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In this paper, we consider relativistic quantum field theory in the presence of an external
electric potential in a general curved spacetime geometry. We utilize Fermi coordinates
adapted to the time-like geodesic to describe the low-energy physics in the laboratory
and calculate the leading correction due to the curvature of the spacetime geometry to
the Schrodinger equation. We then compute the nonvanishing probability of excitation
for a hydrogen atom that falls in or is scattered by a general Schwarzschild black hole.
The photon emitted from the excited state by spontaneous emission extracts energy from
the black hole, increases the decay rate of the black hole and adds to the information
paradox.
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1. Introduction

All forces, except gravity, are described in the standard model of elementary parti-
cles in a renormalizable quantum field theory (QFT) framework. It is believed that
an extension of the standard model of particle physics to a generally curved space-
time geometry describes the interaction between matter and gravity in the quantum
realm. The criterion of minimal interaction with the metric and techniques of QFT
in curved spacetime geometry have been utilized to calculate effects of curved space-
time geometry for Hartle and Hawking observer and Unruh observer (Vacuum).
The spontaneous excitation of static atoms due to the nontrivial vacuum has been
studied 8 The change in the spectrum of a static hydrogen atom in a curved space-

time geometry has been studied ™8 Here, we develop a framework for computing
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the excitation of a (nonstatic) hydrogen atom that falls freely in a curved spacetime
geometry.

We consider a hydrogen atom at its ground state in the asymptotic flat infin-
ity that moves along a time-like geodesic toward a mass distribution. We adapt
Fermi coordinates to describe the curved spacetime geometry around the geodesic.
In Fermi coordinates, the metric is the Minkowski metric corrected by the com-
ponents of Riemann tensor evaluated on the geodesic. Utilizing the effective field
approach, we show that the corrections given by the components of Riemann tensor
cause a transition from the ground state. This approach allows us to provide the
leading correction to the Schrodinger equation due to the curvature of the spacetime
geometry. We prove that the leading correction coincides to the Newtonian tidal
gravitational force. We also calculate the excitation of a hydrogen atom scattered
by a Schwarzschild spacetime geometry.

This work is structured as follows. We first review the systematic extension of
the standard model of elementary particles to a generally curved spacetime geom-
etry by the minimal interaction criterion in Sec. 2. We consider the effective action
of an electron in the presence of an external electric potential in a general curved
spacetime geometry in Sec. We review the construction of the Fermi coordi-
nates adapted to a general time-like geodesic in Sec. Bl The effective action of a
trapped electron in Fermi coordinates adapted to the time-like geodesic of the lab
is derived in Sec. The low-energy physics of the trapped electron is studied in
Sec. The leading corrections by the Riemann tensor of the back geometry to
the Schrodinger equations are calculated and presented in (&), where the prod-
ucts of states are defined (BIl). After redefining the wave function by ([@2), it is
shown that the leading correction by Riemann tensor coincides with the residual
Newtonian gravitational potential present in the lab, while inner products between
wave functions are that of the flat spacetime geometry. The Schwarzschild space-
time geometry is considered in Sec. ] and the components of the Riemann tensor
are calculated in Fermi coordinates for a general time-like geodesic. The hydrogen
atom in the flat spacetime geometry is reviewed in Sec. Bl The effective gravita-
tional potential felt by the electron when the hydrogen atom moves on a time-like
geodesic of a curved spacetime geometry is calculated in (I34).

Section[Gl considers a hydrogen atom radially falling into the Schwarzschild black
hole. The atom is assumed to be in its ground state at asymptotic infinity. The tran-
sition probability of the hydrogen atom to excited states on the event horizon is
calculated in Sec. [6 The rules for transition from |n,¢, m) to |n’, ¢, m’) are pro-
vided in ([[4T). The amplitude for the transition from ground state to the state of
[3,2,0), which is the first allowed excited state, is calculated. Figure [Il depicts the
probability of transition as a function of the Lorentz factor of the hydrogen atom
at the asymptotic infinity for a set of Schwarzschild radii. The transition amplitude
for ultra-relativistic and classical hydrogen atom is calculated, respectively, in Secs.
and It is reported that increasing the Lorentz factor of the hydrogen atom
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enhances the probability of transition. The relativistic enhancement factor is eval-
uated and presented in Sec.

Section [ studies the deflection of a hydrogen atom with arbitrary Lorentz factor
at the asymptotic infinity and a general impact parameter from a Schwarzschild
black hole. It considers the hydrogen atom in its ground state before the impact
with the black hole, and computes the transition amplitude to excited states after
the impact. The rules for allowed transitions are derived and presented in (214]).
The amplitude for the transition to the first excited states of |3, 2,0}, |3,2,£1) and
[3,2,4+2) is computed. It is shown that the behavior in the ultra-relativistic regime
is simplified. It is reported that the amplitude for transition to |3,2,+1) increases
by increasing the Lorentz factor of the hydrogen atom, while the amplitude of
transition to |3,2,0) decreases and that of |3,2, £2) approaches a constant value.

The results are reviewed and remarks are provided in Sec. Bl

2. Standard Model of Elementary Particles in a Curved
Spacetime Geometry

The observed matter content of the universe is presented in the standard model
of particle physics. The standard model includes leptons, quarks, W+, Z, v (pho-
ton), gluons and Higgs. It is governed by a renormalizable QFT with spontaneously
broken SU(3) x SU(2) x U(1) gauge symmetry. Let U represent all the field con-
tent of the standard model. The tree-level action of the standard model can be
presented by

Sent = / dhe LV, 0,9, m,.,), (1)

where £ is the Lagrangian density of the standard model which is a nonlinear
function of ¥ and its first derivative, and 7,,, is the Minkowski metric.

In order to include gravity, we should extend the standard model to QFT in
curved spacetime geometry@‘m endowed by a metric. Considering a manifold with
a given topology and differential structure, the assumption of minimal interaction
with the metric replaces 7,,, with an arbitrary metric g,,,, resulting in

Som = [ d*z vV —detg L(V,0,¥, g.). (2)

The Einstein—Hilbert action that governs the dynamics of the metric is given by

4

__c 4. )
Sy = e d*z+/—detgR, (3)

where G is Newton’s gravitational constant, and c is the light speed. Therefore, the

total action of the theory then is given by
S =54+ Ssm. (4)
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The quantum path integral of the theory can be represented by
/ D\I!Dgabe*%(sff d*z/=det g (J-U+J%g,1))

Z[5, 0 =" _ ; (5)
TP Vg / DU Dy, e~ 7 (5P
where ) 1p stands for summation over all topologies, [ D¥ and [ Dy stand for
integration over all field configurations and over all metrics, J represents the source
field for W, J represents the source field for the metric, and Vg is the volume
of the gauge groups. This theory, however, is not perturbatively renormalizable
around the flat spacetime geometry. In order to be able to utilize the standard
methods of the QFT, we ignore the dynamics of the metric and consider QFT of
the standard model in a general curved spacetime geometry where the quantum
path integral of the theory is given by

/ DI/e’%(SSM*f d*zy/=det g J-W)

Z[J] (6)

Vg / DUeF S

This approach is called QFT in a curved spacetime geometry. The effective
action, T, is defined as the Legendre transformation of logarithm of Z[J]

e W (7)

L'w,.]=wW[J]— [ dz\/—detg]- V., (8)

N
=
Il

where

(=%
~

The standard perturbative renormalization approach to the path integral returns
the perturbative expansion of the effective action in term of A, i.e.

D:=T]=TOW,]+rrD[Ww,]+r2TAW,] +.... (10)

The first term coincides with the tree-level action
rOWw, = [ day/—det g L(V., 0.V, g), (11)

and the sub-leading corrections can be computed. In high densities, the sub-leading
corrections can be important ™ We consider low-energy densities where the sub-
leading corrections can be ignored.

The effective action includes both the classical and quantum effects. The clas-
sical effects are those that can be reproduced by the motion of point-like particles
along geodesics or by classical fields. The rest are quantum. Hawking effect’? is a
known quantum effect due to curved spacetime geometry that was initially discov-
ered by studying QFT in black hole spacetime geometry within the approach of the
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operator product expansion method. However, the effective field theory approach
provides a simpler method to compute it B4 We would like to utilize the effective
field theory approach to find how a curved spacetime geometry affects quantum
mechanics and alters the Schrédinger equation.

