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My thoughts go to the students of my city who,
on the morning of February 237, 2024,
were peacefully marching in favour of Peace.
My soul will be forever wounded by the horrifying
scenes of repression of that same morning.
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Introduction

The measurement of the muon magnetic anomaly a, = (g, — 2) /2, where g, is the g-factor of
the muon, is one of the most accurate tests of the Standard Model (SM) theory of elementary
particles. Its theoretical value is dominated by the QED Schwinger term - ~ 0.00116, but all
sectors of the SM contribute to the interaction of muons with a magnetic field through virtual
particles in quantum loops, and the calculation has reached the high precision of ~ 0.37 parts
per million (ppm).

On the experimental side, the anomaly can be measured very precisely, with a well-established
technique. Indeed, when muons are injected into a magnetic field E, both their spin and
their momentum vectors precess, and the precession frequency of the spin with respect to the
momentum, the so-called “anomalous precession frequency”, can be obtained as w, = a, = B.
This means that a, can be extracted by accurately measuring w, and B. In the Muon g — 2
experiment at Fermilab (E989), a 3.1-GeV spin-polarized beam of positive muons is injected
into a storage ring of 14 m of diameter, in the presence of a 1.45T magnetic field. Due to
parity violation in the weak process of muon decay, high-energy positrons are emitted prefer-
ably towards the muon’s spin direction and can be detected by 24 electromagnetic calorimeters
placed around the inner circumference of the storage ring. Each calorimeter can measure the
energy and the arrival time of emitted positrons and is made up of 6 x 9 crystals of lead-fluoride
(PbF,). If we count all emitted positrons with an energy above 1.7 GeV as a function of time,
the counting rate oscillates with w, frequency and its maximum occurs when the muon spin and
momentum vectors are aligned. w, can therefore be extracted by fitting the histogram of the
oscillating number of counted positrons as a function of time, also called “wiggle plot”, with a
28-parameter function that takes into account, amongst others, many beam dynamics effects.
The magnetic field is constantly monitored by nuclear magnetic resonance (NMR) probes: 378
fixed probes are distributed in many azimuthal positions of the storage ring and placed on the
walls of the vacuum chambers, to continuously track field drifts; a set of 17 probes are part of
a moving device, the so-called “field trolley”, that is pulled through the ring every 3 — 5 days
without the muon beam, to measure the spatial field distribution in the storage region. The
NMR probes are calibrated twice a year with a retractable cylindrical high-purity water sample
probe.

The Fermilab E989 collaboration, of which I am part since 2020, published the first result of the
positive muon anomaly a, in 2021 with a precision of 0.46 ppm [1], 20 years after the previous
result at Brookhaven National Laboratory (BNL) [2]. At the time of BNL, the experimental
measurement was in a 3.7 o disagreement with the theoretical prediction, and the 2021 result at
Fermilab confirmed the long standing discrepancy, bringing its significance to 4.2 0. In August
2023, the experiment published a new measurement bringing the precision down to 0.20 ppm [3],
a more than two-fold improvement with respect to the first measurement. The new result is
based on the 2019 and 2020 data (namely Run-2/3), and it is in very good agreement with
the previous experimental results. From the combination, the new experimental world average
is a,(Exp) = 116592059(22) x 10~ (0.19ppm). As reported in the Technical Design Report
(TDR) [4], the final goal of the experiment is to measure a, with a precision of 0.14 ppm, by
achieving statistical and systematic errors of comparable size (~ 0.1 ppm). With the 2023 re-
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INTRODUCTION

sult, the goal has been surpassed for the systematic uncertainties. When we will have analyzed
our final data, collected from 2021 to 2023, we also expect to surpass the goal for statistical
uncertainties.

On the theory side, there are tensions in the calculation of the hadronic vacuum polarization
(HVP) contribution to a,. The consensus prediction of the Muon g — 2 Theory Initiative White
Paper [5], published in 2020, is based on the dispersive approach, for which experimental mea-
surements of low-energy e™e™ to hadrons cross sections serve as input. The current discrepancy
between this calculation and the new experimental value is a;” — aiM = (249+48)-10~ ", with
a significance of 5.10. In 2021, the BMW collaboration published the first complete lattice
QCD prediction of HVP with subpercent precision, that was closer to the experimental value
and in 2.1 0 tension with the prediction from the dispersive approach [6]. In 2023, the CMD-3
collaboration released results on the ete™ — 777~ cross section that disagree with all previous
measurements used in the 2020 White Paper, and that, when taken individually as an input to
the HVP, are less in tension with the experimental value [7]. Many efforts are ongoing in order
to clarify the origin of all the discrepancies in the theoretical calculation.

In this Thesis, I will present my contribution to the analysis of the anomalous precession fre-
quency w,, which is a main ingredient for the a, measurement together with the magnetic
field, for the Run-2/3 result published in 2023. I will describe my work on the reconstruction,
analysis, and fitting of the data to measure w,, and on the assessment of systematic effects such
as detector gain changes, pileup events and beam dynamics. This work was performed within
one of the analysis group of w, (the so-called “w,Europa”) whose result was included in the
final evaluation of w,.

Chapters 1, 2 and 3 introduce the concept of the magnetic anomaly, provide details about the
current status of the SM prediction and the history of the muon g — 2 experiments. Chapter
4 describes the Muon g — 2 experiment at Fermilab, and Chapters 5 and 6 describe the mea-
surement of w,. Finally, in Chapter 7 we present the experimental results published in 2021
and 2023, with an outlook in Chapter 8 on the remaining data to be analyzed. The original
work of this Thesis is presented in Chapters from 5 to 8: in particular, the “Ratio-Asymmetry”
method, which was new with respect to Run-1, to analyze the anomalous w, frequency with
the 2019 and 2020 data. This method greatly reduces the sensitivity of w, to all slowly varying
systematic effects (e.g., gain changes that occur while the muons are stored in the ring), and
it also achieves the maximum statistical power on w, by applying appropriate weights to the
data. My results for w, were averaged with those from 5 other independent groups, to produce
the final w, values and uncertainties that were published in 2023.



Chapter 1

The anomalous magnetic moment

1.1 Magnetic moment of elementary particles

The intrinsic magnetic moment of a charged particle with spin is equal to:

i=g—S (1.1.1)

where e is the particle charge, m its mass, S its spin vector and ¢ the dimensionless gyromagnetic
ratio, also called g-factor or Landé factor.

The relationship between the magnetic moment ;i and the angular momentum L can be easily
derived from a classical perspective: if we consider the motion of a charged particle around a
closed loop with radius r with uniform speed v, the electric current carried by the particle is

=

I = e5%. In the general formula, where J(7) is the current density distribution, the expression

of the magnetic moment is:

1 .
= /F/\ TR 7 (1.1.2)

so, for a uniform current 7 in a closed loop, we have ji = é $7A dl where dl can be rewritten
as rdf. Choosing the coordinate system such that the particle rotates around the z-axis, and
using the fact that 7 is orthogonal to dl (see Figure 1.1.1), the resulting magnetic moment is:

I L
i=5 fm dl = 25/ r2d0 = 2Tnr? = [A2 (1.1.3)
0

where A is the area of the loop.

Figure 1.1.1: Representation of a charged particle moving at uniform speed in a closed
loop around the z-axis.

We can replace I = e;2 and A = 7r? in Equation (1.1.3), and notice that mor2 is the angular

momentum L:

2
ﬂzéemrr :2emvr _ iL (1.1.4)
2rr 2m 2m




CHAPTER 1. THE ANOMALOUS MAGNETIC MOMENT

Equation (1.1.4) shows that, for a classical description of a rotating particle, g = 1.

The magnetic moment ji gives us a measure of the torque and the energy that a charged particle
feels when it is placed in a magnetic field:

7=[iAB; U=—ji-B (1.1.5)

In order to move forward from the classical description of magnetic moment to the quantum
one, the concept of spin has to be introduced. One of the milestone experiments of quantum
physics at the beginning of the 20'" century was carried out by Stern and Gerlach in 1922 [8]:
it was observed that, when a beam of neutral silver atoms passed through a magnetic field, the
beam was clearly split into two bands along the axis of the magnetic field, meaning that two
separate components experienced torques with opposite signs; from the expression of the torque
in Equation (1.1.5), it can be inferred that silver atoms have two possible magnetic moments.
Furthermore, if the magnetic moment were due to the electric charge of the nucleus, then a
scaling of ml where my is the mass of the nucleus would be expected; however, such scaling
was not observed neither in silver nor in hydrogen experiments [9], suggesting that the orbiting
electrons were the source of the magnetic moment, instead of the nucleus. The idea of a fourth
quantum number - the first three being n, m and [ - arose from spectroscopy experiments, since
it was the only way to fully remove all the degeneracies in the experimental data in accordance
with Pauli’s exclusion principle, which states that two electrons in an atom cannot have the
same quantum numbers.

In 1925, two young physicists, the experimentalist Samuel Goudsmit and the theorist George
Uhlenbeck, elaborated on the idea of this new quantum number: the concept of spin was
born, together with the convention that its eigenvalues were j:%. The classical Equation (1.1.4)
underestimated the magnetic moment measured in the experimental results (such as the ones
from Stern-Gerlach) by a factor of 2: this discrepancy was accounted for by the insertion of
the Landé g-factor, as in Equation (1.1.1), so that experimental results were reproduced by
requiring that g was equal to 2 in the case of electrons.

1.2 Magnetic anomaly

Paul Dirac’s equation, presented in 1928 in Dirac’s The Quantum Theory of the FElectron,
described the dynamics of electrons in the presence of electromagnetic fields [10], extending
Schrodinger’s wave equation to the relativistic case while preserving linearity with respect to
time:

(17250, — mbas)is(x) = 0 (1.2.1)

where 4 are hermitian 4 X 4 matrices, ¢ is the identity, ¢ (x) is a 4-component spinor field,
« and [ are spinor indices that, for readability, will be omitted from now on. The Gamma
matrices v* have to be chosen such that {v*,7"} = 29" (n*” being the Minkowski metric),
to make sure that Dirac’s equation is Lorentz covariant and that Klein-Gordon’s equation can
still be obtained. As a result of Equation (1.2.1), the existence of spin and of anti-particles was
predicted, as well as the value g = 2 for any elementary charged particle with spin—%: the steps
leading to this result will be presented in Section 1.2.1.

1.2.1 g = 2 from Dirac’s equation

As already mentioned, Dirac’s equation preserves linearity with respect to time, which means:
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oy
i Fri Hap (1.2.2)

where H is the Dirac Hamiltonian operator, which we can write as:

H = a - pc+ Bmc (1.2.3)

In Equation (1.2.3), o* (with k=1, 2, 3) and 3 are 4 x 4 traceless hermitian matrices whose
square is equal to the identity. Recalling that the operator p'is equal to —i V, and comparing
Equations (1.2.3) and (1.2.1), we have that 4* = 3 and v* = 8a*, which means:

N B _01] o= [—(37’“ ‘Tﬂ (1.2.4)

k are the Pauli 2 x 2 matrices. When looking for static solutions of Dirac’s equation,

where o
we have:

i aip = Bmc*yY (1.2.5)

¥1(0) exp (—imc?t/ )
12(0) exp (—imc’t/ )

¥3(0) exp (+imc*t/ )|’

¥4(0) exp (+imc?t/ )
The first two components, with the minus sign in the exponential, are called “large”, whereas
the ones with the plus sign are called “small” components (this nomenclature will be clarified
below). If we let an electron interact with an electromagnetic field, the Hamiltonian changes
since the electromagnetic four-potential A* is included and simple derivatives need to be re-
placed with covariant derivatives:

which has a very simple solution: ¥(t) =

—

P p——A and 9, = ? — O+ - A (1.2.6)

Ol

cb(t)
X(t)
large and small components, respectively. Putting this type of solution into Equation (1.2.2),
we obtain:

ol o®

We can now look for solutions of this type: #(t) oc exp (—imc?t/ ) [ where ¢ and y are

i 99 =—i ¢(d-T)x +eAop
gt (1.2.7)
i 8%5( = —i c(&-7)p+ edgx — 2mc*y

where we have defined @ = V — Liff In the semiclassical approximation, we can assume that the
electromagnetic field is not too strong (eAg << mc?) and that x is slowly varying in time (i.e.,
the kinetic term ¢ %X is negligible with respect to the rest mass): then, x(t) ~ —5—(5 - 7)¢(?),
where it is evident that x(¢) — 0 in the non-relativistic limit (allowing ¢ to infinity), from
which comes the attribute “small” to this component. By combining the two equations in
(1.2.7) within this approximation, usmg some basic properties of the Pauli matrices algebra
and recalling that the magnetic field is B=VA A we obtain:

—,

i 9 _ MJrer—e—(&-é) o) (1.2.8)

ot 2m 2me
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5 (0 - E) we can point out the spin operator S = 50 and recognize
the scalar product between the magnet1e moment and the magnetic field in Equation (1.1.5):
we therefore have i = g2mS = 2= S from which g = 2 predicted from Dirac’s equation for
electrons (or, in general, for any elementary charged particle with Spln—* such as the muon).

1.2.2 The Zeeman effect

In 1897, Pieter Zeeman discovered that, in the presence of a magnetic field B = BZ, the
degeneration on J, (the projection of J = L + S along the z-axis) is broken [11]. This can be
explained in the following way: the Hamiltonian of an atomic electron contains an additional
term due to L, so the last term in Equation (1.2.8) becomes 5—B(l, + gs.), which splits
a state |7,7.) in 2j + 1 components. Therefore, spectral lines due to the transition from a
level a to a level b disintegrate in a multiplet of spectral lines, giving rise to the so-called
Zeeman effect. Assuming that the magnetic field is weak, we can estimate the energy shift for
fixed j in perturbation theory, starting from the eigenstates |n,l, s; 7, j.), each with (27, + 1)
degeneration. The first order in the energy shift is proportional to (j, 7.| (I. + gs.)|7,7.), s

the operator (I, + gs.) has to be rewritten in terms of j, only. Having fixed j, we can say that

—.\

§ = agj, and starting from agj? = j S we obtain:

JG+ D) +s(s+1)—1(1+1)
2j(j +1)

Finally, we can say the energy shifts for each of the 25 +1 levels are proportional to g;m, where

m is the eigenvalue of j,, and ¢; is defined as:

ag = (1.2.9)

g7 =14 (g Das (1.2.10)

Since g # 1 for the electron, the Zeeman shifts depend on j and in general there are more than
3 spectral lines due to the Zeeman effect.

The coupling between the electron spin and the magnetic field also gives rise to fine structure
(discovered by Michelson and Morley in 1887 [12]) and hyperfine structure in atoms, allowing
atomic models to go beyond Bohr’s description.

1.2.3 Deviation from g = 2

In the previous sections, many merits of Dirac’s equation were pointed out. However, two ex-
periments in 1947 showed that Dirac’s theory still had some limitations and that, in particular,
its prediction for the g-factor of the electron differed from the real value.

The first experiment, carried out by Lamb and Retherford [13], measured the splitting between
the 25 1 and 2P1 levels in the hydrogen atom (in spectroscopic notation nL;): according to
Dirac’s theory, those two states would be degenerate because they have the same n and j quan-
tum numbers, so no difference of energy should be observed; experimentally, instead, the 2P1
state has a lower energy than 251; 1 the shift is approximately 1.058 GHz which is equivalent to
4.3751eV. The discovery of the so-called “Lamb shift” was therefore an important step towards
the modern development of Quantum Electrodynamics (QED).

The second experiment that was in disagreement with Dirac’s prediction was carried out by
Kusch and Foley [14], who studied the spectral lines due to Zeeman effect on Gallium inside a
380-gauss magnetic field, and measured the ratio between the ¢; factors of the 2P /2 and ’p /2
states (in spectroscopic notation 2+ L;). According to Equation (1.2.10), the ratio between the

11



CHAPTER 1. THE ANOMALOUS MAGNETIC MOMENT

two g factors should be equal to 2 if; for electrons, g = 2. Instead, Foley and Kusch measured
a slightly greater ratio between the two factors, which provided an indirect measurement of the
electron g-factor: g = 2.00229 =+ 0.00008. Previous studies on hydrogen and deuterium had
suggested that a value of g, # 2 could explain a 0.26% anomaly in the hyperfine splitting (see
References [15, 16, 17]).

The results of all these experiments could not be explained by Dirac’s theory, since Equation
(1.2.1) is only valid for the dynamics of a single free particle, moving in the presence of a weak
electromagnetic field. Instead, deviations from g = 2 are possible in the framework of Quantum
Field Theories (QFT) such as QED, a theory in which the interaction between charged particles
and electromagnetic fields can be studied perturbatively using diagrams, namely Feynman
diagrams, where virtual particles (such as virtual photons) are exchanged. Virtual particles
cannot be detected in experiments, but in perturbation theory they significantly contribute to
the measurable rate and properties of physical processes and modify the values of electron charge
and mass (the so-called radiative corrections). Thanks to the development of renormalization
techniques, theorists were able to establish, for the first time, a prediction of the electron g-
factor which differed from g = 2 and was in agreement with Kusch and Foley’s results. Thanks
to Tomonaga, Schwinger and Feynman who, around 1948, independently elaborated different
methods of renormalization, and for which they were awarded the Nobel Prize in 1965, QED
became one of the most accurate theories that have ever been developed and tested.

Defining the magnetic anomaly of the electron as:

96_2
2

a, = (1.2.11)
the first-order value found by Schwinger [18] was a, = 5= =~ 0.00116, where « is the fine structure
constant o=t = 137.035999084(21) [19]. The most important details of this calculation are
covered in the Appendix A. This first term comes from a 1-loop contribution that accounts
for ~99% of the anomaly and it is universal to all leptons (electron, muon, tau): its Feynman
diagram is shown in Figure 1.2.1(c), along with the general and the tree-order diagrams, in
Figures 1.2.1(a) and 1.2.1(b) respectively.

Figure 1.2.1: QED prediction for the muon magnetic anomaly: (a) is the general form
of diagrams that contribute to the anomaly, (b) is the tree-order contribution which yields
g = 2 and (c) is the 1-loop Feynman diagram that leads to the first radiative correction,
a=a/2m.
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CHAPTER 1. THE ANOMALOUS MAGNETIC MOMENT

1.3 Measurement principle of a,

1.3.1 Why a, = (g9, — 2)/2 is a good probe for new physics

There are three massive particles in the charged lepton family: electron, muon and tau. Their
main properties, compiled by the Particle Data Group [19], are displayed in Table 1.3.1.

e i T
Charge -1 -1 -1
Spin 1/2 1/2 1/2
Mass [MeV/c?] 0.511 105.7 1776.9
Mean life [5] >2.0-10% | 22-107° | 2903101
Main decay mode(s) - € Uely | WUy € Dely
Branching ratio [%)] - ~ 100 17.39  17.82

Table 1.3.1: Charged lepton properties.

In principle, the anomalous magnetic moment could be observed for all leptons, but from an
experimental point of view there are some critical differences: measuring a. is easier than a, or
a,, since the electron is a stable particle, whereas the short lifetime of muons and tau particles
is a limitation for experiments. The current best measurement of a. [20], which uses a one-
electron quantum cyclotron, is ~ 1700 more precise than the current best measurement of a,,.
However, quantum fluctuations due to heavy particles or contributions at high energy scales are
proportional to da; oc m?/A? where m; is the lepton mass and A is the mass of a hypothetical
heavy particle beyond SM. So, while the measurement of a. is an ideal test for QED (see
Section 2.1.1), it is not as sensitive to possible new physics as the muon is: the relative mass
ratio mi /m? ~ 43000 enhances the muon sensitivity. Clearly, experiments with tau particles
would have an even greater sensitivity to new physics, but they would have to face two problems:
firstly, tau particles have a very short lifetime, so a significant Lorentz boost would be needed;
secondly, contrarily to muons, tau particles do not have a single, dominant decay mode, but
instead they decay into hadronic states which would need to be identified. Recently, two
proposals were made to measure the magnetic anomaly a, at the LHC and improve the current
limits by the DELPHI collaboration [21]: one is based on selecting polarized 71 from D} decays,
and determine the rotation of the spin-polarization vector induced by electromagnetic fields [22];
the other is based on ultra-peripheral collisions of heavy ions, where hadronic interactions are
strongly suppressed and long-distance electromagnetic processes dominate [23].

1.3.2 The anomalous precession frequency

Let us recall that, if we can write, for a vector v, a differential equation of the type in Equation
(1.3.1) :

i -
W_Gaw
dt Y

then ' precesses along the z-axis with frequency (2.

L
I
)
Q>

(1.3.1)

In the Fermilab Muon g — 2 experiment, polarized muons are produced from pion decay (see
Section 1.3.3) and injected into a storage ring with a magnetic field orthogonal to the ring plane.
In the muon rest frame, the interaction term in the Hamiltonian is of the type H = —/i - B , SO
from Heisenberg equation it is possible to obtain:
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d§_ e
a9

Comparing Equations (1.3.1) and (1.3.2), we derive that, for a muon at rest, the rate at which
the spin turns is given by the so-called Larmor frequency:

BAF (1.3.2)

2m

e
= — | B 1.3.3
ws =g (2m) (1.3.3)
In the lab frame, due to Lorentz force Z—f =elAB = —mié A p, the relativistic muons orbit in

the storage ring with a frequency called “cyclotron frequency”:

wCE<€>B (1.3.4)

my

Moreover, the muons in the storage ring experience a centripetal force that leads to the Thomas
precession term & = v2/(y + 1) - (@ A ) /c?, where @ and ¥ are the particles’ acceleration and
velocity, respectively [24]. This effect is connected to the fact that two successive non-collinear
Lorentz transformations are equivalent to a Lorentz transformation plus a three dimensional
rotation. As a result, an additional term contributes to the spin frequency:

wr = (1—7) <e> B (1.3.5)

my

So, in the presence of a magnetic field which is such that B 5 = 0, we have that:

wmalgp)rr0n(gg)m (e s

In the lab frame, the rate at which the muon spin rotates with respect to the momentum is
therefore w, = ws — we and it is called the “anomalous precession frequency”:

Wg =Wg — Wo = @y (;L) B (137)

There are three important features of w, from Equation (1.3.7): (i) it does not depend on 7;
(ii) it only depends on a,, rather than the full magnetic moment; (iii) it depends linearly on
the applied magnetic field. In the general case where an electric field is also present, and where
B- 5 is not cancelled out, the above formulas can be expanded [25]:

e ) e )t

2 ¥ v+1 2 v+1 c
- L (1.3.8)
1= ANE
o= |tE_ 27 B
m |y 4 —1 c
So that w, becomes, in the general case:
- 5 i e = Yo s == 1 EAE
wa:wS—wC:E [auB—au7+1(ﬁ-B)ﬁ— (au—72_1> . (1.3.9)

Again, we can assume that the motion of the muons is purely longitudinal so that B "B =0
and the second term in the square brackets vanishes. The expression can be further simpli-
fied to cancel out the effect of the E-field, by choosing a specific value of the Lorentz boost:

14
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v = /14 Ya, = 29.3. This corresponds to p, ~ 3.09 GeV/c, which is the so-called “magic”
momentum: the experiments since CERN IIT (see Section 3.2.3) used the magic momentum to
minimize the influence of the E-field on muons orbiting around the storage ring. In this config-
uration, the expression for the anomalous precession frequency becomes the same as Equation
(1.3.7): this is the reason why, in order to extract a, from the experiment, the two main quan-
tities to measure are w, and B, as a, will be proportional to their ratio. Given that the muon
beam is not ideal but, for instance, there is a momentum distribution peaked at the magic
value, the above cancellations are only to first order, and there are corrections that take into
account the effects of the E-field and of the (3 - B)j terms.

The diagrams in Figure 1.3.1 show how the muon spin and momentum vectors precess inside
the storage ring during a complete turn in the ring. The two vectors are assumed to be aligned
at the beginning of the precession: according to Equation (1.3.7), if g, were equal to exactly 2,
the spin would remain parallel to the momentum at all times. Since g, > 2, the spin precesses
relatively to the momentum, with the frequency w, that is proportional to the muon anomaly
and to the magnetic field. After one complete turn, the angle between the muon spin and
momentum changes proportionally to the ratio T¢:/T, = w,/we = a,y. For muons at the
magic momentum, this means that the anomalous precession frequency w, is ~12.3°/turn.

®3

//k’_’ﬁ

I I
T 1l f 1

\
Qt// \://

(a) Precession of muon spin and mo- (b) Precession of muon spin and mo-
mentum if g = 2. mentum if g > 2.

Figure 1.3.1: Motion of the spin (blue) relative to the momentum (red) vector. Figure (a)
shows the case when a, = 0, so the spin does not rotate relatively to the muon momentum;
Figure (b) shows what happens when g > 2. In this example, the precession frequency is
24° /turn, i.e. about twice the actual value in the E989 experiment, for better visibility. The
dashed blue arrow is the muon spin vector after one complete turn.

1.3.3 Muon decay chain

An important role in the E989 experiment is played by charged pions 7%, which are produced
copiously when an energetic proton beam impacts a target (see Chapter 4). After neutral pions
70, the charged 7* are the lightest hadrons, with a mass of about 139.6 MeV /c?>. The main

decay mode for charged pions is 7= — [+ (V_l) where [ stands for lepton: the only possibilities
are electrons and muons, but not tau particles due to their mass. The parity violation in the
weak decay makes sure that muons in the forward decay of the 7 are longitudinally polarized,
which is a key feature when measuring w,.
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Pion decay

The most probable final state in positively charged pion decay is p*v, with a branching ratio
of 99.98770(4)%. Since muons have a much greater mass than electrons, one would expect that
the phase space favored the e*v, final state: this is not the case, and the ratio between the two
processes is [19]:

I'(m—=p+uv,)
I'(r—e+ve)

R, = ~8.13-10° (1.3.10)

Sy,
—

( ~
le \j
hy, = —1

Figure 1.3.2: Diagram of a positively charged pion decaying into a positive lepton and a
neutrino. The value of the helicity h o p’- §is shown for both the emitted particles. h = —1
means left-handed.

Figure 1.3.2 helps to understand this experimental value for R: in the 7 rest frame, the lepton
and neutrino are emitted back-to-back and, in the limit of massless neutrinos, the neutrino is
always emitted with a left-handed helicity. In the weak decay, the positively charged leptons
would be preferentially emitted with right-handed helicity, but this is vetoed by the massless
neutrino and by the conservation of angular momentum (the pion has zero spin). Thus, the
more massive the emitted lepton is, the more favored the decay mode becomes. Equation
(1.3.11) shows the computation of R, at tree order in the massless neutrino limit:

m2 —m2]? m?
TI' ~ 3
s e e

Phase space  Helicity

Muon decay

The muon decay process is represented in the following diagram in Figure 1.3.3(a).

Yu
.
€+
(a) (b)

Figure 1.3.3: Diagrams of a positively charged muon decaying into a positron, a muon
antineutrino and an electron neutrino: (a) represents the current-current Fermi-like interac-
tion, from which we can derive the effective Lagrangian in Equation (1.3.12); (b) shows the
helicity constraints when neutrinos are emitted in the same direction.
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Assuming a current-current Fermi-like interaction, one can start from an effective lepton La-
grangian of the form:

G —
Ly= SRR, I = 5 G- ey (1312)
\/§ I=e,u,T

then calculate the complex amplitude for the tree-order process where the “blob” in the above
diagram is replaced by a 4-point interaction; take its square module and, at last, sum on the
polarization of all the emitted particles. The integration on phase space for a polarized muon
yields the differential decay width in Equation (1.3.13):

d*r

ﬁ o n*(y*)[1 + a* (y*) cos(6%)] (1.3.13)
where the star (*) refers to the muon rest frame (center-of-mass frame). Equation (1.3.13)
introduces two kinematic parameters: y*, which is the ratio between the energy of the emitted
positron and the maximum energy the positron can take (approximately half of the muon
mass); and #*, the angle of the positron momentum with respect to the muon spin vector. Two
functions are introduced, n*(y*) and a*(y*): the latter is called “asymmetry” in the center of
mass. The Equations in (1.3.14) show the explicit expressions of these coefficients, whereas
Figure 1.3.4 shows the behaviour of these functions.

21

n*(y") =y (3 — 24"); a*(y") 3 2y (1.3.14)
0.8 |[— n*(¥)
o6 [— a'()
04
0.2
o=
0.2
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*

¥

Figure 1.3.4: In the center-of-mass frame, the functions n*(y*) and a*(y*) from Equation
(1.3.14) are plotted.

There are values of y* for which the asymmetry takes negative values. We shall see that this
also happens in the lab frame, where a different asymmetry coefficient will be introduced. The
differential decay width takes its maximum value for the highest energy positron whose mo-
mentum is parallel to the muon polarization: once again, this is a result of the parity violation
of the V-A nature of weak decay, which prefers to couple to a right-handed positron. Fig-
ure 1.3.3(b) illustrates the decay of the highest energy positrons in the muon rest frame: the
positron’s energy is approximately half of the muon mass, while the other half is shared by
the two neutrinos that are emitted in the same direction; the neutrino and anti-neutrino spins
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cancel, so the decay positron is forced to carry the spin of the parent muon.

With a Lorentz boost, it is possible to derive the differential decay width in the laboratory
frame. Since the gamma-factor ypyes; Of the Lorentz transformation is approximately 30, much
greater than 1, and since the positron mass is much smaller than the muon mass m,, the
maximum positron energy in the lab frame is Ypoosi, = 3.1GeV. In this frame, there is a
new kinematic variable which greatly influences the positron energy spectrum: it is the angle
a formed between the muon spin and the muon momentum. It is possible to show that the
differential decay width in the lab frame is given by Equation (1.3.15).

dN+ (y.0) = (y—1)[4y* -5y — 5 — (8y* —y — 1) cos(a)] _ N(y)[1 + A(y) cos()]
dy YT 3 3

(1.3.15)

where y is the ratio between the positron lab energy and ypoestm,, while N(y) and A(y) are
defined by the relations in (1.3.16) and plotted in Figure 1.3.5:

8y +y+1

= 1.3.16
4y? — 5y —5 ( )

N(y) =(@y—1)4y"—5y—5);  Aly)

The factor 3 in the denominator ensures that the integral of %Nﬁ from y = 0 to y = 1 is equal
to 1, so that Equation (1.3.15) is actually a probability density function.

=

|III|IIIIIII|III|III|I
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Figure 1.3.5: In the lab frame, the functions N(y) (rescaled by 1/5 so that it fits the range
[0,1] on y-axis) and A(y) from Equation (1.3.16) are plotted, as well as N (y)A?(y), rescaled
by a factor of 2 for better visibility. The importance of the latter function will be clarified
at the end of this Section.

Equation (1.3.15) can be obtained from the following steps. In the muon rest frame, we can

define:

« k the direction of the muon beam;

Pe = cos(8.)k + sin(f,) cos(¢e)? + sin(8,) sin(¢. )] the direction of the emitted positron;

§ = cos(a)k+sin(a)? the direction of the muon polarization, which rotates with frequency
wg around the y-axis;

& = cos(0,).
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Then, cos(6*) = p. - § = cos(f.) cos(a) + sin(f.) cos(¢e) sin(a) is the angle that appears in
Equation (1.3.13), which can therefore be integrated over ¢ from 0 to 2, yielding:

dz]-—‘(,u—ww/)
dy*dg
Again, neglecting the positron mass, we can say that the positron lab energy F is approximately

equal to Y™ yBoostm, (1 + €)/2, so the y parameter in the lab frame is y = y*(1 + &) /2. Calling
P(a,b) the differential decay width as function of a and b, we can use that:

n*(y*)[1 + a*(y*) cos(a)€] (1.3.17)

P(y*,y)dy*dy = P(y",&)dy"d§

2y dg 2
E=coslbe) = —1= 0 = (1.3.18)
9
P(y*,y) = P(y", f)dg (y*,f)E

Since £ = cos(f.) = y— — 1, we have that 2—7’ — 1 < 1, therefore y* > y, and of course, by
definition, y* < 1. The right-hand side of Equatlon (1.3.17) is our P(y €), so we can obtain
P(y*,y) using the last equation in (1.3.18), and integrate it over y* that goes from y to 1,
obtaining Equation (1.3.15). It is essential to notice that the energy spectrum depends on «,
which is not constant over time, because it oscillates from 0 to 27 with frequency w,: thanks to
the V-A nature of weak decay, there is a strong correlation between the anomalous precession
frequency and the positron energies, that allows us to accurately measure w, from fits of the
so-called “wiggle plots™.

If we are counting all positrons above a certain energy threshold, Equation (1.3.15) can be
integrated over y going from y, to 1: this gives us the probability that a positron is emitted
with an energy of, at least, i, VBoost,, in the lab frame. The integration yields:

N(yen) = No(yun)[1 + Ao(yun) cos(@)] (1.3.19)

where Equation (1.3.20) defines two new coefficients, whose behaviour is shown in Figure 1.3.6:

y(2y +1)

m (1.3.20)

No(y) = (=1 (=¢" +y+3); Ay =
Again, it should be stressed that a precesses with frequency w,, so that the Equation (1.3.19)
implicitly contains a time dependency. In the storage rings, muons decay over time, with a
lifetime dilated due to Lorentz boost: YgoostT & 64.411s. So, in the lab frame, the distribution
of emitted positrons will be:

N(t) = No(yen)e "7 [1 + Ag(ysn) cos(wat + ¢a)] (1.3.21)

where ¢, is the initial phase of the muons’ spin relative to the momentum, at the time of
injection. From Figure 1.3.7, it is evident that, for higher thresholds, the count rate of positrons
have a larger oscillation, but the number of events per bin is lower.

In previous studies [26] on wiggle plot fitting techniques, it was shown that the sensitivity of
the anomalous precession frequency to the energy threshold is given by:

Owa _ V2 (1.3.22)

Wa  w, P/ NFOT A3(yun)
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1
- —— No(ye)/3
i — Ag(ye)
08— —— 10Ny (yn) A (vien)
06—
04—
02—
_-'I'I.||||||||||||II|||||||||||||II|IIII|II ‘l—J—J_II
OD 01 02 03 04 05 06 07 08 09 1
Ytk

Figure 1.3.6: In the lab frame, the functions No(y) (rescaled by 1/3 so that it fits the range
[0,1] on y-axis) and Ag(y.,) from Equation (1.3.20) are plotted, as well as Ny () A2 (1),
rescaled by a factor 10 for better visibility.

Wiggle plots for different energy thresholds
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Figure 1.3.7: Number of positrons produced in the storage ring, as a function of time, for
three different values of the energy threshold, according to Equation (1.3.21).

where P represents the average polarization of the muons, and NIT the total number of
positrons with y above y,. Since NI9T oc Ny, Equation (1.3.22) tells us that the Figure of
Merit (FOM) to be maximized for better statistical results is NoA2, plotted in Figure 1.3.6,
where it can be seen that y;, =~ 0.6 - approximately 1.86 GeV - would be the optimal threshold.
For real data, the limited detector acceptance and the energy resolution also play a role, moving
the optimal energy threshold to a slightly lower value, around 1.7 GeV.
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Chapter 2

Theoretical calculation of a,

Since Schwinger computed the first, leading order, 1-loop QED radiative correction to the
magnetic anomaly in 1948, a large community of physicist has been continuously working with
the aim of reaching a new level of precision on the theoretical prediction of a,. Recently,
after the Brookhaven results exhibited tensions with the theoretical prediction, and especially
in view of the results at Fermilab, the efforts on the theory side were particularly revived.
A few years ago, the “Muon g — 2 Theory Initiative” was formed, with the goal of bringing
together experimental and theoretical physicists, in order to produce a single consensus on the
theoretical value of a,,.

This Chapter will summarize the latest results from the Standard Model (SM), focusing in
particular on the current issues in the calculation of the hadronic contributions. Some example
of models for new physics Beyond the Standard Model (BSM) will be mentioned, which could
affect the muon’s g-factor.

2.1 Summary of the main SM contributions

The value of the muon g-factor different from 2 is theoretically explained by Feynman dia-
grams where virtual particles are exchanged. These diagrams can come from three different
sectors of the SM: Quantum Electrodynamics (QED), Electroweak Theory (EW) and Quantum
Chromodynamics (QCD). Therefore, a5 is written as a sum of different terms [5]:

"
aSM — (QED 4 (EW L (HVP—LO | (HVP—HO .  HLBL (2.1.1)
2 2 @ 2 w
QCD

where QCD carries the highest uncertainty and is divided in three parts:

o HVP-LO is the leading order of the hadronic vacuum polarization (HVP), where a loop
of quark-antiquark is inserted in the virtual photon line of Figure 1.2.1(c).

o HVP-HO embraces all the higher order contributions to HVP (we will refer to the cur-
rently evaluated next-to-leading order and next-to-next-to-leading order with NLO and
NNLO, respectively), where additional loops, either leptonic or hadronic, are inserted.

o HLBL is the hadronic light-by-light scattering, a diagram where photon propagators in-
teract with hadrons as in Figure 2.1.2(b).

Table 2.1.1 shows a comparison between the recent measurements of a,, and the recommendation
from White Paper 2020 (WP2020 [5]) for the SM prediction.

21



CHAPTER 2. THEORETICAL CALCULATION OF a,

SM terms [5] Magnetic anomaly aﬁM x 101
QED 116584718.931 £ 0.104
EW 153.6 + 1.0
HVP-LO 6931 £ 40
HVP-NLO —98.3 £ 0.7
HVP-NNLO 124 £ 0.1
HLBL 92 + 18
Total aﬁM 116591810 + 43 (WP2020 [5])
Lattice HVP-LO from BMWec [6] 7075 £ 55
Experimental values Magnetic anomaly afl’pe”me”t“l x 101
afgm (2006) [2] 116592089 + 63
a5989 (Run-1, 2021) [1] 116592040 + 54
afggg (Run-2/3, 2023) [3] 116592057 £ 25
a,'" average 116592059 + 22

Table 2.1.1: Values of the SM terms that define the aﬁM prediction (White Paper 2020
recommendation [5]) compared with the experimental results in E821 at BNL [2] and E989
at FNAL [1, 3], and with the experimental average. The lattice calculation from the BMW
collaboration [6] is also reported (see Section 2.1.3).

2.1.1 QED term

The QED correction to the magnetic anomaly is the largest one, but also the most precise. QED
contributions come from diagrams where only leptons (e, u, 7) and photons () are present. It
is possible to write the QED term as a sum of terms which only depend on the ratio between
the lepton masses [27]:

a9FP = A + Ay(my,/m.) + As(my/my) + Az(my,/me,m,/m,) (2.1.2)

M

where A; is universal for all leptons, just like the Schwinger term derived in Appendix A, and
contains diagrams where the closed lepton loops have the same mass as the external lepton; As
contains loops where the internal leptons have a different mass, so it starts at 2-loops order; As
accounts for diagrams in which all three leptons are present. Since QED is a renormalizable
theory, each of the A; terms can be expanded in series of powers of a:

+o0o n
A=Y AR (O‘> (2.1.3)
n=1 n

For instance, at 1-loop order, A§2) comes from the Schwinger term and is equal to 0.5, whereas
A§2) = A§2) = 0. At 2-loop order, there are 9 diagrams in total: 7 diagrams contribute to A§4), 1
contributes to A(24)(mu/me) and the last one to ASY (my/m.); AP s still equal to 0. At 3-loop
order, the analytical computation was carried out by Remiddi and collaborators and completed
in 1996 [28]: it was the last one to be computed analytically, with 72 diagrams contributing to
A§6) and AgG) divided into two sets - a “heavy” one, due to e and 7 vacuum polarization loops,
and a “light” one, due to light-by-light scattering with e and 7 loops. From the fourth order
on, only a few diagrams have been computed analytically so far; numerical calculations were
carried out by Kinoshita and collaborators [29]. In the final value of the QED prediction based
on SM (Table 2.1.1), the uncertainty of ~ 1.2 parts per billion (ppb) comes from the lepton
mass ratios, from the 4-loop and 5-loop contributions, and from a precision of ~ 0.15 ppb on
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the fine structure constant « [19]. In the last 5 years, two independent determinations of «
were performed, with rubidium (Rb) [30] and cesium Cs [31] atomic interferometry. These
measurements disagree with each other by 5.50: when this discrepancy will be resolved, the
new measurement of g. with an uncertainty of 0.13 ppt will be available for precise tests for
BSM physics. The values of a5 based on Rb and Cs determinations of o imply, respectively,
a positive (+20) and negative (—40) tension with a%?. These results have invoked much
theoretical work into explaining the deviations in the electron sector. As stated in Ref. [32], ‘a
negative Aa, could require BSM models that break lepton flavor universality’.

