
Introducing GPU Acceleration into the Python-Based Simulations of
Chemistry Framework
Published as part of The Journal of Physical Chemistry A special issue “Quantum Chemistry Software for
Molecules and Materials”.

Rui Li,§ Qiming Sun,§ Xing Zhang, and Garnet Kin-Lic Chan*

Cite This: J. Phys. Chem. A 2025, 129, 1459−1468 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We introduce the first version of GPU4PYSCF, a module that provides GPU
acceleration of methods in PYSCF. As a core functionality, this provides a GPU implementation
of two-electron repulsion integrals (ERIs) for contracted basis sets comprising up to g functions
using the Rys quadrature. As an illustration of how this can accelerate a quantum chemistry
workflow, we describe how to use the ERIs efficiently in the integral-direct Hartree−Fock build
and nuclear gradient construction. Benchmark calculations show a significant speedup of 2
orders of magnitude with respect to the multithreaded CPU Hartree−Fock code of PYSCF and
the performance comparable to other open-source GPU-accelerated quantum chemical
packages, including GAMESS and QUICK, on a single NVIDIA A100 GPU.

I. INTRODUCTION
The rapid advances in the capabilities of graphics processing
units (GPUs) has significantly impacted many fields, including
graphics rendering, gaming, and artificial intelligence.1,2 The
massively parallel architecture of GPUs offers drastically more
computational throughput than traditional central processing
units (CPUs), making them well-suited for computationally
intensive tasks such as dense matrix multiplication and tensor
contraction.3 Consequently, GPUs have evolved into powerful
tools for scientific computation on high-performance comput-
ing (HPC) platforms. For instance, at the National Energy
Research Scientific Computing Center, GPUs deliver a
maximum compute performance of 119.8 PFLOPS compared
to only 11.6 PFLOPS from the associated CPUs.4 However,
leveraging GPUs for substantial performance gains over CPUs
typically requires a significant redesign of the underlying
algorithms.
In the field of quantum chemistry, GPUs have been

extensively explored to accelerate the Hartree−Fock (HF)
and density functional theory (DFT) methods. Particular
attention has been paid to evaluating two-electron repulsion
integrals (ERIs), a key computational primitive, and their
subsequent use in the Fock builds of the HF and DFT
equations. Over the past 15 years, various GPU algorithms for
ERI evaluation and Fock builds have been proposed. Yasuda5

implemented the first such algorithm, along with the
construction of the Coulomb matrix using the J engine

method.6,7 At the same time, Ufimtsev and Martińez8,9

developed a GPU implementation for the HF method, which
included building the full Fock matrix (both Coulomb and
exchange matrices), with ERIs evaluated using the McMurch-
ie−Davidson (MD) algorithm.10 Both implementations were
initially limited to Gaussian basis sets containing only s and p
functions, although very recent work from the same group has
added support for up to f functions11,12 by using code
generation. Later, Asadchev and Gordon13 developed a Fock
build algorithm using the Rys quadrature method14,15 for ERI
evaluation, allowing for the use of uncontracted basis sets with
up to g functions. In addition, Miao and Merz16 employed the
Head−Gordon−Pople (HGP) algorithm17 to reduce the
number of floating-point operations (FLOPs) required for
computing ERIs with contracted basis functions. Recently,
Barca et al. introduced a distinct implementation of the HGP
algorithm and an improved ERI digestion (the contraction
between ERIs and the density matrix to form the Fock matrix)
scheme.18 This was subsequently extended to run on multiple
GPUs.19,20 Barca et al. further combined their HGP-based

Received: August 30, 2024
Revised: December 30, 2024
Accepted: January 2, 2025
Published: January 23, 2025

Articlepubs.acs.org/JPCA

© 2025 The Authors. Published by
American Chemical Society

1459
https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

This article is licensed under CC-BY-NC-ND 4.0

D
ow

nl
oa

de
d

vi
a

95
.9

0.
25

5.
22

7
on

 F
eb

ru
ar

y
19

, 2
02

5
at

 1
9:

14
:4

7
(U

T
C

).
Se

e
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n
ho

w
 to

 le
gi

tim
at

el
y

sh
ar

e
pu

bl
is

he
d

ar
tic

le
s.

https://pubs.acs.org/curated-content?journal=jpcafh&ref=feature
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rui+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qiming+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xing+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Garnet+Kin-Lic+Chan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpca.4c05876&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=agr1&ref=pdf
https://pubs.acs.org/toc/jpcafh/129/5?ref=pdf
https://pubs.acs.org/toc/jpcafh/129/5?ref=pdf
https://pubs.acs.org/toc/jpcafh/129/5?ref=pdf
https://pubs.acs.org/toc/jpcafh/129/5?ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCA?ref=pdf
https://pubs.acs.org/JPCA?ref=pdf
https://acsopenscience.org/researchers/open-access/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

algorithm in one package, which excels for smaller systems, and
Martińez et al.’s MD-based algorithm, which is advantageous
for large systems. The hybrid implementation was shown to
outperform most previous multi-GPU implementations.21

Nevertheless, significant performance drops were observed
for ERIs involving basis functions with higher angular
momenta, such as d functions. To address this issue, Asadchev
and Valeev22,23 developed a matrix-based formulation of the
MD algorithm, leveraging extensive use of dense matrix
multiplication kernels. Their approach achieved significant
speedups over the reference CPU implementation, particularly
for high angular momentum ERIs, including those involving i
functions.
In this work, we describe our implementation of four-center

ERIs on the GPU within the GPU4PYSCF module. As a core
computational routine, this was the first feature to be
developed. At the time of writing, GPU4PYSCF also contains
many additional features, including those developed using
GPU-accelerated density fitting ERIs24 (which are computed
using an adaptation of the four-center ERI algorithm).
However, to limit the scope of this paper to the work of the
current set of authors as well as to present the chronological
development of the package, this work describes only the
algorithm for four-center ERIs and the subsequent Fock build
routines that use them.
Our ERI implementation is based on Rys quadrature. One

advantage of this technique is that it features a small memory
footprint, making it well-suited for mainstream commodity
GPUs with limited, fast on-chip memory. Additionally, it offers
simple recurrence relations, facilitating straightforward exten-
sions to high angular momentum and ERI derivatives. Within
this framework, we utilize several algorithmic optimizations to
enhance the performance of both energy and nuclear gradient
ERI evaluation with the latest compute unified device
architecture (CUDA). The resulting ERI routines support
contracted basis sets comprising up to g functions.
GPU4PYSCF is designed to operate primarily within the