3. Massive Charged Scalar Field in the Presence of an Electric
Potential in Curved Spacetime Geometry

The approaches to obtain an effective low-energy description of a quantum particle
in curved spacetime include the expansion of the Dirac equation in the general-
ized Fermi coordinates along a reference world-line 6 or less-explicit geometric
expansion of the Klein—-Gordon equation to obtain an effective Schrodinger equation
with ‘relativistic corrections’ ™ In this section, we treat the Schrodinger equation
as the low-energy limit of the Klein—Gordon equation and calculate the geometric
corrections to the Schrédinger equation. In so doing, we first would like to justify
the consideration of the Klein—Gordon equation in describing the behavior of an
electron in a curved spacetime geometry where physics is governed by the Dirac
equation

(iy"Dy —m)¢p =0, (12)
where
D,=0,—T,+ieA,. (13)
v, are the generalized gamma matrices satisfying the covariant Clifford algebra

VYo + VoV = =290, (14)

while I, is the spinorial affine connection, A4, is the electromagnetic four-vector
potential, and e is the electric charge of the fermion. The modified Klein—Gordon
equation obtained by squaring the operator in the Dirac equation, first found by
Schrédinger as cited by Pollock I8 is given by

1 1 e
———D,(v/—det g¢""D,) — =R+ —F,,,s" —m? | ¥ =0. 15
<¢Tetg plV = detgg™Dy) = g Rt 5 Fus m) (15)

Here, R is the Ricci scalar, and F},, is the field strength of A, i.e.
F,, =0,A,—0,A,. (16)

For Ricci flat spacetime geometries, when the spin of the fermion (electron) can
be neglected, the spinor ¥ can be replaced by the scalar field ¢, D,, converts to

D# = 8# + ieAl“ (17)

and (I3 can be approximated to

1
——7D —det gg"'D,) — m? =0. 18
<\/Ttg IL( el g9 ) m>95 ( )
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Let it be emphasized that in obtaining (I8]), we have assumed that the electron
is not relativistic with respect to the hydrogen atom and that the frame-dragging
effect is smaller than the Newtonian potential. So, the gravitomagnetic interaction
between the electron’s spin or angular momentum can be consistently neglected at
the leading order approximation. Equation (I8) is the variation of

1 * *
Tlp] = 5 d*z+/— det g(9" Dup(Dyip)* + mPpp*), (19)

with respect to ¢*. Note that ¢* is the complex conjugate of ¢, h and ¢ are set to 1
(h=c¢ = 1), and the metric has three positive eigenvalues. Equation ([[9) is known
as the scalar approximation to the electron action. Now, let us consider an electric
potential, where the four-potential is given by

A, = (V,0,0,0). (20)

For a weak electric field, one can ignore the quadratic term in V in ([d), and
thus, obtain

1 . .
Tlp] = 5 [ d'ay/—det g(g"" 0™ — ieg™Vp" Ao
+ieg"'Vpdo* + mipp*), (21)
The low-energy physics is described by
p = e UL, T), (22)
|00 | < |mY|. (23)

Therefore, we can substitute dyp with —imey and simplify 1) to

1 , . . .
Tl = 5 d*z\/—det g(g" 0,00, " — 2emg™Vp* +mPpp®),  (24)

which we refer to as the action of a massive charged particle in a curved spacetime
geometry under the external electric potential V.

In the case of flat spacetime geometry, g = diag(—1,1,1, 1), the variation of
@4)) with respect to ¢* yields

(VV, —m?)p = (=02 + 0“0y — m* — 2emV) . (25)

Utilizing (22)) in (28] enables us to ignore the second derivative of ¥ with respect
to time and obtain

(2imdy + 0,0 — 2emV)¥ = 0, (26)
which can be rewritten into the following form:
h2
(2mv2 + eV) U(t, 7) = ih 0¥ (L, T). (27)

Here, we recovered the h, and V? = 9%0,. Equation (7)) is the Schrédinger
equation for a particle of mass m and charge e in the presence of electric potential V.
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The low-energy physics of ([24]) for a general metric includes the corrections to the
Schrédinger equation due to the curvature of the spacetime geometry. In order to
extract the corrections, we should first fix the general covariance symmetry of the
theory by appropriately choosing the coordinates.

3.1. Fermzi coordinates adapted to time-like geodesics

We can choose the rest frame of the object producing the potential; we call this
frame the lab frame. The lab is considered to move along a time-like geodesic.
We choose Fermi coordinates to describe the spacetime geometry in the lab. The
expansion of Fermi coordinates adapted to the time-like geodesic 7, up to the
quadratic transverse directions, is given by Manasse and Misnert%2

ds®> = 2(dz®)? (=1 + Rojoma'z™) +

4 ) o 1
+ gRolimxlxmdxodxl + dx'dx? (5ij + gRiljmxl:rm)

+O(zlz™a™), (28)

where R,.p, represents the components of the Riemann tensor computed along
the time-like geodesics, and z° are the spatial transverse directions to the time-like
0 = 7. We choose units
such that ¢ = 1. Therefore, we can write the following systematic expansion series

geodesic. Note that 2 is the proper time in the lab, i.e.

for the metric:
g =94 + £gfa) + O(?), (29)
where ¢ is the systematic parameter of the series, and
Gp) = My (30)

where 7, stands for the Minkowski metric

Nuvdatde’ = —dt* + dz'dz?, (31)
and
98 = Rowoma' 2™, (32a)
a5 = %Roum!ﬂlfﬂm» (32b)
gy = %Riljmfflxm- (32¢)

“The expansion of the metric in Fermi coordinates in Eq. (28)) is directly cited
from Manasse and Misner’s work! with a nonstandard sign convention for the

2Fermi coordinates adapted to null geodesics is provided by Matthias Blau, Denis Frank, Sebastian
Weiss20
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Riemann tensor: »» Where (MTW)R"UPU is the
standard sign convention in GR textbook by Misner, Thorne and Wheeler! which
is the most widely used sign convention nowadays.”® We observe that if we set

Manasse—Misner I _ (MTW) pun
( ) R) o = ( )R »

¢ = —1, where ¢ is the systematic parameter of the expansion, then the Manasse
and Misner convention is mapped to nowadays’ standard convention. We shall use
the nowadays’ convention and set ¢ = —1 at the end of the computation. In the
following, we would like to compute the determinant and the inverse of the metric.
The determinant of the metric, i.e. det g, is

1
- detg =1l+e¢ <R0l0m + nglnm(skn) xlfm + 0(52). (33)

We are interested in the vacuum solutions of the Einstein equations where the
Ricci tensor vanishes. The components of the Ricci tensor evaluated on the geodesic

are
le = nule#mu = 5kanlnm - ROlOm = 0. (34)

This can be used to simplify Eq. (33)

2
—detg=1— gROlom:ElfL'm + 0(52). (35)

Therefore, if we represent g = — det g, then
g=1+egW, (36)
2

g(l) = 7§R010mxl17m. (37)

In order to compute the expansion series for the inverse of the metric, the
definition of the inverse metric (" g,¢ = d';) is utilized to write down

v v 1
(1 + 29" ) (g + 2g,¢)) = 0 + O(), (38)
which implies
1% o v 1
g =~ gL, (39)
Since n** is diagonal, and its diagonal values are 1, one gets
0 = —gfl). (40
Therefore
g% = —Ryoma'a™, (41a)
; 2
g0 — —gROlimxlxm, (41b)
i L Im
g = *gRiljme x. (41c)

bWe thank referee 2 for pointing this to us.
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3.2. Correction by the Riemann tensor to the Schrédinger
equation

The QFT of a massive scalar particle in the background potential V' in a general
curved spacetime geometry was presented in (24]). The functional variation of (24])
with respect to ¢ gives its equation of motion

(ﬁ&u( —det gg"0,) — m? + 26ngOO> o =0. (42)

We assume that the potential is produced by a massive entity; the entity can
be a proton or the lab. We choose Fermi coordinates along the time-like geodesic
of the entity. Section [B.1] presents the components of the metric along a time-like
geodesic in Fermi coordinates up to quadratic order in the transverse directions to
the geodesic. This allows for the perturbative ¢ expansion series for the metric, its
determinant and the inverse

g;,w = nul/ + ngblu) + O<€2)7
g =M + 59(1)“” + 0(52)’ (43)
g=1+¢egM +0(?),

¢

‘—detg”. In Eq. (32), gfbl,,) are expressed in terms of the com-
ponents of the Riemann tensor evaluated on the geodesic. Equation [{I]) shows the

where g represents

corresponding expression for ¢(M* and the expression for ¢(!) is shown in D).
Utilizing (@3] gives

