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Abstract. This presentation reviews recent developments in the understanding of low-energy kaon-nucleon
interactions as they relate to the possible existence of antikaon-nuclear quasibound states. A state-of-the-
art discussion of low-energy K̄N interactions is given, with special emphasis on the subthreshold region
relevant to the proposed kaon-nuclear systems.

PACS. 13.75.Jz Kaon-baryon interactions

1 Introduction and outlook

The low-energy interactions of kaons with nuclear systems
are governed by the spontaneous and explicit breaking of
chiral SU(3) × SU(3) symmetry in QCD. Spontaneous
chiral symmetry breaking assigns the role of Goldstone
bosons to the octet of light pseudoscalar mesons. Explicit
symmetry breaking by the small but non-vanishing masses
of the light quarks shifts the masses of these mesons to
their observed positions. The strange quark mass, ms ∼
0.1 GeV, can still (with caution) be considered small com-
pared to the characteristic scale of spontaneous chiral
symmetry breaking, Λχ = 4πf ∼ 1 GeV, expressed in
terms of the pseudoscalar decay constant, f � 0.09GeV.

Given this symmetry breaking pattern of low-energy
QCD, the leading (Tomozawa-Weinberg) interactions of
kaons and antikaons with nucleons are determined unam-
biguously. In particular, the driving K̄N interaction in
the isospin I = 0 channel is strongly attractive around
threshold, ω � mK . Early discussions of kaon condensa-
tion in dense matter [1] were based on this observation
which, ever since, has given rise to speculations about the
possible existence of antikaon-nuclear bound states.

The recent revival of this theme was prompted by
Akaishi and Yamazaki [2] who used a simple potential
model to calculate and predict bound states of few-body
systems such as K−pp, K−ppn and K−pnn. It was argued
that if the binding is sufficiently strong to fall below the
K̄N → πΣ threshold, such states could be narrow. An
experiment performed at KEK with stopped K− on 4He
[3] seemed indeed to indicate such deeply bound narrow
structures with binding energies B(K−ppn) � 169 MeV,
B(K−pnn) � 194 MeV and widths Γ < 20 MeV. How-
ever, the subsequent repetition of this experiment with
better statistics [4] did not confirm the previously pub-
lished results. The FINUDA measurements with stopped

K− on 6,7Li and 12C targets [5] suggested an interpreta-
tion in terms of quasibound K−pp clusters with binding
energy B(K−pp) = (115±9) MeV and width Γ = (67±16)
MeV. However, this interpretation was criticized in Ref.[6]
with the argument that the observed spectrum may be
explained by final state interactions of the produced Λp
pairs. Another line of experimental studies focuses on
the invariant mass spectroscopy of Λp pairs produced in
heavy-ion collisions at GSI and analyzed with the FOPI
detector [7].

At present, the issue of deeply bound K−-nuclear
states is still unresolved. On the theoretical side, reliable
calculations need to be performed which require a detailed
treatment of three basic ingredients:

– Realistic K̄N interactions

Chiral SU(3) dynamics with coupled channels involving
the Λ(1405) resonance, plus p-wave interactions domi-
nated by the Σ(1385), provide a useful framework for ex-
trapolations into the relevant range below K̄N threshold.
These extrapolations are presently still subject to uncer-
tainties which will be progressively reduced by more ac-
curate threshold data.

– Realistic NN interactions

The repulsive short-range nucleon-nucleon interaction
works against the strong compression of K̄-nuclear sys-
tems proposed in Ref.[2] and must be handled appropri-
ately.

– Realistic K̄NN → ΛN,ΣN absorption

Apart from the K̄N → πΣ, πΛ widths, K̄ absorption pro-
cesses on two nucleons are the primary source of imagi-
nary parts which tend to prohibit narrow bound states. So
far, not much is known empirically about these absorptive
widths. This is key information for which only (exclusive)
experiments can provide reliable answers in the future.
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The present article is intended to give a state-of-
affairs discussion of theoretical estimates. Our own work
in progress in this area is pursued together with Akinobu
Doté [17] and Rainer Härtle [19].

