij, F̃ij =

√−gFij, S̃ij =
Sij√−g

.

Consider the Einstein-Hilbert term plus terms quadratic in Ricci tensor

SHD =
1

2κ2

∫ √−g
(
R + aRµνR

µν + bR2
)
,

According to the above nomenclature, the equation of motion for gµν is

Si =
δS

δgi

=
δS

δgµν(x)
= −

√−g

2κ2

(
Rµν − R

2
gµν

)
+ boundary term. (B.6)

The boundary term arises because the action contains second derivatives. We con-
sider it vanishing.

The perturbative map is given by (B.4) with the bitensor density

Fij = Fµναβ(x, y) =
2κ2

√−g

[
agα(µ gν)β + bgαβgµν

]
δ(x− y).

The orders a, b, a2, b2,ab is displayed in 3.4. Using Bianchi identities, the number
of operators of third order (a3, a2b, ab2, b3) can be reduced to a minimal basis of 43
operators, 29 of which are not proportional to gaβ. Organizing them according to
the number of derivatives they contain, the third order of the perturbative map is
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1/48 times the sum of all 43 terms

x4,1 ¤2Rαβ x2,1∇αR∇βR x0,1RαβR2
µν

x4,2 ∇α∇β¤R x2,2R∇α∇βR x0,2R
2Rαβ

x4,3 ¤∇α∇βR x2,3R∇γ∇αRγβ x0,3RRα
εRεβ

x4,4 ∇γ∇α¤Rγβ x2,4∇γR∇γRαβ x0,4Rα
εRεδRβ

δ

x4,5¤∇γ∇αRγβ x2,5Rγβ∇γ∇αR

x4,6Rαβ¤R x2,6∇εRγβ∇γRαε

x4,7R¤Rαβ x2,7∇γRεβ∇γRαε

x4,8Rδβ¤Rαδ x2,8∇γRβε∇αRγε

x4,9∇γ∇α∇γ∇βR x2,9∇αRδε∇βRδε

x4,10∇γ∇α∇ε∇γRεβ x2,10Rγβ∇ε∇γRαε

x4,11∇γ∇α∇ε∇βRγε x2,11Rγβ∇ε∇αRγε

x2,12Rγδ∇δ∇γRαβ

x2,13Rγδ∇δ∇αRγβ

x2,14Rµν∇α∇βRµν

where α− β symmetrization is understood. The terms proportional to gαβ are

y4,1¤2R y2,1¤R2 y0,1R
3

y4,2∇γ∇δ¤Rγδ y2,2R¤R y0,2RRµν
2

y4,3∇γ∇δ∇ε∇δRγε y2,3¤Rµν
2 y0,3Rγ

εRεδRγ
δ

y4,4∇γ∇δ∇ε∇γRδε y2,4Rγδ¤Rγδ

y2,5∇δRγε∇γRδε

y2,6Rγδ∇δ∇γR

y2,7Rγδ∇ε∇δRγε
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The respective factors are

x4,1 = −12a3 x2,1 = 2a (11a2 + 4ab + 12b2) x0,1 = 44a3

x4,2 = −12a (a2 + 6ab + 12b2) x2,2 = 4a2 (5a− 6b) x0,2 = −46a3

x4,3 = 24a2b x2,3 = −64a3 x0,3 = 136a3

x4,4 = 24a3 x2,4 = 4a2 (11a− 2b) x0,4 = −176a3

x4,5 = 24a3 x2,5 = −8a2 (5a− 12b)

x4,6 = 4a2 (5a− 8b) x2,6 = −8a3

x4,7 = 32a3 x2,7 = −88a3

x4,8 = −136a3 x2,8 = 96a3

x4,9 = −48a2b x2,9 = −44a3

x4,10 = −28a3 x2,10 = 32a3

x4,11 = −20a3 x2,11 = 144a3

x2,12 = 8a3

x2,13 = 80a3

x2,14 = −40a3

and

y4,1 = 12 (a3 + 11a2b + 36ab2 + 36b3) y2,1 = −11a3

2
+ 5a2b + 2ab2 − 12b3 y0,1 = a2 (11a− 2b)

y4,2 = −12a2 (a + 2b) y2,2 = a3 + 2a2b− 12ab2 + 24b3 y0,2 = −6a2 (7a− 2b)

y4,3 = 10a2 (a + 2b) y2,3 = 3a2 (7a + 6b) y0,3 = 8a2 (5a− 2b)

y4,4 = 14a2 (a + 2b) y2,4 = 2a2 (5a− 2b)

y2,5 = −44a2 (a + 2b)

y2,6 = 16ab (a + 5b)

y2,7 = −16a2 (4a + 5b)



Bibliography

[1] Richard P. Feynman, QED The Strange Theory of Light and Matter, Penguin
1990, p. 128

[2] G. Parisi, The theory of non-renormalizable interactions. I � The large N ex-
pansion, Nucl. Phys. B 100 (1975) 368.