2.1.2 EW term

The electroweak contribution comes from the coupling with gauge bosons, Z, W* and H, and
it is mass-suppressed by a factor ~ m? /Mg, with respect to the QED contribution. Figure
2.1.1 shows the three diagrams that affect a, at 1-loop order.

(b)

Figure 2.1.1: 1-loop EW contributions to a,.

In the SM:
 The Fermi Constant is G = 1.1663788(6) - 107> GeV 2 in units of ( ¢)?;
o Oy is the Weinberg angle of weak interaction mixing: sin?(fy) = 1 — M3, /M2 ~ 0.231;
o MGy >>m.
Thus, the total EW contribution at 1-loop can be written as:
oW = 5;;’:2; B + ; (1 - 4sin®(0w))" + 0 ( i ) o (J\ﬂ;;)] (2.1.4)

whereas the single contributions from gauge bosons are:

\/§Gpmi (—1 + 4sin2(9w))2 -5

a?"V(Z) = = (—193.89 £ 0.02) - 10~ (2.1.5)

p 1672 3
\/_Gpm 10
EW = + 0.10) - 1071 2.1.
ay V(W) = o7 3 = (+388.70 £ 0.10) - 10 (2.1.6)
G 2 — )2
afW(H) \/_ Fm / ( y)y ~

Y =) (M /m,)?
\/_GFm m“l (MH> 5 10—l

472 M3 mi

(2.1.7)
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More details about the EW calculation are present in the papers in Ref. [33]. The contribution
of the diagram in Figure 2.1.1(c) is relatively small, due to the mass of the Higgs boson measured
at LHC. The total contribution of the (1 + 2) loop order was recently evaluated numerically,
taking into account the Higgs mass and appropriate light quark masses [34], and is shown in
Table 2.1.1. Contributions from the 3-loop leading logarithms were found to be negligible [19].

2.1.3 QCD term

The hadronic contribution to a, amounts to ~ 60 parts per million (ppm) and carries an
uncertainty of ~ 0.40 ppm, which dominates the uncertainty on the theoretical prediction of
the magnetic anomaly: efforts to improve the QCD prediction are therefore crucial, as the
experimental precision improves. The largest hadronic term comes from the leading order
hadronic vacuum polarization diagrams (HVP-LO), such as the one in Figure 2.1.2(a) where
the internal photon propagator line contains a hadronic loop. The problem with this type of
diagram is that the energy scale is of order of the muon mass, well below the region where QCD
can be studied perturbatively, so the approach to evaluate the contribution is different from
the QED and EW case. The dispersive approach and the lattice calculations will be presented
in the rest of this Section. The higher order contributions HVP-NLO and HVP-NNLO, which
involve the addition of further vacuum polarization loops, have similar difficulties in calculating
afj VP=LO ‘hut they do not affect significantly the overall error because they are suppressed by
further powers of « [35] (as shown in Table 2.1.1). The second largest source of uncertainty in
the hadronic sector comes from the hadronic light-by-light (HLBL) term: as shown in Figure
2.1.2(b), its amplitude is given by a four-point correlation function instead of the two-point of
HVP, which makes the computation even harder. Nevertheless, requirements on the accuracy
of afLBL are less demanding, since this term is suppressed by an extra power of «, and its
contribution has a similar size as the NLO term of HVP: a relative accuracy of ~ 10% is
sufficient to meet the precision goal of the E989 experiment at Fermilab [5]. Currently, the
HLBL is calculated up to the next-to-leading order: the lattice and the data-driven dispersive
approaches yield compatible results with uncertainties at the 20% level, so the current estimate
combines them. In the upcoming years, we can expect that the efforts on both approaches will
reduce uncertainties down to the 10% level.

(b)

Figure 2.1.2: Examples of hadronic contributions to a,: diagram in figure (a) shows the
leading order HVP, while the one in figure (b) shows the general case of the light-by-light
scattering. The letter H denotes a generic hadronic blob.

The ongoing efforts on the theoretical prediction of the hadronic components of a,, are currently
summarized by the Muon g — 2 Theory Initiative at https://muon-gm2-theory.illinois.edu.
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Dispersive approach calculation of af VP-LO

The leading order HVP term has traditionally been obtained through a dispersion integral,
whose derivation is based on the general principles of causality and unitarity, which imply
respectively analyticity of quantum field theory and validity of the optical theorem [35]. The
obtained dispersion integral is [36, 35]:

K
gvP-ro _ 2 T (5) 52 (2.1.8)
m
2
Y Y Y
@ o | (O

Figure 2.1.3: From Ref. [35]. Schematic representation of the optical theorem.

In this relation, I1,.4(s) is the hadronic part of the photon vacuum polarization as a function
of the time-like squared momentum transfer s = ¢? > 0, while the kernel function K(s) is a
kinematic factor that behaves like 1/s, ranging from ~ 0.03 when s = 4m?2 (threshold of 77~
pair) to 0 when s — oo, as defined by Equation (2.1.9).

2(1—x)
>4 / dx 2.1.9
(5 > dm, 2?2+ (1 —x)s/m2 ( )
The shape of K (s) for /s below 2m,, is reported in Ref. [37], where it was found to give a neg-
ligible contribution to the integral. Taking advantage of the optical theorem, diagrammatically
represented in Figure 2.1.3, the imaginary part of the hadronic vacuum polarization function
is related to the annihilation cross section of ete™ to hadrons, or rather to the hadronic ratio

R(s):

o(ete” — hadrons) « o(ete” — hadrons)
ImlI, = = —R(s), R(s) = 2.1.10
mITy4(s) dra)s 3 (s) () oo(ete — ptp~) ( )
The leading hadronic contribution to the muon anomaly is thus given by:
2
HVP-LO _ @ K(s)
a# ﬁ d s R(S) (2111)

The integral goes from the pion 7° production threshold (the lowest hadronic state) to infinity.
This method is known as the time-like dispersive approach, and relies on the cross sections
measured at ete™ colliders to determine R(s).

Figure 2.1.4(a) shows the behaviour of R(s) up to ~ 10 GeV, the region where it is computed
using experimental data. Above that energy, which corresponds to the open bb threshold, the
general consensus is that we can trust perturbative QCD due to its asymptotic freedom. The
shape of R(s) is highly fluctuating because of hadronic resonances and flavour threshold effects.
The main contribution to the final value of a7VF~1C comes from the energy region 2 GeV,
since the hadronic ratio is weighted by the factor K(s)/s ~ 1/s? in Equation (2.1.11): here,
the total hadronic cross section is obtained by summing more than 35 exclusive channels, the
dominant one being the w+7~ final state. This channel accounts for approximately 75% of
the whole value of af VP=LO hut it also represents the largest source of uncertainty because
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Figure 2.1.4: (a): the R(s) ratio in the range m, < /s < 11.1985 GeV, with labels on the
prominent resonances. (b): the 777~ (v) contribution in the range 0.6 GeV < /s < 0.88 GeV.

of a long standing discrepancy between KLOE and BaBar measurements (see Figure 2.1.4(b)),
which must be properly dealt with when combining data [5].

The current reference value for a//VF~"© [5] is based on merging the evaluations carried out
by DHMZ and KNT groups: the former implements an approach based on an accurate data
interpolation with polynomial functions for each experiment, which are then combined together
through a weighted average [39]; the latter combines different datasets for a given channel
using a clustering procedure, to determine the optimal bin width for each channel starting from
datasets with different binnings [40]. Both groups include systematic uncertainties to properly
treat the tension between KLOE and BaBar results from 77~ final state (Figure 2.1.4(b)).
The merging procedure described in the White Paper of the Muon g — 2 Theory Initiative [5]
was aimed at determining a conservative estimate of a//V"~"9 from the dispersive approach:
this was motivated by the tension in the e™e™ experimental data pointed out before, as well as
by different approaches to combine the same input data by different groups. As it can be seen
in Figure 2.1.4(b), a recent measurement of the ete™ — 77~ cross section with the CMD-
3 detector was significantly larger than the value obtained from previous measurements [7],
hence the theoretical prediction that uses it as an input to HVP is in closer agreement with
the experimental measurement of a,,.

Lattice QCD calculation of a;/V" —LO

A different approach can be used to determine the HVP-LO contribution to a, instead of the
dispersive relation in Equation (2.1.11), which is lattice QCD, based on computing observables
over a discrete number of points in space-time, and extrapolating the continuum limit when the
spacing becomes infinitesimal. The following description of this method is taken from Ref. [41]
and follows Ref. [5], which reviews it in detail.

Lattice QCD evaluations of af VP=LO are based on the determination of the two-point correlator
of the electromagnetic current j,(x):

Cun(®) = (Ju(2) ,(0)), Ju(x) = fz_f: Qs () s () (2.1.12)

where the subscript f labels the quark flavours, Ny and )y being the number of flavours and
the flavour electric charge in units of the electron charge respectively.
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Traditionally, the vacuum polarization tensor is introduced by means of a Fourier transform on
the two-point correlator:

I1,,(Q) = /d%eiQ"”C’W(:c) (2.1.13)

where @) is the four-momentum transfer. This allows to compute aﬁ[ VP=LO through an integra-
tion over Q? [42, 43]:

a0 = (4) [T a2 2114
where T1(Q?) = 472[I1(0) — I1(Q?)] and

20273(1 — 027 Q2_ /Q4+4m2Q2
f(@*) = m”?Jr m(ZQQ; ) Z=- T . (2.1.15)

Latest lattice evaluations are based on the so-called time-momentum representation [44], which
modifies Equation (2.1.14) by introducing an alternative expression of the vacuum polarization:

N o0 4
[(Q* = 47r2/ dzoC(x) [xg — — sin® <Qx“>1 (2.1.16)
0 Q 2
Here, the integration on the spatial indices is already performed, hence the correlator only
depends on the Euclidean time x:

O(x0) = —; i / Oy () (2.1.17)

This leads to a new formulation of af VP-LO.

afVP_LO = (:)2 /OOO dxoC (o) f (20) (2.1.18)

where the new kernel function f(z) is the expression in Equation (2.1.19), and can be both
evaluated numerically or expressed in terms of a modified Bessel function of the second kind
and Meijer’s G function [45].

f(z) = 87 /OOO Cf:uf(w2) [wag — 4 sin® <w2$0)

Lattice calculations are performed by replacing integrals over the full phase space with sums
over finite lattice volumes. Extrapolation to continuum, namely to lattice spacings a — 0, and
to infinite volumes are therefore required to obtain the desired quantities. Systematic errors
due to the extrapolation are a major source of uncertainty, and must be managed carefully.

(2.1.19)

White Paper 2020 (WP2020) prediction

Before the Fermilab Run-1 result, the Theory Initiative recommended a value for the theoretical
prediction for a, in the 2020 White Paper [5]. Figure 2.1.5 shows a recent comparison of the
theoretical evaluations of a//""~ obtained with dispersive (grey band) and lattice (blue band)
approaches: in both cases, all results below the horizontal dashed line were taken into account

for the White Paper; the black square shows the recommended value, which is also reported in
Table 2.1.1.
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Figure 2.1.5: From Ref. [47]. Comparison of theoretical predictions of a, with the exper-
imental value of 2022 (combination of BNL and first results from FNAL) [1]. Each data
point represents a different evaluation of leading order HVP, to which the remaining SM
contributions, as given in Ref. [5], have been added. Red squares show data-driven results;
filled blue circles indicate lattice QCD calculations that were taken into account in the WP20
lattice average, while the open ones show results published after the deadline for inclusion in
that average; the purple triangle gives a hybrid of the two approaches. The SM prediction
of Ref. [5] is shown as the black square and grey band.

Updates to HVP-LO since the WP2020 recommendation

In 2021, using the lattice QCD approach, the BMW collaboration presented the first evaluation
of allVF~FO with a sub-percent uncertainty, which was in a 2.20 tension with the prediction
from the dispersive approach [6].

In 2018, the RBC/UKQCD collaboration had proposed [46] to separate the integral in Equation
(2.1.18) into three different time regions, in order to facilitate the comparison of new results

between different lattice groups:

2 roo ~
afVP*LOv 5D <j> /0 dxoC (o) f(z0) [1 — O(x0, to, A)]
2 oo ~
a O = <i> /0 dwoC (o) f (w0) [O(x0, o, A) — O(x0, 11, A)] (2.1.20)
2 roo ~
gHVP—LO, LD _ (j) [ daoC(0) F(0)0 a0, 11, A)
1+ tanh[(t — t')/A]

ot A) =

The function O(¢,t', A) allows to define smooth windows in the Euclidean time with width A,
while the parameters t; and t; are chosen to separate short and long distance effects. A conve-
nient choice of these parameters is A = 0.15fm, ¢y = 0.4 fm, and ¢; = 1fm [5]. Corrections due
to systematic effects and extrapolation to the continuum and infinite-volume can be applied sep-
arately to each window. The windows are designed such that the intermediate one of/VF=£0, W
is less sensitive to discretization errors than the short distance one a?VF=L0: 9P a5 well as less
sensitive to statistical fluctuations and other long distance effects than af VP=LO, LD Tt follows
that aff VP=LO, W can be computed with good precision and reduced systematics, thus being
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an effective intermediate quantity for cross-checks between different calculations. Furthermore,
the two-point correlator can be expressed as a function of the hadronic ratio R(s), enabling a
direct comparison between lattice QCD and dispersive method [46]. The intermediate window
corresponds to energies /s 1+ 2GeV in the time-like approach, as shown in Figure 2.1.6(a).
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(a) From Ref. [48] (b) From Ref. [49]

Figure 2.1.6: (a): weight functions for the three windows, defined by Equation (2.1.20), in
the /s space. (b): recent comparison of af VP=LO, W yegults from lattice QCD calculations,
and estimate based on the dispersive approach in the orange band.

Figure 2.1.6(b) shows recent evaluations of the intermediate window along with a calculation
based on the dispersive approach. Latest lattice results reached a precision comparable with
BMW evaluation, and are in good agreement with each other.

As already mentioned, in early 2023 the CMD-3 collaboration released results on the ete™ —
7w~ cross section that disagree with all previous measurements used in the 2020 White Paper,
and that, when taken individually as an input to the HVP, are less in tension with the experi-
mental value [7]. Many efforts are ongoing in order to clarify the origin of all the discrepancies
in the theoretical calculation.

This was the situation in the a, theoretical scenario at the time of the Run-2/3 publication in
August 2023. In this context, the future MUonE experiment, described in Section 2.3.1, will
provide a third independent method to evaluate a7VF~1° and could contribute in solving the
tensions and consolidate the theoretical prediction of aﬁ[ VP-LO

2.2 Examples of possible Beyond the SM contributions

As it can be seen from Table 2.1.1, the difference between the latest experimental value for a,, [3]
and the recommendation for the theoretical prediction from the Theory Initiative (WP2020 [5])
is equal to:

at? — a = (249 £48) - 107" (2.2.1)

corresponding to a ~ 5.1 ¢ discrepancy; since the previous experiment at BNL, the deviation
between experiment and theory has been studied extensively in the literature and many mod-
els Beyond the Standard Model (BSM) that can contribute to a, have been considered. The
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constant search for BSM is motivated by the failure of the SM to explain some fundamental
facts: e.g., the asymmetry between matter and antimatter in the Universe, the presence of dark
matter and dark energy, or the non-zero mass of neutrinos; it also cannot provide a complete
theory that includes the force of gravity. Measuring the muon magnetic anomaly at high preci-
sion is a good way to probe for new physics, and at the same time it can strengthen constraints
on otherwise plausible SM extensions: the a, observable is CP-conserving, flavour conserving,
loop induced and chirality flipping [50], and these properties can highly constrain BSM models,
together with precision observables and results from collider and dark matter searches. The cur-
rent discrepancy between theory and experiment could support several scenarios, for instance:
muon compositeness, supersymmetric particles, coupling to axion-like particles, or rare decays
that do not conserve the lepton family number, such as y= — ye~. A thorough compilation of
models is found in Ref. [50]: they are grouped into minimal 1-, 2- and 3-field extensions of the
SM, and in the Minimal Supersymmetric Standard Model. The latter is a well-motivated and
promising extension of the SM, which could explain EW naturalness and dark matter as the
lighest supersymmetric particle, but which is also highly constrained by LHC and dark matter
searches. Possible 1-field extensions are dark photons and dark Z, or two-Higgs doublet models,
or scalar leptoquarks. Leptoquarks would be colour-triplet bosons that carry both baryon and
lepton numbers: their capability to address several anomalies simultaneously make them good
candidates for new physics BSM. For instance, the CDF' collaboration has recently published
the world’s most precise direct measurement of the W mass, which presents a ~ 7 ¢ tension
with the SM prediction [51]. One could explore the possibility that the W mass and the muon
g — 2 anomalies actually stem from uncertainties in the common hadronic contributions. By
performing EW fits in which hadronic contributions are allowed to float, Ref. [52] shows that
adjustments that alleviate the CDF tension would worsen the g — 2 discrepancy, and vice versa.
Instead, a leptoquark extension of the SM could explain both at the same time.

Although the main goal of the E989 experiment at Fermilab is to measure the magnetic anomaly
of the muon at a precision of 0.14 ppm, there are a few BSM possibilities that we are pursuing in
our data: CPT- and Lorentz-Violation [53], direct dark matter search [54], and muon Electric
Dipole Moment (which will be explained in more detail in Section 2.2.2). For these searches,
we expect to have results in the near future.

2.2.1 Dark photon

A possible BSM scenario involves a hypothetical particle called “dark photon”, which would
be a relatively light vector boson from an extra U(1) gauge group in the dark matter sector.
The assumptions are that it interacts with ordinary matter through a mixing with the ordinary
photon, where the strength of the interaction is governed by a kinetic mixing parameter €. The
contribution to the muon magnetic anomaly would be Aa;‘/ [55]:

22(1 — 2)?
1 —2)24 a2z

AaA,_352F(mA//mM), F(m):/oldz(

ko or

(2.2.2)

ma being the dark photon mass and F(z) a function that monotonously decreases from 1,
when my << my, to 0, when my — +oo, with a 2mi/3m?4, dependence. Searches for a dark
photon were originally motivated by cosmology, and recently the Atomki pair spectrometer
has observed an anomaly in ®Be* decay [56] which could be explained by the presence of dark
photons of mass 17 MeV /c? [57].

However, many experimental results have excluded the € and m 4 parameters that can explain
the muon g — 2 discrepancy, in the assumption that the dark photon exhibits exclusively visible
or invisible decays [58, 59]. Figure 2.2.1 shows the exclusion plots with the dark photon mass
on the x-axis and the kinetic mixing parameter on the y-axis, from different experiments or
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(b) Indirect dark photon searches:
(a) Limits reported in Ref. [58] for dark NA64 90% C.L. exclusion region, con-
photon decays to visible final states, from straints from the E787 and E949, BaBar
collider and beam-dump experiments, en- and NA62 experiments, and favored
ergy losses in supernovae and electron g—2. area for a, (from Ref. [59]).

Figure 2.2.1: Existing limits on dark photon searches in the (m 4/, €) plane.

from indirect limits such as the electron g — 2. The experimental results have excluded the
possibility that the dark photon could explain the discrepancy in the a, anomaly, assuming
its decays are exclusively visible (SM leptons) or invisible (e.g. dark matter). Recently, the
proposal for dark photon as a solution has been revisited, in the hypothesis that its decays are
semivisible [60]. It was shown that, in some cases, this scenario no longer excludes large kinetic
mixing parameters that could explain the discrepancy in the muon anomaly, and it reopens a
window in parameter space for dark photon with exciting discovery prospects.

2.2.2 Muon Electric Dipole Moment (EDM)

For fundamental, point-like particles, an electric dipole moment d has never been measured: the
current experimental limit for muons is d, 1.8 - 107" ecm with 95% C.L. from the analysis
at the BNL g — 2 experiment [61]. The SM predicts values for EDMs that are far below
foreseeable experimental sensitivities. A non-zero EDM for a particle in a non-degenerate state
would violate both parity (P) and time reversal (T) symmetries; by invoking the CPT-theorem,
T violation implies CP violation, which has never been observed in the leptonic sector of the
SM but only in the hadronic sector related to the complex phase of the CKM mixing matrix. If
a small d,, were present, the anomalous spin precession frequency of muons in a magnetic field
would be modified, and the variation would be equal to [62]:

| 1

AG, = —2d,“F N B - 2d, (2.2.3)
which in general has a different direction than &, in Equation (1.3.9), so it also tilts the spin
precession plane. Typically, the E-field effect is negligible compared to the B-field, so only the
radial component of the muon’s spin precesses due to EDM. The EDM term of the w, precession
will thus be perpendicular to the a, term, and, since we measure |J,|, Equation (1.3.7) will
become:

31



CHAPTER 2. THEORETICAL CALCULATION OF a,

e = B\/(T‘Z%)2 4 (20%)2 (2.2.4)

If the discrepancy in a, could be explained by an increase in w, due to the muon electric dipole
moment, this would require (using the Run-2/3 result for a,, and for the discrepancy with respect
to the White Paper prediction) a value of d,, ~ 2.3-107'% e cm, which is already excluded by the
BNL upper bound. In Ref. [63] it is shown how the lepton family violation process u~ — e~
could explain both the discrepancy on a, and the muon EDM, related respectively to the real
and imaginary parts of an effective Lagrangian coupling. A model-independent upper bound
on the muon’s electric dipole moment is d, 3 -107?*ecm, which is still below the current
bound from the BNL experiment.

The Muon g — 2 experiments E989 at FNAL and E821 at BNL are not the ideal ones to probe
for muon EDM, since the effect of the B-field dominates on &, and reduces the sensitivity on
d,. A non-zero EDM causes a tilt in the precession plane (Equation (2.2.3)) and therefore an
oscillation in the vertical angle of decay positrons, which is measured at Fermilab by tracker
detectors. The first result based on the dataset collected in 2018 is expected to be published
soon. With the full statistics collected by the E989 experiment, the goal sensitivity for muon
EDM will be 1072 e cm, two order of magnitude lower than in BNL [64].

A proposal was made for an experiment [65] that uses the Muon g — 2 superconducting ring,
where the effect of the magnetic anomaly on spin precession is removed, therefore maximizing
the sensitivity on EDM up to ~ 1072*ecm. This is the so-called “frozen-spin” technique. Two
other experiments, under construction, will aim to measure the muon EDM with improved
sensitivities. The first one is the J-PARC muon g — 2/EDM experiment at KEK, Japan (see
Section 3.5). It will use a 300 MeV /¢ low-emittance muon beam, prepared by reaccelerating
thermal-energy muons created from laser-resonant ionization of muonium atoms, instead of the
3 GeV /c muon beam of the E989 experiment: this will allow for the use of a compact magnetic
storage ring with very weak magnetic focusing. The experiment at J-PARC aims to measure the
muon magnetic anomaly with a statistical uncertainty of 450 ppb (and negligible systematics),
and at the same time the muon EDM with a sensitivity of ~ 1.5-1072! ecm [66]. The second
experiment is in construction at PSI and aims to measure the electric dipole moment of the
muon based on the frozen-spin technique. Muons with a momentum of 125 MeV /¢ will pass
through a large magnetic field of 3T and experience, in their rest frame, the high electric field
of E = 1GV/m. With the current muon fluxes at the pE1 beamline, the search for muon
EDM will have a sensitivity  6-10723ecm. In the future, thanks to improvements of the PSI
beamline, a cold muon source, and a reacceleration scheme, the muon beam will have an even
larger intensity allowing for a greater sensitivity of the muon EDM search. More details about
the experimental procedure and future plans are reported in the letter of intent in Ref. [67].

2.3 Prospects for the theoretical prediction

The current status of the theoretical prediction of a, and the future efforts on understanding
both the “old” g—2 puzzle (the discrepancy between the White Paper prediction and the exper-
imental measurement) and the “new” g — 2 puzzle [68] (which includes the discrepancy between
most data-driven evaluations of and lattice calculations) are summarized in https://muon-gm2-
theory.illinois.edu. New analyses of the hadronic cross section of ete™ are ongoing for several
experiments: BaBar, SND, BESIII, KLOE and Belle II. There is an ongoing effort in the lattice
community to consolidate the HVP prediction with a precision comparable with the one from
BMW and from the data-driven approach. Radiative corrections and Monte Carlo generators
are being scrutinized, in particular from the dominant channel ete™ — 77~ (). All this effort
should help to clarify the situation in the next years.
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2.3.1 The MUonE experiment
HVP-LO

The MUonE experiment at CERN proposes a novel approach to measure a;; , competitive
and independent of the existing ones [69]. It will be based on the high-precision measurement of
the running of the electromagnetic coupling constant in the space-like region, via p — e elastic
scattering. The measurement will be performed by scattering a 160 GeV positively charged
muon beam, currently available at CERN M2 beamline, on the atomic electrons of a low-Z
fixed target such as beryllium or carbon.

The new MUonE method is based on the direct measurement of the hadronic contribution to
the running of the electromagnetic coupling constant (Aaya.q) in the space-like region [70]. The
following relation will be used to extract a"” ~LO from the running Aopaq:

1 2,,,2
g1vP-10 _ & / (1 — ) Aapaa [t(z)] dz, )= 2" < (2.3.1)
’ 7 Jo x—1

where t(z) is the space-like squared four-momentum transfer [42]. The experimental apparatus
consists of a repetition of 40 identical stations, each one composed of a 15mm thick target,
followed by a tracking system that measures the scattering angles with very high precision.
A CAD drawing of a single MUonE station is shown in Figure 2.3.1: the tracking system is
composed of three pairs of silicon strip sensors that measure the transverse coordinates on both
the x-axis and the y-axis. The tilt and orientation of the three pairs are chosen to maximize
the sensors’ resolution [41, 71].

Figure 2.3.1: CAD drawing of a MUonkE station, which consists of three pairs of silicon
strip sensors and a fixed beryllium target [41, 71].

A test run was conducted at the CERN M2 beamline in August-September 2023, on a prototype
detector composed of two tracking stations and a calorimeter. This test showed for the first time
the ability of the detector to sustain 160 GeV muons with a beam intensity of 4 - 10" muons/s.
Results of the test run will be included in an experiment proposal which will be submitted
to CERN in 2024, with the prospect of performing a first measurement of aﬁl VP=LO in 2025
instrumenting more tracking stations with respect to the test run. The full detector construction
is expected to take place during the CERN Long Shutdown 3 of 2026-2028. The final run with
the complete detector is foreseen for the following years, and it will measure a//V"~*9 with a
comparable uncertainty to the data-driven approach: ~ 0.3% of statistical uncertainty, and a

systematic uncertainty of similar size [41, 71].
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Chapter 3

The history of muon g — 2 experiments

3.1 Early muon experiments

In 1956, Lee and Yang suggested several experiments that could provide evidence for parity
(P) violation in weak interactions [72], as well as charge conjugation (C) and time reversal (T)
violations: in the same year, Madame Wu measured P violation studying the 8 decay of ®°Co
atoms [73]. As explained in Section 1.3.3, P violation allows to produce polarized muons from
pion decay, and this feature was exploited since the very first experiments that measured the
muon g-factor.

In 1957, Garwin, Lederman and Weinrich carried out the first experiment to measure the muon
g-factor [74]: they used a positively charged pion beam of 85 MeV /¢ from the Nevis cyclotron
(Columbia University) stopped in a carbon absorber, and a carbon target to stop the polarized
muons emitted from pion decay. A scintillator telescope was used to count the positrons emitted
from muon decay in the carbon target, which was immersed in a magnetic field that made the
muon spin vector precess over time at the Larmor precession frequency. Increasing the intensity
of the magnetic field would cause higher spin precession frequency for the muon stopped in the
carbon target, before it decayed.
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Figure 3.1.1: From Ref. [74]. (a) Experimental setup at Nevis. (b) Number of positron
counts, normalized relatively to B = 0, as a function of the magnetizing current.

Figure 3.1.1 shows the experimental arrangement at Nevis and the resulting plot of counts as
a function of the magnetic field applied: the number of detected positrons changes according
to the precession angle #, so the points are fitted assuming a positron angular distribution of
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1 + acosf, with detector resolutions folded in. This experiment showed the failure of P and
C conservation in muon decay (a = —0.33 £+ 0.03, whereas parity conservation would have
implied a = 0), and it also provided the first measurement of the muon g-factor with a 10%
precision, which wasn’t enough to observe the magnetic anomaly.

Over the course of the following five years, several other groups improved the experimental
result on the muon g-factor performing “Larmor precession” type experiments on stopped
muons, starting from Cassels and collaborators at the University of Liverpool cyclotron [75],
who lowered down the experimental precision to ~ 1%. The experiment consisted in stopping
polarized muons in Cu or C targets, placed inside of an external magnetic field, and counting
decay positrons with a technique which was the beginning of what we call, today, a “time
to digital” converter [76]. In 1960, Garwin and collaborators were able to measure, for the
first time, a value of a, different from 0 [77]: the lower limit on g, was set to 2(1.00122 +
0.00008), in agreement with Schwinger’s prediction (see Appendix A). In 1963, the most precise
experiment with Garwin’s technique was carried out by Hutchinson and collaborators [78]. In
this experiment, the homogeneous magnetic field in which muons were stopped was measured
via nuclear magnetic resonance (NMR) in terms of the Larmor precession frequency of protons
in a polarized water sample (w,), and Hutchinson had the foresight to express his result as the
ratio A with a 10 ppm precision:

A= e 3 18338(4) (3.1.1)

Wp  Hp
The indirect measurement of g, from A was limited by the 100 ppm precision on the muon
mass from x rays experiments. Hutchinson combined the measurement of A with the 1961’s
measurement of g, from the CERN I experiment (see Section 3.2.1) and with the most recent
measurement of g, of the time [79], in order to lower down the precision on the muon mass to
13 ppm. From Equations (1.1.1) and (1.3.3), one obtains:

me B ge (wu/wp)

which yielded (m,/m.) = 206.765 £ 0.003.

My Gy (We/wp) (3.1.2)

3.2 The CERN experiments

Starting from 1961, a series of experiments at CERN improved the precision on the muon
magnetic anomaly a, with the aim to search for a breakdown of QED: in some cases some
differences arose between the theoretical prediction and the experimental results, and were
later explained. The underlying idea of these experiments was similar to the early ones: a
beam of polarized muons was produced by pion decay and immersed in an external magnetic
dipole; the time distribution of the muon decay products (electrons or positrons) were measured
in order to extract a,. In the following Sections, we will highlight the improvements that each
new experiment brought to this technique.

3.2.1 CERNI

CERN I was the first experiment carried out in the Swiss laboratory of CERN: protons were
accelerated in the 600-MeV synchro-cyclotron, scattered against a beryllium target and pro-
duced pions; a positively charged muon beam was thus produced from pion decays. The main
goal was to reach an experimental precision of 1% on a,, because, at the time, the theoretical
prediction had reached the QED second order [80]:
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In this experiment, a forward polarized muon beam was injected into a 6 m long magnet with
a magnetic field of 1.5T: as we have shown in Section 1.3.2, in this condition the muon spin
precesses (1 + 7ya,) times as fast as the muon momentum, thus increasing the angle between
spin and momentum linearly with time and proportionally to the magnetic anomaly and to the
magnetic field.
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Figure 3.2.1: From Ref. [80]. (a) Overview of the CERN I experimental setup: a pu* beam
was injected in the dipole magnet and the coincidence of 1, 2 and 3 counters defined the
injection signal; ejected muons stopped in target T, where the stop signal was a coincidence
of counters 4, 5, 6, 6’ and a veto on counter 7; after the stop signal, the coincidence of 6 — 6
or 7 — 7 defined forward and backward emitted positrons. (b) Measured distributions as a
function of storage time: curve A is the number of muons that stopped and decayed; curve B
is the forward-backward positron asymmetry, with the best fit according to Equation (3.2.2).

Figure 3.2.1(a) shows the muon path in the magnet: the magnetic field had a small gradient
that caused the muon circular orbits to drift slowly towards the end of the magnet; the gradient
could be adjusted in order to vary the step size of the orbital advancement; a coincidence of
three scintillation counters was used to define the incident muon signal. At the end of the
magnet, a large magnetic gradient ejected the muons from the target, which were then stopped
in a methylene-iodide target and the emitted positrons in the backward and forward directions
were counted by telescopes. The muon spin direction was flipped by 4 90° in successive runs, by
means of a pulsed vertical magnetic field produced in the first microsecond after the muon arrival
on target: this way, forward (¢;") and backward (¢;) emitted positrons were counted by the same
pair of telescope counters, instead of using two different telescopes with different efficiencies.
Several storage times were measured in the range [2.0,6.5] ps, and each one corresponded to a
different channel in the electronics: for the first 50 channels the telescope 6 — 6" was used, for
the second 50 channels the telescope 7 — 7' was used instead. Given the forward and backward
counts ¢, and ¢, the asymmetry at storage time t,, was defined as:

4 = cr—c, Asi
" e sin (a, Bwcty,) (3.2.2)
with we the cyclotron frequency of the muon beam. Figure 3.2.1(b) shows the best fit on
CERN I data, which yielded a,, = 0.001145(22), thus a ~ 2% precision on a,. This preliminary
result was refined with new data collected in the following year, where the same basic technique
was employed but many improvements were incorporated to reach a new level of accuracy [81].
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The final CERN I result was:

a®P(CERNI) = 0.001162(5) — = 4300 ppm (3.2.3)

in agreement with the theoretical prediction. One of the limitations of this experiment was
that the muons decayed at rest, so their lifetime was ~ 2.2 s, which limited the measuring
period (equal to a few lifetimes), resulting in a small number of measured muon decays.

3.2.2 CERNII

The CERN II experiment brought many improvements from the first one: a storage ring with
5 m of diameter and a C-shape cross section was built; in the late 1950s, a brand new accelerator,
the PS (proton synchrotron), was implemented at CERN, which injected a 10.5GeV proton
beam into the storage ring, and made it collide against a target placed inside. Muons emitted
from pion decay had a momentum of 1.27GeV/c (so a v factor of ~ 12 that boosted the
muon lifetime in the lab frame) and were captured by a magnetic field of 1.7 T generated by
a series of 40 independent bending magnets. This experiment was limited by the inefficient
injection method: protons that did not hit the target and pions that had not decayed created
a large background (namely, the hadronic flash) and did not allow for an optimal initial muon
polarization; however, this limitation was made up for by the high luminosity of the PS and
the relativistic gamma-factor of ~ 12 which dilated the muon lifetime and allowed the muon
beam to precess in the ring for about ~ 50 cycles (around 4.4 ps), instead of only ~ 2 cycles at

CERN L

(a) (b)

Figure 3.2.2: From Ref. [82]. (a) Plan of 5-m diameter ring magnet: the proton beam
enters the yoke and hits a target inside a magnetic field. (b) Distribution of decay positron-
s/electrons as a function of time. Upper scale of time: curve A) goes from 20 ps to 45 ps,
curve B) from 65 ps to 90 ps, curve C) from 105 ps to 130 ps. Lower scale of time: the rotation
frequency of the muon at early times.

Figure 3.2.2(a) shows an overview of the CERN II experimental setup [82]: the data acquisition
was made by 6 lead-scintillator counters placed in a quarter of the ring in the inner radius, which
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counted the decay positrons that had a lower momentum than stored muons, and therefore bent
radially inwards. The detectors recorded the times of arrival of high-energy decay positrons,
which were the ones that carried the muon spin information at the time of decay (as explained
in Section 1.3.3). Equation (14) in Ref. [82] was used to perform a maximum-likelihood fit on
the arrival time spectrum:

N(t) _ Noe—t/T (1 + Ee—t/Te> [1 — Acos (wat + gp)] + Bg (324)

where the Ny, 7, A, w, and ¢ parameters have similar meanings to the ones in Equation (1.3.21);
E and 7, were introduced to take into account the extra-counts at early times, possibly due to
perturbations of the electronics by the hadronic flash, or due to extra particles that entered the
ring and scattered away over time; B, was added to include a possible source of background.
The optimal energy threshold to minimize the statistical uncertainty on a, was found to be
around 780 MeV, which corresponds to a value of y;, =~ 0.6 as in Equation (1.3.22). The positron
counts, fitted with Equation (3.2.4) in a time range from 20 ps to 189 ps, are shown in Figure
3.2.2(b). Four NMR probes, not shown in Figure 3.2.2(a), were periodically inserted into the
storage region to measure the magnetic field. By taking the ratio of w, and B-field, according
to Equation (1.3.7), the final result for the muon anomaly from CERN II was [82]:

a®P(CERNII) = 0.00116616(31) — %270 ppm (3.2.5)

which differed of almost 2 standard deviations from the theoretical value known in 1968, the
year when the preliminary report was published [83]. This level of discrepancy was resolved by
Aldins and collaborators [84], who examined the sixth-order QED contributions (proportional

3
to (%) ) from light-by-light scattering, which was initially thought to be negligible but turned
out to be a ~ 200 ppm contribution instead. The theoretical value determined in 1969 was:

at(1969) = 0.00116587(3) — = 25 ppm (3.2.6)

essentially eliminating the discrepancy between theory and experiment mentioned above.

3.2.3 CERN III

CERN III was the third and last experiment of the CERN series, completed in 1976; it brought
a series of important improvements, both from the engineering and the physics point of view.

Figure 3.2.3(a) shows the experimental apparatus: a storage ring with a diameter of 14 m was
built and immersed in a 1.5T dipole magnet field; rather than injecting the protons into the
ring, the beam target was moved outside of the ring so that the hadronic flash could be greatly
reduced. This meant that pions were transported to the ring through a beamline, which selected
a narrow range of pion momenta and therefore increased the initial polarization of muons from
pion decay; an inflector was used to cancel the storage ring magnetic field so that the beam
deflection entering the ring was minimal. Electric quadrupoles focused the muon beam in the
vertical direction, whereas the dipole magnet provided a weak focusing along the horizontal
axis (in atomic physics, this is known as a “Penning trap”). 24 lead-scintillator shower counters
were placed symmetrically around the inside of the ring to measure the arrival time and the
energy of the positrons. The so-called “magic” momentum, p, = 3.094 GeV /c, was chosen in
order to cancel the effect of the electric field in the anomalous precession frequency (as discussed
in Section 1.3.2): muons boosted with v = 29.3 have a dilated lifetime of 64.4 s, which meant
that the storage time in CERN III could be extended to 655.35 s, allowing for more muons
and thus increasing the statistical precision with respect to CERN II. The maximum-likelihood
fit on data, shown in Figure 3.2.3(b), was performed with the function in Equation (3.2.4), the
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Figure 3.2.3: From Ref. [85]. (a) Overview on CERN III 14-m diameter 40-magnet ring.
On the top right the C-shaped yoke is shown, the open side faced the center of the ring; on
the bottom right the cross section of the vacuum chamber and the electric quadrupoles are
shown. (b) Time distribution of decay electrons from a portion of CERN III data (the first
80 g — 2 cycles are shown).

same as CERN II.