Python environment. Consequently, in addition to the custom
CUDA kernels for the ERIs, it utilizes NUMPY25-like packages
(such as CUPY26) to accelerate the computationally expensive
tensor contractions and linear algebra operations on the GPU.
The Python-based nature of GPU4PYSCF allows for seamless
integration with other Python-based workflows, particularly
those in machine learning applications. We envision that this
choice of ecosystem for quantum chemistry GPU acceleration
will allow GPU4PYSCF to achieve the same type of
interdisciplinary impact that its parent package PYSCF has
become known for.27

The review is organized as follows. Section II provides a
brief review of the Rys quadrature method. Sections III and 4
detail our GPU-accelerated Hartree−Fock (HF) implementa-
tion, focusing on the algorithms for Fock build and nuclear
gradients, respectively. The performance of our method is
examined in Section V. Finally, we draw some conclusions and
describe our general outlook for GPU4PYSCF in Section VI.

II. RYS QUADRATURE METHOD
In the Rys quadrature method,14,15,28 the six-dimensional ERI
is expressed as a product of three two-dimensional (2D)
integrals (Ix, Iy, and Iz), evaluated exactly by an N-point
Gaussian quadrature with weights (wn) and roots (tn) of the
Rys polynomial:

[|] =ab cd w I t I t I t() () ()
n

N

n x n y n z n
(1)

In eq 1, the ERI is computed for Cartesian primitive Gaussian
functions (PGFs)

|] = | |a x A y A z A er() () () ()a x
a

y
a

z
a r Ax y z

2

(2)

which are centered at nuclear positions A = (Ax, Ay, Az), with
exponents α and angular momenta a = ax + ay + az. The
number of quadrature points is related to the angular momenta
of the four PGFs as

= + + + +N a b c d
2

1
Å
Ç
ÅÅÅÅÅÅÅ

Ñ
Ö
ÑÑÑÑÑÑÑ (3)

The 2D integrals Ix, Iy, and Iz are evaluated for each primitive
shell quartet (denoted as [ab|cd], where bold letters indicate a
shell of basis functions), using the recurrence and transfer
relations (RRs).14,15 Each of the 2D integral tensors has a size
of (a + 1)(b + 1)(c + 1)(d + 1) for each quadrature point.
Finally, for contracted Gaussian functions (CGFs), which are
linear combinations (with contraction order K) of PGFs

| = |]i C a)
a

K

a
i

(4)

the contracted ERI can be written as

| = [|]ij kl C C C C ab cd()
abcd

a
i

b
j

c
k

d
l

(5)

Modern GPUs offer high computational throughput but
often suffer from significant memory latency. They are well-
suited for tasks with high arithmetic intensity [defined as the
ratio of FLOPs to data movement (in bytes)], such as dense
matrix multiplications, where for every number stored in the
slow VRAM memory, there are dozens of associated floating-
point operations, meaning that the latency can be effectively
masked. These kernels are regarded as compute-bound, i.e., the
peak FLOP rate of the GPU is the bottleneck for the
performance of these kernels. Kernels with low arithmetic
intensity, such as matrix addition, are memory-bound and are
constrained by the VRAM memory bandwidth. The peak
FLOP rate to VRAM memory bandwidth ratio of the GPU
defines the boundary between the two types. ERI evaluation
using the Rys quadrature method may or may not fall into this
compute-bound category of tasks, depending on the feasibility
of data caching in fast memory. We can roughly estimate its
arithmetic intensity by considering the most computationally
expensive step, i.e., eq 1. If no data are cached, the arithmetic
intensity is approximately FLOP/byte3

16
. This intensity is

significantly below the peak FLOP rate to memory bandwidth
ratio of = 6.1FLOP/byte9.7TFLOP / s

1.6TB / s
for the NVIDIA A100

GPU used in this work. According to the Roofline model,29 it
suggests that the corresponding implementation will be
memory-bound and likely inefficient. On the other hand, if
the ERIs and 2D integrals can be cached completely, the
arithmetic intensity becomes FLOP/byteNK3

8
(assuming we are

storing the results in slow memory). This value can be higher
than the previous ratio for large N and K, indicating a
compute-bound character. However, GPUs typically have

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1460

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

limited fast memory (e.g., registers and shared memory) and
hence require careful algorithmic design to achieve optimal
performance.
The Rys quadrature method features a low memory

footprint13 and high data locality,30 which allows for more
effective data caching. For instance, to compute ERIs with N ≤
3, the necessary data can almost entirely fit into the registers.
Specifically, for the integral class (pp|pp), the required
intermediates (only considering the contracted ERIs and 2D
integrals) amount to 34 + 3 × 24 = 129 FP64 words (equivalent
to 258 FP32 words). This is just above the maximum register
file size allowed for an NVIDIA GPU thread, which is 255
FP32 words (for the microarchitectures since Kepler).
However, for larger N values, the data size will inevitably
exceed the available resources of fast memory. As a result, the
implementation must minimize access to slow memory (e.g.,
local and global memory). In practice, we incorporate the
following designs:

1. For ERIs with small N values, the RRs are unrolled to
fully utilize registers.

2. In general cases, we perform ERI digestion before
contraction and introduce novel intermediates to
minimize global memory access.

3. When computing the nuclear gradients, double con-
tractions between the ERI gradients and the density
matrix are performed to directly obtain the energy
gradients, thereby avoiding the need to store the Fock
matrix gradients.

These are detailed in Sections 3 and 4.

