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Abstract

Power-counting non-renormalizable theories should not be dismissed a priori as fun-
damental theories. The practical inconvenient of having infinitely many independent
couplings can be faced in certain cases performing a reduction of couplings. First
we study the usage of a special reduction based on the relations imposed by the
renormalization group. Then, we analyze the renormalizability of a family of theo-
ries containing quantum fields interacting with a a classical gravitational field and
that contain a certain class of irrelevant operators. The reduction is this case is
guided by a map that also indicates that these models exhibit an acausal behavior
at high energies. Finally, we investigate the renormalizability of models which, al-
though containing irrelevant operators, are renormalizable with a finite number of
couplings due to the presence of Lorentz-violating kinetic term. Along this work
we consider models that can violate some principle as the Lorentz symmetry or
causality, but all of them preserve unitarity. The guidelines of this thesis aim to
get a better understanding of the role of renormalization as classification tool, and
guide the search of a generalization of the Power-Counting criterion that allows the

enlargement of the set of candidate fundamental theories.
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Introduction

Renormalization is a central topic in Quantum Field Theory that historically has
motivated opposite attitudes. Even some of its precursors like Richard Feynman
showed themselves sceptical regarding the mathematical grounds and meaning of
the technique designed to save Quantum Electrodynamics (QED) from infinities
that appear in perturbative calculations and prevent to obtain finite results to com-
pare to the experiment. As late as 1985 Feynman said “It’s surprising that the
theory still hasn’t been proved self-consistent one way or the other by now; I sus-
pect that renormalization is not mathematically legitimate”|1]. On the other hand,
the impressive precision with which the experimental data was predicted in QED,
for example the electron gyromagnetic ratio, was enough to many scientists to con-
sider as validated the method used “to sweep the dust under the carpet”. Moreover,
the use of Power Counting (PC) as renormalizability criterion served to guide the
evolution from the four-fermions model proposed by Enrico Fermi to explain the
electroweak interaction, which happens to be non-renormalizable, to a renormaliz-
able model including intermediate bosons, that lead to the discover of the W and Z

bosons.

The striking success of QED, the application of renormalization concepts to
statistical mechanics due mainly to Kenneth Wilson, and the development of the
electroweak theory placed renormalization and in particular Power Counting in a
better position. Power Counting became an essential tool to classify, and most im-
portantly, to rule out models to be considered fundamental theories. Its strength
is based in two points. First, its application is extremely simple: to determine the
renormalizability of a model it is enough to perform a dimensional analysis. Nev-

ertheless, behind PC there are very elaborated all-order demonstrations, involving



combinatorics and the study of divergent diagrams, that give renormalization a “bad
reputation”; in particular the treatment of overlapping divergences. Second, unlike
any other criterion (as symmetries for example), PC allows a vertical classification,
that is to say it reduces the number of possible interactions (and thus theories) from
infinitely many to a finite set. This classification leaves outside most models, being

quantum gravity the most remarkable example.

Nevertheless, it seems clear that PC can not be the ultimate criterion for renor-
malizability. Certainly all models it approves are renormalizable, but some of
the dismissed model could eventually renormalized. The standard example is the
three dimensional four-fermion model studied by Parisi |2], where renormalization is
achieved by means of a expansion of Green functions in 1/N where N is the number
of field copies, instead of the usual expansion in the coupling constant. The renor-
malizability of PC non-renormalizable models should motivate the search of a new
criterion, an extension of PC to open the possibility of new interactions, hopefully

also quantum gravity.

Renormalization, considered in a wider perspective should still serve as a vertical

classification tool. That is the aim of this work.

Along these lines, we constantly keep an eye in the possible applications or
implications of these ideas in a quantum theory of gravitation, one of the most

important unsolved puzzles of theoretical physics.

In Chapter 1, we present some results of standard renormalization theory that

will be useful in the rest of the work.

The main problem of non-renormalizable models is the need of infinitely many
types of interactions and independent couplings to obtain a coherent renormalization
structure when the standard renormalization program is used. In Chapter 2 we face
this problem directly using the infinite reduction of couplings, namely the search for
relations between the infinitely many couplings, guided by the consistence with the
renormalization group. When some particular conditions are satisfied, the reduction
is applicable and the model can be renormalized by means of redefinitions of fields,
masses and a finite number of independent couplings. Dimensional regularization

is used to explore the reduction from a different angle, and it provides the clearest



way to obtain some of the results and all-order theorems, although the equivalence
with other regularization is proved.

In chapter 3 we study the renormalizability of models containing quantum fields
interaction with classical gravity. The models considered are non-renormalizable in
the Power Counting sense, and contain a finite set of matter operators of dimension-
ality four or less coupled to purely gravitational operator of arbitrary dimensionality.
The renormalization is achieved by means of a redefinition of fields, masses and a
finite set of couplings, without generating higher derivatives in the kinetic term of
the gravitational field, responsible of instabilities. The renormalizability is proved
using a special map that relates the renormalization of a higher-derivative model,
to the renormalization of a model that present causality violations.

In chapter 4, we discuss renormalization aspects of theories that contains a mod-
ified kinetic term that breaks explicitly the Lorentz-invariance and produces more
convergent propagators, improving the behavior of diagrams in the ultraviolet re-
gion. Unitarity is preserved, since we add only space higher-derivatives (and no
time higher-derivative) to the usual kinetic term. To prove the renormalizability of
these (PC)non-renormalizable models we define a modified version of PC, adapted
to theories that present this particular form of the kinetic term, called Weighted
Power Counting.

Each chapter contains its own introduction, while the general conclusions are col-
lected in a separated section. The Appendices contain some calculations and results
that are used in Chapter 2 and 3. In Appendix A the analytical properties of the
solutions of a certain family of differential equations are studied using perturbative
expansions, while in Appendix B we present a theorem that allows to find, in certain
circumstances, the perturbative version of the map that relates a higher derivative
model with an acausal one.

Along all this work we make an intensive use of dimensional analysis in different
circumstances. For instance, in Chapter 2 it helps to find the general form of the
beta-functions and restricts the form of the reduction at renormalized and bare
levels. In Chapter 4 it is useful to determine the scaling properties of Green functions

under a weighted scale transformation.



Chapter 1

Preliminaries

This chapter is devoted to review general results in renormalization theory that are
used or generalized in the rest of this work. It also serves to fix some nomenclature
and terminology. It is not intended to be complete or self-contained. Here the
standard renormalization program and the study of renormalizability based on power
counting analysis are briefly reviewed for theories containing both fermions and
bosons. Then, some special features of the renormalization group and beta-functions
in dimensional regularization are exposed. Special attention is devoted to issues that

are generalized in Chapter 4 to deal with Lorentz-violating models.

1.1 Renormalization Program

One of the first approaches to show that the divergences of quantum field theories
may be absorbed into local counterterms to all orders in perturbation theory was due
to Dyson [3]. We say that a theory is renormalizable if such subtractions are local,
i.e. polynomials in momentum space, and implemented by counterterms through
the redefinition of parameters and fields contained in the theory. Therefore, the
model should have the appropriate number and type of interactions to carry out
this program.

In many circumstances we will talk indistinctly of integrals and diagrams. No
ambiguity should arise according to the context. For instance, the subdivergences of
a diagram refers to the divergences of the integrals associated with subdiagrams.

Let G a one-particle irreducible (1PI) divergent Feynman diagram and G the

4



same diagram with all the subdivergences subtracted. G may still have a divergence,
called the overall divergence >,

The demonstration of renormalizability consists basically of three steps:

i) Demonstrate that for all G, @(oo) 18 a polynomial in external momenta and its
degree is equal to the superficial degree of divergence w (G) (defined below) regardless
of the number of loops of G.

ii) Prove that lower-order counterterms cancel out the subdivergences of G, i.e.

the combinatoric factors have the precise value such that

div | G + Z G | = a>
{7}

with Gy is a diagram similar to G where the subdiagrams ~y; has been replaced by
vertices representing suitable counterterms, and the sum s over all possible sets of
proper divergent subdiagrams.

iii) Show that the lagrangian contains the appropriate interactions to provide
counterterms required to cancel all the divergences. In other words, that the redefi-
nition of coupling constants,masses and fields is enough to produce finite correlation

functions to all orders.

Statements ¢) and i) are undoubtedly the hard part and its demonstration re-
quires a very involved study of diagrams and convergence of integrals. The general
analysis was begun with the Bogoliubov-Parasiuk theorem [4, 5| which rigorous
demonstration was given by Hepp [6] and refined by Zimmerman [7] (commonly
designated as the acronym BPHZ) using his forest formula. Another essential con-
tribution was the proof of locality of counterterms, due to Weinberg [8].

In the next section we present the general analysis to deal with the point éii).

1.2 Power Counting

Power counting (PC) is a very simple and useful tool to rapidly determine the

renormalizability of models. It allows to know what kind of 1PI diagrams have an

overall divergence G,



A fundamental diagrammatic identity used for power counting is
L+V —-1=1, (1.1)

with L the number of loops of the diagram, while V' and I are the number of vertices
and internal lines it has, respectively. Here we study the renormalizability of theories
containing both fermion and boson fields. The subscripts f and b label fermionic
and bosonic quantities respectively.

The superficial degree of divergence w (G) of a diagram G is defined in D dimen-
sions as

w(G)=DL =2, —I;+Y &%, (1.2)

Each vertex 7 is characterized by the integers Nb(i) and N }(f), the number of fields
of each type it contains and ), the number of derivatives present in it. The number
of such vertices contained in G is denoted by v;.

Normally, w (G) coincides with the dimensionality of the integral' [G]. The
dimensionality of a quantity, denoted here by square brackets, is the dimension it has

in mass units. For example, masses, coordinates and momenta have dimensionalities
m] =1, [zH] = —1, "] = 1.

In D spacetime dimensions, [p] = (D —2) /2, [¢] = (D — 1) /2, where ¢ and ¢
bosonic and fermionic fields respectively.

Calling F the number of external legs of GG, we have that

B, = Y NYv-2I,  E;=Y NPv-2I, (1.3)

L+1; = I, Ey+E;j=E, > =V, (1.4)

i

and (1.1), allows to rewrite (1.2) as

w(G) =dp (B, By) + Y 0,0, (1.5)

'When the coupling constants are not considered as part of a diagram G.



where Q%) = 60 — dD(Nb(i),N}i)) is the degree of divergence of the vertex i. The

quantity
Xp+ X X
dp (Xp, Xp) = (1—%>D+Xb+7f (1.6)
X, X
= D= (D=2 =D

will be very useful in the PC analysis of Lorentz-violating theories of Chapter 4 as
well. In a strictly renormalizable model (see below) we have w (G) = dp (Ey, Ey) .
To have a renormalizable model it is necessary to keep w (G) under control to
ensure that the set of divergent correlation functions remains finite. This means
that the superficial degree of divergence of all diagrams that have the same external
legs in number and type, should be bounded. On the other hand, there should exist
a maximal number of legs E such as all diagrams with more external legs than E are
overall convergent, in other words, we require polynomiality of counterterms. From

(1.5) these requirements are translated into:

i) All vertices should satisfy Q%) < 0. If this condition is not fulfilled, it will
be necessary in the lagrangian an infinite set of vertices with arbitrary number of
derivatives, and all correlation functions would be divergent at high enough order
in perturbative expansion.

ii) dp (Eb, Ef) should be a decreasing function of its arguments. Expression (1.6)
tell us that this is possible only if D > 2 (or D > 1 when the theory is purely

fermionic).

Note that i) is not a necessary condition, but we are interested in having renor-
malizability as a tool to restrict the number of fields each vertex can have. If it is
not fulfilled, some vertices with arbitrarily high number of legs but without deriva-
tives satisfy i). It is possible to have, for instance, renormalizable theories in D = 2
dimensions that contain vertices with arbitrarily high number of legs. Thus i) is
the requirement of polynomiality of the lagrangian.

Renormalizability, together with the restrictions imposed by symmetries, uni-
tarity, reality of the action, etc., provides an important guide in the process of

formulation of quantum field theory models. Indeed it can be regarded as the most



important of the mentioned concepts because it reduces the set of allowed inter-
actions to a finite number by limiting the number of fields. In fact, the maximal
number of legs of each type that a renormalizable interaction can have is given by

i) considering no derivatives (§) = 0), namely dD(lei), Nj(f)) > 0. Explicitly,
Ny(D —1)+ Ny (D —2) < D. (1.7)

When i) holds, (1.7) shows that the maximal number of legs that a renormaliz-
able vertex can have increases when the number of spacetime dimensions decreases.

In chapter 4, where we consider Lorentz-violating models, the same expression
(1.7) limits the number of legs contained in renormalizable vertices, with D repre-
senting not the physical dimension but a quantity that can take non-integer values
and that is smaller than the actual physical dimension. This will open the possibility
of a new set of renormalizable interactions.

Assuming 7i), we have D > 2 for models where bosons are present, so the maxi-
mum number of fermion fields in a renormalizable vertex is 2.

The second part of the demonstration of renormalizability consists in showing
that for each superficially divergent diagram G having Ej, and Ey external legs and
superficial degree of divergence w (G), there exist a vertex such as lei) = E, N}i) =
E; and 6% = w (G) in the lagrangian able to provide the suitable counterterm. Of
course, if there are several boson or fermion fields of different type, the structure of
the external legs of G and the counterterm must coincide.

If the theory is renormalizable, from (1.5) and 7) we have that G satisfies w (G)—
dp (Ep, Ef) < 0. Therefore, according to the previous paragraph, the vertex that
absorbs the overall divergence of G satisfies 6*) —dD(Nb(i), N}i)) < 0, namely Q(Di) <0,
so also this vertex satisfies 7). This consistence check shows us that if some vertex
is not present from the beginning in a renormalizable model but it is required by

renormalization, its inclusion will not spoil the renormalizability of the theory.

1.3 Renormalizability

Depending on the type of vertices contained in theory, (1.5) allows to classify mod-

els according to their renormalizability. It is easy to verify that for each vertex



7, Q%) = —[\;] where }; is the minimal coupling constant related to the operator O;
corresponding to the vertex i. Assuming that the kinetic terms of the fields are mul-
tiplied by unity, a coupling is called minimal if it is the unique coefficient of a vertex
and non-minimal if it is expressed as the product of more than one parameter.

Renormalizable: Q%) < 0 (or [\;] > 0) for every vertex. Hence, w (G) does not
increase when the number of vertices increases.

Strictly-renormalizable: Q(L-?(i) =0 (or [\;] = 0) for every vertex. w (G) does
not depend on the number of vertices. If i) holds, there is a finite set of divergent
correlation functions, which contain divergences at all order in perturbative expan-
sion. If i) is no fulfilled, the theory can be non renormalizable even when Q%) =0
for all 4. This is the case of the edge renormalizability (see section 4.5).

Super-renormalizable: For every vertex, Q%) < 0 (or [A;] > 0). Only a finite
number of diagrams is divergent.

Non-renormalizable: For some vertex Q%) > 0 (or [\;] < 0). Infinitely many

amplitudes are divergent at sufficiently high order in perturbation theory.

Marginal, relevant and irrelevant couplings: According to their dimension-
alities, coupling constants can be classified in one of these 3 sets: marginal if it is
dimensionless, relevant or wrrelevant if it has positive or negative dimensionality re-
spectively. They are related to strictly-, super- and non-renormalizable interactions,

in the same order.

1.4 Regularization

In almost all this work dimensional reqularization is used, in the minimal sub-
straction scheme. The divergent integrals are regularized extending analytically the
number of spacetime dimensions d to complex values D = d — €.

In this context, a quantity is called evanescent if it vanishes in the physical limit
D — d. Tt is not necessarily proportional to € (see for example the Gauss-Bonnet
term for D = 4 — ¢ in section 3.1). The dimensionality-defect |9] of a field, operator

or coupling x is defined in dimensional regularization as

(x) _ XIp — [Xa

p d D Y
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namely the difference of dimensionality between the extended spacetime and the
physical one, divided by e. Normally it is a rational number. For a field, it is

determined by the kinetic term and it has the value

1.5 Overall Divergences And Subdivergences

Let us briefly review the usual classification of divergences and the proof of locality

of counterterms [10| in Lorentz symmetric theories. Consider the L-loop integral

Z(l{:):/ﬁl

with Lorentz invariant propagators 1/(p* +m?), where k denotes the external mo-

dPp;
(zﬁ)i)Q(pl,--.,pL;k)

menta. Define qi,...,q; as the momentum associated to each propagator. Clearly,
each ¢ is a linear combination of the loop momenta p and the external momenta
k. The ultraviolet behavior of Z(k) is studied letting any (sub)set of the momenta
qi,---,qr tend to infinity with the same velocity. Proper subsets of the momenta
test the presence of subdivergences, while the whole set tests the presence of overall
divergences. i) When any subconvergence fails, counterterms corresponding to the
divergent subdiagrams have to be included to subtract the subdivergences. ii) Once
all subdivergences are removed, the subtracted integral Zg,,(k) can still be overall
divergent. Taking an appropriate number M of derivatives with respect to the ex-
ternal momenta k the integral G,JyIsub(k) becomes overall convergent. This proves
the locality of counterterms.

The overlapping divergences can be tested sending momenta to infinity with dif-
ferent velocities. For example, rescale qi,...,qr as Aqi, ..., \¢i, N2Qit1, ..., A>q;. This
test, however, is already covered by the previous ones, since there is always a (sub)set
Stast Of momenta tending to infinity with maximal velocity. In the example just given,
Stast = (i+1,---,qr). The other momenta Sgo, grow slower, so they can be consid-
ered fixed in the first analysis and taken to infinity at a second stage. Weinberg’s
theorem [8, 12| ensures that when sg,g tends to infinity the behavior of the relevant

subintegral is governed by power counting and can generate logarithmic corrections
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depending on the momenta of sqo,. Then, when sqo tends to infinity the behavior
of the integral over sg is still governed by power counting, because the correc-
tions due to the integrals over sg.g do not affect the powers of the momenta sqoy.
The introduction of logarithms in the integral does not change the degree of the

polynomials, thus it does not affect the power counting.

1.6 Renormalization Group

The renormalization group (RG) indicates how quantities must vary to keep bare
amplitudes fixed when the scale parameter p is shifted. In dimensional regulariza-
tion, the RG has some interesting features, which we review here.

The renormalization relation of a generic coupling « is given by
(@)
ag = (P (a+ Ay, €)).

The subscript B is used to denote bare quantities, whereas renormalized ones do
not carry any special subscript in general (except in section 3.5 where the subscript
R is introduced to avoid confusion). A,(w;,¢€) is a Laurent series in € and a power
series on the couplings «;. Its form and its relation with the Gell-Mann-Low function
Ba (from now called simply “beta-function”) is detailed below. The beta-function

defines the evolution of a coupling under the RG flow,

~ da

Ba = 'ud_u’
which is finite, and its non-evanescent part is denoted by [, being B\a = B, —p@e.
Analogously the renormalization of an operator O is written as O = Zp(ay, )0,
and its evolution is given by the “gamma-function” vo = u%.

In cases where the renormalization is multiplicative, i.e. all divergent diagrams

are proportional to the coupling they renormalize, we can write directly
ap = Mp(a>aZa(ai,5)

and

apOgp = "™ a0, (1.8)
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s0 Zo = (Z,)~" .Deriving (1.8) with respect to In  and considering that bare quan-
tities are p-independent, we get

3 dlnZ, dlnZ,
a — —Q -

dlng’ To = dlngy’

(1.9)

that is (6, = avo.

1.7 Beta-function Structure

In this section two interesting features of the renormalization constants and beta-
functions are shown when dimensional regularization is used. They are used for
example to derive the form of beta-functions, and to simplify the pole cancellation
in Chapter 2.

i) Beta-function structure: The structure of the beta-functions is inherited di-
rectly from divergent diagrams that renormalize the respective coupling. With
“structure” we mean the particular combination of powers of couplings in each term.
In general not all combinations are present (for example the term an?® is absent in
(2.4)). There exist therefore a direct correspondence between the number and type
of vertices of divergent diagrams and some term in the beta-function. This allows
us to know the form of beta-function simply observing the diagrams involved.

ii) All the information of the renormalization constants is encoded in the residue
of its simple pole. This is a consequence of the RG equations. The residue of the
higher poles can be determined from the residue of the simple pole. In fact, the
renormalization constant and the beta-function can be completely reconstructed
from it. Recall that in general the simple pole has contributions from all order in
loop expansion.

Let us consider just two minimal couplings ¢ and p of dimensionality-defects
1/2 and 1, multiplying three- and four-leg vertices respectively. The generalization
to arbitrary number of couplings is straightforward and the general formulas are

presented below. The bare constants can be written as

%Gs,  pp = 1D, (1.10)

gB = 1°
with

gB:g +Ag(97p76)7 pB:p +Ap(971075>7



13

From the general analysis we know that A, and A, are Laurent series in ¢

() . )
9" (g, p) P (g,p)
Ag(g.p.e) = Y Ay(g.p.e) = —
=1 i=1

where the residues ¢ (g, p) and p'¥(g, p) are power series in the couplings.
Deriving both expressions in (1.10) with respect to ln u, considering that bare

quantities are independent of ;, and solving for Bg, (for Bp is analogous), we obtain

~

1
B, = D,gV(g,p) — S9¢ + poles that cancel out, (1.11)

D — £+12_1
g pap 2gag 2/

The part “poles that cancel out” is a restriction imposed by the finiteness of the
beta-function in the ¢ — 0 limit, and establish relations among the residue of higher
poles. From equation (1.11) we obtain two conclusions: only the residue of the
simple pole g\)(g, p) is relevant, since it is the only one appearing in the expression
for Bg. Indeed, Ay can be completely reconstructed from Bg or equivalently from
9" (g, p)-

Writing

Be=Y _biyg'p’,  9Vg.0) =) Gy g'p, (1.12)
i 1,3
from (1.11) we have
Gij = %—U7
(i+25—1)

so gV (g, p) is recovered from 3,. The relation between the residues reads

0 0
(CON— - — ) g(n=D
D, g (5989 +5,76p) g (1.13)

0 0
— (DW= 1+ p VL) 4n-1)
( gg ag + pp ap g I

for n > 1. We can solve for ¢(™ “inverting” the differential operator D, just as we

did in (1.11) writing (1.12). The operator D, is given by D, = pa% + %ga% — 1.
The second conclusion refers to the structure of divergent diagrams. A diagram

that renormalizes g having v, and v, vertices of type g and p respectively, needs a

counterterm proportional to g*sp%. This implies that g(!)(g, p) contains a term Goyo,
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g¥sp’». This term represents the sum of contributions of all similar diagrams. The
differential operator D, in (1.11) do not rise or lower the powers of couplings, so the
structure is retained also in the beta-function. It is not the case of higher residues,
as seen in (1.13). Hence, we can read the structure of beta-functions directly from
the respective divergent diagrams.

The previous arguments easily generalizes to n couplings a; with renormalization
constants

oo (@)

Ak(alu---7an,€) :Zak (Oé17j'-706n).

gt
i=1

The beta-function for oy and the generalization of (1.13) are

Bk - Dka](ql) (alv s 7QN) - p(k)akga
m = 0 m—
,DkOé](€ ) = (Z Dlafl)a—a > (l/l(€ 1), (]_]_4.)
i=1 ’
Dy = (L) -,
= Oaj

where p@¥ is the dimensionality-defect of o;. The constants of integration of these
differential equations are fixed simply considering that the residues a,(cm) are pertur-
bative quantities, so the differential operator Dy, can be “inverted”, just as in (1.12).
The previous conclusions apply directly to the general case.

This analysis is completely general since it is not assumed that the couplings
are marginal or the renormalization is multiplicative. Another way to reconstruct
renormalization constants from beta-functions can be found in the appendix of [11].
There, taking advantage of the the particular form of counterterms (all propor-
tional to o) and using the reduction of couplings, the renormalization constants are
obtained directly integrating their beta-functions .

If the theory contains a single marginal constant, the renormalization constant

can be easily calculated integrating in (1.9) since Z, depends on p only through «,

Zo (a,€) = exp <— /Oa da’%) .



Chapter 2

Infinite Reduction of Couplings

As mentioned in the introduction, the role of renormalization as a tool for discrimi-
nating which theories are appropriate to describe physical interactions has not been
totally unveiled yet. The main difficulty to consider non-renormalizable models as
fundamental theories is that they need, in the usual renormalization program, in-
finitely many independent couplings. However, we know that renormalizability as
we understand it, namely Power Counting (PC) analysis, can not be an ultimate
criteria to exclude models. For example, in models studied by Parisi [2], finite Green
functions are obtained to all orders in the 1/N -expansion even when they are non-
renormalizable in the PC sense. As he noticed, the perturbative series in coupling
constants may not be suitable for the expansion of correlation functions, causing
the appearance of divergences that are absent in other type of treatment. The idea
developed in this chapter, rather than propose this kind of solutions for particu-
lar models, is to study a general framework to face directly the problem of having
infinitely many couplings by considering that this infinite set is nothing but an in-
accurate manner to describe a more fundamental theory which does have a finite
number of parameters. Being more specific, we will try to establish relations among
the couplings to regard most of them as dependent or functions of a small, finite
set. This kind of reduction happens naturally in theories that present symmetries.
Here instead, the reduction is based on the running of the couplings, i.e. the way
they change under the renormalization group flow. Therefore the main feature of

the reduction is that it is RG-invariant.

