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In this paper, we consider relativistic quantum field theory in the presence of an external
electric potential in a general curved spacetime geometry. We utilize Fermi coordinates
adapted to the time-like geodesic to describe the low-energy physics in the laboratory
and calculate the leading correction due to the curvature of the spacetime geometry to
the Schrödinger equation. We then compute the nonvanishing probability of excitation
for a hydrogen atom that falls in or is scattered by a general Schwarzschild black hole.
The photon emitted from the excited state by spontaneous emission extracts energy from
the black hole, increases the decay rate of the black hole and adds to the information
paradox.
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1. Introduction

All forces, except gravity, are described in the standard model of elementary parti-
cles in a renormalizable quantum field theory (QFT) framework. It is believed that
an extension of the standard model of particle physics to a generally curved space-
time geometry describes the interaction between matter and gravity in the quantum
realm. The criterion of minimal interaction with the metric and techniques of QFT
in curved spacetime geometry have been utilized to calculate effects of curved space-
time geometry for Hartle and Hawking observer1 and Unruh observer (vacuum).2

The spontaneous excitation of static atoms due to the nontrivial vacuum has been
studied.3–6 The change in the spectrum of a static hydrogen atom in a curved space-
time geometry has been studied.7,8 Here, we develop a framework for computing
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the excitation of a (nonstatic) hydrogen atom that falls freely in a curved spacetime
geometry.

We consider a hydrogen atom at its ground state in the asymptotic flat infin-
ity that moves along a time-like geodesic toward a mass distribution. We adapt
Fermi coordinates to describe the curved spacetime geometry around the geodesic.
In Fermi coordinates, the metric is the Minkowski metric corrected by the com-
ponents of Riemann tensor evaluated on the geodesic. Utilizing the effective field
approach, we show that the corrections given by the components of Riemann tensor
cause a transition from the ground state. This approach allows us to provide the
leading correction to the Schrödinger equation due to the curvature of the spacetime
geometry. We prove that the leading correction coincides to the Newtonian tidal
gravitational force. We also calculate the excitation of a hydrogen atom scattered
by a Schwarzschild spacetime geometry.

This work is structured as follows. We first review the systematic extension of
the standard model of elementary particles to a generally curved spacetime geom-
etry by the minimal interaction criterion in Sec. 2. We consider the effective action
of an electron in the presence of an external electric potential in a general curved
spacetime geometry in Sec. 3. We review the construction of the Fermi coordi-
nates adapted to a general time-like geodesic in Sec. 3.1. The effective action of a
trapped electron in Fermi coordinates adapted to the time-like geodesic of the lab
is derived in Sec. 3.2. The low-energy physics of the trapped electron is studied in
Sec. 3.2. The leading corrections by the Riemann tensor of the back geometry to
the Schrödinger equations are calculated and presented in (57), where the prod-
ucts of states are defined (61). After redefining the wave function by (62), it is
shown that the leading correction by Riemann tensor coincides with the residual
Newtonian gravitational potential present in the lab, while inner products between
wave functions are that of the flat spacetime geometry. The Schwarzschild space-
time geometry is considered in Sec. 4, and the components of the Riemann tensor
are calculated in Fermi coordinates for a general time-like geodesic. The hydrogen
atom in the flat spacetime geometry is reviewed in Sec. 5. The effective gravita-
tional potential felt by the electron when the hydrogen atom moves on a time-like
geodesic of a curved spacetime geometry is calculated in (134).

Section 6 considers a hydrogen atom radially falling into the Schwarzschild black
hole. The atom is assumed to be in its ground state at asymptotic infinity. The tran-
sition probability of the hydrogen atom to excited states on the event horizon is
calculated in Sec. 6. The rules for transition from |n, �,m〉 to |n′, �′,m′〉 are pro-
vided in (145). The amplitude for the transition from ground state to the state of
|3, 2, 0〉, which is the first allowed excited state, is calculated. Figure 1 depicts the
probability of transition as a function of the Lorentz factor of the hydrogen atom
at the asymptotic infinity for a set of Schwarzschild radii. The transition amplitude
for ultra-relativistic and classical hydrogen atom is calculated, respectively, in Secs.
6.1 and 6.2. It is reported that increasing the Lorentz factor of the hydrogen atom
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enhances the probability of transition. The relativistic enhancement factor is eval-
uated and presented in Sec. 6.3.

Section 7 studies the deflection of a hydrogen atom with arbitrary Lorentz factor
at the asymptotic infinity and a general impact parameter from a Schwarzschild
black hole. It considers the hydrogen atom in its ground state before the impact
with the black hole, and computes the transition amplitude to excited states after
the impact. The rules for allowed transitions are derived and presented in (214).
The amplitude for the transition to the first excited states of |3, 2, 0〉, |3, 2,±1〉 and
|3, 2,±2〉 is computed. It is shown that the behavior in the ultra-relativistic regime
is simplified. It is reported that the amplitude for transition to |3, 2,±1〉 increases
by increasing the Lorentz factor of the hydrogen atom, while the amplitude of
transition to |3, 2, 0〉 decreases and that of |3, 2,±2〉 approaches a constant value.

The results are reviewed and remarks are provided in Sec. 8.

2. Standard Model of Elementary Particles in a Curved
Spacetime Geometry

The observed matter content of the universe is presented in the standard model
of particle physics. The standard model includes leptons, quarks, W±, Z, γ (pho-
ton), gluons and Higgs. It is governed by a renormalizable QFT with spontaneously
broken SU(3) × SU(2) × U(1) gauge symmetry. Let Ψ represent all the field con-
tent of the standard model. The tree-level action of the standard model can be
presented by

SSM =
∫
d4xL(Ψ, ∂μΨ, ημν), (1)

where L is the Lagrangian density of the standard model which is a nonlinear
function of Ψ and its first derivative, and ημν is the Minkowski metric.

In order to include gravity, we should extend the standard model to QFT in
curved spacetime geometry9,10 endowed by a metric. Considering a manifold with
a given topology and differential structure, the assumption of minimal interaction
with the metric replaces ημν with an arbitrary metric gμν , resulting in

SSM =
∫
d4x

√
− det g L(Ψ, ∂μΨ, gμν). (2)

The Einstein–Hilbert action that governs the dynamics of the metric is given by

Sg =
c4

16πG

∫
d4x

√
− det gR, (3)

where G is Newton’s gravitational constant, and c is the light speed. Therefore, the
total action of the theory then is given by

S = Sg + SSM. (4)
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The quantum path integral of the theory can be represented by

Z[J, Jab] =
∑
TP

∫
DΨDgabe

− i
�
(S+

R
d4x

√− det g (J·Ψ+Jabgab))

VG
∫

DΨDgab e
− i

�
(S[Ψ])

, (5)

where
∑

TP stands for summation over all topologies,
∫ DΨ and

∫ Dgab stand for
integration over all field configurations and over all metrics, J represents the source
field for Ψ, Jab represents the source field for the metric, and VG is the volume
of the gauge groups. This theory, however, is not perturbatively renormalizable
around the flat spacetime geometry. In order to be able to utilize the standard
methods of the QFT, we ignore the dynamics of the metric and consider QFT of
the standard model in a general curved spacetime geometry where the quantum
path integral of the theory is given by

Z[J ] =

∫
DΨe−

i
�
(SSM+

R
d4x

√− det g J·Ψ)

VG
∫

DΨe−
i
�

SSM

. (6)

This approach is called QFT in a curved spacetime geometry. The effective
action, Γ, is defined as the Legendre transformation of logarithm of Z[J ]

Z[J ] ≡ e
i
�

W [J], (7)

Γ[Ψc] ≡ W [J ] −
∫
d4x
√

− det gJ · Ψc, (8)

where

Ψc ≡ δW [J ]
δJ

. (9)

The standard perturbative renormalization approach to the path integral returns
the perturbative expansion of the effective action in term of �, i.e.

Γ := Γ[Ψc] = Γ(0)[Ψc] + � Γ(1)[Ψc] + �
2 Γ(2)[Ψc] + . . . . (10)

The first term coincides with the tree-level action

Γ(0)[Ψc] =
∫
d4x
√

− det gL(Ψc, ∂μΨc, gμν), (11)

and the sub-leading corrections can be computed. In high densities, the sub-leading
corrections can be important.11 We consider low-energy densities where the sub-
leading corrections can be ignored.

The effective action includes both the classical and quantum effects. The clas-
sical effects are those that can be reproduced by the motion of point-like particles
along geodesics or by classical fields. The rest are quantum. Hawking effect12 is a
known quantum effect due to curved spacetime geometry that was initially discov-
ered by studying QFT in black hole spacetime geometry within the approach of the
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operator product expansion method. However, the effective field theory approach
provides a simpler method to compute it.13,14 We would like to utilize the effective
field theory approach to find how a curved spacetime geometry affects quantum
mechanics and alters the Schrödinger equation.