(ViV4 —m? —2emV)p + gn""ﬁﬂg(l)&,w (44)
+e0,(9"" Dyp) + 2eemV g% = O(e?), (45)

where V,V® represents the d’Alembert operator in flat spacetime geometry
V*V, =n"9,0, = -0 + V?, (46)

and V? is the Laplace operator in the spatial directions transverse to the geodesic.
Since the potential V' is small, we can omit the term that includes both V' and ¢ to
obtain

(VoV® —m? —2emV)p + gn’“’@g(l)&,w + €0, (g9, )
+ 0", eV)=0.
O(E,eV) =0 47

We also would like to consider the low-energy physics where it holds ([22]). Uti-
lizing ([22]), and neglecting the second partial derivative of ¥ with respect to time,
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yields
(VOV4 —m? —2emV)p = e (VOV, + 2imdy — 2emV ) ¥
+0(059), (48)

which is the first term on the left-hand side of (@6]). In low-energy physics, all
derivatives of ¥ are small compared to the mass

Y |0, 0] < m| . (49)

So, the dominant linear correction by the Riemann curvature to the Schrédinger
equation includes ¥ but not its derivatives.

We would like to express (@) in terms of W. To this aim, notice that the second
term in the left-hand side of (@) is given by

1 1 1
51" 0ug M 0up = =009 W0 + 50ag V00

- e_imt%aog(l)\ll +0(0W). (50)
The last term on the left-hand side of (@) can be written as
0u(g" 0,0) = 9000 + 0ug V" B, . (51)

In order to express (B1)) in terms of ¥, we first expand its superscripts in terms
of t and z

3. (g W dy0) = g0 + 2900000 + g™ DaOyp
+ 809N + 990 Dup + Bg M8

+ 0ag M. (52)
Note it holds that
) 2
519((31) = gRon‘mfﬂm, (53)

where [{I) is employed. However, Ro;im is proportional to the Om component of
the Ricci tensor evaluated on the geodesic. Therefore, Eq. (53) vanishes.

Utilizing 22)) in (52) yields

Ou(g " 0,0) = ¢ (~m?gMOT — imapgMOW) + 0W).  (54)
Utilizing @), ©0), (B4) in @) yields
(V2 + 2imdy — 2emV)¥ + ¢ (%309(1) _ m2g(1)00) N
+O(g2’ga\11,ag\ll,g‘/) =0. (55)
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Dividing both sides of (B3] by “—2m” yields

1 1 '
——V? —idg 4 eV | U e | =mgM0 - 3309(1) v
2m 2 4

+O0(e2,200,020,eV) = 0. 56
0

Finally, one may use (@I)) and &) to express ¢(V% and ¢(!) explicitly in terms

of the components of the Riemann tensor evaluated on the time-like geodesic of the
lab, and thus, we have

1 1 )
iU =——V24eV |U—¢ —mROQObx“xb — 3x“xbaoR0a0b v
2m 2 6
+O0(2,20V,030,eV), (57)

where i and ¢ are set to 1. The curvature of the spacetime geometry modifies
the electrodynamics’ equation. The modification causes V' to be corrected from its
value in flat spacetime geometry. In other words, V' also has a perturbation in e:
V =V 4+ eV 1 O(?). Tt is noticed that dimensional analysis requires V1) to
be proportional to V(?). But Eq. (E7) neglects terms at order eV Terms at order
of eV are proportional to the binding energy of the electron (13.6 eV) while (57)
presents terms that are at the order of the rest mass of the electron (0.51 MeV). So,
it is legitimate to ignore terms at the order of eV(?) and keep (ED) as the leading
correction.

Equation (51) presents the linear correction due to the Riemann curvature of
the spacetime geometry to the Schrodinger equation.

Let it be emphasized that the volume element of a curved spacetime geometry is

dV = d*z\/—detg. (58)

In Fermi coordinates, it can be written as

dV = dr+/—detgd’z, (59)

where 7 is the proper time in the lab, and d3z are the spatial coordinates in Fermi

1

coordinates. This enforces us to consider the volume element in z!, 22 and 2> coor-

dinates by

dV = +/—detgdz. (60)

The amplitude for probability of transition from the state of ' to ¥? is then
given by

PV w?) = /dV U2 = [ @z /—det g U U2, (61)
It is convenient to define the physical wave function by
oy = (—detg) . (62)
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The transition amplitude between physical states resembles the transitional ampli-
tude in flat spacetime geometry

P(Whiys Wiy = [ do Wi, V. (63

Utilizing B3) and (62) in (G7) gives the equation of motion for the physical
wave function

1
100 Uphy = <%V2 +eV — ngOGObx“xb) Uply + 0(52, c0Vv, 5‘3\11, eV).
(64)

This is the correction to the Schrodinger equation in curved spacetime geometry
where the amplitude of probability is defined by (63)). The procedure of defining the
physical wave function removes the imaginary part of the effective potential. We
expect the imaginary part of the effective potential in (57) to vanish for physical
states to all orders of the approximation because the electric charge is conserved at
the tree-level action and the measure of path integral in (6 is invariant with respect
to the U(1) symmetry. There exists no anomaly at the quantum level violating the
electric charge.

Let us set e = —1, drop the superscript of ‘Phy’, and define

m
Vet = +5R0a0b$a$b, (65)
then the Schrodinger equation is given by
h2
1thOp¥ = (—2—V2 +eV + Veﬂ) v, (66)
m

where h is recovered. Here, the perturbative potential Vg is the residual Newtonian
gravitational potential present in the lab, and the amplitude of probability is that
of flat spacetime geometry.

Note that V.g is a perturbative time-dependent potential in the lab. The Hamil-
tonian of the system can be written as

H:HO+‘/()H(T)5 (67)
where
P2

So, the system, initially in the unperturbed eigenstate energy |a) = |[¥(79))
by the perturbation, can go into the energy eigenstate |3). Standard perturbation
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theory gives the transition amplitude to the first-order

Aap =3 / dry(B|Vegr|aje™ # (Fe B (o), (69)

70

where E, and Ej3 are the energy of the states |a) and |3)
Holo) = Eaa), (70)
HolB) = Ep|f), (71)
and in the Dirac notation, it holds that

BlVisle) = [ @ [ &/ (Bla) Ve (a') @'l (72)
The residual Newtonian gravitational potential holds
(@|Verr(1)|2") = (% — &) Verr (, ), (73)
which simplifies ([72]) to

(BlVisla) = [ d2(3ja)Vea(r) el (74)

where the dependency of Veg(7) on z is understood.

4. The Schwarzschild Spacetime Geometry

In a spacetime endowed with the metric g,,,,, a geodesic z#(7) can be obtained from
an effective action, i.e.

S = /dTE, (75)
o (76)

where 7 is an affine parameter. For the Schwarzschild black hole in the standard
coordinates, this is

.2 .
T—S> 2+ ; ! =+ 72 (62 4 sin? 0p?), (77)

r

ﬁ:—(1—

r
where ry = 2GnyM,, M, is the mass of the black hole, and ¢ = 1. We choose the
units such that

re=h=c=1. (78)

Due to the spherical symmetry, without loss of generality, we can choose the
equatorial plane, i.e.

(79)
6=0, (80)
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to describe any given geodesic at all times. The cyclic variables of ¢ and ¢ lead to
invariant quantities

oc

9 =0—r’p=1, (81)
oL 1\ .

