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Abstract
Shortcuts to adiabaticity (STA) provides the possibility of high accuracy manipulation of phonon
states in ion traps. We propose a scheme realized experimentally for manipulating phonon states
using STA and confirmed its effectiveness through generating Fock states. Our results show that the
duration of the STA manipulation of phonon states is 16 times faster than that of the adiabatic
evolution, and the non-resonant excitation can be suppressed by laser bias frequency, which are
confirmed by experimental results. Moreover, we also carried out an experimental research on the
robustness of STA, showing good robustness respect to the pulse shape deformation, bias noises
and stochastic noise. This might lead to a useful step toward realizing fast and noise-resistant
quantum manipulation within current experimental capacity.

1. Introduction

Over the past two decades, trapped ions have been successfully used to implement technologies such as
quantum computing [1, 2], quantum simulation [3, 4], atomic clocks [5, 6], mass spectrometers [7, 8] and
quantum sensors [9]. To experimentally implement scalable quantum computation in trapped ions system,
the core issues are how to further improve the manipulation accuracy of ion bits and to increase controllable
number of ions [1, 2, 10–14]. One of the more feasible schemes is to expand bits numbers by coupling both
the internal states and motional states of ions, which is also called phonon state manipulation in the ion
trap [15–19]. Such scheme can be used to create entanglement between ions [20–25], to implement quantum
gates [26–29], and to simulate the behavior of complex quantum systems [30–32]. Moreover, phonon modes
have been engineered to realize different properties, such as localization, squeezing, and non-classicality [15,
16, 20]. These achievements open up new possibilities for exploring quantum phenomena with phonons,
such as quantum metrology, quantum thermodynamics, and quantum error correction [33–35].
Consequently, high accuracy phonon state preparation in ion traps is of great significance since it enables the
manipulation of the vibrational states of ions and the control of their interactions with other ions and
external fields.

There are two widely used methods for manipulating the phonon states through laser and ion
interaction. In one case, there are rectangular pulses that do not depend on time [15], and in the other case,
there is the adiabatic method in which the Hamiltonian depends on time explicitly [36]. The duration of the
rectangular pulses may be fast. However, to obtain the required accuracy of manipulations, the laser
frequency, intensity, and pulse time must be precisely controlled. In addition, the fidelity of phonon states is
sensitive to the fluctuation of parameters, leading to poor robustness. On the other hand, adiabatic processes
are robust to parameter fluctuations, but require a long evolution time. In real experiments, if the duration of
pulse is too long, the scheme will be invalid due to the noises and the decoherence of target state [37].

Combining the advantages of rectangular pulses and adiabatic method, we hope to get a fast and robust
scheme, which is easy to implement on the experimental platform. Accelerating the dynamics of adiabatic
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passage towards a final outcome is a perfect way to realize fast and robust population transfer. This process
can be realized by adding counteradiabatic driving, which is one of the types of shortcuts to adiabaticity
(STA) [19, 37–40]. Previously, some theoretical work on realizing STA based on basis vector transformation
has been studied in systems such as atoms and NV centers in diamond [41–43]. However, it is difficult to
implement counteradiabatic driving in real experiments when Hamiltonian is included in the creation and
annihilation operators. Recently, Abah et al have theoretically proposed an STA protocol by adding
counteradiabatic driving in JC model [38]. With this scheme, the STA Hamiltonian can have a similar form
to the original Hamiltonian. This scheme has the characteristics of fast, good robustness and it is
theoretically proven to have higher fidelity than previously implemented schemes in ion traps [19].

In this paper, we extend the above theoretical STA protocol from the JC model to the anti-JC model. It
can be used in three basic operations of ion trap including carrier, red sideband and blue sideband pulses.
Further, we test the effectiveness of such scheme by preparing the Fock state. The effect of non-resonant
excitation on fidelity has also been studied. Take advantage of the high robustness of STA, it is found that
adding the bias frequency of laser can suppress the non-resonant excitation and improve the fidelity. This
scheme also shows higher robustness respect to the pulse shape deformation, bias noises and stochastic noise.