2 Chiral SU(3) dynamics and low-energy K̄N
interactions

Chiral perturbation theory (ChPT) as a systematic ex-
pansion in small momenta and quark masses is limited to
low-energy processes with light quarks. It is an interest-
ing issue to what extent the generalisation of ChPT in-
cluding strangeness can be made to work. The K̄N chan-
nel is of particular interest in this context, as a testing
ground for chiral SU(3) symmetry in QCD and for the
role of explicit chiral symmetry breaking by the strange
quark mass. However, any perturbative approach breaks
down in the vicinity of resonances. In the K−p channel,
for example, the existence of the Λ(1405) resonance just
below the K−p threshold renders SU(3) ChPT inapplica-
ble. At this point the combination with non-perturbative
coupled-channels techniques has proven useful, by gener-
ating the Λ(1405) dynamically as an I = 0 K̄N quasi-
bound state and as a resonance in the πΣ channel [8].
Coupled-channels methods combined with chiral SU(3)
dynamics have subsequently been applied to a variety of
meson-baryon scattering processes with quite some suc-
cess [9]. A recent update is given in [10].

The starting point is the chiral SU(3) × SU(3)
meson-baryon effective Lagrangian. Its leading order
terms include the octet of pseudoscalar Goldstone bosons
(π,K, K̄, η) and their interactions. Symmetry breaking
mass terms introduce the light quark masses mu,md and
the mass of the strange quark, ms. The pseudoscalar
mesons interact with the baryon octet (p, n, Λ,Σ,Ξ)
through vector and axial vector combinations of their
fields. At this stage the parameters of the theory, apart
from the pseudoscalar meson decay constant f � 90 MeV,
are the SU(3) baryon axial vector coupling constants D �
0.80 and F � 0.47 which add up to D + F = gA = 1.27.
At next-to-leading order, seven additional constants en-
ter in s-wave channels, three of which are constrained by
mass splittings in the baryon octet and the remaining four
need to be fixed by comparison with low-energy scattering
data.

2.1 Coupled channels

Meson-baryon scattering amplitudes based on the SU(3)
effective Lagrangian involve coupled channels for each set
of quantum numbers. For example, The K−p system in the
isospin I = 0 sector couples strongly to the πΣ channel.
Consider the T matrix Tij(p, p′) connecting meson-baryon
channels i and j with four-momenta p, p′ in the center-of-
mass frame:

Tij(p, p′) = Kij(p, p′)

+
∑

n

∫
d4q

(2π)4
Kin(p, q)Gn(q)Tnj(q, p′) (1)

where G is the Green function describing the intermediate
meson-baryon loop which is iterated to all orders in the in-
tegral equation1. The driving terms K in each channel are
constructed from the chiral SU(3) meson-baryon effective
Lagrangian in next-to-leading order. In the kaon-nucleon
channels, for example, the leading terms have the form2

KK±p = 2KK±n = ∓ ω

f2
+ ... , (2)

at zero three-momentum, where the invariant c.m. en-
ergy is

√
s = ω + MN and f is the pseudoscalar me-

son decay constant. Scattering amplitudes are related
to the T matrix (1) by F = (MN/4π

√
s)T. Note that

K > 0 means attraction, as seen for example in the
K−p → K−p channel. Similarly, the coupling from K−p
to πΣ provides attraction, as well as the diagonal matrix
elements in the πΣ channels. Close to the K̄N thresh-
old, we have a leading-order piece F (K−p → K−p) �
(1 + mK/MN )−1 mK/4πf2. This is the analogue of the
Tomozawa-Weinberg term (proportional to mπ/4πf2 in
pion-nucleon scattering at threshold), but now with an
attractive strength considerably enhanced by the much
larger kaon mass mK .

When combining chiral effective field theory with the
coupled-channels scheme, the ”rigorous” chiral counting in
powers of small momenta is abandoned in favor of iterat-
ing a subclass of loop diagrams to all orders. However, the
substantial gain in physics compensates for the sacrifice in
the chiral book-keeping. Important non-perturbative ef-
fects are now included in the re-summation, and necessary
conditions of unitarity are fulfilled.

2.2 S-wave interactions

The K−p threshold data base has recently been improved
by new accurate results for the strong interaction shift
and width of kaonic hydrogen [11]. These data, together
with existing information on K−p scattering, the πΣ mass
spectrum and measured K−p threshold decay ratios, set
tight constraints on the theory and have consequently re-
vived the interest in this field. Fig.1 shows results of a
calculation which combines driving terms from the next-
to-leading order chiral SU(3) meson-baryon Lagrangian
with coupled-channel equations [10]. As in previous calcu-
lations of such kind, the Λ(1405) is generated dynamically
as an I = 0 K̄N quasibound state and a resonance in the
πΣ channel.