3. Massive Charged Scalar Field in the Presence of an Electric
Potential in Curved Spacetime Geometry

The approaches to obtain an effective low-energy description of a quantum particle
in curved spacetime include the expansion of the Dirac equation in the general-
ized Fermi coordinates along a reference world-line,15,16 or less-explicit geometric
expansion of the Klein–Gordon equation to obtain an effective Schrödinger equation
with ‘relativistic corrections’.17 In this section, we treat the Schrödinger equation
as the low-energy limit of the Klein–Gordon equation and calculate the geometric
corrections to the Schrödinger equation. In so doing, we first would like to justify
the consideration of the Klein–Gordon equation in describing the behavior of an
electron in a curved spacetime geometry where physics is governed by the Dirac
equation

(iγμDμ −m)ψ = 0, (12)

where

Dμ = ∂μ − Γμ + ieAμ. (13)

γμ are the generalized gamma matrices satisfying the covariant Clifford algebra

γμγν + γνγμ = −2gμν , (14)

while Γμ is the spinorial affine connection, Aμ is the electromagnetic four-vector
potential, and e is the electric charge of the fermion. The modified Klein–Gordon
equation obtained by squaring the operator in the Dirac equation, first found by
Schrödinger as cited by Pollock,18 is given by(

1√− det g
Dμ(

√
− det ggμνDν) − 1

4
R+

ie

2
Fμνs

μν −m2

)
Ψ = 0. (15)

Here, R is the Ricci scalar, and Fμν is the field strength of Aμ, i.e.

Fμν = ∂μAν − ∂νAμ. (16)

For Ricci flat spacetime geometries, when the spin of the fermion (electron) can
be neglected, the spinor Ψ can be replaced by the scalar field ϕ, Dμ converts to

Dμ = ∂μ + ieAμ, (17)

and (15) can be approximated to(
1√− det g

Dμ(
√
− det ggμνDν) −m2

)
ϕ = 0. (18)

2250018-5

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

02
2.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/2

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2022 7:34 WSPC/S0218-2718 142-IJMPD 2250018

Q. Exirifard and E. Karimi

Let it be emphasized that in obtaining (18), we have assumed that the electron
is not relativistic with respect to the hydrogen atom and that the frame-dragging
effect is smaller than the Newtonian potential. So, the gravitomagnetic interaction
between the electron’s spin or angular momentum can be consistently neglected at
the leading order approximation. Equation (18) is the variation of

Γ[ϕ] =
1
2

∫
d4x
√

− det g(gμνDμϕ(Dνϕ)∗ +m2ϕϕ∗), (19)

with respect to ϕ∗. Note that ϕ∗ is the complex conjugate of ϕ, � and c are set to 1
(� = c = 1), and the metric has three positive eigenvalues. Equation (19) is known
as the scalar approximation to the electron action. Now, let us consider an electric
potential, where the four-potential is given by

Aμ = (V, 0, 0, 0). (20)

For a weak electric field, one can ignore the quadratic term in V in (19), and
thus, obtain

Γ[ϕ] =
1
2

∫
d4x
√
− det g(gμν∂μϕ∂νϕ

∗ − ieg00V ϕ∗∂0ϕ

+ ieg00V ϕ∂0ϕ
∗ +m2ϕϕ∗), (21)

The low-energy physics is described by

ϕ = e−imtΨ(t, 
x), (22)

|∂tΨ| � |mΨ|. (23)

Therefore, we can substitute ∂0ϕ with −imϕ and simplify (21) to

Γ[ϕ] =
1
2

∫
d4x
√
− det g(gμν∂μϕ∂νϕ

∗ − 2emg00V ϕϕ∗ +m2ϕϕ∗), (24)

which we refer to as the action of a massive charged particle in a curved spacetime
geometry under the external electric potential V.

In the case of flat spacetime geometry, gμν = diag(−1, 1, 1, 1), the variation of
(24) with respect to ϕ∗ yields

(∇a∇a −m2)ϕ = (−∂2
t + ∂a∂a −m2 − 2emV )ϕ. (25)

Utilizing (22) in (25) enables us to ignore the second derivative of Ψ with respect
to time and obtain

(2im∂t + ∂a∂
a − 2emV )Ψ = 0, (26)

which can be rewritten into the following form:(
− �

2

2m
∇2 + eV

)
Ψ(t, 
x) = i� ∂tΨ(t, 
x). (27)

Here, we recovered the �, and ∇2 = ∂a∂a. Equation (27) is the Schrödinger
equation for a particle of massm and charge e in the presence of electric potential V.

2250018-6

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

02
2.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/2

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2022 7:34 WSPC/S0218-2718 142-IJMPD 2250018

Schrödinger equation in a general curved spacetime geometry

The low-energy physics of (24) for a general metric includes the corrections to the
Schrödinger equation due to the curvature of the spacetime geometry. In order to
extract the corrections, we should first fix the general covariance symmetry of the
theory by appropriately choosing the coordinates.

3.1. Fermi coordinates adapted to time-like geodesics

We can choose the rest frame of the object producing the potential; we call this
frame the lab frame. The lab is considered to move along a time-like geodesic.
We choose Fermi coordinates to describe the spacetime geometry in the lab. The
expansion of Fermi coordinates adapted to the time-like geodesic γ, up to the
quadratic transverse directions, is given by Manasse and Misner19,a

ds2 = c2(dx0)2(−1 +R0l0mx
lxm) +

+
4
3
R0limx

lxmdx0dxi + dxidxj

(
δij +

1
3
Riljmx

lxm

)

+O(xlxmxn), (28)

where Rμαβν represents the components of the Riemann tensor computed along
the time-like geodesics, and xi are the spatial transverse directions to the time-like
geodesic. Note that x0 is the proper time in the lab, i.e. x0 = τ . We choose units
such that c = 1. Therefore, we can write the following systematic expansion series
for the metric:

gμν = g(0)
μν + εg(1)

μν +O(ε2), (29)

where ε is the systematic parameter of the series, and

g(0)
μν = ημν , (30)

where ημν stands for the Minkowski metric

ημνdx
μdxν = −dt2 + dxidxi, (31)

and

g
(1)
00 = R0l0mx

lxm, (32a)

g
(1)
0i =

2
3
R0limx

lxm, (32b)

g
(1)
ij =

1
3
Riljmx

lxm . (32c)

“The expansion of the metric in Fermi coordinates in Eq. (28) is directly cited
from Manasse and Misner’s work19 with a nonstandard sign convention for the

aFermi coordinates adapted to null geodesics is provided by Matthias Blau, Denis Frank, Sebastian
Weiss.20
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Riemann tensor: (Manasse–Misner)R μ
ν ρσ = (MTW)Rμ

νρσ, where (MTW)Rμ
νρσ is the

standard sign convention in GR textbook by Misner, Thorne and Wheeler21 which
is the most widely used sign convention nowadays.”b We observe that if we set
ε = −1, where ε is the systematic parameter of the expansion, then the Manasse
and Misner convention is mapped to nowadays’ standard convention. We shall use
the nowadays’ convention and set ε = −1 at the end of the computation. In the
following, we would like to compute the determinant and the inverse of the metric.
The determinant of the metric, i.e. det g, is

− det g = 1 + ε

(
−R0l0m +

1
3
Rklnmδ

kn

)
xlxm +O(ε2). (33)

We are interested in the vacuum solutions of the Einstein equations where the
Ricci tensor vanishes. The components of the Ricci tensor evaluated on the geodesic
are

Rlm = ημνRlμmν = δknRklnm −R0l0m = 0. (34)

This can be used to simplify Eq. (33)

− det g = 1 − 2ε
3
R0l0mx

lxm +O(ε2). (35)

Therefore, if we represent g = − det g, then

g = 1 + εg(1), (36)

g(1) = −2
3
R0l0mx

lxm. (37)

In order to compute the expansion series for the inverse of the metric, the
definition of the inverse metric (gμνgνξ = δμ

ξ) is utilized to write down

(ημν + εg(1)μν)(ηνξ + εg
(1)
νξ ) = δμ

ξ +O(ε2), (38)

which implies

g(1)μν = −ηαμηβνg
(1)
αβ . (39)

Since ημν is diagonal, and its diagonal values are ±1, one gets

g(1)μν = −g(1)
μν . (40)

Therefore

g(1)00 = −R0l0mx
lxm, (41a)

g(1)0i = −2
3
R0limx

lxm, (41b)

g(1)ij = −1
3
Riljmx

lxm. (41c)

bWe thank referee 2 for pointing this to us.
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3.2. Correction by the Riemann tensor to the Schrödinger

equation

The QFT of a massive scalar particle in the background potential V in a general
curved spacetime geometry was presented in (24). The functional variation of (24)
with respect to ϕ gives its equation of motion(

1√− det g
∂μ(
√
− det ggμν∂ν) −m2 + 2emV g00

)
ϕ = 0. (42)

We assume that the potential is produced by a massive entity; the entity can
be a proton or the lab. We choose Fermi coordinates along the time-like geodesic
of the entity. Section 3.1 presents the components of the metric along a time-like
geodesic in Fermi coordinates up to quadratic order in the transverse directions to
the geodesic. This allows for the perturbative ε expansion series for the metric, its
determinant and the inverse

gμν = ημν + εg(1)
μν +O(ε2),

gμν = ημν + εg(1)μν +O(ε2),

g = 1 + εg(1) +O(ε2),

(43)

where g represents “− det g”. In Eq. (32), g(1)
μν are expressed in terms of the com-

ponents of the Riemann tensor evaluated on the geodesic. Equation (41) shows the
corresponding expression for g(1)μν , and the expression for g(1) is shown in (37).
Utilizing (43) gives

(∇a∇a −m2 − 2emV )ϕ+
ε

2
ημν∂μg

(1)∂νϕ (44)

+ ε∂μ(g(1)μν∂νϕ) + 2εemV g(1)00ϕ = O(ε2), (45)

where ∇a∇a represents the d’Alembert operator in flat spacetime geometry

∇a∇a = ημν∂μ∂ν = −∂2
t + ∇2, (46)

and ∇2 is the Laplace operator in the spatial directions transverse to the geodesic.
Since the potential V is small, we can omit the term that includes both V and ε to
obtain

(∇a∇a −m2 − 2emV )ϕ+
ε

2
ημν∂μg

(1)∂νϕ+ ε∂μ(g(1)μν∂νϕ)

+O(ε2, εV ) = 0. (47)

We also would like to consider the low-energy physics where it holds (22). Uti-
lizing (22), and neglecting the second partial derivative of Ψ with respect to time,
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yields

(∇a∇a −m2 − 2emV )ϕ = e−imt(∇a∇a + 2im∂0 − 2emV )Ψ

+O(∂2
0Ψ), (48)

which is the first term on the left-hand side of (46). In low-energy physics, all
derivatives of Ψ are small compared to the mass

∀μ|∂μΨ| � m|Ψ|. (49)

So, the dominant linear correction by the Riemann curvature to the Schrödinger
equation includes Ψ but not its derivatives.