III. FOCK BUILD
Algorithm 1 illustrates the workflow for building the Fock
matrix. (The actual implementation incorporates vectorization
and accounts for the 8-fold permutation symmetry of the
ERIs.) Strategies similar to those employed by Barca et al.18

are used for integral screening and workload partitioning. The
algorithm starts by grouping the shells of CGFs that share the
same angular momentum and contraction order, forming sets
of shells denoted as |a, Ka} (line 1). Shell pairs are then
constructed using Cartesian products between the shells in
each group, resulting in |ab, KaKb} = |a, Ka} ⊗ |b, and Kb} (line
6). These pairs are further “binned” into nab batches indexed
by the size parameter sab (line 8), defined as

=
<

s

I
n I

I

log

log
, 1

0, 1

ab

ab
ab ab

ab

10

10

l
m
oooooo

n
oooooo

Å

Ç

ÅÅÅÅÅÅÅÅÅÅ

Ñ

Ö

ÑÑÑÑÑÑÑÑÑÑ
(6)

where the labels for contraction orders are omitted for clarity
(similarly hereafter). In eq 6, τ is a positive integral accuracy
threshold smaller than 1, nab is a heuristic parameter
determined such that each bin contains roughly 128 shell
pairs, and

= | | |I abmax (ab)
a b

ab
a b,

1/2

(7)

is the conventional Cauchy−Schwarz bound factor.31 Note
that the shell pairs are prescreened based on the condition Iab
> τ before the binning process (line 7), ensuring that at most
nab bins are generated.

The main computational loops are executed over the sets of
“bra-ket” shell quartets, namely, {ab|cd} = {ab| ⊗ |cd} (lines
10 and 11). For each set, a loop over the ncd batches of the ket
shell pairs is further carried out (line 12), within which the
significant bra shell pairs are selected according to the criterion
I|ab}[sab]I|cd}[scd]P{ab|cd} > τ (line 14), where

[] =| }I s 10 s n
ab ab

((/)log)ab ab 10 (8)

is the upper bound of the Cauchy−Schwarz bound factor for
shell pairs in the sabth batch, and

= | |{ | } { } { | }P Pmaxab cd i j a b c d
i j

i j, , , ,
(9)

is the maximum element across the corresponding sub-blocks
of the density matrix (e.g., P{a|b} represents the blocks with bra
and ket basis functions belonging to |a} and |b} shell sets,
respectively). This screening procedure is performed at the
level of batches of shell pairs, which preserves the continuous
layout of the shell pair data and facilitates efficient coalesced
memory access by the GPU threads. Finally, the GPU kernel
(jk_kernel) is dispatched to compute the Coulomb (J)
and exchange (K) matrices by using the screened shell quartets
(line 16).

The Fock build is parallelized over a 2D GPU thread grid,
with the bra shell pairs distributed in one dimension and the
ket shell pairs distributed in the other. Each thread evaluates
the ERIs of a shell quartet, contracts them with the density
matrix, and accumulates the results into the J/K matrix.
Workload balance among the threads is ensured, given that the
shell quartets are of the same type (with respect to angular
momenta and contraction orders).
As mentioned in Section II, GPU kernel jk_kernel has

two distinct designs depending on the value of N. For N ≤ 3
(see Algorithm 2), we use metaprogramming to unroll the
loops involved in the evaluation of the RRs (line 6), thereby
explicitly storing the 2D integrals (Ix, Iy, and Iz) and other
intermediates in registers to minimize the memory latency. In
addition, the primitive ERIs are first contracted (line 7) before
being digested (lines 8−13), as sufficient registers are available
to hold the contracted ERIs. (Note that the contraction
coefficients and the Rys quadrature weights have been

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1461

https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

absorbed into Ix, Iy, and Iz in Algorithm 2.) Similarly, loops
associated with the ERI digestion are also unrolled, with the
final results accumulated into the J/K matrix (stored in global
memory) by using the atomic operation (atomicAdd),
which avoids explicit thread synchronizations.

For larger N values, jk_kernel adopts a general
implementation, where the key difference is that the ERI
digestion now occurs before the contraction. This can be seen
from Algorithm 3 in which the J/K matrix is updated (e.g., line
23) within the loops over the basis functions. Because the
contracted ERIs no longer fit into registers or fast memory, the
contraction-then-digestion procedure will result in storing to
and loading from global memory, which may significantly
hinder the performance. Due to the same reason, the 2D
integrals can only be stored in local memory. They are
computed once for all of the Rys roots (line 5) to avoid
increasing the number of updates to the J/K matrix.
Furthermore, to reduce global memory loads for retrieving
the density matrix, reusable strides (i.e., P_ac and P_ad) are
cached in local memory, potentially benefiting from optimal L1
and L2 cache utilization. The same strategy applies to
temporary stores of the potential matrix (i.e., V_ac and
V_ad). Additional scalar intermediates are also introduced
(e.g., P_cd and V_cd), which use registers for data loading
and stores. While shared memory (part of the L1 cache) could
be used for data caching, our experiment showed that it did not
lead to better performance. Since the cached intermediates are
streaming rather than persistent data, the compiler may
optimize their memory usage more effectively than through
manual manipulation.
Finally, it should be noted that the demand for local memory

in Algorithm 3 increases rapidly with an increase in angular
momentum. For example, the integral class of (ii|ii) requires
731 KB of storage for the 2D integrals, which exceeds the
maximum allowed local memory of 512 KB per thread on the
NVIDIA A100 GPU used here. Therefore, our present
implementation supports only ERIs with up to g functions.

IV. NUCLEAR GRADIENT
The nuclear gradient of the electronic energy in the Hartree−
Fock method is expressed as

= + +E E E E W S()J K
ab

ab abR R Rcore
(10)

where Ecore represents the energy associated with the one-
electron core Hamiltonian, EJ and EK denote the Coulomb and
exchange energies, respectively, W is the orbital energy
weighted density matrix,32 and S is the overlap matrix. In
this work, only the computationally intensive Coulomb and
exchange energy gradients are evaluated on the GPU. The
contributions from the one-electron integrals are computed on
the CPU (with the exception of the nuclear-electron Coulomb
attraction, which is computed on the GPU using a three-center
integral code that is introduced in ref 24), allowing for
concurrent execution with the GPU calculations.
A general mth order ERI derivative using the Rys quadrature

method can be straightforwardly evaluated as follows:28

= [] [] []w I t I t I tERI () () ()m

n
n x x n y y n z z nR

(11)

where stands for a linear function. Therefore, our GPU
implementation of the nuclear gradients for the Coulomb and
exchange energies closely aligns with the implementation of
jk_kernel as described in Section III. For example,
computing the nuclear gradient for the integral class (ss|ss)
is similar to computing the energy for the integral class (ps|ss).
Nevertheless, the presence of the gradient operator adds an

additional dimension (i.e., nuclear coordinates R) to the ERIs.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1462

https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

It also increases the total angular momentum by 1. Moreover,
while up to 8-fold permutation symmetry can be utilized in
energy evaluation, at most 2-fold symmetry can be exploited
for the ERI gradient. Consequently, this leads to significantly
higher register usage and memory footprint for evaluating the
RRs and the ERI gradient. Additionally, more atomic
operations are required if the Fock matrix gradient is to be
computed and stored.
In order to overcome these bottlenecks, we double-

contracted the ERI gradient with the density matrix to directly
obtain the energy gradient. Specifically, this involves
computing the following unique contributions on the fly:

= |E ab cd P P()J
abcd

ab cdR Ra a
(12)

= |E a b cd P P()J
abcd

ab cdR Rb b
(13)

= | +E ab cd P P P D()()K
abcd

ac bd ad bcR Ra a
(14)

= | +E a b cd P P P D()()K
abcd

ac bd ad bcR Rb b
(15)

A general implementation of the GPU kernel (ejk_grad_-
kernel) for computing EJ and EK gradients is demonstrated
in Algorithm 4 for N > 2. (Note that N is determined after
applying the gradient operator to the ERIs.) Similar to
Algorithm 3, the 2D integral gradients are computed once for
all Rys roots and stored in the local memory (line 5). However,
the gradients of EJ and EK for the two nuclear centers Ra and
Rb comprise only 12 scalar numbers, which are cached in
registers (line 1) and accumulated (lines 18 and 19) within the
loops over the basis functions. Notably, atomic operations are
no longer required within these loops. Instead, they are
performed at the end of the kernel to write the results into
global storage (lines 20 and 21), totaling 12 operations for
each shell quartet. This can lead to significant performance
gains compared with building the Fock matrix gradient. Finally,
for N ≤ 2, we cache the 2D integral gradients and other
intermediates in registers to minimize memory latency.

V. RESULTS AND DISCUSSION
In this section, we present the performance of our GPU-
accelerated HF method implemented within the GPU4PYSCF
module. All GPU calculations were performed on a single
NVIDIA A100 GPU with 40 GB of VRAM. For comparison,
the CPU calculations were performed using the AMD EPYC
7763 CPUs with 32 threads.
First, we compare the wall times for restricted HF (RHF)

energy and nuclear gradient calculations using GPU4PYSCF
with those of other GPU-accelerated HF codes, including
GAMESS18−20 and QUICK.33,34 Additionally, we provide
results from the multithreaded CPU code in PYSCF as a
reference. The test set from ref 19 was used, which includes
polyglycine (Glyn) and RNA (RNAn) molecules at various
sizes with 213−843 and 131−1155 atoms, respectively, using
the STO-3G, 6-31G, and 6-31G(d) basis sets. The integral
threshold τ was set to 1 × 10−10.
We present the results in Table 1 and Figure 1. It is evident

that GPU4PYSCF outperforms QUICK in both energy and
nuclear gradient calculations, achieving speedups of over a
factor of 2. For energy evaluations of the polyglycine systems,

similar timings were observed when comparing GPU4PYSCF
to GAMESS. However, for the RNA systems, GAMESS
outperforms GPU4PYSCF, especially with a minimal basis set.
Furthermore, we also compare the computational scalings for
different codes in Table 2. Both GPU4PYSCF and QUICK
exhibit approximately quadratic scaling, whereas GAMESS
approaches linear scaling. Finally, GPU4PYSCF is 1−2 orders
of magnitude more efficient than PYSCF, highlighting its
practical usefulness.
We note that our benchmark is not comprehensive.

Although we have not timed against proprietary or unreleased
implementations in this work, recent benchmarking of the
EXESS package developed by Barca et al. shows that it can
outperform GPU4PYSCF by a factor of 2−3 for Glyn with the
6-31G(d) basis set.21 It is also indicated in the same work that
TERACHEM is faster than GPU4PYSCF by a factor of 2.
GPU4PYSCF lacks some of the optimizations in other works,
but given the simple algorithm and implementation, we
consider it promising that it is within a factor of ∼2 of the
efficiency of these more mature implementations.
Next, we analyze the FLOP performance of the two GPU

kernels (i.e., jk_kernel and ejk_grad_kernel) for
various integral classes and N values using the roofline model.
Profiling was performed on a water cluster system consisting of
32 water molecules using the cc-pVQZ basis set, which
includes up to g functions. The results are displayed in Figures
2 and 3, respectively. We note that kernels with N > 5 typically
involve f orbitals, and N > 7 kernels involve g orbitals.
The roofline (solid blue line) represents the performance

bound of the NVIDIA A100 GPU, which includes a ceiling
derived from the peak memory bandwidth (diagonal line) and
the processor’s peak FLOP rate (horizontal line). The dashed
black line indicates the peak FLOP/peak memory ratio for the
A100 GPU (6.1FLOP/byte). Kernels with an arithmetic
intensity smaller than this ratio are considered memory-
bound, while those with an arithmetic intensity greater than it
are compute-bound.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1463

https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Table 1. Wall Times (in Seconds) for 10 Self-Consistent Field (SCF) Iterations and Nuclear Gradient Calculations for Various
Molecules and Basis Sets at the RHF Level of Theory

10 SCF iterations nuclear gradient

system basis set Nbasis GPU4PYSCF GAMESSa QUICK PYSCF GPU4PYSCF QUICK PYSCF

Gly30 STO-3G 697 2.4 2.3 3.5 74.2 3.7 6.6 84.3
6-31G 1273 6.4 15.2 12.4 238.9 7.8 18.2 288.9
6-31G(d) 1878 17.4 34.4 44.1 477.4 29.1 61.2 579.6

Gly40 STO-3G 927 3.4 3.4 5.9 130.1 5.7 11.3 154.4
6-31G 1693 10.4 19.2 23.0 430.1 12.4 31.1 576.6
6-31G(d) 2498 28.9 45.9 80.2 880.7 49.7 107.0 1148.2