The improved accuracy of the recent kaonic hydro-
gen data from the DEAR experiment indicate a possi-
ble inconsistency with older K−p scattering data (see
Ref. [10]). Note that the real part of the K−p amplitude,
when extrapolated into the subthreshold region below the
Λ(1405), is expected to be large and positive (attractive).
The imaginary part of this amplitude drops at energies

1 Dimensional regularisation with subtraction constants is
used in practise.

2 The convention for the T matrix used here differs from the
(dimensionless) one in Ref.[10] by a factor (2MN )−1.
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Fig. 1. Real and imaginary parts of the K p forward scatter-
ing amplitude calculated in the chiral SU(3) coupled channels
approach [10], as functions of the invariant K̄N center-of-mass
energy

√
s. Real and imaginary parts of the scattering length

deduced from the DEAR kaonic hydrogen measurements [11]
are also shown. The dotted line indicates the leading-order
(Tomozawa-Weinberg) amplitude for comparison.

below the Λ(1405). The dominant I = 0 decay into πΣ
is turned off below its threshold at

√
s � 1.33 GeV. The

s-wave K−n subthreshold amplitude, not shown here, is
also attractive but less than half as strong as the K−p
amplitude and non-resonant [10].

The off-shell s-wave K−p amplitude resulting from the
coupled-channel calculation [10] can be conveniently para-
metrised as follows:

F s−wave
K−p =

(
MN√

s

)
ω + am2

K + b ω2

4πf2
·

·
(

1 +
√

s γ0

M2
0 − s − i

√
s Γ0(s)

)
, (3)

with f � 0.11 GeV, a = −b � 1 GeV−1, γ0 � 0.21 GeV
and the Λ(1405) mass and width (M0, Γ0). This form is
useful for practical purposes and reflects the behavior of
the leading and next-to-leading order terms as well as the
non-perturbative part involving the dynamically produced
resonance.

2.3 An equivalent pseudopotential

In applications to nuclear systems it is often useful to
translate the leading K̄N s-wave interaction into an equiv-
alent potential in the laboratory frame (where the nu-
cleon is approximately at rest). The leading order piece
(the Tomozawa-Weinberg term) can be viewed as resulting
from vector meson exchange [12]. Starting from the non-
linear sigma model in SU(3), introduce gauge couplings of
the vector meson octet to the pseudoscalar octet and fix
a universal vector coupling constant g � 6 such that the
ρ → π+π− width is reproduced. Then construct vector
meson couplings to the SU(3) octet baryons through their
conserved vector currents. The corresponding piece of the

reduced K̄N interaction Lagrangian which generates the
t-channel vector meson exchange K̄N amplitude at tree
level, with vector meson mass mV , is

δL(K̄N) =
ig2

4
(
K−∂µK+ − K+∂µK−) ·

[
∂2 + m2

V

]−1
Ψ̄N γµ(τ3 + 3)ΨN , (4)

where K± are the charged kaon fields and ΨN = (p, n)T

is the isodoublet nucleon field. The isovector (τ3) piece
comes from ρ exchange and the isoscalar part (with its typ-
ical factor of 3) comes from ω exchange, while φ exchange
does not contribute as long as there are no strange quark
components in the nucleon. Taking the long-wavelength
limit |q| → 0, one arrives at the scattering operator

δT̂ = (g2/2m2
V )ω Ψ †

N (τ3 + 3)ΨN .

Using the KSFR relation mV =
√

2fg, the Tomozawa-
Weinberg amplitudes (2) follow immediately.

These considerations suggest a characteristic range
r ∼ m−1

V of the K̄N interaction even for pointlike kaon
and nucleon. When the actual size of the nucleon is taken
into account, the minimal range of the s-wave K̄N inter-
action is determined by the form factors related to the
vector currents of the nucleon, for which the electromag-
netic form factors of the proton are a good measure. A
conservative estimate of this range is therefore given by
the r.m.s. proton charge radius, r ∼ 0.9 fm. This is pre-
sumably a lower limit since the intrinsic size of the kaon
adds to the overall size of the interaction range.