2. Theory model

The interaction of a harmonically trapped ion with a single-mode laser, is described by the Hamiltonian

H= ωq(t)σz/2+ωza
+a+

Ω(t)

2
(σ+ +σ)(ei(kz−ωLt) + e−i(kz−ωLt)), (1)

where ωq(t)(ωL) is the two-level (laser field) frequency and Ω(t) is the coupling strength between laser field
and ion. ωz is the motional phonon frequency of the ion in harmonic potential. k is the wave number.
σ+ (σ) = |e⟩⟨g|(|g⟩⟨e|) is the spin-raising (lowering) operator. The phonon mode is described by the
annihilation and creation operators a and a+ with [a,a+] = 1. Without loss of generality, we assume that the
frequency of the two-level system ωq(t) and the coupling strength Ω(t) are time-dependent, while the
phonon and laser frequencies remain constants.

Defining the Lamb-Dicke parameter η = k
√
1/(2mωz) and making rotating wave approximation, in the

interaction picture the Hamiltonian U†(H− i ∂∂t )U takes the form

HI(t) =
Ω(t)

2

(
eiη(a

++a)σ+e−i∆it +H.C.
)

(2)

where∆i = ωq(t)−ωL. In the Lamb-Dicke limit, its Taylor expansion can be written as

eiη(a
++a) = 1+ iη(a+ + a)+O(η2), (3)

where transitions larger than one phonon will be suppressed. Only carrier transitions(∆i ≈ 0) that do not
change the phonon level, and blue(∆i ≈−ωz) or red(∆i ≈ ωz) sideband transitions that change a phonon,
are possible. For different detuning and picture transformation, the Hamiltonian is written as the following
three different forms

Hcarrier =
1

2

(
ωq(t)−ωL

)
σz +

Ω(t)

2
σx, (4)

HaJC
bsb(t) =

ωq(t)−ωL

2
σz +ωza

+a+λb(t)(a
+σ+ + aσ−), (5)

HJC
rsb(t) =

ωq(t)−ωL

2
σz +ωza

+a+λr(t)(aσ
+ + a+σ−), (6)

where the coefficients λb = λr = ηΩ(t). Rabi frequencies are η
√
n+ 1Ω(t) and η

√
nΩ(t) for the blue and red

sideband, respectively. Equations (4)–(6) describe the carrier, blue sideband, and red sideband transitions
regions in the ion trap, respectively. It is well known that in real experiments, most bit operations are
achieved through the combination of such three types of transitions.

As is well known, adiabatic evolution requires the evolution time be greater than the inverse of the
minimum energy gap, and long evolution time leads to more noise dissipation and decoherence. However,
this process can be accelerated by introducing an additional counterdiabatic driving into the original
Hamiltonian with the following form [44]

HCD(t) = i
∑

n,σ=±
[∂tΦ n,σ(t),Φ n,σ(t)], (7)
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where Φ n,σ(t) = |n,σ(t)⟩⟨n,σ(t)| with |n,σ(t)⟩ denoting the dressed-atom eigenstates of the original
Hamiltonian. Generally speaking, such a additional term is very difficult to realize in real experiment. Abah
et al have obtained a form similar to the original JC Hamiltonian through ingenious basis vector
transformation [38]. Motivated by this idea, we thus optimized three basic operations in the ion trap,
including carrier, red and blue sideband pluses. In the case of the carrier transition (equation (4)), the total
Hamiltonian H total

carrier(t) =Hcarrier(t)+HCD(t) that ensures perfect transfer at any given time becomes

H total
carrier(t) =

ωq(t)−ωL

2
σz +

Ω(t)

2
σx +

(ωq(t)−ωL)Ω̇(t)−Ω(t)ω̇q(t)

2
(
(ωq(t)−ωL)2 +Ω(t)2

) σy. (8)

To circumvent the difficulty in the implementation of additional σy-field driving, one make a
time-dependent unitary transformation to the total Hamiltonian H total

carrier(t) and the appropriate parameters
are chosen so that the final Hamiltonian is written as

H̃carrier =
Ω(t)

2

√
1+

θ2a(t)

Ω2(t)
σx +

ωq(t)−ωL

2
σz −

Ω(t)θ̇a(t)− θa(t)Ω̇(t)

2(θ2a(t)+Ω2(t))
σz. (9)

where θa(t) =
(ωq(t)−ωL)Ω̇(t)−Ω(t)ω̇q(t)

Ω2(t)+(ωq(t)−ωL)
2 .