We would like to express (47) in terms of Ψ. To this aim, notice that the second
term in the left-hand side of (47) is given by

1
2
ημν∂μg

(1)∂νϕ = −1
2
∂0g

(1)∂0ϕ+
1
2
∂ag

(1)∂aϕ

= e−imt im

2
∂0g

(1)Ψ +O(∂Ψ). (50)

The last term on the left-hand side of (47) can be written as

∂μ(g(1)μν∂νϕ) = g(1)μν∂μ∂νϕ+ ∂μg
(1)μν∂νϕ. (51)

In order to express (51) in terms of Ψ, we first expand its superscripts in terms
of t and xa

∂μ(g(1)μν∂νϕ) = g(1)00∂2
0ϕ+ 2g(1)0a∂0∂aϕ+ g(1)ab∂a∂bϕ

+ ∂0g
(1)00∂0ϕ+ ∂0g

(1)0a∂aϕ+ ∂ag
(1)0a∂0ϕ

+ ∂ag
(1)ab∂bϕ. (52)

Note it holds that

∂ig
(1)
0i =

2
3
R0iimx

m, (53)

where (41) is employed. However, R0iim is proportional to the 0m component of
the Ricci tensor evaluated on the geodesic. Therefore, Eq. (53) vanishes.

Utilizing (22) in (52) yields

∂μ(g(1)μν∂νϕ) = e−imt(−m2g(1)00Ψ − im∂0g
(1)00Ψ) +O(∂Ψ). (54)

Utilizing (48), (50), (54) in (47) yields

(∇2 + 2im∂0 − 2emV )Ψ + ε

(
im

2
∂0g

(1) −m2g(1)00

)
Ψ

+O(ε2, ε∂Ψ, ∂2
0Ψ, εV ) = 0. (55)
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Dividing both sides of (55) by “−2m” yields(
− 1

2m
∇2 − i∂0 + eV

)
Ψ + ε

(
1
2
mg(1)00 − i

4
∂0g

(1)

)
Ψ

+O(ε2, ε∂Ψ, ∂2
0Ψ, εV ) = 0. (56)

Finally, one may use (41) and (37) to express g(1)00 and g(1) explicitly in terms
of the components of the Riemann tensor evaluated on the time-like geodesic of the
lab, and thus, we have

i∂0Ψ =
(
− 1

2m
∇2 + eV

)
Ψ − ε

(
1
2
mR0a0bx

axb − i

6
xaxb∂0R0a0b

)
Ψ

+O(ε2, ε∂Ψ, ∂2
0Ψ, εV ), (57)

where � and c are set to 1. The curvature of the spacetime geometry modifies
the electrodynamics’ equation. The modification causes V to be corrected from its
value in flat spacetime geometry. In other words, V also has a perturbation in ε:
V = V (0) + εV (1) +O(ε2). It is noticed that dimensional analysis requires V (1) to
be proportional to V (0). But Eq. (57) neglects terms at order εV (0). Terms at order
of εV (0) are proportional to the binding energy of the electron (13.6 eV) while (57)
presents terms that are at the order of the rest mass of the electron (0.51 MeV). So,
it is legitimate to ignore terms at the order of εV (0) and keep (57) as the leading
correction.

Equation (57) presents the linear correction due to the Riemann curvature of
the spacetime geometry to the Schrödinger equation.

Let it be emphasized that the volume element of a curved spacetime geometry is

dV = d4x
√
− det g. (58)

In Fermi coordinates, it can be written as

dV = dτ
√
− det g d3x, (59)

where τ is the proper time in the lab, and d3x are the spatial coordinates in Fermi
coordinates. This enforces us to consider the volume element in x1, x2 and x3 coor-
dinates by

dV =
√
− det g d3x. (60)

The amplitude for probability of transition from the state of Ψ1 to Ψ2 is then
given by

P(Ψ1,Ψ2) =
∫
dV Ψ1∗Ψ2 =

∫
d3x

√
− det gΨ1∗Ψ2. (61)

It is convenient to define the physical wave function by

ΨPhy = (− det g)
1
4 Ψ. (62)
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The transition amplitude between physical states resembles the transitional ampli-
tude in flat spacetime geometry

P(Ψ1
Phy,Ψ

2
Phy) =

∫
d3xΨ1∗

PhyΨ
2
Phy. (63)

Utilizing (35) and (62) in (57) gives the equation of motion for the physical
wave function

i∂0ΨPhy =
(
− 1

2m
∇2 + eV − ε

m

2
R0a0bx

axb

)
ΨPhy +O(ε2, ε∂Ψ, ∂2

0Ψ, εV ).

(64)

This is the correction to the Schrödinger equation in curved spacetime geometry
where the amplitude of probability is defined by (63). The procedure of defining the
physical wave function removes the imaginary part of the effective potential. We
expect the imaginary part of the effective potential in (57) to vanish for physical
states to all orders of the approximation because the electric charge is conserved at
the tree-level action and the measure of path integral in (6) is invariant with respect
to the U(1) symmetry. There exists no anomaly at the quantum level violating the
electric charge.

Let us set ε = −1, drop the superscript of ‘Phy’, and define

Veff = +
m

2
R0a0bx

axb, (65)

then the Schrödinger equation is given by

i�∂0Ψ =
(
− �

2

2m
∇2 + eV + Veff

)
Ψ, (66)

where � is recovered. Here, the perturbative potential Veff is the residual Newtonian
gravitational potential present in the lab, and the amplitude of probability is that
of flat spacetime geometry.

Note that Veff is a perturbative time-dependent potential in the lab. The Hamil-
tonian of the system can be written as

H = H0 + Veff(τ), (67)

where

H0 =
P 2

2m
+ eV. (68)

So, the system, initially in the unperturbed eigenstate energy |α〉 = |Ψ(τ0)〉
by the perturbation, can go into the energy eigenstate |β〉. Standard perturbation

2250018-12
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theory gives the transition amplitude to the first-order

Aαβ = − i

�

∫ τ

τ0

dτ1〈β|Veff |α〉e− i
�
(Eα−Eβ)(τ1−τ0), (69)

where Eα and Eβ are the energy of the states |α〉 and |β〉
H0|α〉 = Eα|α〉, (70)

H0|β〉 = Eβ |β〉, (71)

and in the Dirac notation, it holds that

〈β|Veff |α〉 =
∫
d3x

∫
d3x′ 〈β|x〉〈x|Veff(τ)|x′〉〈x′|α〉. (72)

The residual Newtonian gravitational potential holds

〈x|Veff(τ)|x′〉 = δ3(
x − 
x′)Veff(τ, x), (73)

which simplifies (72) to

〈β|Veff |α〉 =
∫
d3x〈β|x〉Veff(τ)〈x|α〉, (74)

where the dependency of Veff(τ) on x is understood.

4. The Schwarzschild Spacetime Geometry

In a spacetime endowed with the metric gμν , a geodesic xμ(τ) can be obtained from
an effective action, i.e.

S =
∫
dτ L, (75)

L = gμν ẋ
μẋν , (76)

where τ is an affine parameter. For the Schwarzschild black hole in the standard
coordinates, this is

L = −
(
1 − rs

r

)
ṫ2 +

ṙ2

1 − rs
r

+ r2(θ̇2 + sin2 θϕ̇2), (77)

where rs = 2GNM•, M• is the mass of the black hole, and c = 1. We choose the
units such that

rs = � = c = 1. (78)

Due to the spherical symmetry, without loss of generality, we can choose the
equatorial plane, i.e.