The static pseudopotentials which approximate the
K̄N interaction in r-space follow through the operator
identity V̂ = −δT̂ /2ω. The result is:

VK−p(r) = −gp(r)
2f2

, VK−n(r) = −gn(r)
4f2

, (5)

with distributions gp,n(r) normalised to unity. In the limit
mV → ∞ and for pointlike nucleons, gp,n(r) → δ3(r). Ap-
plications in few-body calculations commonly use Gaus-
sian forms for g(r), with range parameters left free and
usually chosen smaller than the “minimal” required input,
namely the r.m.s. radius related to the nucleon’s vector
current.

With f � 0.1 GeV, the potential VK−p(r) is not suffi-
ciently strong to produce a quasibound state. In the work
of Ref.[2], the coupling strength was roughly doubled in or-
der to generate the Λ(1405) at the right place, and needed
to be even further amplified to deal with the (at that
time still observed) candidates for deeply bound K−NNN
states. This procedure can be misleading. In fact any ap-
proach which tries to generate K−nuclear states from a
purely static, energy-independent K̄N potential misses
important physics, for the following reasons.

The K̄N ↔ πΣ coupling is well known to be strong.
The measured threshold branching ratios for K−p into
π±Σ∓ represent about 2/3 of all K−p inelastic channels.
Moreover, the large fraction of double charge exchange,
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Γ (K−p → π+Σ−)/Γ (K−p → π−Σ+) � 2.4, demon-
strates the importance of coupled-channel dynamics be-
yond leading orders. An effective potential, projected into
the diagonal K−p channel, that accounts for these mech-
anisms will be complex and strongly energy dependent.

Consider for simplified demonstration a schematic two-
channel model involving the coupled I = 0 states |1〉 =
|K−p〉 and |2〉 = |πΣ〉. We ignore the (relatively unim-
portant) K−p ↔ K̄0n charge exchange channel and
let |πΣ〉 stand for all combinations of charges π±Σ∓
and π0Σ0. The channel coupling matrix element V12 =
〈K−p|V |πΣ〉 = V †

21 is of the same order as the diagonal
elements V11 = 〈K−p|V |K−p〉 and V22 = 〈πΣ|V |πΣ〉. Let
h1,2 include masses and kinetic energies in the respective
channels and let the wave function of the coupled system
be written |ψ〉 = c1 |K−p〉 + c2 |πΣ〉:

(h1 + V11 − E) c1 = −V12 c2 ,

(h2 + V22 − E) c2 = −V21 c1 . (6)

The primary mechanism for generating the Λ(1405) is
resonance formation in the πΣ channel. Assume there-
fore that the uncoupled equation of motion for |πΣ〉 pro-
duces a pole at E = m0 − (i/2)Γ0. The Λ(1405) with its
physical mass M0 is then supposed to emerge as a K−p
(quasi-)bound state embedded in the πΣ continuum once
the channel coupling is turned on. Eliminating c2 from
Eq.(6), the remaining equation for c1 projected into the
K−p channel obviously involves the complex and energy
dependent effective potential

Veff (E) = V11 − |V12|2
m0 − i

2Γ0 − E
. (7)

Such a non-local K−p interaction Veff (E) is to be used in
variational calculations which do not treat the πΣ chan-
nels explicitly. The form of this potential resembles the
one of the coupled-channels amplitude (3). For an attrac-
tive V11 < 0 and at energies below the πΣ resonance,
E < m0, the attractive strength of Veff can easily become
twice that of V11 itself, as seen also in the K−p amplitude,
Fig.1.

2.4 P-wave interactions

P-waves play a minor role in K̄N interactions close to
threshold. However, as pointed out in Ref.[14], they are of
potential importance for tightly bound K̄-nuclear systems
in which the antikaon can have large three-momentum. A
useful parametrisation of these amplitudes3 involves dom-
inantly the Σ(1385) resonance accompanied by a small
background term:

F p−wave
K−p =

1
2
F p−wave

K−n =
MN√

s
C(s) q · q′ , (8)

C(s) =
√

s γ1

M2
1 − s − i

√
s Γ1(s)

+ d , (9)

3 This is an update of the form given long ago in Ref.[15].

with γ1 � 0.42/m2
K , d � 0.06 fm3, M1 = 1.385 GeV and

(energy dependent) width Γ1 � 40 MeV at resonance.
Note that these p-wave amplitudes represent attractive
interactions below the Σ(1385). Here the isospin I = 1
dominates so that, unlike the s-wave case, the K−n inter-
action is now twice as strong as that for K−p.

3 Antikaon-nuclear bound states

3.1 The K−pp system

The present theoretical investigations of possible K−pp
quasibound states use two complementary approaches: the
variational AMD (Antisymmetrized Molecular Dynamics)
method [2,17] and three-body coupled-channel Faddeev
calculations [16].