= = 1--)i=E. 2
ot 0H< 7‘) (82)

Due to the form of the Lagrangian, its Legendre transformation, which is the
Lagrangian itself, is invariant. We set

1 (2 ?;2 2 -2
L=— 1—; t+1——1+7480 =—1. (83)

The nonzero components of the Riemann tensor in nowadays’ standard conven-

tion on the geodesic (6 = Z) in the standard spherical coordinates are

2

1
Rtrtr - T'_S, (8434)
Rypop =1, (84b)
r—1
Rigro = Ripty o2 (84c)
1
Rygrg = Rrgartp = _m- (84(21)

As a consistency check, we have checked that the Ricci tensor constructed out from
(&4)) vanishes. The coordinate-independent representation of the Riemann tensor,
therefore, follows:

1
R = 3 (dtNdr) @ (dtAdr) + r (dONdp) @ (dONdp)

r—1 r—1
+ 5 (dtAdp) @ (dindp) + ——= (dtAdB) © (dtAdd)

1
——(drAdy) ® (drAdyp) —

20r — 1) (drndf) @ (drAdf).  (85)

1
2(r—1)
4.1. General time-like geodesic reaching asymptotic infinity

In this section, we consider a time-like geodesic that reaches the asymptotic infinity
and [ # 0. We assume that the absolute value of the velocity of the lab at the asymp-
totic infinity is v. Equation (I]) implies that, for a finite value of [, the velocity of
the lab is radial at the asymptotic infinity because r¢ vanishes at the asymptotic
infinity. So, it holds that

Flr=co = =70, (86)
£|r:oo =7, (87)
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where v is the Lorentz factor and given by

1

R — 88
Vi (®3)
Equation (82) implies E =« and yields
. yr
t= 89
r—1’ (89)
that can be utilized in (83]) to obtain
r(7? —4?) 12
LA 90
— (90)

where (BI)) is used too, and which can be solved for 7

f—j:\/ _ =)+ ) (91)

r3

Here, the minus sign (—) is for the lab moving toward the black hole and the
plus sign (+4) is for the lab moving away from the black hole. The tangent to the
geodesic is

= hié; + L ér+roéy, (92)

h
where h is defined by

r—1

h= (93)

r

Employing ([89), (@) and (BT, one would get

L

.92 .
It also holds that ¥ = —1. We equate éy to 7, i.e.

R . LU

Let ég be written as

éo = coshaé; — sinh a (&, cos 5 + é, sin 3), (96)
where
cosha = ! (97a)
a =y 1
sinha = rro_ 1 (97b)
V-1 ’
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and
L[ = (r = 1)(r2 4+ 12)
cos 3 = ;\/ 241 ) (98a)
l -1
sinf3 = — e (98Db)

r\ y2r—r+1°

The succinct form of ([@6) then allows us to write

€1 = —sinh aé; + cosh a (é, cos f + é,sin 3), (99)

which holds that
é1 -8 =0, (100)
é1-61 = 1. (101)

The unit norm vector of é; should be in the é,—é,-plane, and is perpendicular to
éo and €;. So, it is given by

€y = —é,sinff + é, cos 3, (102)
which holds é3 = 1. The unit norm vector é3 is given by
&3 = . (103)

An infinitesimal displacement 0% in the standard spherical coordinates for 6 = 7 is

given by
1
dz = hdt é; + Edrér + rdpé, +rdf ég, (104)

where é;, é,, ég and é, are the normal unit vectors. The infinitesimal displacement
in Fermi coordinates is

i = dz°éq + dzéq, (105)

where €y and é, are the unit vectors in Fermi coordinates and ég is tangent to the
geodesic . Utilizing ([@3)), @9), (I02) and (I03) in (I0H) yields

dZ = (cosh ada® — sinh acda!)é;
4 (—sinh a cos B da® + cosh o cos 3 da® — sin B dx?)é,
+ (—sinh asin 3 da® + cosh asin 3 da! 4 cos 3 dw2)é¢

+ ég da®. (106)
We utilize (7)) to express h, which is defined in ([@3]), i.e.
g
h = . 1
cosha (107)

This allows us to rewrite ([I04]) as

h
T dte,+ 2% dr e, + rdpéy, + rdféy, (108)
v
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that we equate to (I06]) to infer that

1 1
dt = = cosh? adz® — = cosh asinh o dz?, (109)
sin 3
dr = —ytanh o cos 8 dz® 4 ~ cos 3 dx* ~Veosha da?, (110)
osh a
dyp = _Sinhasinﬁdxo Coshasinﬁdgg1 L Cosﬂalac27 (1)
r r
da3
df = — 112
. (112)
Their anti-symmetric wedge products are given by
dt A dr = cos Bdz® A dz! — sin 8 cosh o da® A da?
+ sin B sinh avda’ A da?, (113)
dt A dp — cosh a Sinﬂd:vo Adat + cosh? o cosﬂdgC0 A da?
roy roy
B coshasinhozcosﬁdx1 A di?, (114)
ry
sh? sh o sinh
dt Adf = S0 Qa0 A dyd — ORISR gt n g3, (115)
ry
tanh
dr Ndy = _ LA 000 A da? + Lot A da?, (116)
r
tanh
dr g =~ TEIROOD 40 gy 4 YO gt gy
- ﬂdxz Ada?, (117)
rcosh a
do A df = _Slnhasmﬁd 0\ da® 4+ coshasmﬁd LA g
n Cosﬂd 2 A da®. (118)

The above anti-symmetric wedge products can be substituted in ([83]) to obtain
the nonzero components of the Riemann tensor in Fermi coordinates

1+ 3cos2

Roio1 = *Tﬁ, (119a)
1+3cos28 302+ 12

Ro02 = 13 T (119Db)
302 412

Rosos = —5 5 (119¢)
3 cosh o sin 2

Ro102 = Tﬁ, (119d)
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where e and 3 are defined in ([@7) and ([@8]). As a consistency check, we notice that
the parity in the z? direction causes Rpio3 = Ro203 = 0. As another consistency
check, we note that the 00-component of the Ricci tensor evaluated on the geodesic,
B4)) for I = m = 0, vanishes too. It is advised to use Mathematica in simplification

of what leads to (II9]).

5. Hydrogen Atom in the Schwarzschild Spacetime Geometry

We would like to study the free fall of a hydrogen atom in its ground state on various
geodesics in the Schwarzschild spacetime geometry. We choose Fermi coordinates
to describe the physics near the hydrogen atom. Ignoring Vg, the Schrodinger
equation for the electron bound to the hydrogen atom is given by

W s € () ©)
vz T ) 0O — kg, T 1
( 2mV 471'8017) zh80 s ( 20)
where
2% = (21)? + (22)? + (w3)% (121)

The normalized position wave functions, given in spherical coordinates

z' = xcos, (122)
22 = xsinfcos g,
x3 = xsin @ sin o,

are

2 \° (n—t—1)!
v (@0, =) o
ntm (7,0, ¢) nag) 2n(n+0)!
iBnT
x e PPt L2 (p)Y (0, p)e” (123)

where 6 and ¢ are angles of the standard spherical coordinates in the lab, not to
be taken as the same as what defined in (7)), 2° = 7 is the proper time, and

e [, is the energy of the state n and is given by

me? 1

E,=—————, 124
2(4meg)?h? n? (124)
o p=,
e qg is the reduced Bohr radius
dmegh?
ag = 7r€o2 =053 A, (125)
me
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° Lff_’?l_l(p) is a generalized Laguerre polynomial of degree n — £ — 1,
e Y/" is a spherical harmonic function of degree ¢ and order m.
It is convenient to utilize the Dirac notation and write

\Ijgl(?%,m(w’e’go) = e_IETnT<w|naga m> (126)

Note that the generalized Laguerre polynomials are defined differently by differ-
ent authors. The usage here is consistent with the definitions used by Mathematica.
The quantum numbers can take the following values:

n=1,2,3,... (127)
0=0,1,2,...,n—1, (128)
m=—L,...,+{, (129)

where n is the principle quantum number, ¢ is the azimuthal quantum number, and
m is named the magnetic quantum number. The ground state is known to be

iByr
W o = e (2]1,0,0) = ﬁe‘%, (130)
where E is the energy of the ground state and is
me*
By = eI —~13.6eV. (131)

The first excited states are

) _iBaT
\IJ(O) _ e_mEh?T 212,0,0) = e " (2 _ i) efﬁ’ 132a
2,0,0 < | > 4\/%&0% ao ( )
_iBaT
iEgT 7 z
\Ilg?i,fl =e h2 <I|2, 17 71> = ﬁxe*mfup sin 9, (132b)
0
_iBaT
iEgT R x
U )= e (2]2,1,0) = 4?/2_?%*% cos b, (132¢)
0
_iBaT
iEgT D =
\I/g,)i,l =e h2 <I|2, 17 1> = mxeimj%@ sin@, (132(1)
0

where we have used the Dirac notation. Note that in our notation, |n, ¢, m) repre-
sents the state of the electron at 7 = 0.