15
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The RG-consistent reduction is obtained by means of the resolution of a differ-
ential equation, the reduction equation. Nevertheless, to actually reduce the number
of independent parameters, we need to pick some special solution of this equation,
using some prescriptions which are motivated by physical arguments. The reduc-
tion could not be carried on in all cases; some invertibility conditions will indicate
whether it is possible or not depending on the parameters of the model.

The idea of the reduction of couplings was first applied by Zimmermann and
Oheme [13, 14, 15| to renormalizable models and it has been used historically as an
alternative to GUT theories and applied especially to supersymmetric models. The
most important phenomenological results obtained using this method [16] are the
masses of the top quark m; ~ 81GeV and the Higgs boson m; ~ 61GeV. Both are
out range of the present knowledge [17] m; = 171+2.1GeV and m;, 2 80GeV. These
disappointing results do not invalidate the reduction of couplings as technique, only
indicate that the reduction hypothesis is not applicable to this model.

A different approach to reduce the number of independent couplings in non-
renormalizable theories is Weinberg’s asymptotic safety [18]. Other investigations
of reductions of couplings in non-renormalizable theories have been performed by

Atance and Cortes [19, 20|, Kubo and Nunami |21], Halpern and Huang [22, 23|.

In the first two sections the method of reduction of couplings is introduced to-
gether with the criteria to select the suitable solutions to the reduction equation.
Then we review in section 2.3 the Zimmermann’s model to illustrate the main fea-
tures of the method. There we solve exactly the leading-log approximation, and
analyze the series expansion of the complete solution.

The infinite reduction, i.e. the process designed to establish dependence rela-
tions among couplings in non-renormalizable theories, is discussed in the rest of the
chapter. There, the invertibility conditions and the reduction itself are obtained
also from the bare reduction equation, which establishes the dependence between
the bare couplings. In section 2.4.6 is shown how the invertibility condition can be
refined in the case where there is no three-leg marginal vertices. Section 2.4.9 shows
how relevant parameters as the masses can be included perturbatively. In section

2.4.3 we examine how the reduction is affected by the renormalization mixing in the
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non-renormalizable sector. In section 2.4.7 we solve explicitly the infinite reduction
in the leading-log approximation, which contains enough information about the ex-
istence and uniqueness of the solution to all orders, while in section 2.4.8 the infinite
reduction in the presence of several marginal couplings is analyzed.

Since the reduction criteria are formulated in terms of the extended-space pa-
rameter €, we use exclusively dimensional regularization in this chapter to define
divergent integrals.

Along this chapter we will find ourselves repeatedly in the situation of studying
the analytic properties of solutions of certain differential equations. Although in
some of them it is possible to obtain explicit closed expressions [11|, we prefer
to consider all at once studying generically its series solutions as explained in the

Appendix A.

2.1 Reduction Of Couplings

Let o and n be two independent coupling constants. From renormalization group

analysis we know they are not actually constant but they depend on the RG scale

In some circumstances this relations can be inverted, being possible to find a depen-
dence n = 7(«) such as
() = n(p (@) = na(p). (2.1)
Because 7(«) does not depend explicitly on p, the main feature of the reduction
is that is invariant under the RG flow, so n = 7j(«) holds for every choice of the
renormalization point. This is an essential requirement because the RG parameter
i has no direct physical implication. Once the reduction 7(«) is determined, we
can substitute in the lagrangian n by 7(«). In this way the renormalization of the
reduced theory is achieved redefining fields and the single coupling a.
Deriving (2.1) with respect to In y1, we obtain a differential equation, the reduction

equation,

B dﬁ(a, 8)

o do = ﬁr]' (22)
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Equation (2.2) does not represent by itself a reduction because the constant of
integration ¢ is precisely the degree of freedom we want to suppress. Keeping it
arbitrary amounts only to a reparametrization («,n) — («, &) . This reparametriza-
tion can be regarded as a change of scheme, with not physical consequences. The
mentioned change of variables has the particularity that the new “coupling” & is
RG-invariant and this property is used in section 2.4.8, where the renormalizable
sector has several marginal couplings. The core of this chapter is the study of this
equation and physical arguments to select some particular solution of it to represent

the reduction. Appendix A.1 will be useful for this objective.

All equations in this chapter, included (2.2) are written in continued space of
D = 4 — ¢ dimensions. The reduction can be carried on with other regularizations
leading to similar conclusions [9]. Precisely one of the objectives of this chapter is
to show the equivalence of the treatment in dimensional regularization, where some
computations are in some sense more transparent and natural, respect to other
regularizations. We work in four physical dimensions, but the generalization to
arbitrary number of dimensions is straightforward. Recall from Chapter 1 that the

hat over the beta-function indicates that it has also an evanescent part.

To select a particular solution of (2.2) some prescription or criterion is needed.
Some special conditions will indicate if the criterion successfully select a single so-
lution or not. If they are not fulfilled, either there exist no solution satisfying the
criterion or there are infinitely many (i.e. the general solution satisfies the criterion).
These conditions, called invertibility conditions depend only on the leading-log co-
efficients of the theory. This fact corroborates that the reduction is RG-invariant
since these parameters do not depend on the substraction scheme. The special value

of the integration constant that make the solution satisfy the criteria will be denoted
by &, and

77(0475) =1 (aﬁ?,%)

is such a solution.

Similar notation will be used in the infinite reduction.
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2.2 Reduction Criteria

Here we enunciate two prescriptions to select the particular solution of (2.2) that
represents the reduction and present their physical motivations. We postpone the
demonstration of the equivalence to the next section. The criteria are formulated
in terms of two constants o and n and the dimensionally extended parameter ¢.
For more of two couplings see the discussion of section 2.4.8. The criteria for the

reduction are:

i) The function 1(«a,€) has to be perturbatively meromorphic in « and analytic
in €. Considering the reduction as a manifestation of a more fundamental theory,
it is clear that if the relation between the two theories is perturbative, only integer
powers of the independent coupling can appear. Perturbative meromorphy [9] means
that negative powers can be arbitrarily high, but the maximal negative power grows
linearly with the order of some expansion. As explained in section 2.4.4,. this
feature allows to define an “effective Planck mass” Mpeg; that gives sense to the
perturbative expansion of the reduced version of a non-renormalizable theory at
energies & < Mpeg. For reductions inside a renormalizable sector (as in section
2.3.) we can impose the stronger condition of analyticity in « instead of perturbative
meromorphy.

On the other hand, the renormalized quantum action I'[®, «,n,¢]| is finite at
physical dimensions, so 7(«, €) should be regular at ¢ — 0. Regular in perturbation

theory means analytic.

ii) The fact that n and « are related at renormalized level implies they are
related also at bare level. This is a trivial statement in most regularizations since
bare quantities can be regarded as quantities defined at the cutoff. As the reduction
is RG invariant, the very same relation holds at all energies, in particular, at the
cutoff. This is not the case of dimensional regularization. Thus, a different non-
trivial criterion can be formulated as follows: The reduction has to be an analytic
function of € at renormalized and bare levels. In general satisfying this requirement
will be enough to complete the reduction, regardless the a- or ag-dependence.

The analyticity at € = 0 of the reduction at renormalized level is justified in
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i). The bare lagrangian L(¢g,ns, ap, ), on the other hand, becomes the classical
lagrangian in the “naive” limit, that is the limit ¢ — 0 at fixed bare couplings
and fields. If a reduction 7jg (ap,€) is consistent, then the reduced bare action
L(pp, ap,Me(as,<),e) should converge to the reduced classical lagrangian in the
naive limit. Thus also 7jg(ag, €) should be regular for ¢ — 0.

In most cases any of these criteria i) and i) will serve us to select one appro-
priate solution to (2.2). Indeed it will be shown explicitly that they are completely

equivalent.

2.3 Zimmermann Model (Renormalizable Theories)

Zimmermann and Oheme [14] studied the reduction of couplings in the realm of
renormalizable theories. Let us review their simpler model to illustrate the reduction
mechanism and how the analyticity criteria enunciated in the previous section are
equivalent, leading to the same unique reduction when it exists.

We test the criteria in the leading-log approximation first, where the general
solution of the reduction equation is known, and then repeat the analysis in the

complete solution using the series method of Appendix B.

Consider a massless Yukawa model with quartic interaction, or scalar electrody-

namics

1 _ _
Ly = (00 + 690+ gott + L',

1 p,_
Lss = JFu +IDupl + (@),

with D, = 0,0 +igA,p and F,, = 0,A, — 0,A,. In both models the reduction
follows the same lines. A very convenient (but not indispensable) step that will be
very useful for the infinite reduction as well, is to perform a reparametrization of
couplings previous to the reduction. The idea is to choose the independent coupling
such that it has no dimensionality-defect. For this goal we define o = ¢g? and n = p/a

(so p'® =1 and p™ = 0). Then according to the notation of Chapter 1, we have

Bp - Uﬁa + O‘Bm Ba - 2939. (23)
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Figure 2.1: One-loop diagrams contributing to beta functions B\g and B\p.

The structure of 3, and Bg comes! directly from the structure of divergent di-
agrams that renormalize each coupling, as explained in section 1.7. The one-loop
diagrams contributing to (2.3) shown in Figure 2.1 allows us to write the leading

terms of Ba and Bp. To all order 3, and (3, have the form

b o, et a) b et 2

L=2
where Py (n) and Qr(n) are polynomials in 7 of degree L. We assume that (1, a,b
and c are nonzero constants.

The form of (2.4) can be inferred just tracking dimensionalities in bare dia-
grams. First note that a bare diagram and the bare constant it renormalizes have
the same dimensionality-defect. To visualize this, observe the contribution of a di-
vergent diagram G to the 1-PI generating functional I" shown in equation (4.18),
where the quantity inside the parenthesis is a bare coupling. The only two sources

2 are the measure d”p that contributes with

of dimensionality-defect in a diagram
—¢ for each loop, and the coupling ap (since p = 0). Therefore, matching di-
mensionalities and recalling that renormalized and bare diagrams have the same
structure, it follows that in a L-loop divergent diagram that renormalizes o there
are L+ 1 powers of a. Analogously, diagrams that renormalize n are proportional to
al. In the other hand, using (1.1), (1.4) and (1.3), the number of four-legs vertices
contained in a diagram is
E Vg

_ i1 Y%
=gt 2

Note that 3, = 3.
2Here we consider the coupling constants as part of the diagram.
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Thus, for diagrams renormalizing p we have
v, < L+1,
indicating that the L-loop contributions to 3, is a polynomial of degree L + 1 in 7.

2.3.1 Leading-log Approximation

Using only the one-loop contribution of beta-functions (2.4),

Ba = 102, By=a(a+bnp+cn’). (2.5)

we can solve exactly the reduction equation (2.2), obtaining

) 1 14 £ (afy — )3

Ne(a, & e) = 5 {qusl—f-(aﬁi—s)is/ﬁl}’ for s £ 0

) o 28, -

(e, &) = ~ 5 {b%— £+ In(ad, —5)} , for s =0, (2.6)

with s the positive square root of b? — 4ac and £ the constant of integration.
The solutions labelled with + are actually two different ways of writing the same

general solution, as can be seen substituting £ = 1/¢'.

First Criterion In the first criterion we look for an analytic behavior in both
a and €. Depending on the values of the beta-function coefficients, two situations

could occur:

i) The exponent +s/B1 is a positive integer

The solution is doubly-analytic for every value of the constant of integration &.
As every solution is equally valid, the criterion is useless in determining the actual
reduction. Keeping £ arbitrary is equivalent to a reparametrization of couplings
CRIEACRIE

ii) The exponent +£s/By is not a positive integer,

+ 7 ¢N,, (2.7)
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In this case, only & = 0, 00 give doubly-analytic solutions,

- bFs
For s = 0 the only analytic solution is 7,(«, €) = —2% (setting & — o0).

Second Criterion In general, the relation between ng and ap can be computed

using the solution of the renormalized reduction (2.6) and the inverting the relations
ag = pfa Za(a,n,e), ng =1+ ald,(a,n,¢). (2.9)

The constants Z, and A, can be reconstructed from beta-functions as shown in
Chapter 1. However, it is possible to avoid this calculation thanks to three peculiar

features of the treatment made:

i) ng has no dimensionality-defect.
ii) ap does have dimensionality-defect (equal to 1).

iii) The counterterms that renormalize 1 are all proportional to .

When the model has two couplings we can on most cases choose a reparametriza-
tion, as we did, to have two non-minimal couplings satisfying i) and ). The third
statement is consequence of the other two and the discussion of the paragraph below
the equation (2.4).

Applying the renormalized reduction inside ng = ng(a, n, €), we define

ﬁB(a7 57 g) = TIB(Ofa 77(0(, 57 5)7 6)‘

Generally both 7p and ng should depend explicitly on g, but they do not due to ).
Then, since all dependence on p is through o and bare quantities are p-independent,

we conclude that 7g(a, &, ) can not depend on « neither:

dog . dip,
p—— =0=—L,.
du da
Then, as 175 do not depend on «,
ﬁB(a7§7€) - E_I%ﬁB(aag’g) (210)

= ii_l%[ﬁ(a,f,é) —|—aAn<Oz,ﬁ<Of,§,5),5)]
- 77(07575) .
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Where iii) was used, the fact that A, is a power series in couplings and that 77(0, &, €)
is finite. Therefore, without making any new calculation other than simply taking

the o — 0 limit of (2.6) we get

(—g)Es/A
neplag, &) = —% [biﬁsijéi_i;is/m} , for s # 0, (2.11)
nos (o, &,€) = —2% [b-l— %} , for s = 0.

Using this method, the ag-dependence is trivial: 7p simply can not depend on
ap due to dimensionality arguments.
Let us examine now the analytic properties of (2.11) with respect to €. As before,

we have two sensibly different cases

I) The exponent £s/0, is a positive integer, any & provides a solution which is
analytic in e.
II) The exponent £s/[y is not a positive integer, the unique analytic solutions

are found for £ = 0, co.

It is pretty clear that the criteria lead to the same conclusion, that is, for having
a unique reduction the condition (2.7) must hold. In the first criterion it ensures
that (2.6) will have a unique doubly-analytic (in « and ¢) reduction at renormalized
level. In the second one instead, it guarantees that there are only one reduction
analytic in € in both renormalized and bare level.

The trick of taking the limit (2.10) for finding the bare reduction makes evident
the connection between the criteria:

In the second prescription, e-analyticity is required in (2.6) and in (2.11). Since
the bare relation is nothing but the renormalized one in the & — 0 limit, the second
criterion is summarized in analyticity with respect to € of the renormalized relation
(2.6) and its o — 0 limit should exist.

In the first criterion instead, we look for analyticity in both « and e simulta-
neously in the renormalized reduction (2.6). This prescription is apparently more
restrictive than the above statement, since it requires (2.6) to be not only regular in
«, but analytic. The equivalence is evident if we realize that o and ¢ have exchange-

able roles in the solution. This can be seen explicitly from the reduction equation
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using the change of variables © = a — ¢/3;. More precisely, in general the solution
can be expressed (see section 2.3.2) as a function of u («a,e) = a + O (¢) which is

analytic in its arguments, thus
Analyticity in € (at @« = 0) = Analyticity in v <= Analyticity in « (for all €).

because the solution depends on « only through u. Therefore a reduction which is
analytic in € is automatically analytic in «, for all €.

This connection holds in the complete solution of the Zimmermann model as
in the infinite reduction, and would not be apparent if the bare relation had been
calculated through the inversion of the renormalization constants.

Note that if the dimensionality-defect p of ng were different from zero, the
equation above (2.10) would read

d 1) dn 3
S (e O (ange ) dis(eben)y
du ol da

having the solution

. (m) “ do!
is (o, & e p) = p"°F (576,p(”))exp{—p(")€ / — }
ﬁa(a/’n<a,7£7 6))

In this manner the a-dependence is obtained, but not the dependence on & or

€. The lower limit in the integral is redundant since it can be absorbed by the

F (f,e,p(”)) . Clearly F'(&,¢,0) corresponds to (2.11).

2.3.2 Complete Solution

We are ready to look for 7j(a, &, €) beyond the leading-log approximation. Since it is
not possible to give a closed generic solution of the reduction equation when (2.4)
are used, we study its properties using the series method explained in Appendix A,

but first define for convenience the variables uv and v

u=a— a.e), v =1n—n(€),

where o, (g), n.(¢) are the non-trivial RG fixed point at € # 0, namely the solution
of

-~

P _ On _
E(a’n’ g) o O’ o (Oéa 7775> =0.
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For the expressions (2.4) they have the values

a.(e) = g + 0, o) = —

Write expansions

= f(u,v) = f1u+f2U+O(U2,UU,U2), = g(u, U) = glu+920+0(u2auvvvz)a

R [

By
a

where fl = ﬁl + 0(5), f2 = 0(52)7 g1 = 0(1)7 g2 = ts+ O(E)

The reduction of couplings is expressed by a function v(u) that satisfies

do(u)

() S5 = gl v(w).

This equation can be transformed into an equation with the same features as the

one studied in Appendix A by performing the change of variables w(u) = v(u)/u:

dw(u)

du | = g1+gowt+uPy(w)+u? Py(w)+. ..

(2.12)

[fl + fow + uQ:(w) + u?Qa(w) + .. } [w+u

where P,(w) and @, (w) are polynomials of order n in w.

Organizing the equation (2.12) properly, it has the same form as (A.1) identifying

A= —g, B=(fi—g2), C = fa, D = —(f1 + fawoz).

With wgs the solution of A + Bw + Cw? = 0.
Consequently the solution for w(u, ) can be expressed as a infinite series as in

(A.5), with the relevant quantity r given by

\/(f1—92)2+491 f2 (fi — 92)

ro= - = — +O0(e
(fi + fowozx) S ©)
= O L0,
where () = é — 1 is the non-evanescent part of r.

Multiplying the solution (A.5) for w (u, ) by u we recover the series solution for
v(u,§)
0.6) = 3 14 35 v 0 )

=0 n=1 m=0
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The coefficients v4; and v4,,, are polynomial on f; and g;, that are themselves
analytic in €. As can be seen from (A.3), when r(©) is a positive integer 7, v+ and

successive coefficients are singular at € — 0. In other words, when

:l:ﬁi ~1¢N, (2.13)

1

all coefficients vy; and vi,,, are analytical in € and determinable recursively.

Finally, in terms of 1 and «,

o0

(e, &) = nele) + Zvil ) (@ — au(e))™! (2.14)
+ Z vimn(€) €7 ( — a*(€)>m+n(i%+(’)(e)>.
n=1 m=0

First criterion If (2.13) holds, the solution (2.14) is analytic in « at ¢ = 0 only for
€ = 0. Observing that «,(¢) and 71, (g) are analytic in ¢, the unique doubly-analytic

solution is

(0,€,) = nea(e) + ) vsile) (o — au(e))™
=0

On the other hand, if (2.13) is violated, that is 7(?) is a positive integer 7, there
is no choice of £ able to cancel out the singularity in € — 0 of the coefficient vz (e),
so does not exist any solution analytic in €.

The condition (2.13) is similar to the one obtained in the leading-log approxi-

mation. The only difference is that here also +s/3; = 1 allows a unique reduction.

Second criterion Since the arguments i), #) and iii) of section 2.3.1 are still

valid, we can again use the limit (2.10) to obtain the bare reduction
niB(aBag 5) - ni* + Zviz - * ))iJrl (215)

* Z Z Vi (2) €M (— () (F5HOE)

n=1 m=0
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If (2.13) holds, the bare reduction (2.15) is analytic in ¢ only for & = 0, and
this choice makes also the renormalized reduction analytic in €, determining the
reduction uniquely.

Summarizing, both criteria i) and i) show that (2.13) is a sufficient condition

for performing a reduction of couplings to all orders in the Zimmermann and it reads

n(e,e) = nale) + Zvﬂ(g) (a = au(e))™,
Niplap,e) = Ui*(€)+Zvﬂ(5) (—a,(e))™.

Note that n1.(e) is the leading-log analytic reduction (2.8) plus evanescent cor-

rections.

2.4 Infinite Reduction

In the usual renormalization program non-renormalizable theories need an infinite
number of different interactions to provide the appropriate set of counterterms to
absorb all infinities generated by divergent Feynman diagrams. In this chapter
we recover some results of the application of the reduction of couplings to non-
renormalizable models |9] through dimensional regularization techniques where some
features are more transparent.

We study a generic massless model in four dimensions although the extension to
arbitrary number of dimensions is straightforward. We do not include any parameter
with positive dimensionality, in particular no mass terms or relevant interactions.
They can be added in a second stage, as shown in section 2.4.9. The lagrangian is
divided in three pieces:

i) An interacting renormalizable sector denoted R,

ii) the head, made of irrelevant operators with lowest dimensionality and

iii) the queue, made of all other irrelevant operators of higher dimensionality

needed for a consistent renormalization structure.

Irrelevant operators are classified by their “level”; that is, the dimensionality of

their coupling constants (at ¢ = 0). The dimensionality of the coupling of the
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head is denoted by —/, with ¢ a positive number, and the corresponding operator is
written as Oy. It is easy to verify that all vertices generated by renormalization due
to the presence of the head have couplings with dimensionalities which are integer

multiples of —¢. The generic lagrangian then reads

Llg] = Lrle,a] + o MOu() + D "™ XeOnelp). (2.16)
n>1
where [a] = 0 and [\, = —nf with n > 1. Therefore, O, is a level-n operator,

with n > 1 a positive integer.

The couplings of the head and the queue are written in a non-minimal way
such that the only bare coupling with non-vanishing dimensionality-defect is agp,
with p® = 1. Just as in Zimmermann’s model, this parametrization facilitates
computations and allows to use a limit similar to (2.10) to find rapidly the bare
reduction.

Although normally there are several operators with the same level, we first make
the simplifying assumption that there is only one operator for any level, and subse-
quently study the general case where operator mixing is present, in section 2.4.3.

The reduction we are looking for is an a sense maximal: all couplings are ex-
pressed as a function of the marginal coupling a and a single coupling in the head
Ag.

As example, take the Yang-Mills model in four dimensions as the renormalizable
sector R coupled with massless fermions, and deform it with a Pauli term [24],

1 _
Lrlp,a] = —EFSVF”W + i 1Dijbs,

MOy = MELUTE0u,1;,

with i, = 0, A3 =0, Ay f AL A, Dty = 3 (Ouths + ALT505) » 0 = =il wl/2

The Pauli term is the unique operator in the head; other operators of the same
dimensionality as 1) D%, are equivalent to it (plus equations of motion and operator
of higher levels).

The independent operators of level 2 are 11 in total,
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a)\gl)fachﬁngaFgw Oé/\éz) (Ezwl)Q 7 Oé)\§3) (EZ’Y5¢1)2 s
oz)\gl) (Eﬂu%’f ) O‘)‘és) (Ei%%th‘f ) O‘)‘gﬁ) (Eia!“’wif )
a)\én @i%’) (ijz’) 5 a)\és) (%75%%') (Ej%%wi) ] a)‘gg) @ﬂfﬂﬁj) @ﬂsﬂﬂi) :

oz)éw) (Eﬂ/ﬂﬂj) (Ej%wi) ) 04)\%11) (@iauij) (Ejal“jwi) :

while other operators of dimensionality six can be converted in some combination of
the above listed plus operator of higher dimensionality (up to equations of motion)
by using the Bianchi identities.

Back to the generic lagrangian (2.16), the renormalization relations and beta-

functions have the form

aB = MEQZa(Oé7 5)7 ﬁoz = &1)042 + 0(043),
Ag = zg(a, €) Ay, Be(A, @) = ye(a) Ay,
)\nZB = an(Oé, E)Ané + aAné(aa )\mﬁv 5)7 ﬁnf()\a O{) = f}/n((a))\nf + aanf(aa Amé)a

(2.17)
where v,¢(c) is the anomalous dimension of the operator O, in the theory R.

As seen in section 1.7, the structures in (2.17) are closely related, indeed

0 0 0
(@) =ag—2(@), (@) =az—z@),  dul@d) = - (all (@A)

Oa «
(2.18)

where the superscripts refers to the residue of the simple pole, as in (1.11). The

form of the expressions in (2.17) is due to:

i) There are no positive dimensionality constants in these models. Renormal-
ization constants are power series in couplings, so by dimensionality matching, A,
and d,, depend polynomially, at least quadratically on \,,;, with m < n and do not
depend on A, with m > n.

ii) In the undeformed theory, the renormalization of the operator O,, can be
read from (2.17), so we have A\yp = z(, €)A\ne. Hence, according to the section

1.7, the coefficient of \,sg in the beta-function (,,(A, «) is the anomalous dimension

’YM(O‘)'
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iii) By the same arguments explained in paragraph below the equation (2.4), L-
loop diagrams renormalizing arg or A, are proportional to a*! and a* respectively,
so all counterterms are proportional to «. This fact justify the a-factor in front of

A, and 8, and implies that y,e(a) = vV + O (a?).

n

2.4.1 Reduction

By dimensionality matching, the renormalized reduction relations read
Ane(a, Aeye) = N} fola,€), n > 1. (2.19)

As the A\;-dependence is fixed, the reduction equation is an ordinary differential
equation, instead of a partial differential equation. The reason why we have chosen
massless theories and no relevant interactions is now evident. If some positive di-
mensionality parameter is present the dependence on A\, could not be fixed a prior:
as in (2.19) due to the possibility of arbitrary functions of dimensionless combination
of parameters.

