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Abstract. We investigate the Wightman function and the vacuum expectation values of the field squared 
and energy-momentum tensor for a massive scalar field with general curvature coupling outside a spherical 
bubble in Minkowski spacetime. The geometry inside the bubble corresponds to a space with constant 
negative curvature. The asymptotic behavior of the expectation values is studied for small values of the 
bubble radius and at large distances. 
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1. Introduction 

In the absence of quantum gravity, the influence of the gravitational field on quantum matter fields is 
studied within the framework of a semiclassical theory where the gravitational field is considered as a 
classical background [1]-[3]. Among the most interesting topics in this direction is the influence of the 
gravitational field on the properties of the quantum vacuum. Two effects, which have attracted great deal 
of attention, are the vacuum polarization and creation of particles. These effects may play an important 
role in the evolution of the early universe. 

In quantum field theory, the definition of the vacuum state is based on the choice of a complete 
set of the solutions to the classical field equation. These solutions are sensitive to both the local and 
global characteristics of the background geometry and, hence, the same for the vacuum state. In 
particular, because of the global nature of the vacuum, the gravitational field localized in some spatial 
region may influence the properties of the vacuum state for a quantum field outside that region. This 
type of an example has been recently considered in [4], where the vacuum expectation values (VEVs) 
of the field squared, and the energy-momentum tensor are investigated for a scalar field in a spherically 
symmetric static background geometry described by two distinct metric tensors inside and outside a 
spherical boundary. A special case of the exterior geometry corresponding to a global monopole has 
been discussed in [5] and [6] for scalar and fermionic fields, respectively. Similar problems with 
cylindrical symmetry in background of cosmic string spacetime were studied in [7, 8]. Problems in de 
Sitter and anti-deSitter spacetimes were discussed in [9, 10].  

In the present paper, we consider the change in the characteristics of the scalar vacuum induced 
by a constant negative curvature spherical region (referred below as a bubble) in the surrounding 
Minkowski geometry. This is a kind of gravitationally induced Casimir effect where the boundary 
conditions on a quantum field are imposed by the geometry inside the bubble (for a general review of 
the Casimir effect see, for instance, [11]-[14]). The Casimir effect for a spherical boundary in a constant 
negative curvature space has been recently investigated in [15] for a scalar field with Robin boundary 
condition. 
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The paper is organized as follows. In the next section, we describe the background geometry, the 
field content and the boundary conditions. The mode functions for a scalar field with general curvature 
coupling parameter are specified in Section 3. By using these functions, the VEVs of the field squared 
and of the energy-momentum tensor are investigated in Section 4. The main results are summarized in 
Section 5. 
 
 
2. Problem setup 
 

We consider a ( )1D + - dimensional spherically symmetric spacetime described in coordinates 

( ), , ,t r ϑ φ , where ( )1,..., , 2n n Dϑ θ θ= = − , and 0 ;0 2 ; 1,...,k k nθ π φ π≤ ≤ ≤ ≤ = . In the region 0r r> the 
geometry is Minkowskian with the line element 
 

2 2 2 2 2
1Dds dt dr r d −= − − Ω  ,                                            (1) 

 
where 2

1Dd −Ω is the line element on the ( )1D − -dimensional sphere, 1DS − . In the region 0r r> the 
geometry is described by 
 

      ( )2 2 2 2 2 2
1sinhi i Dds dt dr a r a d −= − − Ω ,                            (2) 

 
with a constant a . The space corresponding to (2) has a constant negative curvature with the Ricci scalar 

( ) 21R D D a= − − . The interior radial coordinate ir  should be chosen in a wayin order to have 
continuous metric tensor on the surface 0r r= . We take i cr r r= + with a constant cr . With this choice, 
one has the components 00 11 1g g= − = in both the exterior and interior regions. From the continuity of 
the components , 2,...,llg l D=  one gets 
 

0 0sinh cr r r
a a a

 + = 
 

,                                                          (3) 

 
for given 0r  and a , this condition determines the constant cr . It is negative. 