In the case of the blue sideband (equation (5)), in order to ensure that the total Hamiltonian
HSTA

bsb (t) =HaJC
bsb(t)+HCD(t) and the original Hamiltonian HaJC

bsb(t) have similar forms, we first diagonalize
equation (5) in the subspace spanned by {|e,n+ 1⟩, |g,n⟩}, where |g⟩, |e⟩ as the fundamental and excited
state of the two-level system, and |n⟩ is the n-excitation Fock state of the mode. We thus have
Hn(t) = (n+ 1/2)ωzI+ [δ(t)/2]σ̄z +λ(t)

√
n+ 1σ̄x and the spin-like operators σ̄− = |g,n⟩⟨e,n+ 1|,

σ̄+ = |e,n+ 1⟩⟨g,n|, σ̄z = |e,n+ 1⟩⟨e,n+ 1| − |g,n⟩⟨g,n|. δ(t) = ωq(t)−ωL +ωz is the detuning from blue
sideband resonance. To ensure that the Hamiltonian HSTA

bsb (t) equals original equation (5) at the start and end
of the protocol, we impose the condition λ̇(0) = λ̇(T) = 0 as well as ω̇(0) = ω̇(T) = 0. These conditions
ensure HSTA

bsb (t= 0,T) =HaJC
bsb(t= 0,T), which can be recast in finding protocols such that HCD(t= 0,T) = 0.

Then a unitary transformation is performed on HSTA
bsb (t) so that the new Hamiltonian H̃aJC

bsb(t) = U†HSTA
bsb (t)U

is similar to the original HaJC
bsb(t). This allows us to circumvent the difficulties associated with implementing

additional driving. The new Hamiltonian is written as

H̃aJC
bsb(t) =

ω̃q(t)−ωL

2
σz +ωza

+a+ λ̃b(t)(a
+σ+ + aσ−), (10)

where

ω̃q(t) = ωq(t)− 2
√
(n+ 1)

λb(t)θ̇(t)− θ(t)λ̇b(t)

θ2(t)+Ω2
n(t)

, (11)

λ̃b(t) =
[
λ2
b(t)+ θ2(t)

]1/2
, (12)

θ(t) =
δ(t)λ̇b(t)−λb(t)ω̇q(t)

Ω2
n(t)+ δ2(t)

, (13)

Ωn(t) = 2λi (t)
√
n+ 1, (14)

Note that the driving must also fulfill λ̈(0) = λ̈(T) = 0 and ω̈(0) = ω̈(T) = 0 to ensure that
H̃aJC

bsb(t)(t= 0,T) =HaJC
bsb(t= 0,T). For that, we consider the protocols ωq(t) = ωq(0)+ 10∆ωqs3 − 15∆ωqs4+

6∆ωqs5, and λb(t) = (λm −λ0)cos4 [π (1+ 2s)/2] +λ0, with s= t/T,∆ωq = ωq(T)−ωq(0), and λ0 is the
initial coupling constant, while λm denotes its maximum value. As for a Landau-Zener problem, a
population transfer between {|e,n+ 1⟩ and |g,n⟩} requires that ωq(t) changes its sign during the evolution
while λb(t) ̸= 0 for some t with λ(0) = λ(T) = 0, which also applies to the modified frequencies.

In the case of the red sideband (equation (6)), The local counterdiabatic Hamiltonian H̃JC
rsb(t) =

ω̃q(t)−ωL

2 σz +ωza+a+ λ̃r(t)(aσ+ + a+σ−) has a similar derivation process with H̃JC
bsb(t), except that

δ(t) = ωq(t)−ωL −ωz and all λ̃b(t) should be replaced by λ̃r(t).
We now consider the effectiveness of our STA scheme through the preparation of Fock state. The Fock

state is deterministically prepared by n laser pulse trains, each contains carrier transition with π pulses and
the blue/red sideband transition. Since carrier transition is usually very fast in experiments, STA is only
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Figure 1. Scheme for the generation of Fock states from n= 0 to 5. (a) Preparing a Fock state using alternate blue sideband and
carrier π pulses. The evolution of Mandel parameter Q(t) and purity p(t) of Fock state prepared by STA and adiabatic method,
respectively, and T= 15.9µs. (b) Preparing the same fidelity of Fock state as STA in (a) by using the original Hamiltonian, but
with larger T= 254.6µs. (c) and (d) are the same as (a) and (b), respectively, except that the red sideband is replaced by the blue
sideband. Other parameters are ωq(0) = 3ω/2, ωq(T) = ω/2, λ0 = 0, λm = ω/4, ω = 2π × 50kHz.