Deriving (2.19) with respect to In z we obtain the set of differential equations

f;(oﬁg) Ba = fn(a7€> ;?W<Oé> + aénf(avg)' (2'20)

which solutions determine the reduction. We have defined for shorten

(@) = mela) —nye(a),  dueler,€) = e, frn(ev,€))
with m < n, and f,,(a,e) = fu(a,§,,,€) is the analytic solution for the level m.
It is assumed in (2.20) that lower levels (m < n) have been already reduced by
(2.19), therefore the solution can be worked out algorithmically. The constant of
integration for each equation labelled with n is denoted by &,.
Using the method of the Appendix A, we study now the analyticity properties
of the solutions of (2.20). Writing

b5ue(a) =89 +0(0),  Fula) =7 a+ O(a?),

n

and using the change of variables u = o — o, as in (2.12), equation (2.20) becomes

59 448 £ u PUfw) = u G (50 +u QU ) (2.21)
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which is like (A.1) with the replacements
A=69  B=3Y  c=0  D=pD.

Therefore the invertibility condition for the coupling of the level n/ is given by

5
rnzﬂ%f) ¢N, n>1 (2.22)

2.4.2 Integrated Bare Equations

Dimensionality matching in extended spacetime is doubly useful since it fixes two
quantities: the physical and the evanescent part of the dimensionality. In cases
where the bare marginal coupling has non-vanishing dimensionality-defect, this fact

determines the form of the bare reduction:

Anes (AB; aB) = G (€) Mg, (2.23)

where ¢, is a dimensionless constant. Here, as in (2.11) or (2.15) the form of the
bare reduction is constrained to be ag-independent.

Replacing (2.17) in (2.23) we obtain an algebraic equation for f,(a,¢)

fala,e) = 2z a, ) [—aAng(a, )+ ang(a,s)] , (2.24)

with Ane(a, ) = Apela, f,, (a,€) ,€).

Equivalence of Criteria The bare reduction, i.e. the determination of (,(g) can
be achieved just as we did in section 2, from the renormalized reduction simply
taking the o — 0 limit of equation (2.24) considering that z,,(«, <) and z/(a, €) are

1+ O(a), and that lim,_ Ap(a,e) < oo at e £ 0,
Cn (8) = lim fo(ev, &ns€). (2.25)

The rest of the discussion about the equivalence of criteria in Zimmermann’s

model applies here unaltered.
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Pole Cancellation In infinite reduction there is a new way to derive the invert-
ibility conditions (2.22) and the analytic reduction. This method is not totally
independent of studying the solutions of (2.20). Basically, equation (2.24) is the
solution of (2.20), which can be verified deriving (2.24) with respect to In i, using
(2.18) and the relation between poles as in (1.13). To make f,(c,¢) analytic in
g, the poles present in z,¢(a,e), Ap(a,e) and z/(a,¢) in the right side of (2.24)
should cancel out. This requirement determines ¢, () if the invertibility conditions

are fulfilled.

As in the series treatment of Appendix A, we start writing

Zn <5> = Z Zn,kgka
k=0

and look for conditions to determinate univocally the coefficients ¢, to cancel the
poles. If it is possible, criterion 4i) is automatically satisfied: both renormalized and
bare reduction are analytic in €.

In cancelling the poles, it is not necessary to care about all the poles of (2.24)
because they are related by RG to the simple pole as in (1.14). Cancelling the simple
pole ensures that all the poles vanish.

In (2.24), G,k is multiplied by a sum of objects as

o m
€k <_> ar’
€
so the simple pole has the form

1
ga1+k+r_ (2.26)

The simple pole of A is an analytic function of . In total, the simple poles of (2.24)
have the form

% (Z asa’ + Z Zn’kck,rozl‘C*T) , (2.27)

5>0 k,r>0

where a, and ¢;, are known numerical factors. Thus, if the coefficients of Cn’jaj are

nonzero it is possible to determine vaj iteratively in j from the cancellation of the
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pole. The coefficient of ijaj depends only on the leading-log contributions to the

wave-function renormalization constants, given by the standard formulas

(1) -1 (1), A(1) (1) / 5(1)
Zy = <1 _fa O‘) L =l = g P (2.28)
£

Finally, inside the parenthesis of (2.27) Zn’jozj is multiplied by the coefficient

(—6&”)j+1 N )
H (%M Yo z) _ (2'29)

G+Db g\ sl

Assuming @S}) # 0, all an can be univocally determined by recursion if and only

if the factor (2.29) is not zero, or equivalently, the condition (2.22) is satisfied.

2.4.3 Operator Mixing

Normally each level contains more than a single operator. The reduction in this
case can be worked out with the following modifications. When there is only one
operator in the head of the deformation, the n-th level is a sum of operators of same
dimensionality, labelled with I, 32, a?™"” X O () and the reduction is specified
by the functions fI («,¢) such that

Ane = fo (0,) N
The beta-functions are expressed as
e = Tnid (@) A+ ady (, Ae)

The reduction equation is then replaced by a system of coupled differential equa-
tion as (A.6) which admits a series solution only if the matrix
17\ 1J.,1)
—no
Ba

has no non-negative integer eigenvalue, where 477 is the identity matrix.

A variation of the above case is presented when the head itself is made of several

operators »_; ozp(”/\y)(?l{ (¢). Then the first step is to perform a reduction between
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these couplings, which is very similar to the Zimmermann’s example. Just to il-
lustrate, consider two operators in the head with couplings )\?) and )\gg) . Their
beta-functions are

B = N, (231)

Taking /\22) as independent coupling and deriving
N = f(a,e) N
with respect to In (u), the reduction equation is obtained
Baf' =+ (07 = v+
This equation has the same form of (A.1) with
A= (%?1)(1) : B— (%32)(1) . (%}1)(1) 7 C = (%}2)(1) 7 D= 5(1)7

so the analytic solution is given by the coefficients (A.3) if the condition r = ¥5 ¢
N, holds. Nevertheless, It is possible to avoid the condition that involves the square
of the discriminant if we perform a previous linear redefinition of couplings )\EI) —

M”)\EJ) with M!7 a constant matrix to put (%”)(” into its Jordan canonical form.

Let us study the general case where there are N operators in the head. Calling vél)

W with multiplicity one, we have after the redefinition is

a real eigenvalue of ('ygl 4 )
(VNN)(U = 4, (AN = (4IV)®) = 0. The overlined indices range from 1 to
N — 1. Take \, = /\EN) as the independent coupling and reduce the other couplings
of the head as

A T (ae).

The level-¢ beta-functions (2.31) give

8= B = (W T Y h RS = (377 - 5T T T
(2.32)
The unique doubly analytic solution for head operators is found iteratively in o and
¢ if the matrix
(+) AR

g
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has non-negative integer eigenvalue.

This new reduction equation (2.32) has C' = 0 since %5\77 is O(a?) by construction,
so there is no square root in the invertibility condition.

At higher levels the reduction proceeds as usual and the invertibility conditions
are still that the matrices (2.30) have no non-negative integer eigenvalue for n > 1.
If the eigenvalue %E” is complex it is necessary to consider a two-head deformation
involving also its complex conjugate [9].

In Zimmermann’s model it is not possible to avoid the square root in the invert-
ibility condition since there is not linear transformation of couplings able to make
disappear the term an? from f,.

The reduction with operator mixing can be worked out without new complica-

tions through bare reduction and pole cancellation as well.

2.4.4 Perturbative Meromorphy

The reduced theory reads
Llel = Lrlp, o + Y a? "N T, (a,€) Oulyp): (2.33)
n=1

Since p™) > 0 every term of the irrelevant deformation is parameterized in a non-
minimal way and in the o — 0 limit at fixed A\, the theory becomes free. In this
parametrization, A, = 1/Mp g defines the effective Planck mass Mpeg such that the
perturbative expansion in powers of the energy E' is meaningful for £ < Mpeg. On
the other hand, defining the Planck mass Mp = ofﬁ/’f/\;l/é, in such a way that the

irrelevant terms with dimensionality-defect p are coupled in a minimal way, we get
5(n0) % “n
,C[gp] = ’CR[‘% Oz] + ZO‘p fn(a’ 5) Mp ‘ On€(§0)>
n=1

where p(™) = p(®) — nB. Most of the numbers p("?) are negative, so the o — 0 limit
at fixed Mp is singular. Nevertheless, the singularity is bounded by the order of the
perturbative expansion and indeed can be reabsorbed into the effective Planck mass.
For this reason, the reduction is said to be perturbatively meromorphic [9]. Since

the a-singularities can be reabsorbed only in a non-minimal parametrization, there
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is no way to turn the marginal interaction off, keeping the irrelevant interaction on.

That is the reason why the renormalizable sector R needs to be fully interacting.

2.4.5 Violation Of Invertibility Conditions

When the condition (2.22) is violated for some 7, say 7 =7 € N, the constant Az
can not be reduced and it must be regarded as an independent coupling. Another

possibility is to write
?n(a7 5) = Z EiFi,n(a)v 51 nZ Z € 57, né (234)
i=0

and solve the reduction equation perturbatively in o and €. At order £’ we have

dfi,ina(a) M + adyp (). (2.35)

Fa do ’

= fin(@)Fne (@) +

The solution Toﬁ(a) can be worked out in power series of o until the order o™ !,

while the coefficient of " is ill-defined. Similarly, the solutions Tiﬁ(a), 0<i<T,

can be worked out up to orders a” 1. The coupling A\, can be written as

Mo = fa (o) N+ D 0T TENG B = Ay e (T = D) A+ a Ao (),

(2.36)
where fr (o, ¢) is determined up to orders o’ ~"let, i =0,1,...,7 — 1 and )‘nw
0,1,...,7 are new independent parameters introduced to have a consistent solution.
However, only )\(ﬁoé) is a physical coupling; all others belong to the evanescent sector
of the theory, so they do not affect the physical quantities. Moreover, 7%) = Yo —
(T —1) B/ = O () and 5%) are analytic in a.

In terms of these couplings, couplings of higher levels n > 7 can be expressed as

Mt =3 fugy (@, ) AT ]| (O/ i i A;g)
{m} =1
where 7, m; are integers such that i +7 ) ,_,m; = n, and consequently

One Oé >\ 2571 {m} Q, € )‘E H (Of—i&?i)\g)mb

{m} i=i
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The reduction equation for f,, ;) reads

= df o m . - <
ﬁa dov = | Yne —M7Yp — ]ZO mjYae fn,{m} + Oéén,{m} (CY, f7 8) ) (237)
where 5n7{m} (a, f,e) depends on the functions fi (my with & < n and f, gy with
m’ < m. The invertibility conditions for n > 7 are still (2.22) because the one-loop

coefficient of the combination of anomalous dimensions inside the parenthesis in
(2.37) is

~(1 _
7£Le) - 5(9)7" Z m;.
=0

When the invertibility condition (2.22) is fulfilled, (2.37) can be solved recursively
in 7 for given n and there exist unique solutions f,, (m} (@, €) that are analytic in «
and €.

The advantage of carrying on the reduction as in (2.36) even when (2.22) is
violated is a practical one. It allows low-order predictions with a relatively small

number of independent couplings [9].

2.4.6 Absence Of Three-leg Marginal Vertices: Physical In-
vertibility Conditions

In some circumstances the expansion of ?i,o(@) in powers of a does not start from
order zero. This fact produces a modification in the invertibility conditions rendering
them less restrictive. It is precisely what happens when the theory has no three-leg
marginal coupling, as in the case where R is the theory ¢* in four dimensions (but
similar arguments apply if R is the theory % in three dimensions).

Define the integers
P = p" — np, gn = max(—k + 1 —p,,0). (2.38)

According to the definition of the dimensionality-defect, the quantity p,, relates
the number of the fields present in the vertex of level n with the number of fields of

the operator on the head,

N0 N

= — 1.
p 2 +n
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Here is clear that p, is an integer: N — nN® is an even number since N ™)
and nN® are both even or both odd. Recalling that operators on the queue are
those “generated” by renormalization due to the presence of the head operator, we
prove that

N odd <= noddand N odd.

Consider first diagrams that renormalize A,y made of marginal and head vertices
only. Since there is no three-leg marginal vertex, a diagram can have an odd number
of external legs if and only if the head has an odd number of legs and there is an
odd number of such vertices in the diagram. Diagrams containing vertices A,,, con
m < n do not change the argument, since for each such diagram there exist also a
diagram where the each vertices A, is replaced by a subdiagram containing only
marginal and head vertices.

Using an inductive method, we will show that in the situation described,
_ _ ek
Falane) = a™ 3" Frnlase) (—) : (2.39)

where f; . (a,€) is a power series in o and ¢ that involves only non-negative powers.

Moreover (as can be proved using (2.25)),
Zn(6> =gl ZZn,k’ek' (240)
k=0

The demonstration is based in the pole cancellation of (2.24). The contributions
to A(a, ) from the diagrams G with vy irrelevant vertices of level k, L loops, vy
marginal four-leg vertices and V = vy + Zk<n Ve the total number of vertices, have

the form

okl v
A Ukt
Ape(a,e) = E mnfk (v, €)
G k<n
o L1 e, VRedr £\ Jk
- Z cmin(L,V—1)—s' H (&)
G

k<n

(2.41)

where s, s, ¢, ji, are non-negative integers, ji < vgpeqr and Y, _, kvge = n.
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The factor a~! comes from the a-powers attached to the vertices (considering
that a a-factor is left outside in (2.17)). According to a theorem proved in [9], the

min(L,V=1)=s renresents

maximal order of a pole of a diagram is min(L,V — 1), so ¢
this fact and s’ takes care of powers of ¢ coming from f, (a,¢). Similarly, of take
into account the a-powers coming from f, (o, ¢).

Using the same argument that in paragraph below (2.4), the number of powers

. . (nt) .
of a of a diagram that renormalizes o~ A, is

k<n

With the definitions (2.38) this relation reads

Z Vkedre = Qn — L + (V - 1) . (242)

k<n

The simple pole of (2.41) has the form

laL—min(V—l,L)+t+s’+Z k<n Vkedk
9

Therefore, the powers of « in the simple pole, using (2.42) are
(V-1 —min(V—-1,L)+t+5+ ¢ > qn,

so the a-exponent of the simple pole is always > ¢,. Thus the simple poles of
Ai(a, €) are multiplied by powers a®+5 s > 0.
With the ansatz (2.40) in (2.24), the coefficient (,,;, is multiplied by a sum of

objects of the form

gtk (%) a’, (2.43)

with m,r > 0. The simple pole is

1
_ a(Z7L+1+k+7" .
£

In total, the simple poles of (2.24) have the form

a‘]n+1
- Zasas + Z CogCrrd®t | (2.44)

5>0 k>0
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where a, and ¢, are known numerical factors. Thus, if the coefficients of Zwoﬂ
are nonzero it is possible to determine Zw- iteratively in j from the cancellation of
the pole. Finally, using (2.28) the term (, ;o’ inside the parenthesis of (2.44) is
multiplied by the coefficient

(1) gntj+1 nti ) )
<_ “ ) i‘[ <’Vne — —i)

thus the invertibility conditions are again (2.22). Nevertheless, these conditions are
more restrictive than they should be.

Writing (2.39) as

fola,e) =a™ ‘lil Ti,n(a) <£>Z + i Ti,n(a) <£>Z

i=qn+1
it is clear that the first g, terms of the expansion of f,(c,¢) in e have the form
(A.4), thus for the determination of the coefficients in f; ,(a),i < g, it is enough to

satisfy
~ (1)

T
(f) (Qn + Z) ¢ N.

Since all f;,(a) but f;,(a) belong to the evanescent sector, the physical invertibility
condition reads

,5,(1)

PO ¢ N. (2.45)

Therefore, the violation of (2.22) when (2.45) holds, implies the inclusion of a
new coupling that affects only the evanescent sector of the theory, as explained in
the previous section.

Once the poles have been cancelled out and the constants an have been deter-

mined, collecting (2.41) and (2.43) we obtain

— & Gn—L—in v — - g\ dn—m
fo~a® Z (5) ate” 4+ Z Cp 8’ (5) . (2.46)
L>1, u,s,in>0 m,r,7>0
L+ip<gqn+s'+u m<qn+J
having written ), . jkUke = Y pcp GeVkt — in, tn > 0, and Y, qxUge — min(V —
1,L) = g, — L+u, u>0 (see (2.42)). We see that f,(a,¢) has the form (2.39),

which reproduces the inductive hypothesis.
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2.4.7 Leading-log Solution

In this section the infinite reduction is solved in the leading-log approximation. We
use the minimal subtraction scheme in the unreduced theory, while the subtraction
scheme of the reduced theory is the one induced by the reduction itself. We recall
that the leading-log approximation is sufficient to derive the invertibility conditions
for the existence of the infinite reduction to all orders.

In the leading-log approximation Sne(oz, e) has the form

Sng<04, g) =alr qzn A <§)k
k=0

where ¢, is an integer and dj, are constants. In this approximation the solution

can be easily worked out and reads

OéfIn qn dk ngk c
fn(a7§n7€) - = : 2F1 lak_QH;Tn_qn+k+17
(0 % ak(ry, —qn + k) 2D
‘|‘€n (Oéﬂ,g}) - €)Tn . (2‘47)

with r, = %Sle)/ 5&1). Observe that the hypergeometric functions appearing in the
sum are polynomial, since ¢, — k is a non-negative integer.

At the level of bare couplings, the reduction has the form (2.23). Manipulating
the formulas given above and using (2.25), the formula for (,(&,, ) can be derived.
The result is

k—qn—1 F(Tn _Qn+k)F(Qn - k+ 1)
L(r,+1)

+ & (—e)™.
(2.48)
Both f,(a,¢) and (,(g) are analytic in e (for all o) only for £, (¢) = 0. This

Cn(&nse) =™ Z dien (_Bgzl))
k=0

formula uniquely determines the reduction. Moreover, the invertibility conditions
for the existence of the reduction to all orders can be read from (2.48) and coincide
with (2.22).

Violations of the invertibility conditions. It is interesting to describe the
appearance of new parameters, when the invertibility conditions are violated, using
the pole-cancellation mechanism in the leading-log approximation. Assume that

some regularized invertibility conditions (2.22) are violated, i.e. r, =7 € N. To
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study this situation it is convenient to approach it continuously from r, = 7 + 9§
and then take the limit 6 — 0. If 7 > ¢, this limit is trivial in the leading-log
approximation, so we just need to discuss the case 7 < q,.

Collecting the singular terms of (2.47) we get an expression of the form

a

fola,&nye) = (a5§3> — 5)F { 6{-:‘1"_F +& [1+6n (aﬂg) — 5)}}
+ a™P,(e/a)+ O(4,.6°),

where a is a known numerical factor and P,(«, ¢) is a certain &- and d-independent
polynomial of degree ¢,. The J-singularity can be removed redefining &,, as

a

e T4
5 n

&n

thus obtaining a non-singular expression
fola,&nye) = (aﬁg}) - 8)F {€, —ac™ " In (aﬂg) — &)} +a™Py(c/a).

Finally, the relations between the bare and renormalized constants ¢ and &

Cn(§7 5) = hl’% fn(aa fna 5) - <_€)F [S;z - asqn—? ln(—g) + beqn_? ) (249)

where b is another known numerical factor, originated by a" P, (e/a).
We see that no choice of the constant &, is able to remove the analyticity violation
in both the bare and renormalized reduction relations. The violation can be hidden
in a new independent coupling, but since the In(—e¢) is multiplied by ™" it is

sufficient to write £, = 7€, and associate the new coupling with & .

2.4.8 Several Marginal Couplings

For illustrative purposes we use the Zimmermann’s model in the leading-log ap-
proximation for the renormalizable sector. For a and 7 small, the lowest-order

beta-functions of A\, and A9y have generically the forms

Be=Nald+en),  Par = daga(f + gn) + hAZ, (2.50)
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where d, e, f, g, h are unspecified numerical factors. We use a trick to transform the
reduction equation which is a partial differential equation into an ordinary differen-
tial one. For doing so, use the transformation (2.6) to reparametrize the couplings

(a,n) — (a,&). Thus the reduction of the queue operator is expresses in terms of

f(a,& ), with

f<a7ﬁ(a’§78) 78) = f(a7§78>7
where £ is the constant of integration. For instance, for f, we obtain the ordinary

differential equation

B1M - 2aﬁ(a,$, £) (c?%— 577(04,5,5)) — 5]?2(0475, e)=h, (2.51)

do
where d = d — f/2 and € = e — g/2. Solving for £ in (2.6)
_ b—s+2cn
= (afy —e) " - 2.52
= (afh —¢) = - b+ s+2cn’ (252)

and replacing it in ]?2 (o, &, €), we recover fo(ar,m,€). For definiteness we choose the
positive sign in front of s.

The solution of (2.51) is

f2(a> 7, 5) = TQ(aa 77) + k2 (57 5) 52(a7 , 5)7 (253)
where
fola,n) = % oF1[1,v—2€/c,7, 2], so(a,m,€) = ézl—v(l—z)fé/c’ (2.54)
with

7:1+9+1(2£i—51—bf),
c s c
and ko is the constant of integration, which is a function of € and £.The solution is
meromorphic instead of analytic in a because we have used the minimal coupling in
this example (note that [y, in (2.50) is not proportional to o as (2.17)).

The extension of criteria i) is simple: we require meromorphy in a and analyticity
in 7 and €. Noting that z is analytic in 7 (see (2.52)), we realize that the particular
solution 72(04, n) satisfies these requirement. Let us examine in which cases also the

general solution does. Writing z = & (a3; — 8)8/51 )

ko (€,€) sala,m,e) = ékQ (€,8) 77 (afy — &)V (1 — z)%ee,
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The only possibility to have a general solution satisfying the criterion is given
by ko (€,¢) = KbE7 e when

s(l—9) s
5 nﬁ1 +m (2.55)

where k) is a constant and m,n, ¢ are non-negative integers. In that case,

kb =
k2 (ga 5) SQ(O'/a 7, 5) = _2€q (aﬁl - E)m Zn(l - 2)26/0
@
which is meromorphic in « and analytic in 7 and ¢ for every k. Therefore, here
the invertibility condition is that there should be no pair of non-negative integers m
and n such that (2.55) holds. Since s is in most cases irrational or complex and the
ratios of the one-loop coefficients are rational numbers, the invertibility conditions

can be rephrased as

¢ be  2d
—— ¢ N or 1+ ———¢N. 2.56
. ¢ ) ¢ (2.56)

It is enough to fulfill one of these conditions to fix ks (£,¢) = 0 and uniquely deter-

mine the reduction.

We can obtain the same conclusion from the bare reduction. Matching dimen-
sionalities,
g
Aaes = G2 (1B, €) )
ap

and writing the bare couplings in terms of the renormalization constants, we find

that

Co(np,e) = lim afaa, € ¢)

h<1_ZB) . 1 B »
T oas(—1) oF1[1,y — 2€8/c, 7y, 28] + k2 (&, €) azg (1 — 2g) %,
with
b— s+ 2cn
= _\$/B _ v— o1 atlB
=4e) b+s+2eng

It is natural to ask to the bare reduction to be analytical in g and €. With a
reasoning analogous to the one presented above, if one of the conditions (2.56) is
fulfilled the reduction is uniquely determined setting k5 = 0.

The reduction in the presence of more marginal couplings follows the same line.
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2.4.9 Including Mass

Mass and other parameters with positive dimensionality can be included in a per-
turbative manner.

It will be shown how to organize the series in powers of mass to have a “triangular
structure” that allows the determination of all coefficients, order by order recursively.
In each new equation there is only one new unknown.

The perturbative series for the mass is equivalent to treat the mass term of the
lagrangian as a two-leg vertex, which is consistent for renormalization purposes, since
divergent part of diagrams is polynomial in the masses. In general, the momentum
integrals should be regularized with an infrared regulator, e.g. a fictitious mass
sent to zero right after the computation of the divergent part.

In the generic perturbed lagrangian (2.16) the unique dimensionless combination
is Aym‘, thus the reduction relation can contain arbitrary functions of this combi-
nation in the reduction. Criterion i) tell us that the reduction should be analytic in

couplings, so for n > 1 A,y will be expressed as a function of m, a and A:

Ao = N} Z(Agmg)pf,gp)(a, €) (2.57)
p=0

Replacing (2.57) in the expressions for the beta-functions (., Bne, B¢ (2.17) and

B which are suppose to be all known, they can be written as

B = N> (AmIBY,  Br=A Y (Am?)BY,
q=0 q=0
Bo = Y _(Am"BY,  Bu=mD_ (Am)TM, (2.58)
q=0 q=0

where (3, is the beta-function of the “vertex” m. The explicit form of BZ(,q) (v, fi(j ) (o, €))
is not calculated, but what is important here is to know on what functions fi(j ) (o, €)

they depend, namely those with

1+ J

IN

P+q
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The function M9 instead depends on a and fi(j) (cr,€) such as

1+ 7 <gq.
Deriving (2.57) respect In(x) and replacing the beta-functions with (2.58) we
get

i >0 dn (£
D um B = 37 (em P fP | (n+p) B + (pt) M@ + %B&ﬁ

r=0 p,q=0

Matching coefficients of the same order in A\;m’ starting from below, and then
ascending also in n, all fép ) (v, €) can be computed iteratively. For example, for
r = 0 we have the massless equations (2.20), determining in this way fTSO), for all
n. Then, for r = 1 and n = 2 we obtain an equation that involves only fQ(O), fg(o)
and f2(1). For r =1 and n = 3, it depends on f2(0), féo), fAEO), fz(l) and f3(1) and so on.

