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Abstract.  We show that there is nontrivial Berry relativistically covariant phase generated
by a perturbed relativistic oscillator. This phase is associated with a fractional perturbation of
the azimuthal symmetry of the oscillator.

A manifestly covariant quantum mechanics was formulated by E. C. G. Stueckelberg [1] in
1941. He studied this theory for the case of a single particle in an external field. He considered
the phenomenon of pair annihilation and creation as a manifestation of the development, in
each case, of a single world line that curves in such a way that one part runs backwards in time,
and above the turning point the line does not pass at all. This configuration was considered
by Stueckelberg to represent pair annihilation. To describe such a curve, parametrization by
the variable ¢ is ineffective, since the trajectory is not single valued. He therefore introduced a
parametric description, with parameter 7, along the world line. Hence one branch of the curve
is generated by motion in the positive sense of ¢ as a function of increasing 7, and the other
branch by motion in the negative sense of t.

The motion, in space-time, of the point generating the world line, which we shall call an event
(and has properties of space-time position and energy momentum), is governed in the classical
case by the Hamiltonian equations in space-time

ot _ DK ' OK

- T = — 1
dr  9dp,’ dr Oz, (1)

where z# = (t,7), p* = (E,p) [we take ¢ = 1 and g, = (—1,1,1,1)] and the evolution
generator K is a function of the canonical variables x,,p,. For the special case of free motion,
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where M is an intrinsic parameter assigned to the generic event, and hence
dzt  pt
dr M
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It then follows that
de 9
ez (W
dt FE
consistent with standard relativistic kinematics. We note, however, that the mass squared
m? = —ptp, is a dynamical variable since p and E are considered to be kinematically
independent, and therefore it is not taken to be equal to a given constant. The set of values taken
by m? in a particular dynamical context is determined by initial conditions and the dynamical
equations.

In the quantum theory, &,t (and p, F) denote operators satisfying the commutation relations
(we take h =1)

[z#, pH'] = igh” (5)

The state of one-event system is described by a wave function ¢, (z) € L?(R?*), a complex
Hilbert space with measure d*z = d3z dt satisfying the equation

0 (x)
or

i

= war(x) (6)

This equation, designed to provide a manifestly covariant description of relativistic
phenomena, is similar in form to the non-relativistic Schrodinger equation. Although free motion
is determined by the operator form of Ky of Eq. (3), i.e., the d’Alembertian, which is hyperbolic
(pup* = —0,0" instead of the elliptic operator p? = —V?), the same methods may be used for
studying Eq. (6) as for the non-relativistic Schrodinger equation.

In 1973 Horwitz and Piron [2] generalized the Stueckelberg theory by assuming that for the
treatment of systems of more than one event (generating world lines of more than one particle),
one assumes the unperturbed evolution generator to be of the form (pf = pwpf )

Ko = Dy (7)

They further assumed that there is a single universal 7 which parametrizes the motion of all
of the particles of the many body system (we denote this generalaized theory by SHP.) There
is a class of model systems, for which solutions can be achieved using straightforward methods,
which involve only effective action-at-a-distance (direct action) potentials, where the evolution
generator is of the form

K = Pi +V(.%'1,.%'2,...,1’N) (8)

Note that in this case the potential function enters into the dynamical evolution equation
as a term added to the generator of the free motion, and therefore corresponds to a space-time
coordinate-dependent interaction mass.

Equations (2) become

dat 0K dp!’ 0K

)

- — 9
dr  9piy’ dr 0zip 9)