applied for accelerating the sideband transition. Figure 1 shows the evolution of the Mandel parameter

Q(t) =
⟨n2(t)⟩−⟨n(t)⟩2

⟨n(t)⟩ − 1, which accounts for the nonclassicality of the resulting state, and the purity

p(t) = Trb[ρ2s (t)] of the reduced two-level state ρs(t) = Trb[ρ(t)]. ρ(t) is density matrix of the total system and
Trb[.] denoting the trace over the phonon mode. Figure 1(a) shows the evolution of Q(t) and p(t) from n= 0
to 5 for STA and bare Hamiltonian, respectively. It is found that for same duration T= 15.9 µs, the Mandel
parameter Q(t) unveils the sub-Poissonian behavior of the boson statistics (i.e. Q(t)< 0). It is defined as the
normalized variance of the phonon distribution. For a perfect population transfer, the minimal value
Q(t) =−1 is obtained from each STA+π cycle. The closer the Q(t) value is to−1, the higher the fidelity of
the Fock state. The purity p(t) almost keep 1 for STA. Compared to STA case, the system without STA finally
evolves into the undesired target state (see the green and blue lines). Until the duration increases to
T= 254.6 µs, such a system can achieve the same effect as STA, as show in figure 1(b). In addition, we
compute the time evolution of the system according to a Lindblad master equation that accounts for
experimental imperfections resulting in heating and decoherence of the motional modes:

˙̂ρ(t) =− i[Ĥ, ρ̂(t)]

−Γ
[
ρ̂(t)â†ââ†â− 2â†âρ̂(t)â†â+ â†ââ†âρ̂(t)

]
− γ

2
nth

[
ââ†ρ̂(t)− 2â†ρ̂(t)â+ ρ̂(t)ââ†

]
− γ

2
(nth + 1)

[
â†âρ̂(t)− 2âρ̂(t)â† + ρ̂(t)â†â

]
.

(15)

Here, Γ is the decoherence parameter, which we set to be Γ = (1/τ), with τ = 2.5 ms. γ is the coupling
strength between the ion motion and the thermal reservoir, and nth is the average phonon number when the
system is in equilibrium with the environment. In our model, the effective temperature of the thermal
reservoir is infinite, which makes nth extremely large and γnth ≈ γ (nth + 1). It is natural to define the heating
rate as γnth, which is measured as 60± 3.02 quantas−1 in our system. Due to the addition of dissipation to
the case of STA, the Mandel parameter Q(t) decreases by 2% for n= 5, from−0.98 to−0.96, as shown in
figure 1(a) with the solid brown line and the dashed yellow line. Figure 1(b) illustrates that the Q(t) decreases
by 20%, from−0.97 to−0.77, after adding dissipation to adiabatic evolution. Thus, STA manipulation of
phonon states is 16 times faster than adiabatic evolution, and STA has a significant effect on dissipation as
well.

It is worth noting that we have calculated the quantum speed limit time of Mandelstam and Tamm,
τ = π/2∆H , where∆H is the variance of the Hamiltonian of the quantum system. Since the Hamiltonian is
time-dependent according to equation (10), we average the quantum velocity limit time τ to obtain

τ̄ =
´ T
0 τ(t)dt/T. When the actual evolutionary period T= 15.9µs , the average limit time τ̄ = 4.8µs. As a

result of STA’s acceleration, it does not exceed the quantum speed limit time. We note that figures 1(a)

4
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Figure 2. (a) The fidelity as a function of the strength of non-resonance excitation. (b) For the fidelity to more than 0.95,
appropriate bias frequency is required for different ion motional frequencies, and for fixed maximum Rabi frequency. The
maximum Rabi frequency λmax of laser is 510 kHz, 297 kHz, 153 kHz for (b), (c), and (d), respectively.

and (b) are for case of blue sideband, while figures 1(c) and (d) are for the red sideband one, which exhibits
qualitatively similar behavior. Consequently, in what follows we only focus on the region of red sideband.