Proceeding in this way every new equation has only one unknown.

2.4.10 Scheme Reduction

In the renormalization process, infinities are subtracted from the bare quantities
to obtain finite renormalized quantities. There is, of course, a freedom of adding
an arbitrary finite part to this subtraction. RG equation guarantees that physical
quantities do not depend on the choice of the substraction point. Moreover, the
behavior at any other energy is fixed by the RG to keep the physical quantities
independent of the choice. In our approach, this freedom is explicitly manifested on
the integration constant &, so once it is fixed by the analyticity criteria, we have lost
the freedom of choosing the point of renormalization for that coupling. After the
reduction the only freedom remained are those corresponding to the independent
couplings.

Equivalently, a change of scheme can be regarded as a reparametrization of cou-
plings, because a finite part is subtracted to them, so after the reduction we can
reparameterize arbitrarily only the independent ones and the others will follow them

coherently.



Chapter 3

Causality Violations of Quantum
Matter Interacting With Classical
Gravity

The quantization of gravity is still one of the greatest challenges of the modern
theoretical physics. Although there is no definitive evidence, most of the scientific
community believes that all interactions should present a quantum behavior at high
energies. Precisely because there is not experimental or theoretical evidence |25, 26,
27|that gravity should be of quantum nature, it still has sense to study a coherent
framework where classical gravity is coupled to quantum fields. In particular, the
standard model is ready to the coupling with gravity, in the sense that anomalies
still cancel when it is embedded in a curved background. Quantization in a curved
background has been widely studied in the last 30 years, giving a mathematically
rigorous formulation of quantum field theory in curved spacetime |28| in particular
for interacting fields (for a review, see [29]). Eppley and Hannah [25] showed that the
interaction of quantum matter with classical gravity, assuming the "Copenhagen"
interpretation of quantum mechanics, leads to one of the following scenarios: if the
gravitational interaction does not collapse the wave-function, gravity can be used
to propagate information at superluminal velocity. On the other hand, if gravity
collapses the wave-function, either the uncertainty principle or energy-momentum
conservation can be violated.

The most natural choice to represent the gravitational interaction, the Hilbert-

Einstein action using the fluctuations of the metric around flat space g, = N +

48
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2k¢,, as quantum field, happens to be renormalizable only at one loop when no
matter is present. At two loops, or even at one loop when gravity is coupled with
matter fields, it becomes non-renormalizable [30].

We start with the action

Si6i9) = 53 [ A'ov=gR+ Suloia) (31)
where S,,[¢; g] is a renormalizable four-dimensional matter action embedded in a
gravitational background, and ¢ represents generically the matter fields.

When quantized, the purely gravitational divergences of (3.1) are proportional to
diffeomorphism-invariant terms of dimensionality four made of the metric, namely
R* R2, and (R%,,)*. In four dimensions the integral of the last term can be trans-
formed in a combination of the other two thanks to the Gauss-Bonnet identity.

/d4x\/—gGB = boundary term, Gp = Ragu,,Raﬂ“” — 4R, R" + R2.
If such terms are included in the action to provide counterterms,

SHD[g: g — 2%2 /d4$\/—_gR—|— /d4x\/—_g (aR%, +bR?) + Snldigl,  (3.2)

where a, b are new coupling constants, the behavior of the graviton propagator falls
off at high energies rapidly enough to improve the power counting and make the
theory renormalizable [31]. Nevertheless, its inclusion also allows the propagation
of ghosts with the consequent loss of unitarity. Higher time-derivatives produce
instabilities in classical models, so even if the gravitational field were left classical,
(3.2) is not a good action. The central idea of this chapter is to absorb these
purely gravitational divergences not in a redefinition of constants (a,b), but in a
redefinition of the classical metric tensor g,,. This kind of redefinition defines a
map that relates the renormalization of two different theories, a higher-derivative
one (HD) and another which do not present higher derivative terms, but causality
violations, detectable in principle at high energies. For some class of HD theories
that include (3.2), there exist a theorem [32]| that allows to compute iteratively the
perturbative version of the map. The causality violations produced by the map

differ in origin and nature from those presented by Eppley and Hannah: while the
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latter is intrinsic to the interaction of quantum and classical fields, the former is the
effect of a particular non-local coupling between a quantum operator and a classical

source.

Although the map is defined for a classical metric g,,, and it does not extend to
quantum gravity, this work could serve to motivate some lines of research in quantum
gravity, if the ultimate theory of gravitation needs to be of quantum nature. One
of the main features of the map is that new vertices that couple matter and gravity
fields are created. In particular, the stress tensor is coupled to the Ricci tensor.
Another consequence of the map is that the metric g, is renormalized (so it becomes

running) even when it is a classical field.

Since the gravitational field and the map are classic while other fields are of
quantum nature, in section 3.1 it is explained how the semiclassical models are

formulated and in particular, how to obtain quantum-corrected equations of motion.

As should be clear from the example of the Lorentz-Abrahams force of section
3.2, the origin of the causality violation is the non-local redefinition of functions
representing the map required to lower the degree of the differential equation. This
motivates the treatment to lower the order of the equation of motion of the gravi-

tational field.

In section 3.3 we study the map and its causality implications. Section 3.5
explains how to use the map to renormalize theories without generating higher-
derivative kinetic terms, while in section 3.4 the perturbative map is applied explic-
itly to renormalize the theory (3.1). The map is explicitly applied to the acausal
Einstein-Yang-Mills model in section 3.6. In sections 3.7 we prove the renormal-
ization of more general acausal theories, using the Einstein-Yang-Mills model as
prototype. In the first class, we consider models that admit some vertices that can
not be generated by a map, while in the second class the matter sector contains all
composite operators that have dimensionalities smaller than or equal to four. We
prove the existence of consistent reductions of couplings and the renormalizability of
the models obtained giving a R-dependence to the couplings of PC renormalizable
models. The Batalin-Vilkovisky formalism is adapted to treat a curvature-dependent

coupling for the Yang-Mills theory.
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In the Appendix B it is shown how to compute functional derivatives of the
action without working with bitensors, and the explicit perturbative map is worked

out up to third order.

3.1 Semiclassical Models

Let us consider a generic theory characterized by a classical action S[¢; ], where ¢
represents generically the quantum fields and ¢ is a classical field.
The generating functional Z[.J; ¢] depends on the sources J; and on the classical

field ¢ since it is not integrated

ZlJy ] = / Dy ¢ (S10:A-0"0) (3-3)
= exp ((W[J;¢])

where W{[J;¢| is the sum of all connected vacuum-vacuum amplitudes. The 1PI-
generating functional I'[®; ¢] is obtained through the Legendre transform of W [.J; ¢]
that involve only the quantum fields. Deriving I'|®; ] with respect to the fields
® = (¢), correlation functions in the presence of the external field ¢ are obtained.
The 1PI-generating functional T'[®; @], also called quantum effective action pro-
vides the quantum-corrected equations of motion for the external fields. The prob-
lem is that due to the ie-prescription, the functionals Z, W, and I' are in general
complex quantities, thus the corrections to field equations are complex. For instance,

the equation of motion of g,, obtained from I" is
% =0 = G = (T) (3.4)

where G, = R, — %gwR is the Einstein tensor and (7),,) = %gg_ﬁ is the expec-

tation value of the canonical stress-tensor of S,,, which in general is complex.

This problem can be avoided at least in two ways. The expectation value in
(3.4) can be replaced by the “in-in” expectation value of the stress tensor, which is
another approach to semi-classical models due to Schwinger and Keldish [33, 34]. It
is argued that it is a better generalization of the quantum mechanics expectation
value since it is defined using the same initial and final state, while the usual QFT

expectation value uses different asymptotic “in” and “out” states. Moreover, it is
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real and causal, and functional methods have been developed to compute it [35, 36],
but it has the inconvenient that it does not provide an action.

Another possibility is to define a quantum action as

Sql¢g; @] = Re(T'[®; ¢]), (3.5)

where ¢, = @ is real if the fields ¢ are real bosonic, while ® is the conjugate of
P = <$> if the fields ¢ are fermionic or complex. The field equations are obtained
functionally variating S, with respect to ¢, and .

Using (3.5), the equation of motion for g, 569% = 0 reads
G =Re(T,) .

It is important to note that for the study of causality violations produced by the
map, it is not relevant what real prescription is used to substitute the expectation

value of the stress tensor in (3.4).

3.2 Motivation: The Abraham-Lorentz Force

Some of the features of the map and its consequences can be easily understood
through an example extracted from classical electrodynamics: the Abraham-Lorentz
force. There, the order of a differential equation is reduced at the price of introducing
a violation of causality. As in Chapter 2, the suppression of a parameter requires
to give to some constant a physically meaningful value. Also it is illustrated how
the Green function method is idoneous to invert the differential operator and then
determining the map, fixing in this way the constant of integration.

The physical situation is a particle of mass m and charge e driven by an external
force Fi. The force produces changes in the velocity of the particle making it
irradiate, thus losing kinetic energy with the consequent deceleration. The velocity
of the particle is determined by a second order differential equation, or equivalently,
first order for the acceleration a(t). We could reduce the order of this equation

pretending that the deceleration by radiation is caused by a fictitious force Fl.q :

ma(t) - Fext + Frad‘
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The value of the force F.q is calculated equating the work it makes and the

energy lost by radiation (see for example [37]),

t1 t1
/ At Foaq (t) v (t) = —m7 / dt a(t)?, (3.6)
to to

2 e?

where v (t) is the velocity of the particle and 7 = $-%. For some velocity and

acceleration conditions at the initial ¢y and final instant ¢;, or for a periodic motion,
the equation (3.6) is verified for Fy.q = m7a. Note this is an effective, time-averaged

representation. The equation of motion then reads

(1 _ T%> mat) = Fu. (3.7)

We can symbolically invert the differential operator and define a new external

/
force F_,

ma(t) = <1—T%) h Fex (3.8)

= F

ext*

This operation can be made explicit using the Green function G (t,t') of the

operator, that satisfies

(1 _ %) Gt =5(t—1). (3.9)

This equation admits infinitely many solutions. Indeed, for each particular solu-

tion Gp (t,t'), we have also the solution Gp: (¢t,t') = Gp (t,t') + Gy (t), with Gy in

(1S autn -o

The equation of motion is then reduced to

the kernel of the operator

ma (£) = / At G (64) Fua (). (3.10)
Solving (3.9) in Fourier space we have G (w) = 1/ (1 — iwt), s0
1 /
G(t,t) = 2—6_(t Dm0t —t), (3.11)
T

which gives the correct limit for 7 — 07, a physical requirement for the inversion.

That is, when e — 0, (7 — 07) the particle does not irradiate, so we should recover
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the Newton equation Fuy (t) = ma (t) from (3.7). This can verified in (3.10) realizing
that the limit 7 — 0%of (3.11) is a representation of the Dirac delta distribution
S(t—1t).

In this example the Green function found through its Fourier transform is unique.

Other solutions can be written as
Gp (t,t) =G (t,t") + £ (t', 1) Go (1)
with Gp (t) = Le/7.

If we use Gp/ (t,1') in (3.10),

ma (t) = /_ T A Gt Fae () +C(7) Go (1),

oo
with ( (1) = [dt'§ (', 7), we see that runaway solutions are present, namely the
acceleration increases monotonically with time even when there is no external force.
The “7 — 017 criteria is enough to determinate the map since the 7 — 0T limit
of Gp/ (t,t') is infinite for ¢ > 0 unless £ (¢, 7) = 0. For this choice, the runaway
solutions are automatically eliminated. In this case, the physical requirements that
the equation should tend to Newton equation at e — 0 and that there should be no
runaway solutions, univocally determine the map Fey (t) — F., (1).

Writing explicitly (3.11) in (3.10),

1 [ ,
ma(t) = ;/t dt' =T E (),

we realize that our solution is acausal. To know the acceleration in the instant to we
need to integrate the external force F,,; over all future times ¢ > t; Nevertheless,
this violation of causality should be observed only at scales of order of 7 (= 6.24 X
1072%s), where quantum effects should be taken into account. In electrodynamics
this phenomenon is called preacceleration, and has not been experimentally observed.
The fact that there is no experimental evidence of preacceleration is however not
meaningful because it is a classical prediction for a situation where quantum effects
predominate.

Sometimes the inverse Fourier transform requires a prescription due to the pres-

ence of poles or branch cuts over the contour of integration in the complex plane.
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Figure 3.1: Contours for the advanced, retarded, Feynman and conjugated prescrip-
tions for the Green function.

This gives several Green functions G (¢,#'), all of which have the right limit be-
havior.
Example:

Gw) = —

1 — a2w?’

with o > 0 has poles in the real axis at £1/a. The Green functions

1 t—t 1 t—t
G (t,t) = —=si ot —t G (t, 1) = =i 0(t—t
(t,t) aSlH( - ) ( ), (t, 1) R ( )
N b it/ R N e TRy
G (t,t") ¢ : G (t,t) 5 ¢ : (3.12)

defined over the contours of the figure 3.1 satisfy

(1 + oﬂd—Q) G(tt)=6(t—1)
dt? T '

and they are all equally valid, since they have the correct & — 0 limit and do not
present runaway solutions.
Summarizing, we have reduced the order of a differential equation (3.7) by means

of a non-local (acausal) redefinition Fi — F., to obtain

ma (t) = Fee (1)

3.3 The Map

We will use a non-local redefinition similar to the one used in the Abrahams-Lorentz

example to eliminate higher-derivatives in kinetic terms in lagrangian formalism.
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Consider first the simpler higher-derivative lagrangian in one dimension, plus
a term proportional to the square of the equation of motion of the undeformed

lagrangian,

54 (3.13)

The equation of motion and its general solution are

j—a?q® =0, q(t) = a+ bt + cet’® + de '/,

As we can see, it presents runaway solutions, which are absent in the case o? < 0,
since the above exponential functions become complex. It is our intention to reduce
the order of the equation performing a redefinition of the dynamical variable ¢ (Q)

such as

/dt (¢* + *¢%) = /dt Q2.

Using the Green function method, we have

4(t) = / arG (1.8 Q(F)

with

dw e«t=t) 1 [t — |
Gt th=[| = = K, 2>0. 3.14
(&%) /QW\/1+042w2 uafed 0( o )7 “ (3.14)

This function is real and, as seen in Figure 3.2, acausal because has non zero
values for t — ' < 0.

If o2 is negative, a? = —a? < 0, a prescription is needed to avoid the branch cut
in the complex plane. In that case there exist a real and causal prescription, namely

the retarded Green function

! _ =

This kind of Green functions is the central ingredient of the map. Its form (and

dw e ®0=t) AN (It — ﬂ) a’ >0, (3.15)
, [0 ) .

[

the prescription chosen) determines whether the model generated by the map is

acausal or not
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Figure 3.2: Function K, (|t|), which is non-zero at negative times, so it is acausal.

For certain class of higher-derivative theories the method of Appendix B gives di-
rectly the perturbative series corresponding to the expansion of (3.15) in . Clearly,

all prescriptions have the same perturbative expansion, which is real.

Although the lagrangian (3.13) has higher derivatives, is still compatible with a
variational treatment. In a usual lagrangian, the kinetic term is proportional to ¢2,
producing a term ¢® in the equation of motion, which is a second order differential
equation. In the variational method we need two border conditions d¢|i, and dqly,,
whose number is consistent with the order of the equation of motion.

In the hypothetical case of a term ¢¢ in the lagrangian, four conditions are
needed: dq and (d¢) should vanish in the extremes. This is not compatible with
the equation of motion which is of order two, thus the variational method is not
applicable.

In (3.13) this problem is absent because four conditions are required for the
variational method, namely that g and (d¢) vanish at the ends, and the equation

of motion is of order four.

3.3.1 Fields

The map is also applied to field without major modifications. Consider for example

the following lagrangian in a four-dimensional Minkowski space
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1 1
Llp] = 5000”0 + 0’ (Op)? — @J

where J is a classical source. We search for a function ¢ (¢’) such that

! / 1 / / ! 7/
£[¢]=£[<p]=§ Lot — o' T

As before, the map is expressed as
o) = /d4x’G (x,2") ' (2'), J (z) = /d4x’G (x,2") J (2"),(3.16)

. d4k efik:-(zfx’)
G(z,2") = / 1 :
(2m)" V1 + a?k?

Therefore, all the analysis relies on the prescription chosen to evaluate G (x, 2’) .

One of them,

x2

, ik ekl sign (a?) P <_ a 26) 22
Gy (z,2") = 1 = =i =7 L+ — —ie
(27)* V1 + a?k? + ie 472l (22 — ie) / «

2

(03
tends to zero or oscillates rapidly for |2%| > |a?|. So causality violations could be

experimentally tested only at distances of order

Ax ~ 27|al.
When o? = —a* < 0, a real causal prescription exists
d*k e—ik~(x—w’)
Gret (I’,.T/) = /

1 )
(2m) \/1 — @ (ko + ie)” + k2

The branch cuts are located in the lower half of the kg-plane so Gie (x,2) vanish

for t < 0, as can be seen closing the contour of integration in the upper half. By

Lorentz invariance, every point outside the lightcone admits a reference frame where

t < 0, thus causality is preserved. For o > 0 instead, no causal prescription exists.

The equation of motion for the new field ¢’ is
Oy =J = /d4x'G (x,2") J (2. (3.17)

This equation of motion violates causality if the physical source corresponds to
J. This example is specially interesting because (3.16) is the same Green function

found in the map of higher-derivative gravity.
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3.4 Map For Gravity

The intrinsic difficulties of gravity prevent us from finding the explicit map as in
(3.16) to transform away the higher-derivative terms in (3.2). However, due to the
particular form of these terms, which are squarely proportional to the equation of
motion of the Hilbert-Einstein action, it is possible to find the perturbative version

of the map using the theorem demonstrated in Appendix B. Calling
Suplg] = 252 /\/ 9) + aR,, R"™ + bR?]

Selg) = 53 [ VIR()

the objective is to find ¢’ (g) such as

Suplg] = Selg']-
To quadratic order (a?,b% ab) the method gives

1
g/a,B (g7 a, b) = Gop — aRaﬂ + 5 (CL + 2b> ga,@R + (318)

ab 2 2

——V oVl — — (V Vao+2R.,) Rg, + Z (0—2R) R.p
gaﬁ
5 [a® (R* — zwa) (a® + 8ab + 12b°) OR] .
Third-order terms are listed at the end of Appendix B. Applying the pertur-

bative map to a generic theory (3.2) new vertices are generated due to the metric

redefinition in the renormalizable matter sector S,,(¢, g, A) :

Sm(,9,N) Sl g5 A) + ASp(p, g’ A) (3.19)
1
AS, (0,9 N) = /d4x\/ ! [ —TH R, (¢)+ 4(a +20)R (¢") T} | + O(a?,b%, ab),

where T = —(2/y/—¢)(05,/89,,) is the (canonical) stress-tensor and T}, denotes

1ts trace.

In the expansion of the metric around the flat space, g, = 7, +2K¢,,, the map

is expressed as [32]

1 1 1 n 1
— ro_ - / o af N A I T aaqb
¢uu m <¢'u,1/ 377,ul/¢ + 3D7]W3 0 Qbalg) Sm (¢ D@ 0 gzﬁaﬂ) ,
(3.20)
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where ¢ is the trace of ¢, and b' = —2(a + 3b). The components of ¢, in (3.20)
are multiplied by 1/4/1 —ald or 1/4/1 — b'0J, thus the causality violation should be
detectable at distances of order of y/|a|, /|| or smaller.

3.5 Renormalization Through The Map

The map can be used to relate the renormalization of two different theories. Start
with a renormalizable semiclassical model which contains higher derivatives (HD)
in the kinetic term of the classic field. These higher derivatives, even when corre-
spond to a classical field are undesirable because they lead to instabilities. Then,
applying the map to the bare and renormalized HD action, we obtain the bare and
renormalized actions of a theory that presents an acausal (AC) behavior.

Consider a HD renormalizable model in a classical background ¢ that can be

written as the sum of two terms

SHP = SHPlar, @] + SEP v, b, ] (3.21)

where SJP contains the (higher) kinetic term of the classical field ¢ and does not
depend on the matter fields ¢, while SHP is a renormalizable matter action that
depends on the couplings and the matter fields generically denoted by a and ¢, and
the background filed ¢. The superscript HD stands only to indicate that the matter
action belongs to the higher-derivative model, indeed it is assumed that kinetic terms
of the matter fields are not higher-derivative.

When the map is real, for example the perturbative map of the previous sec-
tion, the relation between the renormalization of two models can be demonstrated
applying the map directly to the classical action S"P. More explicitly, apply a map
¢ = F(p,a) such that ¢ = F(¢,0) is the identity map and

SiPlas ] = Sa%a; )

where Sf:c contains no higher derivatives in the kinetic term of (. This change

modifies also the matter action in (3.21), namely

SePla, ¢, @] = SaCla, ¢, ¢].
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A similar map ¢” = F(¢, ag) transforms away the higher derivatives contained
¥ ¥ y g

in the p-kinetic term of the bare action,
SED[@B; ¢] = Sﬁc[aB; ¢,

producing changes in the bare matter action,

S»,I:I@]]g[aBa ¢B7 (70] - STéLCB[aBa ¢B7 SO”]'

As always, the subscript B stands for bare quantities.
Applying the “renormalized” and the “bare” map to each side of the relation

between the renormalized and bare HD action,

S"la, ¢, ¢] = Sg" o, o5, ¢,

it is possible to write

S5%os; wB] + Saglas, ¢, o8] = S2C[a; or] + Salle, ¢, ¢rl, (3.22)

namely the relation of renormalization of the bare acausal model

S*C = 55%a, ¢] + 54, 6. ¢]. (3.23)

/

In (3.22) we have renamed ¢p = ¢” and pr = ¢'.
The renormalization of the AC theory (3.23) is then achieved by the same redef-
initions of quantum fields and coupling constants as in the related HD model, plus

the renormalization of the classical field

pp = F (F~' (¢r,q),as). (3.24)

This redefinition is clearly non-local and in most cases acausal, as can be seen
in the following example. Taking (1 — a?0?) as the differential operator in one
dimension, the function F'is given schematically by

1

Flo.o) = 1 pm?

s0 (3.24) can be expressed as
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1+ a0?
©B = TOEGQSOR = /dx’G (f - xl) ¥R (l'/)

with

G(m):(a—%)é(m)—i—( —Z—%) G (2).

a2
where G, () is the one of the Green functions of (3.12) depending of the contour of
Figure 3.1 chosen. Observe that the classical field is not renormalized in the o — 0
limit, namely ¢ = ¢gr as expected because lim, o+ G, () = 0 (). Some of the
prescriptions present an acausal behavior of order of a. The fact that the renormal-
ization of the classical field is acausal does not represent by itself a problem, after
all bare quantities are not observable. What is physically relevant is the causality
violation in the equation of motion (3.17).

The equivalence of renormalizability of both theories (3.21) and (3.23) is evident
since the theories HD and AC differ only by the external field.

If the map is complex, to avoid having a complex action, the map is applied to
the HD quantum effective action I'M'P and then the real part is taken to define an
action S, and obtain from it real equations of motion [32], which are the classical
equations plus quantum corrections.

The steps to obtain the real acausal equations from the HD theory are shown

schematically in the following table,

SHPlp] — THP[p]e C — SHP[p] = Re {THP[¢]}

I #(¢)
M*Cple C — S2°y] =Re{I'*°[¢']} —Eq.Motion(AC)

where for clarity we have written explicitly only the dependence on the classical
field. Note that in general SI'P[p] and S;¢[¢'] are not related by the map.

The action S, contains all the information of the quantum effective action I,
which indeed can be reconstructed perturbatively from S, [32]

The renormalization through the map is possible only because the field ¢ is kept

classic. If it is not, we should include in the functional integral (3.3) the determinant
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of the Jacobian of the transformation ¢ — ¢’. This implies the appearance of ghosts
that no symmetry forbid their existence on final states, so unitarity is lost.
In gravity, the renormalization of the metric g,, is given by (3.24) is, for the

perturbative map (3.18)

JasB (ga a, b) = Gap + 71 Raﬂ + X Rgaﬁ + l‘gvanR (325)
+ (24V, Vo + 25R0y) Ray + (260 + 27R) Rop

+g%" [ + 29 B2, + 21000R] + O(a?, b7, ab)

where is understood that in th right side g3 is the renormalized metric tensor, and

the coeflicients are

T = a— ag, T = —;11(3a2—2aaB—aQB),
ro=—1((a—ap) +2(b—bp)), xr=—1(2ab— 2abs — aag + a3),

T3 = —%(3&2—2aa3—a2]3), Ty = a} — a’,

x4 = 3 (3ab — 2agb — agbg) , rg = 2 (4ab + 3a” — dabp — 2aap — ag),
Ts = _%(GQ _CLZB)u

and 219 = —360? — 24ab — 3a® + 24bbg + 8abp + 12b3 + 8agb + 2aag + 8agbp + a.