The continuity of the metric tensor on the bounding surface is not sufficient. The matching for the 
first derivatives of the metric tensor is given by the Israel condition 

 

( ) ( ) ( )( )
,

8 ikj ik j j ik
j i e

K K h Gπ τ
=

− = ,                                       (4) 

 
on the surface 0r r= . In (4), the summation goes over the interior ( )j i=  and exterior ( )j e=  regions, 

( )j ikK is the corresponding extrinsic curvature, ( )j ikh is the induced metric on 0 ,r r G=  is the gravitational 
constant, ikτ is the surface energy-momentum tensor located on the bounding surface with nonzero 
components 0

0τ  and 2
2 ... D

Dτ τ= = . For the geometry under consideration, by using (3), from (4) one finds 
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2

0 20
0 22

0

1 21 1 , .
8 1

D
D

rD D
Gr a D

τ τ τ
π

 − −= + − = 
  − 

                                   (5) 

 
The corresponding energy density is positive. 

Having described the geometry we pass to the field content. We consider a quantum scalar field 
( )xϕ  with the curvature coupling parameter ξ  . The field equation reads 

 
( ) ( )2 0l

l m R xξ ϕ∇ ∇ + + = ,                                                (6) 
 

where for the Ricci scalar one has ( ) 21R D D a= − −  in the region 0r r<  and ܴ =  0 for 0r r> . In 
addition to the field equation in the regions 0r r<  and 0r r> , the matching conditions for the field should 
be specified at 0r r= . The field is continuous on the separating surface. In order to find the matching 
condition for the radial derivative of the field, note that the discontinuity in the radial derivatives of the 
components  , 2,...,llg l D= , leads to the delta function term 
 

( )
2

0
02

0

12 1 1rD r r
r a

δ
 −− + − − 
 
 

                                       (7) 

 
in the Ricci scalar. By taking into account this term in the field equation (6) and integrating the 
corresponding radial equation near  0r r= , we get 
 

( ) 0

00

0

0

16
1

r r
r r rr r

G
D
π ξϕ τ ϕ

= +

== −
∂ =

−
,                                          (8) 

 
where ߬is the trace of the surface energy-momentum tensor. From (5) one finds 
 

2
0
2

0

8 1 1 1 .
1

rG D
D r a
π τ

 −= + − 
 −  

                                              (9) 

 
For a minimally coupled field 0ξ =  and the radial derivative is continuous. 
 
 
3. Mode functions for a scalar field 
 

We are interested in the change of the vacuum characteristics in the region 0r r>  induced by the 
presence of the bubble. The corresponding VEVs for physical quantities bilinear in the field are 
expressed in terms of the mode sums over a complete set ( ) ( ){ },x xα αϕ ϕ∗   of solutions to the classical 
field equation. The collective index ߙcorresponds to the set of quantum numbersspecifying the solutions. 
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In the problem under consideration, from the spherical symmetry it follows that the solutions can be 
presented as 
 

( ) ( ) ( ), , i t
l kx f r Y m e ω

αϕ ϑ φ −= ,                                         (10) 
 
where ( ), ,kY m ϑ φ  is the spherical harmonic of degree l . For the angular quantum numbers one has 

( )0 10,1,2,...; , ,... ;k nl m m l m m= = =  where 1 2, ,... nm m m  are integers obeying the relations 
 

1 2 10 ...n nm m m l− −≤ ≤ ≤ ≤ ≤ ,                                       (11) 
 
and 1 1n n nm m m− −− ≤ ≤ . Substituting (10) into the field equation, for the radial function in the separate 
regions one finds 

( )
( ) ( ) ( )

( ) ( ) ( ) ( )2
1 2

, ,

l l

i i l

l n
v ve e

A f r
f r

r A J r A Y r

λ

λ λ−

=   +  
 

0

0

r r
r r

<
>                          (12) 

 
 
where ( )vJ x   and ( )vY x  are the Bessel and the Neumann functions, 2 1lv l D= + − and 2 2 .mλ ω= −  
The function ( ) ( ),i lf r λ is the regular solution of the radial equation for the line element (2). It is given 
by 
 

( ) ( ) ( )1 2, lv
izi lf r p uλ −

−= ,                                           (13) 
 
where 
 

( )( )2 2 1 Dz a D Dλ ξ ξ= + − − ,                                   (14) 
 
and 
 

( ) ( )
( )( ) ( )2 42

, cosh
1

v
v cD

p u
p u u r r

u

μ
μ

−
−

−= = +
−

,                        (15) 