[3] F. J. Dyson Phys. Rev. 75 (1949) 486.

[4] N. N. Bogoliubov and O. S. Parasiuk Izv. Akad. Nauk SSSR 20 (1956) 585.

[5] N. N. Bogoliubov and O. S. Parasiuk,On the Multiplication of the causal func-
tion in the quantum theory of �elds, Acta. Math. 97 (1957) 227.

[6] K. Hepp, Proof of the Bogoliubov-Parasiuk Theorem on Renormalization, Com-
mun. Math. Phys. 2 (1966) 301.

[7] W.Zimmermann in Lectures on elementary particle and quantum �eld theory.
Proc. 1970 Brandeis Summer Institute (ed. S.Deser et al.). MIT Press, Cam-
bridge, Massachussetts.

[8] S.Weinberg, High-energy behavior in quantum �eld theory, Phys.Rev.118
(1960) 838.

[9] D.Anselmi, In�nite reduction of couplings in non-renormalizable quantum �eld
theory, JHEP 08 (2005) 029 and arXiv:hep-th/0503131.

[10] See for example, J.C. Collins, Renormalization, Cambridge University Press,
Cambridge, UK, 1984.

128



129

[11] D.Anselmi and M.Halat, Dimensionally continued in�nite reduction of cou-
plings, JHEP 01 (2006) 077 and arXiv:hep-th/0509196.

[12] See also [10] and C. Itzykson and J.B. Zuber, Quantum Field Theory, McGraw-
Hill Inc., 1980.

[13] W. Zimmermann, Reduction in the number of coupling parameters, Commun.
Math. Phys 97 (1985) 211. R.

[14] Oheme and W. Zimmermann, Relation between e�ective couplings for asymp-
totically free theories, Commun. Math. Phys. 97 (1985) 569.

[15] R. Oheme, Reduction of coupling parameters, XVIIIth International Work-
shop on High Energy Physics and Field Theory, Moscow-Protvino, June 1995,
arXiv:hep-th/9511006.

[16] J.Kubo, K.Sibold and W. Zimmermann, Higgs and top mass from reduction of
couplings, Nucl. Phys. B 259 (1985) 331.

[17] C. Amsler et al. (Particle Data Group), Phys.Lett. B667, 1 (2008)

[18] S. Weinberg, Ultraviolet divergences in quantum theories of gravitation, in An
Einstein centenary survey, Edited by S. Hawking and W. Israel, Cambridge
University Press, Cambridge 1979.

[19] M. Atance and J.L. Cortes, E�ective scalar �eld theory and reduction of cou-
plings, Phys.Rev. D 56 (1997) 3611 and arXiv:hep-ph/9612324.

[20] M. Atance and J.L. Cortes, E�ective �eld theory of gravity, reduction of
couplings and the renormalization group, Phys. Rev. D 54 (1996) 4973 and
arXiv:hep-ph/9605455.

[21] J. Kubo and M. Nunami, Unrenormalizable theories are predictive, Eur. Phys.
J. C 26 (2003) 461 and arXiv:hep-th/0112032.

[22] K. Halpern and K. Huang, Fixed-point structure of scalar �elds, Phys. Rev.
Lett. 74 (1995) 3526 and arXiv:hep-th/9406199;



130

[23] K. Halpern and K. Huang, Non-trivial directions for scalar �elds, Phys. Rev.
D53 (1996) 3252 and arXiv:hep-th/9510240.

[24] D.Anselmi, Consistent irrelevant deformations of interacting conformal �eld
theories, JHEP 10 (2003) 45. and arXiv:hep-th/0309251.

[25] K. Eppley and E. Hannah, The necessity of quantizing the gravitational �eld,
Found. Phys. 7 (1977) 51.

[26] J. Mattingly, Why Eppley and Hannah's experiment isn't, arXiv:gr-qc/0601127.

[27] R.P. Feynman, F.B. Moringo and W.G. Wagner, Feynman lectures on gravita-
tion, Penguin Books ltd, 2000.

[28] N.D. Birrel and P.C.W. Davies, Quantum �elds in curved space, Cambridge
University Press, Cambridge, 1982.