3.6 Acausal Einsten-Yang-Mills

As an example of the usage of the perturbative map, we prove the renormalization of
the acausal Einstein-Yang-Mills model through the renormalization of the following

HD model

R U 1 B
LYy = V=9 (% +EW? 4 (G + w}?) — VEIFLEY,  (3.26)

where

4 2
2 _ afuy uv
W2 = RopuR oL o v ¥y

D -2
is the squared Weyl tensor and Gp the Gauss-Bonnet (GB) density. The relation

R2

between the constants &, ¢, n are a,b from (3.2) is
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a 4(D-3) b D (D —3)
%2~ D-32 & @_(D_l)f(p—mp—z)f‘

Since the integral of the GB density in four dimensions is a total derivative, for

a metric that tends to flat space at infinity rapidly enough, the term
/dDSC\/ —gGB

in (3.26) is evanescent at 4-¢ dimensions. Therefore, the constant ¢ belongs to the
evanescent sector and have not physical consequences.

Most of the properties showed here are valid, with minor modification, to every
power-counting renormalizable theory coupled with classical gravity.

The renormalization of the Yang-Mills model in a gravitational background (3.26)

gives at lowest-order [38]

5 - —%%@m( )
Lo

Applying the map (3.18) to (3.26), we obtain the theory
‘C\A(l(\J/I = 5,2V - \/ {Fa F* H ) + T/WK/W(Q) + Tul/paLlea<g)} ) (327)

which is renormalized by means of the redefinition of the field A,, the constants
a, & ¢, n and the metric (see expression (3.25)). The Newton constant x? is not
renormalized (if there is no cosmological term) 7),, is the unperturbed stress tensor
and T,,,, is the traceless operator F),, F,,,

1
T = —FlLF"+ Zngﬂ, (3.28)

o a 1 1
Tivpe = FoFp+ B (GuoTvo = GuoTup = GupTho + GuoTup) — 19 (GupGuvo = GuoGup) F2.
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where F? = Fo F%°8.
Thus, the acausal Einstein-Yang-Mills theory is just Yang-Mills theory with two
composite operators, besides F?, coupled with suitable external sources. Up to the

second order, the external sources are

1 1
H(g) =14+ EQQRaﬁROcﬂ o ﬂaQ_RQ’ [P — QQRMPRVU, (329)
3 3 2b
K"(g) = 2aR" + §a2DR"” + a’?RR™ — 3@2RW”5RQ5 _ %VMVVR‘

Due to the renormalization of the metric g,z (3.25), it becomes running even if

it a classical field,

dgaﬁB —0 dgaﬁR

1
- - 2 2 b 2 .
d,u K du ﬂaRaﬁ + 2(5{1 + ﬂb)gaﬁR +0 (a/{ ,bk )

3.7 Other Types Of Renormalizable Acausal Mod-
els

In this section we prove the renormalizability of certain families of acausal models
that are not included in the classification of the previous sections. In particular,
they do not have the form (3.19) so they can not be considered as the result of the
application of the map to a model as (3.2). Nevertheless, the map will be useful in
demonstrating the renormalizability of these models.

The first class of models we study here are the generalization of the model (3.1)
with a matter action (3.19). In these models, the deformation has a head that is still
proportional to the stress tensor, but now multiplied by more general functions of
the metric than in (3.19). In other words, we prove the renormalizability of acausal

models having actions as

1 ! "
52 = o [ AeVTGR 4 Su (6.0, + 51 (019, N) + (0,90 (330)

where Sy (¢, g, ) is a four dimensional renormalizable matter action in a gravita-
tional background that depend on fields and couplings generically denoted by ¢ and

A. It is perturbed with two other actions S; and Sy that have following special form.
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They both are diffeomorphism invariant and have matter operators of dimension-
ality less than or equal to 4, are gauge invariant, covariant under diffeomorphisms,
invariant under the global symmetries of the theory, not necessarily scalar, and can
be contracted with tensors constructed with the metric in a non-trivial way. S; rep-
resents the head of the perturbation and is proportional to the stress-tensor of Sy
denoted T}, and linearly proportional to Ricci tensor or its covariant derivatives'.
Explicitly,

S = / A2/ fo (90 TL (3.31)

with

fw/(gpo) = XlR;w + X2Rguv + O(szpa)-

On the other hand, S5 is the queue that renormalizes coherently with S7 and it
is proportional to the square of the Ricci tensor or superior Sy = O(wa, ®).
The renormalizability of (3.30) is proved in two steps:

I) Demonstrating the renormalizability of this HD theory

SHD = Sg[g] + SO[¢7 9, >\] + Sl[¢7 9, )‘I] + SQ[¢7.97 AH]? (332)
1 / "
Syl9] = 5.3 d*zv/=g (R+ R T (N, N') Rag) ,

where Sy (¢, g, A) is the same as above, instead S; and Sy have the same restrictions
as in (3.30), so we use the same names. The tensor 7+*? is a differential operator
that can depend on the metric, covariant derivatives and the couplings contained in
Sy and Ss

1) Demonstrating (3.30) and (3.32) are related by a perturbative map as
(3.18) .

We basically demonstrate that the action (3.32) keeps its form under renormal-
ization, even if it contains an infinite number of constants. Working inductively, let
I'™ be the generating functional of 1PI diagrams which has been renormalized up

to order n in loop expansion?. Its divergent part I' which is local and of order

!To be more specific, an even number of derivatives to be contracted with the Ricci tensor, the
stress-tensor or themselves.
20r equivalently, of order h".



67

(n+1) has the form

J/

R

= (650)" + /5R2 / Fuw (9) (T3") )+ / Ry (T°7) " Ry 4 (68,)"
zz)

i)

i)

(3.33)
plus BRST exact terms treated in the next section. Here | denotes [d*z\/=g for
shorten. I is separated in three parts according to the type of divergent diagrams
that contribute to each part. First we show explicitly the form of these parts,
and then we explain how the divergences are absorbed in suitable redefinitions of
couplings and fields.

The terms collected in i) come from divergent diagrams that do not contain any
A or X' vertices. They are the divergences of the unperturbed theory, and can be

written as

m _ 9%, ﬁ
(05)" = S vAX +9 53 (3.34)

(R ™ = Ag”>RWRW+Ab R?,

where AE\" A () Aa ,A(") are divergent coefficients corresponding to the order-

(n + 1) part of the renormalization constant of A, ¢, a and b.

The part denoted ii) is made of contributions from diagrams with only one

insertion of a Sy vertex and no Ss-vertex insertion. They are collected in

/ A2/ =G f o (gp0) (T2 (3.35)

with
2 OT[D,g,] 2 08g[guw]

V=9 0gu(7) N=N\= ojL V=9 69 ()

The couplings A" and X" are set to zero in (3.36) to extract the unperturbed part

(T = -

(3.36)

of the stress-tensor. The divergent part of (3.35) of order n + 1 is obtained substi-
tuting I'[®, g,.| by I in (3.36). Hence, from (3.36), (3.33), (3.34) and recalling

that T} = — 2504 we have
o1y LN IR CL N
7y = =0 A AP 4 ——— 3.37
< 0 >oo )\ A + ¢ 5¢ dgw ( )
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The divergences coming from diagrams that contain at least two vertices of type
S or at least one vertex Sy are all proportional to the square of Ricci tensor, so
those purely gravitational are contained in 12, (T“”aﬁ) () R, while those that have
a matter operator are contained in (552)(n) , 80 they are all collected in ).

In this classification, we have considered all possible diagrams and verified that
(3.33) contains all possible contribution of order n.

The elimination of the divergences of order n + 1 proceeds as follows. Those
collected in i) are the divergences of the unperturbed theory Sy, absorbed by redef-
initions

A=A=A" 66— 9AY,  a—a-AD, bbb A (3.38)

These redefinition cancel the divergences i) because

So = Sp— (35)™ + 0 (2],
R, R"™ + bR’ — aR,,R" +bR* — (6R*)"

but also affect the rest of the action SHP (3.32). Inside the action S;, the unper-

turbed stress tensor changes as

o1 ST
O\ d¢
cancelling out exactly the non-purely gravitational part of i) (see (3.37)). The

T - T = A - 6= AL 1 0 ()

redefinitions (3.38) applied to Sy generate divergent terms of the same form as Sy,
which are regrouped in (655)™ .

All divergences remaining in (3.33) are squarely proportional to the Ricci tensor.
The purely gravitational ones are absorbed in redefinitions of constants in 7+*%
while the rest have the form as Sy so they are eliminated through a redefinition of
the couplings \”. The constants A are not renormalized; this is consequence of the
finiteness of the stress tensor?.

Removing the (n + 1)-divergences we obtain I'™*Y and remove the (n + 2)
divergences as explained and proceed inductively. This prove the renormalizability

of (3.32) to all order.

3Deriving I' [®, g] with respect to gas produces an insertion of the operator Tp' # in a renormal-
ized correlation function, which remains finite.
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As far as the point II) is concerned, the theorem enunciated in Appendix B

ensures that there exist a map ¢’ (¢) such that

% d'zy/=g [R + RWTWaﬁRaB] - % /d4x\/—_g’R (9)

This map relates the HD theory (3.32) to the acausal model (3.30). Under this
perturbative redefinition of the metric the actions Sy, S; and S, are mapped into
terms that can be classified again in Sy, S; and Ss. To first order in Ag,sz we have,

1) the terms generated varying Sp are proportional to the energy-momentum
tensor of Sy, T} and proportional to the Ricci tensor, so they fall in the class 5.

2) the terms coming from the variation of S; are of two types:

a) those obtained varying the metric outside T} are still proportional to
T} and at least linearly proportional to the Ricci tensor, so they fall in the class
S1 or Sy

b) those obtained varying the metric inside 73" are not necessarily propor-
tional to T3, but they are at least squarely proportional to the Ricci tensor, so they
fall in the class Ss

3) the terms generated varying S are necessarily in the class Ss.

The second and higher orders in Ag,g are quadratic in the Ricci tensor, or its
covariant derivatives, so they all fall in the class Ss.

We have therefore proved that the theory (3.30) of classical gravity coupled with
quantum matter is renormalizable in the form (3.30). The matter action Sy + S +
Sy is non-polynomial and S; + Sy contains infinitely many independent couplings.
The set of independent couplings, however, is considerably smaller than the set of
independent couplings of quantum gravity, since S; + Sy contains only lagrangian

terms of the specified form.

More general acausal models The non-renormalizable perturbation S; (3.31)
of the theories considered in the previous section has a special form. Precisely, it
contains a unique matter operator, the energy-momentum tensor Té”' of the unper-
turbed matter action Sp. In this section we prove the renormalizability of more

general theories. Specifically, we study the renormalizability of a class of theories
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that have the same form as (3.32) but where S; and Sy are more general, namely
their only restriction is that they can contain matter operators of dimensionality
four or less. As consequence, the purely gravitational sector can have terms that
are not squarely proportional to Ricci tensor. The action of these models can be

written as

1
S0 = o [ AtV [R+ R T Ry 4V (9]
+oSot / d'oy=53 " 01 (6,9) K" (g), (3.39)

where V' (g) collects all purely gravitational terms not squarely proportional to the
Ricci tensor. Sy is a power-counting renormalizable matter action embedded in
curved space and Oy is a basis of covariant gauge- (or BRST-) invariant local op-
erator, not necessary scalar, of dimensionality smaller than or equal to four. The
sources K1 are arbitrary tensorial functions of the metric.

For instance, we can obtain a generalization of the Yang-Mills model using
— 4 a v
= ——/d o —gF,, Y,

501 (6,0) K (g) = — {FL, ™ H(g) + T K" () + Yy I (0)}

where the operators 7, and Y, are defined in (3.28) and H(g), K*(g), L**?(g)
are unconstrained functions of the metric.

The kinetic term for the gravitational field in the action (3.39), namely the term
quadratic in ¢,3 when the metric is expanded around flat space gag(z) = 7ag +
Kap (x), comes exclusively from the curvature scalar R and from terms squarely
proportional to equation of motion [39, 40|. Thus, the higher derivatives contained
in V (g) do not need to be transformed away since V' (g) contains only vertices. We

can obtain an acausal renormalizable model from (3.39) simply applying a map

/ d'zv/=g [R+ R T" " R,5) = / d*z\/—g'R[g]. (3.40)

The terms in V (g) are mapped into terms that could be eventually squarely

proportional to the equations of motion. It is possible to apply the map iteratively
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to eliminate every newly-generated term of this kind [40], but it is not necessary
since the terms coming from the transformation of V' (g) are certainly vertices. The
discussion about violations of causality is exactly the same as before, since the map
g (¢') is the same.

The theory (3.39) is renormalizable in the sense “closed under renormalization”.
Its renormalizability can be easily proved realizing that the gravity content is the
more general at all and no matter operator with dimensionality greater than four can
be generated by renormalization. This can verified noting that divergent diagrams
are the same as those found in flat space, except that there are external fields
attached to the vertices. The same PC analysis of Chapter 1 works here, so the
same matter operators that are needed as counterterms in flat space are needed
here, but coupled to purely gravitational tensors to form diffeomorphism-invariant
combinations.

Taking (3.39) as reference, we can construct models with a reduced number
of couplings. For instance, starting with a renormalizable theory and letting the
couplings depend on the curvature of the spacetime. In a second stage we will
apply the perturbative map to obtain an renormalizable acausal model. To be more
specific, once again consider our prototype HD Yang-Mills in curved space, plus the

special head operator Fjj, F*"” R, which is not proportional to the stress tensor of

SO;

R n 1 0
HD _ D — bl 2 2__Fa Faw _ Z pa papy ]
S /d xy/ g[Z/#—i-fW +CGB+(D—1)2R 10 1 Fw R
(3.41)

The deformation could be absorbed in a Weyl rescaling of g,s

2
g//w = g€ ¢7 gb -

o1 In(1+ 0R).

In four dimension, the Yang-Mills (YM) model is invariant under conformal
transformations, so (3.41) can not be obtained from YM through a redefinition of
the metric, as can be verified observing the singularity of the Weyl scaling factor ¢

at D = 4. The new vertex is therefore not trivial.
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Analyzing divergent diagrams we will include progressively all the terms required
by renormalization. Let us study them as in the previous section, grouping the
diagrams by the number of #- vertex insertions. Diagrams without # insertions are
those of the undeformed YM, so their divergences are absorbed in redefinitions of
¢,&,m,a, Ay, and BRST sources.

Divergent diagrams with only one insertion of # are proportional to the renor-

malization of the operator F; F** in curved space,

1 eau’ o
———[Fo P = ———F5 F3" 4+ = [(eA¢ — Be) W? + (eA¢ — 3¢) G
1o ] P [(eA¢ — 5e) (eA¢ — B¢) G
R? 4 af,
_ — 1o
+ (éA'f] ﬁﬂ) (D . 1)2 + (D . 1) (8A77 ﬂa ) R
+oX, (3.42)

This result is formally identical to the one found by Hathrell [41] for quantum
electrodynamics, except by the o-exact terms, specified in the next section. Here

we can read the renormalization of F? in flat space

ZFQIZO[<1—&>.
EQ

The renormalization of 0 is then

QB = /117692;21, ﬁ() =0 <% — 2@> .

da o

To absorb the purely gravitational divergences of (3.42) we should add to (3.41)

/ dzv/—g {WRWZ + pRGp + A ap— RDR] .

v
(D—-1) (D—-1)
The renormalization of these new constants can be read from (3.42),

2

2
B = N_a (’}/ — 9% (EA,E — 6{)) ) PB = M_E (p - 0% (gAC o ﬁ())

2 2
vg = p° (U — 9% (eA, — ﬁn)) , B = ° (7’ — 49% (An — Oéi")) )
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And their beta-functions (see section 1.7) read

—~ d ~ d

By = ey~ bat dif’ by =ep = 0o dic’

~ dg ~ d /da?p
Bo ev — o o B, =e¢T Gada ( 3 )

Now consider Feynman diagrams of higher order in 6, obtained with multiple
insertions of RF? and its BRST completion RoX. Since these insertions are pro-
portional to R, diagrams with no gauge fields, ghost and BRST sources on the
external legs, purely gravitational counterterms with multiple insertions are cer-
tainly squarely proportional to the Ricci tensor and can be absorbed in a term
R, T mab R 5. BRST invariance, parity invariance and power counting, ensure that
divergent diagrams that carry gauge, ghost or BRST sources on the external legs
can give only counterterms proportional to £ plus o-exact contributions, and carry
a power of R at least equal to the number of insertions. As shown below with the
Batalin-Vilkovisky formalism, this means that « and the gauge field A7, renormalizes

as

a — L(R)«a
A® = Li(R)A

where L, L, are function of the curvature scalar R. Therefore, completing (3.41),

we study the renormalizability of

R R
S = /dDSU\/—g l—Q+(§+7R)W2+(§+pR)GB+—("+U 232
; pvof . L a apy
+(D —1) RUR+ R, T Rap 4OzLF‘”’ (LaA) F*" (L4A)|(3.43)

For certain functions 7", L, L4, containing a set of new couplings, the action
(3.43) is renormalizable, and we examine its renormalizability using the Batalin-
Vilkovisky formalism in the next section. This theory can be mapped into an acausal
one, which is renormalizable, using the map (3.40). The only term not squarely
proportional to Ricci tensor multiplies p, and corresponds to a vertex, collected in
V' (g) in (3.39), and as explained above, it is mapped into vertices so they do not

present instability problems.
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Batalin-Vilkovisky In the renormalization of gauge theories the terms in bare
lagrangian do no have the appropriate form to absorb the divergences simply redefin-
ing couplings or scaling fields. What is needed there is a transformation of fields
that redefines the symmetry transformation. The Batalin-Vilkovisky formalism [42]
provides general tools to face this problem. In the following we briefly review it and

generalize it to prove the renormalizability of (3.43).

In this section and the deWitt notation is used. Each index represents a set of
indices, discrete or continuous and sum? over repeated indices is understood. The
symbol ¢! represents a generic field, that can be scalar, spinor, gauge, ghost, etc.
Also suitable \/—g factors are understood in appropriated places to form diffeomor-

phism invariants. For instance,

> e (i mm) = 5

Let s be the BRST operator, being s¢’ the infinitesimal transformation of ¢’.
The extended action S is defined adding the gauge-fixing term s¥ and the BRST

source terms to the action S, namely
S=5+sV+ (sgb]) K,

Over the matter and gauge fields, the action of s corresponds to an infinitesimal
gauge transformation with the ghost field used as the parameter of the transforma-
tion. The action of the operator s over the ghost and auxiliary fields is defined to

be nilpotent s? = 0.

a a abc c a 1 abc c ek a a
sA; = 0,C —|—fbAZC', SO=—§bebC, sC" = B, sB* =0,
where A7, C, C", B are the gauge, ghost, antighost and Lagrange multiplier fields.
The new extended action S is not gauge invariant, but invariant under the BRST
transformation, since S is gauge-invariant and do not contain ghosts, thus sS = 0.

The gauge-fixing term is invariant by the nilpotence of s.

“Integrals over continuous indices, like spacetime coordinates.
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For two functionals X and ) depending on ¢! and K7, define the antiparenthesis

B 5RX 5Ly . 5RX 5Ly
0! 0K 0K 6T

(X, D)

It is necessary to distinguish between the left and right derivatives, because
functionals, fields and sources can be fermionic or bosonic. Note if the functionals

B, By are bosonic,

since each BRST source has the opposite statistic respect to its corresponding field.
A canonical transformation is a redefinition of functionals depending on fields
and sources, that preserves the antiparenthesis. It can be generated by a generating

functional F (¢, K') such as

oF 0F
¢/I = 9 KI = <7
0K} ol
The (classical) invariance of S with respect to BRST transformations is expressed
as
0S I
(8,8) =2— (s¢') =2s§ = 0. (3.44)
Yol
and is called the master equation. In regularizations that preserves the BRST in-
variance and the functional measure, as dimensional regularization, the expression

(3.44) implies that
(I,T) = 0, (3.45)

where I' is the 1PI generating functional of the completed action S, including BRST
sources and ghost terms

Now, using the antiparenthesis define the generalized BRST operator ¢ such as
oX = (S, %)

which is nilpotent 0> = 0 due to the master equation (3.44) and the Jacobi identity
satisfied by the antiparenthesis.
Proceeding inductively, order by order in loop expansion as in the previous sec-

tion, call I'™ the generating functional of 1PI diagrams which has been renormalized
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up to order n in loop expansion and separate it as
P =i 4 e (3.46)

where Ff{}f is the finite part of T and FEQ) is the divergent part, which is of order
n+ 1.
Writing (3.46) in (3.45), we conclude that the order-n divergent part of the I is

)

o-closed oT%) = 0. Then, it can be expressed as the sum of a gauge invariant part

plus a o-exact term

ng) == gn + UR’/H

where G is gauge invariant, therefore these divergences can be absorbed in redefini-
tions of couplings and fields present in .S. The o-exact part can be absorbed through
a canonical transformation of fields and BRST sources.

The canonical transformation required in our case to eliminate the o’R,, term is
given by
(f;?[ K = K, — g%.
Before studying the model (3.43) where the coupling constant depend on R, let

F(6.K)=¢'Ki+Ra, o' =0¢"+

us review the Batalin-Vilkovisky for the Yang-Mills model in a curved background,

R n 1
— D — 2 2 a prapy
S /d T/ g[%ptfw +CGB+( _1>2R 4aFWF

+sVU (¢, g) — /de\/—_g [(SAZ) K!'+ (s@a) K&+ (sC*) K¢ + (sB) K}g} )

We choose a gauge fixing term that break only gauge invariance and not general

covariance, V#AY = 0.

)\—a —-—a
(¢, 9) = /d4x\/—g [—EC B*+C VFAL .
Let us examine the o-exact terms. Simply considering that R, should be co-
variant combination of fields and sources with ghost number equal to —1 and of
dimensionality 3 or less (because they can be coupled to functions of the metric),

there are 17 candidates,
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KrAZ,  Kgce, K&C",  KgB*,  C'BY,  C'V,AL
v.orAn AL, A, et T
FURRALAL  fURRCCY fKRERCY KK
K§V, AL V,K8AS  K§AL (3.47)

Note that in the case where there is no functions of R inside the integral, some terms
with covariant derivatives listed above are equivalent. Since the action provides no
vertices with B* Kg or K% fields on the external legs, 0X; should not contain
B®, Kg or K%, where X; is some linear combination of the above terms. There are

only three such combinations, namely

X, = K&C@,
(Xa)l = VHC"AL+ KIAS,

v

Xs = MC"B*+ K§B® + K&C" — C'Vr AL

Actually, it is enough to consider only two of them, since X3 is o-closed, indeed
it is exact X3 =0 (K%@a) .

In the unperturbed theory it is convenient to use X; and

Xy = Xz—(Xo), + VH(C" A
= MC"B"+ K§B" + K&CO" — KF A"

as a basis. Note that 0. X, contains a B%field, but it is a total derivative. With this

choice,

R, = / d*zy/—g [58”)(1 —5™Mx,|,
where 5é7 ) and 51(471) are divergent constants. This basis is such that o-exact countert-
erms are reabsorbed by a renormalization \' = A7, , of the gauge-fixing parameter
A and the canonical transformation

o' =2 K =27 'K,

n i n i
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generated by
F (¢, K') = / dov=9Y 20K = ¢' K} — R, (¢, K') + higher orders,
where

Z 6:ZnB:Z_1A:Zr:1)\7 ZnKi:Z_l Zvlz/2A:1_51(4n)7 Z?i/é:l_é(Cn)

n n )

In the perturbed model (3.43), the matter operators in (3.47) are coupled to

functions of R. If we choose

Jl - X17 J2 = X2
as a basis, then

R, = / d'oy/=g |08 + 65 )

where 581 ), and 51(4") are now functions R with divergent coefficients. The generating

functional reads
F(6,K') = / diz/—g [Z;/jAZK;“ +C'K2 + B°Kg
+2,/¢C g + (25 -1) (7T Az

where Z,, ¢ and Z,, 4 are defined above. Here Ua, B K§ and A are not renormal-

ized, and the unique non-trivial redefinitions are

Ar — Zj/jAg, ce— z2.ce, K& — 72K,
a a a 1/2 4a
K& — Kg—vrds+ve (254,

Ki = 2K +vT (2,0 -1),

n

besides the renormalization of the gauge coupling.