We would like to calculate the effective potential that we obtained in Sec.
for a general time-like geodesic that we studied in Sec. [Z]l In so doing, we notice
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that utilizing (@5)), (I19) and ([I22) gives

ma? ( 1+ 3cos283
- co

312 2
s20 4 i

1 5,3 sin? @ sin?

Vet = 9,3

N 1+3cos28 3% +1°
4 2r2

3cosha sin 23
e

) sin? 0 cos? o
sin 26 cos <p> ) (133)

which can be simplified to

me2rga?

Vo = —
off 3273

((1 + 3 cos203)(1 4+ 3cos26)
412 . g
+6( — +1—cos2f | cos2psin” ¢
T
—24 cosh asin 23 cos g sin 29), (134)

where m is the mass of particle; ¢ and the Schwarzschild radius (r5) are recovered;
x is the distance from center of lab (the time-like geodesic); r is distance of the
lab from center of the Schwarzschild geometry; [ is the constant of the time-like
geodesic defined in [®I)); o and 3 are given in ([@1) and ([@8); and 6 and ¢ are the
standard spherical angles in the lab defined in ([I22]).

6. Absorption by a Black Hole: A Radially Falling Hydrogen Atom

We first consider a hydrogen atom at r = a in its ground state radially falling
down, and we compute what would be the probability of transition to higher modes
(excited states) as the hydrogen atom falls down inside the Schwarzschild black hole.
We notice that the radial geodesic is described by [ = 0, and consequently, § = 0.
The effective gravitational potential for a radially falling hydrogen atom, therefore,
is simplified to

merga?

Vg = —
ff 8r3

(14 3cos20). (135)

Equation (@I is simplified to

P eyt o14 (136)
T

where v is the Lorentz factor for the hydrogen atom in the asymptotic infinity, as
defined in (B8], and ¢ and r are recovered. We assume that the hydrogen atom in
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its ground state is at 7 = 0 and is located at radius of a. At 7 = 7[r], it will be at

r; thus
"d 1 /" d
Tr] = —T = ——/ S (137)
W T cJo | Ts
,YZ —14+ =
r
Let us first study the indefinite integral of
d 1 d
= [F =1 [ —— (133)
7 ¢ [ 5 Ts
¥ —-14 —
r
assuming that v # 1¢ and defining
Ts
=7 ) 139
r T’_yQ — (139)

This change of variable allows us to represent the integration in (I38]) by
- T ~= = =
etlr] = er[f] = —7( 5 = % (VF(F + 1) + log(vVF +1 — V7). (140)
¥4 —1)2
Now let us consider a hydrogen atom which is in the state of |a) at r = a and
7 = 0. As the hydrogen atom moves along the time-like geodesic of its proton, it
can be excited to higher states due to the change of the curvature of the spacetime
geometry around the proton. The transition amplitude to the state |3) at radius b,
given in ([69)), can be rewritten as

. b )
i dr _HBa— B (ot erla
Aap = *ﬁ/ 7<5|Vcﬁ'|04>6 er (ertrizerlab, (141)

We would like to study the transition from the ground state of the hydrogen
atom. Therefore, we set

) = 11,0,0). (142)
For the transition to |3) = |n, ¢, m), it yields
mc?rg
(n, £, m|Veg|1,0,0) = — 53 {n, £, m|z*(1 + 3cos26)|1,0,0). (143)

Noting that (14 3 cos26) is proportional to the second Legendre polynomials of
cos @, and considering the properties of the states of the hydrogen atoms, it yields

2
(n, €, m|Vegt|1,0,0) = —%5”05”(7@, 2,0[22(1 + 3c0s20)|1,0,0),  (144)
T

where 69 and 6% represent the Kronecker delta function. The same mechanism
demands the following rules for nonzero transition from |n, ¢, m) to |n’,¢',m’):

m=m, (145)
(=10 =42. (146)
°We will consider the case of v =1 in (IT2).
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The first allowed transition from the ground state, therefore, is to |3, 2, 0), which
yields

1

8 \/_mc Ts (0, )27 (147)
256y/2r3

where ag is the reduced Bohr radius defined in (I25]). Here, it is observed that the

dominant transition is to the 3d state. The transition to the 3d state is observed in
a different context 22

Utilizing (I36), (147) in (I41)) yields
812\/_mcrs(a0 8liv3mers(ao)® _iar CT[G]/ dr e~ ‘eierlr]

A N = (148)
|1,0,0)—|3,2,0) 256\/_h \/T

where AFE is the energy difference between |1,0,0) and |3,2,0),
AE = B, — B3 = —12.09¢V. (149)
Expressing (I48)) in terms of 7 (defined in (I39)) yields

(3,2,0[Vegt|1,0,0) =

81v3me(ag)? (42 —1)2 e* 8L or[f]
[A11,0,00—3,2,0| = (150)
256v/2h e it
where
. -1
a= a,
TS
, (151)
- —1
b=1""p
TS

Note that it is assumed that 42 — 1 # 0. For v = 1, (I39) cannot be used.
Let us calculate the numerical values of the coefficients present in (I50). It holds
that

1 2
81v3me(ao)? _ 53.10a, (152)
256v/2h
and®
AFE 1 1
— =324x107°— = : 153
h * g T 308a (153)
Equation ([48) can be expressed as
(72— 1)%aq b e~ i3080

|A}1,0,0)—(3,2,0| = 53.10 (154)

dr — — .

a /P +T)
We would like to calculate the transition amplitude for a hydrogen atom at the
asymptotic infinity which falls inside the event horizon. So, we should set a = oo

S

d(Click here to have WolframAlpha perform the numerical substitution.
¢Click here to have the numerical value by WolframAlpha.
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and b = r,. Equation ([I5I) then gives @ = oo and b = 42 — 1. The amplitude then

follows:
(v* = D)%ag /°° e @
A oo = 53,10 — /7% dr— |, 155
|A11,0,00—13,2,0)| ) a1 231 +a) (155)
where
f(x) = —Ag(), (156)
A 000321 1. (157)
(2 —1)3 ao

=z(z+ 1)+ log(vx + 1 — x). (158)

Due to the factor of 2% in the front of the integral, and the factor of T; in the
power of the exponentlal factor in the integral, the amplitude is very negligible
unless 74 is not much larger than ag.

Figure [ depicts the transition amplitude for r, = 100ag to rs = 1600ag and
the Lorentz factor v = v/2 to v = 10. Let it be highlighted that, for v very close to
unity, the error in the numerical calculation rises; therefore, we choose v > v/2.

6.1. The ultra-relativistic regime

The large « limit in ([I55]) corresponds to the large x limit of g(z) in (I58)
g(x)—x—loga:+2(12log2)+0< ) (159)

For large x, the factor of (y/23(1 + x))~! in the integral of ([55) yields

m:%O—FO(%)). (160)

Probability
1 .
0.100 ¢
— rs=100 ag
rs=200 ag
0.010 &
— rs=400 ag
— rs=800 ag
0.001
— rs=1600 ao
10—4 E
2 4 6 8 10 Y

Fig. 1. Probability of transition of a hydrogen atom from its ground state at the asymptotic
infinity to |3,2,0) on the event horizon as the hydrogen atom radially falls into the black hole
versus the Lorentz factor of the hydrogen at the asymptotic infinity. Both axes are in logarithmic
scale, and v € [v/2,10].
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Utilizing (I59) and ([I60) yields

o et (@) /°° dx ;.1 1
e 0 e 108w) (1 +0 <_)> ' 161
S Tl I VS : 1oy

Ignoring O(1) in ([IGI]) leads to an error which is less than 72171. For v > 10, the
error will be less than 1%. We assume that  is greater than 10 and ignore O(2)

in ([IGI). This enables us to calculate ([IGI]) with a precision of 1%

o0 —if(x oo
e ) d_‘reiA(m—% log )
72_1 I’Q

dr———
NI

1 1A
=~ |E(2+Z i+ -14A 162
(2 it - na) | e
where E(n, z) is the exponential integral function, i.e.
oo —zt
E(n,z) = / etn dt. (163)
1
Utilizing (I62)) in (I53) yields
2_1)2a iA
[Ap0.0)—13.2.0)], = 53.10% E (2 + 5 —i(y? — 1),4) ’ (164)
For a large ~
0.00324 r
A= = 1
o (165)
0.00324 r
Po1A= =, 166
(-1 - (166)
In the limit of a vanishing A, ([IG4)) is given by
Yyag .0.00324 r,
[Aj1,0,0)— 13,20 |, = 53.10— |E (2, —i =1 (167)
Ts Y ao
When ~ is large such that it holds that
0.003247% < ~, (168)
ao
then ([I67) can be approximated to
Yao
|A‘1,0,0>‘>‘3,2,0>|V - 5310 , . (169)
This means that there exists the critical Lorentz factor of
Ts
= ; 170
e ™ 53.10aq (170)

such that, for all Lorentz factors larger than ~., the perturbative approach predicts
that the hydrogen atom gets excited from its ground state as it falls into the black
hole. However, let it be emphasized that, as v approaches . from a smaller value,
the perturbation breaks down and a nonperturbative approach will be needed to
calculate the exact value of probability of excitation.
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6.2. The classical regime