Gly50 STO-3G 1157 5.2 4.7 9.3 213.2 8.7 17.5 262.5
6-31G 2113 16.0 24.3 38.0 686.8 19.8 49.2 1032.3
6-31G(d) 3118 44.1 61.2 130.4 1444.4 74.8 168.1 2006.6

Gly60 STO-3G 1387 7.2 6.1 13.4 306.1 13.0 25.7 404.8
6-31G 2533 21.3 31.1 57.6 1035.0 28.0 72.5 1688.3
6-31G(d) 3738 61.2 80.8 190.9 2194.6 107.3 241.3 3278.1

Gly70 STO-3G 1617 9.4 8.0 18.5 421.7 17.3 35.8 614.5
6-31G 2953 28.8 39.7 81.2 1439.1 37.6 101.4 2636.0
6-31G(d) 4358 82.9 103.7 263.9 3145.9 144.3 343.8 5033.1

Gly80 STO-3G 1847 11.9 10.1 24.2 555.6 22.6 46.7 832.3
6-31G 3373 35.9 48.4 109.0 1976.3 48.9 135.6 3959.9
6-31G(d) 4978 107.0 352.4 4368.1 188.1 474.8 7461.2

Gly90 STO-3G 2077 15.0 12.5 31.3 713.0 28.5 58.9 1134.5
6-31G 3793 45.0 58.5 140.7 2591.7 62.2 182.0 5750.5
6-31G(d) 5598 134.8 554.3 5865.5 238.3 671.6 10 723.6

Gly100 STO-3G 2307 18.7 14.9 39.7 908.5 40.4 75.5 1527.3
6-31G 4213 56.3 71.4 213.1 3334.7 74.0 242.0 8093.5
6-31G(d) 6218 172.8 668.1 7689.4 269.8 623.5 14 977.0

Gly110 STO-3G 2537 21.8 17.9 49.4 1111.5 42.6 92.3 1992.5
6-31G 4633 65.5 83.9 226.0 4217.0 92.7 283.6 11 131.9
6-31G(d) 6838 194.2 804.9 9977.5 326.5 1020.2 20 468.9

Gly120 STO-3G 2767 26.0 20.8 58.5 1350.3 50.5 120.7 2569.5
6-31G 5053 78.1 311.3 5295.4 111.0 375.4 15 027.9
6-31G(d) 7458 240.2 962.8 12 702.1 427.3 1184.4 27 402.3

RNA1 STO-3G 491 3.7 2.4 4.3 6.6 8.0
6-31G 880 13.3 21.2 18.0 16.6 23.3
6-31G(d) 1310 30.7 47.0 68.1 47.2 75.8

RNA2 STO-3G 975 15.7 7.0 21.1 28.3 33.7
6-31G 1747 46.2 36.6 102.9 60.2 95.8
6-31G(d) 2602 120.4 95.8 343.7 192.8 315.4

RNA3 STO-3G 1459 36.1 14.3 53.3 65.7 77.5
6-31G 2614 98.9 64.5 263.8 130.2 219.7
6-31G(d) 3894 318.2 184.2 880.0 508.9 717.2

RNA4 STO-3G 1943 67.1 24.5 101.8 124.2 140.4
6-31G 3481 169.7 107.2 505.7 228.5 405.8
6-31G(d) 5186 584.7 1625.5 865.8 1328.7

RNA5 STO-3G 2427 102.5 37.3 171.6 189.4 223.9
6-31G 4348 268.6 166.3 1008.2 358.5 689.2
6-31G(d) 6478 931.8 3162.4 1490.1 2451.7

RNA6 STO-3G 2911 150.7 53.9 267.5 291.2 342.5
6-31G 5215 382.0 1454.6 514.5 1061.6
6-31G(d) 7770 1317.3 4612.8 2172.0 3655.8

RNA7 STO-3G 3395 206.7 71.2 374.9 358.8 485.1
6-31G 6082 509.8 2050.0 659.2 1430.6
6-31G(d) 9062 1790.7 6258.1 2735.3 4680.6

RNA8 STO-3G 3879 283.0 97.2 480.2 515.8 683.8
6-31G 6949 702.2 2845.2 893.2 2025.6
6-31G(d) 10 354 2513.8 8953.9 3793.4 7149.2

RNA9 STO-3G 4363 344.5 118.3 647.8 679.0 855.5
6-31G 7816 837.0 3560.8 1163.6 2485.7
6-31G(d) 11 646 3008.3 11 095.9 4624.3 8687.9

aResults are obtained from ref 19.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1464

pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

From Figure 2, we observe that for most integral classes with
N ≤ 3 [e.g., (ss|ss), (ps|ss), (ds|ss), (fd|ss), and (pp|pp)],
jk_kernel is compute-bound and achieves an impressive

FLOP rate ranging from 2TFLOP/s to 5TFLOP/s. However,
there are exceptions, such as the integral class (dp|pp), which
exhibits memory-bound character and limited FLOP perform-

Figure 1. Graphic representation of Table 1.

Table 2. Observed Computational Scalings [a in O(Nbasis
a)] for Energy and Nuclear Gradient Calculations using Different RHF

Codes

10 SCF iterations nuclear gradient

system basis set GPU4PYSCF GAMESS QUICK PYSCF GPU4PYSCF QUICK PYSCF

Glyx STO-3G 1.77 1.62 2.07 2.16 1.96 2.08 2.49
6-31G 1.81 1.35 2.32 2.29 1.94 2.20 2.88
6-31G(d) 1.91 1.31 2.28 2.42 1.91 2.15 2.81

RNAx STO-3G 2.08 1.81 2.29 2.10 2.14
6-31G 1.91 1.28 2.43 1.94 2.16
6-31G(d) 2.12 1.23 2.35 2.12 2.19

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1465

https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig1&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

ance. This is due to the need to cache more than 234 FP64
words for intermediates per GPU thread, which exceeds the
maximum number of registers (255 FP32 words) each thread
can use by nearly a factor of 2. Consequently, intermediates
that cannot fit into registers are likely stored in slow memory