Now define a map X, (L, La, Lc) made of a redefinition

a— a(fR) = aL (IR) (3.48)
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of the gauge coupling, plus the addition of purely gravitational terms (described

below), plus the canonical transformation generated by

F(p,K') = / d*zy/—g [LaALK! + C'K2 + B"K}S
+LoCUKE + (La — 1) (VHC") Al

where the functions on £ depend on #R. The unique non-trivial redefinition of fields

and BRST sources are

Al — L4A%, C*— LeCY, K& — L'K§ (3.49)
K& — K& —VFAS + V" (LaAY),
Kl — LyKr+vC" (L' —1).

We assert that the perturbed theory obtained applying the map >, to the unper-
turbed one is renormalizable and that the subtraction of divergences is again a map
¥, namely a renormalization of the gauge coupling of the form (3.48), plus a canon-
ical transformation of the form (3.49), plus a suitable renormalization of the pure

gravitational terms.

The action of the perturbed Yang-Mills theory in curved space (3.43) for the

Batalin-Vilkovisky formalism is

]' a auv )\ a a
St s = XS = /d4x\/ [ﬁ — 1op P (L4 A) P (L4 A) — 5 BB
+BVFAS + Ly (KY + VPC") [0, (LeC®) + f™LaLcALCe)

LC aoc a C a a
+5 fKLCPCC — K&B } +AS,, (3.50)
where AS, denotes pure gravitational terms, so far unspecified. The Batalin-
Vilkovisky analysis has to be applied with the perturbed c-operator oy, defined
by
O'QX (S YM—0> )

It easy to verify that oy is nilpotent, namely

(8 YM— 078YM 9) =0.
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Calling I'yy_g the generating functional of the one-particle irreducible diagrams,

we have also
(Cya—o, I'vm—g) = 0.

Thus, analogously to the unperturbed model,
F%\)/I_e,oo =Gno +0oRn o (3.51)
Let us analyze the vertices of the theory (3.50). We can write
Syai-o = Sym + / d'2y/=g [K10; + K, 0l + K, 08] + AS,,

where Op, Of and Of” are 6-independent operators with dimensionality 4, 3 and
2 respectively, constructed with the fields, the BRST sources and their derivatives,

while the gravitational sources read
K =P (0R), Ky =0P,(0R)V,R,  Ks, =0°P,(0R)V,RV,R.

Every f-dependence is contained in the K’s. The counterterms (3.51) are local,
covariant, have dimensionality four and are constructed with the K’s, the matter
fields ¢!, the BRST sources K7, the curvature tensor and their covariant derivatives.

Let us study the op-cohomology. The oy-closed terms of type G, ¢ can contain
F? T, and Y ,q8, with AZ replaced by LAAZ. However, PC excludes both T},
and T, because they have dimensionality four and the only dimensionless K is
scalar. Therefore, only F? remains. The functional R, ¢ is a linear combination of
the terms listed in (3.47), with coefficients constructed with the sources K’s, the
curvature tensors and their covariant derivative, such that o4yR,, ¢ does not contain
B®, Kp or K. There no op-exact term with dimensionality two or less, so Fg,w
can be dropped. We can drop also fgu together with the terms GGAZ and K3A
of (3.47), because the counterterms constructed with these objects can be easily
converted, by means of partial integration, into products of a scalar function times
a combination of the other terms of (3.47).

Using the canonical transformation (3.49) to relate the o- and oy-cohomologies,
we demonstrate that the generic functional R,, y can be written in terms of the basis

J1, and J,. Start applying the canonical transformation to

oX = (S, X) =Y.
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Denoting the transformed functionals with a tilde and using the invariance of

the antiparenthesis, we have
(S %) = (3.52)

The transformed action g{}ﬁ differs from S¥Y} , because of the coupling redefi-

nition:
SYM =S, +/d4x\/_—F“ (LAA) F" (LyA) = Sihy o + Ap,

therefore (3.52) can be written as

ni® =5 (BL.E) =V (3o

Assume that X" is a combination of the terms (3.47). Since Az depends only on
A, only the term proportional to K/ A} in X contributes to (Ar, X). So, (Ar, X)
does not contain B, K§ or KZ. Moreover, the canonical transformation (3.49) is
such that functionals (not) containing B¢, Kj% or K% are mapped into functional
(not) containing B¢, Kj or KZ. Thus, an & such that o&" does (not) contain
B*, Kp or K% is mapped into a X such that opX does (not) contain B*, K or
K%, and viceversa. Having dropped both Fgu and fgw, we can focus on scalars
functionals X, X.

These properties ensures that the most general X can be obtained applying the
canonical transformation (3.49) to the most general X. Since the latter is a linear

combination of Jy, and Js, and
j-’l = Jl, L = J27

also the former is a linear combination of J; and .Js.
On the other hand, the pure gravitational counterterms,which are trivially oy-
closed, can be constructed with the K’s , the curvature tensors and their covariant

derivatives. The list of independent terms is

QlRuvaﬁR“l/aﬁa Q2R;WR'LW7 Q3R27 Q4DR7 92Q5R#llvuvaR7
0°QsV,RV*ROR,  60*Q:(V,RV*R)*,  6*Qs(0R)?,



82

where @;, ¢ = 1,...,8 are functions of §R. Thus AS, is a linear combination of
such terms. We see that there is only one vertex, RR,,.s """ that is not squarely
proportional to the Ricci tensor.

Finally, we have
F%\k(,m = U, Fy, (LaA) F*" (LaA)+0g (Vo1 + Wy Ja) + pure gravitational terms,

where U,, V,,, and W,, are functions of # R. The divergences are inductively subtracted

by a map of the form of ¥, with £ =(1 — 4aLU,,1—-V,,1 —-W,)



Chapter 4

Renormalizable Lorentz-Violating
Theories

While in Chapter 2, we studied how to give sense to (PC) non-renormalizable models
as fundamental theories by means of a RG-consistent reduction of couplings, in this
chapter we use a modified version of PC, adapted to a particular class models that

have only higher spatial derivatives in the kinetic term, to prove its renormalizability.

The inclusion of higher-derivative terms improves the power counting making the
propagator fall faster at high energies [47]. However, (as in Chapter 3) higher time-
derivatives should be avoided since they produce instabilities (in classical models)

or loss of unitarity in QFT (see for example [31] for higher-derivative gravity).

Recalling that the loss of unitarity is due to the presence of higher time-derivatives,
in this chapter we study the renormalizability of models where higher derivatives are
present, but only the spatial ones, thus the PC is improved without implying a loss
of unitarity. In particular it is shown that higher time-derivatives are not turned on
by renormalization in these models. Thus, we obtain a renormalizable and unitarity

model but at the price of losing the Lorentz invariance.

In the usual PC, the number of types of vertices allowed in a renormalizable
theory increases when the number of spacetime dimensions decreases, because the
maximal number of legs that a vertex can have increases (see the inequality (1.7)).
The net effect of including higher spatial-derivatives in the quadratic part of the
lagrangian, is that the spacetime dimension D is replaced in some equations of PC

analysis (in particular in (1.5) and (1.7) by a fractional number which is smaller than

83
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the physical number of dimensions. Therefore, the use of spatial higher-derivatives
opens the possibility of a new set of interactions for renormalizable theories. The
set of consistent theories is still very restricted, yet considerably larger than the set
of Lorentz invariant theories. Renormalizable models exist in arbitrary spacetime

dimensions.

Renormalizability follows from a modified Power-Counting criterion, which weights
time and space differently. In this weighted PC, some concepts and quantities of
normal PC (Chapter 1) are suitably generalized. With the intention of making
the analysis clearer, we suggest a parallelism between Lorentz-invariant models and
spatial higher-derivative (SHD) Lorentz-violating theories, where concepts as scale
transformation, dimensionality, superficial degree of divergence, etc., are mapped
into weighted scale transformation, weighted dimensionality, weighted superficial de-

gree of divergence, etc.

The mathematical framework used to the study the divergent integrals coming
from Feynman diagrams with Lorentz-violating propagators is based on the scaling

properties of weighted polynomials defined in section 4.1 and section 4.9.

In the weighted PC analysis we consider models containing fermion and boson
fields. In a recent work, the weighted PC is applied to generalized gauge theories
[48]. It is not evident how to extend this kind of Lorentz-violating terms to gravity
without losing the diffeomorphism invariance. Lorentz-violating models with higher
space derivatives might be useful to define the ultraviolet limit of theories that are
otherwise non-renormalizable, including quantum gravity, removing the divergences
through the redefinition of a finite number of independent couplings. Other do-
mains where the models of this paper might find applications are Lorentz-violating
extensions of the Standard Model [49, 50], effective field theory [51], RG methods
for the search of asymptotically safe fixed points [52, 53], non-relativistic quantum
field theory for nuclear physics [54], condensed matter physics and the theory of
critical phenomena [55]. Effects of Lorentz and CPT violations on stability and mi-
crocausality have been studied [56], as well as the induction of Lorentz violations by
the radiative corrections [57, 58, 59, 60, 61, 62, 63, 64, 65]. The renormalization of

gauge theories containing Lorentz violating terms has been studied in [48, 66, 67, 68].
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For a recent review on astrophysical constraints on the Lorentz violation at high en-
ergy see ref. [69].

In section 4.1 the concept of weighted polynomial is defined, and used in section
4.2 to extend the power counting analysis to treat this kind of Lorentz violating
theories. Also the dimensional regularization technique has to be adapted to ex-
tended separately different subspaces, as explained in 4.4. In section 4.3 a series
of examples are displayed, where special emphasis is put on homogeneous models,
a class of renormalizable models which present a classical invariance. This symme-
try is anomalous at quantum level; the anomaly is calculated explicitly in section
4.8. The concept of edge renormalizability is introduced in section 4.5 to name a
special type of theories that although require an infinite number of interactions,
the structure in derivatives of such vertices is preserved. In section 4.7 we analyze
the renormalization structure and the renormalization group. The renormalizability
of non-relativistic theories with higher space-derivatives is studied in section 4.10.
In fermionic theories, a new set of invariant vertices are allowed by the remaining
symmetries, which are not generated by renormalization if they are not included
from the beginning. How the weighted PC gives correctly the weighted degree of
divergence and the extension of the prove of locality of counterterms, is shown in
section 4.9. In that section is explained also the relation between the (weighted)
scaling properties of polynomials and the determination of the zone of the multi-
dimensional momentum space where the integrals has the most divergent behavior.

This analysis is what motivate the definition of weighted polynomial in the weighted
PC.

4.1 Weighted Polynomials

For the study of the Lorentz violation, the spacetime manifold is split into two
submanifolds. The first one, that contains the time coordinate and some or none
of the spatial coordinates, is denoted by hat fi over the indices, while the second
submanifold, containing all other coordinates, is denoted by a bar n. Later, in
section 4.4 the analysis is generalized to the case where the spacetime is split into

an arbitrary number of submanifolds (a positive integer number less than or equal



86

to the number of spacetime dimensions). The coordinates of a vector p are then

written in one of the following forms
= @7 = (0" p").

We use also the symbols

for the contracted derivatives (d’Alembertian / Laplacian) in each subspace. We
call Py, (p,p) a weighted polynomial of degree k and weight n if scaling separately
both sets of coordinates, Py, (£D, £Y/"p) is a polynomial of degree k in &.

In a similar way, the polynomial Hy,,, (p, D) is called homogeneous if Hy, ,(£p, £/7p) =
& Hy,, (p,p) . Clearly the product of weighted polynomials (of same weight) is a
weighted polynomial with degree equal to the sum of the degree of the factors,

A~ —

Pkl,n (]/iﬁ) ng,n (ﬁ?ﬁ) - Rk1+k2,n (p7p) .
If the factors are homogeneous, so its product also is.

We use the concept of weighted degree for some non-polynomials functions as

well, for example the quotient of two polynomials

_ Pkl,n (1/)\71_?)
ng,n (ﬁaﬁ)

All these definitions based in the scaling properties are motivated by the study of

fk1—k2,n (ﬁa 2_9)

divergent integrals required to extend the PC analysis to Lorentz-violating theories.

4.2 Weighted Power-Counting Analysis

We consider bosonic and fermionic models where the kinetic term has been replaced

by

1 ~ 1 1 —n 2
L, = §(a<ﬁ)2+§W (8 90> ; (4.1)
L
. 1 —n
Ly = P+ =99 ¥,

AL
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respectively, where A is a constant with unit mass dimension and the bosonic and
fermionic fields are represented by ¢ and 1 respectively. It is possible to include

also other quadratic terms as

Lt (0" )2 < (4.2)
2 Arom—2 v) s ’

or a mass term. They do not carry the leading divergent behavior in momentum
integrals, hence for renormalization purposes is more convenient to treat them per-
turbatively as two-leg vertices without loss of generality. As explained in section
4.9, a fictitious mass that is set to zero in the end, can be introduced in momentum
integrals to avoid infrared divergences.

To denote a particular spacetime splitting, we use the following nomenclature:
(c/l\, 3)n indicates that the spacetime is divided into two subspaces of d and d dimen-
sions respectively, and that all polynomials of the theory are considered as of weight
n.

In Fourier space, the bosonic propagator is the inverse of a weighted polynomial of
degree 2 and weight n. Similarly, the fermionic propagator is the quotient between
a weighted polynomial of degree 1 and a weighted polynomial of degree 2, i.e. a

weighted function of degree -1. Explicitly the propagators are

] —ip + (—@)n@il
=2\n ) =2\n
p + Agn)f2 ﬁ2 + /Ein72

Now we extend the concepts and quantities of section 1.2 for weighted polyno-
mials. Consider a generic vertex, with N, and Ny bosonic and fermionic fields, with

p1 and po derivatives of each type,
[gplgozgpzvb (Ew)Nf/Q] . (4.3)

The square bracket represents all possible fully contracted combination of fields
and derivatives. Other elements, different from fields or derivatives as gamma ma-
trices,which are not relevant for the renormalizability analysis, are omitted. For
renormalization analysis it is enough to consider only one field of each type.

Define the weighted number of derivatives @ of the vertex labelled with i, in



88

analogy to 6 of (1.2) as the weighted degree of the Fourier polynomial associated
to the vertex (4.3)

5= p1+P2

To find the generalization of (1.5) let us examine the scaling properties of diver-
gent integrals.
The integral associated to a L-loop diagram G with I propagators and V vertices

has the form

dLﬁﬁ () (4 v (0)
Ia<k>:/(2ﬂm/ 2WLDHIBM Hflnp, DI

where B(_Z)M (p, k) and fijl)vn(p, k) are the bosonic and fermionic propagators, weighted
functions of degree —2 and —1 respectively, while Vg?l is a weighted polynomial of
degree ¢ . The weight of all of these quantities is considered to be n.

The scaling of Zg (k) is tested letting (/15, k) — (fi{:\, ¢/7k) and making a similar
change of variables for the internal momenta generically called p. The degree of

Zc(k), namely the generalization of (1.2) is then

1%
DL—2I,—I;+» &%, (4.4)

where we define D = D + D/n, the effective dimension.
In dimensional regularization, as explained in 4.4 we extend separately the di-

mension of each submanifold,
ﬁ:g—él, D:d—EQ,

where d = d + d is the physical dimension.
Once the subtraction of subdivergences is made, by locality of counterterms the

overall divergence is local and corresponds to a weighted polynomial of degree®

w(G)=dL—2L,—I;+ Y ¢D v, (4.5)

Tt is simply the non evanescent part of (4.4).
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and weight n, where d = d+ d/n is the physical effective dimension. The effective
dimension and the physical effective dimension are only names to relate equations of
the PC analysis in the ultraviolet region to those of the Lorentz invariant theories.
Indeed, the treatment of infrared divergences is the same as in the Lorentz invariant
theories, using the actual spacetime dimension d.

If the theory contains several fields, all kinetic terms should be weighted poly-
nomial of the same weight n, otherwise the naive PC analysis gives erroneous con-
clusions, as discussed in the Appendix. The expression (4.5) is exactly the same as
(1.5) if we interpret d as the physical dimension and ¢ as the degree of divergence
of vertices. Thus all the conclusions about renormalizability of section 1.3 apply

here directly. As before we can write

w(G) = da (By, Ep) + Y 1Ry, (4.6)

with S%E;) = &0 —dd(Nb(i), Nj(f)). According to (1.7), since the effective dimension
d is smaller than the physical dimension, renormalizable Lorentz-violating models
admit vertices with more legs than Lorentz-invariant models, opening the possibility
for new interactions, some of them studied in the next section. To avoid unitarity
problems, it is important to prove that when these new vertices are included, no
counterterms with time derivatives are generated by renormalization, other than
those proportional to kinetic terms.

For having a renormalizable model, just as in section 1.3, S—}E;) < 0 for all 7 is

required. Thus, from (4.6) we have
Ly
('U(G) < dd(Evaf> < Eb+ 9

where the inequality of right hand comes from (1.6) realizing that each diagram has
at least two external legs?. Therefore, w (G) < 2 if the model contain bosons, or
w (@) < 1 if there are only fermions. The equality holds only for two-point correla-
tion functions, namely the renormalization of kinetic terms. Since time-derivatives

are weighted monomials of degree one, renormalization can generate terms with

2It is enough to consider only correlation functions of two or more fields, since the expectation
value of a field can be set to zero by renormalization conditions.
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two time-derivatives in bosonic models or one time-derivative in the fermionic case.
These terms are quadratic in fields, so they correspond to kinetic terms. The only
possibility of presence of time derivative other than in kinetic terms, is having ver-
tices with only one time derivative in a bosonic theory, but they can be ruled out
imposing time reversal symmetry.

All other divergent diagrams have w (G) < 2 (or w (G) < 1 for purely fermionic
theories) and thus renormalize vertices that can have only spatial derivatives. The

absence of kinetic terms with higher time derivatives ensures perturbative unitarity.

4.3 Examples

4.3.1 Homogeneous Models

Homogeneous models are those where propagators and all vertices are homogeneous
weighted polynomials (which degree depends on the number and type of legs, see
(4.8)). In general, besides the continuous spacetime symmetries remaining of the
Lorentz breaking, we usually ask parity, time reversal and the U-parity that trans-
forms every field into its opposite ¢ — —p, ¥ — —.

Homogeneous theories can be defined as models that present classically a weighted

scale iwvariance. A weighed scaling is defined by the transformations

T—Te T—Te Y, =P e%(d_2), UV — 1) e%(d_l), (4.7)

where () is a scaling factor. Due to this invariance, it is convenient in these models
to use the following trick: define the weighted dimensionality denoted by [X]. such
that the constant A7 is dimensionless while for the hatted coordinates coincides
with the dimensionality [Z], = [Z]. Other quantities have weighted dimensionalities

assigned consistently

[AL]. =0, Pl =1/n, [T =—1/n,  [ol=(d=2)/2  [¢]. = (d—1)/2.

The suffix remind us that the square brackets does not represent the actual dimen-

sionality. This interpretation is not necessary but it makes easier and clearer the
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expressions. In this way we get the following simplifications and analogies with
Lorentz invariant models:

I) All quantities scale according to its weighted dimensionality. This will be very
useful in the study of the anomaly of the scaling symmetry.

II) The operators and couplings can be classified by its weighted dimensionalities,
because @) = — [Ai], , giving sense to the terms weighted marginal, relevant or
irrelevant couplings.

III) The renormalizability analysis is simplified because w (G) = [G], .

Note that the fields in (4.7) scale according to their weighted dimensionality,
which is equal to the usual dimensionality replacing d by d.

In homogeneous models all couplings are dimensionless ? as can be easily verified
considering that these models are scale invariant and using I). Moreover, II) tells
us that they are strictly renormalizable, because &) = dd(Nb(i), Nj(f)). In particular

they are massless. Thus,
Homogeneous Model <= Weighted scale invariance <= Strictly Renormalizable.

This invariance is present in Feynman diagrams and in the 1PI generating func-
tional and also in the counterterms in a appropriate subtraction scheme. Thus,
dimensional regularization in the minimal subtraction scheme, no non-homogeneous
counterterms can be generated by renormalization.

In theories having fermionic fields, there exist other homogeneous renormalizable
interactions allowed by all symmetries present, but they not included in models
above. Renormalization do not generate them if they are not in the bare lagrangian,
as discussed in 4.11.

The general form of a homogeneous bosonic-fermionic theory is

v WL M, L7 WA SR S o

#3008, (32) M @), (45)

p)?

where Héi) (g, 5) is a homogeneous weighted polynomial with ¢ = dd(Nb(i), N}i))

and 7 a dimensionless constant.

3In this section the word “weighted” is implicitly understood for concepts as dimensionality,
scaling transformation, marginal couplings, etc.
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Let us start with a purely bosonic model. Requiring dp (Ny,0) = 0, we obtain
the maximal number of legs that strictly renormalizable vertex can have, as function
of the dimension D.

There are only three possibilities: ¢ in D = 2,¢* in D =4 and ©? in D = 6.

Vertices that satisfy dp (Np,0) > 0 are super-renormalizable, and can be trans-
formed into renormalizable ones adding a suitable number of derivatives as in (4.8).

A pt-vertex is marginal in 4 dimensions. Interpreting it as the effective dimen-
sion, £= 4 can be obtained from

i) (1,3n), splitting in 3n + 1 dimensions,

it) (2,2n), splitting in 2(n + 1) dimensions,

iti) (3,n),, splitting in 3 + n dimensions.

That is, in every dimension greater than or equal to 3 there exist at least one
splitting that makes the o?-interaction marginal. For instance, using #) in six

dimensions with n = 2, we have

(4.9)

This model is used to study the critical behavior at Lifshitz points [70, 71, 72].

On the other hand, for every strictly renormalizable Lorentz-invariant model
in four dimensions there exist a family of homogeneous renormalizable Lorentz-
violating models in higher dimensions, using some of the splittings i), i) or iii)

Let us focus our attention in models in four dimensions. The effective dimension
d has a value between 2 and 4 for renormalizable models, due to i) of section 1.2.
and the definition of d. For theories without bosons, 1 < d < 4. Analyzing one by
one the possibilities, we have the splittings

(0,4),, : It contains higher time derivatives, so it is not unitary

(4,0),,: It represents the usual Lorentz-invariant splitting (no splitting at all).

(1,3),: When bosons are present, d > 2. This implies n < 3 and the unique
non-trivial splitting has n = 2. In this case, the vertices with maximal number
of fields are those that satisfy diis/2(Ny, Ny) = 0, namely (Ny, N§) = (4,2) and
(Np, Nf) = (10,0) . Other marginal vertices, are those that satisfy
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- k
d1+3/2<Nb,Nf) =60 = 5

and contain k spatial derivatives (5), where k is a positive integer. The only com-
bination allowed by the symmetries are (Ny, Ny, k) = (6,0,2) and (Ny, Ny, k) =
(2,2,1).

The model then reads

Loz, = Ww + iw_Aw v 1(5@ A2 2

i B + 22T P v) + 27D (@)

2A2

Ao
¢4ww+ 6,s0 1(00)® + e (4.10)

Note that the couplings Ay, Ay, Ay, Ag, A1o in (4.10) have all zero weighted dimen-

sionality as expected. Their actual dimensionalities are non zero, for instance
[/\10]* = O, [)\10] — —6

In purely fermionic models, many other vertices are allowed, because we require
only 1 < d. Homogeneous vertices in the (1, 3), splitting satisty dy3/,(0, Ny) = 0,
namely
so taking n = 3m with m a positive integer, the operator with the maximal number
of fields is (Ew)mﬂ. For example, the first two models corresponding to m = 1,2

are
Lig, = E‘/jw + AL%WQ/J + Ai [(W)Z]l ; (4.11)
Ll = 000+ 080+ [0 @) + X [@0)] . @)
2 i i
where the square bracket has the same meaning as in (4.3), labelling with 4 vertices
that are different combinations of fields and derivatives inside the brackets.

(2,2), : Here the restriction d > 2 does not add any information because is
trivially satisfied, so n is an arbitrary positive integer. The first one, corresponding
to n = 2, has marginal vertices (N,, Ny) = (6,0), (N, Ny) = (2,2), and (Ny, Ny) =
(4,0) with two spatial derivatives. The corresponding lagrangian reads

= TP+ LB + 3P + 5 (B + 20+ 5B + "
(4.13)

2A2 (
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Another possible term is @)@, but can be excluded by the U-parity ¢ — —¢.As
mentioned above, the interaction ©° is marginal in D = 3, which is the effective
dimension for (2,2);. In the same sense there is an infinite family of homogeneous
models with the ¢* vertex, ¢® models are homogeneous in 2(n + 1) dimensions with
a (2,2n), splitting (d = 3).

(3,1),, : For n = 2 there is no marginal vertex without derivatives. Only 0 is
homogeneous, but there is no way of contracting the derivative without losing the
parity invariance and SO(d).