 

with ( )vP uμ−  being the associated Legendre function of the first kind. In (14), 1
4D

D
D

ξ −= is the curvature 

coupling parameter for a conformally coupled scalar field. From the relation ( ) ( )1/2 1/2iz izP u P uμ μ− −
− − −=  it 

follows that the function  ( ) ( ),i lf r λ  is real. The modes are specified by the set of quantum numbers 

( ), kmα λ= . 
      From the matching conditions for the field and its radial derivative on 0r r=  we get 
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( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2
0 0 01

2
0 0 02

,
2

,
2

n
vle i i l

n
vle i i l

A r A f r Y r

A r A f r J r

π λ λ

π λ λ

 =

 =


                                 (16) 

 
where, for a given function ( )f x  we use the notation 
 

( ) ( ) ( ) ( )0 0 0 0 0f r r f r r f rλ λ λ β λ λ′= − ,                               (17) 
and 
 

( ) ( ) ( )
( ) ( )

0
0 0 0

0

16
2 1

i l

i l

f r n Gr r r
f r D

λ π ξβ λ λ τ
λ

′
= + +

−
.                              (18) 

 
Here, the prime stands for the derivative of the function with respect to the argument. From the 

standard Klein-Gordon normalization, condition one finds 
 

( )

( ) ( )
( ) ( ) ( )

12 2
0 0

2
2 2

0 0

2
,

vlvl

i n
k i l

J r Y r
A

N m r f r

λ λ
λ

π ω λ

−
 +  =                                        (19) 

The factor ( )kN m  comes from the normalization integral for ( ), ,kY m ϑ φ and its explicit form (see, 
for instance, [16]) will not be required in the discussion below. As a result, for real ߣthe radial mode 
functions in the exterior region are presented in the form 

 

( ) ( )
( ) ( ) ( ) ( )

( ) ( )
0 0

22
0 0

.
2

vl vlvl vl
l

k vlvl

Y r J r J r Y r
f r

N m J r Y r

λ λ λ λλ ω

λ λ

−
=

+
                                 (20) 

 
The imaginary values for λ correspond to possible bound states. For these states iλ η=  and 

2 2mω η= + . The exterior radial mode functions are given by ( )2n
vlr K rη− , where ( )vK x  is the 

Macdonald function. For mη >  the energy becomes imaginary and in order to have a stable vacuum 
state we will assume that mη < . For the radial functions corresponding to the boundstates one has 

 

( ) ( ) ( )

( ) ( )2

, ,

,
ib i l

bl n
vleb

A f r i
f r

A r K r

η
λ

η−

= 


0

0

,r r
r r

<
>

                                (21) 

 
 
From the matching conditions of the solutions on 0r r=  it follows that the eigenvalues for η  are 

solutions of the equation 
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 ( )0 0vlK rη = .                                                                 (22) 

 
Here and in what follows, for a function ( )f x we use the notation 
 

 ( ) ( ) ( ) ( )0 0, .f x xf x r ix r f xβ′= −                                    (23) 
  

For the normalization coefficient of the bound states one obtains 
 

( )
( )

( )  ( )
02

0

vl

eb
vlk

I r
A

N m K rη

η η
ω η

= −
∂


,                                             (24) 

 
where ( )vI x  is the modified Bessel function of the first kind. The coefficient ( )ibA  is found from 
 

( )
( ) ( )

( )
( ) ( )

0

12
0 0

.
,

vleb
ib n

i l

A K r
A

r f r i

η

η
=                                                    (25) 

 
For small values of 0r  one has 
 

 ( ) ( ) ( )0 02 3 2vl vlK r l n K rη η≈ − + ,                                 (26) 
 
and the function  ( )0vlK rη  is negative. For large 0r a , by using the asymptotic expression 

( ) ( )( )
( )

1 2
0

1 2

2
1 2

z

z

z r a
P u

z
μ

π μ

−
−
−

Γ
≈

Γ + +
,                                          (27) 

we see that 

 ( )
( ) ( )( ) ( )0 2 20

0

1 1 2 2 1
vl

D
vl

K r r a a D D D
K r a

η
η η ξ ξ ξ

η
   ≈ − + + − − − + −    

.            (28) 

 
We have numerically checked that in 3D =  there are no bound states for both minimally and 
conformally coupled scalar fields. 
 