(known as register spilling), resulting in significant memory
latency when accessed frequently.
For N > 3, jk_kernel is always memory-bound due to

the use of local memory for storing intermediates. Nonetheless,
the kernel generally utilizes the GPU hardware efficiently, as
indicated by data points lying close to the roofline. An
exception is the integral class (gg|gg) (with N = 9), which
shows a potential loss of parallelization. This is mainly because
of the insufficient workload to fully occupy the streaming
multiprocessors (SMs), as only the O atoms contain g shells,
and each O atom contains only one shell of g functions.
Similarly, ejk_grad_kernel shows a remarkable FLOP

performance of over 3TFLOP/s for integral classes with N ≤ 2,
where intermediates can be cached in registers. For N > 2, the
kernel is again memory-bound due to the use of local memory.
However, all data points in Figure 3 lie close to the roofline,
indicating efficient utilization of GPU hardware. Notably, even
for N = 7, a FLOP rate of 0.8TFLOP/s is achieved,
outperforming its jk_kernel counterpart for Fock builds
by a factor of 8. This can be attributed to our integral-direct
approach, as shown in Algorithm 4. It eliminates the need to
compute the Fock matrix gradient, which would otherwise be
stored in global memory. As a result, significantly fewer atomic
operations and slow memory accesses are performed,
enhancing cache utilization. In addition, the workload involved
in gradient calculations is greater than that in Fock builds [e.g.,
the integral class (ff|fd) also corresponds to N = 7 when
evaluating its gradient], which keeps more GPU threads active
and helps hide latency more effectively. N = 9 kernels (e.g.,
(gg|gg)) could not be profiled on the testing platform, as they
require 47628 FP64 words per thread for intermediates, which
quickly consume the 40 GB memory of the A100 GPU.

VI. CONCLUSIONS
In this work, we introduced the GPU4PYSCF module and, in
particular, the core ERI CUDA kernels that form the starting
point for accelerating quantum chemistry calculations. As an
example of their use, we described a GPU-accelerated HF
method for energy and nuclear gradient calculations, including
the detailed optimizations required to achieve high GPU
efficiency.
The GPU acceleration of quantum chemistry is integral not

only to advancing traditional quantum chemistry calculations
but also to bringing quantum chemical methods and data into
new disciplines, such as machine learning. We hope that by
providing a community-based, open-source implementation of
GPU-accelerated quantum chemistry algorithms, we can help
the growth of quantum chemistry in these areas. Indeed, we
note that as a living open-source code, at the time of writing
GPU4PYSCF already contains new contributions targeted at
these directions.24

■ AUTHOR INFORMATION
Corresponding Author

Garnet Kin-Lic Chan − Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena,
California 91125, United States; orcid.org/0000-0001-
8009-6038; Email: gkc1000@gmail.com

Authors
Rui Li − Division of Chemistry and Chemical Engineering,

California Institute of Technology, Pasadena, California
91125, United States

Figure 2. FLOP performance of the GPU kernels jk_kernel
analyzed using the roofline model on the NVIDIA A100 GPU. The
solid blue line represents the official peak (FP64) FLOP rate of
9.7TFLOP/s with no bandwidth constraint (horizontal) and the peak
FP64 FLOP rate constrained by the peak memory bandwidth of
1.6TB/s (diagonal). The dashed black line indicates the theoretical
arithmetic intensity, where the peak FLOP rate is no longer
constrained by the memory bandwidth, 6.1FLOP/byte. The
calculations were performed for a water cluster system consisting of
32 water molecules at the RHF/cc-pVQZ level of theory.

Figure 3. Same as Figure 2, but for the GPU kernels
ejk_grad_kernel.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1466

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Garnet+Kin-Lic+Chan"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://orcid.org/0000-0001-8009-6038
https://orcid.org/0000-0001-8009-6038
mailto:gkc1000@gmail.com
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Rui+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Qiming+Sun"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?fig=fig3&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Qiming Sun − Quantum Engine LLC, Lacey, Washington
98516, United States

Xing Zhang − Division of Chemistry and Chemical
Engineering, California Institute of Technology, Pasadena,
California 91125, United States

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jpca.4c05876

Author Contributions
§R.L. and Q.S. contributed equally to this work.
Notes
The authors declare the following competing financial
interest(s): GKC is part owner of QSimulate, Inc.

■ ACKNOWLEDGMENTS
We acknowledge the generous contributions of the open-
source community, in particular Xiaojie Wu of Bytedance US,
to the GPU4PYSCF module. Work carried out by Q.S.
(development of initial ERI code and Fock build) was
performed as a part of a software contract with GKC through
the California Institute of Technology, funded by internal
funds. R.L. (development of gradient ERIs and gradient code)
and G.K.-L.C. (project supervision) were supported by the US
Department of Energy, Office of Science, through Award No.
DE-SC0023318. X.Z. (additional data analysis) was supported
by the Center for Molecular Magnetic Quantum Materials, an
Energy Frontier Research Center funded by the U.S.
Department of Energy, Office of Science, Basic Energy
Sciences under Award No. DE-SC0019330. This research
used resources of the National Energy Research Scientific
Computing Center (NERSC), a U.S. Department of Energy
Office of Science User Facility located at Lawrence Berkeley
National Laboratory, operated under Contract No. DE-AC02-
05CH11231 using NERSC award ERCAP-0024087. G.K.-L.C.
is a Simons Investigator in Physics.

