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Abstract. In our article we consider charmed hypernuclei states having the number of baryons
B=4 and containing two A, hyperons. To do this we use the technique of the dispersion
relations. We obtain the relativistic equations which describe these states. The relativistic
amplitudes for 12-quark states, including the constituent quarks of three flavors u, d, ¢ are
considered. We find the approximate solutions of these equations and take into account main
singularities of the amplitudes. We calculate masses and binding energies of the hypernuclei
states 5 a*He, 5 atH.

1. Introduction
Hadron spectroscopy is very important for studying the dynamics of strong interactions. The heavy
hadrons containing charm or bottom quarks are particularly interesting.

In 1977, Jaffe studied three types of baryon-baryon bound states. These are deuteron-like states,
AA-like states, and QQ-like states. There are theoretical and experimental investigations of these states.

At present, the low-energy region cannot be consistently studied within the framework of QCD,
which explains well the processes of hard interaction of quarks and gluons. Therefore, it becomes
necessary to use various phenomenological models in elementary particle physics and nuclear physics.
The most widely used are potential nonrelativistic models, QCD sum rules, and QCD Ilattice models
[1,2].

Various states of hypernuclei are of particular interest to researchers. There are many research
papers on this topic [3, 4, 5,6,7,8,9, 10, 11, 12].

In [13, 14, 15, 16] authors describe the method developed for working with relativistic multi-
particle states. The physics of the such system can be described using a pair interaction between the
particles. The authors use the S-matrix approach. Within the S-matrix approach, the following
principles are used: analyticity, two-particle unitarity, relativistic invariance, and crossing symmetry.
Taking into account the pair interaction of quarks and antiquarks, a relativistic generalization of the
Faddeev-Yakubovsky equations was obtained. The approximate solution of these equations is based
on the method of separating the main singularities of the scattering amplitudes. The amplitudes of pair
interactions were previously obtained in the bootstrap quark model by the iteration method.

In the papers [14, 15] we calculated the masses of charm baryonia with one and two ¢ quarks, and
the masses of bottom baryonia with one » quark. Unitarity and analyticity are used in order to derive
system of integral equations. The multiquark equations are derived using the framework of coupled
channel formalism.
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Heavy dibaryons and baryoniums can be produced at the LHC hadron collider. Experimental
research to find heavy dibaryons is the main focus of the GSI, J-PARC, PANDA and Belle
collaborations.

In previous work [16], the 3He nucleus was considered as a quark-gluon interaction in the
relativistic quark model. Relativistic 9-quark equations are constructed within the framework of the
dispersion approach taking into account u, d - quarks. An approximate solution of these equations,
using the separation of the main amplitude singularities, allows one to determine the poles of the 9-
quark amplitudes and the mass of the 3He nucleus.

In the present paper we consider charmed hypernuclei 4 x*He, _o*H, with the atomic (baryon)
number 4=B=4. We derive relativistic twelve-quark equations.

The poles of the multiquark amplitudes determine the masses of charmed hypernuclei with the
A=4.

2. Twelve-Quark Amplitudes of the Charmed Hypernuclei
We obtain generalization of the relativistic Faddeev equations for 12-quarks hypernuclei in the
dispersion relations technique.

We derive the relativistic 12-quark equations taking into consideration all possible subamplitudes.
Then we represent a twelve-particle amplitude as the sum of the following subamplitudes:
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Here i, j, k, [ are quantum numbers of corresponding diquarks. The subamplitudes A} determine the

diquark and 10 quarks. The subamplitudes A;j define the two diquarks and 8 quarks. The
ijkl
4

subamplitudes Ai3j k correspond to the three diquarks and 6 quarks. The subamplitudes A, are the

four-baryon state. We neglect some subamplitudes which represent the smaller contributions.