All the improvements of CERN III allowed to obtain an unprecedented experimental precision
on a,. Both CERN II and CERN III measured the magnetic anomaly for positive and neg-
ative muons, which required to reverse the polarities of all magnetic and electric fields of the
experiment. With a precision of the order of O(10) ppm, the final results at CERN III were [85]:

a®P (CERNIII) = 0.001165911(11) — %9 ppm
a”®(CERNTII) = 0.001165937(12) — + 10 ppm (3.2.7)
aS?(CERNIIT) = 0.001165924(8.5) — = 7.3 ppm

where the error was completely dominated by statistics. Having measured the anomaly for
positive and negative muons with such precision, CERN III could perform a verification of the
CPT theorem, which is assumed valid in the Standard Model and implies that a,+ = a,-. This
equality was verified within the 95% confidence limits:

Gt — T ¢ [—50,6] x 107 at 95% CL (3.2.8)
Ay

The precision obtained at CERN III was enough to be sensitive to 3-loop order QED and, most

importantly, to the hadronic contribution (the HVP term of the anomaly, explained in Section
2.1.3). The theoretical prediction at the time was:

a(1977) = 0.001165921(13) — + 11 ppm (3.2.9)

in agreement with the experimental value, with a similar level of precision.
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3.3 The E821 experiment at BNL

The next experiment after CERN III was E821 at Brookhaven National Laboratory (BNL):
one of the goals was to reach enough sensitivity to observe contributions from the electroweak
sector, or search for New Physics such as supersymmetry. In 1984, Kinoshita and collabora-
tors [29] presented the results of complete QED calculations up to the fourth power of (a/7);
furthermore, they reduced the error on the hadronic sector by improvements on the R(s) func-
tion defined in Section 2.1.3, for the data-driven approach that uses the experimental results
from e e~ colliders. In response to the tremendous improvement in the theoretical prediction,
Yale Professor Vernon Hughes, and a group of physicists that included many of the original
CERN collaborators, initiated a new project for a Muon g — 2 experiment to be performed
at the Alternating Gradient Synchrotron (AGS) at BNL, and established the design goal to
measure a, at 0.35ppm [86]. Figure 3.3.1 shows a top view of the E821 muon storage ring.
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Figure 3.3.1: From Ref. [87]. Muons entered the back of the storage ring through the
field-free channel of the inflector; 3 kickers provided a rapid current pulse which gave the
muon bunch a transverse 10mrad kick; 4 electrostatic quadrupoles vertically focused the
beam; the 24 regularly spaced calorimeters detected the electrons from muon decay.

The 7.3 ppm error in the CERN III experiment was dominated by a statistical uncertainty of
7ppm, whereas the systematic uncertainty was around 2 ppm, almost entirely due to limited
knowledge of the magnetic field. At BNL, the plan was to measure the precession frequency w,
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at 0.3 ppm, the magnetic field at 0.1 ppm, and keep the systematic uncertainties under 0.1 ppm.

The first goal was to produce a higher rate of muons, reaching a statistics 20 times as large as
for CERN III: this was possible because the muon flux could be increased by approximately a
factor of 400 thanks to the high luminosity of AGS.

A second improvement was a better way of injection: in CERN III, pions were injected in
the ring and completed one orbit before impacting on the exterior wall of the inflector, thus
muons emitted by pions were limited in number; in BNL, pions were allowed to decay in a
long (~ 80m) channel upstream of the storage ring, and then the muon beam was directly
injected in the ring. In this way, a much larger number of muons was stored per AGS cycle,
that delivered pulses of 7 x 10'? protons with 24 GeV/c momentum. In order to inject muons in
the ideal orbit after the inflector, and to avoid interference between the muon beam and pions,
a system of 3 pulsed electromagnetic kickers was implemented.

Another important improvement was that the storage ring of 7m of diameter was composed of
three continuously wound superconductors, instead of the 40 independent bending magnets of
CERN III, which allowed the magnetic field to be much more uniform.

Finally, the 1.4513 T magnetic field was measured using pulsed NMR techniques: 17 NMR
probes mounted inside a trolley were pulled through the storage ring to measure the field
inside; in between trolley runs, a system of 378 fixed probes (identical to the trolley ones in
design and shape), placed above and below the storage-ring volume in the walls of the vacuum
chamber, continuously monitored the magnetic field during data taking [2].
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Figure 3.3.2: Time spectrum of positrons with energy above 2 GeV from 1999 data [88].

Figure 3.3.2 shows the decay positron counts from 1999 campaign as a function of time: positron
signals in the lead-scintillating fiber electromagnetic calorimeters were recorded by waveform
digitizers and stored for later analysis. The fit on data was performed with the eight-parameter
function in Equation (3.2.4) as for CERN III, corrected for beam dynamics effects such as muon
losses as function of time and coherent betatron oscillations; the storage time was increased
to 700 ps thanks to all the improvements applied in the new experiment. Data taking started
in 1997 and continued until 2000, when the final precision of 0.7 ppm was reached for positive
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muons; in 2001, the experiment switched to negative muons, which required to invert the

polarities of the storage ring, and some optimizations to maximize the flux of stored muons.
The final results for BNL were [2]:

a®P(BNL, 2000) = 0.0011659204(9) — % 0.73 ppm
a®(BNL, 2001) = 0.0011659214(9) — % 0.72 ppm (3.3.1)
a®(BNL, 2006) = 0.00116592080(63) — % 0.54 ppm

The final statistical and systematic uncertainties were 0.46 ppm and 0.28 ppm, respectively.
Like CERN III, the E821 experiment served as a precise verification of the CPT theorem:
the ratio R = w,/w,, where w, is the proton precession frequency from the magnetic field
calibration, should be the same for p* and p~. From the latest measurements at BNL, the
CPT test yielded [2]:

R, — R+ = 0.0037072083(26) — 0.0037072047(26) = 3.6 + 3.7 x 10~° (3.3.2)

in good agreement with the expectation from CPT invariance, which allowed to take the average
of a,+ and a,-.

At the time, the best theoretical estimation of a, included the QED fifth power of (a/7), and
the second order of EW and hadronic loops [2]. The difference between the experimental and
the theoretical values was:

ex th —11
a®(BNL, 2006) — a'" = 268.6(72.4) x 10 (3.3.3)

pointing out a non-negligible 3.7-standard deviation difference.

3.4 The E989 experiment at FNAL

In order to either confirm or disprove the discrepancy observed at BNL, a new experiment at
Fermilab was proposed in 2009 [89], where the accelerator complex was capable of delivering a
higher luminosity than the BNL AGS. The E821 superconducting magnetic ring was already
a sufficiently accurate device for an improved measurement, so in the summer of 2013 it was
moved from Brookhaven to Fermilab and relocated in the newly completed MC-1 building at
Fermilab with a stable floor and good temperature control [90]. The goal of the new Muon g —2
experiment at Fermilab is to measure the muon magnetic anomaly with a precision of 0.14 ppm,
by achieving statistical and systematic errors around 0.1 ppm (the Technical Design Report was
published in 2015 and can be found in Ref. [4]). A detailed description of the experimental
apparatus, as well as all the improvements in place to reduce the systematic effects, will be
provided in Chapter 4. The experimental technique is similar to the one of the CERN and
BNL experiments.

The Muon g — 2 collaboration released our first measurement of a, in April 2021, based on the
2018 data campaign (Run-1). In August 2023, we released our second result, based on 2019 and
2020 data campaigns (Run-2/3). The new measured values are consistent with the previous
BNL results [1, 3]:

aZXp(FNAL, 2021) = 0.00116592040(54) — + 0.46 ppm

3.4.1
a®P(FNAL, 2023) = 0.00116592057(25) — % 0.21 ppm (3:4.1)

The detailed description of these two results will be presented in Sections 7.1 and 7.2.
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Table 3.4.1 summarizes the history of g — 2 experiments: the development of the experimental
apparatus and method allowed the BNL experiment to achieve an impressive 14-fold improve-
ment in precision with respect to the last CERN results; the experiment at FNAL aims to
further improve this precision by a factor of ~ 4.

Experiment [Ref.] | Years of running | Particles a, x 101 Precision [ppm]|
CERN I [81] 1961 o 1162(5) x 10° 4300
CERN II [82] 1962-1968 wt, | 116616(31) x 103 270
CERN III [85] 1974-1976 pt, p 116592400(850) 7.3

BNL [2] 1997-2001 wt, o 116592080(63) 0.54
FNAL [3] 2018-2023 pt 116592055(24) 0.20
Average [3] 116592059(22) 0.19

Table 3.4.1: Values of experimental measurements for a, from CERN I to the latest results
at Fermilab. The value quoted for “FNAL” is the combination of the results from Run-1
and Run-2/3 data, in Equation (3.4.1).

3.5

A new experiment is under preparation at the J-PARC muon facility in Japan, aiming to
provide an independent measurement of a, and of the muon EDM (see Section 2.2.2) with a
completely new approach. Contrarily to the previous experiments, at J-PARC they will not
use muons at the “magic” momentum of ~ 3.09 GeV /c to cancel the influence of electric fields
t0 Wy, as in the last term of Equation (1.3.9); instead, the experiment will not use electric fields
at all, but it will use a technique that will not require to strongly focus the muon beam.

Future experiment E34 at J-PARC
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Figure 3.5.1: From Ref. [92]: overview of the J-PARC E34 experiment.
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As a first step, a positively charged muon beam will be stopped at a silica aerogel target, where
muonium, a bound state of e~ and pu*, will be produced; muonium atoms will be ionized by
laser excitation to produce room-temperature muons (~ 25meV); finally, a linac will accelerate
these muons to a momentum of ~ 300 MeV /¢, which will then be stored in a compact region
with a highly uniform (1 ppm local uniformity) magnetic field. The advantage of reaccelerating
thermal muons is that the produced beam has a factor of 1000 smaller transverse emittance
than “conventional” muon beams from pion decay; in addition, muon losses during storage time
and the pion background will be eliminated with this technique.

Figure 3.5.1 shows the schematic drawing of the E34 experiment at J-PARC. The muon beam
will be stored in the presence of a 3.0 T magnetic field, in a storage ring that is 20 times smaller
than the Fermilab one. The positrons from muon decay will be measured by a tracker detector
composed of 40 silicon strip sensors arranged radially.

The summary paper of TDR was published in May 2019 [66], and the first phase of data taking
after commissioning is expected to begin after 2027 [91] with an initial precision of about
0.45 ppm in a,, similar to that of BNL and of the Run-1 result from Fermilab. The goal in the
next phase of the J-PARC E34 experiment will be to measure a,, to a precision of 0.1 ppm [92],
similar to the goal at Fermilab. In addition, they will search for muon EDM with a sensitivity
of the order of 107?* ecm. As it can be seen from Equation (2.2.3), where the electric dipole d,,
term is perpendicular to the a, term in the &, expression, a muon EDM will produce muon spin
precession out of the horizontal plane that is defined by the ideal muon orbit, thus generating
vertical motion of the spin. At J-PARC, they will extract the EDM term from the oscillation
of the up and down asymmetry in the number of detected positrons over time. A major source
of systematic uncertainty on EDM is detector misalignment with respect to the plane of the
muon storage, which will be monitored with optical frequency comb technology. The estimated
systematic uncertainty is 0.36-1072* ecm. The effects of axial electric field and radial magnetic
field will be both less than 10724 e cm, thus negligibly small.
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Chapter 4

The Muon g — 2 experiment at
Fermilab

The new experiment E989 in operation at Fermi National Accelerator Laboratory (FNAL) aims
to measure the muon magnetic anomaly with a precision of 0.14 ppm (or, equivalently, 140 ppb),
a fourfold improvement in precision with respect to the previous E821 experiment at BNL. The
design error of 140 ppb is obtained by equal contributions of statistical and systematic errors
of 100 ppb [4]. This goal was chosen in order to bring down the significance of the discrepancy
between theory and experiment observed at BNL, from 3.7 ¢ to more than 6 ¢ assuming the
same central value, and provide a strong statistical evidence that new physics beyond the Stan-
dard Model contributes to a, at this level of precision.

The factor 4.6 of improvement in the statistical uncertainty from BNL required an event yield
of 21 times the positrons accumulated in the previous experiment. As of now, the Fermilab
experiment has collected 21.9 times the BNL statistics (see Section 5.1), thus surpassing the
design goal, and it has ended its sixth and final year of data taking. The goal of 100 ppb of
systematic uncertainty is split into a 70 ppb contribution from the anomalous precession fre-
quency w, analysis, and 70 ppb from the magnetic field measurement, expressed in terms of
wp, the Larmor precession frequency of protons in a water sample. The experimental technique
at Fermilab is the same as the one in CERN III and BNL experiments, which has proven to
be successful. While BNL greatly improved the CERN III apparatus - for example by directly
injecting muons into the storage ring, instead of pions - the real challenge of E989 was to in-
troduce a series of refinements in order to reduce the sources of systematic error. While the
superconducting storage ring was moved from Brookhaven and installed at the end of the FNAL
accelerator chain, a broad suite of new elements replaced or upgraded the old ones, for exam-
ple 3 powerful electromagnetic kickers, 24 segmented calorimeters whose crystals are matched
with silicon photomultipliers (SiPMs), and a state-of-the-art laser calibration system. More
details about all systems will be provided throughout this Chapter. In the 2023 publication,
the systematic contribution amounts to 70 ppb, divided into 47 ppb from w, and 52 ppb from
the magnetic field measurement, thus already surpassing the design goal for the final systematic
error [3]. Currently, the Fermilab experiment is performing final measurements of the magnetic
field and of transient magnetic fields without storing p* in the ring, which will further reduce
the associated sources of systematics. More details about the field measurements will be pro-
vided in Sections 4.7.4 and 4.7.5.

We will now review the improvements needed for E989 to achieve the experimental goal of
100 ppb on statistical and systematic error:

o The Fermilab beam complex is able to provide an annual delivery of ~ 2 - 10%° protons
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with an energy of 8 GeV, with a higher proton rate and less protons per bunch than E821%.
The average rate of muon injection was 12 Hz, compared to only 4.4 Hz at BNL.

A longer pion decay line (~ 2km) with respect to the BNL one (~ 80m). Only a negligible
number of undecayed pions were injected into the storage ring, almost 10° times better
than in the BNL experiment where a limiting factor was an enormous burst of neutrons
produced when pions intercepted materials.

o A high precision laser calibration system to continuously re-calibrate the detectors, to
precisely monitor gain fluctuations. At BNL, detector gain changes during muon storage
were the highest systematic error on w,: the aim of E989 was to reduce this contribution
by a factor 6, down to 20 ppb. In the latest publication, the gain systematic amounted
to 5ppb [3].

o Hardware and software improvements which reduce the rate of overlapping positron events
(pileup) and the related systematic. A new tracking system was also able to monitor the
muon distribution inside the storage ring, and precisely determine the beam dynamics
corrections to w, that arise, for example, from electric field and vertical oscillations.

» Edge shims, wedge shims, top hats and steel foils (the latter were new over BNL) were
placed around the ring in 2015-2016 to increase the magnetic field uniformity by a factor
of 3 with respect to BNL. A precise monitoring of B-field variations was possible thanks
to critical NMR probes placed in strategic locations and also to many trolley runs.

The E989 experiment at Fermilab used positively charged muons. Using ut brought several
advantages in the experimental setup [4]: for example, the vacuum could be more relaxed
(107% Torr are needed in the vacuum chamber for u*, whereas 1077 Torr for p~) and therefore
the high voltage could be turned on for longer times; in the negative polarity, quadrupoles would
require a very delicate and lengthy conditioning process, since low energy trapped electrons
could cause sparking; in the last BNL run, trapped electrons caused the side support insulators
to varnish, which required them to be cleaned and in some cases replaced for E989. The
largest relevant difference in a negative muon run between Fermilab and Brookhaven is that
the production ratio of u~/u™ was close to 1 at the 24 GeV AGS, but it is lower at the 8 GeV
Fermilab beam complex. The i~ yields were simulated: it was found that the rate of negative
muons arriving at the experiment would be roughly 60% that of positives [93].

As we approached the statistical goal of the experiment, we studied the possibility to take a
final run in the p~ configuration, which would have been a great opportunity for a CPT test
like BNL did, that the next experiment at J-PARC will not be able to perform. Unfortunately
this was inconsistent with critical accelerator commissioning work for the Mu2e experiment at
Fermilab. Ultimately, by running for our last year in the u* configuration, we were able to
collect data with a higher flux and bring the statistical uncertainty beyond the design goal,
closer to the achieved systematic uncertainty.

4.1 Production and injection of the muon beam

In this section, we will review the production of muon beam at Fermilab. Figure 4.1.1 is an
overview of the FNAL beam complex that produces muons for g — 2.

Tn the first 2 years of data taking we had a lower storage efficiency and lower running time, but the required
statistics was eventually reached in about 6 years of data taking.
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Figure 4.1.1: The Fermilab accelerator complex sends particle beams to numerous experi-
ments and research and development stations. Protons travel through a chain of accelerators.
They start at the Linac (linear accelerator) and head to the Booster, Recycler Ring and Main
Injector before heading to their final destinations. Link to the original picture.

The Fermilab muon campus beamline can deliver pulses of highly polarized muons to the stor-
age ring. This process starts with protons accelerated in the linear accelerator Linac up to
400 MeV and injected into the Booster, a 150-m diameter proton synchrotron that cycles at
15 Hz and accelerates protons to 8 GeV of kinetic energy. Protons then reach the Recycler
ring, a 3-km diameter ring where they are grouped into bunches with approximately 4 x 10'2
particles and a temporal width of ~ 120ns. Each bunch propagates to the AP0 target hall
(the antiproton production hall used by the Tevatron), where protons collide on a cylindrical
core made from a nickel-chromium-iron alloy called Inconel-600, encased by a thick layer of
beryllium to resist beam interaction stress. From the collision of protons on target, O(10%)
secondary particles are produced, of which many are pions. An electrostatic lithium lens fo-
cuses the secondary beam which then goes through a momentum filter that selects a beam
of particles at the so-called magic momentum of p = 3.094 GeV/c with 10% relative uncer-
tainty. Through a series of beamlines, the secondary beam enters the 500-m circumference
Delivery Ring, where two important steps for the preparation of pure muon bunches take place.
Firstly, a spatial separation is created between the pions (together with the emitted muons)
and protons, which are more massive and therefore have a smaller Lorentz boost factor given
the same momentum. Protons with the magic momentum have v ~ 3.3, whereas pions that
didn’t decay in the previous beamlines have v & 22 and, as mentioned in Section 1.3.2, muons
have v =~ 29.3: after each turn, protons fall 25 m behind muons; 4 turns are enough to create
a spatial separation of 100m and a time delay of ~ 200ns, so protons can be kicked away
cleanly in the abort channel, without disturbing the 120 ns muon bunch. Secondly, virtually
all pions decay in the Delivery Ring, since in 4 turns they travel for a total of 2km, which is
more than 11 times the decay length of about ~ 170 m. At this point, muon bunches travel
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towards the Muon g — 2 Storage ring: the final step is to use an inflector magnet to cancel
the fringe field of the ring itself, which otherwise would deflect the beam into the magnetic
iron and reduce injection efficiency; moreover, three kickers are needed to kick the beam of
about 11 mrad (corresponding to a magnetic field of ~ 22mT), since the trajectory at the exit
of the inflector does not match the closed orbit of the ring (more details are given in Section 4.2).

At the time of injection, the distribution of delivered muons has the required momentum of
3.094 Gev/c (center value), with a root mean square (RMS) value of 2%, and a temporal length
of 120ns. The typical muon injection efficiency is 2 x 10~7 per proton on target. Stored muons
have a maximum beam radius of 45 mm (which is the inner radius of collimators), an RMS
value of 0.5% on the momentum centered at the magic value, an orbit radius of 7.112m and
are observed for about 700 ps after injection. A bunch of muons produced in the beamline is
referred to as “fill”: in E989, fills can deliver O(10%) muons to the storage ring, with an average
rate of 11.4 Hz, and about 500 positrons? are detected and counted in wiggle plots. Figure 4.1.2
shows the bunch time structure of each cycle, which provides 2 groups of 8 fills each every 1.4s.

10 ms 197 ms 1063 ms

Cycle length 1.4

Figure 4.1.2: Bunch structure: two groups of eight fills each are delivered every 1.4s, which
means that the average rate is 11.4 fills per second. [4]

4.2 The ideal muon orbit

When the muon beam reaches the storage ring, it enters through a hole in the back-leg of the
magnet where a field-free region is created by the superconducting inflector magnet. This has
been a crucial step for injection efficiency since the CERN III experiment (Section 3.2.3): the
inflector facilitates injection of the muon beam into the storage ring by canceling the main
1.45'T dipole field of the ring, so that injected muons are not deflected by the field as they
enter the ring [94]. The exit of the inflector is placed 77 mm radially outwards from the center
of the storage ring, so the muon beam does not start on the ideal trajectory but on a slightly
different one: this is an issue that cannot be ignored, otherwise muons would impact against
the inflector after one turn.

To correct the initial muon orbit, a series of three pulsed kicker plates is displaced ~ 90° down-
stream of the inflector exit, to kick the muon beam. When it was designed, the kicker system
had to meet several strict requirements, for instance: it could not contain ferrite or any other
magnetic elements, because that would affect the uniformity of the magnetic field; it had to fit
where the old E821 kicker system was placed, which was a series of three consecutive 1.7 m long
spaces; the kicker pulses had to be shorter than ~ 149 ns, which was the cyclotron period; and,
finally, any eddy currents produced due to kicker pulses should be negligible after ~ 20 ns after
injection, or at least precisely corrected for in the final measurement. The kicker plates are
connected to a high voltage transformer that allows up to 70kV peak forward anode voltage,

2This was the maximum value that we achieved throughout the 6 years of running, but in general we
detected a lower number of positrons, around 350 per fill.
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15kA maximal current, a 300 kA /ps rate rise and maximum repetition rate of 2kHz [95].
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Figure 4.2.1: (a) Plan view of the g — 2 storage ring vacuum chamber and instrumentation:
the beam circulates clockwise, starting from the inflector at the top of the figure [96]. (b)
A cross section of the storage ring magnet featuring the components used to generate the
highly uniform 1.45 T magnetic field [97].

Figure 4.2.1 shows the plan and cross sectional views of the storage ring. It is the same one used
for E821 at BNL: three superconducting coils compose the 14 m diameter ring; the continuous
“C”-shaped magnet yoke is built from twelve 30° segments of iron, which are designed to elim-
inate the end effects in magnets. Holes in the yoke would also affect the B-field at 1 ppm level,
thus the only penetrations allowed are the back-leg through which the muon beam enters, and
cryogenic services and power supplies connected to the inflector magnet and to the outer radius
coil. The superconducting magnet operates at a 5170 A current, at a cryogenic temperature of
4.5 K, to produce a highly uniform field of 1.45T. Over long timescales, the magnetic field’s
stability is driven by thermal expansion and contraction of the magnet steel in response to
temperature changes in the experimental hall: the magnetic field is stabilized by feedback to
the magnet current supply from a set of NMR probes, described in Section 4.7.4, distributed
around the ring.

The anomalous precession frequency w, and the magnetic field are the main quantities to be
measured in the E989 experiment. The principle of both measurements will be presented in
Section 4.7. Recalling that p/e = B - R, where p = 3.094 GeV /c is the magic momentum, e is
the elementary charge and R the radius of the orbit, one obtains that a B-field of 1.4513 T puts
muons into a uniform circular motion with 7.112m of radius. The B-field directly affects the
spin precession frequency, the cyclotron frequency and w, - see Equations (1.3.8) and (1.3.9).
In the E989 experiment, muons precess around the storage ring with a period of 149.2ns,
which means about 4690 orbits during fill time of 700 ps; the anomalous precession frequency is
w, =~ 1.44rad/ps, which is equivalent to a period of about 4.3 microseconds, so the spin takes
about 30 orbits to fully precess around the muon momentum. The analysis of the magnetic
field is weighted with the stored muon distribution, so it is also taken into account how the
magnetic field itself affects the muon beam dynamics.
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4.3 Vertical focusing with electrostatic quadrupoles

The storage ring acts as a weakly focusing betatron with electric quadrupoles that provide
strong vertical focusing. Muons are injected with the magic momentum so that the E-field
does not affect the anomalous precession frequency, as in Equation (1.3.9). Another important
requirement for the muon trajectory is that B’ must be orthogonal to g, so that the term
proportional to B’ - B does not contribute to w,: to preserve a purely longitudinal muon path,
quadrupole gradients are necessary to strongly focus the vertical waist of the beam shape. The
electric field of the Electrostatic Quadrupole (ESQ) system provides a linear restoring force
in the vertical direction; on the radial direction, instead, the electric field alone would have a
defocusing effect on the beam shape, but it is combined with the effect of the dipolar magnetic
field and the net resulting force radially restores the muon beam.

An important parameter when studying the beam motion along the ring is the field index n,
defined as:

HRO

n=- B (4.3.1)
where k is the electric quadrupole gradient, By the dipole B-field, Ry the storage ring magic
radius of 7112mm and v the speed of the muon beam. Typical values for n are of the order
of ©(0.1). In an ideal ring, vertical dipole magnetic fields and quadrupolar electric fields are
uniform and cover the full azimuth, so muons undergo a simple harmonic motion (namely,
betatron oscillation), in both the vertical and radial directions, that can be parametrized in
terms of n. The effect of the coherent betatron oscillations of the muon beam and the study of
the associated systematic error will be discussed in Sections 5.5.1 and 6.3.
Figure 4.2.1(a) shows the location of the most important components of the storage ring,
discussed in this Chapter. In addition, collimators are shown, which are copper rings with
inner radius of 45 mm, outer radius of 55 mm and thickness of 3 mm.
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Figure 4.3.1: From Ref. [96]. Patterns of ESQ plates charging for the 30 nominal and for
the 2 damaged ESQ resistors, measured after the end of Run-1.

The four ESQ stations are symmetrically placed around the ring, each with a short and a
long section (shown by the red curves in Figure 4.2.1(a)). Each section consists of four plates
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connected to power supplies through individual high voltage resistors, for a total of 32 plates
and 32 resistors. Plates are charged prior to each fill and discharged at the end of the 700 s
storage time. Figure 4.3.1 (black and dotted red lines) shows the nominal procedure to charge
ESQ plates: some of them are connected to 1-step power supplies that reach the design voltage
of 18kV with a lifetime of about 5ps; others are connected to 2-step power supplies, that
rise to HkV below the design voltage, and after 7ps rise to the same voltage as the 1-step
supplies. This procedure is called “scraping” and it is used in order to scatter away muons
that exceed a 45 mm radius: the initial asymmetry displaces the muon beam horizontally and
vertically; muons that are further away from the quadrupole center likely strike collimators,
scatter, lose energy and drift away from the storage ring in a few turns; when the voltages are
symmetrized, the muon beam relaxes back to the nominal center of the closed orbit. Scraping
was designed in order to be completed by 30 ps after injection, which is the nominal start time
of w, fits. However, following completion of the first data-taking campaign in 2018, Run-1, it
was discovered that 2 out of 32 ESQ resistors were damaged and dynamically changed their
resistances when high voltage was applied. The orange and dotted blue lines in Figure 4.3.1
show the charging patterns of these resistors at the end of Run-1, which strongly affected the
muon beam dynamics, enhancing losses over time and increasing the systematic effects on wj,.
These damaged resistors were replaced before the start of Run-2.

4.4 The calorimeter system

When muons decay in the storage ring, the emitted positrons have a lower energy than the
parent muons and a smaller orbit radius in the magnetic field, thus they curl towards the
center of the ring and may be detected (Figure 4.4.1). There are 24 electromagnetic calorimeters
stationed around the inner radius of the storage ring, as schematically shown in Figure 4.2.1(a),
which measure the energies and arrival times of incident positrons. They are designed and
optimized for the specific needs of w, measurement, and constantly calibrated over time, so
that all fluctuations in their gain are corrected for (see Section 4.4.2).
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Figure 4.4.1: From Ref. [4]. Scalloped vacuum chamber with positions of calorimeters
indicated. A high- (low-) energy decay positron trajectory is shown by the thick (thin) red
line, which impinges on the front face of the calorimeter array.

Each segmented calorimeter features an array of 6 x 9 PbFy (lead-fluoride) crystals, with size
25 x 25 x 140mm?, transparent to visible light. Each crystal absorbs the energy of incoming
positrons by generating an electromagnetic shower, which is contained thanks to ~ 15X, of
length (for lead-fluoride, Xy ~ 0.93 cm) and a Moliére radius of 1.8 cm. The generated charged
particles travel faster than light in the crystal (the refractive index is approximately 1.8), so
they generate Cherenkov photons. Each crystal is coupled to a silicon photomultiplier (SiPM)
detector with 57344 pixels operating as Geiger counter, which responds to Cherenkov photons
with electrical current; this current is then converted by a custom electronic board into voltage
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signal, recorded by waveform digitizers and stored for offline analysis.

In order to contain the systematic effects on w,, the calorimeter system was designed to meet
special requirements [4]. First of all, it was required that the relative energy resolution of
reconstructed positron had to be better than 5% at 2GeV, and, for any positron with energy
greater than 100 MeV, the hit time resolution extracted from the SiPM pulse had to be better
than 100 ps. As we will explain in Section 4.7.1, the purpose of the energy measurement is only
to select events above a fixed threshold for wiggle plots (as it was in previous experiments), so
the specification on the energy resolution is rather modest and the deposited energy is not a
direct observable in the experiment. In the E821 experiment, the systematic effect associated
to pileup amounted to 80 ppb; the goal in the E989 experiment was to lower it down to 40 ppb
or below. For this requirement, the calorimeter system had to be able to resolve two different
electromagnetic showers with 100% efficiency if they have time separations of 5ns or more, 66%
efficiency below 5ns and still be able to further resolve showers spatially (thanks to the seg-
mented structure of calorimeter made of 54 crystals, instead of unique blocks of lead-scintillating
fibers in previous experiments). An illustration of different decay positrons trajectories, which
depend on the decay energy, is given in Figure 4.4.1: high energy positrons are curled inward
with a greater orbit radius than low energy positrons, so their trajectory is longer. Thus, two
events close in time in the same calorimeter might carry (slightly) different information on the
w, phase (the angle between muon spin and momentum) at the time of emission, according
to their energy. If the events are reconstructed as a single positron, this can modify the wig-
gle plot counts and also affect the fitted initial phase, thus introducing a systematic uncertainty.

Each of the 24 calorimeters is placed on a movable platform that rides on a set of rails and allows
for easy insertion of calorimeters into or out of the storage ring; it also provides sufficient cooling
power to stabilize the temperature of all subsystems: the lead-fluoride absorbing crystals, the
SiPMs for photodetection, the bias control and voltage amplifiers.

4.4.1 Crystals and SiPMs for photodetection

Incoming positrons deposit energy in each crystal by producing electromagnetic showers that
emit Cherenkov radiation. Crystals function as absorbers and the chosen material is lead-
fluoride (PbF5). The advantage of detecting Cherenkov light is that it produces an almost
instantaneous signal when positrons arrive, as opposed to scintillators, so a higher time resolu-
tion is achieved.

Crystal cross section 2.5 x 2.5 cm?
Array configuration 6 rows and 9 columns
Radiation length X 0.93 cm
Crystal length l4em (- 15X,)
PbF, density 7.77g/cm3
Magnetic susceptibility —58.1 x 1075 cm?/mol
Moliere radius Ry, 2.2cm
Moliere radius Ry (Cherenkov only) 1.8 cm
Kinetic Eipreshola for Cherenkov light 102 keV
Refraction index 1.8

Table 4.4.1: From Ref. [4]. Properties of PbF3 crystals used in the E989 experiment.

Table 4.4.1 summarizes the most important characteristics of PbFy crystals used at Fermi-
lab [4]. The very low magnetic susceptibility makes the calorimeters suitable for working in
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the E989 experiment without perturbing the B-field; thanks to the crystal length of more than
15 radiation lengths and to a Moliere radius of 1.8 cm for Cherenkov light, positrons typically
deposit all of the energy within a crystal or two; the segmentation 6 x 9 decreases the likelihood
that two decay events occur simultaneously in the same SiPM (double events are referred to
as pileup). A refractive index of 1.8 makes sure that all positrons with kinetic energy above

100keV produce Cherenkov radiation. Each crystal is wrapped in a black Tedlar® absorptive
material: it was chosen after a series of tests on different wrapping materials (such as white
reflecting Millipore paper and aluminum foil), with the primary goal to optimize the number
of photons that reached the SiPMs as well as the distribution spread of the signal. Tedlar® was
eventually chosen for the best quality of its sharp signal, that ensures a fast response of the
crystal [98].

Figure 4.4.2: Picture of PbFs crystals taken during calorimeter assembly, each coupled to
a SiPM board (green).

Figure 4.4.2 shows a rear view of crystals and SiPM boards. There are several reasons why
SiPMs were preferred to photomultipliers (PMTs) as light detectors: they can be placed inside
the storage ring field without perturbation, avoiding the long light guides that the E821 ex-
periment used for remote PMTs; they can be mounted directly on the rear face of the PbF,
crystals; they have a high photo-detection efficiency and they cost less than same-size PMTs.
On the other hand, SiPMs are very sensitive to changes in temperature and bias voltage, so it
is crucial to calibrate their gain over time.

The SiPMs work as Geiger-mode counters, made of 57344 pixels with a 50 pm pitch, for a
total active area of 1.2 x 1.2cm?. Each pixel contains a quenching resistor, in series with an
avalanche photodiode: when a photon strikes a pixel, it causes an avalanche that is arrested
by the resistor by dropping the bias voltage below the Geiger-mode breakdown threshold. The
device recovers with a time constant of ~ 10ns, whereas pixels that were not struck by light
remain ready for the next pulse. The produced electric currents are added up for all pixels
in a summing board to form the overall response: through a custom electronic readout board
with a transimpedance amplifier, this current is converted into a voltage signal and recorded by
12-bit, 800 MS /s waveform digitizers [99]. Power supplies are one every 12-16 SiPMs and must
supply a bias voltage in the 60-75V region, while maintaining a time-averaged current of about
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50 pA for each channel, even when higher instantaneous peak currents are present during fill
time. Moreover, a stability of 1 mV or better must be achieved: gain shifts are approximately
0.12% per millivolt, which corresponds to a shift in the w, fit of 0.05ppm.

In the “Geiger-mode” operation, a pixel can either fire (produce signal) or not: SiPMs are there-
fore intrinsically non-linear, because if a pixel is simultaneously hit by two or more photons, it
only fires once. The SiPM response is in the linear regime if the number of emitted photons
are not more than a few thousands, i.e. 5% of the total number of SiPM pixels. Results
from the test beam campaign in 2016 at the SLAC End Station Test Beam facility [100] showed
that the typical number of fired pixels was below 3000 for 3 GeV positrons. The calorimeter’s
energy and time resolutions were measured to be:

2
%3 = \IC?E + E;ggev; o (E =3GeV) =40 ps (4.4.1)
where Cp = (1.86 + 0.43)% and Sg = (3.56 £ 0.77)%. The time resolution is reported in
Equation (4.4.1) for an incoming beam energy of 3 GeV; in Ref. [100], the time resolution oy
is also reported as a function of the incoming beam energy expressed as the number of photo-
electrons fired, starting from a value as high as 80ps at £ ~ 600 MeV, and decreasing like
1/ VE. Tt was hence verified that the calorimeter system met the desired resolution goals from
the Technical Design Report [4].

4.4.2 The laser calibration system

The E989 experiment requires continuous monitoring and calibration of the SiPMs over the
muon fill time-scale of 700 ps, where the rate of detected events changes by 4 orders of magni-
tude. Monitoring of the gain over longer terms (months or even years, mostly due to external
temperature changes) is also achieved at sub per-mill level. These requirements ensure that the
systematic error on w, due to gain changes, which amounted to 120 ppb in the E821 experiment
and was hence the main source systematics, does not exceed 20 ppb in the E989 experiment.
For this purpose, a state-of-the-art laser calibration system was designed and built by the INFN
group in collaboration with CNR-INO (Istituto Nazionale di Ottica). The system sends simul-
taneous calibration pulses onto each of the 1296 crystals of the electromagnetic calorimeters.
Laser pulses must be stable in intensity and timing; they are generated by 6 identical laser
diode heads (Picoquant, mod. LDH-P-C-405M), 700 pJ/pulse, 600 ps (FWHM) duration, each
one serving 4 calorimeters. The muon beam cycle was schematically sketched in Figure 4.1.2:
laser calibration pulses can be sent before and after fills (in which case they are called Out-
of-Fill Pulses, or OOF) or within a fill (the so-called In-Fill-Gain pulses, or IFG). A diffusing
system sends the light pulses to all 54 detectors of each of the 24 calorimeters and a cascaded
distribution system monitors the pulses at different stages: a Source Monitor, placed directly
at each laser head, keeps the stability of the laser source under control; a Local Monitor is
placed after each diffusing system to monitor its stability.

Most of the laser apparatus is in a dedicated room, the Laser Hut, located inside the g — 2
experimental hall. It is a 4 by 4-meter wide, light-tight, acoustically isolated and thermally con-
trolled room, from where laser calibration pulses are sent to calorimeters through 24 launching
optical fibers (Polymicro, mod. FDP400440480), 25 m long and 400 pm of diameter, as seen in
Figure 4.4.3. Laser monitoring signals from calorimeters are sent back to the Hut by 48 fibers:
24 are 1 mm of diameter PMMA fibers (Mitsubishi Eska, mod. GK40) and 24 are 600 pm of
diameter silica fibers (Thorlabs, mod. FP600URT). The launching fiber and the two monitoring
fibers of each calorimeter are inserted into protective, semi-rigid plastic tubes that guide them
inside the ring to each calorimeter, keeping them separated from the other electric cables.
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Figure 4.4.3: (a): Picture overviewing the optical table. On the right side, the 6 laser
heads are partially hidden by the 6 Source Monitors (silver aluminum boxes). On the left,
the 25-meter-long optical fibers bring light to the 24 calorimeters. (b): Example of In-Fill-
Gain function for a single SiPM, with an exponential fit (overlapped in red) to extract IFG
constants for energy calibration.

The choice to serve 4 calorimeters with each laser head was conservative, as the laser power
available exceeds what is actually required by over a factor 4, but it allows special calibration
modes: the first one is the Standard Mode, in which 4 laser pulses with a relative delay of
about 200 s are sent in ~ 9% of the fills, each pulse shifted by 2.5 s during the next fill, so
that the four pulses sweep the entire 700 ps of storage time in 93 fills; the second one is the
Double Pulse Mode, in which laser lights are re-directed by means of movable mirrors, in such
way that 2 laser beams slightly separated in time hit the same crystal of a calorimeter.

The Standard Mode is used to provide the In-Fill-Gain and Out-of-Fill Gain corrections - IFG
and OOF, respectively - and to synchronize the different detectors, frontend electronics and
DAQ. Figure 4.4.3(b) shows an example of how the gain of a SiPM changes within a fill: the
initial flash of particles causes charge depletion in the first microseconds, so the SiPM gain
reaches its asymptotic value on a timescale of O(1ps). The IFG function is modeled with an
exponential function G(t;a,7) = 1 — aexp (—t/7), and data collected by laser calibration is
fitted to determine the (a,7) parameters. Energies deposited on each crystal at time ¢ are
therefore divided by G(t), to correct for this effect.

The Double Pulse Mode is used to study the response of SiPMs when two positrons hit the
same calorimeter within a few nanoseconds: the expectation is that the first pulse causes a
systematic reduction in the measured energy of the second signal due to charge depletion in
the capacitive components of the system’s electronics [99].

More details about the laser system and the optics to diffuse the laser light to calorimeters
are provided in the papers in Ref. [101]. The gain corrections applied to detected positron
energies in the event reconstruction are described in full in Section 5.2.2, whereas the systematic
associated to gain corrections that affect w, are described in Section 6.1.