■ REFERENCES
(1) Paszke, A.; Gross, F.; Massa, A.; Lerer, J.; Bradbury, G.; Chanan,
T.; Killeen, Z.; Lin, N.; Gimelshein, L.; Antiga, A.; Desmaison, A.;
Kopf, E.; Yang, Z.; DeVito, M.; Raison, A.; Tejani, S.; Chilamkurthy,
B.; Steiner, L.; Fang, J. B.; Chintala, S. Pytorch: An Imperative Style,
High-Performance Deep Learning Library. Advances in Neural
Information Processing Systems 32; Curran Associates, Inc., 2019; pp
8024−8035.
(2) Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro,
C.; Corrado, G. S.; Davis, A.; Dean, J.; Devin, M.; Ghemawat, S.;
Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.;
Kaiser, L.; Kudlur, M.; Levenberg, J.; Mane, D.; Monga, R.; Moore, S.;
Murray, D.; Olah, C.; Schuster, M.; Shlens, J.; Steiner, B.; Sutskever,
I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viegas, F.;
Vinyals, O.; Warden, P.; Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng,
X. Tensorflow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems. 2016, arXiv:1603.04467. arXiv.org e-Print
archive. https://arxiv.org/abs/1603.04467.
(3) Springer, P.; Yu, C.-H. In cuTENSOR: High-Performance CUDA

Tensor Primitives, NVIDIA GPU Technology Conference 2019, 2019.
(4) Nersc Perlmutter Architecture. https://docs.nersc.gov/systems/
perlmutter/architecture/.
(5) Yasuda, K. Two-electron integral evaluation on the graphics
processor unit. J. Comput. Chem. 2008, 29, 334.
(6) White, C. A.; Head-Gordon, M. Aj matrix engine for density
functional theory calculations. J. Chem. Phys. 1996, 104, 2620−2629.
(7) Challacombe, M.; Schwegler, E. Linear scaling computation of
the Fock matrix. J. Chem. Phys. 1997, 106, 5526−5536.

(8) Ufimtsev, I. S.; Martínez, T. J. Quantum chemistry on graphical
processing units. 1. strategies for two-electron integral valuation. J.
Chem. Theory Comput. 2008, 4, 222.
(9) Ufimtsev, I. S.; Martínez, T. J. Quantum chemistry on graphical
processing units. 2. direct self-consistent-field implementation. J.
Chem. Theory Comput. 2009, 5, 1004.
(10) McMurchie, L. E.; Davidson, E. R. One- and two-electron
integrals over cartesian gaussian functions. J. Comput. Phys. 1978, 26,
218−231.
(11) Titov, A. V.; Ufimtsev, I. S.; Luehr, N.; Martinez, T. J.
Generating efficient quantum chemistry codes for novel architectures.
J. Chem. Theory Comput. 2013, 9, 213−221.
(12) Wang, Y.; Hait, D.; Johnson, K. G.; Fajen, O. J.; Zhang, J. H.;
Guerrero, R. D.; Martínez, T. J. Extending GPU-accelerated Gaussian
integrals in the TeraChem software package to f type orbitals:
Implementation and applications. J. Chem. Phys. 2024, 161,
No. 174118.
(13) Asadchev, A.; Allada, V.; Felder, J.; Bode, B. M.; Gordon, M. S.;
Windus, T. L. Uncontracted rys quadrature implementation of up to g
functions on graphical processing units. J. Chem. Theory Comput.
2010, 6, 696−704.
(14) Dupuis, M.; Rys, J.; King, H. F. Evaluation of molecular
integrals over gaussian basis functions. J. Chem. Phys. 1976, 65, 111−
116.
(15) Rys, J.; Dupuis, M.; King, H. F. Computation of electron
repulsion integrals using the rys quadrature method. J. Comput. Chem.
1983, 4, 154−157.
(16) Miao, Y.; Merz, K. M. J. Acceleration of electron repulsion
integral evaluation on graphics processing units via use of recurrence
relations. J. Chem. Theory Comput. 2013, 9, 965−976.
(17) Head-Gordon, M.; Pople, J. A. A method for two-electron
gaussian integral and integral derivative evaluation using recurrence
relations. J. Chem. Phys. 1988, 89, 5777−5786.
(18) Barca, G. M. J.; Galvez-Vallejo, J. L.; Poole, D. L.; Rendell, A.
P.; Gordon, M. S. High-performance, graphics processing unit-
accelerated fock build algorithm. J. Chem. Theory Comput. 2020, 16,
7232−7238.
(19) Barca, G. M. J.; Alkan, M.; Galvez-Vallejo, J. L.; Poole, D. L.;
Rendell, A. P.; Gordon, M. S. Faster self-consistent field (scf)
calculations on gpu clusters. J. Chem. Theory Comput. 2021, 17,
7486−7503.
(20) Zahariev, F. P.; Xu, B. M.; Westheimer, S.; Webb, J.; Galvez
Vallejo, A.; Tiwari, V.; Sundriyal, M.; Sosonkina, J.; Shen, G.;
Schoendorff, M.; Schlinsog, T.; Sattasathuchana, K.; Ruedenberg, L.
B.; Roskop, A. P.; Rendell, D.; Poole, P.; Piecuch, B. Q.; Pham, V.;
Mironov, J.; Mato, S.; Leonard, S. S.; Leang, J.; Ivanic, J.; Hayes, T.;
Harville, K.; Gururangan, E.; Guidez, I. S.; Gerasimov, C.; Friedl, K.
N.; Ferreras, G.; Elliott, D.; Datta, D. D. A.; Cruz, L.; Carrington, C.;
Bertoni, G. M. J.; Barca, M.; Alkan; Gordon, M. S. The general atomic
and molecular electronic structure system (gamess): Novel methods
on novel architectures. J. Chem. Theory Comput. 2023, 19, 7031−
7055.
(21) Palethorpe, E.; Stocks, R.; Barca, G. M. J. Advanced Techniques
for High-Performance Fock Matrix Construction on GPU Clusters.
2024, arXiv:2407.21445. arXiv.org e-Print archive. https://arxiv.org/
abs/2407.21445.
(22) Asadchev, A.; Valeev, E. F. High-performance evaluation of
high angular momentum 4-center gaussian integrals on modern
accelerated processors. J. Phys. Chem. A 2023, 127, 10889−10895.
(23) Asadchev, A.; Valeev, E. F. 3-Center and 4-Center 2-Particle
Haussian ao Integrals on Modern Accelerated Processors. 2024,
arXiv:2405.01834. arXiv.org e-Print archive. https://arxiv.org/abs/
2405.01834.
(24) Wu, X.; Sun, Q.; Pu, Z.; Zheng, T.; Ma, W.; Yan, W.; Yu, X.;
Wu, Z.; Huo, M.; Li, X.; Ren, W.; Gong, S.; Zhang, Y.; Gao, W.
Python-Based Quantum Chemistry Calculations with GPU Accel-
eration. 2024, arXiv:2404.09452. arXiv.org e-Print archive. https://
arxiv.org/html/2404.09452v1.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1467