The most recent studies using the AMD framework
[17] start from a realistic NN interaction (Argonne v18)
together with energy dependent s- and p-wave K̄N inter-
actions based on Eqs.(3,8,9). These calculations are still
preliminary and subject to improvements in treating the
short-range repulsive NN correlations in the variational
K−pp wave function. The first results indicate that the to-
tal K−pp binding energy does not exceed about 50 MeV
and the short range NN repulsion prevents strong com-
pression of the system, unlike the earlier suggestions of
Ref.[2]. First estimates indicate that the total width of
this state is larger than 100 MeV, about 20% of which is
expected to come from K−NN → Y N absorption.

The Faddeev calculations [16] are performed using
separable NN , K̄N and Y N interactions and include
K̄N ↔ πΣ channel coupling. The input parameters are
constrained by properties of the Λ(1405) and by low-
energy scattering data where available. Depending on de-
tails of the parameter sets, the calculated pole positions
of the three-body T-matrix in the complex plane give the
following range for binding energy and width of K−pp:

B(K−pp) ∼ (55 − 70)MeV ,

Γ (K−pp → πΣN) ∼ (95 − 110)MeV . (10)

The absorptive width Γ (K−pp → Y N), not included in
these computations, would add to increase the total width
well beyond 100 MeV. While these first exploratory vari-
ational and Faddeev calculations are roughly consistent
amongst themselves, they are (so far) not compatible with
the interpretation of the FINUDA data [5] as signals for
the formation of deeply bound K−pp clusters with bind-
ing energy as large as B(K−pp) ∼ 115 MeV and a width
around 70 MeV.

3.2 Antikaons in nuclear matter

Kaonic nuclei with a K− bound to heavier nuclear cores
are likewise of interest, although their experimental de-
tection would certainly be difficult. As a generic starting
point of this discussion, consider K− modes in nuclear
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Fig. 2. In-medium mass m∗
K(ρ) and width of a K− in sym-

metric nuclear matter as a function of baryon density ρ in
units of nuclear matter density ρ0 = 0.17 fm−3. The calcula-
tions [13] were performed using in-medium chiral SU(3) dy-
namics combined with coupled channels and including effects
of Pauli blocking, Fermi motion and two-nucleon correlations.
Also shown is the in-medium K+ effective mass calculated in
the same approach.

matter. The kaon spectrum in matter with proton and
neutron densities ρp,n is determined by

ω2 − q 2 − m2
K − ΠK(ω, q; ρp,n) = 0, (11)

with the K− self-energy ΠK (or equivalently, the K− nu-
clear potential UK) in the nuclear medium:

ΠK− = 2ω UK− = − [
TK−p ρp + TK−n ρn

]
+ ... (12)

where TK−p,n are the K−p and K−n (forward scatter-
ing) T-matrices. The additional terms, not shown explic-
itly, include corrections from Fermi motion, Pauli block-
ing, two-nucleon correlations etc. An effective kaon mass
in the medium can be introduced by solving Eq.(11) at
zero momentum: m∗

K(ρ) = ω(q = 0, ρ).
Calculations of the spectrum of kaonic modes as a func-

tion of density have already a long history. For example, in
Refs. [13] it was pointed out that, as a consequence of the
underlying attractive K̄N forces, the K− mass at the den-
sity of normal nuclear matter (ρ0 � 0.17 fm−3) effectively
drops to about three quarters of its vacuum value. At this
density the K− in-medium decay width is expected to be
strongly reduced because the K−N energy “at rest” in
matter has already fallen below the πΣ threshold. These
calculations do, however, not include the K̄NN → Y N
absorptive width Γabs which grows with ρ2, the square of
the baryonic density. A rough estimate [19] gives Γabs ∼ 30
MeV at ρ = ρ0 which adds to the width shown in Fig.2.

3.3 Kaonic nuclei

Mares et al. [18] have recently studied the possiblity of K̄-
nuclear bound states using a relativistic mean field model
in which the K̄ couples to scalar and vector fields mediat-
ing the nuclear interactions. Estimates of the absorptive
width are also made. Kaon-nuclear binding energies are

found in the range BK ∼ 100− 200 MeV accompanied by
widths with a lower limit of about 50 MeV.