Up to now, the coupling strength of non-resonant processes are assumed to be smaller than the detuning,
and thus the effects of a variety of non-resonant excitations are not included. However, in realistic
experiments the non-resonant excitations can severely degrade the fidelity of the final state, especially for the
case where laser excites transition on a sideband and the non-resonant carrier transition should be taken into
account. For example, if the transition |e,0⟩ ↔ |g,1⟩ is driving from pure initially |e,0⟩, then the populations
of |g,0⟩ and |e,1⟩ are proportional to the populations of |e,0⟩ and |g,1⟩, respectively, with the proportionality
factor given by [λ(t)/2ηωz]

2.
Figure 2(a) shows the variation of fidelity as a functions of the strength of non-resonance excitation for

the preparation of Fock states from |e,0⟩ to |g,1⟩. It is easy to see that the fidelity of the system shows strong
dependence on both Rabi frequencies λmax and motional frequencies ωz. Take advantage of the high
robustness of STA, we can change the laser frequency to suppress non-resonant excitation with fixed
motional frequency ωz and laser power. To improve the fidelity to more than 0.95, we should add appropriate
bias frequency, as shown in figures 2(b)–(d) for different ion motional frequencies ωz, but for fixed
maximum Rabi frequency λmax. The stronger laser power, the larger bias frequency is required. The smaller
motional frequency, the larger bias frequency is required with fixed laser power.

3. Experimental results

3.1. Experimental setup and sequence
We now discuss the experiment scheme and the related sequence. We employ the axial mode of a single
trapped 40Ca+ ion in a harmonic potential with the frequency of ωz = 2π × 1.3MHz to prepare Fock states.
A Zeeman splitting of about 8.8MHz is created by a magnetic field in D5/2, and the sublevels
2S1/2(mj =−1/2) and 2D5/2(mj =−1/2) are chosen as the qubit states |g⟩ and |e⟩, respectively, as shown in
figure 3(a). Initially, the ion is prepared at state |g,0⟩ (namely the state |g⟩ with 0 phonon number) by
Doppler cooling, EIT cooling, sideband cooling. State manipulation is achieved by 729 nm laser pulses from
a stabilized Ti-sapphire laser with linewidth about 20 Hz. The laser beam is sent through acoustooptic
modulators (AOM) and then focused to the position of the ion. AOM is used to control the frequency and
amplitude of the laser beam. Quantum operations and laser beam modulations are realized by transmitting
RF signals generated by signal generator or arbitrary waveform generator(AWG) to AOM. By scanning the
Rabi oscillation, a relationship between the amplitude of the AWG and the Rabi frequency is obtained, and
the AC stark shift needs to be compensated for the waveform’s pre-calibration. The actual waveform of AWG
is generated based on the theoretically calculated Rabi frequency and detuning over time. It is necessary that
the input waveform sample at a rate greater than or equal to the sample rate required by the AWG.
Figures 3(b) and (c) show the actual shape of the waveform without and with the STA scheme. The final state
is detected by a laser pulse of 397 nm.

For trapped ions system, Fock states can be generated by pseudo-spin phonon coupling, which usually
need fast and accurate control of both the internal and the motional states. The laser timing sequence of Fock
state generation is shown at the top of figure 4. We start from |e,0⟩, and then followed by a series of
alternating red sideband transitions (|e,n⟩ ↔ |g,n+ 1⟩) and carrier transitions (|g,n⟩ ↔ |e,n⟩), which are
marked by the red and grey squares, respectively. Figure 4(a) shows the time evolution of population of |e⟩ in

5
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Figure 3. (a) Energy level structure of 40Ca+ ion and relevant laser wavelengths. (b) Waveform of AWG with STA protocol.
(c) Waveform of AWG without STA.

the absence of bias during the pulse sequence, and the change of phonon number is marked at the top of
figure 4(a).

The first red sideband transition did not completely flip the internal state of ions. This will directly
reduce the fidelity of phonon state preparation. As discussed before, infidelity is mainly caused by non
resonant excitation and proportional to laser power. The first red sideband transition requires the highest
laser power and suffers most affection by non-resonant excitation. However, when the bias frequency
increases to 11 kHz, the fidelity of internal state after the first red sideband is significantly improved, as show
in figure 4(b). This is consistent with our theoretical prediction.

After the target state has been prepared to |e,5⟩, we measure the final distribution of phonon number by
driving the blue sideband transitions and fitting the |e,n⟩ state population with the under-determined
parameters as the Fock state population Pn [45]. Each measurement is repeated 1500 times to ensure the
reliability of our results. We obtain the phonon number distribution by fitting blue sideband time evolution
with bias frequency 0 kHz and 11 kHz, respectively, as shown in figures 4(c) and (d). It is found that the
fidelity is increased from 0.45 to 0.864.