For n = 3, the model reads

!/

o - 1,~ A3 92 A3 e N2
Lo, = 0Pv+ AiLwAéw +5(00) + W (95¢)" + 2B p + o (B9)
Ay

A

0 i W@@/}

which is clearly unstable. Imposing the U-parity we have the modified p*-theory

A _
B, = T + (08P + 5B + gy OB) + @)

4.3.2 Non-Homogeneous Models

Non homogeneous models can be constructed simply adding to an homogeneous
lagrangian some super-renormalizable vertices, kinetic terms with a number space
derivatives smaller than n or a mass term. For example, keeping the U-parity, the
non-homogeneous extension of (4.9) is just

m? 1 — A

1 4 a
nh _ 9 A
Lt = 500 + 500 + 50" + o5 (Do) + o

and the non-homogeneous one of the bosonic part of (4.13) is
m2 1 )\4 9

_ ) N, A
(00)° + 0" + 737 (Do) + 67 (09)* + 1" + 10"

L(3), = (890) 2 N2 4l 6!

a
2
4.4 Splitting The Spacetime In More Sectors

In a similar way, the spacetime could be split into more submanifolds, eventually

one for each coordinate. Calling My the spacetime manifold, it can be considered
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as the tensor product of the submanifolds M; and Mg,

¢
My =M;e [ [ My,
i=1
corresponding to a splitting into ¢ + 1 subspaces. The kinetic term (for bosonic
fields) for such splitting is

Lin = %(5@2 + %sz(ai, Ap)e,
where P,(0;, A1) is the most general weighted homogeneous polynomial of degree 2
in the spatial derivatives, Py(£/™0;, Ap) = £2P5(9;, Ar), invariant under rotations
in the subspaces Mgi. The Ap-dependence is arranged so that P, has dimensionality
2.

The usage of dimensional regularization requires the analytic continuation of the
dimension of each subspace separately D=d-— en,D; = d; — €i+1. The quantity
called effective dimension is extended to

-

d=d+ Zl o

and has the same role as in normal weighted PC analysis. In this scheme, the
divergence in renormalization constants is due exclusively to poles in €, with

¢
Eit+1
5:51+E e
- n;

=1

This can be verified with the same dimensional argument presented in section 4.7,
in the paragraph below 4.21. However, the residues of such poles could depend on

€; separately.

4.5 Edge Renormalizability

In some theories, renormalization generates vertices that preserve the number of
derivatives, but the number of fields in each vertex is not restricted. This situation is
called edge renormalizability because although the number of vertices and couplings

is infinity, not all possible vertices are admitted.
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In a purely bosonic theory, equations (4.6) and (1.6) tell us that if d= 2 and all
vertices are marginal, the degree of divergence w (G) is always 2, independently of
the number of external legs of GG. Hence all correlation functions are divergent, even
when all couplings are marginal.

Something similar occurs when the Einstein-Hilbert term is expanded around
the flat metric: it is a sum of infinitely many terms each one with two derivatives
and an arbitrary number of fields ¢, (z). Due to diffeomorphism invariance, there
is only one way to sum all this terms to form a scalar quantity?.

Using the Lorentz splitting, we have the same effect in every physical dimension

for a suitable n. In four dimensions is (1, 3); and the general form is

L = Liree + L1, (414)
where
1~ 1 — |2
= — — (OA .
Efree 5 (890) -+ ZA% (8 QO)

The interaction lagrangian can be written generically applying the derivatives in all

possible combinations,

L = Vi()(89)? + Va(0)[(90)*]® + Vi) Dp(p)2(8;60)?
+ Vi) (0:0;0)(0:0;550) + Va(0) D 0(050)* + Vis(i0) (Dp)?
+ Va(@)(0B9)? + Val(9) (0:0;009)° + Val9) B, (4.15)

where the V;’s are unspecified functions of ¢ with Vi () = O(¢), Vi(p), Va(p), Vs(p), Vo(p) =
O(?). Note from (4.7) that the dimensionality of the field ¢ is zero, thus the theory
is scale invariant even when the vertices have arbitrarily many fields.

The lagrangian of the most general non-homogeneous theory is (4.14) with

'Cfree =

—2  —3
1~y 1 [~ &~ &

and L; equal to (4.15) plus

Vio(0) + Vir (9) B + Via(0) A0 + Vis(0) (D) + Vaa () [(9i0) ),

4Tt can considered as a reduction of couplings, but differently from chapter 2, here the reduction
is originated by a symmetry.
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with Vii(¢), Via(¢) = O(¢?), Vis(¢) = O(e).

If fermions are included in this theory, correlation functions with more than four
external fermions are finite. The reason is that dy (Ey, Ey) < 0 if Ef > 4, thus
w (G) < 0, indicating that the diagram G is overall convergent.

In a purely fermionic model, the effective dimension for edge renormalization is
1. The only splitting possible for it in four dimension is (0,4),, which is ruled out

because it is HD.

4.6 Remaining Symmetries

Due to the particular way in which Lorentz symmetry is broken by the kinetic
term, it is clear that each subspace keeps a reduced version of Lorentz or rotation
symmetry. Here we study what kind of symmetry involving all coordinates can still
remain after the splitting.

For the sake of simplicity we consider the kinetic term of a bosonic model in a

(1,1), splitting in a two-dimensional Euclidean space,
o (PN, (Pe@)Y
free 8X ay2 )

Under an arbitrary infinitesimal coordinate transformation, the coordinates and

with © = (x,y).

the field changes as
X—x4edx(@), ¥ ovredy(@), @) =@ +edpl).

The action S = f d%x Lgee transforms into
0¢' (2)\* | (0% (2)\”
! 2
S = /dx[(—ax ) + Oy?
d(6x) 9 (dy)
_ 2
= /d T [1 + € < g + Dy

. [(390(:c)>2+288_90 (aw) 9 0 (5%) aw((;y)) . (a%, (x)ﬂ

ox ox ox  ox Ox 8_y ox dy?

where the square bracket in the second line corresponds to the determinant of the

Jacobian of the transformation, and S” is written up to order €. To have an invariant



98

action, the factor coming from the Jacobian has to be cancelled out. The only

possibility is

5@20—1—%90, 0x = A+ Xx, 5y:B—|—%y, (4.16)

where A, B,C are constants. The transformation (4.16) corresponds to an infinites-
imal translation plus a weighted scaling, as we already knew. When the action
contains fields ¢ without derivatives, for example a mass term, the constant C'is set
to zero to have SO(J) or SO(d) invariance. The scaling factor of the field ¢ is its
weighted dimensionality [p]. =d/2—1

Summarizing, there exist no continuous symmetry that mixes the coordinates of

different subspaces.

4.7 Renormalization Group Structure

The flux of renormalization group is closely related to the dilatation transformation
when the theory is scale invariant. This symmetry, which requires a lagrangian
having no dimensionful parameters, is broken at quantum level by renormalization
by the introduction of the energy scale p. In the models studied, we already have
an energy scale Ay at classical level (and dimensionful couplings A; ) but they do
not spoil the invariance because they all have zero weighted dimensionality, what is
actually relevant for the weighted dilatation invariance.

The connection between a dilatation and a change of renormalization scale in
models that present classical weighted dilatation, as the homogeneous models of
section 4.3.1 can be made explicit giving to the RG parameter p scaling proper-
ties according to its dimensionality. Using again the weighted dimensionalities, the

quantities scale under a weighted dilatation in D spacetime dimensions as

P Be? Tz o@D gy e3P (gay)
Q

A — Ap, p— pe.
This transformation leaves invariant the renormalized action, but it does not

constitute a symmetry; it only specifies how a change on p compensates a dilatation,

or in other words, how such change is equivalent to a dilatation.
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Consider a generic vertex as (4.8). The weighted dimensionality of its bare

coupling is evanescent since it is marginal in physical dimensions

N
e, = —QF = =60 +dp(N)) NPy = ¢ ( 5 1) — ep,

with N = N + N{? the total number of fields of the vertex i.
Omitting the Ay dependence for a while, the contributions of diagrams to the

1PI-generating functional I" have the form

_ /d% I1 (Ajua<]vg)‘1>>w G o ()77 (4.18)

As other quantities, the scaling of G corresponds to its weighted dimensionality,

Gl = do(ByBp)+ )95 v,
J
= w(G)—¢el,
which is easily verified. In physical dimensions, [G]. = w (G), and the only source
of dimensionality defect® in G is the measure d”p, contributes with —¢ for each
integral, or what is the same, for each loop.
By locality of counterterms and the scaling properties under (4.17), Gu is an

homogeneous weighted polynomial of degree w (G) and weight n in derivatives,
Goo = 11" Hoycy (8, 9)

where Hw(G),n(é\, 0) contains divergent coefficients. Hence the divergent contribu-

tions to I' are of the form

T = - [ @ [T Wl Ha@a@0)e™ @)™, @19

where we have used ), (N(l) - 1> -L=%£-1,

Summing the contributions of the same kind,

5The coupling constants are not considered as part the diagram.
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Aip = ,f<@”> ()\i LAY ] (AjALM)”j> , (4.20)
k J

with <NT() — ) the weighted dimensionality defect, which coincides with the defi-
nition in section 1.4. In (4.20) we have restored the Aj-dependence matching the

physical dimensionality. The dimensionality of the coupling \; is
] = (1= n) da(Ny", N}, (4.21)

The renormalization expression (4.20) has the same form as in section 1.7 so
the same arguments and properties of beta-function apply. In particular, something
that is not trivial at all, is that all poles in renormalization constants are in one
special combination of €1 and 2, namely € = £1+¢&9/n. Similar arguments are used
to demonstrate that also non-homogeneous models presents poles only in € in their
renormalization constants. In the action, the dimensionality of integration measure
dPz has an evanescent part proportional to €. Looking at the kinetic terms, also the
fields will have an evanescent part proportional to €, and thus the bare constants.
Therefore its renormalization, as in (4.20) will be proportional to ,uep(i). By finiteness
of their beta-functions, all poles are in €.

The constant Ay does renormalize, as can be seen from divergences of two-
point correlation function. The divergent part of diagrams quadratic in fields are
polynomials Hgm(é\, 0) which coefficients multiplying 0 and 0" are not constrained
to have the same value, so these divergences are absorbed in general by a redefinition
of the field ¢ and Ap. The form of the relation (4.20) could be guessed from the
beginning simply matching the dimensionalities and the scale properties (or what is
the same, the weighted dimensionality). Similarly,

Ap = MZp, Za=1+> ] (AjA;m)m |
- :
1 dA;  dInZy j
Apdinp dlnp

N, =

The Callan-Symanzik equation has the same form as usual. For instance, for the

model (4.9), we have

Gk(/‘flv e 7£k;jla e JEk;)\7AL7u) - <g0(l’1> o Sp(xk)>7
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we have

0 5 0 0 ~ ~ _
(Iu—alu + 6/\—8)\ + nLAL_aAL + k’)/gp) Gk(xb ERPR 1 P O PIR P )‘7 AL)M) = 0.
(4.22)

The equation can be immediately integrated to give
Gk(/m\la e 7/$\k;fla o 7fk; A7AL7€//L) = Zﬁk(t)Gk(/x\la T 7/$\k;zl> o 7Ek7 )‘(t)a AL@)?H):

where t = In ¢ and
! / / d)‘<t) o ' / /
2ty =exp( | AE)dE ), =2 = =Ba(A)), AL(t) = Apexp { — [ nr(A(t))dt" ],
0 0
with A(0) = A. Now the renormalization-group flow specifies how the correlation
functions changes under a weighted overall rescaling. Indeed, the weighted scale

invariance (4.17) tells us that
Gk(/-fla e 7/$\k;fl> C Ly T >\7 ALa gﬂ) = SW(G)GIC<£ZE\17 o 7553\]6? gl/nfla T 751/715167 )‘7 AL; :u)

A one-loop calculation for the model as (4.9) in a (2,2n),, splitting gives

3\

v = A e

+OWN), 9% =00, mw=0N),

so these models are IR free. Only the beta-function has a non-vanishing one-loop
contribution. Indeed, using the dimensional-regularization technique tadpoles van-
ish in homogeneous models, so v, and 7, start from two loops.

Let us now consider the model (4.13) without fermionic fields. The bare la-

grangian reads

- A _ A
(Bgp)” + Z2 02 (Dpp)® + 22208

Lo
L22),8 = §<3<PB) + A1 7B 6!

where

on = Z %, Arp = ZaAy, A = p1° (M + Ay),

e
)\6]3:,u25 ()\G—I—AG), 561—1—52.

The theory is invariant under the scale transformation (4.17) with n = 2. At one-
loop we find Z, =1, Z, =1 and

3%
2(12m)2%’

A, - DM 5N

A pu—
! (8m)2%  (48m)%’




102

so the beta-functions read

. 52 -~ BAde 5N
- _ I S = -9 — .
bi=—ehtomome P = 2N T Gy T ey

The asymptotic solutions of the RG flow equations are

)\4’\’

2(127)?2 1
( 7T) ’ >‘6 ~ _/\421)
ot 20
where ¢ = In |z|p and |z] is a typical weighted scale of the process. Since Ay and Ag

must be non-negative, the theory is IR free.

4.8 Weighted Trace Anomaly

The weighted scale invariance (4.7) of the homogeneous models can be anomalous
due to the radiative corrections. In this section we calculate the weighted trace
anomaly, following [41, 43] . For definiteness, we work with the model (4.9), but the
discussion generalizes immediately to the other models.

Before going forward with the study of the anomaly, we should take into consid-
eration some issues about the variational treatment of HD theories. The lagrangian
does not depend on the field and its first derivatives only £ = L (¢, 0,¢) as usual, but
also on their successive derivatives, thus Euler-Lagrange equations and the Noether
current will have a different form.

The variation of the action S with respect to a variation dp of the fields is

oL ~ oL wn 0L
0SS = /d4(l? %—8Mm+(—a) m 5@ (423)
oL —, =i OC -2 =

The square bracket of the first line represents the equation of motion of the field
. If §¢ is the infinitesimal variation due to a symmetry transformation, the variation
of the lagrangian can be written as £ = 0, K*. The Noether current related to the

symmetry transformation is the difference between K* and the square brackets of
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the second line of (4.23),

n—1 ]
po O o S oy 2L

() = 2(7'¢)

and is conserved 0,J" = 0 when the equation of motion is satisfied.

@) " F'op—K*,  (4.24)

Continuous symmetry transformations related to spacetime as translations, ro-
tations, boosts and dilatations have conserved currents expressible in terms of the
canonical energy-momentum tensor 7),,. For instance, the Noether current S” for a
continuous dilatation is

SY=a"T, ", (4.25)
where TW is the improved energy-momentum tensor, namely the canonical stress
tensor plus conserved terms that makes its trace vanish. Therefore the divergence

of the current S¥ (4.25) is

v
0,8" =1}
in Lorentz invariant theories. In the models with Lorentz splitting, the dilatation

current 1s

n

1 ~

so its divergence is the weighted trace of the improved energy momentum tensor

]
— v _ K a3
©=0,5" = 1) + ~TI.

which is explicitly calculated in the next section.

Weighted dilatation. In the case of the model (4.9), write the lagrangian as
L(p, 5H¢,Zg0). The infinitesimal version of the transformation (4.7) reads

~ 1 — .
5¢:Q<1+/$\-6+§f-8)ngQDgp, (4.26)

with €2 < 1.The “1” in the parenthesis is the weighted dimensionality of ¢ in phys-
ical dimensions and the rest, the weighted trace of the operator D,, = x,0,. The
conserved Noether current $* = (S*,5") according to (4.24)

oL - oL <z

~ _ 1 .
St =g+ ———Dp, S'=—-7L+—-0 Dp.
9(0,p) 2 (Ap)
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We continue the spacetime dimensions to complex values as explained in 4.4. The
continued transformation d¢’ and the continued current S’* are obtained replacing

Dy in dp and S* with the extension of (4.26) to D dimensions

~ D P 1 —

D/¢—<§—1+x-8+§§-8)g0 (4.27)
(see (4.17)), where D=4 — . At the bare level, the anomaly of (4.27) is expressed
by the divergence of S’*. We find

0,5 — —e2B (4.28)
1 Al ¥B- .

Improved energy-momentum tensor and its weighted trace. The anomaly
of the weighted dilatation is encoded also in the energy-momentum tensor, precisely
in its “weighted trace”. Let us start from the energy-momentum tensor given by the
Noether method®. For the model (4.9), equation (4.24) gives

—
T = ?\—E&,gp + l@u Oyp — 0 L. (4.29)
9(9,) (L)

This tensor is not symmetric, but conserved: it is easy to check that 9,7, = 0,

using the field equations. Next, define the improved energy-momentum tensor

- N 1 —__ 3D—-2DP+3D -5 —
T, = 0,00,0— —=0,00,Np—0,,L — T (0
" nPovP A2 Y I p — okl + (D — 1)A2 T (‘P 90)
3—2D — 2 3—2D b-2
+_—ﬁy 8QQO +—ﬁa QOWQVQO _/\—% v 4.30
2(D—1)A%“( ) A2 po ) AD-1)" 430

where 7, = aﬁy — Sﬂlﬁ? and 7, = 0,0, — SW52. The first three terms of (4.30)
correspond to the Noether tensor (4.29), while the rest collects the improvement
terms, identically conserved.

Using the field equations, it is easy to show that ﬁw is conserved and that its
weighted trace © vanishes in the physical spacetime dimension d = d+d. Moreover,
T;W is conserved also in the continued spacetime dimension. The coefficients of the
improvement terms are chosen so that in the free-field limit © vanishes also in the

continued dimension D = D+ D. Finally, it is immediate to check that the weighted

trace © coincides with the divergence (4.28) of the current S’*.

®The Noether current related to the infinitesimal translation d¢ = a*9,¢.
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Anomaly. We need to write © in terms of renormalized operators. When we
differentiate a renormalized correlation function with respect to A or Ay we obtain
a renormalized correlation function containing additional insertions of —9S/0\ or
—0S/0AL, respectively. Thus, —9S/0OA and —9S/OA}, are renormalized operators.
Following a standard procedure [43] we can find which operators O they are the
renormalized versions of. In the minimal subtraction scheme, it is sufficient to

express the renormalized operators as bare operators Op plus poles. Schematically,
finite = Op + poles = finite = [O)].

where [O] denotes the renormalized version of the operator O. We find

aS 1 B 95 s L\ K A
= finite = 3 (%{E@] ALnLaAL ST /SOB) 4l /[SO )

A
as L1 ~ o 1 K2
Mg = fnite= g [@en = gz [1BP)

where [E,] = [¢(65/d¢p) is the operator that counts the number of ¢-insertions.
Thus,

Jo=- [ =SB [11- 1 [(@er - lEa.

L

The result agrees with the Callan-Symanzik equation (4.22), which can be expressed

as

Indeed,
0S  ~ 0S8 oS
— =2 =522 Aj— — ~ (B
/@ Maﬂ 6/\8)\+77L L . Vol Bl
4.9 Renormalization

In this section we study the structure of Feynman diagrams, their divergences and
subdivergences and the locality of counterterms. For definiteness, we work with

scalar fields, but the conclusions are general.

One loop Consider the most general one-loop Feynman diagram G, with E ex-

ternal legs, I internal legs and v](\?) vertices of type (IV, ) and weighted degree 55\?).



106

Collectively denote the external momenta by k. The divergent part of G' can be
calculated expanding the integral in powers of k. We obtain a linear combination of

contributions of the form

(I,n) = >~ 7 -
Im'"mrljl'"jzsk’/l by Ky Ry (4'31)
where
7dn) _ d”p dﬁp Z/)\m T .]/)\IJ‘ZT Dj, " Dy,
pepor|jreges (27T)B (

D ~ I
T (3 A )

To avoid infrared problems we insert a mass m in the denominators. For the purposes
of renormalization, it is not necessary to think of m as the real mass. It can be
considered as a fictitious parameter, introduced to calculate the divergent part of
the integral and set to zero afterwards. The real mass, as well as the other parameters
ay, of (4.2), can be treated perturbatively, so they are included in the set of “vertices”.

From the weighted power-counting analysis of section 2 we know that the nu-

merator of (4.31), namely

Dy *** Drsay Dy Dy Koy ok, Eil ok,
is a weighted monomial P, (P, %; P, k) of weight n and degree

v o 2s ;
—u+2 +__|___§ 8§Dy,
T T - ?

If the theory is PC renormalizable, according to (4.7), 6®) < dp(N,,0), thus

v s d
- < -2 ~ 7). .
u+n_2<[ r n)—l—E(l 2) (4.32)

By symmetric integration we can write

7(In) _ s 5@ I(L”), Iﬁ{;ﬂ)

Wivcprlgioodes T TBLtp2r J1eejesT TS

_ [ dPh [ d%p @) (@)
“ S e (7 + @) A ) o
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where 5&)...#% and 5

142, A€ appropriately normalized completely symmetric tensors

constructed with the Kronecker tensors of M? and MP, respectively. Performing

the change of variables

A2 (/e
D=7 <]_9_'2) , (4.34)

the integral L(,IS’") can be calculated using the standard formulas of the dimensional-
regularization technique. We obtain
T L pesDyn-n/m / a’p / dPp ()" (p) e
" nt emP ) @n? (P +p%+m2)
A(LQs-l-ﬁ)(n—l)/n(m2)r71+s/n+D/2P (25+E> r (27‘—1—3) I (] s _ Q)
2n n 2

2

n(4m)P20(D/2)0 (D/2) T (1)

The factor 1/n is due to the Jacobian determinant of the transformation (4.34). The

singularities occur’ for

s d
1< -+ = 4.35
Srd -+ (4.35)
Combining this inequality with (4.32) we find that the divergent contributions
satisfy
v d
—<d+FE(1—=)=dsF,0 4.36
wrL<arr(1-§) - gm0, (4.36)

that is, the consistence condition (see the final paragraph of section 1.2
w(G) < dy(E,0),

which ensures that divergent contributions can be absorbed by counterterms. The

counterterms are a Pquv/n,n(/k?, k):

~ £
“ky - ky, ki coki,  wheree=d— D =g + —.
n

The poles are in ¢ as expected from the discussion of the paragraph below (4.21).

The residues instead, depend on ¢1, €, separately.We know that taking a sufficient

"Since the gamma function I (z) is singular only for non-positive integers, that is
2 (s +nr) +nd + d = 2nl,

with [ a non-negative integer. This means that some divergent integrals are mapped to finite values
by dimensional regularization. This is similar to what happens when this regularization is used in
Lorentz-invariant theories in odd-dimensions: no one-loop divergences appear.
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number of derivatives with respect to the masses, the external momenta and the
parameters a,, of (4.2), the integral becomes convergent. Therefore, the finite parts
are regular in the limits €1, €5 — 0, which can be safely taken in any preferred order.
Objects such as €1 /¢ and €5 /¢ are finite regardless of the path we choose to approach
to the origin of the (g1, e2) plane. Moreover, they multiply only local terms, so they
parametrize different scheme choices and never enter the physical quantities. We

define the minimal subtraction schemes as the schemes where

with a=constant, and only the pure poles in € are subtracted away, with no finite

contributions.

Overall divergences and subdivergences. Generalizing the analysis of section
1.5 to Lorentz violating theories, we say that the components p and p of each mo-

mentum are rescaled with the same “weighted velocity” when
p—Ap,  p—A"p.

Step i) is modified studying the convergence when any subset of momenta tend
to infinity with the same weighted velocity. Whenever a subconvergence fails the
counterterms associated with the divergent subdiagrams have to be included. Once
the subdivergences are subtracted away, step i) consists of taking an appropriate
number of “weighted derivatives” (see below) with respect to the external momenta,
to eliminate the overall divergences. It is easy to check that this procedure auto-

matically takes care of the overlapping divergences.

Weighted Taylor expansion. Every Taylor expansion
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where
[¢/n] N

- /) ~ _
f(z)(ka k)= Z mful---uu,ilmie,mkul by, kiR,
“ ! !

u=

is a weighted homogeneous polynomial of degree ¢/n:
FONENE) = N O (&, F).

The ¢-th weighted derivatives with weight n are the coefficients fy, ..., i iy .-

In the BPHZ subtraction scheme no regulator is needed since the integral is ren-
dered finite subtracting from its integrand the w first terms of its Taylor expansion
around zero momentum, where w is the superficial degree of divergence of the inte-
gral. In dimensional regularization, this procedure corresponds to a suitable schema
of subtraction which does not coincide with the minimal subtraction schema.

In Lorentz-violating models, analogous subtraction can be made to carry on the
renormalization process, but using the weighted Taylor expansion instead normal
Taylor expansion. The overall-subtracted version of an integral whose weighted
degree of divergence is w reads

de)]’j\ dLEI—?
/ (2)LD (27)LD

[Q(ﬁa D; /];a E) -

where Q) denotes the /-th homogeneous polynomial of the weighted Taylor expan-
sion of () in 7{;\, k. In this procedure, subdivergences are systematically subtracted

from integrals using a suitable subtraction algorithm.