θ =
π

2
, (79)

θ̇ = 0, (80)
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to describe any given geodesic at all times. The cyclic variables of ϕ and t lead to
invariant quantities

∂L
∂ϕ

= 0 → r2ϕ̇ = l, (81)

∂L
∂t

= 0 →
(

1 − 1
r

)
ṫ = E. (82)

Due to the form of the Lagrangian, its Legendre transformation, which is the
Lagrangian itself, is invariant. We set

L = −
(

1 − 1
r

)
ṫ2 +

ṙ2

1 − 1
r

+ r2ϕ̇2 = −1. (83)

The nonzero components of the Riemann tensor in nowadays’ standard conven-
tion on the geodesic (θ = π

2 ) in the standard spherical coordinates are

Rtrtr = − 1
r3
, (84a)

Rθϕθϕ = r, (84b)

Rtθtθ = Rtϕtϕ =
r − 1
2r2

, (84c)

Rrθrθ = Rrϕrϕ = − 1
2 (r − 1)

. (84d)

As a consistency check, we have checked that the Ricci tensor constructed out from
(84) vanishes. The coordinate-independent representation of the Riemann tensor,
therefore, follows:

R = − 1
r3

(dt∧dr) ⊗ (dt∧dr) + r (dθ∧dϕ) ⊗ (dθ∧dϕ)

+
r − 1
2r2

(dt∧dϕ) ⊗ (dt∧dϕ) +
r − 1
2r2

(dt∧dθ) ⊗ (dt∧dθ)

− 1
2(r − 1)

(dr∧dϕ) ⊗ (dr∧dϕ) − 1
2(r − 1)

(dr∧dθ) ⊗ (dr∧dθ) . (85)

4.1. General time-like geodesic reaching asymptotic infinity

In this section, we consider a time-like geodesic that reaches the asymptotic infinity
and l �= 0. We assume that the absolute value of the velocity of the lab at the asymp-
totic infinity is v. Equation (81) implies that, for a finite value of l, the velocity of
the lab is radial at the asymptotic infinity because rϕ̇ vanishes at the asymptotic
infinity. So, it holds that

ṙ|r=∞ = −γv, (86)

ṫ|r=∞ = γ, (87)
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where γ is the Lorentz factor and given by

γ =
1√

1 − v2
. (88)

Equation (82) implies E = γ and yields

ṫ =
γr

r − 1
, (89)

that can be utilized in (83) to obtain

r(ṙ2 − γ2)
r − 1

= −1 − l2

r2
, (90)

where (81) is used too, and which can be solved for ṙ

ṙ = ±
√
γ2 − (r − 1)(r2 + l2)

r3
. (91)

Here, the minus sign (−) is for the lab moving toward the black hole and the
plus sign (+) is for the lab moving away from the black hole. The tangent to the
geodesic is


̇γ = hṫ êt +
ṙ

h
êr + rϕ̇ êϕ, (92)

where h is defined by

h =

√
r − 1
r

. (93)

Employing (89), (91) and (81), one would get


̇γ = γ

√
r

r − 1
êt −

√
γ2r3 − (r − 1)(r2 + l2)

r2(r − 1)
êr +

l

r
êϕ. (94)

It also holds that 
̇γ
2

= −1. We equate ê0 to 
̇γ, i.e.

ê0 = γ

√
r

r − 1
êt −

√
γ2r3 − (r − 1)(r2 + l2)

r2(r − 1)
êr +

l

r
êϕ. (95)

Let ê0 be written as

ê0 = coshα êt − sinhα (êr cosβ + êϕ sinβ), (96)

where

coshα = γ

√
r

r − 1
, (97a)

sinhα =

√
γ2r

r − 1
− 1, (97b)

2250018-15

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

02
2.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/2

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2022 7:34 WSPC/S0218-2718 142-IJMPD 2250018

Q. Exirifard and E. Karimi

and

cosβ =
1
r

√
γ2r3 − (r − 1)(r2 + l2)

γ2r − r + 1
, (98a)

sinβ =
l

r

√
r − 1

γ2r − r + 1
. (98b)

The succinct form of (96) then allows us to write

ê1 = − sinhαêt + coshα (êr cosβ + êϕ sinβ), (99)

which holds that

ê1 · ê0 = 0, (100)

ê1 · ê1 = 1. (101)

The unit norm vector of ê2 should be in the êr–êϕ-plane, and is perpendicular to
ê0 and ê1. So, it is given by

ê2 = −êr sinβ + êϕ cosβ, (102)

which holds ê22 = 1. The unit norm vector ê3 is given by

ê3 = êθ. (103)

An infinitesimal displacement δ
x in the standard spherical coordinates for θ = π
2 is

given by

d
x = hdt êt +
1
h
drêr + rdϕêϕ + rdθ êθ, (104)

where êt, êr, êθ and êϕ are the normal unit vectors. The infinitesimal displacement
in Fermi coordinates is

d
x = dx0ê0 + dxaêa, (105)

where ê0 and êa are the unit vectors in Fermi coordinates and ê0 is tangent to the
geodesic γ. Utilizing (95), (99), (102) and (103) in (105) yields

d
x = (coshα dx0 − sinhαdx1)êt

+ (− sinhα cosβ dx0 + coshα cosβ dx0 − sinβ dx2)êr

+ (− sinhα sinβ dx0 + coshα sinβ dx1 + cosβ dx2)êϕ

+ êθ dx
3. (106)

We utilize (97) to express h, which is defined in (93), i.e.

h =
γ

coshα
. (107)

This allows us to rewrite (104) as

d
x =
γ

coshα
dt êt +

coshα
γ

dr êr + rdϕ êϕ + rdθêθ, (108)
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that we equate to (106) to infer that

dt =
1
γ

cosh2 α dx0 − 1
γ

coshα sinhαdx1, (109)

dr = −γ tanhα cosβ dx0 + γ cosβ dx1 − γ
sinβ

coshα
dx2, (110)

dϕ = − sinhα sinβ
r

dx0 +
coshα sinβ

r
dx1 +

cosβ
r

dx2, (111)

dθ =
dx3

r
. (112)

Their anti-symmetric wedge products are given by

dt ∧ dr = cosβ dx0 ∧ dx1 − sinβ coshαdx0 ∧ dx2

+ sinβ sinhα dx1 ∧ dx2, (113)

dt ∧ dϕ =
coshα sinβ

rγ
dx0 ∧ dx1 +

cosh2 α cosβ
rγ

dx0 ∧ dx2

− coshα sinhα cosβ
rγ

dx1 ∧ dx2, (114)

dt ∧ dθ =
cosh2 α

rγ
dx0 ∧ dx3 − coshα sinhα

rγ
dx1 ∧ dx3, (115)

dr ∧ dϕ = −γ tanhα
r

dx0 ∧ dx2 +
γ

r
dx1 ∧ dx2, (116)

dr ∧ dθ = −γ tanhα cosβ
r

dx0 ∧ dx3 +
γ cosβ
r

dx1 ∧ dx3

− γ sinβ
r coshα

dx2 ∧ dx3, (117)

dϕ ∧ dθ = − sinhα sinβ
r2

dx0 ∧ dx3 +
coshα sinβ

r2
dx1 ∧ dx3

+
cosβ
r2

dx2 ∧ dx3. (118)

The above anti-symmetric wedge products can be substituted in (85) to obtain
the nonzero components of the Riemann tensor in Fermi coordinates

R0101 = −1 + 3 cos 2β
4r3

, (119a)

R0202 =
1 + 3 cos 2β

4r3
− 3l2 + r2

2r5
, (119b)

R0303 =
3l2 + r2

2r5
, (119c)

R0102 =
3 coshα sin 2β

2r3
, (119d)
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where α and β are defined in (97) and (98). As a consistency check, we notice that
the parity in the x3 direction causes R0103 = R0203 = 0. As another consistency
check, we note that the 00-component of the Ricci tensor evaluated on the geodesic,
(34) for l = m = 0, vanishes too. It is advised to use Mathematica in simplification
of what leads to (119).

5. Hydrogen Atom in the Schwarzschild Spacetime Geometry

We would like to study the free fall of a hydrogen atom in its ground state on various
geodesics in the Schwarzschild spacetime geometry. We choose Fermi coordinates
to describe the physics near the hydrogen atom. Ignoring Veff , the Schrödinger
equation for the electron bound to the hydrogen atom is given by(

− �
2

2m
∇2 − e2

4πε0x

)
Ψ(0) = i�∂0Ψ(0), (120)

where

x2 = (x1)2 + (x2)2 + (x3)2. (121)

The normalized position wave functions, given in spherical coordinates

x1 = x cos θ, (122)

x2 = x sin θ cosϕ,

x3 = x sin θ sinϕ,

are

Ψ(0)
n,�,m(x, θ, ϕ) =

√(
2
na0

)3 (n− �− 1)!
2n(n+ �)!

× e−ρ/2ρ�L2�+1
n−�−1(ρ)Y

m
� (θ, ϕ)e−

iEnτ
� , (123)

where θ and ϕ are angles of the standard spherical coordinates in the lab, not to
be taken as the same as what defined in (77), x0 = τ is the proper time, and

• En is the energy of the state n and is given by

En = − me4

2(4πε0)2�2

1
n2
, (124)

• ρ = 2x
na0

,
• a0 is the reduced Bohr radius

a0 =
4πε0�

2

me2
= 0.53 Å, (125)
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Schrödinger equation in a general curved spacetime geometry

• L2�+1
n−�−1(ρ) is a generalized Laguerre polynomial of degree n− �− 1,

• Y m
� is a spherical harmonic function of degree � and order m.