For the case of v = 1, Eq. (I3]) can be simplified to

[\
<
Wl

err] = — , (171)

w
=
@ poj

and ([I48) is given by

|A | = 81i\/§mcrs(a0)2 e_ighECT[a] ’ d_rex 2AE r%
|1,0,0)—|3,2,0) [v=1 256\/§h \/E ; 7‘% P 3Ch\/E .

(172)

Therefore, the amplitude of the transition from the ground state of the hydrogen
atom at the asymptotic infinity to the excited state of |3,2,0) on the event horizon,
for the case of v =1, is given by

< dr .0.00216 2
|A|1,070>_,|3,270>|7:1 = 53.10ag\/7s /T5 r_% exp <2m7’2) , (173)
where (I52) and ([I53) are utilized. Let us set
T = T, (174)
us = 0.00216 . (175)
ag
Therefore, (I73) can be rewritten as
0.1147 | [ du . 3
|A‘1’0,0>‘>‘3’2,0> |V:1 = / -5 exp (Z’LLS’LL2> . (176)
Us 1 uz

The integration in (ZG]) can be expressed in terms of the incomplete T’ function?

0.0765

S

le?s 4 iu T (0, —iuy)|. (177)

|A\1,0,0)ﬂ\3,2,0)|7:1 =

The probability is smaller than 10% for rs > 91.44 ag, which exceeds unity for
rs < 32.512 ag. We cannot trust this perturbative computation when the probability
reaches 1. Therefore, we set s > 100 ag. We would like to study the asymptotic
behavior of (IT7) for large us. We first notice that due to ([7H), the large us is

fIncomplete T function is defined by

oo
T'(a,z) = / t*~teTtdt.
4

The I" function can be evaluated to an arbitrary precision by Wolfram Mathematica.
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mapped to
462.963a0 < r;. (178)

The amplitude in Eq. (I77) then can be approximated to

a0\ > a0\ >

0 0

| 411,0,0)—13,2,0) [y =18462.963a0<r, = 16389.5 <r_> ~ < " ) . (179)
Figure [ depicts the probability of transition to |3,2,0) as a function of the

Schwarzschild radius of the black hole when a stationary hydrogen atom at its

ground state in the asymptotic infinity radially falls into the black hole.

6.3. Relativistic enhancement factor

Equation (IG4) is the amplitude of transition for an ultra-relativistic hydrogen
atom with Lorentz factor v falling from asymptotic infinity radially into a black
hole. Equation (I77) is the amplitude of transition for a stationary hydrogen atom
at asymptotic infinity radially falling inside the black hole. In order to better under-
stand the effect of v, let us define the relativistic enhancement factor by

2
1411,0,0)—13,2,0) [y )
|A11,0,0)—3,2,0) [v=1

Ef(rs,v) = ( (180)

The enhancement factor Ef tells us how the probability of transition to the state
of 3,2, 0) is affected by increasing 7. For large rs as defined by (I7]), and for large

Probability
0.01
1075
1078
10"

107

PR n Ll n P | n PR n PR
100 1000 10* 108 108 a0

Fig. 2. Probability of transition of a hydrogen atom from its ground state at the asymptotic
infinity to |3,2,0) on the event horizon as the hydrogen atom radially falls into a black hole with
zero velocity at infinity. The horizontal line is the radius of event horizon divided by ag, where ag
is the Bohr radius.
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Enhancement factor

— rs=100 ag
rs=400 ag
rs=1600 ag
rs=6400 ag
rs=25600 ag
rs=102400 ao
rs=409600a
rs=1638400 ag

10"

107

10*

b

L

L Loy
50 100 500 1000

Fig. 3. The enhancement factor in terms of the Lorentz factor for a set of values of the
Schwarzschild radius.

~ as defined in ([IGS)), the enhancement factor simplifies to

2
s
Ef(ry,~) ~ (308a0) . (181)

The enhancement factor for a set of general v and rs is shown in Fig. Bl The

transition probability of a stationary hydrogen atom falling into a black hole with
the Schwarzschild radius 7, = 10%aq is 2.69 x 10712, The enhancement factor for
~ = 1000, however, increases this probability to 15.5%.

7. A Hydrogen Atom Deflected by a Black Hole

We would like to consider a hydrogen atom deflected by the black hole. The hydro-
gen atom starts moving toward the black hole from radius of r = co on a general
time-like geodesic identified by [ and v. So, 7 is given by (@)

oy - ), (182)

r3

where g is recovered. 7 is negative until the hydrogen atom reaches a minimum
distance from the black hole » = ryin, where 7 vanishes

o 2 42
Fr=rmin = \/ 72— (roin = 7) Ui 1) _ 0, (183)

r3

which can be solved to express [ in terms of ry,
Tmin
l =7rminy |/ ———% — 1. (184)
Tmin — T's
It is easier to work in the length unit of
Tmin = 1’ (185)
where [ is given by

,YQ

] =
1—rg

-1

: (186)
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whereas the particle does not fall into the black hole
re <1, (187)

is understood, which beside 1 < v guarantees that [ is a positive real number.
Substituting the value of [ into 7 yields

. T —7r r2 —1)(r —rs
e B

where it is easy to observe that 7|,—; = 0 and 7|,— .o = +7.
Very close to r = 1, r can be written as

r=1+e, (189)

where ¢ is a small number. The Taylor expansion of 7 given in ([I88]) for small ¢
yields

1 1 1

7 = ke 2 +0(e2), (190)

where

1—rg
e \/(2—3745)72 “2(1— 12 (191)

Since 7 is a real quantity, the following conditions must be fulfilled:
2
Ts S 97
3
V2(1 =) <y
V2 — 3rg

When the minimum distance of the hydrogen atom to the center of the black
hole is larger than twice the Schwarzschild radius, or equivalently due to the chosen

length unit in (I83])

(192)

(193)

re < (194a)

)

N =

then ~ can have any values. However, there exists a lower bound on 7 if the hydrogen
atom’s distance to the center of the black hole becomes smaller than twice of the
Schwarzschild radius

<rs <
V2 -
V2 — 3rg

This means that a stationary atom at the asymptotic infinity falls into the black

(194b)

)

N =
Wl N

(194c)

hole if its minimum distance to the black hole becomes smaller than twice the
radius of the Schwarzschild black hole. We further notice that ry = % represents
the photon sphere in the Schwarzschild geometry in the length unit chosen by (I83]).
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Interested readers may look at the literature for further information on the photon’s
sphere2¥ For any finite values of v, there exists a region of space around the black
hole outside the photon’s sphere that cannot be studied by scattering a hydrogen
atom thrown toward the black hole. For any r, and 7 outside (I94]), the hydrogen
atom falls inside the black hole instead of being deflected to the asymptotic infinity.