[29] R MWald, The History and Present Status of Quantum Field Theory in Curved
Spacetime, 7th International Conference on the History of General Relativity:
Einstein and the Changing World Views of Physics, Tenerife-Spain, Mar 2005,
arXiv:hep-th/9708042.

[30] G. 't Hooft and M. Veltman, One-loop divergences in the theory of gravitation,
Ann. Inst. Poincarè, 20 (1974) 69.

[31] K.S. Stelle, Renormalization of higher derivative quantum gravity, Phys. Rev.
D 16 (1977) 953;

[32] D. Anselmi, Renormalization and causality violations in classical gravity cou-
pled with quantum matter, JHEP 01 (2007) 062 and arXiv:hep-th/0605205.

[33] J. Schwinger, Brownian motion of a quantum oscillator, J. Math. Phys. 2 (1961)
407;

[34] L.V. Keldysh, Diagram technique for nonequilibrium processes, Sov. Phys.
JETP 20 (1965) 1018.



131

[35] R.D. Jordan, E�ective �eld equations for expectation values, Phys. Rev. D. 33
(1986) 444.

[36] L.H. Ford and R.P. Woodard, Stress tensor correlators in the Schwinger-
Keldysh formalism, Class. Quant. Grav. 22 (2005) 1637 and arXiv:gr-
qc/0411003.

[37] J.D. Jackson, Classical electrodynamics, John Wiley ans Sons, Inc. (1975),
chap.17.

[38] M.D. Freeman, Renormalization of non-Abelian gauge theories in curved space-
time, Ann. Phys. (NY) 153 (1984) 339.

[39] D. Anselmi, Absence of higher derivatives in the renormalization of propagators
in quantum �eld theories with in�nitely many couplings, Class. Quantum Grav.
20 (2003) 2355 and arXiv:hep-th/0212013.

[40] D.Anselmi and M.Halat, Renormalizable acausal theories of classical gravity
coupled with interacting quantum �elds, Class.Quant.Grav.24 (2007) 1927, and
arXiv:hep-th/0611131.

[41] S.J.Hathrell, Trace anomalies and QED in curved space, Ann. Phys.(NY) 142
(1982 ) 34

[42] I.A. Batalin and G.A. Vilkovisky, Quantization of gauge theories with linearly
dependent generators, Phys. Rev. D 28 (1983) 2567; erratum ibid. D 30 (1984)
508.

[43] S.J. Hathrell, Trace anomalies and λϕ4 theory in curved space, Ann. of Phys.
(NY) (1982) 136.

[44] See for example, M. Peskin and D. Schroeder, An introduction to quantum �eld
theory cp. 3.6, Westview Press, 1995.

[45] See for example, S. Weinberg, The quantum theory of �elds, vol. I cp. 5.8 ,
Cambridge University Press, New York, 1996.



132

[46] D.Anselmi and M.Halat, Renormalization of Lorentz violating theories, Phys.
Rev. D 76 (2007) 125011 and arXiv:hep-th/07072480

[47] T.D. Bakeyev and A.A. Slavnov, Higher covariant derivative regularization re-
visited, Mod. Phys. Lett. A11 (1996) 1539 and arXiv:hep-th/9601092, and ref-
erences therein.

[48] D.Anselmi, Weighted power counting and Lorentz violating gauge theories. I.
General properties, arXiv:hep-th/08083470,

D.Anselmi, Weighted power counting and Lorentz violating gauge theories. II.
Classi�cation, arXiv:hep-th/0808.3474.

[49] D. Colladay and V.A. Kostelecký, Lorentz-violating extension of the Standard
Model, Phys. Rev. D58 (1998) 116002 and arXiv:hep-ph/9809521;

[50] V.A. Kostelecký, Gravity, Lorentz violation, and the Standard Model, Phys.
Rev. D 69 (2004) 105009 and arXiv:hep-th/0312310.

[51] S. Weinberg, Phenomenological lagrangians, Physica A96 (1979) 327; For a re-
view, see A.V. Manohar, E�ective �eld theories, in Schladming 1996, Perturba-
tive and nonperturbative aspects of quantum �eld theory, p. 311-362, arXiv:hep-
ph/9606222.

[52] See for example, O. Lauscher and M. Reuter, Ultraviolet �xed point and gen-
eralized �ow equation of quantum gravity, Phys. Rev. D65 (2002) 025013 and
arXiv:hep-th/0108040;

[53] H. Gies, J. Jaeckel and C. Wetterich, Towards a renormalizable Standard
Model without a fundamental Higgs scalar, Phys. Rev. D69 (2004) 105008 and
arXiv:hep-ph/0312034.