It is convenient to utilize the Dirac notation and write

Ψ(0)
n,�,m(x, θ, ϕ) = e−

iEnτ
� 〈x|n, �,m〉. (126)

Note that the generalized Laguerre polynomials are defined differently by differ-
ent authors. The usage here is consistent with the definitions used by Mathematica.
The quantum numbers can take the following values:

n = 1, 2, 3, . . . , (127)

� = 0, 1, 2, . . . , n− 1, (128)

m = −�, . . . ,+�, (129)

where n is the principle quantum number, � is the azimuthal quantum number, and
m is named the magnetic quantum number. The ground state is known to be

Ψ(0)
1,0,0 = e−

iE1τ

� 〈x|1, 0, 0〉 =
e−

iE1τ

�

√
πa0

3
2
e−

x
a0 , (130)

where E1 is the energy of the ground state and is

E1 = − me4

2(4πε0)2�2
= −13.6 eV. (131)

The first excited states are

Ψ(0)
2,0,0 = e−

iE2τ
� 〈x|2, 0, 0〉 =

e−
iE2τ

�

4
√

2πa0
3
2

(
2 − x

a0

)
e−

x
2a0 , (132a)

Ψ(0)
2,1,−1 = e−

iE2τ
� 〈x|2, 1,−1〉 =

e−
iE2τ

�

4
√
πa0

5
2
xe

− x
2a0

−iϕ sin θ, (132b)

Ψ(0)
2,1,0 = e−

iE2τ
� 〈x|2, 1, 0〉 =

e−
iE2τ

�

4
√

2πa0
5
2
xe−

x
2a0 cos θ, (132c)

Ψ(0)
2,1,1 = e−

iE2τ
� 〈x|2, 1, 1〉 =

e−
iE2τ

�

4
√
πa0

5
2
xe

− x
2a0

+iϕ sin θ, (132d)

where we have used the Dirac notation. Note that in our notation, |n, �,m〉 repre-
sents the state of the electron at τ = 0.

We would like to calculate the effective potential that we obtained in Sec. 3.2
for a general time-like geodesic that we studied in Sec. 4.1. In so doing, we notice

2250018-19

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

02
2.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/2

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2022 7:34 WSPC/S0218-2718 142-IJMPD 2250018
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that utilizing (65), (119) and (122) gives

Veff =
mx2

2r3

(
−1 + 3 cos 2β

4
cos2 θ +

3l2 + r2

2r2
sin2 θ sin2 ϕ

+
(

1 + 3 cos 2β
4

− 3l2 + r2

2r2

)
sin2 θ cos2 ϕ

+
3 coshα sin 2β

2
sin 2θ cosϕ

)
, (133)

which can be simplified to

Veff = −mc
2rsx

2

32r3

(
(1 + 3 cos 2β)(1 + 3 cos 2θ)

+ 6
(

4l2

r2
+ 1 − cos 2β

)
cos 2ϕ sin2 θ

−24 coshα sin 2β cosϕ sin 2θ

)
, (134)

where m is the mass of particle; c and the Schwarzschild radius (rs) are recovered;
x is the distance from center of lab (the time-like geodesic); r is distance of the
lab from center of the Schwarzschild geometry; l is the constant of the time-like
geodesic defined in (81); α and β are given in (97) and (98); and θ and ϕ are the
standard spherical angles in the lab defined in (122).

6. Absorption by a Black Hole: A Radially Falling Hydrogen Atom

We first consider a hydrogen atom at r = a in its ground state radially falling
down, and we compute what would be the probability of transition to higher modes
(excited states) as the hydrogen atom falls down inside the Schwarzschild black hole.
We notice that the radial geodesic is described by l = 0, and consequently, β = 0.
The effective gravitational potential for a radially falling hydrogen atom, therefore,
is simplified to

Veff = −mc
2rsx

2

8r3
(1 + 3 cos 2θ). (135)

Equation (91) is simplified to

ṙ = −c
√
γ2 − 1 +

rs
r
, (136)

where γ is the Lorentz factor for the hydrogen atom in the asymptotic infinity, as
defined in (88), and c and rs are recovered. We assume that the hydrogen atom in
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Schrödinger equation in a general curved spacetime geometry

its ground state is at τ = 0 and is located at radius of a. At τ = τ [r], it will be at
r; thus

τ [r] =
∫ r

a

dr

ṙ
= −1

c

∫ r

a

dr√
γ2 − 1 +

rs
r

. (137)

Let us first study the indefinite integral of

τ [r] =
∫
dr

ṙ
= −1

c

∫
dr√

γ2 − 1 +
rs
r

, (138)

assuming that γ �= 1c and defining

r = r̃
rs

γ2 − 1
. (139)

This change of variable allows us to represent the integration in (138) by

cτ [r] = cτ [r̃] = − rs

(γ2 − 1)
3
2
(
√
r̃(r̃ + 1) + log(

√
r̃ + 1 −

√
r̃)). (140)

Now let us consider a hydrogen atom which is in the state of |α〉 at r = a and
τ = 0. As the hydrogen atom moves along the time-like geodesic of its proton, it
can be excited to higher states due to the change of the curvature of the spacetime
geometry around the proton. The transition amplitude to the state |β〉 at radius b,
given in (69), can be rewritten as

Aαβ = − i

�

∫ b

a

dr

ṙ
〈β|Veff |α〉e−

i(Eα−Eβ)
c�

(cτ [r]−cτ [a]). (141)

We would like to study the transition from the ground state of the hydrogen
atom. Therefore, we set

|α〉 = |1, 0, 0〉. (142)

For the transition to |β〉 = |n, �,m〉, it yields

〈n, �,m|Veff |1, 0, 0〉 = −mc
2rs

8r3
〈n, �,m|x2(1 + 3 cos 2θ)|1, 0, 0〉. (143)

Noting that (1+3 cos2θ) is proportional to the second Legendre polynomials of
cos θ, and considering the properties of the states of the hydrogen atoms, it yields

〈n, �,m|Veff |1, 0, 0〉 = −mc
2rs

8r3
δm0δ�2〈n, 2, 0|x2(1 + 3 cos 2θ)|1, 0, 0〉, (144)

where δm0 and δ�2 represent the Kronecker delta function. The same mechanism
demands the following rules for nonzero transition from |n, �,m〉 to |n′, �′,m′〉:

m = m′, (145)

�− �′ = ±2. (146)

cWe will consider the case of γ = 1 in (172).
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The first allowed transition from the ground state, therefore, is to |3, 2, 0〉, which
yields

〈3, 2, 0|Veff |1, 0, 0〉 = −81
√

3mc2rs
256

√
2r3

(a0)2, (147)

where a0 is the reduced Bohr radius defined in (125). Here, it is observed that the
dominant transition is to the 3d state. The transition to the 3d state is observed in
a different context.22

Utilizing (136), (147) in (141) yields

A|1,0,0〉→|3,2,0〉 = −81i
√

3mcrs(a0)2

256
√

2�
e−

iΔE
c�

cτ [a]

∫ b

a

dr

r3
e−

iΔE
c�

cτ [r]√
γ2 − 1 +

rs
r

, (148)

where ΔE is the energy difference between |1, 0, 0〉 and |3, 2, 0〉,
ΔE = E1 − E3 = −12.09 eV. (149)

Expressing (148) in terms of r̃ (defined in (139)) yields

|A|1,0,0〉→|3,2,0〉| =
81

√
3mc(a0)2

256
√

2�

(γ2 − 1)
3
2

rs

∣∣∣∣∣
∫ b̃

ã

dr̃
e−

iΔE
c�

cτ [r̃]√
r̃3(1 + r̃)

∣∣∣∣∣ , (150)

where

ã =
γ2 − 1
rs

a,

b̃ =
γ2 − 1
rs

b.

(151)

Note that it is assumed that γ2 − 1 �= 0. For γ = 1, (139) cannot be used.
Let us calculate the numerical values of the coefficients present in (150). It holds

thatd

81
√

3mc(a0)2

256
√

2�
= 53.10a0, (152)

ande

ΔE
c�

= 3.24 × 10−3 1
a0

=
1

308a0
. (153)

Equation (148) can be expressed as

|A|1,0,0〉→|3,2,0〉| = 53.10
(γ2 − 1)

3
2 a0

rs

∣∣∣∣∣
∫ b̃

ã

dr̃
e−i cτ[r̃]

308a0√
r̃3(1 + r̃)

∣∣∣∣∣. (154)

We would like to calculate the transition amplitude for a hydrogen atom at the
asymptotic infinity which falls inside the event horizon. So, we should set a = ∞

dClick here to have WolframAlpha perform the numerical substitution.
eClick here to have the numerical value by WolframAlpha.

2250018-22

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

02
2.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/2

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2022 7:34 WSPC/S0218-2718 142-IJMPD 2250018

Schrödinger equation in a general curved spacetime geometry

and b = rs. Equation (151) then gives ã = ∞ and b̃ = γ2 − 1. The amplitude then
follows:

|A|1,0,0〉→|3,2,0〉| = 53.10
(γ2 − 1)

3
2 a0

rs

∣∣∣∣∣
∫ ∞

γ2−1

dx
e−if(x)√
x3(1 + x)

∣∣∣∣∣, (155)

where

f(x) = −Ag(x), (156)

A =
0.00324

(γ2 − 1)
3
2

rs
a0
, (157)

g(x) =
√
x(x+ 1) + log(

√
x+ 1 −√

x). (158)

Due to the factor of a0
rs

in the front of the integral, and the factor of rs

a0
in the

power of the exponential factor in the integral, the amplitude is very negligible
unless rs is not much larger than a0.

Figure 1 depicts the transition amplitude for rs = 100a0 to rs = 1600a0 and
the Lorentz factor γ =

√
2 to γ = 10. Let it be highlighted that, for γ very close to

unity, the error in the numerical calculation rises; therefore, we choose γ ≥ √
2.