4.5 The tracker system

In the design of the E989 experiment, two tracking stations [102] are placed around the storage
ring at approximately 180° and 270° after the injection point, in front of calorimeters 13 and
19 as in Figure 4.2.1(a). These locations are advantageous because they are unobstructed
by quadrupoles or collimators. Each tracking station consists of 8 tracking modules, that are
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inserted in the vacuum chamber in a “staircase” arrangement, as shown in Figure 4.5.1(a). Each
module has four layers of drift tubes: the straws are arranged in a stereo pattern, with a stereo
angle of +7.5° from the vertical direction, to provide information on both z and y positions of
the track, with a resolution of at least 1 mm on impact parameter. FEach straw is 10 cm long
and has a 5 mm diameter; the total thickness of the wall, made of two layers of Mylar (a special
type of stretched polyester film) separated by an adhesive layer, is 15 pm. Sense wires, centered
in the straws, are made of 25 um of gold-plated tungsten and are held at a voltage of 1800 V.
Drift gas in the tubes are a mixture of 50:50 Argon:Ethane at 1atm pressure, which provides
a ~ 2 x 10% gain. The flow of tracker data processing starts with the induced signal on sense
wires; a hierarchical system of analog and digital frontend electronics and backend aggregator
electronics boards is used to make the data flow and eventually reconstruct particle tracks and
extrapolate muon decay vertices. Figure 4.5.1 shows the location and schematic of tracking
modules, placed in the scallop region of the vacuum chamber in front of calorimeters. Tracking
detectors have three important physics goals [4]:

1. Measure the muon beam profile at two locations around the storage ring as a function of
time;

2. Improve the understanding of systematic uncertainties on w,, that are derived from
calorimeter data;

3. Make auxiliary measurements of other properties of the muon, for example its electric
dipole moment (EDM).

(a) | (b)

Figure 4.5.1: From Ref. [4]. (a) Placement of 8 straw tracking modules in one of the
12 vacuum chambers. (b) Diagram of a 32-straw-wide tracking module together with the
readout electronics attached.

There are several reasons why the muon beam distributions must be tracked precisely over fill
time. Firstly, momentum spread and betatron motion of the beam lead to beam dynamics
corrections to w, (discussed in Section 4.7.3) of the order of hundreds of ppb, because the beam
motion is not exactly perpendicular to the B-field and in general the momentum can slightly
differ from the magic value of 3.094 GeV/c. Secondly, the coherent betatron motion causes
changes in calorimeter counts which must be taken into consideration when fitting wiggle plots
to extract the precession frequency, and trackers play a key role in the correct parametrization
of this effect (the procedure is explained in Section 5.5.1). Lastly, the muon spatial distribution
must be convoluted with the measured magnetic field map, to obtain the effective field felt by
the beam in the storage ring (this will be discussed in Section 4.7.4).

Trackers can also isolate short time windows that have multiple positrons hitting the same
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calorimeter, so that an independent measurement of the momentum of incident muons is possi-
ble: this provides an independent validation of techniques used on calorimeter data to estimate
the systematic uncertainties, such as the number of muon losses over time (see Section 5.2.4)
based solely on calorimeter data.

Finally, trackers can determine if there is any tilt in the muon precession plane away from
the vertical orientation: this could be indicative of radial or longitudinal components of the
storage ring B-field, or the presence of a permanent EDM of the muon. The technique for this
measurement was explained in Section 2.2.2.

4.6 Auxiliary detectors

Several other detectors are placed around the ring, to provide us with information on the stored
beam. The measurements from these detectors play an important role in systematics studies,
or during preparation of new data acquisition campaigns every year, when we performed the
initial detector calibrations.

35.56

178

(a) (b) (c)

Figure 4.6.1: (a) CAD drawing of the TO detector. The muon beam passes through the
plastic scintillator (green). (b) CAD drawing of the IBMS detector. (c¢) The 180° x-profile
monitor, glowing under ultraviolet illumination in the laboratory.

The TO detector is a paddle composed of a 1 mm thick plastic scintillator coupled to two PMTs,
as shown in Figure 4.6.1(a). It is placed right before the inflector, so it precisely measures the
time at which the muon beam is injected into the magnet. It also measures the beam time
profile, which can be integrated to monitor the storage efficiency (when compared to the number
of detected positrons for each muon fill) and data quality across the data taking period.

The Inflector Beam Monitoring System (IBMS) is a series of three detectors, each made of a
16 x 16 grid of scintillating fibers read by a 1 mm? Hamamatsu SiPM. Two of them are placed
before the inflector: one before the hole in the yoke, one right before the inflector, as seen in
Figure 4.2.1(a). These two detectors monitor the beam profile in the x-axis and y-axis, after
the final focusing before injection. The third IBMS detector is installed right after the inflector
and only has the vertical fibers to measure the x-axis profile; in normal running conditions, the
third detector is retracted as, otherwise, it would destroy the muon beam after several turns.
The Fiber Harps are planes of vertical and horizontal scintillating fibers that can be placed in
the path of the muon beam in two different locations, at ~ 180° and ~ 270°, right before each
tracking station. They can destructively measure the beam x — y profile and therefore they
are used only in dedicated runs and not during normal data taking. Figure 4.6.1(c) shows a
picture of the x Fiber Harp detector. When inserted, they can measure the beam momentum
distribution, the cyclotron frequency and the debunching of the muon beam over time.
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4.7 Measurement principle of a, in the Fermilab exper-
iment

The goal of the Muon g — 2 experiment at Fermilab is to measure the muon magnetic anomaly
a, at the 0.14ppm level of precision, a fourfold improvement with respect to the previous
experiment. Section 1.3.2 introduced the measurement principle on which the experiment is
based: when muons are injected in a magnetic field é, their spin vector precesses around
the momentum vector with the so-called anomalous precession frequency w,. If the motion
is perpendicular to the B-field so that 5 B = 0, and if muons have the magic momentum
p = 3.094 GeV/c that cancels the effect of focusing electric fields on w,, then Equation (1.3.9)
becomes:

QeB
Wa = —au— (4.7.1)
where @ is the particle charge (Q = —1 or @ = +1, for muons and antimuons, respectively)

and e > 0 is the absolute value of elementary electric charge. Two different measurements of
high precision are needed to extract a,: the first one is w,, which can be fitted from the time
distribution of decay positrons detected by calorimeters; the second one is the magnetic field,
expressed by means of the Larmor precession frequency of free protons in the same B-field
felt by muons, via w, = 2,up|§ |. Expressing the magnetic field as a function of w, and using
fe = gee [4m,, with g. from Ref. [20], Equation (1.3.7) can be rearranged:

_ Wa Hp My Je
Wp e Me 2

ay (4.7.2)
The first ratio w,/w, is obtained directly in the E989 experiment, measuring w, through the
wiggle plot fit and w, with nuclear magnetic resonance (NMR) probes. The other quantities
are well-known constants from other experiments, which carry a small overall uncertainty of
~ 25 ppb. The actual complete formula for a, is more complicated [3] and it will be explained
throughout this Section:

(4.7.3)

a, — fclock : W;n (1 + Ce + C’p + Opa + Cdd + C’ml) ,up(Tr) ,ue(H) mu &
o (

fcalib : <w;; _)) x M (F» (1 + Bq + Bk) Me(H) He M 2

Ru

At the numerator, w]" is the measured value of the precession frequency from wiggle plot fits, and
it is multiplied by correction factors C; that come from beam dynamics. At the denominator,
the shielded w;, is weighted by the muon beam spatial distributions, and corrected by two fast
magnetic transients B;, from kickers and quadrupoles, synchronized to the beam injection. The
unblinding factor feoq is set and monitored by external and unknown people to the Muon g — 2
collaboration, and it is in the range =+ 25 ppm, to prevent any conscious or unconscious biases
on our measurement. T, = 34.7° is the reference temperature at which the shielded proton-to-
electron magnetic moment p,(7})/pe(H) is measured [103]. The QED factor p.(H)/p. is the
ratio of the magnetic momentum of the electron in a hydrogen atom to the magnetic momentum
of the free electron in vacuum [104]. The ratio in masses m,/m. was measured to 22 ppb with
muonium spectroscopy [105], and new precise measurements from several experiments (such as

MuSEUM at J-PARC [106] and Mu-MASS at PSI [107]) are expected soon.

4.7.1 Measurement of w,

In the E989 experiment, a beam of polarized muons is injected into the storage ring in presence
of a magnetic field. The anomalous precession frequency w, is the rate at which the angle
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between the muon spin and muon momentum precesses over the fill time of 700 ps. This
frequency is approximately equal to 1.43rad/ps, corresponding to a period of ~ 4.365ns. The
analysis procedure is to identify individual decay positrons that hit the calorimeters, record
their energy and arrival time, and plot the time distribution of positrons above a fixed energy
threshold to build the so-called “wiggle plot” (an example is in Figure 4.7.1(a)).

As anticipated in Section 1.3.3, the number of positrons detected above a certain threshold FEy,
is given by a function like Equation (1.3.21):

N(t) = No(Ep)e "™ [1 + A(Ey,) cos(wat + 6)] (4.7.4)

where the normalization parameter Ny and the asymmetry A depend on Fy,. Figure 1.3.6 in
Section 1.3.3 plotted these parameters in the ideal case; in our analysis, we fit these parameters
as they are affected by detector acceptance and beam dynamics of the muon beam (see Section
5.5).

There are several ways to build wiggle plots, according to how we weight positron events
depending on their energies: each method has a different statistical power as a function of the
energy threshold. At the end of Section 1.3.3, we anticipated that the optimal threshold is the
one that maximizes a Figure of Merit (FOM) and minimizes the statistical uncertainty dw, on
the anomalous precession frequency. Detailed studies [26] showed that dw, can be parametrized
as:

7)2 (pA)%,,

where N is the integrated number of decay positrons in the analysis; p is the function that we
choose to weight positrons according to their energy E, and that characterizes each different
method; the notation (-)g, means that we take the average over all detected positrons above
the energy threshold. The method discussed in Section 1.3.3 was the so-called T-method, where
all positrons above threshold are equally weighted, i.e. p(F) = 1, and the FOM reduces to N A?
which is maximum around 1.86 GeV.

- 2 <p2>Eth
ow, = \J N( . (4.7.5)
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(a) Run-1 T-method wiggle plot. (b) A-Method energy weights.

Figure 4.7.1: (a): wiggle plot built for w, fit in Run-1 [108]. (b): A(E) asymmetry
parameter fitted from T-Method wiggle plots for each energy bin.

The main two methods in Run-1 analysis were:
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Threshold Method or T-Method: all positron events are integrated in energy above
a fixed threshold, with equal weights (p(£) = 1). An example is in Figure 4.7.1(a), taken
from the Run-1 result. The shape of oscillations is such that the histogram has been
historically called “wiggle plot”, and it is typically convoluted many times so that it can
fit in one plot. For this method, it was found that the statistical uncertainty on w, is
minimum if we integrate energies above 1.7 GeV (see Section 5.2.6).

Asymmetry Weighted Method or A-Method: each positron event is weighted with
the asymmetry function A(FE) as a function of the positron energy. In the ideal case, this
function is represented by Equation (1.3.16) and plotted in Figure 1.3.5. The function
obtained by Run-1 data is plotted in Figure 4.7.1(b). Visually, the A-Method wiggle plot is
very similar to the T-Method one. This technique yields the maximum possible statistical
power, lowering the optimal energy threshold to 1 GeV and the statistical uncertainty on

we to ~ 10% less than the T-Method.

In Run-1 there were two other methods developed to build wiggle plots, not used for the
combination of w, results but for consistency checks and evaluation of systematic uncertainties:

normalized FOM

Integrated Energy Method or Q-Method: in this alternative approach, the detector
current is used as a proxy for the deposited positron energy. Individual positron events
are not identified, which suppresses the pileup systematic and allows for a very low energy
threshold. The statistical power of this approach almost reaches that of the T-method.
Further details on the Run-1 and Run-2/3 analysis are found in [109, 110].

Ratio method or R-Method: an alternative approach which consists in randomly split-
ting positron events into 4 separate groups, shifting some of them in time, and combining
them in order to cancel out the exponential term in the 5-parameter function. This
method will be explained in much more detail in Section 5.3. In general, it reduces the
sensitivity of w, to all “slow” terms (i.e. the ones that change within 700 ps) and therefore
the associated systematics. Its statistical power is similar to that of the T-method.
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Figure 4.7.2: (a): From Ref. [4]. The statistical figures of merit are calculated using a
Monte Carlo simulation for the T/A Methods as a function of the energy threshold Ejj,. The
simulation included basic detector acceptance. ¥ is the positron energy normalized to the
maximum value of 3.1 GeV in the laboratory frame. The isolated black point indicates the
corresponding figure of merit for the Q-Method. (b): w, figure of merit as a function of the
energy threshold Fy, for the Run-2 T-Method and A-Method fits.
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Figure 4.7.2(a) shows the results of FOM for T/A/Q Methods, obtained thanks to a Monte
Carlo simulation. Figure 4.7.2(b) shows the FOM obtained from Run-2 data.

In Run-2/3, we developed another method which is the “asymmetry weighted” version of the
R-Method and yields a statistical uncertainty similar to A-Method results: the so-called RA-
Method. This has been my major contribution in my analysis group, and I will describe it in
detail in Section 5.3.

4.7.2 Coherent Betatron Oscillation and other beam dynamics ef-
fects

Assuming that vertical dipole magnetic fields and quadrupolar electric fields are uniform and
cover the full azimuth, stored muons undergo a simple harmonic motion called “betatron os-
cillation” in both the vertical and radial directions. The horizontal and vertical motions have
different frequencies, determined by the cyclotron frequency we and by the field index n (defined
by Equation (4.3.1)):

Wy = weV1 —n; wy = wevn (4.7.6)

The cyclotron period in the Muon g — 2 experiment is 149.2ns, and n ~ 0.1 (see Section 5.1),
which means that we ~ 42rad/ps, w, ~ 40rad/ps and w, ~ l4rad/ps. It is important that
the betatron wavelengths are not simple multiples of the circumference, otherwise ring imper-
fections or higher multipoles could drive resonances and cause a great particle loss from the
storage ring.

The beam oscillations introduce a time-dependent modulation in the number of detected
positrons due to the radial and vertical acceptance of the detectors. Figure 4.7.3 helps to
understand this effect: a bunch of muons starts in s = 0 (s is the arc length along the trajec-
tory) and oscillates in the radial direction with frequency w, < w¢, such that A\, > 27p where
2mp is the circumference of the ring. Several successive revolutions around the ring are shown,
so the vertical axis (which shows the radial coordinate of the bunch) is repeated several times
and so is the position of one of the calorimeters.

Detector

Cycie ~ ICycle ~ [Cycle” "|Cycle ~ [Cycle
| 2 3 4 5
AWANANFA

Figure 4.7.3: From Ref. [111]. Tllustration of the radial beam motion in the storage ring,
showing successive turns in the ring. The betatron oscillation (red) frequency is adjusted to
be less than the cyclotron frequency. A detector sees the motion at the CBO frequency. The
location of a single detector is shown.

radial position
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The rate at which the muon bunch moves toward and then away from the detector is given by
the Coherent Betatron Oscillation (CBO) frequency: wepo = we — w,. In other words, since
wy > we /2, the Nyquist-Shannon sampling theorem states that w, is not directly measurable,
but the aliased frequency wcpo is. The radial motion of the beam has also got components
at 2w,, so in the w, analysis the 2wcpo frequency is observed as well. Things are different in
the vertical direction: w, is less than we/2 and thus it is observed unchanged; however, the
components at 2w, introduce the frequency wyw = we — 2w, where VI stands for Vertical
Waist, i.e. the position where the beam’s vertical width is at minimum. The Vertical Waist
travels along the ring with wyy frequency, which is observed in our wiggle plot data. The
values of all the above-mentioned frequencies are listed in Table 4.7.1 for the Run-2 value of
the field index n = 0.108 (see Section 5.1.1).

Frequency

Quantity | Expression (MHz]  [rad /ps] Period [ns]
Wy ea,B/m 0.23 1.439 4365
we v/ Ro 6.7 42.0 149.2
W wev1l—n 6.3 39.7 158.0
Wy wen 2.2 13.8 454.2

WeBO We — Wy 0.37 2.33 2686
wyw | we—2w, | 2.3 14.4 435.3

Table 4.7.1: Frequencies in the g — 2 storage ring, assuming the quadrupole field is uniform
in azimuth and that n = 0.108 (Run-2).

4.7.3 Beam dynamics corrections C;

The anomalous precession frequency w, is extracted from wiggle plot fits. The quantity that
we measure, indicated with w™ in Equation (4.7.3), is not exactly the precession frequency w,
because there are deviations from the ideal formula due to beam dynamics effects. The electric
field C. and pitch C), corrections make the spin precess slower than in the ideal experiment; the
phase acceptance C,,, differential decay Cyq and muon losses C,,; corrections affect the average
muon initial phase ¢ of Equation (4.7.4) over fill time, thus biasing w,. In general, if the phase
¢ changes early-to-late, i.e. varies within the fill time of 700 ps and takes the form ¢(t), then
it can be expanded into ¢(t) =~ ¢(0) + %(to)t and the wiggle plot fit will not measure the real

value of w,, but w, + %(tm. Ref. [112] reviews in great detail the beam dynamics effects and in
particular the C,, correction in the Run-1 and Run-2/3 results.

Many results presented in this Section incorporate comparisons with dedicated beam simula-
tions, described in detail in Ref. [96]: the GEANT4-based GM2RINGSIM models the storage
ring, the final focus beamline used to steer the beam into the ring, all of the active detectors
and most of the passive components installed in the storage ring [113]. The COSY INFINITY
is a data-driven simulation, that recreates the injected muon with high fidelity by represent-
ing the magnetic and electric guide fields in the storage region based on measurements of the
beam [114].

Electric field correction C,

In the ideal case, the anomalous precession frequency is proportional to the magnetic anomaly
and to the B-field, as in Equation (4.7.1): this proportionality is only valid if the muon beam
travels at the magic momentum, so that the effects of the quadrupole electric field are cancelled,
and that the muon velocity is always perpendicular to the storage ring magnetic field. In the
more general case, the anomalous precession frequency contains a term proportional to the
E-field, as in Equation (1.3.9). For muons at the magic momentum of p, = 3.094GeV/c
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(relativistic boost of 7, ~ 29.3), this term vanishes and the electric field does not contribute to
w,. In our experiment, the storage ring has a momentum acceptance of £0.5%, which means
that not all muons travel exactly at the magic momentum. Therefore, the radial component of
the electric field E, modifies w,:

e E m2c?
m—=q,—B|1— “(1— 4.7.
o T [ 6CBy ( a,p? )] D

where B, is the y-axis component of the B-field, and p is the muon momentum. The mean
radial electric field experienced by a muon oscillating around an equilibrium radius z. is:

nBcB, nBcB,
- T, = 75 Le

Ry Ry
where k is the electric quadrupole gradient and n the field index, defined in Section 4.3, and
Ry is the magic orbital radius. The electric field correction that needs to be applied to w!" can
be expressed in terms of the beam radial distribution [4]:

2

6<ET> % ~ 2n(1 _ n)ﬁg <2@2>

0
where f3 is the speed of the muons with magic momentum, and Ap/p, is the momentum spread
around the magic momentum, equal to Ap/py = (1 — n)z./Ry. It follows that C,. is always
positive, meaning that the electric field effect reduces the value of the measured precession
frequency from the ideal one.
The beam distribution x, is measured by analyzing the cyclotron motion of the muons using
the calorimeter data, exploiting the fact that x. is related to the revolution frequency:

__ B
N Ro + T,
so z. is actually defined to be zero when the equilibrium radius is the magic radius Ry. (x?) is

the time-average of z2. Figure 4.7.4(a) shows the measured distribution for the four different
datasets. The value of C, was 489(53) ppb in Run-1 and 451(32) ppb in Run-2/3 [1, 3].

E, =k = (E,) = Kk, (4.7.8)

Aw,
7”> —9
We cBy, po

C, = —( (4.7.9)
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Figure 4.7.4: From Ref. [96]. (a): radial distribution of the muon beam as determined by
the Fourier method [115], Run-1 data. The equilibrium radius is defined to be 0 mm at the
magic momentum. (b): the fitted distribution of vertical oscillation amplitudes, before and
after the azimuthal averaging and calorimeter acceptance corrections described in the paper.
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Pitch correction C),

The pitch correction is related to the vertical betatron oscillation of stored muons, that breaks
the assumption that 3 . B = 0. This means that the term proportional to (5 . é) ﬁ in Equation
(1.3.9) does not cancel out, and w, is affected by it. The term is quadratic in B’ , o its contri-
bution to the precession frequency will not generally average to zero. Vertical oscillations are
the only significant correction to the precession frequency: thus the name “pitch correction”,
since the pitch angle is the one between the momentum and the horizontal plane. Figure 4.7.5
shows the pitch angle ¢y between the muon momentum and the horizontal plane; two dashed
lines indicate the directions parallel and orthogonal to 5 .

\\Ql
\

Q>

Figure 4.7.5: The coordinate system of the pitching muon. The angle ¢ varies harmonically.
The vertical direction is ¢, whereas 2 is the azimuthal (beam) direction.

We adopt the system of coordinates in Figure 4.7.5, which rotates along the storage ring, in
such way that Z is the direction of propagation. Then, we can write the magnetic field as
B= B,y and the velocity as 5 = By + .2 = Bsiny g + Bcosty 2. Assuming that ¢ is small
enough to approximate sin1 ~ 1 and cos) ~ 1 — 1)?/2, we find:

m e v—1\ of. m e v—1
Wa'y = a“mB [1 ( S )1# ] ; Wy, = —ay B( S )1/1 (4.7.11)
Equation (4.7.11) projects 7" onto the y-axis and z-axis; it can also be projected onto the
parallel and perpendicular axes to E . Since the pitch angle oscillates rapidly with the vertical
betatron frequency w,, much larger than w, (see Equation (4.7.6)), the parallel component of
W cancels out in the time average. Therefore, w]* ~ w, and taking the time average yields a
pitch correction [96, 116]:

n (y°)
Cp=—-— 4.7.12
The quantity (y?) can be determined experimentally from tracker measurements of the beam
motion: Figure 4.7.4(b) shows the measured distribution from Run-1. Like the electric field
correction, this effect reduces the precession frequency so that the measured value is lower than

the ideal experiment, thus C), is always a positive correction. The value of C), was 180(13) ppb
in Run-1 and 170(10) ppb in Run-2/3 [1, 3].

Phase acceptance correction Cp,

The g — 2 initial phase ¢ in the 5-parameter expression of Equation (4.7.4) represents the aver-
age phase of the muons at the time of injection. As already stated at the beginning of Section
4.7.1, in the real experiment the parameters Ny, A and ¢ are time dependent due to effects
like detector acceptance and beam dynamics. The phase ¢ is originally related to the phase of
muon spin vector relative to momentum at the time of injection into the storage ring, but also
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has other components such as the drift time of decay positrons according to their energies, and
calorimeter acceptance versus time.

It is easy to derive that higher energy positrons have a larger radius of curvature and therefore
a longer trajectory path toward the calorimeters (see Figure 4.4.1). A detected positron at
time ¢t was therefore produced at ¢ < ¢, when the angle between muon spin and momentum
was slightly different. Since the precession frequency is approximately 1.44rad/ps, a drift time
(defined as t —t’) of 1 ns accounts for a shift in phase of 1.44 mrad. A typical shift in phase due
to drift time, for positrons with energies of 1.5 <+ 2.5 GeV, is 10 =+ 15 mrad. For higher energy
positrons, near 3 GeV, this can reach 30 -+ 40 mrad.

The measured phase also depends on the position of the decay vertex. Firstly, if a muon de-
cays closer to the calorimeters, the emitted positron will travel a shorter path on average with
respect to the ones that are emitted more radially outwards. Secondly, since positrons curl
radially inwards when they are emitted, the configuration that maximizes detector acceptance
is not when the muon spin is parallel to the momentum, but when it is slightly rotated inwards.
These two effects are a function of the coordinates x and y on the transverse profile of the muon
beam, and of the positron energy E, so they generate an effective phase shift ¢,q(x,y, F). Fig-
ures 4.7.6(a) and 4.7.6(b) show, respectively, the azimuthally averaged transverse distribution
measured in Run-1, and GM2RINGSIM simulation of the transverse “phase map” averaged
over the azimuth angle [96].
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Figure 4.7.6: From Ref. [96]. (a): an azimuthally averaged muon spatial distribution mea-
sured by the trackers in Run-1. (b): the azimuthally averaged phase map ¢(x,y), generated
by GEANT4-GM2RINGSIM, integrated over energy by the A-Method weights.

If the muon beam did not have any motion inside the storage ring, the phase acceptance effect
would not bias the measured value of w,. However, the radial and vertical betatron oscillations
generate a time-varying phase that biases w, and needs to be accounted for. This effect was
enhanced in Run-1 due to the damaged ESQ resistors described in Section 4.3, which caused
additional vertical beam movements with a lifetime of tens of ps.

The phase acceptance correction is extracted by measuring the beam distribution with the
two tracker stations and extrapolating the phase maps to all the azimuth angles corresponding
to the calorimeter locations with simulation [96]. For each calorimeter, the phase variation
Gpa(t) is extracted as a function of time. A wiggle plot is generated with the full w, function
described in Section 5.5 (more complex than the 5-parameter function of Equation (4.7.4), to
include beam dynamics effects), which includes the phase variation ¢,,(t) summed directly to
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the ¢ parameter. The correction C), is extracted by taking the difference between w, fitted
with the full fit function that keeps ¢ constant, and the w, value used to generate the wiggle
plot with a time-varying phase. The value of C,, was —158(75) ppb in Run-1 and —27(13) ppb
in Run-2/3 [1, 3]: the damaged ESQ resistors in Run-1 were fixed before the start of Run-2/3
campaigns, which greatly reduced the phase acceptance effect on w,.

Differential decay correction Cgyy

The muon decay rate depends on the relativistic boost ,, which is distributed around the
magic value of 29.3: I' = 1/(,7). As muons decay with a different rate according to their
momentum, the average momentum of the muon distribution will shift with time. If there is a
correlation between the initial spin phase of the muon and its momentum, ¢ will have a time
dependency, biasing w,. This effect is called differential decay, and is corrected for by Cy; in
Equation (4.7.3). Although it was a known effect at the time of Run-1 analysis, it was not
applied to the Run-1 result because preliminary results showed that Cy; and its uncertainty
was much smaller than the other corrections.

There are three independent contributions to the phase dependency on the muon momentum,
d¢/dp: the first one is generated by the upstream beamline, after muons are emitted from
pions in the Delivery Ring; the second one is due to momentum-orbit correlations that develop
during beam injection; the third one is due to the fact that a muon bunch is 120 ns long when
injected, and muons at the head of the bunch start precessing sooner than those at the end.
The Cy4 correction is calculated using this formula:

Mo, _ Ldo _ 1do (dp
Wa  Wedt  wedp \ dt 4

Cag = — (4.7.13)

where (dp/dt),, represent how the beam momentum changes in time, as muons with different
lifetimes decay. Summing the three contributions, the value of Cy; was found to be —15(17) ppb
in Run-2/3 [3].

Muon loss correction C,,;

Some of the muons that circulate in the storage ring are lost before decaying into positrons.
In general, this happens when they strike one the collimators that limit the transverse region
and the momentum acceptance. The collimators have an aperture of 45 mm in radius and are
centered on the magic orbit. Muons hitting a collimator lose some energy, and start curling
inward until they exit the storage region.

The time distribution of lost muons induces a distortion in the exponential decay shape as
observed by the calorimeters. In the w, analysis, this is handled with a term in the full fit
function which accounts for the losses throughout fill time (see Section 5.2.4). As in the case of
differential decay, the C,,; correction is needed because a correlation exists between the injected
muon average spin phase ¢ and the particle momentum [96]. As the probability of hitting a
collimator depends on the muon momentum, the population of muons that are lost is correlated
to the w, phase observed by the calorimeters. Since the muons are not lost uniformly across
the storage time, a slow drift in the w, phase is induced. The magnitude of the effect is directly
proportional to the number of lost muons, which was especially high during Run-1 because of
the damaged quadrupole resistors, fixed before Run-2, and a non-optimized kick fixed during
Run-3 (see Section 5.1).

The correction for the muon loss effect has been evaluated by taking special acquisition runs
where the strength of the magnetic field was slightly changed from its nominal value, resulting in
different momentum acceptances of the storage ring, allowing us to select a different portion of
the original beam momentum distribution. The w, analysis was performed for each special run,
to extract the average phase of the muon beam. The measured phase-momentum correlation
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was (—10.0 £ 1.6) mrad/(%Ap/p) in Run-1 and (—13.5 + 1.4) mrad/(%Ap/p) in Run-2/3. As
for the phase acceptance, the C),; correction is extracted by generating wiggle plots with a
time-varying phase ¢(t), fitting them with a constant phase and taking the difference of w,
results from the w, value at generation step. The value of C,,; was found to be —11(5) ppb
in Run-1 and 0(3) ppb in Run-2/3 [1, 3]: the losses in Run-2/3 were reduced by an order of
magnitude with respect to Run-1, which led to a sub-ppb correction.

4.7.4 Measurement of GJ]’D

As mentioned at the beginning of this Chapter, after moving the superconducting ring from
BNL to Fermilab there was a campaign in 2015-2016 to increase the magnetic field uniformity
by a factor of 3 with respect to the E821 experiment: 72 high-purity steel poles were used to
increase the homogeneity; 864 wedges (12 for each pole piece) affected the dipole and quadrupole
fields; 144 edge shims affected the quadrupole and sextupole fields; finally, 48 iron top hats and
8000 surface iron foils changed the local fields to achieve the desired uniformity [117]. Figure
4.7.7 compares the initial and final plots of the magnetic dipole field: the shimming campaign
achieved a peak-to-peak variation of £25ppm and a standard deviation of 15 ppm throughout
the azimuthal angle of the ring. An “active” shimming is also ongoing as long as the experiment
runs: 200 wires (100 on top and 100 on bottom), called surface current coils, make dynamic
changes to the azimuthally averaged field by driving controllable currents.
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Figure 4.7.7: (a): initial dipole magnetic field when it was first fully measured at Fermilab.
The peak-to-peak variation was around 1400 ppm [117]. (b): the final rough shimming result
for E989. The dashed bands at 900 ppm and 950 ppm indicate +25 ppm around the central
value, which was the target for E989 (private communication with M. W. Smith.

In the E989 experiment, the B-field has to be measured precisely in order to obtain a,. As
already stated, it is measured in terms of the shielded proton precession frequency, or Larmor
frequency. During data taking, w,, is constantly measured by 378 nuclear magnetic resonance
(NMR) fixed probes, placed along the ring in 72 strategic locations 7.7 cm above and below the
storage volume. About once every three days, a trolley run is performed with no muon beam
stored, where a cylinder equipped with 17 NMR probes is moved on rails inside the vacuum
chamber along all the ring with the purpose to produce a three dimensional map of the mag-
netic field that the muons experience: the probes are displaced in a circle of 9 cm in diameter,
which is the storage cross section, and they measure the field in 9000 azimuthal positions (once
every ~ 0.5cm). The fixed probes monitor the field stability between two consecutive trolley
runs, and some of them also serve to provide feedback to the magnet supply to actively stabilize
the field strength over time.

The NMR technique uses a radio frequency (RF) pulse applied to the proton sample in
petroleum jelly, in order to rotate the proton spin of 90° such that it lies in the plane perpen-
dicular to the storage ring B-field. When the RF pulse is turned off, the sample polarization
starts precessing in the storage ring magnetic field until the net magnetization of the sample
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Figure 4.7.8: From Ref. [97]. (a): schematic drawing of the NMR, probe for field mapping
and monitoring. (b): a typical free induction decay (FID) from a trolley probe. The zoomed
inset shows the periodic behaviour that is fitted to extract the signal frequency.

returns to being aligned with the external field. Pickup coils oriented perpendicularly to the
magnetic field are connected to waveform digitizers that save the current induced in the coils
by the precessing protons: this current is the so-called free induction decay (FID) signal, and
measuring it over time gives information about the magnetic field. The Larmor precession
frequency is about 61.79 MHz in the g — 2 storage ring, and it is mixed down to ~ 50 kHz prior
to digitization [97]. Figures 4.7.8(a) and 4.7.8(b) show, respectively, the design of the trolley
and fixed probes, based on a similar design from the BNL E821 experiment, and an example
of the FID signal [97]. Both the trolley and fixed probes are calibrated with a water-sample
probe that is installed on a translation stage in the ring vacuum, and that can be positioned
in the same locations as the trolley probes. This step provides absolute calibration of the field
measurement, providing the offsets f..;, that are present due to diamagnetic shielding effects
of the petroleum jelly samples, trolley body and shape.
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Figure 4.7.9: From Ref. [3]. Azimuthally averaged magnetic field contours, overlaid on the
time and azimuthally averaged muon distribution at the end of Run-3.

The final value of w;, required in Equation (4.7.3) is the average magnetic field @, experienced

by the muons as they precess around the ring, obtained by weighting the w;, map with the muon
beam distribution M (7, t) measured by the trackers, and by integrating over time and space.
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Figure 4.7.9 shows an example of the three-dimensional map of the magnetic field inside the
chamber.

The NMR technique allows to bring down the systematic uncertainty on @, to 70 ppb, whereas
the statistical error is completely negligible.

4.7.5 Transient magnetic fields B;

During muon storage, two time-dependent magnetic fields are induced by the pulsed magnetic
and electric fields from the kicker and quadrupoles that are synchronized with each muon
fill. These transient magnetic fields are not present during the trolley runs; the fixed probes
only measure the field at time intervals of ~ 1s asynchronously with respect to muon injection,
whereas the fast transients change on the ps timescales, so they must be included as corrections
to w, at the denominator of Equation (4.7.3). Contrarily to beam dynamic corrections Cj, the
corrections B; due to transients increase the ratio w,/w, if they are negative, and decrease it if
they are positive.

Electrostatic quadrupole transient fields B,

The transient associated with the ESQ field was discovered during Run-1 studies of correla-
tions between the fixed probe measurements and the muon injection [97]. These fields are
caused by mechanical vibrations of the charged plates induced by ESQ pulsing, and generate
a perturbation that needs to be measured by a dedicated set of NMR probes. Such probes are
sealed inside polyether ether ketone (PEEK) plastic tubes for vacuum compatibility and read
out through the fixed probe NMR system, synchronized to the ESQ pulsing system. During
normal running, the quadrupoles are triggered by the upcoming beam and they discharge about
700 ps after the trigger. As shown in Figure 4.1.2, this structure happens in a series of 8 muon
bunches, then a pause of ~ 200 ms, then 8 more muon bunches, and the entire series of 16 beam
injections happens every ~ 1.4s.
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Figure 4.7.10: From Ref. [97]. (a): the time structure of the ESQ transients measured by
NMR probes (for the first 8 out of 16 bunches). In the grey regions, the ESQ are charged
during muon storage. (b): the ESQ time structure zoomed in to a single beam pulse, where
the black dashed line is the time of muon injection.

The transient quadrupole fields were measured by varying the delay time between the ESQ trig-
ger and the NMR measurement, performed at several positions corresponding to quadrupole
locations. Figure 4.7.10 shows the structure of ESQ transients measured in Run-1, when the
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number of measurement locations was limited; in Run-2/3, NMR probes measured ESQ tran-
sients on the trolley rails, allowing for a full mapping of all quadrupole stations. The value of
B, was —17(92) ppb in Run-1 (indeed, it was the largest systematic contribution to the result)
and —21(20) ppb in Run-2/3 [1, 3].

Kicker transient fields By,

As explained in Section 4.2, kickers deflect the injected muon beam towards the ideal orbit, by
reducing the magnetic field by ~ 22mT for 150 ns. The pulsed field induces eddy currents in the
surrounding metal, leading to field perturbations during muon storage. The fixed NMR probes
are shielded from this rapid transient field by the skin depth effect of the aluminum vacuum
chambers [97], so dedicated measurements were carried out by two Faraday magnetometers, in
order to account for this effect.

The magnetometers exploit the rotation of the polarization angle 6 of linear polarized light
when passing trough a dielectric material submerged in a magnetic field. If the field is parallel
to the direction of propagation of the light, the polarization rotates by:

AO(t) =V -B(t)- L (4.7.14)

where V' is the Verdet constant of the dielectric material and L is the length of the material. The
magnetometers consist of a terbium gallium garnet (TGG) crystal placed vertically between the
kicker plates and supported by a structure built without any metal parts; for this material, the
Verdet constant is approximately 450 rad/Tm. The polarized light is brought to the crystals
with optical fibers for the magnetometer by UMass (shown in Figure 4.7.11(a)), whereas, for
the other one by INFN, light travels through free space and is brought to the crystal by mirrors.
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Figure 4.7.11: From Ref. [97]. (a): schematic of the fiber magnetometer inserted between
the kicker plates. (b): the field perturbation caused by the eddy currents as measured by
the fiber magnetometer. The grey shaded band represents the associated uncertainty of
+0.6 pT.

The Run-1 measurement result is shown in Figure 4.7.11(b). Field perturbation is obtained
by fitting the data with an exponential function between the w, fit start time t, (which was
around 30 ps in Run-1/2/3) and 700 ps:
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AB(t) = AB(ty)e~tt)/ms (4.7.15)

The fractional effect on the muon anomalous precession frequency measurement depends on
the fitted lifetime 75 of Equation (4.7.15):

2
B, A AB(to) -k (78 (4.7.16)
Wa 145T \7p+7,

where k is a scaling factor that takes into account the azimuthal coverage of kickers in the
storage ring, approximately equal to (3 -1.27m)/(27 - 7.112m) ~ 0.085. The value of B was
—27(37) ppb in Run-1 and —21(13) ppb in Run-2/3 [1, 3].

4.7.6 Blinding of the analysis

There is one more term present in Equation (4.7.3): the secret blinding frequency feock, that
is applied to our w, results during analysis, in order to prevent any unconscious biases of the
analyzers when processing and fitting the data. The blinding procedure artificially shifts w,
with respect to the true value, and it is applied in two different ways: at the hardware level,
where the secret shift is set and monitored by people external to the Muon g — 2 collaboration,
and at the software level, where the secret shift is chosen by w, analyzers and is different for
each analysis group.

Hardware blinding

The clock timing of the experiment’s detectors is provided by a 10 MHz Rubidium “master”
clock. The Rubidium source provides the short-term oscillation stability, while a GPS receiver
provides the long-term stability. The master clock generates a signal for two precision syn-
thesizers, Stanford Research Systems (SRS) SG-382, which in turn generate the 60 MHz clock
for the field measurement and the 40 MHz primary clock for the calorimeters. The latter is
up-scaled to the sampling rate of 800 MHz in the calorimeter front-ends, which defines the unit
of 1c.t. (clock tick) equal to 1.25ns. The hardware blinding consists in detuning the master
clock frequency, in the interval [39.997,39.999] MHz, thus introducing an intrinsic bias on the
measured frequency of £ 25 ppm, hundreds of times larger then the precision on a,. The secret
frequencies are noted in two sealed envelopes: only upon completion of the analysis, crosschecks
and systematic evaluations, and after the unanimous decision of the collaboration to unblind
the result, the secret frequencies are revealed and applied to the formula to extract a,,.

Software blinding

During the analysis, a further level of blinding is applied to the w, fitting procedure, in order
to prevent biases at the stage of comparing fit results among the analysis teams. When wiggle
plots are fitted to extract w,, the fit routine replaces w, with an adimensional parameter R,
defined as the fractional offset, in ppm, of the fitted w, from a secret reference value:

wa(R) = 27 - (0.2291 MHz) - [1+ (R + 6R) - 10~°] (4.7.17)

where R is the secret reference value that differs for each analysis group, and 0.2291 MHz is
the inverse of the w, period of ~ 4.3651s. d R is randomly generated in the range [—24, +24] ppm
starting from a passphrase that the analysis group chooses, and using a MD5 hash algorithm [108].
After the w, analysis is complete, and before the secret hardware frequency is revealed, all
groups apply a common software blinding that allows to perform cross-checks on the results.
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Chapter 5

The Run-2/3 measurement of the
anomalous precession frequency wg

The anomalous precession frequency w, measurement is the main topic of this Thesis: it is
measured by counting the number of positrons above a fixed energy threshold which are detected
by the calorimeters over time, and it is performed independently by several analysis groups
which will be presented in this Chapter. KEach analysis group introduces a secret blinding
offset to their w, fits with the procedure described in Section 4.7.6, to prevent biases when
comparing results in the early stage of the analysis. When presenting the results of w, fits,
we will always report the blinded values; the unblinded average among all teams, used for the
Run-2/3 publication, will be shown in Chapter 7.