 
4. Wightman function and the VEVs 
 

The scalar modes we have presented above are obtained from the modes outside a spherical shell 
with the radius ݎ଴ on which the field obeys the Robin boundary condition  
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( ) 0,R rβ ϕ+ ∂ =  0r r= ,                                              (29) 
 
with the replacement 
 

( )0 0 ,
2R
nr rβ β λ→ − + .                                             (30) 

 
As a result, the corresponding Wightman function and the VEVs of the field squared and of the 
energy-momentum tensor are obtained in a way similar to that described in [17] for the case of 
the Robin sphere. Here we omit the details and present the final results. 
      The Wightman function is presented in the form 
 

 

( ) ( ) ( ) ( )

( )
 ( )

( ) ( ) ( )( )

2
2

0

0 2 2

2 2
0

2
, , cos

cosh ,

n
n

M l l m
lD

vl vl vl

vl

rr
W x x W x x v C dyy

n S

I yr K yr K yr
t t y m

K yr y m

θ
π

− ∞ ∞

=

′
′ ′= − ×

′
′× − −

−

 
                               (31) 

 
where ( ),MW x x′  is the Wightman function in the Minkowski spacetime in the absence of the bubble. In 

(31), ( )22 2D
DS Dπ= Γ  is the surface area of the sphere with unit radius in D - dimensional space, θ  

is the angle between directions determined by the sets of angles ( ),ϑ φ  and ( ),ϑ φ′ ′ , ( )q
pC x  is the 

Gegenbauer polynomial of degree p and order q . The second term in the right-hand side of (31) is 
induced by the bubble.  

For 0r r>  the bubble-induced contribution is finite in the coincidence limit. For the renormalized 
VEV of the field squared from (31) we directly get 
 

( )
 ( )

( )22
02

2 2
0 0

,
D

vl vl
l m vllD

I yr K yrr D dyy
S K yr y m

ϕ
π

− ∞ ∞

=

= −
−

 


                             (32) 

 
with the notation 
 

( ) ( )
( )

2
2 2 .

1l

l D
D l D

D l
Γ + −

= + −
Γ − !

                                              (33) 

 
Note that the renormalization is reduced to the omission of the part corresponding to the Minkowski 
spacetime.  

The vacuum energy-momentum tensor is diagonal with the components (no summation over μ ) 
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  ( )
 ( )

( )2
03

2 2
0 0

,
2

D
vl vl

l m vllD

F K yrI yrrT D dyy
S K yr y m

μ
μ π

− ∞ ∞

=

  = −
−

 


                         (34) 

 
where for a given function ( )f y we have introduced the following notations 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

22
0 2

2

2
1 2 211

2

2 2
11 12 2

2

1 4 2
4 1 ,

1 4

21 ,

2
4 4 2 ,

1

l

l

i l

mr yvnF f y f y f y f y
y y

v nF f y f y f y f y f y
y y

v n n
F f y f y f y F f y

n y

ξ
ξ

ξ

ξξ

ξ ξ
ξ ξ

  + −
 ′ ′    = − − + −   −   

 +′ ′  = + − +  
 

 + − −
′   = + − + −    +  

  (35) 

 
with 2,3,...,i D= and ( )1 4 1 2D Dξ ξ= − − + . 

When the bubble radius goes to zero, 0 0r → , one has 

( )
 ( )

( )
( ) ( )

2
0 0

2
0

2
.