6.1. The ultra-relativistic regime

The large γ limit in (155) corresponds to the large x limit of g(x) in (158)

g(x) = x− 1
2

log x+
1
2
(1 − 2 log 2) +O

(
1
x

)
. (159)

For large x, the factor of (
√
x3(1 + x))−1 in the integral of (155) yields

1√
x3(1 + x)

=
1
x2

(
1 +O

(
1
x

))
. (160)

Fig. 1. Probability of transition of a hydrogen atom from its ground state at the asymptotic
infinity to |3, 2, 0〉 on the event horizon as the hydrogen atom radially falls into the black hole
versus the Lorentz factor of the hydrogen at the asymptotic infinity. Both axes are in logarithmic

scale, and γ ∈ [
√

2, 10].
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Utilizing (159) and (160) yields∣∣∣∣∣
∫ ∞

γ2−1

dx
e−if(x)√
x3(1 + x)

∣∣∣∣∣ =
∣∣∣∣
∫ ∞

γ2−1

dx

x2
ei(x− 1

2 log x)

(
1 +O

(
1
x

))∣∣∣∣. (161)

Ignoring O( 1
x) in (161) leads to an error which is less than 1

γ2−1 . For γ > 10, the
error will be less than 1%. We assume that γ is greater than 10 and ignore O( 1

x )
in (161). This enables us to calculate (161) with a precision of 1%∣∣∣∣∣

∫ ∞

γ2−1

dx
e−if(x)√
x3(1 + x)

∣∣∣∣∣ =
∣∣∣∣
∫ ∞

γ2−1

dx

x2
eiA(x− 1

2 log x)

∣∣∣∣
=

1
γ2 − 1

∣∣∣∣E
(

2 +
iA

2
,−i(γ2 − 1)A

)∣∣∣∣, (162)

where E(n, z) is the exponential integral function, i.e.

E(n, z) =
∫ ∞

1

e−zt

tn
dt. (163)

Utilizing (162) in (155) yields

∣∣A|1,0,0〉→|3,2,0〉
∣∣
γ

= 53.10
(γ2 − 1)

1
2 a0

rs

∣∣∣∣E
(

2 +
iA

2
,−i(γ2 − 1)A

)∣∣∣∣. (164)

For a large γ

A =
0.00324
γ3

rs
a0
, (165)

(γ2 − 1)A =
0.00324

γ

rs
a0
. (166)

In the limit of a vanishing A, (164) is given by∣∣A|1,0,0〉→|3,2,0〉
∣∣
γ

= 53.10
γa0

rs

∣∣∣∣E
(

2,−i0.00324
γ

rs
a0

)∣∣∣∣. (167)

When γ is large such that it holds that

0.00324
rs
a0

� γ, (168)

then (167) can be approximated to

|A|1,0,0〉→|3,2,0〉|γ = 53.10
γa0

rs
. (169)

This means that there exists the critical Lorentz factor of

γc =
rs

53.10a0
, (170)

such that, for all Lorentz factors larger than γc, the perturbative approach predicts
that the hydrogen atom gets excited from its ground state as it falls into the black
hole. However, let it be emphasized that, as γ approaches γc from a smaller value,
the perturbation breaks down and a nonperturbative approach will be needed to
calculate the exact value of probability of excitation.
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6.2. The classical regime

For the case of γ = 1, Eq. (138) can be simplified to

cτ [r] = −2r
3
2

3r
1
2
s

, (171)

and (148) is given by

|A|1,0,0〉→|3,2,0〉|γ=1 =
81i

√
3mc rs(a0)2

256
√

2�

e−
iΔE
c�

cτ [a]

√
rs

∫ b

a

dr

r
5
2

exp
(

2iΔE
3c�

√
rs
r

3
2

)
.

(172)

Therefore, the amplitude of the transition from the ground state of the hydrogen
atom at the asymptotic infinity to the excited state of |3, 2, 0〉 on the event horizon,
for the case of γ = 1, is given by

∣∣A|1,0,0〉→|3,2,0〉
∣∣
γ=1

= 53.10 a0
√
rs

∣∣∣∣
∫ ∞

rs

dr

r
5
2

exp
(
i
0.00216
a0
√
rs
r

3
2

)∣∣∣∣, (173)

where (152) and (153) are utilized. Let us set

r = rsu, (174)

us = 0.00216
rs
a0
. (175)

Therefore, (173) can be rewritten as

|A|1,0,0〉→|3,2,0〉|γ=1 =
0.1147
us

∣∣∣∣
∫ ∞

1

du

u
5
2

exp
(
iusu

3
2

)∣∣∣∣. (176)

The integration in (176) can be expressed in terms of the incomplete Γ functionf

|A|1,0,0〉→|3,2,0〉|γ=1 =
0.0765
us

|eius + iusΓ(0,−ius)|. (177)

The probability is smaller than 10% for rs > 91.44 a0, which exceeds unity for
rs < 32.512 a0. We cannot trust this perturbative computation when the probability
reaches 1. Therefore, we set rs > 100 a0. We would like to study the asymptotic
behavior of (177) for large us. We first notice that due to (175), the large us is

f Incomplete Γ function is defined by

Γ(a, z) =

Z ∞

z
ta−1e−tdt.

The Γ function can be evaluated to an arbitrary precision by Wolfram Mathematica.
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mapped to

462.963a0 � rs. (178)

The amplitude in Eq. (177) then can be approximated to

|A|1,0,0〉→|3,2,0〉|γ=1&462.963a0�rs = 16389.5
(
a0

rs

)2

≈
(

27a0

rs

)2

. (179)

Figure 2 depicts the probability of transition to |3, 2, 0〉 as a function of the
Schwarzschild radius of the black hole when a stationary hydrogen atom at its
ground state in the asymptotic infinity radially falls into the black hole.

6.3. Relativistic enhancement factor

Equation (164) is the amplitude of transition for an ultra-relativistic hydrogen
atom with Lorentz factor γ falling from asymptotic infinity radially into a black
hole. Equation (177) is the amplitude of transition for a stationary hydrogen atom
at asymptotic infinity radially falling inside the black hole. In order to better under-
stand the effect of γ, let us define the relativistic enhancement factor by

Ef(rs, γ) =
( |A|1,0,0〉→|3,2,0〉|γ
|A|1,0,0〉→|3,2,0〉|γ=1

)2

. (180)

The enhancement factor Ef tells us how the probability of transition to the state
of |3, 2, 0〉 is affected by increasing γ. For large rs as defined by (178), and for large

Fig. 2. Probability of transition of a hydrogen atom from its ground state at the asymptotic
infinity to |3, 2, 0〉 on the event horizon as the hydrogen atom radially falls into a black hole with
zero velocity at infinity. The horizontal line is the radius of event horizon divided by a0, where a0

is the Bohr radius.

2250018-26

In
t. 

J.
 M

od
. P

hy
s.

 D
 2

02
2.

31
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 G

E
R

M
A

N
 E

L
E

C
T

R
O

N
 S

Y
N

C
H

R
O

T
R

O
N

 @
 H

A
M

B
U

R
G

 o
n 

03
/2

4/
22

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



February 16, 2022 7:34 WSPC/S0218-2718 142-IJMPD 2250018

Schrödinger equation in a general curved spacetime geometry

Fig. 3. The enhancement factor in terms of the Lorentz factor for a set of values of the
Schwarzschild radius.

γ as defined in (168), the enhancement factor simplifies to

Ef(rs, γ) ≈
(

γrs
308a0

)2

. (181)

The enhancement factor for a set of general γ and rs is shown in Fig. 3. The
transition probability of a stationary hydrogen atom falling into a black hole with
the Schwarzschild radius rs = 105a0 is 2.69 × 10−12. The enhancement factor for
γ = 1000, however, increases this probability to 15.5%.

7. A Hydrogen Atom Deflected by a Black Hole

We would like to consider a hydrogen atom deflected by the black hole. The hydro-
gen atom starts moving toward the black hole from radius of r = ∞ on a general
time-like geodesic identified by l and γ. So, ṙ is given by (91)

ṙ = ±
√
γ2 − (r − rs)(r2 + l2)

r3
, (182)

where rs is recovered. ṙ is negative until the hydrogen atom reaches a minimum
distance from the black hole r = rmin, where ṙ vanishes

ṙ|r=rmin = −
√
γ2 − (rmin − rs)(r2min + l2)

r3min

= 0, (183)

which can be solved to express l in terms of rmin

l = rmin

√
rmin

rmin − rs
γ2 − 1. (184)

It is easier to work in the length unit of

rmin = 1, (185)

where l is given by

l =

√
γ2

1 − rs
− 1, (186)
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whereas the particle does not fall into the black hole

rs < 1, (187)

is understood, which beside 1 ≤ γ guarantees that l is a positive real number.
Substituting the value of l into ṙ yields

ṙ = ±
√
γ2

(
1 − r − rs

r3(1 − rs)

)
− (r2 − 1) (r − rs)

r3
, (188)

where it is easy to observe that ṙ|r=1 = 0 and ṙ|r=+∞ = ±γ.
Very close to r = 1, r can be written as

r = 1 + ε, (189)

where ε is a small number. The Taylor expansion of ṙ given in (188) for small ε
yields

1
|ṙ| = κε−

1
2 +O(ε

1
2 ), (190)

where

κ =

√
1 − rs

(2 − 3rs)γ2 − 2(1 − rs)2
. (191)

Since ṙ is a real quantity, the following conditions must be fulfilled:

rs ≤ 2
3
, (192)

√
2(1 − rs)√
2 − 3rs

≤ γ. (193)

When the minimum distance of the hydrogen atom to the center of the black
hole is larger than twice the Schwarzschild radius, or equivalently due to the chosen
length unit in (185)

rs ≤ 1
2
, (194a)

then γ can have any values. However, there exists a lower bound on γ if the hydrogen
atom’s distance to the center of the black hole becomes smaller than twice of the
Schwarzschild radius

1
2
≤ rs ≤ 2

3
, (194b)

√
2(1 − rs)√
2 − 3rs

≤ γ. (194c)

This means that a stationary atom at the asymptotic infinity falls into the black
hole if its minimum distance to the black hole becomes smaller than twice the
radius of the Schwarzschild black hole. We further notice that rs = 2

3 represents
the photon sphere in the Schwarzschild geometry in the length unit chosen by (185).
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Interested readers may look at the literature for further information on the photon’s
sphere.23 For any finite values of γ, there exists a region of space around the black
hole outside the photon’s sphere that cannot be studied by scattering a hydrogen
atom thrown toward the black hole. For any rs and γ outside (194), the hydrogen
atom falls inside the black hole instead of being deflected to the asymptotic infinity.