5.1 Overview of the Run-2/3 w, analysis

5.1.1 Run-1/2/3 campaigns and running conditions

In the 6 years of running, the E989 experiment at Fermilab collected 21.9 times the number of
positrons that the previous experiment E821 at Brookhaven had collected and analyzed. This
allowed us to reach and hopefully surpass the design goal for the statistical uncertainty on a,,
set to 100 ppb by the Technical Design Report [4]. Figure 5.1.1 shows how our data is split into
6 campaigns, called Run-X datasets (with X ranging from 1 to 6), from 2018 to 2023. Each
dataset is characterized by different running conditions: ESQ voltage, kicker settings, muon
beam dynamics, muon storing efficiency, and so on.

In this Section, I will describe the main differences between each Run, and any upgrades or
changes in the experimental setup. In the rest of this Thesis, I will use the term “dataset” to
refer indistinctly to a whole Run, or to its subsets that will be presented in each of the following
Sections.

Run-1 data was collected from April to June 2018 and it was divided in 4 major datasets for
analysis, labelled from Run-1a to Run-1d. Run-2 data was collected from March to July 2019
and Run-3 data was collected from November to March 2020, although it was planned to last
until July 2020 with more datasets, but ended before due to the COVID-19 pandemic. Run-2/3
were divided into a total of 20 datasets, but, thanks to the improved stability of the hardware
conditions with respect to Run-1, many datasets were combined to allow higher statistics in
the w, and reduction of the statistical uncertainties of some systematic effects. Thus, Run-2/3
were divided into three major datasets for analysis: Run-2, Run-3a and Run-3b. On the B-field
side, a total of 25 and 44 trolley runs have been performed for Run-2 and Run-3, respectively,
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Figure 5.1.1: The 6 run periods of the E989 experiment, with labels indicating the periods
in which each data acquisition campaign took place. The last day of acquisition is reported
in the top, with the total number of collected positrons in terms of the E821 BNL statistics.

as opposed to 19 trolley runs in Run-1.

The analyzed positrons from muon decay included in the final datasets were selected according
to Data Quality Cuts (DQC)!. The DQC cuts select fills based on the stability of the magnetic
field and of the ESQ system; they also check that the kicker amplitude and timing were at
nominal during data acquisition, and that beam profiles from the TO detector and laser syn-
chronization pulses were present. Final selection cuts were applied based on the average rate
of lost muons and on the number of positrons detected (normalized by TO integral).

Table 5.1.1 reports the field index n and kicker strength for each dataset, along with the number
of reconstructed positrons with energies above 1.7 GeV which were analyzed by the w,Europa
team.

| Dataset | T-Method e [x10%] | Field index n | Kicker [kV] |

Run-1a 0.96 0.108 130
Run-1b 1.34 0.120 137
Run-1c 2.05 0.120 130
Run-1d 4.09 0.107 125
Run-2 11.32 0.108 142
Run-3a 15.04 0.107 142
Run-3b 5.96 0.107 165

Table 5.1.1: Dataset statistics and hardware conditions for Run-2/3 compared to Run-1.
The number of analyzed positrons (e™) is reported for the w,Europa T-Method fits.

IThis has been one of my major service works for the experiment, as I have been managing this stage of
dataset reconstruction since 2021.
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Some of the significant improvements and changes for Run-2/3 with respect to Run-1 were the
following;:

e During Run-1 there were two damaged resistors in the ESQ plates. The resistors were
replaced after Run-1, improving the stability of radial and vertical betatron oscillations
and reducing the phase acceptance correction Cp, in Run-2/3 significantly (as discussed
in Section 4.7.3).

o The kicker strengths for Run-1, Run-2 and Run-3a were limited to 142kV by the cables
used at that time: as a result, the beam was not perfectly centered in the storage region.
At the end of Run-3a, the cables were upgraded and the kicker voltage was increased to
165kV in Run-3b to achieve optimal kick. This resulted in a better-centered muon beam
which reduced the electric field C, correction. The difference in the muon beam profile
before and after the kicker upgrades can be seen by comparing Figures 4.7.6(a) and 4.7.9.

o Between Run-1 and Run-2 the magnet yokes have been covered with a thermal insulating
blanket to mitigate day-night field oscillations due to temperature drifts. In addition,
the experimental hall’s air conditioning system has been upgraded after Run-2 to further
stabilize the temperature of both the magnet yokes and the detector electronics to better
than +0.5°C.

o The number of lost muons was greatly reduced in Run-2/3 thanks to two upgrades.
Firstly, the operational high-voltage set points for the ESQ system were lowered, in order
to avoid betatron resonances for beam stability. Secondly, all 5 collimators shown in
Figure 4.2.1(a) were used in Run-2/3, whereas only 2 were used in Run-1: this allowed
for better beam scraping.

It’s worth mentioning a number of further differences in the analysis across the Run-1/2/3
periods:

o There were three different hardware blindings (see Section 4.7.6) for each Run (Run-
1/2/3). This allowed to publish the Run-1 result in 2021 while Run-2 was still at its early
stages of reconstruction and analysis. Before releasing the Run-2/3 result, we performed
a “relative” unblinding between Run-2 and Run-3 which allowed to compare the datasets
directly with a common blinding offset.

» Towards the end of Run-3, there was a change in the configuration of In-Fill-Gain (IFG)
laser pulses (described in Section 4.4.2). In the initial configuration, 4 laser pulses covered
the entire 700 ps of storage time moving by a step of 2.5 s per fill, for a total of 93 steps
before the pulses moved back to their starting point; in the new configuration, the step
was reduced to 1.5ps to allow for a finer scan of the fill time, and the number of total
steps was increased to 117.

e In Run-la/1b/lc, and in Run-2/3, the w, fit range was [30, 650] ns. For Run-1d, the fit
start time had to be increased to 50 s because the effect of damaged resistors got worse
towards the end of Run-1, and choosing a higher start time would reduced the related
systematic effect despite increasing the statistical uncertainty.
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5.1.2 Organization of w, analysis teams

In Run-2/3, the w, analysis was conducted by seven independent teams using a number of
different strategies for the positron reconstruction, subtraction of pileup, and treatment of
beam dynamics effects. Table 5.1.2 describes some of the main characteristics of the seven
teams, which are labelled as follows: Boston University (BU), Cornell University (CU), Europa
(wgEuropa), Illinois Ratio Method Analysis (IRMA), University of Kentucky (UKy), Shanghai
Jiao Tong University (SJTU) and University of Washington (UW).

BU CU w,Europa IRMA UKy SJTU UW
Local At/ Global ReconlTA Global Q Local | Local A¥

Pulse fitting
and clustering
Pileup

subtraction Empirical | Empirical | Semi-empirical | Empirical - Shadow | Empirical
Analysis
methods T, A, R, RA T, A T, A, R, RA T,A,R |QRQ| T,A T, A

Table 5.1.2: Main details of the procedures to build and fit wiggle plots for each of the seven
analysis teams in Run-2/3. The Q-Method, Local and Global reconstruction procedures are
described in Ref. [108], whereas the ReconITA and Local At’ are described in Ref. [118]
and [119], respectively. The Pileup row refers to how multiple hits on the same crystals are
handled when building doublet and triplet events: the Empirical and Shadow methods were
described in Ref. [108], whereas the w,Europa Semi-empirical will be described in Section
5.2.3. The “Ratio” versions of A-Method and Q-Method (RA and RQ), respectively) are new
with respect to Run-1.

In the following, I will focus on my contributions, consisting in the development of the Ratio-
Asymmetry Method, new with respect to Run-1, in the Run-2/3 fits to wiggle plots. The w,
results and systematic errors from this method were included in the 2023 publication [3]. This
work has been done within the w,FEuropa team.

5.1.3 Europa w, analysis workflow

In the Run-2/3 analysis, w,Europa developed the “ReconlTA” reconstruction with the aim of
reducing the major Run-1 w, systematics, such as the pileup effect which amounted to 35 ppb.
Details on the new reconstruction will be provided in the following Sections (a full description
can be found at [118]).

Residual slow
term correction

. . Pileup Time Wiggle
> l > : i i " -
Raw data Pulse fitter Clustering I . randomization s m

Gain calibration Analysis
Lost muons
constants methods
Figure 5.1.2: Run-2/3 w,Europa analysis workflow.

The chart in Figure 5.1.2 describes the procedures employed in the w,FEuropa team, to recon-
struct positron events from raw SiPM data and build wiggle plots.

75



CHAPTER 5. THE RUN-2/3 MEASUREMENT OF THE ANOMALOUS PRECESSION
FREQUENCY w,

5.2 Procedure to reconstruct positron events

5.2.1 New clustering for the Europa w, analysis

The first step in the reconstruction of positron events involves a fit on crystal traces. Given
the high linearity of the SiPMs with respect to deposited energy (see Section 4.4.1), we extract
templates for each of the 1296 crystals before the beginning of each Run, and scale them in
amplitude so that they fit the waveforms of positron hits, like the example in Figure 5.2.1.

- 1000

Trace [ADC*c.t.]

- 1200

- 1400

- 1600

Time [c.t]

Figure 5.2.1: Simulated trace of a positron hitting a crystal, fitted with a predetermined
template to obtain the time and deposited energy of the event. 1 clock tick (c.t.) is equal
to 1.25ns (see Section 4.7.6).

For each event in which a positron has released energy in the calorimeters, we perform these
template fits and assign the corresponding hit times and amplitudes (in arbitrary units, before
energy calibration) to each crystal that contained a waveform. At this point, we calibrate the
hits in energy (see Section 5.2.2 that follows), and we synchronize all crystals of all calorimeters
in time, using the laser pulses that are normally shot in Standard Mode during data acquisition
a few ps before muon injection. At last, our clustering procedure reassembles all of the crystal
hits and reconstructs a candidate for positron event. The new ReconITA clustering algorithm
is an improvement with respect to the Run-1 clustering (the one referred to as local-fitting in
Ref. [108]), which was modified in order to use the time information of the crystal hits as an
input to the clustering,.

All crystal hits are passed as the input of the so-called seed-and-propagation algorithm. This
procedure finds the most energetic hit among all crystals in a calorimeter, and uses it as the
cluster “seed”: the time of the seed determines the cluster time, since dedicated studies on the
time distribution of crystal hits showed that most of the energy deposition is localized in that
crystal [118]. From these studies, the width of the distribution o(F) was obtained, by taking
the root mean square (RMS) of the time difference between all hits in a cluster and the cluster
seed. This function decreases with the crystal hit energy: o(F) = 0.198+70.4/F, with energies
in MeV units. Then, the algorithm propagates the cluster according to times and energies of
adjacent crystals: positron hits that are ne crystals apart are merged into a single cluster, if
they fall within the time window At,;, defined in clock tick units (1c.t. = 1.25ns) as

Atijle.t] < o(E;, Ej) + 0.03nc, o(E;, Bj) = \/oX(E;) + 0*(E)) (5.2.1)
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where o(E;, E;) adds in quadrature the two width functions for each couple of crystal hits 1, j,
and the parameter 0.03n¢ is used to include a spatial input in the time window At;;.

All these steps are repeated for the remaining crystal hits that were not included in the first
cluster, starting from a new seed. At the end of this procedure, any remaining low energy hits
(< 100 MeV) are assigned to the closest cluster, but only if they meet the same time criterion
reported above, otherwise they create new independent clusters.

In general, there is the possibility that there are two or more positron hits fitted on the same
crystal waveform. These hits are treated independently, and may be included in the same
cluster, or they may be separated, according to the time window criterion in Equation (5.2.1).
As a very last step of the clustering procedure, if the seed of a cluster has a second hit on the
same crystal that was not associated to any other cluster, then the second hit is included in the
same cluster as the first hit. This feature handles rare occurrencies in which the template fitter
incorrectly recognizes two positron hits in the same waveform close in time: the second hit is
re-absorbed into the cluster of the first hit, so that the total energy of the hit can be measured
correctly.

At the end of the clustering algorithm, each cluster is identified as a positron event: the
reconstructed time of the event is the one of the cluster seed, and the reconstructed energy is
the sum of all the crystal energies that compose the cluster. Figure 5.2.2 compares the energy
spectrum of reconstructed positron events between the Run-1 algorithm and the improved
ReconlTA Run-2/3 algorithm. The energy region above ~ 3.1 GeV is nonphysical, because
positrons are emitted from muons at the magic momentum of ~ 3.1GeV/¢, so they cannot
have more energy than the parent particle. The events in the nonphysical region are explained
by the presence of pileup, i.e. two or more positron events that occur at the same time in a
calorimeter, which are misidentified as a single event. With the improved Run-2/3 algorithm,
the reconstruction is able to better resolve pileup events and reduce their number by a factor
of ~ 2, estimated from the integral of the red and blue curves after 3.1 GeV. Section 5.2.3 will
describe how we subtract pileup to reduce the curve to 0 in the nonphysical region.
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Figure 5.2.2: Cluster energy spectrum before pileup correction: comparison between Run-1
(blue) and Run-2/3 (red) clustering algorithms.
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5.2.2 Gain corrections

When positrons hit calorimeters, the SiPM signals are recorded by analog-to-digital (ADC)
waveform digitizers, and stored for analysis: “gain” is the conversion factor between the ADC
values and the physical energy deposited by positrons. The state-of-the-art laser calibration
system described in Section 4.4.2 can measure the gain at a sub per-mill precision over a wide
range of timescales: from tens of nanoseconds to weeks.

Short-Term Double-Pulse (STDP) correction

When two positrons hit the same crystal in a short interval of time (within ~ O(10ns)) a
gain drop occurs: this is because when a SiPM is hit, it delivers charge that comes from all
available source, including the SiPM array itself which behaves like a charged capacitor; the
bias voltage momentarily drops, until the charge is recovered. More details on how the SiPM
response depends on the frontend electronics are reported in [99]. To account for this effect,
the so-called Double Pulse operation mode is used, where the light from two laser heads is
redirected on the same crystal and two laser pulses are fired with a set time delay ranging from
0 to 100 ns. The Double Pulse Mode simulates the physics case in which two positrons hit the
same crystal within tens of nanosecond: the first pulse causes the bias voltage drop and the
consequent gain sag, while the second pulse is a probe for the size of the sag. In dedicated
STDP campaigns before the beginning of each Run, we fix the energies £} and FE, of the two
laser pulses, and vary the time delay At to reconstruct the gain function of the SiPM and fit it
with an exponential:

G(At,Ey) =1 — aEe 27 (5.2.2)

Figure 5.2.3 shows an example of fit on the STDP data. Typical values for the fit parameters
in Run-2/3 were a ~ 2%/GeV, 7 ~ 151ns, both with an average relative uncertainty of 2%.
When two positrons events are reconstructed close in time in the same crystal, the energy of
the second one is thus rescaled: E) = Ey/G(At, Ey).

Gain
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0.98
0.97
0.96
0.5
0.94

=0.094 £0.002, 1 =(17.3£0.5) ns
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10 20 30 40 50 60 70
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O

Figure 5.2.3: Example of short-term gain sag for a crystal, fitted with Equation (5.2.2).
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In-Fill-Gain (IFG) correction and Long-Term Double-Pulse (LTDP)
campaigns

Two types of transient effects in the 700 ps window of storage time contribute to in-fill variations
of the detector gain, which is the most significant source of systematic effect in the w, analysis
among the gain-related ones. Firstly, upon beam injection, a big “flash” of particles hit the
calorimeters in the first few ps, making them temporarily blind. These particles mostly deposit
their energy in the first calorimeters and quickly exit the storage region. Secondly, in the time
range of [30,700] ps of w, analysis, the muon decay rate drops by more than four orders of
magnitude because of the 64.4 s lifetime in the laboratory frame. The SiPM power supplies
are affected by these two facts, and the gain sag resulting from charge depletion is restored
with the SiPM electronics recovery time of 3 s + 8 ps.

The in-fill gain correction for each crystal is extracted by sending in-fill laser shots at the same
time of muon beam in a fraction of fills, and measure the laser energy detected the SiPMs,
equalized using the Local Monitor (see Section 4.4.2). The ratio between the laser energy
that we send and the one measured by SiPMs is then normalized by the same ratio calculated
with out-of-fill pulses (described further in this Section), in order to correct for long term gain
fluctuations, since we combine many fills together - collected over many days or even weeks -
to extract the parameters of IFG correction.
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Figure 5.2.4: From Ref. [118]. Example of an IFG function for a particular crystal in
Run-3. In the exponential fit (red) the lifetime is fixed from LTDP studies. The dashed line
at 24 ke.t. (30 ps) represents the start of the w, measurement period.

A typical IFG function is shown in Figure 5.2.4, fitted with an exponential of the form:

G(t) = N (1 = agpg e "/7%9) (5.2.3)

where arpg is the amplitude of the sag and 7;p¢ is the recovery time of the electronics. The
asymptote N is a free parameter since the complexity of the measurements can bring small
deviations from 1, typically of the order of 107* + 1073. In Run-2/3, the average value of a;pg
was around 2% + 3%, but it could reach 10% <+ 15% for the first calorimeters which saw a
greater amount of flash particles at injection; 77p¢ has a bi-modal distribution around 4 and 8,
which was understood as a specific pattern of the SiPMs electronics [120].
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The N and a;pg parameters of Equation (5.2.3) are free in the fit, whereas 77p¢ is fixed from
dedicated Long-Term Double-Pulse (LTDP) studies [101, 118], in order to avoid correlations
between the two parameters (which will be useful for assessing the systematic uncertainty, as
explained in Section 6.1) and also because for some crystals the amplitude is so small that it’s
difficult to extract the lifetime. Like the STDP campaigns, the LTDP studies occur before the
beginning of every Run, in the absence of muon beam: to mimic the effect of the particle flash
at injection, a burst of ~ 100 laser pulses are shot between 0 and 8 ps; a laser pulse is then sent
with a variable delay, ranging from a few ps to hundreds of ps, to serve as a probe of the SiPM
gain.
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Figure 5.2.5: In-Fill-Gain fit residuals, obtained by summing over the 1296 SiPMs over all
the Run-2/3 datasets. The red histogram shows only the contribution from the 16 “hottest”
crystals, which are closest to the beam storage region and therefore detect positrons with a
higher rate.

Figure 5.2.5 shows the accumulated fit residual obtained by summing over the 1296 SiPMs for all
the 20 datasets of Run-2/3. The contribution from the highest-rate crystals of each calorimeter
is also shown. The horizontal black bands are placed at &= 1074, which is the level of precision
needed to limit the gain systematics below the design goal of 20 ppb. The residuals after 30 ps
(relevant for the w, analysis) are well contained within these bands, giving us confidence that
IFG function that we use properly accounts for the in-fill changes of SiPM gains.

Out-Of-Fill (OOF) correction

As described in Section 4.4.1, SiPMs have the advantage of being very stable in the presence of
strong electric and magnetic fields; however, they are also very sensitive to temperature varia-
tions, so their gain must be calibrated on the timescales of days and months. In Section 4.7.3,
the concept of early-to-late effects which bias w, was introduced. The long-term fluctuation
of SiPM gains is not an early-to-late effect so it does not directly affect the w, measurement,
but it complicates the analysis because different subsets of the data will have a different effec-
tive energy threshold to build wiggle plots. For this reason, the laser system fires a series of
Out-Of-Fill (OOF) pulses, between each muon fill and the next. This provides a continuous
monitoring of the SiPM performance and allows to build a long-term gain correction. The OOF
correction is extracted by averaging O(500) pulses and comparing the measured energies with
the reference from the Source Monitor:

(Eoor)

Bnr) (5.2.4)

GOOF -
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Absolute gain calibration

The STDP, IFG and OOF corrections calibrate the detector gain over a wide range of timescales
and correct for effects that cause a gain sag; however, they still leave the recorded positron
energies in ADC units. The last step of the energy calibration is to equalize SiPM response,
and set the absolute scale. For this purpose, we have dedicated runs before the start of each
Run where the Fiber Harps (described in Section 4.6) are inserted with a destructive effect on
the muon beam, thus enhancing muon losses: the muons that are scattered towards the inside
of the storage ring can typically hit multiple calorimeters in their trajectory because they are
minimum ionizing particles (MIPs) and release a small amount of energy on individual crystals,
with a time delay of ~ 6.2ns between each calorimeter hit. We reconstruct scattered (“lost”)
muons by selecting single-crystal hits coincidences on consecutive calorimeters; for each crystal,
we build the distribution of released energies, which have a gaussian shape. We equalize SiPM
gains by fitting each gaussian and imposing that the peak position is the same for all crystals.
The absolute scale, instead, was obtained from positron signals collected during Run-1: the
T-Method wiggle plots was built, scanning for different energy thresholds and performing a
5-parameter fit with a function like Equation (4.7.4), where Ny, 7, A, w, and ¢ were left free to
float; the energy threshold that minimized the statistical uncertainty on w, was set to 1700 MeV,
and this calibration was used for following runs. Figure 5.2.6 shows that the minimum was still
at 1700 MeV in Run-2 data.
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Figure 5.2.6: Statistical uncertainty of w, as a function of the energy threshold Ejj for the
T-Method fits (from a subset of Run-2).

5.2.3 Pileup subtraction

When two or more positrons hit the same calorimeter within O(10ns), the reconstruction
algorithm is not always able to separate the two events: the incident particles are reconstructed
as a single hit, whose energy is the sum of the deposited energies. This is the pileup effect and
it distorts the number of positron counts and the time and energy spectra. The reason why
pileup is a problem when fitting w, is schematically explained in Figure 5.2.7: two low-energy
positrons arrive on the same calorimeter at the same time, and can be mistaken for a high-
energy hit; but a high-energy positron that arrives on the same calorimeter would decay from
the red muon which has a different g—2 phase, instead. Thus, pileup affects the fit to the initial
phase ¢ in Equation (4.7.4); more importantly, it does so in a time-dependent way, because the
rate of double-events is proportional to the square of the rate of detected positrons, so it has a
lifetime of ~ 32 ps (half of the muon lifetime in the lab frame). This early-to-late modification
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of ¢ introduces a systematic bias in w,, so we need to subtract pileup from our reconstructed
events before attempting to fit the anomalous precession frequency.

Spin
Wy

Spin "\
High Energy § Calo

— .

Figure 5.2.7: The blue muons decay later than the red muon, so they have a different
precession angle (here the difference in angles is exaggerated on purpose). Due to pileup,
two positrons that hit a calorimeter might be mistaken for a single positron that decayed
earlier in time, with higher energy.

We will now review our “shadow window” method to subtract pileup. It is an algorithm that
assumes that the probability of observing a “doublet” (pileup between two positrons) equals
that for observing two “singlets” that are separated in time by an amount much smaller than
the experiment’s timescales. For every cluster in a calorimeter during a muon fill, the algorithm
defines a time window of Tp = 5ns that starts after a gap time T = 149.2ns (equal to the
cyclotron period), and searches for another cluster in that window: if it finds one, we say it
identified a “doublet”. In Run-2/3 analysis, we have added the search for triple events: if a
positron event is found in the first shadow window, a second shadow window after the first is
defined as well, with the same T and Tg; if we find another cluster, we identify a “triplet”;
if we do not find another cluster, we check that the doublet wasn’t part of a previous triplet,
otherwise we won'’t count it. Figure 5.2.8 shows how the shadow windows are defined after the
trigger positron event, to search for doublets and triplets.

149.2 ns &

e™ 149.2 ns

Ime
5 ns 5 ns
Figure 5.2.8: Example of shadow windows to search for double and triple pileup events,
after a trigger positron event. The blue shadow is built only if an event is found in the red
shadow. We also check that the positron found in the red band was not part of a previous
triplet.

If we find a cluster in the shadow window(s), we retrieve the list of crystal times and energies
that formed the trigger (T) and shadow (S) clusters, and we merge this shifting the shadow
times back by —Ty and —2T for doublets and triplets respectively. We pass the merged
list as an input to our clustering algorithm and check if it splits the list into two (or three
clusters) or not. If the clustering splits the list, we move to the following trigger. We say
that we have a pileup event if our clustering is not able to split the list: in that case, we keep
record of the individual energies and times (Er,tr) (for trigger clusters) and (Es, ,, s, ,) (for
shadow clusters), and also build a “pileup” event with energy and time (FEs,ty) (for doublets)
or (Es,t3) (for triplets). The combined energy is the sum of individual cluster energies, whereas
the combined time is the energy-weighted average of individual times, as in Equation (5.2.5):
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(tr +Ta/2)Er + (ts, — Te/2)Es,
Er + Eg,
(tr + To)Er +ts, Es, + (ts, — Tg)Es,
Er+ Eg, + Eg,

Ey = (Er + Eg,) lo =

(5.2.5)
E; = (Er + Eg, + Es,) tz =

The reason why we shifted trigger and shadow times by + T /2 (doublets) and +, T (triplets)
is to account for the muon flux drop during the gap time(s). Calling p(t) the probability for
detecting positrons at time ¢, we can define the times ¢’ and ¢” such that the following relations
hold for doublets and triplets, respectively:

p(t)p(t +Tg) = p*(t')

_ 3o (5.2.6)
p)p(t + Te)p(t +2T¢) = p°(t")
Assuming p(t) o< exp (—t/7), we can solve Equation (5.2.6) and obtain ¢’ = T/2, t" = Tg.

We repeat this procedure using all clusters as triggers, and then we populate four two-dimensional
histograms filling them with the assigned energies and times from Equation (5.2.5): doublets

are filled with (FEs,t5), their related singlets with (Ep,t7) and (Fg,,tg,); triplets are filled with

(Es5,t3), their related singlets with (Er,tr), (Es,,ts,) and (Es,,ts,). From the two-dimensional

histograms of positron events obtained with the clustering procedure described in Section 5.2.1,

we subtract double and triple pileup events for each time and energy bin, and add singlets.
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Figure 5.2.9: Pileup energy (a) and time (b) distributions.

Figure 5.2.9 shows the time and energy distributions of the double and triple pileup correc-
tions for the ReconlTA clustering for a subset of Run-2. The double pileup contamination at

= 30ps is ~ 2 x 1072 and decays as 7p ~ 32.21s, while the triple pileup contamination
is ~ 4 x 107% and decays as 77 ~ 21.5ps. Almost all the energy spectrum above 3.1 GeV
disappears after pileup subtraction: the systematic associated to how well we have corrected
for pileup will be discussed in Section 6.2. In Run-1, the procedure to subtract triple events
was not implemented and this was treated as a further systematic effect, which is not present
anymore in Run-2/3. In Ref. [118], there are also more details on how we avoid double counting
doublets and triplets, for instance in the case in which one of the positrons (trigger or shadow)
used to build a doublet was, in fact, a pileup event itself.
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There is a further detail that we take into account within the w,Europa pileup subtraction,
which handles the real-case scenario when two positron signals overlap on the same crystal, and
which defines the “semi-empirical” label in Table 5.1.2. In this situation, the SiPM will receive
two signals so close in time that the reconstruction algorithm might not be able to distinguish
them, fitting a single pulse instead. Unless the two pulses are exactly simultaneous, the energy
determined by fitting a single pulse will be slightly lower than the sum of the two pulses. Figure
5.2.10 shows an example of two overlapping pulses of equal energy which are 1c.t. apart. The
fit using a single pulse results underestimates the energy by ~ 2.3%.
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Figure 5.2.10: Template fit of two pulses when they are At = 1 c.t. (1.25ns) apart. A
single template fit is performed as the reconstruction is not able to distinguish between the
two underlying pulses. The measured energy (Ey; = 1954.8 ADC*c.t.) is smaller than the
sum of the two underlying pulses.

When doublets and triplets are built from trigger and shadow clusters with multiple hits on
the same crystals, we need to reproduce this effect to avoid a systematic bias on the observed
energy. To study it, real SiPM pulses were used to create artificial traces by summing two
pulses with arbitrary time separation and energies. The traces were then sampled at 800 MHz
(as a reminder, 1c.t. corresponds to 1.25ns sampling time) and the points were multiplied by
a smearing factor that represents the SiPM noise. This factor was randomly extracted from
a Gaussian distribution of mean 1 and variance o2 = 0.0032, where 0.003 was the RMS value
we observed from waveform fits residuals. Finally, the artificial trace points were digitized into
integer ADC values and the result was stored in a format which could be processed by the
reconstruction algorithm as if it were real raw data. We provided the artificial signal as an
input to our pulse fitter and we analyzed the fitter response, to check whether or not the pulses
were being split, and, if not, which were the reconstructed energies and times. From this study,
we extracted the following parameters as a function of the time separation At between the
original pulses, and their energies F; and FEs:

1. The efficiency of separating the two pulses;
2. The bias in energy of the single fitted pulse;
3. The bias in time of the single fitted pulse.

Figure 5.2.11 shows these corrections on average. When there are two or more pulses on the
same SiPM in a shadow window coincidence, they are merged into one pulse according to the
probability of Figure 5.2.11(a). If merged, the following corrections are applied:
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_ hEr+ 6By
Ey + By

where both f.,.,. and t.,.. depend on At, E;, and FEs, according to the corrections of Figures
5.2.11(b) and 5.2.11(c) respectively.
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Figure 5.2.11: Pulse fit average corrections for multi-hit crystals in a pileup coincidence.
(a) is the efficiency of separating the two individual pulses, (b) is the ratio between the fitted
energy and the sum of the two pulses, and (c) is the difference between the fitted time and
the energy-weighted average of the two pulses.

5.2.4 Lost muons

In the w, analysis, we need to take into account the number of muons which are lost from the
stored beam before they can decay into positrons, the so-called “lost muons”, introduced in
Sections 4.7.3 and 5.2.2.

The procedure with which we build the lost muons function in the w,Europa analysis has not
changed since Run-1, and it is described in Ref. [118, 121, 122]. As anticipated in previous
Sections, we can easily identify lost muons with calorimeters and trackers thanks to the char-
acteristic signature of the traces they leave: they have a momentum close to 3.1 GeV /¢ which
can be measured by trackers, and deposit ~ 170 MeV of energy in the calorimeters, which is
the typical energy deposit for a MIP particle travelling in 14 cm of PbFy; their trajectory is
almost perpendicular to the calorimeter’s face, so they only deposit energy in a single crystal
and can hit several consecutive calorimeters, with a time of flight between two calorimeters
~ 6.2ns. Therefore, in the w,Europa analysis we used data from the two trackers, and from the
calorimeters behind them, to build likelihood functions based on the deposited energy, position
distribution and time of flight with respect to the previous and to the next calorimeter. We
built the L(t) histograms by counting events that satisfied the likelihood cuts in 2, 3, 4 or even 5
consecutive calorimeters. Figure 5.2.12(a) shows the L(t) function obtained by summing triple,
quadruple and quintuple coincidences. We compared the functions for Run-2/3 datasets with
the one from Run-1d, where losses were enhanced by the damaged ESQ resistors that greatly
affected beam dynamics in Run-1. The double coincidences are not included in our L(t), as they
were found to contain some residual positron background; however, they are used as a cross
check of the systematics related to our partial knowledge of the “true” lost muons distribution
(see Section 6.4). The four L(t) functions for Run-1d and Run-2/3 have a similar shape at later
times (t 200 ps) but early-in-fill Run-2 is different: a bump is present and peaked at around
70 s, with a size that was found to be correlated with magnet parameters, such as the yoke
temperature and feedback current.
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Figure 5.2.12: Run-1d dataset compared with Run-2/3 datasets: (a) L(t) histograms with
lost muons counts from 3 + 4 + 5 coincidences, and (b) the integrated lost muons functions

J(t).

The consequence of losing muons during storage time is that the observed decay rate deviates
from a pure exponential with 64.4 ps of lifetime. By solving a differential equation, we obtain:

WN_ N

a7 ; (5.2.8)
N(£) = Noe /7" (1 ko L(t’)ef’f‘”dt’) = Noe "™ (1 = kparJ(2))
0

where Nj is the initial number of stored muons, and the scale factor kpy; is a parameter that
takes into account the efficiency of the muons selection algorithm, and included in the w, fit
(see Section 5.5.2). Figure 5.2.12(b) shows the three J(t) curves for the Run-2/3 datasets,
where in the Run-2 case the L(t) is peaked at around 70ps. We chose to normalize the J(t)
functions such that they are equal to 1 for t = 650.0644 ps (see Section 5.5.6): by doing so, the
fitted krys does not depend on the dataset size.

5.2.5 Residual slow term correction

Since the Run-1 analysis, we have been affected by a residual early-to-late (or “slow”) effect in
our w, fits, whose source is still under investigation [3, 108|. In our preliminary Run-2/3 fits,
we observed several hints of this effect, most of them also present in Run-1. When performing
T /A-Methods fits selecting slices of energy (30 MeV bins), the kry parameter was not constant,
but it drifted downwards and reached negative values as the energy increased. A negative kr s
would be nonphysical, because it would mean that muons were somehow added to the stored
beam much later than injection. Moreover, in Run-3 fits krjs was even starting from a negative
value at low energies: as shown in Figure 5.2.12(a), losses were much reduced in Run-3 so it
was easier for a slow effect to pull kr); towards negative values, rather than in Run-2 where a
big bump near 70 ps placed a strict constraint on kpy;. Another hint of a slow term was the
typical value of the reduced y? (the x? normalized by the number of degrees of freedom, that
we will indicate as x?/n.d.o.f. in the rest of this Thesis). In our preliminary fits, the y%/n.d.o.f.
was always around 1.08 with n.d.o.f. = 4133, suggesting that there was a term that we were
not accounting for; in the fast fourier transform (FFT, see Section 5.5.4), a peak at near-zero
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frequencies in the residuals was present, hinting at the slow nature of the unaccounted effect,
rather than a missing oscillation in the fit function.

Scan on reduced -2
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Figure 5.2.13: Scan on the x?/n.d.o.f. for Run-2 preliminary T-Method fits, to extract the
optimal parameters of the residual slow term correction.

To correct for this residual slow term, different groups have taken different approaches since
Run-1. In the w,Europa analysis, we chose to apply an “Ad-Hoc correction” which consists
in scaling each cluster’s energy by a function that depends on the time of the cluster, in
the assumption that the residual slow effect is a rate-dependent perturbation of the energies.
Therefore, a function in the form of Equation (5.2.9) is a suitable candidate to account for the
slow effect and fix the problems reported above.

G(t) =1+ 6,77 [L + A, cos (wat — ¢)] (5.2.9)

From preliminary fits, the muon lifetime 7 was fixed to the fitted Run-2 value of 64.43 ps, w,
to 1.43939rad /ps, and ¢ to 4.117rad. y7 actually varied across Run-2/3 datasets, but the shift
on w, due to the choice of its value was found to be negligible and included in the systematics
(see Section 6.5). Still from preliminary fits to T-Method wiggle plots, we performed a scan on
the §, and A, parameters in order to see which values minimized the x?/n.d.o.f.

dy was scanned in the range [5,9] x 107* at steps of 107* and A, in the range [0,0.25] at
steps of 0.0625. We fitted the 5 x 5 scan on y?/n.d.o.f. with a quadratic function of the form
po (z — p1)” +p2 (y — p3)° + pa, to extract the optimal (J,, Ay) from the minimum (p1,ps) of the
paraboloid. The optimal values for Run-2 were found to be d, = 0.8815-107 and A, = 0.1497,
as shown in Figure 5.2.13. This was not the most generic quadratic expression to extract the
minimum because it is missing z - y terms, but this choice was motivated by the fact that we
did not observe cross terms ¢, - A;. The optimal J, value for Run-2 was found at the edge of
the interval: a further scan on d, with a bigger step and larger interval was also performed,
which ensured that the value we found was indeed a minimum.

Figure 5.2.14 shows the kr); parameter as a function of the cluster energy, comparing the case
in which the residual slow term correction is applied with the case in which it is not.
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Figure 5.2.14: Energy binned fits on Run-2 data, T-Method, to extract the krys parameter
as a function of the energy. One of the results of the residual slow term correction is to make
krar more stable at higher energies and keep it above 0.

For Run-3a and Run-3b, a similar procedure to obtain the optimal parameters from the min-
imization of the y?/n.d.o.f. yielded the following results: J, = 0.00035 and A, = 0.1192.
However, for these choices of the slow term correction parameters, kryr was not flat but instead
it drifted towards lower values at higher energies. The choice was made to determine the opti-
mal value for §, that made kr); more stable as a function of the energy. Figure 5.2.15 shows
that both 6, = 5 x 10~* and 0g =T7.5 X 10~ stabilize kr)s, so we chose the intermediate value
0y = 6.25 x 10~* for Run-3 data, whereas we kept the A; = 0.1192 from the fit that minimized
x%/n.d.o.f.

The A, parameter does not affect significantly the ks shape as a function of the energy, but it
can shift w, and also the fit x?/n.d.o.f., which will be handled as a systematic error in Section
6.5.
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Figure 5.2.15: Energy binned fits on Run-3 data where Run-3a and Run-3b were combined,

in order to improve the statistical uncertainty on the results. The parameter §; was chosen
to flatten krps even if it remained at negative values.
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Since d, ~ 1072, we can infer that the size of the residual slow term is ~ 107GeV = O(MeV).
When the first hints of the slow term were found, it was suggested that the rate-dependent
effect could be due to an incorrect parametrization of the IFG correction (see Section 5.2.2).
In Figure 5.2.5 we showed that, combining all of the Run-2/3 residuals between the laser data
points and our IFG fits, no effect as large as 0.5-10~* can be observed: an incorrect evaluation
of the IFG correction can only lead to a O(50keV) effect in our data, much smaller than the
observed residual slow term.

5.2.6 Time randomization and energy selections

After reconstructing positron events with our clustering algorithm, we build two-dimensional
histograms that are filled with the time (x-axis) and energy (y-axis) of clusters. These his-
tograms combine data from all 24 calorimeters, but we have the possibility to build separate
histograms for individual calorimeters. When injected into the storage ring, the muon beam is
a bunch of ~ 120 ns which is shorter than the cyclotron period of T, = 149.2 ns, so the number
of detected positrons in each calorimeter is modulated by the cyclotron frequency. This is
called the “fast rotation” effect: it is an additional frequency in the time distribution of the
decay positrons, which can affect the fit of w, if we do not take it into account. The strategy to
suppress this effect is to choose a time binning on the time-axis equal to the cyclotron period
T.. We therefore build histograms with 4691 bins that go from 0 to 699.8972 ps.

As in Run-1, a second strategy to remove the fast rotation effect in the w, analysis is to apply
a time randomization to all positron hit times when filling the Run-2/3 histograms. In the
w,Europa group, we used the random engine CLHEP: :Ranlux64 with luxury level 2, that was
found to have a good performance and computational speed [123], to generate a random shift
in the range [—T./2,+7T./2] for each positron event. Since the random number generator ini-
tialization is based on a seed, and the choice of the seed can bias w,, the w, analysis is repeated
for many seeds, and the average of the resulting w, per-seed distribution is quoted as our final
result. The statistical uncertainty associated to the randomization procedure is taken as:

OR

o = —

Rand m
where op is the standard deviation of the per-seed w, distribution, and ng the total number of
seeds used.