For the length unit given by ([I83]), o and 8 defined in ([O7)) and (Of)]) are repre-

sented by
cosha =~ ! ) (195a)
Vor—rs
. v2r
sinha = -1, (195b)
=Ty
and

r V2 —r 471y

cos i = 1\/WS e 12)» (196a)

l r—1re
i =/ 196b
sin § r\ yir—r4ry’ ( )

where [ is presented in ([I86]). The probability of transition from state |a) at r = co
to state |3) at r = oo is given by (69])

7 T iAELg
Aoy = [ dr@lVialaje 77, (197)
0
where
AByy = Fo — Es, (198)

and T is the total (proper) time of flight of the hydrogen atom, which is given by
>~ d

T=2 / iy (199)
G

The (proper) time for the flight of the hydrogen atom from 7 = 0 at r = oo is

z7/ d_:rv Sngv
2 |7

given by

o

7(r) = T " dr (200)
— - TL<r<T
s BerET
which can be substituted into (I9T) to obtain
21 8B < d AFE,
App = —%ei b2 ﬁT/l ﬁ(ﬁﬂ/&cﬂa) COS( ChﬁCT[T]> , (201)

where ¢ is recovered, and cr[r] is given by

orfr] = /1 . (202)

|7
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IAE,
7 is given by (I88]). We neglect the overall factor of e~ 2= 2T without loosing any
generality. The effective potential presented in (I34]) can be written as

Verr = Ve + Vi + Vel (203)
Vi = Vi 2%(1 4 3cos 26), (204)
V2 = Va % cos 2psin? 0, (205)
V3 = V3 2% cos ¢ sin 26, (206)
where
2
Vi = —Wg;’; (1 + 3 cos 28), (207)
3mcr, (412
%:f% (r—2+1cos26>, (208)
3mcr, .
Vo =+ e cosh asin 2. (209)

Note that V; to V3 depend on the position of hydrogen atom. They are not a
function of the state of the hydrogen atom. We are looking for the transition from
the ground state of the hydrogen atom. Therefore, we set

|y = 11,0,0). (210)
We notice that

(n, £, m|Vi]1,0,0) = 6™°6%2V; (n, 2,0|22 (1 + 3cos26) |1,0,0), (211)
(n,£,m|V%[1,0,0) = 6™*2552V, (n, 2, £2|x% cos 2psin® §]1,0,0),  (212)
(n,€,m|V%[1,0,0) = 6™FL552V5(n, 2, +1|2% cos ¢ sin 26|1, 0, 0), (213)

where §™* represents the Kronecker delta. We observe that the rules of transition
from the state of |n, £,m) to state of [n/,¢’;m’) for nonzero impact parameter of ¢
are

(=10 =42, (214)
m—m' = +2,41,0. (215)

The first excitation occurs for n =3, £ =2 and m =0, =1, £2

(3,2,0]x2(1 + 3cos260)[1,0,0) = 5\ 3% (216)
2 : .2 81 2

(3,2, £2| (2% cos 2 sin?) 0]1,0,0) = =150 (217)
2 ; 81

(3,2, 1] (2” cos psin 26) [1,0,0) = 1050 (218)

where g is the reduced Bohr radius presented in (I25]).
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7.1. Probability of transition to |3,2,0)

The transition to |3,2,0) is due to Vj. Its amplitude can be derived from (201])
using (2I0). It is given by

Al1,0,0)—(3,2,0) = —

81v3mc? a% / < dr
Ts
1

AFE
512v3h (1 4+ 3cos2f3) cos (—m-[r]), (219)

ch

3|7

where AE = FE5 — Fy, E,, are given in (I24)), and the overall phase of —ie— T is
neglected. Using the values of m, ¢, ag and h, one can get

81v/3mc?a?
81V3mcag — 26.55a, (220)
512V2h
AFE 1
S 221
ch 308ap’ (221)

which can be employed in (219)

—1+ 3cos? B) cos < cr|r]

Aj1,0,0)—3,2,0) = *53'106‘07’5/1 dr 7 3084y

>, (222)

where cos 20 is expressed in terms of cos 3. cos 3, 7, ¢7[r] and the unit of length are

given in (I96Gal), (I8]), (202)) and by ([I8]), respectively.

It is noticed that

er[r] \ 1 d . [ cr[r]
= 308a0— 223
o8 (3O8a0> B w0 > <3O8a0 ’ (223)

which can be utilized in ([220) to obtain

CT[T‘]) d (—1—}—3(:0826

— 224
308ag / dr r3 )7 (224)

A|1,0’0>H|3,2’0> =16335 a%rs / d’r sin (
1

where integration by parts is performed. The transition amplitude of (224)) is writ-
ten in the length unit given by (I8H). rmin can be recovered by

T's

s ) 225

e Tmin ( )

ap — —2 (226)
Tmin

For any value of ryin, 75 and 7, Eq. (224) can numerically be computed. For
example, when the hydrogen atom reaches the minimum distance of dag to the
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photon sphere, it holds that
3
Pmin = 57’5 + dag. (227)

Defining 75 = Cag and utilizing (I8H) then gives
2¢

s — 5 22
Y Y, (228)
D
_ 9229
0= 50130 (229)

which can be substituted into ([224)) to numerically calculate the amplitude for any
value of d and (. Figure (@] depicts the probability of transition to |3,2,0) for the
hydrogen atom at d = 10, and a set of Schwarzschild radii in terms of the Lorentz
factor. We observe a simple behavior at large v. We would like to look at the large
~ limit of ([224]) for arbitrary value of ry and rmi,.

The large v limit says that

d (—1 + 3 cos? 6) 3(=2r¥(r = 1) =5r+6ry) ) (i) (230)

dr 73 - r7(rs —1)

Using the large v limit of 7 defined in (I88), [202)) yields

erlr] = /j &Ly to <%) (231)

I7|

where g(r) does not depend on v and is given by

(232)
T—"Ts
r3(1 —ry)
Probability of transition to |3,2,0>
0.010F — L=10
ao
L-40
0.001 | P
— £=100
104 L EN
— £=200
ao
10°° L
— £=400
ao
1061
5 10 50 100 Y

Fig. 4. Probability of transition to |3,2,0) in scattering by a black hole when the hydrogen atom
reaches 10ag to the photon sphere, for a set of Schwarzschild radii, and in terms of the Lorentz
factor of the hydrogen atom at the asymptotic infinity.
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The large ~ limit of ([224]) is thus given by

Aj1,0,0)—13,2,0) B > s g(r) 3 (—27“3(7°5 —1)—5r+ 67"5)
16,335 a2 _'TS/{ rSHl(308a07) 77 (ry — 1) ’

(233)
where O (v%) is ignored. The fall off of the integrand for » — oo is r%. So, focusing
at r &~ 1 gives a good approximation to the integral. Near r» = 1, the sine factor in
the integrand can be approximated by

gin [ 90) ) o _9(r) (234)
308apy 308apy

The above expression can be employed to simplify the amplitude to

A\1,0,0>ﬂ\3,2,0) = 53.10

aors [ 3(=2r3(ry — 1) — 57 + 64
0 / drg(r) ( ( - )7 )
7N r7(rs — 1)

1o (%) (235)

Y

where g(r) is given in ([232). Integration by parts simplifies ([235) to

A‘170,0>_>\372,0> _ oTs /OO d’l’g/(?”) /T d:z:3 (*2173(7’5 — 1) —bxr + 67’5)
53.10 v N 0 x(rs — 1)

+o<1>. (236)

,}/2

The integral in the integrand can be performed, and ([232]) can be used to write

aors [ 3r+2r3(—=1+ry) — 3rs
Ap1,0,0)—~13.2,0) = —53.10— l dr%/ ( )

Y (I—=7re)2r3 —(r—rs)(1—rs)

+O(%). (237)

Y

Equation (237) has an essential singularity at the photon’s sphere for r3 = %
The singularity can be best seen by plotting the amplitude in terms of r, as depicted
in Fig. Bl Let it be emphasized that the unit of length is defined by (I88]), where
Tmin 1S the minimum distance of the hydrogen atom to the black hole during its
‘journey’. We notice that the integral in (237) is finite and nonzero. Therefore, the
amplitude of transition to |3,2,0) vanishes in the large limit of 4. This means that,
for a very large value of 7, the hydrogen atom either falls inside the black hole, or

when it is deflected by the black hole, it is not excited to |3, 2, 0).

2250018-33



Int. J. Mod. Phys. D 2022.31. Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON @ HAMBURG on 03/24/22. Re-use and distribution is strictly not permitted, except for Open Access articles.