Table 1. The vertex functions and coefficients of Chew-Mandelstam functions.
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The total amplitude can be shown graphically as a sum of diagrams. In the Fig. 1 the graphical
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equation for the reduced amplitude a; for the state ACA‘iHe ppA:A, with the isospin
projection I3 = 1 and the spin-parity J® = 0% is represented.
For interaction of two quarks we have amplitude:
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Here, s;;, is the two-particle subenergy squared, G, (s;;) are the quark-quark vertex functions, and
By, (s;) are the Chew-Mandelstam functions:
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Figure 1. The graphical equation for the reduced amplitude aj 1 ° © for the state , ,*He
ctic

ppA A, with the isospin projection I3 = 1 and the spin-parity J° = 0% (Table 2).
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B, (six) and p,(si) are the Chew-Mandelstam functions with cutoff A and the following phase
spaces:

pn(sik) = (a Sk + B, + 6, M) \/(1 — M) (1 _ (mi_mk)2> 4)

n
(mi+my)? Sik Sik Sik

The coefficients «,,, 8, and &,, can be found in the Table 1. We use n=1 for the gg-pairs with J¥ =
0%, and n=2 for the gq pairs with J* = 1%,

We consider only main singularities of our amplitudes, located near the region s;; ~ 4m?. We
search for an approximate solution of equations, taking into account a definite number of leading
singularities and neglecting the weaker ones.

In the case of the twelve-quark problem we take into account 3-th, 4-th, 5-th, 6-th particles
singularities in the integrals and neglect weaker ones. The largest contribution to the twelve-quark
amplitudes coming from the triangle singularities is given. We extract singularities in the coupled
equations and obtain the reduced amplitudes «;.

Let us consider the state ACA‘iHe ppA A, with the isospin projection I3 = 1 and the spin-parity

JP = 0. This state is described by 47 equations for 47 amplitudes:
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Here, for example, 1** means diquark with spin 1 consisting of two u-quarks. 0%¢ means diquark
with spin 0 consisting of one u-quark and one ¢ quark. The @; are determined by the diquarks, and the
a, includes the two diquarks and eight quarks. The a3 defines the three diquarks and six quarks. The
a, allows us to consider the 5 A‘iH e ppA A, state.
The similar amplitudes are obtained for the 5_ A‘;H pni A, state.

The coefficients of the coupled equations can be calculated by counting the number of quark
permutations.
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There are 57 different diagrams in the case of the twelve-particle , A‘zH e state, but we only used

the contributions of the 25 functions. The other functions I; are small. These functions are integral
functions, the explicit form of which is given in our previous works.

uu 1uu0uc0uc

As an example we write down the equation for amplitude a for the 5 A‘;H e state:
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3. Calculation results

In our paper we study hypernuclear states including light u, d quarks and two heavy ¢ quarks. These
are the hyperhelium state ,_ A‘;H e and the hyperhydrogen state » AtH .

We consider the hyperhelium state , AtH e as the bound state of two protons and two A. hyperons,
and the hyperhydrogen state , A‘;H as the bound state of proton, neutron, and two A, hyperons.

We derive the relativistic integral equations for the amplitudes that describe these states
and then obtain equations on reduced amplitudes. The system of relativistic equations for the
hyperhelium state ACA‘C‘He consists of 47 equations, the system of relativistic equations for the
hyperhydrogen state ,_ A‘iH consists of 63 equations.

The mass and binding energy of state 5_ A‘iH e with the isospin projection I3 = 1 and the spin-parity
JP = 0% are equal to M=6448 MeV and 6 MeV, respectively.

The mass and binding energy of state 5_ A‘iH with the isospin projection I3 = 0 and the spin-parities

JP = 07,17 are equal to M=6428 MeV and 26 MeV, respectively.
These states are presented in the Table 2.
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Table 2. Masses and binding energies of hypernuclei. Parameters of model: A = 6.162, g = 0.2122,
m = 495 MeV/, m, = 1655 MeV.

Hypernuclei Quark content Q I; | JP Masses, MeV  Binding
energies, MeV
+
antHe(PPAA,) 332 uud udc 4 1 1 0 64438 6
+ 1+
antH@nACA,) 332 udd udc 3 0 0,1 0%,1% 6428 26

4. Conclusions
In our paper we obtain two bound states of hypernuclei 4 _ A‘iH eand 5 A‘iH . We calculate masses and
binding energies of the states. Experimenters can use our predictions in experiments carried out at the
collider to search for new particles. The experimental masses of charmed hypernuclei with the 4=4 are
absent.

It would also be interesting to consider other states of hypernuclei containing different numbers of
heavy c-quarks, as well as states of hypernuclei containing heavy bottom quarks.
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