(5.2.10)

On the y-axis of our two-dimensional histograms, the energy binning is set to 10 MeV: we have
1053 bins that go from 0 to 10530 MeV. We integrate positron counts on the energy axis to
build our wiggle plots: for the T-Method, we chose a lower energy threshold of 1700 MeV which
minimizes the statistical uncertainty on w,, and no upper threshold. In principle, for the A-
Method analysis we could include positrons of all energies, even the ones whose direction of
emission is anti-correlated with the muon spin, by weighting their contribution to the fit with
the asymmetry value corresponding to the specific energy. The figure of merit (FOM) that
has to be maximized in order to minimize the statistical uncertainty on w, is proportional to
N A? (see Section 1.3.3 and Ref. [26]). Figure 4.7.2(b) showed the N A? scans for w,Europa as a
function of the energy threshold, both for the T-Method and for the A-Method. The choice was
made to only use positrons with positive asymmetry for the A-Method, which means that the
lower energy threshold is 1000 MeV: this choice avoids problems of energy resolution, electronic
noise and contamination from lost muons. As shown in Figure 4.7.2(b), the gain in precision
from a lower threshold would be negligible. For the A-Method there was an agreement amongst
all the w, analsyses to also apply an upper energy threshold, set to 3000 MeV, a value that is
close enough to the physical limit of 3.1 GeV of positron energy from muon decay, above which
the asymmetry is not well defined.
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5.3 Ratio Method to build wiggle plots

In Section 4.7.1, we introduced the Ratio Method, a technique to build wiggle plots, alternative
to the T/A-Method, that aims at reducing the sensitivity of w, to slow effects. It was used in
the previous experiment at BNL [87, 124, 125], and also in the Fermilab Run-1 result as a test
of robustness, but not for the final combination of w, values [108, 126]. A full description of
the mathematical background can be found in Appendix B. In this Section, we will show how
the exponential decay with the boosted muon lifetime vanishes by construction.

The technique consists in randomly splitting positron events into 4 different sub-groups, so
that each one will contain ~ 25% of the total events. Four histograms (one for each sub-
group) are built and filled with the detected times of decay positrons. The first two histograms
are labelled vy 5(t) and leave the positron times unchanged; the other two are labelled u(?),
where the subscript means that the positron times are shifted by F7,/2 (7, is the g — 2
period, ~ 4.365 pis), so that the time distribution N (t) of positrons becomes N (¢t +1T,/2). This
procedure is called “Quartering” and, since it is random, it uses an input random seed. We
can then define two histograms, U(t) = uy(t) + u_(t) and V(t) = vy1(t) + v2(t), and the ratio
R(t)=(V(t) = U(t))/(V(t) + U(t)). Assuming that the time distribution N(¢) of positrons is
given by a simple 5-parameter function:

N(t) = Nye t/™ [1 4 Acos (wat + ¢)] (5.3.1)
then R(t) is equal to:

_2N(t) = N(t+T,/2) — N(t — T,/2)
(1) = ON(t) + N(t + T,/2) + N(t — T,/2)

(5.3.2)

Since T,/2 < 7, the exponential terms at the numerator and denominator almost cancel out
perfectly in the ratio. The shift in time by +77,/2 is such that all terms with cos (w.t £ w, T, /2)
are equal to — cos (wyt). Thus, to the first order approximation, Equation (5.3.2) becomes a
3-parameter function:

R(t) = Acos (wat + @) (5.3.3)

where the normalization parameter Ny and the boosted muon lifetime y7 from Equation (5.3.1)
are not present anymore. In Section 6.6, we will evaluate the systematic error arising from the
assumption that the value chosen a priori for T, (which, in principle, depends on the w, fit)
is the one that exactly simplifies w,7},/2 = 7. In the Run-1 studies in Ref. [126], it was shown
that an incorrect guess of T, could lead to an effect of dw,/dT, 0.1ppb/ppm. In Section 6.6,
we will show similar results for the Run-2/3 datasets and report a related systematic error of
the order of a few parts per billion.

The R-Method wiggle plots use random seeds as input for three types of time randomization:
during the Quartering step, positron events are randomly assigned to four histograms, two of
which shift their times by +7,/2; the fast rotation signal is cancelled by applying a random
time shift in the uniform range [-7./2,7./2], as described in Section 5.2.6; also the vertical
oscillation frequency is removed from the data, with a similar technique as the fast rotation.

Table 4.7.1 shows that the vertical waist (VW) frequency wyy is very close to 10 times the
w, frequency: because of how the R-Method wiggle plots are built, all oscillating effects whose
frequencies are even multiples of w, are highly suppressed [126, 127]. This is the reason why, in
the w,Europa analysis, we randomize the VW frequency instead of fitting it in the data where
the amplitude would be too small for a meaningful fit. In this procedure, the VW period Ty is
fixed to 440.63 ns which is the value obtained in a preliminary analysis of the T-Method wiggle
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plots. Thus, in addition to the fast rotation randomization, positron times are also shifted by
a random value extracted by a uniform distribution in the range [—Tyw /2, +Tvw /2.

5.4 Building T/A/R/RA-Methods wiggle plots: data
weights and bin errors

In the first part of this Chapter, we have described all the steps for positron reconstruction
in the w,Europa analysis: crystal waveforms are calibrated in time with laser synchronization
pulses, and in energy with all the corrections described in Section 5.2.2); our new clustering
algorithm identifies positron events and assigns time and energy of calorimeter detection; the
residual slow term correction described in Section 5.2.5 rescales the positrons’ energies, in order
to account for the residual slow term that would otherwise affect our data; pileup histograms
(doublets, triplets, and all the associated singlets) are built and subtracted to our positron
data, as described in Section 5.2.3. We will now review how we transform our two-dimensional
histograms with times and energies information into the so-called “wiggle plots”, typical of the
Muon g — 2 experiments.

For each time and energy bin of our positron histograms, the error assigned to the pileup-
corrected value is the following:

ON(t,E) = \/N'(t, E) + P(t, E) (5.4.1)

where N’ is the observed number of positrons, P is the pileup correction applied (we remove
doublets and triplets, and add the associated singlets), N is the corrected number of positrons.
We assume that the number of observed positrons N’ and that of pileup events P follow Poisson
distributions, so that the variances are also equal to N’ and P, respectively.

To build the T-method wiggle plot, the pileup-corrected histograms are integrated above a fixed
energy threshold Ey,: for each time bin on the x-axis, we sum all the energy bin’s contents;
the error assigned to this sum in the final histogram is the sum in quadrature of the individual
energy bins’ errors in the two-dimensional histogram. As explained in Section 5.2.6, the energy
threshold is chosen to be the one that minimizes the uncertainty on the fitted w, frequency,
which is 1700 MeV for the T-Method.

In Sections 4.7.1 and 5.2.6, we described the principle of the A-Method technique, that allows
to lower the energy threshold of the wiggle plots and achieve a smaller statistical uncertainty
on w,. This method consists in extracting the asymmetry function versus energy (a function
like the one shown in Figure 1.3.5) and weighting each positron event with energy F with the
corresponding asymmetry A(F). In practice, in the w,Europa analysis we build a histogram
A(F) with small energy bins, by measuring the amplitude of the g — 2 oscillation from wiggle
plots that only use events in each energy bin. The effective asymmetry is a convolution between
the theoretical function of Equation (1.3.16) and the detector acceptance. As a first step, we
obtained 87 wiggle plots, where each one integrated the pileup-corrected positrons in a similar
way as the T-Method but only over 30 MeV of energy, starting from 495 MeV until we reached
3105 MeV. We performed fits with the full T-Method function (described in the Section 5.5) to
obtain the asymmetry versus energy A(FE) histograms.

Figure 5.4.1 shows the comparison between Run-2/3 asymmetry functions and the theoretical
one: due to detector acceptance effects, the maximum value reached for A(FE) is lower than 1
(around 0.8) and the energy at which A(E) = 0 is about 300 MeV lower than the theoretical
calculation. We have used these functions to weight the A-Method (and, as it will be explained
later, also the RA-Method) wiggle plots: right after pileup subtraction, we weighted each bin in
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Figure 5.4.1: Asymmetry functions for the Run-2/3 datasets. The red curve is the theo-
retical asymmetry in the lab frame from Equation (1.3.16), where y is the positron energy
normalized to the maximum value of ~ 3.1 GeV.

the two-dimensional positron histogram with the asymmetry A(FE) corresponding to the energy
value, and rescaled the bin error according to the following formula:

Na/ra(t, E) = A(E) 6Nz /g(t, E) (5.4.2)

where dNg/g(t, E) is the bin error obtained from Equation (5.4.1), and the subscripts T', R,
A and RA stand for the corresponding methods. As previously stated, the two-dimensional
pileup-corrected histograms have energy bins of 10 MeV of width, but the A(FE) histogram was
built integrating over 30 MeV intervals to ensure that there was enough statistics for a mean-
ingful fit. Therefore, the energy E in Equation (5.4.2) is the center value of 10 MeV energy
bins, and the value of the asymmetry for that energy is extrapolated by linear interpolation
from the 30 MeV points.

After weighting with the asymmetry, we integrated the two-dimensional histogram over energy
bins with the same procedure as T-Method, but with the lower and upper energy thresholds of
1GeV and 3 GeV.

To build the Ratio and Ratio-Asymmetry Methods wiggle plots (R/RA-Methods), we started
from two-dimensional histograms of positron counts, built with the same time and energy
binnings as the T/A-Methods. The statistical uncertainty on w, does not change significantly
between R/RA and T/A: hence, the R-Method has a lower energy threshold of 1700 MeV
and no upper threshold, like the T-Method; the RA-Method has a lower energy threshold of
1000 MeV and an upper threshold of 3000 MeV, like the A-Method. To build the R-Method
wiggle plot, we first split positrons into four sub-groups, namely vy, v, u; and u_, with equal
probabilities of 25% each. As described in Section 5.3, u, and u_ shift the positrons’ times
by a fixed value of FT,/2 respectively, where Ty, is obtained as the period of the w, frequency
reference value 1.43939rad/ps. After splitting the data into four sub-groups, we combined v,
and v, into a two-dimensional histogram V', and u; and u_ into a two-dimensional histogram
U. Before this Quartering step, we built pileup singlets, doublets and triplets events with the
shadow method, and built separate pileup histograms for V' and U, labelled Vyeyp, and Upiieyp
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respectively, with a similar Quartering procedure; for pileup events, we made sure that the two
singlets associated with a doublet were assigned to the same sub-group as the doublet, and
likewise for the three singlets associated with a triplet. We subtracted pileup from V and U
histograms, and assigned bin errors with the same formulas that we used for the T-Method;
then we integrated V' and U over energy to project them into one-dimensional histograms V()
and U(t) with the same procedure and energy thresholds as the T-Method. Finally, we took
the following ratio to construct the R-Method wiggle plot R(t):

V@) -U(®®) 2V ()U(?) sV (sU®)?
R(t) = VO U0 SR(t) = V@ + 0 t))gd ( 10 ) + (W) (5.4.3)

The formulas for bin errors come from error propagation: in the case of Poissonian counts,

oV (t) = /V(t) and o6U(t) = 1/U(t), so the formula for the bin error can be simplified as

dR(t) = \/(1 — R2%(t))/(U(t) + V(t)); but, as stated before, in general we do not have Poissonian
counts due to pileup correction, and also because of A(F) weights in the case of A/RA-Methods.
For RA-Method histograms, we first performed the same procedure as the R-Method to build
two-dimensional V and U histograms, and then weighted each bin with the asymmetry A(FE)
and assigned bin errors with the same formula as Equation (5.4.2) for the A-Method; then we
projected them to V(¢) and U(t) with the energy thresholds of the A-Method. For each time
bin of the RA-Method wiggle plot, the error is assigned according to Equation (5.4.3).
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Figure 5.4.2: Examples of Ratio-Method histograms from a subset of Run-2 in the
[65,105] ps range: (a) V(t) and U(t) after pileup correction, (b) the Ratio wiggle plot R(t).

Figure 5.4.2(a) shows the pileup-corrected, one-dimensional histograms V() and U(t), where
the exponential decay due to the muon lifetime is still present in the data; Figure 5.4.2(b) shows
the R-Method wiggle plot R(t), where, by construction, the exponential decay is cancelled out.
As described in Section 5.3, the R/RA-Methods split clusters into four different groups of
approximately equal size, one of which shifts cluster times by +7,/2 and another one by
—T,/2, where T, is the anomalous precession period, ~ 4365ns. This means that, in the
R/RA-Methods, approximately 25% of the clusters whose times are within ~ 2.18 us before
the nominal fit start time are included in the analysis, and approximately 25% of the clusters
within ~ 2.18 ps after the nominal fit start time are excluded from the analysis. The opposite
thing happens for clusters within + ~ 2.18 ps of the nominal fit end time, but the events in
that region are much less than the ones at the beginning of the fit window, so the contribution
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is negligible. This does not happen in the T/A-Methods, so in general the number of positron
events in the T/A and R/RA wiggle plots can be different: the allowed statistical differences
were studied with dedicated Monte Carlo, and found to scale as ~ 1/v/N, where N is the
number of positrons in the analysis [128, 127].

5.5 Fit function

For each method, the wiggle plot is fitted to extract the anomalous precession frequency w,, the
main parameter of interest. Since w,FEuropa, like all w, analyses, applies a software blinding
procedure described in Section 4.7.6, all w, fit values reported in this Thesis are actually the
blinded R values from Equation (4.7.17).

The fit procedure is based on the y? minimization method using the TMinuit2 minimizer in-
cluded in the ROOT software. The minimization algotrithm is MnMigrad and the TMinuit: :mnimpr
option is used to improve the local minimum [129] identification. Uncertainties on the pa-
rameters are computed using the MnHesse algorithm (default in MnMigrad) for greater speed.
However, for the final values quoted in this Thesis, the MnMinos technique has been used to
improve the error estimation.

The fitting code proceeds in steps, going from a simple 5- (3-) parameter function to the full 28-
(16-) parameter function, for the T/A- (R/RA-) Methods. In each step, we use the parameters
found in the previous one as initial guesses. The parameters are added in order to eliminate, at
each step, the highest frequency peak in the fast fourier transform (FFT) of fit residuals (see
Section 5.5.4).

The nominal fit for Run-2/3 will have additional terms with respect to Run-1 [108], to account
for new effects observed in the coherent betatron oscillation (CBO) beam dynamics that will
be explained in the following.

The full fitting equation used for Run-2/3 is:

N(t) = Noe 7" [1 + A App(t) cos(wat + ¢pp(t) — o) x

X Nepo(t) Nvw(t) Ny(t) Nacpo(t) A(t) Nepovw (t) (5.5.1)

where the terms Agp(t), ¢pp(t) in the first row represent the beam dynamics effect that affect
the amplitude and phase of the oscillation over time, and Nepo(t), Nyw(t), Ny(t), Nacpo(t),
A(t) and Nepoyw (t) in the second row represent the beam dynamics effects on the total number
of detected positrons. These terms will all be described in detail and motivated in the following
paragraphs. All free parameters will be highlighted in bold and red. The convention was to
use a minus sign in front of free parameters that represented phases.

5.5.1 Coherent Betatron Oscillation

The muon beam radial motion and the CBO effect were introduced in Section 4.7.2. The CBO
term is modeled with the oscillation function of Equation (5.5.2), where the amplitude varies
in time because the muon ensemble decoheres late-in-fill, thus it is modulated by a decoherence
function Deopo(t).

NCBO(t> =1+ ACBO DCBO@) COS (wCBo(t)t — ¢CBO) (552)

The decoherence term used in the Run-2/3 analysis has the following form:
Depo(t) = €777 + Copo (5.5.3)
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In Run-1, only an exponential term was used to fit the data [108]. For Run-3b, where the
stronger kick changed beam dynamics as explained in Section 5.1.1, it was found that the shape
of the CBO envelope required an additional constant term. Our group decided to include the
constant Copo in the CBO envelope for all Run-2/3 datasets, although it is almost compatible
with 0 within the fit error for Run-2/3a. Our studies on the CBO envelope will be presented
in Section 6.3, together with the systematics associated to this effect.

In Equation (5.5.2), wepo(t) is a function of time that asymptotically reaches the constant fitted
value w? . As explained in Section 4.7.2, the beam frequencies depend on the quadrupole
field index n, that in turn depends on the voltage applied to the ESQ plates, so in general
frequencies vary with time as quadrupoles charge, and they stabilize after the quadrupoles
reach their nominal voltage.

In Run-1, because of the damaged resistors in the charging circuit, the lifetime of the charging
process was longer than the expected 5 ps (see Figure 4.3.1) and the beam oscillation frequencies
acquired an exponential time dependence which extended well into the w, fit region. The tracker
system had the possibility of directly measuring this additional contribution: two representative
plots of wepe(t) in Run-1b/1c are shown in Figure 5.5.1.
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Figure 5.5.1: Tracker station 12 measurements of the varying CBO frequency due to
damaged ESQ resistors in Run-1b and Run-1c.

The frequency variation in Run-1 was modeled as a double exponential function

Ae7t/ta Be s
t + t

wepo(t) = wipe + (5.5.4)
where A, B, 74 and 7 were fixed from dedicated studies; in particular, 7z ~ 6 pus represented
the nominal quadrupole charging lifetime and 74 ~ 60 ps the slower lifetime due to the faulty
resistors.

Before the start of Run-2 acquisition, the quadrupoles resistors were fixed, so a long lifetime
in the wepo(t) modeling is not needed anymore. However, it was observed that the CBO
frequency still had a drift with a lifetime longer than ~ 6 ps in wiggle plots, especially evident
in individual calorimeters plots (see Figure 5.5.2(a)). In the w,Europa group, we found that
we could model the varying CBO frequency as:

Aet/ma
t

where the parameters A and 74 were extracted from a dedicated study using the T-Method
analysis for each dataset. In these studies, we built about 65 wiggle plots selecting positrons
from 10 ps time intervals, and we performed fits on each wiggle plot taking wepo(t) as constant.
In this way, we could measure how its value varied from early-to-late during the muon fills.
Since the CBO phase ¢cpo could vary as well, we took the precaution of taking the difference

(.L)CBo(t> = wgBO + (555)
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(weBot — ¢cBo) for each time interval. In order to extract A and 74, for each time bin we
plotted the difference (wepo t — dcpo) with respect to its value (wot— ¢p) at ¢ = 650 ps. Figure
5.5.2 shows the results of our study for Run-2, and Table 5.5.1 reports the values of A and 74
that we fixed in our fits.
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Figure 5.5.2: Run-2 fits to extract the varying CBO parameters for (a) a single calorimeter,
where the effect is more pronounced, and (b) the sum of all calorimeters.

Dataset | A [rad] | 74 [ns]
Run-2 | 0.59+0.34 | 21.1+94
Run-3 | 0.50+1.04 | 129+ 10.9

Table 5.5.1: Results of our study to extract the varying CBO parameters for Run-2/3
and Figure 5.5.2). Run-3a and Run-3b were combined to decrease the uncertainty on the
parameters.

These long lifetimes in the CBO data arise from the interplay between quadrupole scraping and
calorimeter acceptance. In principle, since beam dynamics changed during the course of Run-3,
A and 74 could be different between Run-3a and Run-3b. However, given the low statistics of
Run-3b, we combined the two Run-3 datasets together to increase the statistics of the study,
which otherwise would have been too low for Run-3b. Nonetheless, we verified that, for the
calorimeters where the effect was larger in Run-3a, the A and 74 parameters were compatible
within the errors between Run-3a and Run-3b. When looking at sum of all calorimeters,
the amplitude of the varying CBO frequency is smaller because the CBO oscillations in one
calorimeter tend to compensate the ones in the calorimeter 180° across the ring [108].

For all methods, we fixed the A and 74 fit parameters from Table 5.5.1: the systematic related
to the uncertainties of such parameters is discussed in Section 6.3. One of the results that
proved the need for an exponential term in Equation (5.5.5) was the start time scan of the
w o parameter, that will be shown in Section 5.7: without the exponential term in Equation
(5.5.5), this parameter drifted towards greater values when fitting wiggle plots from later times.

After the g— 2 oscillation at the w, frequency, the CBO oscillation is the dominant contribution

to wiggle plots: if Nopo(t) is removed from the fit function, R changes by ~ 2ppm and the
x%/n.d.o.f. increases by > 10 units.
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5.5.2 Lost muons

The lost muons term was described in Equation (5.2.8) of Section 5.2.4: the function L(¥)
counts how many muons were lost during storage time, and its integral J(¢) is built in order to
take the lost muons into account when fitting our data. We can define the fit term A(¢):

A(t) =1 —kpar J(t) (5.5.6)

where J(t) functions are built for each Run-2/3 dataset, and ks is the parameter that accounts
for the efficiency of our lost muons selection algorithm. Only positive values for kry; have a
physical meaning, and J(t) is normalized in such way that kzj does not depend on the wiggle
plot statistics, so it can be compared across the different datasets of Run-2/3.

5.5.3 Higher-order beam dynamics

The dominant oscillation in our data is the first-order CBO term in Equation (5.5.2). There
are additional contributions from beam dynamics, as described in Section 4.7.2. Firstly, the
oscillation at twice the CBO frequency is parametrized as follows:

NQCBO(t) =14 AQCBO D%‘BO(t) COS (2 wCBo<t)t — (f)zc]go) (557)

There are other frequencies present in our calorimeter data and listed in Table 4.7.1. To account
for the vertical waist frequency at ~ 2.3 MHz, we have the exponentially decaying sinusoidal
term:

NVW (t) =1 + AVW COS (wVw(t) t— d)vw) €7t/TVW (558)

where 7y is the vertical waist decoherence lifetime. The mean vertical oscillation correction
is given by:

N,(t) =1+ A, cos (wy(t)t — ) e ™ (5.5.9)
where the decoherence lifetimes are in relation:

The y-oscillation frequency is related to the cyclotron and CBO frequencies, and it is described
by:

wy(t) = Fywepo(t) \/m —1 (5.5.11)

which comes from the expressions in Table 4.7.1. In the ideal experiment, F;, = 1: this term
is a correction factor, free to float in the final fit, that takes into account the non-uniform
quadrupoles coverage and the non-linearities inside the ring [130]. Equation (5.5.11) allows to
further reduce the number of fitted parameters without the need to directly measure the time
dependence of the vertical oscillation.

The vertical waist frequency can be expressed in terms of the mean vertical oscillation:

wvw(t) = Wwo — wa(t) (5512)

and used in the final fitting function to account also for the time dependent variations of ver-
tical waist. wepo(t), wy(t) and wyw(t) are therefore related in such way that they can all be
described by the same parameter w s
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High order terms need to be included in the asymmetry and phase terms of Equation (5.5.1)
as well:

ABD(t) =1+ AA DCBO(t) CcOS (w030<t)t — ¢A>

¢Bp(t) = Ay Dopo(t) cos (wepo(t)t — ¢g) (5.5.13)

5.5.4 Fast fourier transform of fit residuals: VW-CBO peak

A technique that we use to identify which oscillating terms we need to include in our w, fits
is looking at the fit residuals, and taking their fast fourier transform, where several peaks may
arise mainly due to beam dynamics frequencies present in the data. Figure 5.5.3(a) shows the
case of Run-1 data. Since time bins are wide 0t = 149.2 ns, the range of frequencies that can
be explored with this technique stretches from 0 to fi%f = 1/(26t) ~ 3.35 MHz.
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Figure 5.5.3: FFT of residuals from Run-1 [108]. (a): 5-parameter fit, where the vertical
coloured lines show how the expected frequencies from beam dynamics (see Table 4.7.1)
match the observed peaks, the most important one being the CBO term. (b): complete fit
function, where no more characteristic frequencies remained in the spectrum.

With the great amount of statistics in the Run-2/3 datasets, a new effect appeared in the FFT
of the residuals: a small peak centered near 1.9 MHz when fitting with the complete Run-1
function. Figure 5.5.4 shows the fit results and residuals for Run-2, A-Method.

The new peak is one of the beating frequencies between the CBO and vertical waist terms:

wi(t) = wVW:tCBo(t) = Lde(t) + wCB()(t) (5514)

From the values of Table 4.7.1, w(t) = 2.67 MHz and w_(t) = 1.93MHz, where the latter
corresponds to the new peak observed in the FFT. Thus, a new term is present in the w,
function of Equation (5.5.1), parametrized as follows:

Nosovw(t) = 1+ [At cos (i () — 1) + A_cos (w_(t)t — p_)] e ¥7eB0vW  (5.5.15)

where the + and — subscripts refer to the VIWW + CBO and VW — C'BO terms respectively.
The VW + CBO peak is only visible in the FFT plot of individual calorimeters and not in the
sum of 24 calorimeters [127, 119], but both beating frequencies are included in the full w, fit.
This increases the number of floating parameters with respect to Run-1 by 5 parameters.
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Run-2 A-Method wiggle plot
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Figure 5.5.4: The top left plot shows the Run-2 A-Method wiggle plot fitted with the
Run-1 fit function (Ncovw (t) not included). The fit residuals are shown in the bottom left
plot, whereas the fast fourier transform (FFT) of the residuals is shown on the right plot,
with a residual peak near 1.9 MHz.

5.5.5 Ratio method fit function

The function used to fit the R/RA-Methods wiggle plot is very similar to the T /A-Methods, but
with notable differences. Firstly, vertical waist and vertical oscillation effects are not included
in the fit, because these frequencies are eliminated by the randomization procedure described
in Section 5.3, otherwise their amplitudes would be too small to be fitted in the Ratio wiggle
plots. Thus, the terms Nyw (t), Ny(t) and Nepovw (t) are not included in the fit function,
eliminating 11 floating parameters. The normalization N is also not present in the fit function
because it cancels out in the ratio of Equation (5.4.3), as it is also shown in Figure 5.4.2(b),
bringing the total number of parameters to 16 in the R/RA fit function. Secondly, since the
wiggle plot is built starting from four subsets, two of which shift the clusters’ time by a fixed
value of +T, /2, we build three versions of the fit function: N(t), N(t+T,/2) and N(t —T,/2),
where in this case N(t) is the same expression as in Equation (5.5.1), without the terms that
are not necessary in the R/RA-Methods fits. The complete R/RA fit function is:

_2N(t) - N(t+T,/2) — N(t—T,/2)
T 2N(t) + N(t+To/2) + N(t — Tu/2)

that resembles Equation (5.4.3), which is the way R/RA wiggle plots are built.

Lastly, for the R/RA fits, the muon lifetime 7 and the constant Ccpo in the CBO deco-
herence term are actually fixed to the values obtained from T/A fits, respectively. From the
Ratio wiggle plot in Figure 5.4.2(b), it is evident that the exponential decay with the y7 muon
lifetime is not present in the R/RA histograms, but in Section 5.3 it was stressed that the
exponential function does not cancel out perfectly and the Ratio formula of Equation (5.3.3)
is just an approximation. In Appendix B, the first order correction to this approximation is
derived, where the leading term is an offset of the order of 1072. One way to remove the offset,
which was adopted in Run-1 [108], is to choose the four subsets in the relative proportions
vy 1vy iUy cu_ = 1:1:ele/27 ; e7Ta/27 g0 that the exponential functions at the numerator
and denominator cancel out exactly in the ratio; with this choice, the R/RA fit function does

R(t) (5.5.16)
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not require the parameter v7. A different way to account for the offset, chosen for the w,Europa
Run-2/3 analysis, is to assign equal probabilities to each of the four Ratio histograms during
the Quartering step, and keep the exponential term in the N(#) functions of Equation (5.3.2),
fixing y7 from the T/A fits. The reason for this choice was to make it easier to repeat the fits
for different values of 7, if needed.

By construction, the exponential decay is absent from the R/RA wiggle plots, and in general
these methods are much less sensitive than the T /A-Methods to all “slow terms”: for instance,
the shape of the CBO decoherence that decays over time. Therefore, the fit errors on 7cpo and
Ceopo parameters of Equation (5.5.3) are larger than the ones from T/A. To prevent the offset
Ceopo from drifting towards negative values in the R/RA fits, we fixed it from T/A values,
which also improved the fit error on 7¢5o.

5.5.6 Nominal fitting window

The fitting window has been carefully chosen in order to balance the statistical power gained
including more data with the systematic effects. In particular, there are some fit start times
that minimize the systematic associated with the IFG correction: for all of the datasets in
Run-2/3, the fit start time has been fixed to 30.1384 s (similarly to Run-1la/1b/1c), which is
the lower edge of a time bin in the wiggle plot given that the bin width is 0.1492 ns. The fit end
time was instead chosen to extend the measurement window as much as possible, but excluding
the low-populated bins at the end of the spectrum: it was therefore fixed to 650.0644 s, which
is the upper edge of the last bin in the wiggle plot that we build.

5.6 Run-2/3 A/RA-Methods fit results

Tables 5.6.1 and 5.6.2 show the results for a selection of fit parameters in the A-Method and
RA-Method, for all Run-2/3 datasets. In the first three rows, the parameters of the per-seed
R and x?/n.d.o.f. distributions are reported. The rest of the parameters are reported for the
so-called “representative seed”, which is the one for which the blinded R value is closest to the
average of the per-seed distribution (R). Tables with full results for all datasets and methods
are shown in the Appendix C, together with the correlations between each pair of parameters

for the A/RA-Methods.

In Run-3, the kp); parameter is fitted to a negative value as anticipated in Section 5.2.5. In
Section 6.5, we will report the estimations of how much R and 7 are affected by the negativity
of krar, also comparing 7 with the results from Fast Rotation analysis. Cepo, the constant
term in the CBO decoherence envelope, is compatible with 0 for the Run-2/3a dataset, whereas
it is significantly larger in Run-3b. The initial phase ¢, is fitted to ~ 4.1rad in all cases, and
this is consistent with the values predicted by beam simulations in the accelerator complex:
positive muons are first emitted with ¢o = 7 (see Figure 1.3.2) and then precess for about 4
turns in the Delivery Ring where they are emitted from pions (as described in Section 4.1),
with an anomalous precession of ~ 0.9rad before being injected into the Muon g — 2 Storage
ring.
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Fit parameter ‘ Run-2 ‘ Run-3a ‘ Run-3b
(x*/n.d.o.f.) 1.02664 0.997004 0.999528
(R) [ppm] —80.626 —71.390 —70.396
or [ppb] 35 26 48
x*/n.d.o.f. 4225.91/4127 3981.24/4127 4154.14/4127
p-value 0.13842 0.94699 0.38003
Ny 20140739 £299 | 27021394 + 562 | 10487162 + 431
7 x 10% [ps] 64430 + 1 64415 £ 3 64392 + 3
A x 10° 36064 £+ 1 36252 + 1 36126.2 £ 1.5
R [ppm] —80.628 £ 0.337 | —71.393 £0.291 | —70.397 £ 0.468
¢ X 10° [rad] 411775+ 6 412089 + 5 410803 £+ 8
Acpo x 10 37+ 2 29.4+1.6 13.6 +£0.8
wepo x 10% [rad/ps] | 23412.2 4+ 1.0 23292.0 £+ 1.0 23318 £ 3
dcpo x 10° [rad] 6027 + 8 6143 + 9 6100 + 20
TcBo [ns] 242 £ 27 213 £ 24 88 + 18
Cepo 0.04 £ 0.07 0.09 £ 0.07 0.47 £0.08
kpar x 10° 106 £7 —90 £+ 30 —90 £+ 30
Table 5.6.1: A-Method fit results.
Fit parameter ‘ Run-2 ‘ Run-3a ‘ Run-3b
(x*/n.d.o.f.) 0.999067 1.00046 0.997689
(R) [ppm] —80.583 —71.435 —170.368
or [ppb] 85 62 123
x?/n.d.o.f. 4191.42/4141 4184.78 /4141 4106.18/4141
p-value 0.28804 0.31323 0.64668
7 [ps] 64.430 (fixed) 64.415 (fixed) 64.392 (fixed)
A x 10° 35479 + 1 35641 £+ 1 35515.6 £ 1.5
R [ppm] —80.583 £ 0.345 | —71.435£0.301 | —70.369 + 0.480
¢ X 10° [rad] 411815+ 6 412125+ 5 410840 £+ 8
Acpo x 10° 362 £ 11 272 £8 160 £ 20
wWepo x 101 [rad/ns] 23415+ 3 23292 +4 23322 £9
dcopo [rad] 6.05 + 0.03 6.17 £ 0.03 6.14 £0.08
oo [ps] 228 £19 222 £ 21 56 + 18
CeBo 0.04 (fixed) 0.09 (fixed) 0.47 (fixed)
kpar x 103 13+19 -8+ 11 —7+14

Table 5.6.2: RA-Method fit results.
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5.7 Internal consistency: per-calorimeter and start time
scans

In this Section, we will present some consistency checks that were performed on the w,Europa
data, that added confidence in our results and that could reveal potentially hidden systematic
effects.

As a first check, we have carried out a per-calorimeter analysis: for each of the 24 calorimeters,
we repeated the procedure of building pileup-subtracted wiggle plots and fitting with the full
function described in Section 5.5. As in the nominal procedure, we did not constrain any of
the 28 (16) floating parameters, but the initial values were set to those from the sum of all
calorimeters.

In Figure 5.7.1, we compare the Run-3a A-Method per-calorimeter fits (the ones with most
statistics amongst Run-2/3), with and without applying the time randomization described in
Section 5.2.6. In particular, we highlighted the amplitude of the so-called “R-Wave”, which is
the sinusoidal fluctuation of R along the azimuthal position of the calorimeters, due to the Fast
Rotation signal that is not completely eliminated by choosing a time bin width of T, = 149.2 ns.
We fitted this oscillation with a fixed frequency of 27/24: when we randomize positron times
to remove the fast rotation signal, the amplitude of the R-Wave is strongly suppressed. In this
example, the seed used for randomization is different from the representative one reported in
Table 5.6.1, so the average blinded R is also different.

Run-3a, A-Method
E * 2/ ndf 10.18/ 21
x 58 p0 »71.29 + 0.3063
p1 0.643 + 0.4297
p3 »0.4396 + 0.6791

*70

T

-74

*76

ETTTTT III|III|

<2 ndf 1411721

s PO +71.46 + 0.298
p1 331+04183 bl b L
p3 +0.2214 + 0.1283 Calorimeter Number

Figure 5.7.1: A-Method Run-3a per-calorimeter scan, with (red) and without (blue) time
randomization. The R-Wave is fitted with a model pg + p1 cos (p2t + p3).

As a second check, we performed scans on R and x?/n.d.o.f. as a function of the fit start time.
The start times that we used ranged from the nominal value of 30.1384 ps to 100.1132 ps, in steps
of 1.0444 ps so that the fit would always start from the lower edge of the wiggle plot’s bins. For
each point in the scan, to allow our fits to converge well at later start times with less statistics,
we fixed the following beam dynamics parameters to the values from the nominal fit: Acpgo,
TcBO, ®cBO;s CoBo, Aa, ®a, Ay, G, Aacpo and ¢acpo. The other parameters, not fixed, were
only used as initial values for the fits. Figure 5.7.2 shows, for dataset Run-3a, the behaviour of
x%/n.d.o.f. and blinded R as a function of the fit start time. For each point in the scan, we re-
ported the statistical uncertainty from the fit, and also an upper and lower band that represent
the 1 0 allowed statistical fluctuation due to a lower number of positrons for later fit start times.

As mentioned in Section 5.5.1, the fits on individual calorimeters have a greater CBO effect,
so they can be used to study, for instance, the parametrization of the CBO varying frequency
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Figure 5.7.2: Run-3a, RA-Method start time scans of x?/n.d.o.f. and R. The blue bands
are the 1o allowed statistical differences from the start point.

and the model in Equation (5.5.5). As a last consistency check, we report an example for
calorimeter 22 in Run-2;, where the CBO drift was more pronounced. Figure 5.5.2(a) shows
that the fitted w@ 5, frequency drifts out of the allowed 1o bands when the exponential term
Ae~t/™ of Equation (5.5.5) is missing; instead, when we fixed A and 7,4 from the results shown
in Figure 5.7.3, wdpo remained more stable within the allowed 1o statistical bands.

o i -
e -: TR

Time [- 5] Time [- 5]

Figure 5.7.3: A-Method Run-2 fit for calorimeter 22, with a constant w g, term (left plot)
and with the additional exponential terms of Equation (5.5.5) (right plot). The blue bands
are the 1o allowed statistical differences from the start point.
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Chapter 6

Sources of systematic uncertainty on
wq for the Run-2/3 analysis

In this Chapter, the different sources of systematics contributions to the w, analysis, evaluated
within the w,Europa team, will be described.

6.1 Gain correction

This Section will present the w,Europa approach for the systematic errors related to the SiPM
gain correction in Run-2/3.

Both the IFG and STDP corrections are parametrized with an exponential function with am-
plitudes a and lifetimes 7, extracted from dedicated laser studies. The typical values for the
amplitudes a;rg and agrpp are around 10%, whereas the lifetimes have different orders of mag-
nitude: 77p¢ can span from a few ps to 10 ps depending on the SiPM, and 7grpp is typically
around 10 nanoseconds.

In order to evaluate the systematic effects of the gain corrections, scans of the amplitude and
lifetime parameters were performed. For each cluster, we removed the nominal energy cor-
rection on each crystal, then we applied a new gain correction with a different amplitude or
lifetime. The procedure in the w,Furopa team is to scale the parameter of each crystal taking
the uncertainty into account, according to the following formula:

a=a+mo, or T =T+mo, (6.1.1)

where a and 7 are the nominal amplitude and lifetime parameters, o’ and 7’ are the scaled ones,
o, and o, are the uncertainties on these parameters from gain studies, and the m parameter
is a scaling factor referred to as “sigma multiplier”, that can range from negative to positive
values (m = 0 is the nominal gain correction). In this procedure to evaluate the gain sys-
tematics, we assumed that the amplitude and lifetime parameters of the gain correction were
under- or over-estimated by a multiple m of their uncertainty; the systematic was taken as
the difference of R from nominal, when the a and 7 parameters changed by +1-0. Thus, the
systematic uncertainty was obtained from the slope of R versus m. After applying the modi-
fied gain correction with the sigma-method for all crystals’ of each cluster, the whole procedure
for building wiggle plots was repeated, and we fitted R for each value of the scaling parameter m.

Figure 6.1.1 compares the results of the sigma-multiplier method for T-Method and R-Method
IFG amplitude scans: for each point of the interval we have reported the difference with respect
to the nominal m = 0 value. The slope in the R-Method is ~ 3.5 times smaller, indicating that
it is less sensitive to early-to-late effects like gain corrections.
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Figure 6.1.1: Run-2 T/R-Methods: the slope for the R-Method is notably smaller, because
the Ratio wiggle plots are less sensitive to slow systematic effects.

Table 6.1.1 reports the IFG systematic uncertainties, which are evaluated as the p, slopes for
each method and dataset of Run-2/3. For Run-3 datasets, the systematic errors related to the
IFG lifetimes are slightly larger than Run-2, because a fewer number of laser campaigns were
performed and therefore the extracted IFG lifetimes had a bigger uncertainty.

[FG amplitude systematics [ppb] IFG lifetime systematics [ppb]
Method | Run-2 Run-3a Run-3b  Method | Run-2 Run-3a Run-3b
A 2.6 2.4 1.6 A 2.7 3.7 4.0
RA 0.08 0.1 0.1 RA 0.01 0.3 0.3

Table 6.1.1: In-Fill Gain systematics.

STDP amplitude systematics [ppb] STDP lifetime systematics [ppb]
Method | Run-2 Run-3a Run-3b  Method | Run-2 Run-3a Run-3b
A 0.08 0.15 0.25 A 0.25 0.26 0.34
RA 0.05 0.26 0.41 RA 0.19 0.39 0.49

Table 6.1.2: Short-Term Double-Pulse Gain systematics.

The procedure for the STDP systematics is very similar to the one for IFG. There is only a
small difference in the implementation of the study, because the STDP correction is only ap-
plied when two or more positron hits are close in time, within O(100ns). In Table 6.1.1 the
systematic uncertainties are reported for each method and dataset of Run-2/3. The changes in
R are much smaller than for the IFG systematics (always less than 1ppb), and the systematics
for the R/RA-Methods are typically of the same size as the T/A-Methods.