In 1989 Horwitz and Arshansky [3] demonstrated the existence of bound state solutions for
the quantum case by solving the dynamical equation (6) associated with the dynamical evolution
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Figure 1. RMS

operator (8). The two-body potential function, which they chose for Poincaré invariance was of

the form V(p), where z§f — 2% is spacelike,

p= \/(x‘f — @) (@1 — 224) = /(21 — 32)? (10)
Instead of the more widely used decomposition of Minkowski space into the timelike and full
spacelike regions, they used the decomposition of the spacelike region into two subregions
[invariant under an O(2,1) subgroup of O(3,1)].(see Fig.1) One of these (called the RMS -
Reduced Minkowski Space) sectors (I) consists of the space-time points external (in spacelike
directions) to two hyperplanes tanget to the light cone that are oriented along the z axis (the
direction must be chosen to define this space). The second (II) consists of the space-time points
in the sector interior (timelike direction) to these hyperplanes, but excluding the light cone. In
the figure 1, this composition is shown schematically by folding the two space axes x,y together

(defining the coordinate x,); in the resulting three-dimensional space, the two hyperplanes
become planes and intersect along the z axis.

where

2 = psinfsinh B z' = psinfcospcoshf  x? = psinfsinpsinh B 2® = pcosd  (11)
This procedure resulted in the correct (Schrodinger) spectrum for the bound state. When
they applied the method of treating the relativistic quantum two body problem to the case of

the four dimensional Harmonic Oscillator so that the reduced Hamiltonian is

5 = Pul”
2m

1 1 1
—i—§kxuaz“ = —%8ﬂ8“+§mw2p2
L R SO (12)
=—[-—-—-——-——=—+5]+=-mw
2m' 0p%2 pOp p* 2 P

They obtained the complete set of eigenvectors which span the RMS, represented by the 7
independent wave functions!

! Cook [4] solved this problem with full spacelike support for the wavefunction and obtained an incorrect spectrum.

Note than Zmuidzinas [5] first showed that there is no complete set of orthogonal functions in the full spacelike
region,and constructed the RMS
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Vmning (6, 8,0, p) = %ei(m+1/2)¢ /T +m+n)/T(1+m—n)

(1 = tanh® §) 1 B," (tanh §) - (1 — cos? 0) 1 (13)

1 2 w2 2
.Pln(cose)_(%)l/Qe_ 27Lp Li{zl/Q(%)

The idea of the geometric phase proposed by Berry [6] in 1984 asserts that under adiabatic
processes the wave function of a system picks up a phase factor that can be found in the
nonrelativistic case by the integral

(t) = i /O < on(®) | 31/’5;’5/) > dt (14)

where 1, is the nth eigenvector of the evolving Hamiltonian and ¢ is the time between final and
initial state of the time dependent parameters of the Hamiltonian (i.e. the evolution time). To
construct a manifestly covariant form of (14), we have to replace the variable ¢ by the variable
7 which is the evolution time according to SHP quantum mechanics. Suppose there are N 7
dependent parameters: R;(7), Ro(7),.....RN(7) in the Hamiltonian of a given problem then

Oy O dRy Oy, dR O, dR dR
Un _ O ! v 2 b id NZ(VR n) * o (15)
or ORy, dr ORy dr ORN dt dr
where
R=(Ry,Ry,.... Ry) (16)
is the gradient with respect to these parameters. We then have
Ry _
) =i [ < |V > R (1)
R;

Now, if the Hamiltonian returns to its original form after a time 7 = T, then the geometric
phase is

WD) =i < | Vi > dF (18)

We wish to demonstrate the realization of the manifestly covariant Berry phase in the example of
the four dimensional oscillator. For that propose we add a perturbation to the Hamiltonian (12)
which breaks the hyperangular symmetry of this Hamiltonian. Since the complex valued matrix
elements necessary to develop a dynamical phase arise in the example from the ¢ dependance,
one must perturb the azimuthal symmetry with a fractional coefficient, as we shall see below.
1 { 0? 36+A L
C2ml o 0p2 pOp  p? 2 P

+2 <€1p2 sin? @ cos®((2/3)¢) cosh? S+ (19)

+ £9p? sin” O sin?((2/3)¢) cosh? B+

+ e3p° cos? § — gop? sin® f sinh? ﬁ)
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where g, 1, 9,3 are small parameters of the perturbation.
Now using degenerate time independent perturbation theory, we calculate the first order correc-
tion to the wave function (13).