An alternative, exploratory calculation [19], using a re-
alistic subthreshold K̄N interaction as described in Sec-
tion 2, can be based on the Klein-Gordon equation with
a complex, energy dependent K− self-energy ΠK(ω, r).
Bound states are determined as eigenstates of

[ω2 + ∇2 − m2
K − ReΠK(ω, r)]φK(r) = 0 , (13)

where the Coulomb interaction is introduced by the gauge
invariant relacement ω → ω + Vc(r). The width of the
bound state is calculated according to

Γ = − 1
ω

∫
d3r φ∗

K(r) ImΠK φK(r) (14)

The kaon self-energy includes s- and p-wave interactions
to leading order in density:

ΠK(ω, r) = Πs(ω, r) + Πp(ω, r) + ∆ΠK , (15)

Πs(ω, r) = −4π

(
1 +

ω

MN

)
·

· [
FK−p(ω) ρp(r ) + FK−n(ω) ρn(r )

]
,

Πp(ω, r) = 4π
(

1 +
ω

MN

)−1

·

· ∇ [
CK−p(ω) ρp(r ) + CK−n(ω) ρn(r )

] ∇ .

The s- and p-wave amplitudes, F (ω) and C(ω), are given
by Eqs.(3, 8, 9) and ∆ΠK stands for a series of higher-
order corrections (Pauli and short-range corelations, two-
nucleon absorption etc.). Pauli and short-range correla-
tions including charge exchange channels are dealt with
in a way analogous to the method described in Ref.[20]
for nuclear matter, but now transcribed using local den-
sity distributions.

The proton and neutron densities ρp(r) =
ρ0(Z/A)wp(r) and ρn(r) = ρ0(N/A)wn(r) are
parametrized in term of Wood-Saxon type distribu-
tions w(r) normalized to unity. The central density ρ0

is varied in order to examine the effects of a possible
compression of the core nuclei.

The influence of two-nucleon absorption processes on
the bound state widths is estimated introducing an ab-
sorptive piece

∆Πabs = −4πiB0

(
1 +

ω

2MN

)(
ρ2

p + 2ρpρn +
1
3
ρ2

n

)
.

(16)
The reduced ρ2

n term approximately takes into account
the fact that K− absorption on a neutron pair can only
lead to a single Σ−n final state whereas absorption on pp
and pn pairs generates ΣN and ΛN with a greater variety
of charge combinations. The value of B0 is subject to large
uncertainties. For orientation we use B0 ∼ 1 fm4 guided
by constraints from the widths of kaonic atom states [18].

Representative results [19] for a kaonic nucleus with a
K− bound in 208Pb are shown in Fig.3. The leading s-wave
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Fig. 3. Binding energy −B = ω − mK (upper panel) and
width (lower panel) of K− bound in 208Pb. The curves repre-
sent leading order s- and p-wave interactions (Tρ) and show the
effects of Pauli and short-range NN correlations as indicated.
The dashed curve in the lower panel gives an impression of the
increased width when K−NN → Y N absorption is incorpo-
rated. Adapted from Ref.[19].

interaction produces strong antikaon binding. The p-wave
interaction tends to increase the binding only marginally
for 208Pb but has a more pronounced effect in lighter nu-
clei. Pauli and short-range repulsive correlations tend to
reduce the binding, as expected. The width is strongly
enhanced with increasing density when K−NN → Y N
absorption is included. This enhancement of the width is
more pronounced than in [18] where the absorption term
was parametrized as linear (rather than quadratic) in the
density.

3.4 Concluding remarks

The issue of deeply bound antikaon-nuclear systems
(“kaonic nuclei”) is a very interesting one but so far
unsettled. Early model calculations of kaonic few-nucleon
systems did not yet use realistic K̄N and NN interactions.
More recent computations with improved interactions
come to the (tentative) conclusion that K−pp as a
prototype of an antikaon-nuclear cluster is not as deeply

bound as anticipated and presumably has a very short
lifetime corresponding to a width of more than 100 MeV.
The previously published narrow K−NNN signals have
now disappeared in a measurement with much improved
statistics. Deeply bound K− states in heavier nuclei may
exist, but with large widths. A more detailed understand-
ing of these widths and their underlying mechanisms calls
for systematic, exclusive measurements of the final states
resulting from K− induced processes, especially in light
nuclei.
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Diploma Thesis, TU Munich (2006).
20. T. Waas, M. Rho and W. Weise, Nucl Phys. A617, (1997)

449.

248