For each method and each dataset of Run-2/3, we combined the four systematic uncertain-
ties due to amplitude and lifetime of IFG and STDP into a single number. In the nominal
reconstruction procedures, the amplitudes and lifetimes of the gain corrections are extracted
from independent fits, so for each type of gain correction we added the two systematic errors
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in quadrature. We conservatively assumed that the overall IFG and STDP systematics were
fully correlated, thus added them linearly, and the results of this combination procedure are
reported in Table 6.1.3.

Combined Gain systematics [ppb]

Method | Run-2 Run-3a Run-3b
A 4.0 4.7 4.7
RA 0.28 0.78 0.96

Table 6.1.3: Total gain-related systematics for the Run-2/3 datasets.

6.2 Pileup subtraction

In this Section, the following contributions to the systematics related to pileup subtraction
will be described: the pileup amplitude uncertainty; the cluster time and energy model in
the w,Europa nominal procedure, represented by Equation (5.2.7); a systematic uncertainty
related to residual events above 3.1 GeV after pileup subtraction. These three contributions are
conservatively assumed to be fully correlated with each other, thus they are added linearly to
obtain the total value reported in Table 6.7.1.

Pileup amplitude

The pileup subtraction in the w,Europa analysis was described in Section 5.2.3. In principle,
our procedure could under- or over-estimate the number of doublets and triplets for each time
and energy bin. The pileup subtraction can be modulated by a scaling parameter fq.q., which
multiplies the number of pileup events and is set to 1 in the nominal procedure. As the
systematic study, fe.qe can be varied around 1 to extract the slope of R as a function of this
parameter. We varied fo.q. from 0.5 to 1.5 in steps of 0.25: for each point of the interval, we
repeated our nominal procedure for building and fitting wiggle plots, to extract the slope of R
versus fgeqle-

Run-2 Run-2
@ -80.1C SN
E 108 % p
-80.2[] SN —e— T-Method
H 1.07k —&— A-Method
-80.3n F —&— R-Method
u 1.06F-
H F - |
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Figure 6.2.1: Scans of R and x?/n.d.o.f. as a function of the fy.e amplitude multiplier.
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In Figure 6.2.1, the variations of R and y?/n.d.o.f. as a function of the pileup multiplier fo.q.
are shown: the minimum of the x? is always centered around the nominal f,.,. = 1, within
+0.05; the fitted slopes, reported in Table 6.2.1, are all negative and typically of the order of
hundreds of ppb/multiplier.

Dataset Method | Slope of R versus fsqe [ppb/mult] | Systematic [ppb]

A —113 0.6
Run-2 —p7¢ 15 0.0
A 78 27
Run-3a —r 78 1.7
A 109 16
Run-3b- —p7¢ —997 32

Table 6.2.1: Pileup systematics related to the uncertainty on the overall amplitude, tuned
by f scale-

To evaluate the systematic uncertainty, the slopes of R as a function of feeqe are multiplied by
the fractional residual pileup contamination, shown in Figure 6.2.2 and defined as follows: the
pileup-corrected energy spectrum in the nominal procedure (with fse. = 1) is divided by the
energy spectrum before pileup subtraction; the region between 3.4 GeV and 4.2 GeV is fitted
with a constant parameter py. For the R/RA-Methods, there are two energy spectra, one for
the U(t) and one of the V(¢) histograms, and the fractional residual pileup is chosen as the
biggest po from the two fits.
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Figure 6.2.2: Run-2 dataset energy spectra, ratio between pileup- corrected and uncor-
rected histograms: the region from 3.4 GeV to 4.2 GeV is fitted with a constant to extract
the fractional residual pileup contamination, reported in Table 6.2.1.

Cluster time and energy model

When two positrons hit the same SiPM with a separation time of ~ 4 ns, the w,Europa recon-
struction algorithm can separate them but it might assign wrong energies or times. In Section
5.2.3 we reported our a study on artificial islands to extract the efficiency of our algorithm as
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a function of the time separation between the two hits. A systematic effect might arise if the
corrections shown in Figure 5.2.11 are not estimated properly. As a systematic check, we have
repeated the nominal pileup procedure and fits on wiggle plots: the first time, we set fo,.. = 1
in Equation (5.2.7), to remove the energy model; the second time, we restored the nominal
value of f.,.. but removed the time model, setting t..., = 0.

Dataset Method ‘ AR when f.. =1 [ppb] ‘ AR when t., = 0 [ppb] H Systematic [ppb]

A 1.0 08 13
Run-2 RA 03 05 0.6
A 13 05 14
Run-3a —p-¢ 11 04 1.2
A 13 2.6 2.9
Run-3b —p-¢ 0.8 —1.0 1.3

Table 6.2.2: Pileup systematics related to the feorr and teorr in Equation (5.2.7).

Table 6.2.2 reports the differences of R, with respect to the nominal fit, when removing the
energy and time corrections to build pileup events. The systematic uncertainty is the sum in
quadrature of the two variations, assumed to be independent.

Excess of residual events around 5 GeV

In Figure 6.2.2, a notable number of residual events after 3GeV is present in the pileup-
subtracted energy spectrum after 4.2 GeV. These residual events are peaked at ~ 5GeV. In the
energy region above 6.2 GeV, where only coincidences between three or more positron hits are
present, the spectrum is flat as expected. The presence of a relatively small number of residual
events after the w,Europa pileup subtraction has not been understood yet, but we plan to
study it with future Monte Carlo tests; at the moment, it is thought to be due to a possible
bias in the evaluation of doublet events energies. In the following, we describe a way to cor-
rect for this effect, which accounts for the last source of systematic uncertainty related to pileup.

The blue histogram in Figure 6.2.3 represents the pileup-subtracted energy spectrum for Run-2.
As a conservative way to estimate the systematic due to this excess, a further subtraction has
been applied from 0 to 6.2 GeV to obtain the black histogram: for each time bin, we added a
number of events that scaled linearly with energy, with a negative slope of 3 - 107°/MeV; this
subtraction greatly reduced the events after 4.2 GeV, but it increased the number of positron
events below 3.1 GeV that are used in the A/RA-Methods wiggle plots. The difference is notable
in the pileup region above 3 GeV, shown in Figure 6.2.3, but not significant between 1 GeV and
3 GeV where the number of events is of the order of 10%.

We have compared the R results between the nominal fits and the wiggle plots built with the
additional pileup subtraction. Table 6.2.3 reports the differences in R, in parts per billion,
which are taken as an evaluation of the systematic error.
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Figure 6.2.3: Run-2 pileup-subtracted energy spectra from 3.5 GeV to 5.8 GeV. The spec-
trum from the w,Europa nominal procedure (blue) was modified to further subtract events

around 5 GeV (black).

Dataset Method | Systematic [ppb]

A 1.3
Run-2 —p% 14
A 3.6
Run-3a RA 0
A 17
Run-3b —p7 2.4

Table 6.2.3: Systematic uncertainty related to the excess of residual pileup events in the
range [4.2,5.5] GeV.

6.3 Coherent Betatron Oscillation

In this Section, the three sources of systematic uncertainty related to CBO will be described:
the model for decoherence envelope D(t) in the nominal fit function; the amplitude A and
lifetime 74 parameters of the varying CBO frequency, extracted from dedicated studies and
reported in Table 5.5.1; the lifetimes of higher-order CBO terms, that are fixed to the same
values of the leading CBO function in our nominal fit function.

CBO decoherence envelope

In Run-1, the decoherence envelope D(t) was chosen as an exponential function in the w,Furopa;
in Run-2/3 it was observed that for Run-3b this was not a good model for the CBO envelope,
and a costant offset was added to the exponential function, as in Equation (5.5.3).

Figure 6.3.1 shows fits on 8 ps time bins for A-Method wiggle plots, where the CBO frequency
has been fitted with an amplitude Aggo without any exponential term, in order to extract
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Figure 6.3.1: A-Method fits for small time intervals to extract the CBO decoherence
envelope as a function of time.

the shape of the CBO decoherence as a function of time: at the fit start time, the values of
Acpo are compatible with the ones reported in Table 5.6.1; for Run-3b, Agpo remains constant
starting from 150 ps, which is a hint that an exponential model is not sufficient to describe the
envelope in this case. Many models of the decoherence envelope have been developed from
tracker data and simulation, and we will report the effects on R from the fit to representative
seeds when testing different envelopes.

Figure 6.3.2 shows the shapes of 6 different envelope models that were tested in our wiggle plot
fits (with the A/RA-Methods). The so-called “Generic envelope” is a function motivated by
tracker studies on beam dynamics, repoted in Equation (6.3.1):

2 2
D? Pi —P2at — 30ps,0 +
genenc( ) I}J% n (t —30 1_18) pg ( ps ;pS)

2
+ lpﬁ(t —30ps,0,p5) + oGt —30ps, 0;;07)]

P7

(6.3.1)

where G(t,0, p;) is the Gaussian distribution calculated at time ¢, centered in 0, with standard
deviation p;. Three of the parameters, py, ps and p; in Figure 6.3.2(f), were fixed by tracker data.
For each dataset and each method, the systematic uncertainty related to CBO decoherence was
taken as the largest difference of R between the nominal procedure (with an exponential plus
constant evenlope) and each of the different envelopes tested. Among all w, analysis groups, a
common strategy was implemented to reject fit results for “unreasonable decoherence envelopes”
for each dataset and method, i.e. those for which the fit y?/n.d.o.f. was much worse than the
nominal fits. For each envelope, the fit y? was corrected for the different number of degrees
of freedom: if (x* — n.d.o.f.) |emvelope < 3 + (X* — n.d.0.f.) |nominal, the envelope was taken into
account, for the evaluation of the decoherence systematic. The cut at 3 was selected from
dedicated studies where CBO decoherence envelopes that did not fit our data were forced into
the fit function on purpose, to observe the x?/n.d.o.f. behaviour.

Tables 6.3.1 reports the systematic uncertainty for the A/RA-Methods, for each of the Run-2/3
datasets.

110



CHAPTER 6. SOURCES OF SYSTEMATIC UNCERTAINTY ON w, FOR THE RUN-2/3
ANALYSIS

Exponential envelope

" Exponential + Constant envelope

g 0.0035[ 0.
B . -2/ ndf 4741733 (ﬁ - -2/ ndf 4723132
0.003 p0  0.003709 + 3.045¢- 05 0003 po 0.003528 + 0.000327
- p1 26477142 . Pt 24343974
0.0025F- 0.0025F- 0.0001992 + 0.0003603
0.0021 0.002
0.0015 n.omsf—
0001 | p0*exp(-x/p1) 000% | p0*exp(-x/p1)+p2
00005 0.0005-
:|||||||||||||||||||||||||||||||||||| :uu||||||||||||||||||||||||||||||||||
i 50 100 150 200 250 550 ] 200 %0 550
Time in fill [ 5] Time in fill [ 5]
(a) (b)
Exponential + Linear envelope Alpha + Const envelope
0.0035 0.0035
¢§ C <2/ ndrf 466/ 31 j = +2 /ndf 542932
C po 0.03249 + 0.01097 r
C C 0.002459 + 0.0001025
Dm?’; p1 903 + 159.2 0'003: p?
E p2 -0.02679 + 0.01095 E p 5.134e+ 05 + 6.214e+ 06
0.00251~ p3 2.246e- 05 + 6.448e- 06 0.0025— P2 0.0009167 + 0.0001161
C (] C
0.0021- { t 0.002
0.0015 0.0015
0.001— 0.001:—
c { { c po p2
0.000s|- |PO"€XP(-x/p1)+p2+p3*x ooo0s- | 1+p1*x>
:IIII|IIII|III||||II|IIII|IIII|IIII|I :II||||||||||II||||||||II|IIII|IIII|I
i 50 100 150 200 250 300 350 % 50 100 150 200
Time in fill [ 5] Time in fill [- 5]
(c) (d)
Generic envelope
Alpha + Alpha envelope 0.0035
0.0035 g - -2/ ndf 90.2 /48
g - 2/ naf 4731131 < C
< oout po 0.0009822 + 0.0002886 0.003 PO 0.003019 +7.485¢- 05
F p1 0.0002109 + 0.0001381 r p1 179.8 £ 11.41
000255 p2 0.002513 + 0.0003444 0.0025F p3 +87.69 +5.294
00251 3 . . »
g - e leso ol - P4 +0.4256 + 0.06168
0.002( { k 0.0021- P51.181e+07 + 1.676e+09
0.00151 0.0015F »
E L y
o 0.001- % %
0.001 »
C p0 + p2 { { . ~|
0o00sF- | 1+p1*x? 1+p3*x> 000051 [MEquation (6.3.1) ‘
:||||||||||||||||||||||||||||| :|||||||||||||||||||||||||||||||
Y ' ' ' ' ' ' % 700 200 300 400 500

300 350 .
Time in fil - s] Time in fill [- 5]

(e) (f)

Figure 6.3.2: Decoherence models tested on Run-2, A-Method Acpp envelope obtained
with fits on calorimeter data with 8 ps bin width.

Varying CBO frequency

In our nominal procedure, we parametrized the drifting CBO frequency as an exponential plus
a constant function (Equation (5.5.5)): the values of the amplitude and lifetime (A, 74) were
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CBO decoherence systematics [ppb]

Method | Run-2 Run-3a Run-3b
A 26 12 20
RA 15 7 15

Table 6.3.1: Systematic uncertainty related to the decoherence function D(t) that
parametrizes the CBO amplitude.

extracted separately from Run-2 and Run-3 data and reported in Table 5.5.1.

Within the w,Europa team, we estimated the systematic associated to the uncertainty on A
and 74 in the following way: we randomly sampled 100 values of A and 74 from a multivariate
Gaussian distribution, where the mean and standard deviation for A and 7, were set from Table
5.5.1, and the two parameters were assumed to be fully anti-correlated'. We repeated the 28/16-
parameter fits of A/RA-Methods wiggle plots fixing A and 74 to the randomly generated values,
and extracted R from fits. Figure 6.3.3 shows the results in Run-2: the standard deviation of
the distribution of R values was taken as the systematic uncertainty, and reported in Table
6.3.2.
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Figure 6.3.3: Run-2 data: 100 extractions of the varying CBO parameters and resulting
distributions of fitted R values.

Dedicated studies carried out by other analysis teams proved that the two effects described so
far, the CBO decoherence model and the varying CBO frequency, are uncorrelated and can
be added in quadrature when combining the total CBO systematic. The last contribution,
reported in the following, is instead assumed to be fully correlated, thus added linearly to the
combination of the first two.

'From the fit in Figure 5.5.2(b), the correlation was found to be —0.98.
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Varying CBO systematics [ppb]
Method | Run-2 Run-3a Run-3b

A 7.2 8.6 3.7
RA 3.6 0.8 0.9

Table 6.3.2: Systematic variation on R due to varying CBO parameters, taken as the
standard deviation of the distributions like the ones in Figure 6.3.3.

Higher-order CBO time constants

In the nominal w,FEuropa fit function, the decay time 7opo is assumed to be the same for the
three fit terms Neopo(t), App(t), ¢pp(t). However, since Run-1 our g — 2 simulations suggested
that the time constants for the last two terms can differ from the lifetime of Nepo(t), and
actually reach values that are £50% of 7¢go. To evaluate this systematic contribution in Run-
2/3, we have repeated our A/RA-Methods fits fixing the time constants of Agp(t) and ¢pp(t)
independently, as 0.57¢cgo or 1.57¢po, for a total of 4 new fits in addition to the nominal
one. For each dataset and method, we extracted the largest variation in R with respect to the
nominal result, and took it as our systematic evaluation, reported in Table 6.3.3.

Higher-order CBO time constants [ppb]

Method | Run-2 Run-3a Run-3b
A 4.6 1.3 2.1
RA 5.8 3.9 3.8

Table 6.3.3: Systematic error obtained by changing the App(t) and ¢pp(t) lifetime con-
stants by +50% with respect to 7¢po.

6.4 Lost muons model

In this Section we will present the different sources of systematic contributions from our lost
muons model, based on the selection of triple, quadruple and quintuple calorimeter coincidences.
In order to assign a systematic uncertainty, we compared our fit results with the nominal lost
muon function with two other procedures: the first one is the lost muons function obtained by
selecting only double coincidences in two consecutive calorimeters; the second one is the lost
muons function that another analysis team, IRMA, built with their own procedure to select
triple coincidences.

Figure 6.4.1 shows the comparison between the nominal J(t) and the two other lost muons
function that we tested, in the case of Run-2. Table 6.4.1 reports the shifts in R and kr ), with
respect to the nominal representative fits. The systematic uncertainty has been taken as the
largest difference AR between the standard J(¢) from 3 + 4 + 5 coincidences and the other
models that were tested.

The kg values from double coincidences and from IRMA function are typically similar in size,
because of the similar normalization of J(t) that can be observed in Figure 6.4.1. The final
systematic errors for the R/RA-Methods are larger than the T/A-Methods, and this could be
caused by the fact that kpjs parameter is fitted with greater uncertainty in R/RA fits, so it is
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Different J(t) models
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Figure 6.4.1: Different functions for the Run-2 lost muons: our nominal J(t) has a different
efficiency than the one built in the IRMA analysis or by selecting double coincidences, which
results in a different value of the krjs parameter. The difference in R depends on the shape
of J(t) and not on the normalization.

Case ‘ Parameter ‘ 2 A ‘ 3a A ‘ 3b A
Nominal ks | 0.00106(7) | —0.0009(3) | —0.0000(3)
AR [ppb] 0.0 ~19 —12
Doubles ki 0.0023(1) | —0.0022(8) | —0.0026(9)
AR [ppb] 0.2 —0.7 0.0
TRMA ko 0.0019(3) | —0.0019(8) | —0.0022(8)
Systematic [ppb] ‘ — ‘ 0.2 ‘ 1.9 ‘ 1.2
Case ‘ Parameter ‘ 2 RA ‘ 3a RA ‘ 3b RA
Nominal ki | 0.013(19) | —0.008(11) | —0.007(14)
AR [ppb] | —0.1 —42 0.5
Doubles ki 0.03(4) | —0.02(3) | —0.03(5)
AR [ppb] | —2.6 —0.6 3.4
TRMA ko | 0.04(6) | —0.03(4) | —0.03(6)
Systematic [ppb] | — | 26 | 4.2 | 3.4

Table 6.4.1: Different lost muons models tested on Run-2/3 datasets, for A /RA-Methods.
AR shifts are calculated with respect to nominal fits in Tables 5.6.1 and 5.6.2.

allowed to fluctuate more, resulting in a larger bias on R.

In the nominal w,Europa procedure, we fixed the lifetime 7 to 64.4 s in the integral of Equa-
tion (5.2.8) to build J(t) for all Run-2/3 datasets. The choice of this value did not affect w,
significantly: we repeated the wiggle plot analysis varying 47 in Equation (5.2.8) by +30ns,
which was the total change across the Run-2/3 datasets, and the systematic error on w, was
less than 0.1 ppb for all fits.

The systematic related to the fact that kpp; converges to negative values in Run-3 will be
discussed in Section 6.5.
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6.5 Residual slow term

In the nominal w,Europa reconstruction procedure, we apply a residual slow term correction
that rescales the clusters’ energies, to account for a slow term that affects our data in multiple
ways - for example, it induces the drift towards negative values of kpj; as a function of the
positron energy. The correction is parametrized according to Equation (5.2.9), where the 4,
sets the absolute size of the correction, and the w, oscillation is modulated by the asymmetry
Ag. In the following, we will assess the systematics on w, due to the uncertainties on the d,
and A, parameters. We will do this in a similar way as the gain systematics: we will extract
the dependence R on each parameter, and multiply it by the parameter’s uncertainty.

Slow term correction asymmetry A,

The nominal value of A, in the w,Europa procedure was 0.1497 for Run-2 and 0.1192 for Run-
3a/3b. The choices were made based on preliminary T-Method scans of R versus A,, with the
goal of minimizing the x?/n.d.o.f.

In order to extract the sensitivity of R to this parameter and the related systematic, we varied
A, from 0 to 0.48, in steps of 0.04 for T/A-Methods; and from 0 to 0.45 in steps of 0.075 for
R/RA-Methods. For each choice of Ay, the procedure to build and fit wiggle plots was repeated.

Run-2 « R Run-2 +2/ndof: vertex minima
-g F 1
5004 * T-Method 101 | —e— T-Method: 0.1505(7) /
@ 0.03f . * A-Method 10032- —e— A-Method: 0.1465(1)
- ® . — {
0.02 * s R-Method "\ | —e— R-Method: 0.130(2) | /
ooy & | * RAMethod 1.006% | —— RA-Method: 0.128(2) | //
oF R o\ *
- 0 e 1.0045
-0.01F LI
+0.02F Tt 1.002 LN
+0.03¢ . : NN -
E|||||||||||||||IIII|IIII| 1||||||||H|.\T'T‘|—%r%;r|||||||||||||||
0 0.1 0.2 0.3 0.4 0.5 0 005 01 015 02 025_03
Ag Scan Ag Scan

(a) (b)

Figure 6.5.1: (a) Run-2 scan of R versus Ay: to display all methods in the same plot, we
applied an offset on R such that it is O for the central point of the study. (b) Run-2 scan
of x2/n.d.o.f. versus Ag, where the value of the minimum is fitted with a quadratic formula
and reported in the legend with its error: to display all methods in the same plot, we applied
an offset on x2/n.d.o.f. such that it is ~ 1 for the vertex of the parabola.

Figures 6.5.1(a) and 6.5.1(b) show the R and y?/n.d.o.f. results for all methods in Run-2:
the slopes of R were always negative, but smaller in absolute value for the R/RA-Methods;
the x%/n.d.o.f. plots were fitted with a quadratic formula to extract the value of the vertex
minimum, reported with the fit error. All the fitted slopes are reported in Table 6.5.1. To
extract the systematic related to the A, parameter, we multiplied the slope of R versus A,
by the uncertainty on Ay, which could be estimated in two ways: the difference between the
x?/n.d.o.f. minimum and the nominal A, value for each of the Run-2/3 reconstruction; or the
change in A, that increased the x* by 1 unit. The uncertainty was chosen as the maximum
value between these two methods.
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The systematic related to the A, parameter is reported in Table 6.5.1 for A/RA-Methods,

together with the slopes of R.

Slow term correction amplitude d,

The nominal value of d, in our procedure was 8.815 - 10~* for Run-2 and 6.250 - 10~* for Run-
3a/3b. The choices were made based on preliminary T-Method studies on the é, parameter,
with the goal of making the krjr parameter more stable as a function of the cluster energy. In
order to extract the sensitivity of R to this parameter and the related systematic, we varied
0y from 0 to 1.5 - 1073, in steps of 1.25 - 10~* for T/A-Methods and steps of 2.5 - 10~* for
R/RA-Methods, to extract the slopes of R as for the J, parameter.

Run-2 « R
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“ o004 o .
C ° e
— ®
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ofF e °.
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T ® R-Method v
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Figure 6.5.2: Run-2 scan of AR versus d4: to display all methods in the same plot, we

applied an offset on R such that it is 0 for the central point of the interval.
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Figure 6.5.3: Energy binned fit of kpjs parameter for Run-2/3 dataset, T-Method. The
residual slow term correction parameter dq is varied around the nominal value, to test if kzs
versus energy remains flat.
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Figures 6.5.2 shows the R results for all methods in Run-2: the slopes of R are positive for
the T/R-Methods and negative for the A/RA-Methods, which could be caused by the different
energy thresholds; all the fitted slopes of R/d, are reported in Table 6.5.1.

The choice of §, was based on the values that made kry more stable as a function of the
energy. Figure 6.5.3 shows kpj; versus energy for different choices of d, around the nominal
value for each of the Run-2/3 datasets: kpys is flat for the central value and tends to drift
upwards/downwards for the upper/lower values of the J, interval. To be conservative, in order
to evaluate the systematic contribution due to §, we multiplied the slopes of R by 1.25- 1074,
which was the T/A-Methods step in d,. Table 6.5.1 reports the resulting systematic error
related to the choice of ¢, for all datasets of Run-2/3.

Slope of R versus A, [ppb] A -related systematics [ppb]
Method | Run-2 Run-3a Run-3b  Method | Run-2 Run-3a Run-3b
A —146  —182 —96 A 3.5 6.6 3.2
RA —34 —146 —32 RA 0.9 3.2 2.3

Slope of R versus d, [ppb/10~?] d,-related systematics [ppb]
Method | Run-2 Run-3a Run-3b  Method | Run-2 Run-3a Run-3b
A —5.72 —120 —45.33 A 0.7 15.0 5.7
RA —-290 -16.21 —15.20 RA 0.4 2.0 1.9

Table 6.5.1: Slopes of R and systematics related to the uncertainties on A, and d,.

Other parameters of the slow term correction

When building the residual slow correction of Equation (5.2.9), the muon lifetime was fixed to
the value of 64.43 ps obtained in Run-2 T-Method fits, and also the w, parameter was fixed
a priori to 1.43939rad/ps, but in principle the R value from fits could change according to
this parameter. In this paragraph, we report the results obtained when changing v7 and w,
conservatively by a value that is larger than their uncertainty. We changed 7 from 64.43 ps to
64.40 ps (closer to the Run-3 value) and w, by £10ppm: the differences of R with respect to
the nominal fits are reported in Table 6.5.2.

AR due to d7, = 30ns [ppb] AR due to dw, = 10 ppm [ppb]
Method | Run-2 Run-3a Run-3b  Method | Run-2 Run-3a Run-3b
A 2.5 0.4 —0.5 A 2.9 1.8 —1.6
RA 2.8 —-3.5 1.9 RA 2.3 —1.1 1.4

Table 6.5.2: Systematics associated to the parameters w, and 7 choices for the slow term
correction.

Negative krps in Run-3a/3b fits

In Run-3a/3b, the fitted values of k), were always negative, despite the residual slow correction
that made their behaviour more stable as a function of the positron energy. In the A-Method
results of Table 5.6.1, ks was negative and not compatible with 0 within the fit error, whereas
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it was compatible with 0 for the RA-Method in Table 5.6.2. In this paragraph we will discuss
the last systematic error related to the residual slow term, only for the Run-3a/3b A-Method.
In Table 6.5.3 we report the shift in R and x?/n.d.o.f. when fixing k7, to 0 or to 1073 (close
to the Run-2 value); since kpj, is highly correlated to 77, we also report the shift in the muon
lifetime when fixing kp,,. Differently from the systematics in Table 6.4.1, in this study the lost
muons model J(¢) is always the nominal w,Europa one.

Dataset ki X’/ndof. | R [ppm] ‘ 7 [ns]
Floating 3981.24/4127 | —71.393 £+ 0.290 | 64.415 + 0.003
Run-3a 0 3988.57/4128 | —71.401 £ 0.290 | 64.4223 + 0.0005
0.001 4012.36/4128 | —71.409 + 0.290 | 64.4300 + 0.0005
Floating 4154.14/4127 | —70.397 + 0.468 | 64.392 + 0.003
Run-3b 0 4162.76/4128 | —70.404 + 0.468 | 64.4002 + 0.0007
0.001 4192.28 /4128 | —70.411 4+ 0.468 | 64.4088 + 0.0007

Table 6.5.3: A-Method slow term systematics for Run-3 datasets due to kr,3s being negative.

For each dataset, the y7 fit error is reduced when fixing k5. From an independent study of the
Fast Rotation signal that the beam dynamics groups performed, the v7 parameter was found
to be 64.418 £+ 0.009 ps for Run-3a and 64.384 £ 0.009 ps for Run-3b [131]. In our nominal
fits with negative ks, 77 is compatible with the Fast Rotation values within 1 ¢; instead, as
shown in Table 6.5.3, 77 becomes more than 1o larger than the Fast Rotation values when
fixing kry; to the Run-2 value. For this reason, as a systematic error for the A-Methods, we
take the difference between the nominal value of R and the fit for k;3; = 0, which is equal to
8 ppb for both Run-3 datasets.

Combined Slow term systematics [ppb]

Method | Run-2 Run-3a Run-3b
A 5.2 18.3 10.4
RA 3.8 5.3 3.8

Table 6.5.4: Sum in quadrature of all residual slow term systematics.

Table 6.5.4 reports the combined slow term systematics for each dataset and each method, where
we have added in quadrature the contributions from A,, ¢4, other parameters of the residual
slow term correction, and the behaviour of kzy, for Run-3a/3b T/A-Methods, assuming these
contributions are all independent. The values for Run-3a are larger than 10 ppb mostly from
the contribution of the A, and ¢, systematics, and from the negative value of kr)s in the case
of the A-Method.

6.6 R/RA-Methods related systematics

There is a class of systematic uncertainty that only affects the R/RA-Methods, because it
is related to two parameters that are fixed before building wiggle plots: the T, anomalous
precession period in the Quartering procedure, because in principle its choice a priori could
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affect the fit results of R, and the Ty that is used for time randomization of R/RA-Methods.
We have repeated the nominal procedure for the representative seeds to extract the shifts in
R when changing T;, by 10 ppm (to be conservative, like Table 6.5.2 of the residual slow term
correction systematics), and Tyy by 2ns (approximately 0.5%), which corresponds to how
much it varies among the three Run-2/3 datasets from Table 5.6.1. The shifts in R due to the
choices of T, and Ty were found to be of the order of ~ 3 ppb and are reported for all datasets
in Table 6.6.1.

AR due to 6T, = 10 ppm [ppb] AR due to dTyw = 0.5% [ppb]

Method | Run-2 Run-3a Run-3b  Method | Run-2 Run-3a Run-3b
R 2.1 2.5 1.9 R 2.1 1.7 2.4
RA 1.3 1.1 1.5 RA -0.9 0.7 0.5

Table 6.6.1: Shifts in R for the representative R/RA-Methods seeds, when conservatively

varying the T}, and Ty parameters that are fixed a priori when building the R/RA wiggle
plots.

6.7 Summary of all systematic contributions

Table 6.7.1 summarizes the statistical and systematic contributions for the different datasets
of Run-2/3. These results were averaged with those from other groups, as it will be explained
in Chapter 7. The “Time randomization” uncertainty is considered to be independent (thus
uncorrelated) from each analysis. It is obtained from o (the width of the per-seed distribution
of R fits) reported in Table 5.6.1 and 5.6.2, through Equation (5.2.10). To keep this uncertainty
below ~ 5ppb, 100 seeds were used for the A-Method and 540 for the RA-Method, where the
additional Quartering and vertical waist randomizations in the Ratio wiggle plots enhanced o.

Contribution [ppb] A-Method RA-Method
Run-2 Run-3a Run-3b | Run-2 Run-3a Run-3b

Statistical 337 291 468 345 301 480
Time randomization 3.5 2.6 4.8 3.7 2.7 5.3
Gain 4.0 4.7 4.7 0.3 0.8 1.0
Pileup 6.1 7.7 9.2 2.9 4.7 6.9
CBO 31.6 16.1 21.6 20.5 16.6 21.3
Lost muons 0.2 1.9 1.2 2.6 4.2 3.4
Residual slow term 5.2 18.3 10.4 3.8 5.3 3.8
Ratio approximations — — — 1.6 1.3 1.6
Total systematic 32.8 26.0 26.1 21.3 18.6 23.0

Table 6.7.1: Run-2/3 statistical and systematic uncertainties for A/RA-Method in the

wgEuropa analysis.
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Chapter 7

Measurement of the magnetic anomaly
a, to 203 ppb

In this Chapter, we will present the result for a, with Run-2/3 data according to Equation
(4.7.3). We will start by reminding our first result released in 2021, and then we will review
the consistency checks that were performed.

7.1 Run-1 result

The Run-1 measurement was released in 2021 with a total precision of 462 ppb: the statistical
error amounted to 434 ppb and was limited by the number of analyzed positrons; the system-
atic error amounted to 157 ppb and was dominated by the transient ESQ fields B, and the
phase acceptance effect C,,, that was enhanced by damaged ESQ resistors. All of these large
contributions were reduced in Run-2/3, thanks to the improvements described in Section 5.1.1.
The uncertainties on the magnetic field and on the transient kicker field were limited by the
number of measurements that were performed at the time. Within the w, analysis, there was
the unsolved puzzles of the residual slow term effect and its interplay with kr,;, which re-
quired a conservative estimate of the associated systematic error. The CBO and pileup effects
amounted to 38 ppb and 35 ppb respectively, dominating the total w]" systematic error. Table
7.1.1 reports the published values for each contribution. The differential decay Cy; was not
applied at the time, and preliminary estimations of its uncertainty were found to be negligible
with respect to other beam dynamics effects.

With the Run-1 analysis, we performed a measurement of a,, to 462 ppb, which was in agreement
with the previous result at the E821 experiment in BNL:

a.”™ (Run-1,2021) = (116592040 + 54) x 107" (7.1.1)

Combining the Run-1 result with the previous one at E821, the experimental average in 2021
was:

as™ (average, 2021) = (116592061 + 41) x 107" (7.1.2)

reaching the precision of 351 ppb. Figure 7.1.1 shows the comparison between the 2021 exper-
imental average and the theoretical value recommended by the Theory Initiative in the 2020
White Paper [5], described in Chapter 2.
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Quantity ‘ Correction [ppb] ‘ Uncertainty [ppb]
w™ (statistical) 434
w™ (systematic) e 56
C. 489 53
c, 180 13
o 158 75
Cdd . ..
Chu -11 5)
Feativ + {wy, (7) x M (7)) 56
B, -17 92
By, =27 37
External fundamental factors e 25
Total systematic e 157

Table 7.1.1: From Ref. [1]. Run-1 summary of the statistical and systematic errors on
different contributions to a, in Equation (4.7.3): the measured anomalous precession fre-
quency and magnetic field, the values and uncertainties on the correction terms of due to
beam dynamics and field transients, and the total fundamental factors.

BNLg2 — P
FNAL g-2
+—
(2021)

< 4.20 >

— +——
Standard Model Experiment
WP 2020 Average

175 180 185 190 195 200 205 210 215
9
aux10 -1165900

Figure 7.1.1: From Ref. [1]. The experimental values of a, from the E821 experiment at
BNL (blue), the Run-1 measurement at Fermilab (red) and the combined average (purple
band) are compared with the Muon g — 2 Theory Initiative recommended value for the
Standard Model. The inner tick marks indicate the statistical contribution to the total
uncertainties.

7.2 Run-2/3 result

There were two different hardware blinding in Run-2 and Run-3, thus there were two unknown
values of fuoa that prevented any comparisons with the Run-1 result during the analysis.
Furthermore, each of the seven w, analysis teams applied a software blinding with a secret
offset to their w, results, according to Equation (4.7.17).

There were three steps towards the release of the Run-2/3 result: the first was the software
unblinding amongst analyses, the second was a “relative” unblinding to compare Run-2/3 with
a common secret offset, and the last one was the hardware unblinding of Run-2/3. We will now
discuss some comparisons done after the software unblinding, to investigate potential outliers
and study the allowed statistical variations between each reconstruction or each method of
building wiggle plots.
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7.2.1 Consistency checks of w, results across different analysis groups

Once the software blinding was removed, different analysis teams could compare their result for
w, within the same dataset, whereas a hardware blinding was still in place between Run-2 and
Run-3. As a cross check, several analyzers sent their wiggle plot histograms to other analyzers
from different teams, who extracted w, with their own fit function. The aim of this procedure
was to spot any differences in the w, results when fitting the same wiggle plot with different
functions: in case this happened, it was important to track down the origin of such a difference,
to clarify whether it was due to reasonable choices in the analysis (e.g., different values of A
and 74 that parametrized the varying CBO frequency in Equation (5.5.5)), or instead due to a
possible error in the code.

Within the w,Europa group, we exchanged histograms and performed these checks with two
groups: BU and SJTU. The exchange with BU was crucial for the RA-Method, since w,FEuropa
and BU were the only two groups that used that method in Run-2/3 (see Table 5.1.2). BU’s
procedure for the A-Method wiggle plots involved the time randomization of vertical oscillation
frequencies, which removed the need to parametrize the vertical waist (VW), y-oscillations and
VW-CBO effects in their fit function. In the w,Europa team, this type of randomization was
applied to the R/RA-Methods, but not for T/A-Methods. Thus, the exchange with SJTU
histograms was an important test for the vertical oscillation frequencies in the w, fit function,
and in particular for the VW-CBO term of Equation (5.5.15), which was new with respect to
Run-1.

The procedure to perform this type of check was the following:

1. A first fit was performed by each group with their own nominal fit function, on the
same wiggle plot with the associated lost muons function. For instance: as a first step,
both w,Europa and BU fitted BU’s RA-Method wiggle plot, each with their own fit
functions; in this case, for the lost muons parametrization, both groups used BU’s J(t)
function obtained in their nominal procedure; then both groups repeated this procedure
on w,Furopa’s wiggle plots.

2. These first fits served as a baseline for the comparison: typical differences of R were of the
order of 20 ppb, but could reach up to 30 ppb, and large differences of R were associated
with differences in the reduced x? by 30 or more units.

3. To track down the differences, we began to standardize our fit functions step-by-step.
The most relevant changes on R and x*/n.d.o.f. occurred when both groups used the
same parameters for the CBO decoherence envelope and for the varying CBO frequency.
Other changes improved the comparisons significantly: in the BU fits, kzj was fixed to
positive values in Run-3; in the nominal SJTU function, the lifetime parameter of the
VW-CBO effect was fixed instead of being kept as a free parameter. In both cases, when
we implemented these fit strategies in the w,Europa fit function, there was an overall
reduction of the R and x?/n.d.o.f. differences.

With standardized fit functions, we were able to obtain very similar results between w,Europa
and BU teams when fitting w,Europa and BU wiggle plots, and likewise between w,Europa
and SJTU. For each dataset and method, the final differences in R were less than 1 ppb, and
in x?/n.d.o.f. less than 0.5 units.

Figure 7.2.1 shows the software-unblinded w, results for the total of 19 analysis methods across

the seven w, analysis teams, reported in Table 5.1.2. Because of the different blinding, there is
a ~ 10 ppm difference between Run-2 and Run-3 values.
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R(+ ,) measurements, common software blinding
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Figure 7.2.1: For each of the three Run-2/3 datasets, the 19 measurements of w, from
the seven analysis teams with different methods are shown. These results have the same w,
software unblinding within a given dataset, but there is still a different hardware blinding
between Run-2 and Run-3. The error bars represent the statistical uncertainties.

Within each dataset, the 19 distinct w, analyses agree with each other within the allowed
statistical and systematic uncertainties, that we will refer to as oy; for each pair of analyses i, j.
We can define the pulls between each pair as (y; — y;j)/0ij, where y; is the w, determination for
the i*" analysis. Figure 7.2.2 shows the pulls for the A /RA-Methods w, results, which are used
for the average. There are 6 x 5/2 = 15 distinct pairs for each dataset, for a total of 45 entries.
The standard deviation for the distribution is 1.09, close to 1 as expected.

7.2.2 Combination of w, results

For each of the three Run-2/3a/3b datasets, a single measured value of w, was obtained by
averaging the results of six Asymmetry-Weighted Methods, one for each analysis team. For
CU, IRMA, SJTU and UW, the A-Method was chosen; for the two groups that performed both
an A-Method and a RA-Method analysis, w,Europa and BU, the RA-Method was chosen as it
reduced the systematic uncertainties. Results from the T/Q/RQ-Methods were not considered
in the average, because their statistical uncertainty was significantly larger, nonetheless they
helped for the consistency checks.

For each dataset, the conservative choice was made to assume that the statistical and systematic
uncertainty contributions of the six measurements used in the average were fully correlated.
This choice was justified by studying the correlations between each pair of analyses, performed
with Monte Carlo and bootstrap techniques, where the correlations among the six analyses
were found to be ~ 0.99. Under this assumption, for each dataset the average of the statistical
and systematic uncertainties are the averages of the contributions from each of the six analyses.
When combining the three dataset, the statistical uncertainty for Run-2/3 becomes 201 ppb,
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Figure 7.2.2: Pulls between the 45 pairs of A/RA-Methods measurements that are used
in the w, averages of the Run-2/3 datasets.

whereas, for the systematic uncertainties, the conservative assumption is made that the same
contributions are fully correlated among datasets’.