2 3 2

l
l

l

v
v

v l l

I yr n yr
l n v vK yr

≈
+ Γ


                                             (36) 

This shows that the dominant contribution to the VEVs comes from the 0l =  term. To the leading, order 
one gets 

( )
( )

( )

( )
( )

( ) ( )

2
202 1

2 1 2 2

21
20 3

2 1 2 2

2
,

3 2

2
,

3 2

nn
nn

D m

nn
nn

D m

K yrr r
dyy

n y m

F K yrr r
T dyy

n y m

μ
μ

μ

ϕ
π

π

−
∞ +

+

− −
∞ +

+

≈ −
Γ −

  ≈
Γ −




    (37) 

 
and for a fixed ݎ the VEVs vanish as 0

nr  . 
The bubble induced VEVs diverge on the bounding surface. These divergences are well known in 

the problems of quantum field theory on manifolds with boundaries. In the problem under consideration, 
these divergences are weaker, compared with the case of a sphere with Dirichlet, Neumann or, more 
general, Robin boundary conditions. This is a consequence of the dependence of the effective Robin 
coefficient, given by the right-hand side of (30), on λ . At large distances from the bubble and for a 
massive field, assuming that  1mr , the dominant contribution to the integrals come from the region 
near the lower limit of the integration. By taking into account that over all the integration region the 
argument of the Macdonald function is large, for the leading order term in the VEV of the field squared 
we find 
 

( )
( )

 ( )
1 2

02
1 2

0 0

.
4

D mr
vl

lD
vllD

I mrm e D
K mrS mr

πϕ
− − ∞

−
=

≈ − 


                                     (38) 
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In a similar way, for the components of the energy-momentum tensor one obtains 

 
0 2 2 2 0 1 2

0 2 0 1 2
1 8 1 24 , , .DT m T T T T

mr
ξξ ϕ

ξ
− −≈ ≈ ≈                    (39) 

 
For a minimally coupled field the leading term for the energy density vanishes and it is required 

to keep the next to the leading order terms. The leading term also vanishes for the radial stress. In order 
to find the corresponding asymptotic it is most easily to use the relation 0v

rr Tμ∂ =  which is a 

consequence of the covariant conservation equation 0v
v Tμ∇ = . 

For a mass less field and at large distances from the bubble surface, 0 , ,r r a  we introduce in (32) 
a new integration variable x yr=  and expand the integrand over 0r r  and a r . The leading contribution 
comes from the 0l =  term and, after the evaluation of the remaining integral over x , for the VEV of the 
field squared one finds 
 

( )
( )

( )
( )

1
0 02

2 2 2 1
0

2 0 1 22 1 .
2 0 2 2

nD

D n

n r n r n
n r n n r

β
ϕ

π β

−

+

− ⋅ Γ + + ≈ Γ + ⋅ Γ  
                                (40) 

 
For the components of the vacuum energy-momentum tensor, in a similar way, we find (no summation 
over μ ) 
 

( )
( ) ( )

( ) ( )
1 21

0 20
22 1 0

0

2 02 .
2 0 2

n Dn
n

nD

n r r rT dyy F K y
n r n

μμ
μ

β
π β

−− − ∞ +
+

− ⋅
 ≈ −  + ⋅ Γ                (41) 

 
Similar to the case of the field squared, the integrals are expressed in terms of the gamma function. 
 
 
5. Conclusion 
 

We have investigated the change in the local characteristics of the quantum vacuum for a scalar 
field induced by the presence of a spherical bubble of a constant curvature space. The interior geometry 
is described by the line element (2) and outside the bubble, one has Minkowski space-time. The exterior 
and interior radial coordinates are shifted by ݎ௖that is determined from (3). From the Israel matching 
condition one obtains the corresponding surface energy-momentum tensor with the components (5) 
located on the bubble surface. The scalar field is continuous and the jump of the corresponding radial 
derivative is given by (8). 

For the evaluation of the VEVs, a complete set of mode functions are required for a scalar field. 
These functions are presented as (10) where inside the bubble the radial function is expressed in terms 
of the associated Legendre function of the first kind, whereas the solution in the exterior region is given 
by a linear combination of the Bessel and Neumann functions. The corresponding coefficients are 
determined by the matching conditions and the exterior radial function is presented as (20). The 
corresponding Wightman function and the VEVs of the field squared and energy-momentum tensor are 
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obtained in a way similar to that for a spherical boundary in Minkowski spacetime with Robin boundary 
condition for a scalar field. In particular, the VEVs of the field squared and energy-momentum tensor 
are given by the expressions (32) and (34). At large distances from the bubble, the VEVs decay as power 
law for mass less field and exponentially in the massive case. The divergences on the bubble surface 
here are weaker compared to the case of a sphere with Robin boundary condition. 
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