The new wave function produced by the Hamiltonian (19) is equal to a linear combination
of the wave function (13) and the first order correction to this wave function which is given by

Z < q)m’n’l’n{l ’ V ‘ (I)mnlna >

wmnlna - K, — K/ (I)m/n’l’nil (20)
a

/ sy
m/n'l'n!, #mning

where V is the perturbation given in (19), K, is the eigenvalue of the unperturbed Hamiltonian
(12), and @,y is & linear combination of the 9,,/n/m, due to the degeneracy of the energy
eigenvalues

) (21)

Ka:hw(l+2na+2

Now suppose ¢y and €3 are equal to zero so Eq.(20) will be

< @iy | p?sin? 0 cos?((2/3)¢) cosh? B | Rrnnin, >

¢mnlna — Z l — ll + 2(n — n/ ) (bm/n/l/n{l

m/n/l/nfﬁémnlna “ (22)
4 v S, | o7 sin® 5in’((2/3)6) cosh® B | yunin, >
€9 7 m/n/l'nl,
m/n'l'n!,Zmning i Q(na )
or

n ' " 23
Yrnin, = E1Y + 21 (23)

The calculation of ¢’ and +” will done numerically by letting each of the indices
(m,n,l,ng,m',n';I',n)) run from 2 to 5 and competing the ratios in (22) for each permutation
of these indices. In this way the matrix of the perturbation will have an order 256x256 and each
of the eigenvectors, ¥, n/rny , and the first order correction will be 256x1 column vector. The
degeneracy is 16 fold beside the fact that we have additional degeneracy due to the linearity
of the energy values in n and [ (so the difference in eigenvalues can be zero even if | # I’ and
ne 7 n,, which requires a more complete treatment, now in preparation [7]) and the corrected
wave function will be

= T;Z)mnlna + wmnln = ¢mnlna + 61¢/ + 62¢H (24)

Eq. (24) can be written as

¢ = ¢mnlna +e E Cmm/ Amm’nn’ll’nan{l (I)m’n’l’n{l +e2 E - Bmm’nn’ll’nan{l q)m’n’l’n;
m/n’l'n), m/n'l'n!,

(25)

where Apmimnitiingn, a0d Byminn/iiiman:, are the factors of the perturbation matrix elements
which results from integration on 3, p and 6 divided by the energy differences (and hence are
real) and the factors ¢,y and d,,, are given by

(26)

2 ,
P /0 =9 052 ((2/3)6)dg = S —
9
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V3 / 2 2
2 2i(m —m/ + —==) + £
s = / &M =m)6 2 (2/3)$)d = 33/ 13 (27)
0 5 — (m/ —m)?

substitute (25) in Eq. (18) where R = (e1,e2) and expressing €1 and &5 in polar coordinates,
then taking the line integral over the unit circle, we get

Yning (T) = im(< ' | " > — <" | >) =in - 2iIm[< ' | " >] =

= _27TIm[ Z Cmm’Amm’nn’ll’nanfld;m/Bmm’nn’ll’nan;] (28)
m/n'l'n!,
We now substitute (26) and (27) into (28) and obtain
A / / 2
Ymning (T) =3m /Z / mm’nn/ll/nangBmm’nn/ll/nang (m -m— ﬁ) (29)
m/n'l'nl,
Which is the geometric phase due to the perturbation on the eigenvector (13) where
/ Amm’nn’ll’nang . / Bmm’nn/ll/nang
mm/nn/ll'ngn!, — mv mm/nn/l'ngn!, = m (30)

We have shown in this note that a nontrivial Berry phase can be associated with a perturbed
relativistically covariant oscillator. The fractional breaking of the azimuthal symmetry was
necessary to achieve this, and makes explicit, in this example, the association of the Berry phase
with topological properties of the system (as in the Aharonov-Bohm effect [8], [9]). We remark
that the Berry phase computed on this way is covariant, since the RMS coordinates in every
Lorentz frame are isomorphic [10].
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