7.2.3 Consistency checks of R,

After the hardware unblinding, many consistency checks on the R, ratio of Equation (4.7.3)
have been perform, to identify any unexpected correlations to external variables such as the
temperature of the muon storage ring or the magnet current. For the purpose of these tests,
for each external variable the Run-2/3 data have been divided into many slices, and for each
slice the ratio w, /@, was obtained. Typically, the division into slices was carried out in order to
have the same variable range for each slice, but in some cases this led to w, fits with too small
statistics, so for a few external variables it was preferred to split data into slices with the same
number of analyzed positrons. In this consistency study, none of the R, ratio values showed
a dependency on the external variables that were investigated. For each variable, a x? mini-
mization fit on the R, versus slice was performed, and the fit p-values were typically above 0.75.

An additional consistency check was performed to examine the correlation of R, versus each
of the 20 datasets of Run-2/3. The results of this test are shown in Figure 7.2.3(a): no incon-
sistencies were observed, but two datasets (Run-2F and Run-2H) had higher R, ratio values
compared to the other datasets. In light of this difference, further analysis cross checks were
performed for these two datasets by w, and w, analyzers, but no anomalies were discovered,
giving us confidence that the higher R, ratio values for Run-2F and Run-2H were due to sta-
tistical fluctuations. The results of a y? minimization fit are shown, with a p-value of 44%.

For each of the three datasets Run-2/3a/3b, the ratio R, was computed through Equation
(4.7.3), including the corrections that arise from beam dynamics and transient magnetic fields.
The three ratio values were found to be statistically consistent and fitted to obtain the measured

!Further details on the combination will be described in full in a future paper, that is currently in preparation
for submission to Physical Review D.
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R, (T}) for the Run-2/3 combination (where 7, is the reference temperature in Equation (4.7.3))

with a p-value around 20%. The results are shown in Fionre 7 2 3(h)
Run 2+3 R (T)= ./, (T) fitwith ?terms
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Figure 7.2.3: (a): value of R, from Equation (4.7.3) as a function of the 20 Run-2/3
datasets. The horizontal dashed line is the result of a x? minimization fit. (b): Run-2/3
measurements of w, and (:JI/), after applying all corrections of Equation (4.7.3), and fit to their
ratio.

7.2.4 Run-2/3 measurement of a,

Table 7.2.1 reports the final values for each contribution to a, in the Run-2/3 result. The
uncertainties are dominated by the statistical contribution, as for Run-1. The larger number
of analyzed positrons and better running conditions (described in Section 5.1.1) improved both
the statistical and the systematic uncertainties by a factor of ~ 2.2 with respect to Run-1.
The major change in the apparatus was the repair of damaged ESQ resistors, which strongly
affected the muon beam dynamics and enhanced the phase acceptance effect.

The largest beam dynamics correction is C,, due to the electric fields of the ESQ system, which
depends on the momentum spread of the muon beam. The muon momentum distribution is
determined from the frequency distribution and debunching rate of the injected beam using
calorimeter data, and the radial distribution of stored muons over a betatron period is obtained
from tracker data. In Run-2/3, the debunching analysis took into account differences in mo-
mentum spread along the injected bunch length that were not included in the Run-1 analysis.
Accounting for this difference and using complementary tracker information reduced the C,
uncertainty by a factor of ~ 0.6.

There was also a great reduction of the transient field systematic effects. In Run-1, the cor-
rection from the magnetic field transient due to vibrations caused by ESQ pulsing, B,, was
measured at a limited number of locations around the ring. Thanks to a nonconductive mov-
able device, NMR probes were used in Run-2/3 to map the transient fields in the storage
region between the ESQ plates, on a larger number of azimuthal locations. This mapping, in
combination with improved methodology and repeated measurements over time, reduced the
B, systematic effect by more than a factor of 4 with respect to Run-1. An improved mag-
netometer setup with less vibration noise also reduced the systematic error on By, caused by
kicker-induced eddy currents, by a factor of ~ 3.

With the Run-2/3 analysis, we performed a measurement of a, to 215ppb, which was in
agreement with the previous results of Run-1 at Fermilab and of the E821 experiment at BNL:

a*® (Run-2/3,2023) = (116592057 + 25) x 107" (7.2.1)
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Quantity ‘ Correction [ppb] ‘ Uncertainty [ppb]
w™ (statistical) e 201
w™ (systematic) e 25
C. 451 32
c, 170 10
Cha 27 13
Cua -15 17
Chu 0 3
Sear - (wy, (7) x M (7)) - 46
B, -21 20
By 21 13
External fundamental factors e 25
Total systematic e 70

Table 7.2.1: From Ref. [3]. Run-2/3 summary of the statistical and systematic errors
on different contributions to a, in Equation (4.7.3): the measured anomalous precession
frequency and magnetic field, the values and uncertainties on the correction terms of due to
beam dynamics and field transients, and the total fundamental factors.

Combining the Run-1 and Run-2/3 results, we obtained the new Fermilab average with a
precision of 203 ppb:

a*™ (Run-1/2/3,2023) = (116592055 + 24) x 107" (7.2.2)

Including the E821 result at BNL, the experimental average in 2023 has reached the unprece-
dented precision of 190 ppb:

as™ (average, 2023) = (116592059 + 22) x 10" (7.2.3)

The results are displayed in Figure 7.2.4.

A +— BNL
O FNAL Run-1
—Tt FNAL Run-2/3
+—O—t FNAL Run-1 + Run-2/3
+—o—+ Exp. Average
20.0 20.5 21.0 21.5 22.0 22.5

a,x10” = 1165900

Figure 7.2.4: From Ref. [3]. The experimental values of a, from the E821 experiment at
BNL (blue), from the E989 experiment at Fermilab (red) and the new combined average
(purple band). The inner tick marks indicate the statistical contribution to the total uncer-
tainties.
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7.2.5 Theory comparison

The current scenario in the theoretical prediction of a, and the puzzles in the QCD sector of the
Standard Model (SM) were reported in Section 2.1.3. In the last 20 years, since the previous
experiment at BNL observed a 3.7 ¢ discrepancy with respect to the theoretical prediction at
the time, there has been a world-wide effort of experiments working on e*e~ to hadrons data
in the energy range below a few GeV, that allowed to achieve a remarkable uncertainty of 0.6%
on the leading order hadronic vacuum polarization af VP=LO [5 35].

As we already mentioned, in the 2020 White Paper the Theory Initiative recommended a value
for the Standard Model prediction based on eTe™ to hadrons data [5]. The first result at Fermi-
lab from Run-1 data confirmed the discrepancy, which provided a hint of new physics beyond
the SM. The discrepancy between the experimental value of a, and the 2020 White Paper was
strengthened to 5.1 0 with the release of the Run-2/3 result.

In 2021, the BMW collaboration published a first lattice calculation of afVP ~LO with sub-
percent accuracy [6], which was closer to the experimental value, compatible with a “no new
physics” scenario, and discrepant with the dispersive approach based on ete™ data. While
the evaluation of the whole a)/V*~*9 from the other lattice groups is in progress, an excellent
agreement between different lattice results is found for the so-called intermediate window ob-
servable [47]. The evaluation of this intermediate window observable shows a 4 ¢ discrepancy
between the lattice and the data-driven computation. On the e*e™ to hadrons side, in addition
to the known discrepancy between KLOE and BaBar, the recent CMD-3 [7] data has shown a
discrepancy at (2.5—5)0 level with all previous measurements used in the 2020 White Paper [5].
The origin of this discrepancy is currently unknown.

In view of the current theory situation, a firm comparison between the 2023 Run-2/3 result
and the theory cannot be established.
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Chapter 8

Preliminary analysis of the Run-4/5/6
dataset

In this Chapter, we will present an overview of the Run-4/5/6 running conditions, and discuss
the status of the w, analysis for these last three datasets which is expected to be completed by
2025.

8.1 Run-4/5/6 data campaigns and running conditions

In the last three data campaigns Run-4/5/6, from December 2020 to July 2023, we collected
enough statistics to achieve our goal of > 21 times the total statistics collected in the previous
experiment at BNL. Thanks to this amount of data, we expect to exceed the design goal for the
statistical uncertainty of 100 ppb. Figure 8.1.1 shows the number of collected positrons over
the Run-1-to-Run-6 campaigns from 2018 to 2023, and the projected statistical uncertainty on
w, with the A-Method.

Last update: 07-09-2023; Total statistics = 322.1 (billions)
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Figure 8.1.1: The 6 run periods of the E989 experiment, with labels indicating the periods
in which each data acquisition campaign took place. The last day of acquisition is reported
in the top, with the total number of collected positrons. The black curve is the projected
statistical uncertainty on w, as a function of the cumulative number of positrons, analyzed
with the A-Method.
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There have been significant changes in the Run-4/5/6 experimental setup, described in the
following, that will influence the analysis (for instance, the CBO effect in wiggle plots) thus
requiring to modify the analysis procedures to take the differences into account.

| Run | Dataset(s) | Muon fills [x10°] | Quad RF configuration |

Run-4 All 78 No RF
A 3 No RF
Run-5 B-L 54 Horizontal RF
M-U 58 Horizontal+Vertical RF
Run-6 All 54 Horizontal+Vertical RF

Table 8.1.1: Run-4/5/6 configurations, along with the number of muon fills (each fill
corresponds to 700 ps of data acquisition).

At the time of writing, it has not yet been decided how to combine our data into major datasets
for the analysis, but proposals are being made based on the data reported in Table 8.1.1. Soon
after the beginning of Run-5, after the first ~ 2.6% of the dataset was collected, we transitioned
to a new configuration of the ESQ system, where a radio frequency (RF) electric field is applied
at the ESQ plates simultaneously with the high voltage. This technique was proposed in 2003
after the BNL experiment had finished collecting data, with the goal of reducing the Coherent
Betatron Oscillation (CBO) effect (introduced in Section 4.7.2) and the muon losses in the data,
which were dominating the beam dynamics systematic uncertainties. The so-called “Quad RF”
technique is explained in detail in Ref. [111]: the RF field applies a harmonic modulation of
the betatron oscillations, acting as a counter-perturbation on the CBO in a similar way as a
forced harmonic oscillator.

During Run-5, the Quad RF was switched on initially for the horizontal oscillations and then
also to reduce the vertical motion of the beam. It was observed that the CBO amplitude
changed from 5mm to 1 mm with RF on, and the muon losses were reduced by a factor of 5,
only at the expense of a 5% drop in stored muons (because, with this way of optimizing the
beam phase space with RF scraping, there are less particles near the limits of the storage ring
acceptance).

A few more details are worth mentioning about the Run-4/5/6 datasets.

After Run-4, there were a couple of changes in the configuration of In-Fill-Gain (IFG) laser
pulses (described in Section 4.4.2). In the Run-4 configuration, 4 laser pulses covered the entire
700 s of storage time moving by a step of 1.5ps per fill, for a total of 117 steps before the
pulses moved back to their starting point; IFG laser pulses were shot only in ~ 9% of the muon
fills, i.e. 1 fill every 11. Firstly, in the last month of Run-4 the rate of IFG laser shots was
decreased to 1 fill every 22, in order to increase the percentage of muon fills without laser pulses
that could be analyzed. Thanks to a series of preliminary studies that we conducted, it was
found that this new rate would still allow to keep the gain fluctuation systematics below the
design goal of 20 ppb, given the high statistics of Run-4. Secondly, at the beginning of Run-5
the step between laser pulses was changed: the first laser pulse sweeping from 0 to 50 us had
a step of 0.2 s with 250 repetitions; the step of the other three lasers pulses was instead set
to 1.0 ps, with 250 repetitions. This allowed to finely scan the first microseconds of laser data,
where the gain sag shown in Figure 5.2.4 occurs, and extract the exponential parameters from
the fit with more accuracy.

For Run-4 and Run-5, the same hardware blinding (secret clock frequency described in Section
4.7.6) was chosen, because it was foreseen that these two runs would be analyzed and published
together. Before the beginning of Run-6 data acquisition, it was not known if Run-4/5 and
Run-6 would be published separately or together; if we kept the same hardware blinding, we

129



CHAPTER 8. PRELIMINARY ANALYSIS OF THE RUN-4/5/6 DATASET

would have been forced to analyze and publish Run-6 together with Run-4/5, and there were
concerns that this could delay the publication, so a different hardware blinding was set for
Run-6. These concerns have mitigated since the reconstruction of Run-6 datasets finished a
few months after the end of data acquisition, thanks to many upgrades in the production chain
(for instance: Run-6 was the only dataset in which the data reconstruction happened in real
time with data acquisition). At the time of writing, the proposal to relatively unblind Run-6
with respect to Run-4/5 during the early stages of w, is being discussed, and the tools to do so
are being implemented: the main advantage is that Run-6 can be combined with the last part
of Run-5, since they have the same configuration as shown in Table 8.1.1, increasing the wiggle
plot statistics.

8.2 Preliminary w, fits and systematic studies

In Figure 5.2.5, we showed the accumulated fit residuals of the exponential fits on laser data, to
extract the IFG correction in Run-2/3. The residuals after 30 ps are in the time window of the
w, analysis, and are well contained within & 10™%, giving us confidence in the parameters that
we used for the IFG correction. A similar plot is shown in Ref. [118] for Run-4. In Run-5, the
step of laser pulses in the first 50 ps was changed from 1.5 ps to 0.2 s, to allow a finer binning of
the laser data in the region where most of the gain sag occurs. In Figure 8.2.1, the accumulated
residuals are shown for the whole Run-5 dataset, where the finer binning is evident in the first
50 ps and the residuals are still well contained within 41074,
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Figure 8.2.1: In-Fill-Gain fit residuals, obtained by summing over the 1296 SiPMs over all
the Run-5 dataset. The red histogram shows only the contribution from the 16 “hottest”
crystals, which are closest to the beam storage region and therefore detect positrons with a
higher rate.

This result gives us confidence that a potentially incorrect calibration of SiPM In-Fill-Gain
changes cannot be the main source of the residual slow term, observed in the w, analysis.
Before the start of Run-4 data reconstruction, it was found that the common pulse fitter of
Local/Local At and ReconITA reconstructions was missing some crystal hits in the case of
two positrons detected within tens of ns. The number of missing hits was proportional to the
rate of pileup, and it was partially responsible for the slow term in Run-2/3. The algorithm
of the pulse fitter was revisited by its developers in view of Run-4/5/6, in order to overcome
the limits observed in the Run-2/3 version. In the w,Europa team, an improved version of
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the ReconlITA algorithm was being developed in parallel with the Run-2/3 analysis, which was
finalized and used for Run-4/5/6 and which also managed to address the issue of missing hits.
In the improved version, a new pulse fitting technique is implemented after the first round of
pulse fitting and clustering’. In the second iteration, the fit on crystal waveforms searches for
positron hits using the time constraint of clusters that were found in the first iteration: even if
two positrons on the same calorimeter were already clearly separated, the algorithm manages to
recover any previously missed hits belonging to the second positron. Thus, the new algorithm
further separates pileup clusters that overlap spatially and generate multiple hits on the same
SiPM. Figure 8.2.2 shows the new workflow, which is an upgrade in the w,Europa analysis with
respect to the Run-2/3 chain shown in Figure 5.1.2. Full details about the new reconstruction
are provided in Ref. [118].

Gain calibration Gain calibration
constants constants

@—v Pulse fitter » Clustering »1 Pulse fitter 2 »] Clustering = = =»

Figure 8.2.2: Run-4/5/6 wyEuropa analysis workflow. After the second round of clustering,
the workflow continues as in Figure 5.1.2.

To investigate the impact of the new ReconITA reconstruction on the residual slow term effect, a
preliminary energy binned analysis on Run-2C data has been performed to extract the behaviour
of kry at high energies. Figure 8.2.3 shows that, with the upgraded ReconlTA pulse fitter,
krar is positive up to almost 2500 MeV, and the drift towards negative values is reduced by a
factor or ~ 66%. We therefore expect to reduce the systematic associated to the slow term in

the Run-4/5/6 result.
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Figure 8.2.3: kpjs as a function of the energy in the Run-2C dataset for the old (blue)
and new (red) ReconITA analysis. The drift towards negative values is reduced with the
improvements that will be used for the Run-4/5/6 reconstruction.

!This work constituted one of my main contributions during the first year of PhD.
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Since Run-5, the Quad RF technique has greatly suppressed the CBO radial oscillations of the
muon beam: this is reflected in the shape of wiggle plots, where the rate of detected positron
events is affected by beam dynamics frequencies, so we can also expect a reduction of this
systematic contribution to w,. Figure 8.2.4 shows the fast fourier transform of residuals when
wiggle plots are fitted with the 5-parameter function of Equation (4.7.4), and it compares the
Run-3a dataset with the Run-5JK combined datasets. The peak at CBO frequencies is greatly
reduced, and this is expected to decrease the systematic uncertainty related to the CBO effect,
which is dominant in Run-2/3.
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Figure 8.2.4: FFT of residuals with a 5-parameter fit. The peak in the Run-3a FFT (blue)
is located at the characteristic CBO frequency. This peak is highly reduced in Run-5 (red).
Some peaks near the vertical waist and y-oscillation frequencies are also present. The vertical
Quad RF which was turned on in Run-5M is expected to also reduce these peaks.

We currently expect to release our next and final result, based on Run-4/5/6 data, in 2025. The
reconstruction of all datasets has recently been completed, and the analyses of w,, w, and all
corrections in Equation (4.7.3) have already started for Run-4/5 data. Two task forces within
the w, teams were formed to work on the CBO effect and on the residual slow term, which were
the largest systematic contributions to Run-2/3. With a collective effort from all analyzers,
these effects will be investigated to reduce the systematic error and also to potentially identify
new puzzles in the analysis, which might arise due to the different running conditions with
respect to Run-2/3 (e.g., the introduction of the Quad RF technique). As explained in Section
8.1, during Run-6 a different hardware blinding than Run-4/5 was used, but a procedure is
being developed to analyze Run-6 with the same blinding as Run-4/5 in order to combine data
into bigger datasets. The analysis of Run-6 will start as soon as the collaboration will have
agreed on this procedure.
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Conclusions

The measurement of the muon magnetic anomaly a, = (g, — 2) /2, where g, is the g-factor
of the muon, is a precision test of the Standard Model (SM), where a significant discrepancy
between the measurement and the SM prediction has persisted for more than 20 years. The
Muon g — 2 experiment at Fermilab has published two measurements based on the first three
years of data taking (Run-1 was published in 2021 and Run-2/3 in 2023), bringing down the
precision on the experimental value of a, to 190 parts per billion (ppb). The newest result
confirms the one from Run-1 in 2021 and the previous one at BNL, bringing the test of SM
to unprecedented precision. The discrepancy between the experimental value of a, and the
2020 theoretical value recommended by the Theory Initiative White Paper was strengthened
to b.1o.

In this Thesis we presented the analysis of the anomalous precession frequency of the muon,
w,, for the Run-2/3 result, which was a main ingredient together with the B-field for the
measurement of a,. The “Ratio-Asymmetry” analysis method, new with respect to Run-1, was
developed to analyze the anomalous w, frequency and to evaluate the systematic uncertainties:
this constituted my major contribution to the Run-2/3 result, and my original work of this
Thesis. The results that we presented for the w,FEuropa analysis team were averaged with
the ones from 5 other groups, each with their independent event reconstruction and fitting
procedures. We were able to reduce the statistical and sytematic uncertainties on w, by a
factor of ~ 2.2 with respect to Run-1, achieving 201 ppb and 25 ppb, respectively. Thanks to
the improvements on w,, on the beam dynamics corrections and on the magnetic field, we were
able to measure a, to 203 ppb for the combined Run-1/2/3 datasets.

Currently, there are puzzles in the theoretical prediction of a,, especially in the leading order
hadronic vacuum polarization contribution, afj VP=LO " which prevent a solid comparison with
the experimental value. The 2020 White Paper prediction was based on the dispersive approach,
that takes ete™ to hadrons data as an input. In 2021, the BMW collaboration published a first
lattice calculation of a/V*~"9 with sub-percent accuracy, which is closer to the experimental
value and discrepant with the dispersive approach. While the evaluation of the whole af VP-LO
from the other lattice groups is in progress, an excellent agreement among the different lattice
groups is found for the so-called intermediate window observable. Inputs from lattice groups,
and analyses of experimental cross sections of ete™ to hadrons, should allow to clarify the
theoretical situation in the next years, while, on a longer term, new methods like the MUonE
experiment currently proposed at CERN should reinforce the theoretical prediction.

On the experimental side, the analysis of Run-4/5/6 data of the Muon g — 2 experiment at
Fermilab has started, and the last result is expected to be published in about 2 years. This
will bring down the uncertainty on the experimental measurement of a, to the design goal of
140 ppb. In addition, a new experiment at J-PARC (Japan), E34, with a completely different
approach, is currently under construction with the goal to start data taking in the next few
years. At the same time, progress is expected on the theory side using current and new methods
which, hopefully, will clarify the present puzzles.
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Appendix A

Schwinger calculation: a = /27

High order, radiative QED predictions for the magnetic anomaly a; = (g, — 2) /2, where [
stands for a generic lepton, can be written as a sum over terms of order £. The first term
comes from a 1-loop diagram, it accounts for ~99% of the anomaly and it is universal for all

leptons (electron, muon, tau): its Feynman diagram is shown in Figure A.1(c).

Figure A.1: QED prediction for the muon magnetic anomaly: (a) is the general form of
diagrams that contribute to the anomaly, (b) is the tree-order contribution which yields
g =2 and (c) is the 1-loop Feynman diagram that leads to the first radiative correction.

Using Feynman rules for QED, the matrix element for the tree-order diagram in Figure A.1(b)
is:

iMTree = _i€a<ﬁ/)7uu(ﬁ)AM<Q) (Al)
where p+¢ = p’ and Au(q) is the Fourier transform of the classical electromagnetic field A,(x).

The aim of this calculation is to find a way to express the 1-loop correction to the matrix
element as:

iMi_100p = —teu(p T u(p)A,(q) (A.2)
In Equation (A.2), I'* can be a function of the muon mass and of the 4-momenta of the incoming
and outgoing muon; it cannot contain terms proportional to v° or e#*??, since QED preserves
parity. It can be shown, using Lorentz-invariance, applying Dirac’s equation to spinor functions
u and 4, recalling Ward identity for QED (g,I'* = 0) and defining o = £ [y*,yv/], that:

iwoq,

T4, p) = v Fi(¢®) + F(q%) (A.3)

where F(¢*) and F(¢?) are called “form factors”. We will now use Born’s approximation that
relates iM to the Fourier transform of the electromagnetic potential V' (q):

2m
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—2miV(QI(EF ) — E(p)) = (2m)"i6* (¢ — p)M (A.4)

Finally, by exploiting the algebra of +* matrices, combining Equations (A.2) and (A.3), and
comparing with Equation (A.4), we can relate V() to the form factors. It can be shown that,
taking the inverse Fourier transform and comparing with Equation (1.1.5) for the potential
energy, the g-factor can be expressed as:

g9 = 2[F1(0) + F2(0)] (A.5)

At tree level, I'* becomes v (compare Equations (A.1) and (A.2)), so from Equation (A.3)
F1(0) =1 and F»(0) = 0, which predicts g = 2. It can be shown, thanks to the Ward identity,
that F1(0) = 1 at all perturbation orders; what is left to compute is F5(0) at 1-loop. The major
issue is that Feynman’s diagram in Figure A.1(c) contains a divergent integral ~ [ d*k/k*: the
dimensional regularization is one of the possible ways to parametrize the divergence and obtain
a simple expression for the form factor F5(0):

1 1 1 1
F(lfloop) _ g/ / / 1 — v — oy — z — g/ = g A.
D (0) ~ dz ; dy ; ded(l—xz—y Z)l—z A zdz o (A.6)

Thus the Schwinger term: at 1-loop order, QED predicts that g = (2 + 2) and therefore that
the magnetic anomaly of electrons, muons and tau particles is a1 71°°P) = o

It should be mentioned that the diagram in Figure A.1(c) is not the only possible 1-loop diagram
when a muon interacts with the magnetic field: Figure A.2 shows the other three possibilities,
which however do not contribute to a, but only correct the propagators.

(b)

Figure A.2: 1-loop QED diagrams that do not contribute to a,: the loop in (a) modifies
the photon propagator, the ones in (b) and (c) modify the fermion propagator.

The three diagrams in Figure A.2 can be studied in order to renormalize QED at 1 loop, and the
first one (the diagram in Figure A.2(a)) is responsible for the so-called “Vacuum Polarization”.
This effect is the quantum analogous of the polarization of molecules in a dielectric when
an external electric field is applied: the distorted molecules produce an electric field which
reduces the external one. The same happens in QED when the interaction between two charges
is studied: the photon propagator is affected, at 1-loop order, by virtual pairs of fermion-
antifermion that screen and reduce the electromagnetic field felt by charges. The effective
potential can be written as V() = £% where the & depends on the charges’ sign and a.g is
a function of the distance r. At large distances, a.g monotonously decreases until, in the limit
of r — +o0, it becomes equal to the fine structure constant a.
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Appendix B

Derivation of the Ratio Method to
build wiggle plots

The Ratio Method technique consists in randomly splitting positron events into four different
sub-groups, so that each one will contain ~ 25% of the total events. The technique also requires
to make an initial guess on the anomalous precession period T, ~ 4.365ps. For each of the
four sub-groups, a histogram is built and filled with the detected times of decay positrons.
The first two histograms are labelled v 5(¢) and leave the positron times unchanged, so that
the positron time distribution is N(¢). The other two are labelled u(t), where the subscript
means that the positron times are shifted by F7,/2: this is equivalent to say that the time
distribution of positron hits for these histograms are N(¢ £+ T,/2). This random procedure
is called “Quartering” and it depends on an input random seed. Two histograms are then
built, U(t) = us(t) + u—(t) and V(t) = v1(t) + v2(t), and the ratio histogram is defined as
R(t)= (V(t)—U(t))/(V(t)+ U(t)). Assuming that the time distribution N(t¢) of positrons is
given by a simple 5-parameter function:

N(t) = Noe 77 [1 + Acos (wat + ¢)] (B.1)
and choosing ¢ = 0 without loss of generality, then R(t) is equal to:

ON(t) — N(t + T,/2) — N(t — T,/2

R(t) = 2N(t) + N(t + To/2) + N(t — T /2

) _
)

et/ {% [14 Acos (wet)] — 2 T/27 [1 4+ Acos (a)] — 2e™/27 [1 + Acos (o/)]} (B-2)
ethr {% [1 4+ Acos (wat)] + te~Ta/>7 [1 + Acos ()] + 1eTa/217 [1 + Acos (a’)]}
where:
2m
cos (@) = cos <wat + TT“/2) = €08 (Wat + m) = — cos (wat)
o (B.3)
cos (') = cos (wat - TTa/Z) = o8 (Wyt — m) = — cos (wqt)

Equation (B.2) can be simplified and rearranged into:

" 2[1 4 Acos (wat)] — {e_Ta/QW + eTa/Zw} [1— Acos (w,t)] -
t) = .

) 21+ Acos (wgt)] + [e=Ta/27 + eTa/27] [1 — A cos (wqt)] (B4)
We will now exploit the fact that 7}, /27 =~ 0.034 < 1, to replace the exponentials with their
Taylor expansions at second order: e**/277 ~ 1 4+ T,/2yr + 1 (T,/2y7)?. The sum of the
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APPENDIX B. DERIVATION OF THE RATIO METHOD TO BUILD WIGGLE PLOTS

two exponentials becomes 2 + (T,,/2v7)? both at the numerator and at the denominator. By
defining C = & (T,,/7)*, the ratio becomes:

_ 4Acos (wat) — (To/277)? [1 — Acos (wyt)] _ Acos (wat) — C[1 — Acos (wgt)]

R(t) ~ B.5
®) 4+ (T,/277)* [1 — Acos (wat)] 1+C[1 — Acos (wat)] (B5)
Finally, we can use that:
L 1 if |2 < 1
~1-— i
1+ ’ v (B.6)
IC[1— Acos (w.t)]| <C(1+A) <20~29-107 < 1

so that Equation (B.5) becomes:

R(t) ~ {Acos (wst) —C[1 — Acos (wyt)]} {1 —C[1 — Acos (wat)]} (B.7)

~ Acosw,t + CA? cos® w,t — C + O(C?)

Since in the R/RA-Methods wiggle plots A ~ 0.3 = 0.4, the term proportional to CA? is an
order of magnitude smaller than C. Thus, we can approximate the expression in Equation (B.7)
with a 4-parameter function (bringing back ¢):

R(t) =~ Acos (wat + ¢) — C (B.8)

where the normalization parameter Ny and the boosted muon lifetime 7 from Equation (B.1)
are not present anymore: the former was divided out exactly in the ratio, the latter was ab-
sorbed by the constant C.

In the R/RA-Methods w,Europa analysis, the wiggle plots were not fitted with the function in
Equation (B.8), but with a more complicated one that reproduces the Ratio formula R(t) =
(V(t)=U(t)/(V(t)+ U(t)) and explicitly includes the exponential both at the numerator and
at the denominator. This procedure avoids the need to approximate the exponentials with their
Taylor expansions, thus eliminating all orders of C.
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Appendix C

Run-2/3 representative fit results and
correlation matrices
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Figure C.1: A-Method correlation matrix between each pair of the 28 free parameters of
the wyFuropa nominal fits, for Run-2 (top left), Run-3a (top right) and Run-3b (bottom).
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APPENDIX C. RUN-2/3 REPRESENTATIVE FIT RESULTS AND CORRELATION

MATRICES

Parameter [Unit] ‘ Run-2 Run-3a Run-3b
0Z/ndof) 1.01794 1.00498 0.08441
(RY [ppm] ~80.571 ~71.664 —70.241
or [ppb] 30 30 46
Xz/n.d.o.f. 4130.03/4127 4139.62/4127 3955.87/4127
p-value 0.48378 0.44192 0.97148
Ny 41953068 + 717 55740312 4+ 1342 22085561 + 1042
T [1s] 64.430 £+ 0.001 64.417 £+ 0.003 64.395 £+ 0.003
A 0.37598 £ 0.00001 | 0.378741 4+ 0.000011 | 0.374577 £+ 0.000017
R [ppm] —80.571 £ 0.377 —71.664 £+ 0.323 —70.242 £+ 0.520
¢o [rad] 4.11726 £ 0.00006 | 4.12033 £ 0.00005 4.10754 £ 0.00009
Acso 0.0035 £ 0.0004 0.0029 +£ 0.0002 0.0014 £ 0.0001
0o [rad/ps] | 2.34110 £ 0.00012 | 2.32926 £ 0.00013 | 2.3310 % 0.0003
dopo [rad] 6.017 £ 0.010 6.145 £ 0.011 6.08 £ 0.03
Teso (1] 238 £ 51 934 £ 36 03 £ 21
Ccso 0.05+£0.13 0.02 £ 0.09 0.45 £+ 0.09
Avw 0.0013 = 0.0003 0.00063 % 0.00012 0.00047 £ 0.00017
F, 1.0128 £ 0.0003 1.0121 4+ 0.0003 1.0124 4+ 0.0007
Svw [rad] 1.09 £ 0.18 0.83£0.17 0.8+04
ki 0.00109 + 0.00008 —0.0005 £+ 0.0004 —0.0006 £ 0.0004
Ay 0.00016 + 0.00006 | 0.00009 £ 0.00006 0.00016 £ 0.00007
da [rad] 5.6+ 0.4 10£07 18+04
Ay 0.00008 £ 0.00007 | 0.00008 4+ 0.00006 0.00021 + 0.00008
by [rad] 10+£09 13£07 3.8+0.4
AscBo 0.00018 £ 0.00005 | 0.00015 4 0.00003 0.00003 £ 0.00002
D20 BO [rad] 3.28+0.12 3.44 4+ 0.14 1.4+0.6
VW [ps] 33.9+4.7 422+ 6.1 34.0 & 8.2
A, 0.00033 + 0.00005 | 0.00045 4 0.00005 0.00057 £ 0.00011
Oy [rad] 0.82+0.14 0.83+0.12 0.6+0.3
Tepovw [1S) 85428 134+26 228+ 54
Ay 0.002 £ 0.003 0.0009 +£ 0.0006 0.0003 £ 0.0002
¢4 [rad] 3.6t1.1 0.3+04 1.24+0.7
A_ 0.012 +£0.015 0.004 £ 0.002 0.0016 £ 0.0007
o_ [rad} 4.2+0.2 4.30 £ 0.15 55+04

Table C.1: T-Method fit results.
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APPENDIX C. RUN-2/3 REPRESENTATIVE FIT RESULTS AND CORRELATION

MATRICES
Parameter [Unit] | Run-2 ‘ Run-3a ‘ Run-3b
02 /nd.of.) 1.02664 0.997004 0.999528
(RY [ppm] —80.626 —71.390 ~70.396
or [ppb] 35 26 48
x?/n.d.o.f. 4225.91/4127 3981.24/4127 4154.14 /4127
p-value 0.13842 0.94699 0.38003
Ny 20140739 £ 299 27021394 £ 562 10487162 £+ 431
T [ps] 64.430 £ 0.001 64.415 £ 0.003 64.392 £ 0.003
A 0.36064 = 0.00001 | 0.36252 £ 0.00001 | 0.361262 £ 0.000015
R [ppm] —80.628 £0.337 | —71.393 £0.291 —70.397 £ 0.468
¢o [rad] 4.11775 £ 0.00006 | 4.12089 £ 0.00005 | 4.10803 %= 0.00008
Acpo 0.0037 £ 0.0002 | 0.00294 4+ 0.00016 | 0.00136 £ 0.00008
0o [rad/us] | 2.34122 £ 0.00010 | 2.32020 = 0.00010 | 2.3318 = 0.0003
dopo [rad] 6.027 = 0.008 6.143 = 0.009 6.10 = 0.02
Teno 9] 242 + 27 213 + 24 88 £ 18
Ceso 0.04 £ 0.07 0.09 £ 0.07 0.47 £ 0.08
Avw 0.0014 £ 0.0002 | 0.00075 4= 0.00012 | 0.00041 £ 0.00015
F, 1.0127 £ 0.0003 1.0123 £ 0.0002 1.0112 == 0.0005
Sy [rad] L10£0.15 0.88 £ 0.15 18£03
kv 0.00106 £ 0.00007 | —0.0009 = 0.0003 —0.0009 £ 0.0003
Ay 0.00037 £ 0.00006 | 0.00013 £ 0.00004 | 0.00015 % 0.00007
¢4 [rad] 6.11 £ 0.15 0.41 £ 0.36 5.5£04
Ay 0.00010 £ 0.00006 | 0.00011 £ 0.00005 | 0.00012 £ 0.00007
s [rad] 41+£06 13+04 13£05
Aseso 0.00016 4= 0.00003 | 0.00013 = 0.00002 | 0.000023 4 0.000019
bacpo [rad] 3.25+0.12 3.60 £ 0.12 23+£08
Tow 1] 324+39 380+46 347+79
A, 0.00029 £ 0.00005 | 0.00045 £ 0.00004 | 0.00045 £ 0.00008
¢y [rad] 0.89 £0.13 0.78 £0.11 0.06 = 0.20
Tesovw [1s) TT+25 146 +2.7 31.0 8.1
Ay 0.002 £ 0.004 0.0003 = 0.0003 0.00018 4= 0.00011
7 [rad] 33+13 01+08 34£06
A 0.012 £ 0.016 0.0032 £ 0.0015 0.0009 £ 0.0003
¢_ [rad] 4.2+0.2 4.43+£0.14 49£0.3

Table C.2: A-Method fit results.
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MATRICES
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Figure C.2: RA-Method correlation matrix between each pair of the 14 free parameters of
the w,FEuropa nominal fits, for Run-2 (top left), Run-3a (top right) and Run-3b (bottom).
The v and Ccpo parameters are fixed in our fits, thus there is no entry in the correlation
matrices
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APPENDIX C. RUN-2/3 REPRESENTATIVE FIT RESULTS AND CORRELATION

MATRICES
Parameter [Unit] ‘ Run-2 ‘ Run-3a Run-3b
(x*/n.d.o.f.) 0.996037 1.00563 1.0003
(R) [ppm] —80.562 —T71.667 —70.253
or [ppb] 86 76 121
x?/n.d.o.f. 4118.38/4141 4119.15/4141 4132.35/4141
p-value 0.59549 0.59219 0.53498
T [ps] 64.430 (fixed) 64.417 (fixed) 64.395 (fixed)
A 0.36971 £ 0.00001 | 0.37242 4+ 0.00001 | 0.368331 £ 0.000017
R [ppm] —80.563 + 0.383 —T71.667 £+ 0.334 —70.255 + 0.533
¢o [rad] 4.11763 £ 0.00006 | 4.12069 + 0.00006 | 4.10790 £ 0.00009
Acso 0.00343 £+ 0.00013 | 0.00280 + 0.00010 | 0.00108 £ 0.00012
0o [tad/ns] | 2.3414 £ 0.0004 | 2.32020 = 0.00010 | 2.3310 = 0.0010
dopo [rad] 5.97+0.04 6.180 + 0.038 6.03 £+ 0.09
TeBo [ps] 210 4+ 21 234 4+ 25 236 + 118
Coso 0.05 (fixed) 0.02 (fixed) 0.45 (fixed)
krar 0.005 4+ 0.023 —0.001 +0.013 0.014 £ 0.016
Ay 0.00018 £ 0.00010 | 0.00021 4+ 0.00008 | 0.00008 + 0.00009
o [rad] 52+05 3.6+04 1.92 £ 1.00
Ay 0.0003 £ 0.0001 | 0.00026 + 0.00009 | 0.00011 =+ 0.00009
¢ [rad] 4.6 +0.3 4.2+0.3 3.39 £ 0.99
AscBo 0.00015 + 0.00003 | 0.00011 4+ 0.00003 | 0.000017 £ 0.000016
bacpo [rad] 3.36 +0.19 3.7+0.2 3.39 +£0.99
Table C.3: R-Method fit results.
Parameter [Unit] | Run-2 ‘ Run-3a Run-3b
(x*/n.d.o.f.) 0.999067 1.00046 0.997689
(R) [ppm] —R0.583 —71.435 ~70.368
or [ppb] 85 62 123
x*/n.d.o.f. 4191.42/4141 4184.78/4141 4106.18/4141
p-value 0.28804 0.31323 0.64668
7 [ns] 64.430 (fixed) 64.415 (fixed) 64.392 (fixed)
A 0.35479 £ 0.00001 | 0.35641 £+ 0.00001 | 0.355156 4+ 0.000015
R [ppm] —80.583 £+ 0.345 —71.435 + 0.301 —70.369 + 0.480
¢o [rad] 4.11815 £ 0.00006 | 4.12125 4 0.00005 4.10840 =+ 0.00008
Aco 0.00362 £ 0.00011 | 0.00272 4 0.00008 0.0016 + 0.0002
wipo [rad/ps| 2.3415 + 0.0003 2.3292 4+ 0.0004 2.3322 + 0.0009
dcno [rad] 6.05 = 0.03 6.17 £ 0.03 6.14 = 0.08
TeBo [ps] 228 +19 222 + 21 56 + 18
Cero 0.04 (fixed) 0.09 (fixed) 0.47 (fixed)
kr 0.013 +0.019 —0.008 £0.011 —0.007 £0.014
A 0.00033 £+ 0.00008 | 0.00016 4 0.00007 0.00015 £ 0.00012
¢4 [rad] 6.1 +£0.3 6.1 +04 0.51 £0.77
Ay 0.00042 £ 0.00009 | 0.00025 4 0.00007 0.00043 £+ 0.00014
b [rad] 13+02 13+03 3.86 = 0.28
AseBo 0.00016 £ 0.00002 | 0.000103 4 0.000018 | 0.000016 4 0.000030
$romo [rad] 3.05 £ 0.15 35+0.2 32138

Table C.4: RA-Method fit results.
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