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Xing+Zhang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.4c05876?ref=pdf
https://arxiv.org/abs/1603.04467
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://doi.org/10.1002/jcc.20779
https://doi.org/10.1002/jcc.20779
https://doi.org/10.1063/1.470986
https://doi.org/10.1063/1.470986
https://doi.org/10.1063/1.473575
https://doi.org/10.1063/1.473575
https://doi.org/10.1021/ct700268q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct700268q?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct800526s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct800526s?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1016/0021-9991(78)90092-X
https://doi.org/10.1016/0021-9991(78)90092-X
https://doi.org/10.1021/ct300321a?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/5.0233523
https://doi.org/10.1063/5.0233523
https://doi.org/10.1063/5.0233523
https://doi.org/10.1021/ct9005079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct9005079?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.432807
https://doi.org/10.1063/1.432807
https://doi.org/10.1002/jcc.540040206
https://doi.org/10.1002/jcc.540040206
https://doi.org/10.1021/ct300754n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300754n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/ct300754n?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1063/1.455553
https://doi.org/10.1063/1.455553
https://doi.org/10.1063/1.455553
https://doi.org/10.1021/acs.jctc.0c00768?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00768?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00720?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.1c00720?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.3c00379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.3c00379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.3c00379?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://arxiv.org/abs/2407.21445
https://arxiv.org/abs/2407.21445
https://doi.org/10.1021/acs.jpca.3c04574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c04574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jpca.3c04574?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://arxiv.org/abs/2405.01834
https://arxiv.org/abs/2405.01834
https://arxiv.org/html/2404.09452v1
https://arxiv.org/html/2404.09452v1
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

(25) Harris, C. R.; Millman, K. J.; van der Walt, S. J.; Gommers, R.;
Virtanen, P.; Cournapeau, D.; Wieser, E.; Taylor, J.; Berg, S.; Smith,
N. J.; Kern, R.; Picus, M.; Hoyer, S.; van Kerkwijk, M. H.; Brett, M.;
Haldane, A.; del Río, J. F.; Wiebe, M.; Peterson, P.; Gérard-Marchant,
P.; Sheppard, K.; Reddy, T.; Weckesser, W.; Abbasi, H.; Gohlke, C.;
Oliphant, T. E. Array programming with NumPy. Nature 2020, 585,
357−362.
(26) Okuta, R.; Unno, Y.; Nishino, D.; Hido, S.; Loomis, C. In

CuPy: A NumPy-Compatible Library for NVIDIA GPU Calculations,
Proceedings of Workshop on Machine Learning Systems (Lear-
ningSys) in the Thirty-First Annual Conference on Neural
Information Processing Systems (NIPS), 2017.
(27) Sun, Q.; Zhang, X.; Banerjee, S.; Bao, P.; Barbry, M.; Blunt, N.
S.; Bogdanov, N. A.; Booth, G. H.; Chen, J.; Cui, Z.-H.; Eriksen, J. J.;
Gao, Y.; Guo, S.; Hermann, J.; Hermes, M. R.; Koh, K.; Koval, P.;
Lehtola, S.; Li, Z.; Liu, J.; Mardirossian, N.; McClain, J. D.; Motta, M.;
Mussard, B.; Pham, H. Q.; Pulkin, A.; Purwanto, W.; Robinson, P. J.;
Ronca, E.; Sayfutyarova, E. R.; Scheurer, M.; Schurkus, H. F.; Smith, J.
E. T.; Sun, C.; Sun, S.-N.; Upadhyay, S.; Wagner, L. K.; Wang, X.;
White, A.; Whitfield, J. D.; Williamson, M. J.; Wouters, S.; Yang, J.;
Yu, J. M.; Zhu, T.; Berkelbach, T. C.; Sharma, S.; Sokolov, A. Y.;
Chan, G. K.-L. Recent developments in the pyscf program package. J.
Chem. Phys. 2020, 153, No. 024109.
(28) Flocke, N.; Lotrich, V. Efficient electronic integrals and their
generalized derivatives for object oriented implementations of
electronic structure calculations. J. Comput. Chem. 2008, 29, 2722−
2736.
(29) Williams, S.; Waterman, A.; Patterson, D. Roofline: an
insightful visual performance model for multicore architectures.
Commun. ACM 2009, 52, 65−76.
(30) Sun, Q. Libcint: An efficient general integral library for gaussian
basis functions. J. Comput. Chem. 2015, 36, 1664−1671.
(31) Whitten, J. L. Coulombic potential energy integrals and
approximations. J. Chem. Phys. 1973, 58, 4496−4501.
(32) Pople, J. A.; Krishnan, R.; Schlegel, H. B.; Binkley, J. S.
Derivative studies in hartree-fock and møller-plesset theories. Int. J.
Quantum Chem. 2009, 16, 225−241.
(33) Manathunga, M.; Shajan, A.; Smith, J.; Miao, Y.; He, X.; Ayers,
K.; Brothers, E.; Götz, A. W.; Merz, K. M. Quick-23.08 University of
California, San Diego and Michigan State University, East Lansing,
2023.
(34) Manathunga, M.; Miao, Y.; Mu, D.; Götz, A. W.; Merz, K. M. J.
Parallel implementation of density functional theory methods in the
quantum interaction computational kernel program. J. Chem. Theory
Comput. 2020, 16, 4315−4326.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://doi.org/10.1021/acs.jpca.4c05876
J. Phys. Chem. A 2025, 129, 1459−1468

1468

https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1063/5.0006074
https://doi.org/10.1002/jcc.21018
https://doi.org/10.1002/jcc.21018
https://doi.org/10.1002/jcc.21018
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1145/1498765.1498785
https://doi.org/10.1002/jcc.23981
https://doi.org/10.1002/jcc.23981
https://doi.org/10.1063/1.1679012
https://doi.org/10.1063/1.1679012
https://doi.org/10.1002/qua.560160825
https://doi.org/10.1021/acs.jctc.0c00290?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://doi.org/10.1021/acs.jctc.0c00290?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
pubs.acs.org/JPCA?ref=pdf
https://doi.org/10.1021/acs.jpca.4c05876?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