For the length unit given by (185), α and β defined in (97) and (98) are repre-
sented by

coshα = γ

√
r

r − rs
, (195a)

sinhα =

√
γ2r

r − rs
− 1, (195b)

and

cosβ =
1
r

√
γ2r3 − (r − rs)(r2 + l2)

γ2r − r + rs
, (196a)

sinβ =
l

r

√
r − rs

γ2r − r + rs
, (196b)

where l is presented in (186). The probability of transition from state |α〉 at r = ∞
to state |β〉 at r = ∞ is given by (69)

Aαβ = − i

�

∫ T

0

dτ〈β|Veff |α〉e−
iΔEαβ

�
τ , (197)

where

ΔEαβ = Eα − Eβ , (198)

and T is the total (proper) time of flight of the hydrogen atom, which is given by

T = 2
∫ ∞

1

dr

|ṙ| . (199)

The (proper) time for the flight of the hydrogen atom from τ = 0 at r = ∞ is
given by

τ(r) =

⎧⎪⎪⎨
⎪⎪⎩
T

2
−
∫ r

1

dr

|ṙ| , 0 ≤ τ ≤ T
2 ,

T

2
+
∫ r

1

dr

|ṙ| ,
T
2 ≤ τ ≤ T,

(200)

which can be substituted into (197) to obtain

Aαβ = −2i
�
e−

iΔEαβ
2�

T

∫ ∞

1

dr

|ṙ| 〈β|Veff |α〉 cos
(

ΔEαβ

c�
cτ [r]

)
, (201)

where c is recovered, and cτ [r] is given by

cτ [r] =
∫ r

1

dr

|ṙ| . (202)
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ṙ is given by (188). We neglect the overall factor of e−
iΔEαβ

2�
T without loosing any

generality. The effective potential presented in (134) can be written as

Veff = V 1
eff + V 2

eff + V 3
eff , (203)

V 1
eff = V1 x

2(1 + 3 cos 2θ), (204)

V 2
eff = V2 x

2 cos 2ϕ sin2 θ, (205)

V 3
eff = V3 x

2 cosϕ sin 2θ, (206)

where

V1 = −mc
2rs

32r3
(1 + 3 cos 2β), (207)

V2 = −3mc2rs
16r3

(
4l2

r2
+ 1 − cos 2β

)
, (208)

V3 = +
3mc2rs

4r3
coshα sin 2β. (209)

Note that V1 to V3 depend on the position of hydrogen atom. They are not a
function of the state of the hydrogen atom. We are looking for the transition from
the ground state of the hydrogen atom. Therefore, we set

|α〉 = |1, 0, 0〉. (210)

We notice that

〈n, �,m|V 1
eff |1, 0, 0〉 = δm,0δ�,2V1〈n, 2, 0|x2 (1 + 3 cos 2θ) |1, 0, 0〉, (211)

〈n, �,m|V 2
eff |1, 0, 0〉 = δm,±2δ�,2V2〈n, 2,±2|x2 cos 2ϕ sin2 θ|1, 0, 0〉, (212)

〈n, �,m|V 3
eff |1, 0, 0〉 = δm,±1δ�,2V3〈n, 2,±1|x2 cosϕ sin 2θ|1, 0, 0〉, (213)

where δm,� represents the Kronecker delta. We observe that the rules of transition
from the state of |n, �,m〉 to state of |n′, �′,m′〉 for nonzero impact parameter of �
are

�− �′ = ±2, (214)

m−m′ = ±2,±1, 0. (215)

The first excitation occurs for n = 3, � = 2 and m = 0,±1,±2

〈3, 2, 0|x2(1 + 3 cos 2θ)|1, 0, 0〉 =
81
32

√
3
2
a2
0, (216)

〈3, 2,±2| (x2 cos 2ϕ sin2
)
θ|1, 0, 0〉 =

81
512

a2
0, (217)

〈3, 2,±1| (x2 cosϕ sin 2θ
) |1, 0, 0〉 =

81
128

a2
0, (218)

where a0 is the reduced Bohr radius presented in (125).
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7.1. Probability of transition to |3, 2, 0〉
The transition to |3, 2, 0〉 is due to V1. Its amplitude can be derived from (201)
using (216). It is given by

A|1,0,0〉→|3,2,0〉 = −81
√

3mc2a2
0

512
√

2�
rs

∫ ∞

1

dr

r3|ṙ| (1 + 3 cos 2β) cos
(

ΔE
c�

cτ [r]
)
, (219)

where ΔE = E3 −E1, En are given in (124), and the overall phase of −ie− iΔE
2�

T is
neglected. Using the values of m, c, a0 and �, one can get

81
√

3mc2a2
0

512
√

2�
= 26.55a0, (220)

ΔE
c�

=
1

308a0
, (221)

which can be employed in (219)

A|1,0,0〉→|3,2,0〉 = −53.10 a0 rs

∫ ∞

1

dr

(−1 + 3 cos2 β
)

|ṙ|r3 cos
(
cτ [r]
308a0

)
, (222)

where cos 2β is expressed in terms of cosβ. cosβ, ṙ, cτ [r] and the unit of length are
given in (196a), (188), (202) and by (185), respectively.

It is noticed that

cos
(
cτ [r]
308a0

)
1
|ṙ| = 308a0

d

dr
sin
(
cτ [r]
308a0

)
, (223)

which can be utilized in (220) to obtain

A|1,0,0〉→|3,2,0〉=16335 a2
0rs

∫ ∞

1

dr sin
(
cτ [r]
308a0

)
d

dr

(−1 + 3 cos2 β
r3

)
, (224)

where integration by parts is performed. The transition amplitude of (224) is writ-
ten in the length unit given by (185). rmin can be recovered by

rs → rs
rmin

, (225)

a0 → a0

rmin
. (226)

For any value of rmin, rs and γ, Eq. (224) can numerically be computed. For
example, when the hydrogen atom reaches the minimum distance of da0 to the
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photon sphere, it holds that

rmin =
3
2
rs + da0. (227)

Defining rs = ζa0 and utilizing (185) then gives

rs =
2ζ

2d+ 3ζ
, (228)

a0 =
2

2d+ 3ζ
, (229)

which can be substituted into (224) to numerically calculate the amplitude for any
value of d and ζ. Figure (4) depicts the probability of transition to |3, 2, 0〉 for the
hydrogen atom at d = 10, and a set of Schwarzschild radii in terms of the Lorentz
factor. We observe a simple behavior at large γ. We would like to look at the large
γ limit of (224) for arbitrary value of rs and rmin.

The large γ limit says that

d

dr

(−1 + 3 cos2 β
r3

)
=

3(−2r3(rs − 1) − 5r + 6rs)
r7(rs − 1)

+O

(
1
γ2

)
. (230)

Using the large γ limit of ṙ defined in (188), (202) yields

cτ [r] =
∫ γ

1

dr

|ṙ| =
1
γ
g(r) +O

(
1
γ2

)
, (231)

where g(r) does not depend on γ and is given by

g(r) =
∫ r

1

dr√
1 − r − rs

r3(1 − rs)

. (232)

Fig. 4. Probability of transition to |3, 2, 0〉 in scattering by a black hole when the hydrogen atom
reaches 10a0 to the photon sphere, for a set of Schwarzschild radii, and in terms of the Lorentz
factor of the hydrogen atom at the asymptotic infinity.
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The large γ limit of (224) is thus given by

A|1,0,0〉→|3,2,0〉
16, 335 a2

0

= rs

∫ ∞

1

dr sin
(

g(r)
308a0γ

)
3
(−2r3(rs − 1) − 5r + 6rs

)
r7(rs − 1)

,

(233)

where O
(

1
γ2

)
is ignored. The fall off of the integrand for r → ∞ is r6. So, focusing

at r ≈ 1 gives a good approximation to the integral. Near r = 1, the sine factor in
the integrand can be approximated by

sin
(

g(r)
308a0γ

)
≈ g(r)

308a0γ
. (234)

The above expression can be employed to simplify the amplitude to

A|1,0,0〉→|3,2,0〉 = 53.10
a0rs
γ

∫ ∞

1

drg(r)
3(−2r3(rs − 1) − 5r + 6rs)

r7(rs − 1)

+O

(
1
γ2

)
, (235)

where g(r) is given in (232). Integration by parts simplifies (235) to

A|1,0,0〉→|3,2,0〉
53.10

=
a0rs
γ

∫ ∞

1

drg′(r)
∫ r

0

dx
3
(−2x3(rs − 1) − 5x+ 6rs

)
x7(rs − 1)

+O

(
1
γ2

)
. (236)

The integral in the integrand can be performed, and (232) can be used to write

A|1,0,0〉→|3,2,0〉 = −53.10
a0rs
γ

∫ ∞

1

dr
3r + 2r3(−1 + rs) − 3rs

r
9
2
√

(1 − rs)2r3 − (r − rs)(1 − rs)

+O

(
1
γ2

)
. (237)

Equation (237) has an essential singularity at the photon’s sphere for r3 = 2
3 .