Last but not least, we should make a balance between the speed and fidelity when we use the STA
protocol. To avoid decoherence during state transitions, short pulses are preferred, but shorter pulse periods
mean stronger laser power and higher non resonant transitions, which lead to lower fidelity. Figure 4(e)
shows the optimization fidelity of our experimental Fock states from n= 0 to 8. Furthermore, the fidelity can
also be influenced by the heating rate. In our current experimental setup, the heating rate has been quantified
as 60± 3.02 quantas−1 while the maximum operational duration is approximately 400µs. By utilizing the
heating rate obtained from the experiment, the corresponding increase in phonon number is calculated to be
0.024± 0.0012.

6
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Figure 4. (a) The population of |e,n⟩ vs time from |e,0⟩ to |e,5⟩ with laser bias frequency 0 kHz and 11 kHz in (a), (b)
respectively. Evolutionary periods T= 47.74µs. The phonon number distribution under n= 5 with laser bias frequency 0 kHz
and 11 kHz in (c), (d) respectively. (e) Fidelity of Fock states preparation for the phonon number from 0 to 8 with STA in
appropriate bias frequency.

3.2. The Robustness of the system
3.2.1. The effect of the pulse shape deformation
We next consider the robustness of our STA protocol to the pulse shape of the 729 nm laser. Due to the
Gaussian shape of the laser beam, atoms at different positions are subjected to different Rabi frequencies.
Despite prior calibration, strict precision cannot be guaranteed due to power dithering. In addition, it is
difficult to exactly solve the shape of pulse from equations (11) and (12). To avoid long-time drift of laser
frequency, numerical simulation is required. We investigate the flexibility of the performance to
imperfect pulse implementations. To do this, we approximate the actual form of the pulse λ̃r(t) and
δ̃r(t) = ω̃q(t)−ωL −ωz with NF Fourier modes, namely, via

x̃F(t) =
NF∑
k=0

ck cos(kωFt)+ sk sin(kωFt), (16)

where x̃F(t) denoting the approximation of x̃(t) with x̃ ∈ {λ̃r(t), δ̃r(t)} using NF modes.
In figures 5(a) and (b), we show the approximate profiles with different NF for the n= 0 subspace. Note

that for NF = 8, the Fourier mode agrees with exact solution. Five different Fourier modes are implemented
experimentally for transition |e,0⟩ ↔ |g,1⟩ and shown in figure 5. The influence on the fidelity was
investigated for approximation made on frequency only, power only and both of the two. The final results are
shown in table 1.

Under the theoretical calculation [38], Abah et al have confirmed that increasing NF the infidelity
becomes arbitrarily small. When the evolution period is ωT= 6, the infidelity is within 10−4 even if NF = 1.
The fidelities in table 1 have not changed significantly. The experimental results are in agreement with the
theory one. The different between numerical and experimental infidelities mainly comes from the
non-resonant transitions and states measurement. The first column of table 1 is the results that only the laser
power is approximated. For NF = 1 and 2, the fidelities are slightly higher than those for NF = 4 and 8. This
can be explained as follows. Referring to figure 5(a), for NF = 1 and 2, the waveforms are single peaks, while
double peaks for NF = 4 and 8. The average power of single peak is weaker than that of the double peak. In
other words, for NF = 1 and 2, the non-resonance excitation caused by the strong laser power is less.

7
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Figure 5. Parameter Fourier expansion of different series, λ̃r and δ̃r in (a) and (b), respectively, plotted with red lines for exact
pulse shape. Others correspond to the approximated pulses using NF Fourier modes, as indicated in legend.

Table 1. The fidelities of Fock states with different NF Fourier modes.

NF λ̃r δ̃r λ̃r+δ̃r

1 0.973± 0.021 0.951± 0.045 0.945± 0.022
2 0.972± 0.018 0.951± 0.017 0.949± 0.027
3 0.970± 0.014 0.959± 0.031 0.960± 0.040
4 0.961± 0.034 0.961± 0.034 0.958± 0.011
8 0.965± 0.012 0.965± 0.021 0.962± 0.025

This confirms once again that for a small number of operations, the fidelity depends mainly on the
non-resonant excitation. The second and third columns show that fidelity becomes higher with increasing of
NF. The robustness of STA protocol performance is strongly good against imperfect pulse implementation.