[54] See for example, D.B. Kaplan, M.J. Savage and M.B.Wise, Nucleon-nucleon
scattering from e�ective �eld theory, Nucl. Phys. B478 (1996) 629 and
arXiv:nucl-th/9605002.



133

[55] See for example P. Calabrese and A. Gambassi, Ageing properties of critical
systems, J. Phys. A38 (2005) R133 and arXiv:cond-mat/0410357.

[56] V.A. Kostelecký and R. Lehnert, Stability, causality and Lorentz and CPT
violation, Phys. Rev. D 63 (2001) 065008 and arXiv:hep-th/0012060.

[57] R. Jackiw and V. A. Kostelecky, Radiatively Induced Lorentz and CPT Vi-
olation in Electrodynamics, Phys. Rev. Lett. 82, 3572 (1999); arXiv:hep-
ph/9901358;

[58] M. Pérez-Victoria, Exact calculation of the radiatively induced Lorentz
and CPT violation in QED, Phys. Rev. Lett. 83, 2518 (1999); arXiv:hep-
th/99050618;

[59] J. M. Chung and P. Oh, Lorentz and CPT Violating Chern-Simons Term in
the Derivative Expansion of QED, Phys. Rev. D 60, 3572 (1999),arXiv:hep-
th/9812132;

[60] G. Bonneau, Regularisation : many recipes, but a unique principle : Ward
identities and Normalisation conditions. The case of CPT violation in QED,
Nucl. Phys. B593, 398 (2001); arXiv:hep-th/0008210;

[61] A. A. Andrianov, P. Giacconi, and R. Soldati, Lorentz and CPT violations
from Chern-Simons modi�cations of QED, J. High Energy Phys. 02 (2002) 030;
arXiv:hep-th/0110279;

[62] B. Altschul, Gauge Invariance and the Pauli-Villars Regulator in Lorentz- and
CPT-Violating Electrodynamics, Phys.Rev. D 70, 101701 (2004); arXiv:hep-
th/0407172;

[63] D. Ebert, V. Ch. Zhukovsky, and A. S. Razumovsky, Chern-Simons like term
generation in an extended model of QED under external conditions, Phys.Rev.
D 70, 025003 (2004); arXiv:hep-th/0401241;

[64] O. A. Battistel and G. Dallabona, Scale ambiguities in perturbative calculations
and the value for the radiatively induced Chern-Simons term in extended QED,
Phys. Rev. D 72, 045009(2005);



134

[65] R. L. S. Farias, G. Dallabona, G. Krein, O. A. Battistel, Cuto�-independent
regularization of four-fermion interactions for color superconductivity, Phys.
Rev. C 73, 018201 (2006).

[66] V. A. Kostelecky, C.D. Lane, and A. G. M. Pickering, One-Loop Renormal-
ization of Lorentz-Violating Electrodynamics, Phys. Rev. D 65, 056006 (2002);
arXiv:hep-th/0111123;

[67] D. Colladay and P. McDonald, One-Loop Renormalization of Pure Yang-Mills
with Lorentz Violation, Phys. Rev. D 75, 105002(2007); Phys. Rev. D 75, 105002
(2007);

[68] A. A. Andrianov, R. Soldati, and L. Sorbo, Dynamical Lorentz simmetry break-
ing from 3+1 Axion-Wess-Zumino model, Phys. Rev. D 59, 025002 (1998);
arXiv:hep-th/9806220.

[69] T. Jacobson, S. Liberati and D. Mattingly, Lorentz violation at high energies:
concepts, phenomena and astrophysical constraints, Annals Phys. 321 (2006)
150 and arXiv:astro-ph/0505267.

[70] R. M. Hornreich, M. Luban, and S. Shtrikman, Critical behavior at the onset
of −→k -space instability on the λ-line, Phys. Rev.Lett. 35(1975) , 1678.

[71] See for example, M. M. Leite, Renormalization-group picture of the LifShitz
critical behavior, Phys. Rev. B 67, 104415 (2003);

[72] M. A. Shpot, Yu.M. Pis'mak, and H.W. Diehl, Large-n expansion for m-
maximal Lifshitz points J. Phys. Condens. Matter 17, S1947 (2005); arXiv:cond-
mat/0412405.

[73] See for example B. Dewitt, Dynamical Theory of Groups and Fields, Gordon
and Beach Science Publishers, New York, 1965