The singularity can be best seen by plotting the amplitude in terms of rs, as depicted
in Fig. 5. Let it be emphasized that the unit of length is defined by (185), where
rmin is the minimum distance of the hydrogen atom to the black hole during its
‘journey’. We notice that the integral in (237) is finite and nonzero. Therefore, the
amplitude of transition to |3, 2, 0〉 vanishes in the large limit of γ. This means that,
for a very large value of γ, the hydrogen atom either falls inside the black hole, or
when it is deflected by the black hole, it is not excited to |3, 2, 0〉.
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Fig. 5. The amplitude of transition for large γ in terms of the Schwarzschild radius. There exists
an essential singularity at the photon’s sphere, at rs = 2

3
.

7.2. Probability of transition to |3, 2, ±1〉
Transition to |3, 2,±1〉 is due to V2. Its amplitude can be derived from (201) by
utilizing (212) and (217). It is given by

A|1,0,0〉→|3,2,±1〉 = −243mc2a2
0

4096�
rs

∫ ∞

1

dr

r3|ṙ|
(

4l2

r2
+ 1 − cos 2β

)
cos
(

ΔE
c�

cτ [r]
)
,

(238)

where ΔE = E3 −E1, En are given in (124), and the overall phase of −ie− iΔE
2�

T is
neglected. Utilizing the values of m, c, a0 and �

243mc2a2
0

4096�
= 8.13a0, (239)

ΔE
c�

=
1

308a0
, (240)

which can be employed in (238)

A|1,0,0〉→|3,2,±1〉 = −8.13a0rs

∫ ∞

1

dr

4l2

r2
+ 2 sin2 β

|ṙ|r3 cos
(
cτ [r]
308a0

)
, (241)

where we used the identity 1 − cos 2β = 2 sin2 β. Using Eq. (196b), one obtains

A|1,0,0〉→|3,2,±1〉=−16.26 a0rsl
2

∫ ∞

1

dr

|ṙ|r5
(

2 +
r − rs

rs + r(γ2 − 1)

)
cos
(
cτ [r]
308a0

)
.

(242)
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Fig. 6. The probability of transition to |3, 2,±1〉 for rmin = 2rs, and for a set of rs in terms of γ.

Using (223) and performing integration by parts, the above expression can be
further simplified to

A|1,0,0〉→|3,2,±1〉
5008.08a2

0rsl
2

=
∫ ∞

1

dr sin
(
cτ [r]
308a0

)
d

dr

(
2
r5

+
r − rs

(rs + r(γ2 − 1))r5

)
,

(243)

which can numerically be calculated for given values of rs, a0 and γ. Figure 6 depicts
the probability for rmin = 2rs, and for various values of rs. It is observed that the
transition probability has a simple behavior at large γ.

In the large γ limit, we can use (231) and (234) to simplify the amplitude to

A|1,0,0〉→|3,2,±1〉 = 16.26
a0rsl

2

γ

∫ ∞

1

drg(r)
d

dr

(
2
r5

−O

(
1
γ2

))
, (244)

where l2 is presented in (186) and, in the large γ limit, is simplified to

l2 =
γ2

1 − rs
. (245)

So

A|1,0,0〉→|3,2,±1〉 = −162.6
a0rsγ

1− rs

∫ ∞

1

dr
g(r)
r6

, (246)

where g(r) is given in (232). Utilizing 1
r6 = − 1

5∂r
1
r5 and performing an integration

by part yields

A|1,0,0〉→|3,2,±1〉 = 32.52
a0rsγ

1− rs

∫ ∞

1

dr

r5
1√

1 − r−rs

r3(1−rs)

. (247)

Figure 7 shows the absolute amplitude in terms of rs. There exists an essential
singularity at the photon’s sphere, rs = 2

3 . The essential singularity points that,
when the hydrogen atom approaches the photon’s sphere, it will be easily excited
to |3, 2,±1〉. The transition to |3, 2, 1〉 occurs for sufficiently large γ at any rs.
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Q. Exirifard and E. Karimi

Fig. 7. Amplitude of transition to |3, 2,±1〉 for large γ in terms of the Schwarzschild radius of
the black hole. There exists an essential singularity at the photon’s sphere, rs = 2

3
.

7.3. Probability of transition to |3, 2, ±2〉
The transition to |3, 2,±2〉 is due to V3. Its amplitude can be derived from (201)
by employing (213) and (218). It is given by

A|1,0,0〉→|3,2,±2〉 = −243mc2a2
0

256�
rs

∫ ∞

1

dr

r3|ṙ| coshα sin 2β cos
(

ΔE
c�

cτ [r]
)
, (248)

where ΔE = E3 −E1, En are given in (124), and the overall phase of −ie− iΔE
2�

T is
neglected. Utilizing the values of m, c, a0 and �

243mc2a2
0

256�
= 130.08a0, (249)

ΔE
c�

=
1

308a0
, (250)

which can be employed in (238)

A|1,0,0〉→|3,2,±2〉 = −130.08a0rs

∫ ∞

1

dr

r3|ṙ| coshα sin 2β cos
(
cτ [r]
308a0

)
, (251)

Using (223) and performing integration by part give

A|1,0,0〉→|3,2,±2〉 = 40, 064.6a2
0rs

∫ ∞

1

dr sin
(
cτ [r]
308a0

)
d

dr

(
coshα sin 2β

r3

)
.

(252)
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Fig. 8. The probability of transition to |3, 2,±2〉 for rmin = 2rs, and for a set of rs in terms of γ.

Figure 8 depicts the transition probability for rmin = 2rs and for a set of rs

a0
.

It is observed that the large γ limit of the amplitude possesses a simple behavior.
The large γ limit yields

d

dr

(
coshα sin 2β

r3

)
=

γ(−8r3(rs − 1) − 10r + 11rs)
r13/2(rs − 1)

√
r3(−(rs − 1)) − r + rs

+O

(
1
γ0

)
. (253)

So, (234) can be used to simplify the amplitude in large γ tog

A|1,0,0〉→|3,2,±2〉 = −130.08a0rs
1 − rs

∫ ∞

1

dr

r13/2

g(r)(8r3(1 − rs) − 10r + 11rs)√
r3(1 − rs) − r + rs

+O

(
1
γ

)
, (254)

where g(r) is given in (232), and the integral is a finite nonzero number for rs < 2
3 .

It, however, has an essential singularity at the photon’s sphere at rs = 2
3 . The

Fig. 9. The probability of transition to |3, 2,±2〉 for γ = 1000 and rs = 10a0, versus the minimum
distance to the photon sphere.

gNote that (194a) demands rs ≤ 2
3
. The integrand, thus, is always real.
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singularity can be seen in Fig. 9, where the probability of transition is depicted for
γ = 1000, rs = 10a0 versus the minimum distance to the photon’s sphere.

8. Discussions and Conclusion

The effect of the curved spacetime geometry on static hydrogen atoms3–6 and the
change in the spectrum of a static hydrogen atom in a curved spacetime geome-
try has been studied7,8 in the literature. Here, we have computed the effect of the
curved spacetime geometry on a nonstatic hydrogen atom. We have considered the
low-energy physics in the effective field theory approach to QFT in a general curved
spacetime geometry admitting an asymptotic (flat) infinity. We have considered a
localized quantum system that moves along a time-like geodesic. We have reviewed
and utilized Fermi coordinates along the geodesic to describe the spacetime geom-
etry around the geodesic wherein the metric is the Minkowski metric corrected by
the Riemann tensor evaluated on the geodesic. We have calculated the leading cor-
rection by the curved spacetime geometry to the Schrödinger equation. We have
shown that the components of the Riemann tensor introduce a time-dependent
perturbative potential which distorts the wave function, causing excitation as the
quantum system moves along the time-like geodesic.

Through direct computation, we have illustrated how the curvature of spacetime
geometry causes an excitation for the hydrogen atom when it falls in or is scattered
by a Schwarzschild black hole. We have shown that the excitation is enhanced
when the hydrogen atom possesses a speed with respect to the background space-
time geometry. The enhancement suggests that storing local information in a ultra-
relativistic probe may not be trivial as a tiny change in the background spacetime
geometry may induce a quantum excitation in the stored memory.

We have shown that a freely falling hydrogen atom gets excited by the back-
ground black hole by direct computation. The excited states then emit a photon
by the spontaneous emission and decay into the ground state. Emitted photons
generally escape to the asymptotic infinity, and can be detected. We tend to argue
that the energy of these photons comes from the curved spacetime geometry, so
they extract energy from the black hole, causing the black hole to gradually decay
into the flat spacetime geometry. Though this decay turns out to be negligible and
not detectable by the current technology, it is interesting that the interaction of a
quantum system with the black hole induces a new decay channel for the black hole,
a channel in addition to Hawking radiation.12 This perhaps adds to the information
paradox.

Last but not least, we would like to point that it would be interesting to compute
how the emission from hydrogen atom predicted here would the constrain distribu-
tion of the primordial black holes. For such a purpose, one should assume a profile
for the distribution of the primordial black holes and their velocity, compute the
electromagnetic radiation emitted due to the interaction of clouds of the hydrogen
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atoms with the primordial black holes, and find how cosmic microwave background
observation would constrain the distribution of the primordial black hole.
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