4.10 Non-Relativistic Theories

Non-relativistic theories can be studied along the same lines. The action contains

only a single time derivative 5,
— —2
~ YA YAN _
L=7|i0+—+E—+- |0+ (BA?+ -+ APp)> +---
2m m?

so the theory is more divergent. The dimensional-regularization is not easy to use,
since there is no simple way to continue the single-derivative term @590 to complex

dimensions. Thus we assume an ordinary cut-off regularization.
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The propagator is defined by the term Eap plus the lagrangian quadratic term

with the highest number of O-derivatives, say n,

~ "
Liree =P (i@ + W) ©,

L
with n a even positive integer (to have rotational invariance). For the purposes of
renormalization, the other quadratic terms, if present, can be treated perturbatively,
as explained in section 4.2. Thus the non-relativistic propagator is the inverse of
a homogeneous weighted polynomial of degree 1 and weight n. Hence, all the PC
analysis is the same as purely fermionic theories, being possible to map each Lorentz-

violating purely fermionic theory into a non-relativistic model. For instance, in for

d = 2 we have a family of homogeneous models in d =n + 1 dimensions,

A

P00+ 1 (@0)’, (437)

.5 1
Ly, = Pidp + A%_l
which is analogous to the four-fermionic model with (1, 3), splitting, (4.11).
The generalization of (4.12) to non-relativistic theories is, for d = 3/2 in d =
m + 1 dimensions reads
A6

L1,m)sm = P10p + WSOG o+ 36(S090) :

if m is odd.
In particular, we see that there exist four-dimensional (m = 3) non-relativistic

renormalizable ¢®-theories. If m is even we must include additional vertices,

= 1 _2m /\z =M __ A —
Lampn = Fi0p+ 1700 0+ 0 P9+ 20 (@0)”
L i

4.11 Invariants

When a symmetry is broken, the theory admits a new set of invariants. For example,
a Lorentz invariant made of the contraction of two vectors generates two new invari-
ants A,B* — A;BF, A; B in a Lorentz-violating model, namely the scalar product
defined in each subspace. Only a particular combination of them is Lorentz invari-

ant. With spinor fields is not simple to make such splitting since their components



111

do not correspond to a specific subspace. In other words, every spinor changes under
any Lorentz transformation. This is not the case of vectors; in the above example
the vectors A# and B* do not change under a rotation in the M submanifold.
We can find the invariants made of spinor or vector fields studying the remain-
ing symmetries. In Lorentz-invariant models we can form invariants thanks to the

matrices 1 and 7y such that

A'pA=mn, Al A/ = 0, (4.38)

where A and A;/, are representations of Lorentz transformations of spin 1 and 1/2

respectively. For instance, scalar bilinear quantities are

AuBH = AuBu’nyul7 E’@Z} = ¢TVO¢-

We look for two matrices 7 and 7, with 7 real and symmetric and “, hermitian
such that they satisfy relations as (4.38) but only for the remaining symmetries. For
example, for a (2,2), splitting, A should be replaced by a (t-x)- boost or a (y-z)
-rotation, or a combination of them. Clearly, for vectors this analysis leads to the
invariants mentioned above.

Define as usual ¢ = ¥y, and X(E,E) = 7950, recalling that (70)2 = 1. The
fermionic scalar bilinear in d = d +d dimensions is ¢.X ;5% In the (2,2),, splitting,

c'l 0 do; 0
X(Q’Q) =a +a s
0 cl 0 doy

. 2 .
where a , ¢ ,d are constants. In order to normalize (X(272)) = 1, we require

such matrix is

cd=0, (ac)’=1, (ac")*=1, (ad)®=1, (ad")’=1.

Without loss of generality we choose |a| = 1. Then a, ¢, d are all real or all imaginary.

The possible independent values for X, 5 are

I 0 I 0 —01 0 01 0
0 1 ’ 0 I ’ 0 01 ’ 0 01 ’
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where o; are the Pauli matrices and [ is the 2x2 identity matrix. The first two ma-
trices are the 4x4 identity matrix and 75 = iY9717273, which form Lorentz-invariant

bilinears. The other two matrices correspond to

~ —01 0 _ i g1 0
Y5 = Yo = ) Vs = 1Y2Y3 = )
0 01 0 01

namely the matrices 75 of each subspace. Some of the fermionic scalar invariants
constructed with these matrix violate some of the discrete symmetries: parity (P),

time reversal (T') or charge conjugation (C), as showed in the following table

P T C CPT
Wvs | =1 +1 —1 +1
Py | +1 -1 -1 41

as can be verified using the commutators and anticonmmutators

s, 7 = 0, {Fs,va} =0,
¥s.98 = 0. {Fs v} =0

Analogously, in the (1,3), splitting, new invariants can be constructed using the

N 0 1 _ [0 —I
5= = ) Vs = V17273 = 1 .
I 0 I 0

The scalar fermionic Lorentz invariants behave under the discrete symmetries as

matrices

\P T C CPT
41 41 -1 —1
141 41 -1

Vst
VY5
while in the (3, 1), splitting, the 75 and 7; matrices are

~ . 0 o3 _ . . 0 03
V5 = 1Y0V17Y2 = ) V5 =173 =1 )
03 0 —03 0

and the discrete symmetries table reads
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\P T C CPT
s | 4+1 -1 41 -1
Wy | -1 -1 +1 -1

For the splitting (1,3), or (3,1), the commutation relations are
[;}/\57 Wﬁ] = 07 {:}/\57 P)/E} = 07
Vs Vﬁ] = 0, {7, ’Yﬁ} = 0.

The values in the tables are calculated [44], for an interaction of type ¥X1),

observing if X, X*, X7 satisfy the following commutators or anticommutators,

T [X, 0]+ =0
T (X 73l =0
C (X7, y072)2 =0 (4.39)

where X* and X7 represent the complex conjugate and the transpose of X. The
signs (4) and (—) represent the anticommutator and the commutator respectively.
The change under each symmetry corresponds to the opposite sign for which the
respective equality in (4.39) is verified. For example, if X commutates with ~,
namely [X,7o]_ = 0, the interaction )X is even under parity.

The results obtained for the CPT symmetry can be verified using the CPT theo-
rem [45] that states that an hermitian interaction changes under the CPT symmetry
as (—1)°, where s is the number of Lorentz indices in the operator. Assuming that
the theory is CPT-symmetric, the bilinears with a odd number of Lorentz indices
can not be generated by renormalization. Other interactions with an even number
of Lorentz indices could be generated if they respect the other symmetries present
in the theory.

It is possible to construct other tensor quantities using the Levi-Civita tensor of

each subspace, defined as
Sy +1 if fiy...[i5 is an even permutation of {0, 1, /(\i — 1},
—1 if fiy...705 is an odd permutation of {0,1,...d — 1},
i +1 if ...z is an even permutation of {g, d+ d},
ghita = o~ o~
—1 if fiy...;i7 is an odd permutation of {d,...d + d},
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For instance, in the (1, 3),, splitting,

— 1 —urvo — v vo
Y5 = 56“ VYo Yo = E" s,

Since the transformation of the combination EX@E) is EX@E) — EX@E) (Al/g) ! ,
other (vector, tensor) invariants of higher dimensionality can be easily constructed,

for instance,

EX@E)’Y“wa EX@E)UWwa EX@E)WMQ/% EX@)V“%% EX@)%W



Conclusions

Non-renormalizable models are normally excluded as valid candidates to represent
physical interactions even when they do not imply a violation of any fundamental
physical principle. They can be certainly used as effective models which are good
for most practical purposes, but unable to suggest new physics beyond them. The
adjective “non-renormalizable” is not absolute, it only indicates our incapacity to
remove all the infinities that appear in perturbative calculations in quantum field
theories, and usually refers to Power Counting. It is a fact that some models consid-
ered as non-renormalizable by the PC criteria could be renormalized through some
special procedure. On the other hand, Power Counting is commonly trusted because
it had guided the construction of the Standard Model, indicating for example that
the non-renormalizable four-fermions interaction was only an effective description of
the weak interaction, and leading to the discover of the intermediate vector bosons.
In view of these elements, it is almost mandatory to direct some efforts in the search
of a criterion to extend or supersede Power Counting as classification tool. The final
version of this principle should leave room also to quantum gravity and new physics

beyond the Standard Model.

In this work we have first examined a general framework in which a wide class of
PC non-renormalizable models can be renormalized by a redefinition of fields, masses
and a finite set of couplings by means of a RG-consistent reduction of couplings.
The infinitely many terms in the lagrangian could be regarded as consequence of
writing it in “a wrong way”, for example in an inappropriate expansion or basis. It is
remarkable that the conditions that indicate which theories are reducible are not too
restrictive. Moreover, even in the cases where the reduction is not doable because of

the failure of some conditions, it is useful to introduce a new independent constant for
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each reduction failure, because low-order calculations can be made with a relatively
small number of couplings. All-order theorems and the infinite reduction can be
carried out completely using some criteria based on dimensional regularization. In
this scheme, it becomes necessary to perform also the bare reduction, namely the
relation between bare couplings, which is not trivial. The equivalence with other

regularizations is proved.

It is showed that the invertibility conditions can be made more precise in cer-
tain circumstances, for example in the absence of three-leg marginal couplings. The
leading-log approximation is solved explicitly and contains sufficient information for
the existence and uniqueness of the reduction to all orders. One of the main fea-
tures of the models where the infinite reduction can be applied is that the strictly-
renormalizable subsector of the theory must be fully interacting, because the reduc-
tion is perturbatively meromorphic in the marginal coupling. In a first approach we
have considered massless models without relevant parameters, but it is also shown
how to include them in a perturbative manner. The reduction can be applied also to
theories with several marginal couplings without important modifications. In quan-
tum gravity, an infinite reduction of couplings could be tested, but differently from
the cases studied, dimensional analysis does not constrain the form of the reduction.
This means that the reduction contains an arbitrary function of the dimensionless

combination of the Newton constant and the cosmologic constant.

In Chapter 3 we have studied the renormalizability of a more specific class of
(PC) non-renormalizable theories. In these models, where quantum fields interacts
with classical gravity field, the lagrangian contains a finite set of matter operators of
dimensionality equal to or less than four coupled with purely gravitational operators
of dimensionality arbitrarily high. These theories are characterized by an acausal
behavior at high energies, which is not a problem in principle, since semiclassical
theories are known to have this kind of problems intrinsically. The renormalizability
is proved using a map that relates its own renormalization with the renormalization
of a physically different theory that presents no causality violation (other than the
one relative to semiclassical models) but instabilities due to higher time-derivative

in its kinetic terms. As consequence of the map, the metric, although classical, is
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renormalized and thus it is running.

The renormalization is achieved redefining a finite number of couplings plus
field redefinitions, without introducing higher-derivative kinetic terms in the gravi-
tational sector. We have studied as a specific example, the Yang-Mills model with an
R-dependent gauge coupling. The perturbation induces extra gravitational terms,
one of which, RRQBWRO‘W” is not squarely proportional to the Ricci tensor. Gen-
eral formulas for the beta-functions of the vertices of dimensionality six are derived.
They are expressed in terms of the trace-anomaly coefficients of the matter sector
embedded in curved background. The renormalization-group flow depends on the
scalar curvature of the spacetime. These results can be extended to all PC renor-
malizable theories with R-dependent coupling constants coupled to classical gravity.
Since the map is classical, the conclusions apply only if it is verified that gravity is
not a quantum interaction, but could motivate research pointing to find a quantum
version of the map or causality violations in quantum gravity.

In Chapter 4, we considered theories that contain irrelevant operators, but are
certainly renormalizable thanks to a modified kinetic term that renders the prop-
agators more convergent at high energies. This is achieved raising the order of a
subset of space derivatives, with the consequent breaking of the Lorentz symmetry.
Perturbative unitarity is preserved, since no higher time-derivative is generated by
renormalization. For this kind of theories, we propose a modified version of Power
Counting called weighted Power Counting, which resembles usual power Counting
but with some quantities redefined. The set of renormalizable theories is enlarged,
but is still finite, so the weighted PC is useful as classification criterion. The space-
time manifold could be split eventually in many submanifolds. Some of the theories
studied present classically a weighted scale-symmetry (where different coordinates
are weighted differently) which is anomalous at quantum level. Lorentz-violating
models could find applications in high-energy physics, effective field theory, nuclear
physics and the theory of critical phenomena. An interesting generalization to be
investigated is the application of the spacetime splitting to improve the renormaliz-

ability of quantum gravity.
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Appendix A Analytic properties of solutions of a
differential equation

For the discussion of Chapter 2, it is convenient to have at our disposal some
tools to study systematically the analytic behavior of the solutions of some differ-
ential equations. There, the analysis of certain solutions plays a central role in the
reduction of couplings in renormalizable models as in the infinite reduction as well
. Although some of the equations found can be solved in a closed expression (see
[11]), the same conclusions can be obtained in a unified frame that include both
renormalizable and non-renormalizable models in physical or extended spacetime.
The method explained below is simply a series expansion of the solution of a generic

differential equation for f(x):

d
A+Bf+Cf2+:cP(f,:c):xd—i(D+xQ(f,x)), (A1)
with A, B, C, D non-vanishing constants. P(f,z) and Q(f,z) are polynomials or
series in f and x.

The strategy starts writing a particular solution of (A.1)

fo(x) = Z et (A.2)

as a series and solve for ¢; matching the coefficients of the same power of z when
placing (A.1) in (A.1). If it is possible to find univocally the value of all of them,
the equation admits an unique analytic particular solution. If it is not, it is a signal
that there is no analytic solution or there are infinitely many (the general solution
is analytic). Proceeding in this way, we found that in principle two series fs; and

fs— exist, which coefficients are

—-B+ VA
Cox — T\/_, with A= 32 — 4AC, (A3)

K, K,/D
Cnt = = , for n >0, r
nDFvVvA nFr

S5

K, is a polynomial in ¢, with m < n and the other constants appearing in

P(f,z) and Q(f,x). The discriminant A must be greater than zero because only
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real solutions are physically meaningful. If the denominator in the expression for
cn+ does not vanish for any n, both f,, and fs;_ are the unique analytic solutions.

Therefore, depending on the value of 7, three cases can occur:

i) r>0:
The series fs_ exists (the denominator can not be zero). If r is a positive integer
r =n € Ny, the coefficient ¢;, remains undetermined. Instead of f, there is a

solution

n

Z ciyx' + i djy 7?7 (z)

i=0 j=n

where c54 is arbitrary and the coefficients d;; depend on c¢;; and dj4, with £ < j. In
the exceptional case where also K; = 0, f,, will exist but with ¢;. arbitrary, namely
the general solution is analytic. On the other hand, if » ¢ N, | the denominator never

cancels and therefore also a unique f, exists.

i) < 0:
Analogously to the previous case, fs; exists (its denominator can not cancel).
If —r = n € N4, the coefficient ¢;_ is undetermined. Instead of f,_ we have the

non-analytic solution

z”: ciixt + i dj— 27?7 (z).
i=0 =

where c_ is arbitrary and d;_ depends on c¢;— and dj_,k < j. If also Kz = 0, f,_
exists but with c;_ arbitrary, thus the general solution is analytic.

If —r ¢ N, the denominators never cancels, so we have both f,, and f,_.
i) r = 0:
From (A.3) it is evident that both series coincides. The denominator never

cancels, thus the series represents the unique analytic solution f, = foy = f._.

The following table summarizes the above conclusions:
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Conditions Analytic solutions
K; = < and f.y but with c;, arbitrary.
I F=FEN, fs— and fs. but wi . arbitrary
Kﬁ 7é 0 fs—
(D >0)
r ¢ N+ fsf and fs+'
G = < and f._ but with c;_ arbitrary.
<0 _r:ﬁENJFK%O ff+ f y
(D < 0) " o
- ¢ N+ fsf and fs+'
r=20
fs = fs— .
(B? = 4AC) +{ )

In the infinite reduction, the equations have C' = 0, which simplifies expressions

to

A K, _K,/D

B’ " nmD-B n-—r’

with » = B/D. Note that now there is only one series.
Repeating the analysis, we focus on the denominator of ¢,. Two cases can happen

i) r>0:

If »=7n € N, the denominator is zero, thus there is no solution fs, but

Z Cil'i + Z dj .fl?j In (;C)j_ﬁ—H s
=0 j=n

which is non analytic (c; is arbitrary and d; depends on ¢; and di, k < j). Again,
if K =0, there is one-parameter family of analytic solutions. If r ¢ N | the series

solution f, is unique.

ii) r < 0:
For all n > 0 the denominator is non-vanishing, thus fs always exists. This is

the situation where B and D have opposite signs.
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If the expansion of f (z) starts at some power ¢, the condition of existence of the

series are modified. Writing

f@)=a1f @), fa) = el (A4)
i=0
replacing in (A.1),
Atat(B—qD) [+a P(fa)=an S (Do @(f ),

it is clear that the coefficients are

K. K,/D -
= n > 0.
(n+¢q)D—B n—r+q -

Cp =

hence the invertibility condition changes into

r—q¢N

It is worth mentioning that in the cases where there is an unique analytic solution,

as (A.2), the general solution has the form

o0 ] o0 o0 ‘ \/Z
fe(z) = ;ciiml + Z Z Ayt €™ 2™ with dg1e = 1, and 7 = T’(A'S)

n=1m=0

flx) = g;@l‘i + i i Ay £ 2™ with dy = 1 and r = g,

n=1 m=0

for C' # 0 and C' = 0 respectively. ¢ is arbitrary and all d,,,+ and d,,, are
iteratively calculable. From (A.5) we see that when =7 is a positive integer, the
general solution is analytic, this is the reason why the coefficients in (A.2) are not

uniquely determined.

Normally the non-renormalizable models have several operators by level. When
operator mixing occurs, the equation (A.1) is replaced by a system of equations that

can be studied in the same manner. Adding indices, we consider a set of functions
f (), PI(f,x),Q"(f, x) and constants A7, B' and D'/ such as

df’

AL+ BY #7 4 x PI(f 2) =2 - (D" + 2 Q"(f,x)), (A.6)
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with 7,J =1... Ny. Ny is the number of operators mixed at the level. We look for

analytic solutions
o0

fllay=>) cl

=0

Now the coefficients are obtained from the inversion of certain matrices

A= (B A7, ¢k = [0 -B)"" K,

n

with K7 defined analogously to K,.The invertibility condition in this case comes
from requiring B’/ and (nD — B)"’ to be invertible matrices. The latter is equiv-
alent to det (nd —r) # 0, where ¢ is the identity matrix and r = BD™'. If the
matrix r has eigenvalues 7; the matrix (nd — r) has eigenvalues (n — r;), therefore
the invertibility conditions are translated to det (B) # 0 and r having no positive

integer eigenvalues.

Appendix B Explicit perturbative map

It is a known fact that terms in the lagrangian proportional to the equations of
motion can be removed with a field transformation, at least to first order. For some
class of theories, the HD kinetic term is proportional to the square of the equation of
motion of the unperturbed (low-derivative) action . In these cases the perturbative
transformation can be carried to all orders [9].

Write the HD action SHP[¢] as the sum of two parts

SHPIg] = S[¢] + SiF;S;,

where S; = ng_ is the equation of motion for ¢;, and Fj; is in general a differential

operator that can depend on ¢. .S; represents the n — th functional derivative of

1.0

S with respect to ¢. For instance, S;j, = Mngiw' These indices have the deWitt
0P
meaning explained in section 3.7. We are looking for a redefinition ¢’ = ¢’ (¢) such

that
S™Ple] = S[¢']. (B.1)
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Writing
¢; = ¢ + Ai;S;,

replacing it in (B.1), and performing a Taylor expansion, we get

S[¢']
S[é] + SFS = S[¢]+ SAS + %SASAS +

Sl + AS] (B.2)

1

where for clarity some indices have been omitted using the matrix notation. Both
F and A are assumed symmetric without loss of generality.

One solution for A can be obtained solving recursively the equation

1
Ay = Fij — 5
Obviously this solution is not unique. Other solutions can be obtained replacing

Fy; by Fy; + E;; in (B.3), where Fj; satisfies

1
(ASA), = 5 SumArildy; (AS),, + .. (B.3)

SiEij =0.

Expressed in orders of F, A = AW + A@ 1 AG)  A® 4 the solution of (B.3)

reads
AY = Fy (B.4)
1
2 _
Az’j = —§(FSF)U
AP = _lg FyiFy (FS) +1(FSFSF)
ij - 3! kimL kil'ly m 9 ij

A practical problem found in this approach is that being S an integral, only its
first functional derivative is a tensor. All successive derivatives appearing in (B.2)
are bi-, tri-tensor densities and so on. They have several Dirac delta distribution,
and although this fact is not an impediment, it is cumbersome working with them
directly [73]. In the situation where we use the map, there is no need of doing so,
because in all our expressions they are integrated. Thus, a clearer and simpler way
to treat the functional derivatives of S is to change them into variations as follows.

We illustrate the method with functions and normal derivatives. For small a;,
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df
dZL‘Z‘

where ¢ (f)|, represents the variation of f(z) under the variation dz; = a;. In this

ai:5f|a7

way, a Taylor expansion can be written in terms of variations,

B df 1 d2f
f(x—l—a) = f(x)—i—d—xzaﬂrimaza]—k

= F @)+ 0fl, 45 (), -

However, in the case we are interested in, the variation itself depends on z, a ().

Taking as example the second-order term,

d” d (d df da;
dm.(‘i};‘az’ (z)aj(r) = P (d—a{ai (x)) aj (x) — d—a{d_;aj (z) (B.5)

=9 (5f|a(m>> ’a(r) = Ml

and similarly for all orders. It is possible to arrange terms in the Taylor expansion

to facilitate the computation of variations. Write

f(a:+a(x)):E0+E1+E2+E3+

where

Ey = f’
1
E2 = 5 |:5E1‘a(x) - 5E0‘6a|a(z) 9

1
E3 = § |:6E2|a(x) - 5E1‘6a\a(z) + 6E0|6a5a|a(z):| , etc.

As we can see, at each order only one new variation must be calculated, the
variation of the previous term.

To obtain the perturbative map we can use this kind of Taylor expansion in
(B.2), or directly transform the derivatives into variations as in (B.5) at the final

stage (B.4).
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Gravity. A minor consideration should be made to apply the method to gravity.

Due to its diffeomorphism invariance, the action is the spacetime integral of a scalar

quantity times the density scalar \/—g, thus the functional derivative S; = gf_ is

not a tensor. Neither A;;, Fj; or S;; are bitensor. But is easy to define tensorial

quantities from them

. _ - 5 Sij
S = Ajj = V=g, iy =V —=9l%, Sij = —=

Consider the Einstein-Hilbert term plus terms quadratic in Ricci tensor

1
SHP = ﬁ/\/_—g (R+ aR,,R"™ + bR?)

According to the above nomenclature, the equation of motion for g, is

L VI (rw R,
R T T . B.
Si 5g;  0gu(x) 92 <R 59 + boundary term (B.6)

The boundary term arises because the action contains second derivatives. We con-

sider it vanishing.

The perturbative map is given by (B.4) with the bitensor density

2k2
Fij = Fuag(z,y) = \/——_g [aga(u )3 T+ bgaﬂgu,,} Sz —vy).

The orders a, b, a?, b?,ab is displayed in 3.4. Using Bianchi identities, the number
of operators of third order (a®, a®b, ab?,b3) can be reduced to a minimal basis of 43
operators, 29 of which are not proportional to g, Organizing them according to

the number of derivatives they contain, the third order of the perturbative map is
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1/48 times the sum of all 43 terms

T41 DzRag

Ta2 Vo VUR

43 VLV R

a4 V4V LR 3
2450V, VR 5

Ty 6R0pUR
247RORp3
485801 R
T49VVaV, VR
21410V~Va VeV, R
1411VyVaV VR,

221VaRVsR
222RV VR
23RV Vo3
224V RV  Rop
25,3V, Vo R
26Vl 3V Roe
227V RV Roe
228V R Vo Roe
229V a5V Rse
x2,10R76v6v7Ra6
To11 RV Vo R
22121245 VsV R
221305 VsVallyg
221402, Vo VR,

xoleagRiV
202 R?Rop
203RR, Res
204Ra Res R’

where o — 3 symmetrization is understood. The terms proportional to g,g are

ys1 PR

Y12V, VLR s
Y13V, VsV Vs, .
Y24V~ VsV.V, Rs,

Yo 1O R?

Y22 RUIR

Yo 30R

Yo 4 sLIR s

Y25 V5V Rse
y2,6R76V6V7R
Y27 R sV Vs Roe

Yo R?
y0,2RR,LLV2
Yo,3 R76R65R76
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The respective factors are

x41 = —12a° T21 = 2a (11a® + 4ab+ 120%) x; = 44a®
T4 = —12a (a* + 6ab + 12b*) x5 = 4a* (5a — 6b) Too = —46a®
Tyz = 24a°b Toz = —64a® T3 = 136a®
T4 = 24a® T94 = 4a® (11a — 2b) T4 = —176a®
Ty5 = 24a® To5 = —8a? (5a — 12b)
z46 = 4a® (5a — 8b) T96 = —8a’
Ty7 = 32a° To7 = —88a’
r48 = —136a® Tag = 96a®
T49 = —48a%b T9g = —44a®
T410 = —28a? To10 = 32a3
T411 = —20a® T911 = 144a®

T2,12 = 8a®

T2,13 = 80(13

1’2714 == —406L3

and

ya1 = 12 (a® + 11a2b + 36ab? + 360°) yo1 = — 12 +5a2b + 2ab? — 126> yy, = a® (11a — 2b)

Yo = —12a> (a + 2b) Yoo = a® + 2a%b — 12ab* + 2403 yoo = —6a? (Ta — 2b)
Ya,s = 10a® (a + 2b) Yo3 = 3a* (Ta + 6b) Y03 = 8a® (5a — 20b)
Yaa = 14a* (a + 2b) Yo.a = 2a* (ba — 2b)

Yo 5 = —44a’ (a + 2b)
Yo6 = 16ab (a + 5b)
Yo7 = —16a? (4a + 5b)
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