Q. Exirifard and E. Karimi

|4
— 1A[1,0055 32,425
ap

100 ¢

0.10f

1 1 1 1 1 1

0.001 0.005 0.010 0.050 0.100 0.500

I's

Fig. 5.  The amplitude of transition for large 7 in terms of the Schwarzschild radius. There exists

an essential singularity at the photon’s sphere, at rs = %

7.2. Probability of transition to |3,2,+1)

Transition to [3,2,41) is due to V5. Its amplitude can be derived from (201 by
utilizing ([212) and 217). It is given by

243mc2a? ® dr (417 AFE
A . = - O — +1—cos?2 s | — ,
11,0.0)=13,221) 1006h /1 737 (r? Thmcos ﬁ) C°b< ch CT[T])
(238)

where AE = F5 — Ey, E, are given in (I24), and the overall phase of —ie™ "2 T is
neglected. Utilizing the values of m, ¢, ag and h

243m02a(2)

oo = 813, (239)
AE 1

_ 240

ch  308aq’ (240)

which can be employed in (238

i + 2sin? 8
— Sin
72 etr]
241
COS(308a0)’ (241)

where we used the identity 1 — cos 23 = 2sin? 3. Using Eq. (I96h), one obtains

< dr T — Ty crr]
A . =—16.26 agrsl? 2 S :
OO / |f~|rﬁ< +rs+r<v2—1>)co*’<308ao>

(242)

Aj1,0,0)—]3,2,41) = —8-13a07“s/ dr

1 |7
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Probability of transition to |3,2,£1>
1

0.500 |
0.100 - 'r&=200
0.050 | _r&_ 400
0.010}+ ao 2, =800
0.005 |

. . . . v

N
[
N
o
N
o

Fig. 6. The probability of transition to |3,2, £1) for ryi, = 2rs, and for a set of 75 in terms of ~.

Using ([223)) and performing integration by parts, the above expression can be
further simplified to

A11,0,0)—3,2,£1) < ferr]\ d [ 2 =T,
o = drsin — |5t 3 = s
5008.08agr! 1 308ag ) dr \r (rs +r(y2—=1)r

(243)

which can numerically be calculated for given values of 7, ag and . Figure[G depicts
the probability for i, = 2rs, and for various values of r,. It is observed that the
transition probability has a simple behavior at large ~.

In the large ~ limit, we can use 231 and ([234) to simplify the amplitude to

agrsl? d [ 2 1
A - =16.2 d — | = - — 244
11,0,0)—[3,2,4£1) = 16.26——— 5 /1 Tg(r)d?" <r5 0(72)) (244)
where [? is presented in (I86) and, in the large v limit, is simplified to

,_y2

I? = : 245
= (245)
So
aorsy [, g(r
A|1,0’0>~>|3,2’:|:1> = —162610 / d’f‘%, (246)
—Ts 1 T
where g(r) is given in 232). Utilizing & = — 10,5 and performing an integration
by part yields
aorsy dr 1
A1,0,0)—[3,2,+£1) = 32.52 (L . / (247)

\/ 7"321 T;" )

Figure [ shows the absolute amplitude in terms of 4. There exists an essential
singularity at the photon’s sphere, ry = % The essential singularity points that,
when the hydrogen atom approaches the photon’s sphere, it will be easily excited
to |3,2,41). The transition to |3,2, 1) occurs for sufficiently large v at any ;.
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Fig. 7. Amplitude of transition to |3,2,4+1) for large v in terms of the Schwarzschild radius of

the black hole. There exists an essential singularity at the photon’s sphere, rs = %

7.3. Probability of transition to |3,2,+2)
The transition to |3,2,42) is due to V3. Its amplitude can be derived from (201])
by employing (213) and @I8)). It is given by

243mc?a? < dr AFE
A . =— O h asin 2 — , 248
11,0,0)—|3,2,42) SEGh r /1 T cosh arsin 23 cos ( 7 cr[r]) (248)

where AE = F5 — Ey, E, are given in (I24), and the overall phase of —ie™ "2 T is
neglected. Utilizing the values of m, ¢, ag and h

243mc?ad
—— = 130. 4
56T 30.08ay, (249)
AE 1
—— 250
ch 308ap’ (250)

which can be employed in ([238)

err]
308a

< dr .
Aj1,0,0)—3,2,42) = 7130.O8a0r5/1 rs—wcoshasm2ﬂcos< >, (251)

Using (223) and performing integration by part give

cr[r] \ d [coshasin2f
308ag /) dr r3 '

Aj1,0,0)—3,2,42) = 40,064.6a77 / dr sin(
1
(252)
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Probability of transition to |3,2,£2>

0.100 |
0.010 .
— =200
ap
0.001 ?:400
(1]
— =800
10—4 L aop
105k

5 10 50 100 500 1000 Y

Fig. 8. The probability of transition to |3,2, £2) for ryi, = 2rs, and for a set of rs in terms of ~.

Figure [B] depicts the transition probability for ry;, = 2rs and for a set of Z—Z
It is observed that the large v limit of the amplitude possesses a simple behavior.
The large ~ limit yields
d (Coshagsin 26) _ Y(—=8r3(rs — 1) — 107 + 117y) 0 (%) (253)
dr r r13/2(rg —1)\/r3(—(rs — 1)) —r + 75 Y

So, ([Z34) can be used to simplify the amplitude in large v to®

130.08ao7s /°° dr g(r)(8r3(1 —rs) — 10r + 11ry)
1 ris/2 V(L —rs) — 1+

+0 (1) (254)

v

Ajoo—2+2 = =
S

where g(r) is given in ([232)), and the integral is a finite nonzero number for r, < 2.

It, however, has an essential singularity at the photon’s sphere at ry = % The

Probability for transition to |3,2,+2>

15}

10

Distance to the photon sphere

n

20 40 60 80 ao

Fig. 9. The probability of transition to |3, 2, £2) for v = 1000 and rs = 10ag, versus the minimum
distance to the photon sphere.

&Note that (I94al) demands s < % The integrand, thus, is always real.
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singularity can be seen in Fig. [0 where the probability of transition is depicted for
v = 1000, rs = 10ag versus the minimum distance to the photon’s sphere.

8. Discussions and Conclusion

The effect of the curved spacetime geometry on static hydrogen atoms?® and the
change in the spectrum of a static hydrogen atom in a curved spacetime geome-
try has been studied™ in the literature. Here, we have computed the effect of the
curved spacetime geometry on a nonstatic hydrogen atom. We have considered the
low-energy physics in the effective field theory approach to QFT in a general curved
spacetime geometry admitting an asymptotic (flat) infinity. We have considered a
localized quantum system that moves along a time-like geodesic. We have reviewed
and utilized Fermi coordinates along the geodesic to describe the spacetime geom-
etry around the geodesic wherein the metric is the Minkowski metric corrected by
the Riemann tensor evaluated on the geodesic. We have calculated the leading cor-
rection by the curved spacetime geometry to the Schrodinger equation. We have
shown that the components of the Riemann tensor introduce a time-dependent
perturbative potential which distorts the wave function, causing excitation as the
quantum system moves along the time-like geodesic.

Through direct computation, we have illustrated how the curvature of spacetime
geometry causes an excitation for the hydrogen atom when it falls in or is scattered
by a Schwarzschild black hole. We have shown that the excitation is enhanced
when the hydrogen atom possesses a speed with respect to the background space-
time geometry. The enhancement suggests that storing local information in a ultra-
relativistic probe may not be trivial as a tiny change in the background spacetime
geometry may induce a quantum excitation in the stored memory.

We have shown that a freely falling hydrogen atom gets excited by the back-
ground black hole by direct computation. The excited states then emit a photon
by the spontaneous emission and decay into the ground state. Emitted photons
generally escape to the asymptotic infinity, and can be detected. We tend to argue
that the energy of these photons comes from the curved spacetime geometry, so
they extract energy from the black hole, causing the black hole to gradually decay
into the flat spacetime geometry. Though this decay turns out to be negligible and
not detectable by the current technology, it is interesting that the interaction of a
quantum system with the black hole induces a new decay channel for the black hole,
a channel in addition to Hawking radiation ™ This perhaps adds to the information
paradox.

Last but not least, we would like to point that it would be interesting to compute
how the emission from hydrogen atom predicted here would the constrain distribu-
tion of the primordial black holes. For such a purpose, one should assume a profile
for the distribution of the primordial black holes and their velocity, compute the
electromagnetic radiation emitted due to the interaction of clouds of the hydrogen
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atoms with the primordial black holes, and find how cosmic microwave background

observation would constrain the distribution of the primordial black hole.
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