3.2.2. The effect of bias noise
Pulse shaping protocols are also commonly used in experiments to suppress non-resonant excitation, where
the pulse shape of the 729 nm laser beam is changed from the ordinary rectangular form [18]

E(t) = A sin[(ω0 − δAC)t+φ ], (17)

to a sine-shaped form

E(t) =
πA

2
sin

[π t
T

]
× sin

[
ω0t+

π 2δAC
8

(
2π t−T sin

[
2π t

T

])
+φ

]
, (18)

where A is the amplitude factor, ω0 and φ are the resonance frequency and phase, respectively, δAC is the
compensation for the AC-Stark shift effect and T is the duration of the pulse.

In order to compare the robustness of the two schemes to bias noises, we artificially introduce bias noises.
Figure 6 shows the influence of bias noises on the fidelity in the STA and pulse shaping schemes.∆ indicates
how many the laser frequency drifts relative to δ. Experimentally, the value of∆ is changed by adjusting the
driving frequency of AOM. The transition is between |e,0⟩ and |g,1⟩. If the fidelity above 0.8 is set as
acceptable, STA can endure laser detuned by 9 kHz but pulse shaping only 5 kHz. STA shows better
robustness to bias noises.

8
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Figure 6. The fidelities of the transition |e,0⟩ ↔ |g,1⟩ at different center frequencies for shortcuts to adiabaticity and pulse
shaping schemes.

Figure 7. Detuning frequencies with stochastic noise in two protocols.

3.2.3. The effect of stochastic noise
The third type of noise is the stochastic one, which mainly refers to magnetic field noise caused by
environment and short-time jitter of laser frequency and power. In the experiment, stochastic noise is
uncontrollable. In order to compare the robustness of the two schemes to stochastic noises, we artificially
introduce stochastic noises.

Since the Rabi frequency is controlled by the 729 nm laser power, we add Gaussian N(µ,σ2) random
noises at Rabi frequency using an AWG and an AOM. We study the influence of stochastic laser frequency
noise on the fidelity. The laser phase noise is uniform and independent on frequency. Thus Gaussian
N(µ,σ2) random noise for detuning frequency use σ= 1 kHz, 5 kHz and 10 kHz respectively. Figure 7 shows
the time dependent frequency detuning with stochastic noise for σ= 1 kHz, 5 kHz, respectively. The red line
is the exact solution, and the blue dots are the parameters with stochastic noise. The transition is between
|e,0⟩ and |g,1⟩ in π pulses time. Figures 7(a) and (b) are for STA protocol and (c) and (d) are for pulse
shaping protocol.

The fidelities with different stochastic laser frequency noise are shown in table 2. When there is no extra
noises (σ= 0 kHz), the fidelity of STA protocol is about 0.971 and that of pulse shaping is about 0.976. When
adding the Gaussian N(µ,σ2) stochastic noises with σ= 1 kHz, the fidelity of STA protocol is almost
unchanged but that of pulse shaping decreases 2.6%. As the noise increases, the fidelities of both schemes
decrease from table 2. But the fidelity of STA protocol is slightly higher and decreases slower than that of
pulse shaping. It shows STA protocol has better robustness to stochastic frequency noise.

9
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Table 2. The fidelities of Fock states with different stochastic noise for detuning frequencies.

σ 0 kHz 1 kHz 5 kHz 10 kHz

STA 0.971± 0.011 0.970± 0.013 0.923± 0.024 0.894± 0.017
Pulse shaping 0.976± 0.013 0.950± 0.015 0.903± 0.020 0.862± 0.011

A key reason why the STA exhibits good robustness in the presence of additional bias noise as well as
random noise is due to its counterdiabatic driving method. As the basic idea of counterdiabatic drive, an
auxiliary term is required in order to make the dynamics follow exactly the approximate adiabatic evolution
driven by original Hamiltonian. An approximate adiabatic evolution is robust to parameter changes since it
follows the eigenstates of the original Hamiltonian.

4. Conclusion

In summary, we have proposed a scheme realized experimentally by using STA, which can be used to
accelerate the duration of the red/blue sideband. Based on the real experimental environment, our numerical
simulation shows the destruction of fidelity is induced by different non-resonant excitations. However, it is
found that such non-resonant excitations can be suppressed by adding the bias frequency of laser and the
fidelity of phonon states can also be improved, which are also confirmed by our experimental results. Finally,
the STA shows good robustness respect to the pulse shape deformation, bias noises and stochastic noise.
These conclusions will provide important technical reference to manipulate the phonon states in trapped ion
system.
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