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Abstract The Bekenstein’s theorem allows us to generate
an Einstein-conformal scalar solution from a single Einstein-
ordinary scalar solution. In this article, we extend this the-
orem to the Einstein—-Maxwell-scalar (EMS) theory with a
non-minimal coupling between the scalar and Maxwell field
when a scalar potential is also included. As applications of
this extended theorem, the well-known static dilaton solution
and rotating solution with a specific coupling between dila-
ton and Maxwell field are considered, and new conformal
dilaton black hole solutions are found. The Noether charges,
such as mass, electric charge, and angular momentum, are
compared between the old and new black hole solutions con-
nected by conformal transformations, and they are found con-
formally invariant. We speculate that the theorem may be
useful in the computations of metric perturbations and spon-
taneous scalarization of black holes in the Einstein-Maxwell-
conformal-scalar theory since they can be mapped to the cor-
responding EMS theories, which have been investigated in
detail.

1 Introduction

As is known to all, it is very difficult to find exact solu-
tions to Einstein’s equations in General Relativity, let alone
the exact solutions to Einstein’s equations with a conformal
scalar stress-energy. In 1974, Bekenstein [1] tried to deal with
the conformally invariant scalar equation:

Ryr

VAV, — - = 0, (D

which is the equation of motion for the scalar field in the spe-
cific Einstein—-Maxwell-conformally coupled scalar (EMcS)
theory:
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1
S=—

R
= 1 d*x/~=g <R — Fy FW — g‘”z — (v¢)2> .

@)

R represents the Ricci scalar and F),, represents the Maxwell
field by convention. We follow the convention that the Greek
indices take values 0O,..., 3 and Latin indices take values
1,...,3. Using conformal transformations, Bekenstein pre-
sented a theorem by means of which one can generate the
solution to the theory above from a solution of the Einstein—
Maxwell-ordinary scalar theory, wherein the scalar field is
minimally coupled to the Maxwell invariant, i.e:

1
S=_—

_ 4 — _ v 2
= — [ dxv=g (R FuF' — (V) ) 3)

The solution to the specific EMcS theory recovered the
famous Bocharova-Bronnikov—Melnikov—Bekenstein
(BBMB) black hole solution [2]. The BBMB solution is the
first counter-example to the no-hair theorems (see e.g. Ref.
[3,4] for reviews), although it’s much debated: the scalar field
diverges at the horizon, even though the geometry is reg-
ular therein. Furthermore, several criticisms of the BBMB
solution have been leveled at the properties of the energy-
momentum tensor at the horizon [5].

From then, black solutions with non-trivial scalar fields
have been constructed by dropping the assumption that the
canonical scalar fields are minimally coupled to Einstein’s
gravity, which is called scalar-tensor theories of gravity,
including Brans—Dicke theory [6], the Horndeski theory [7],
the Galileon theory [8] and the generalized Galileon the-
ory [9] (one can refer to [10-12] for explicit examples).
Then over two decades ago, in the context of scalar-tensor
theories, a phenomenon called spontaneous scalarization of
neutron stars has aroused much interest [13] . For neu-
tron star geometries, the non-vanishing trace of the energy-
momentum tensor can source a scalar halo around the star,
i.e., to scalarize. This phenomenon has now been stud-
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ied in a new form, dubbed geometric spontaneous scalar-
ization. It is found that, in gravitational models where a
real scalar field non-minimally couples to the Gauss-Bonnet
invariant or its square [14-16], and under certain choices
of the coupling function, both the standard (bald) vac-
uum solutions of General Relativity and new “hairy” black
hole (BH) solutions with a scalar field profile are possible.
Thus, it circumvents the black hole no-hair theorem. For
some range of mass, a Schwarzschild BH becomes unsta-
ble and transfers some of its energy to a “cloud” of scalar
particles around it. This spontaneous scalarization is trig-
gered by the strong spacetime curvature, which induces
non-linear curvature terms in the evolution equations. As
a result, the computations are intensive and complicated
[17,18].

However, the spontaneous scalarization with dynamical
process could be confirmed in a cousin model — Einstein—
Maxwell-scalar (EMS) theory [19-21]:

1

S -

= oo d*x =g (R — 20,00 ¢ — K@) Fuw F*Y).  (4)

In this class of models, there is no coupling between the
scalar field and the curvature, but a non-minimal coupling
between the scalar and the electromagnetic field is present.
For certain values of the coupling function , the conventional
electrovacuum (scalar-free) Reissner—Nordstrom (RN) BH
solves the equations of motion in EMS models, as does a
novel class of BHs that allow for a non-trivial scalarfield
configuration (scalar-hair). When the charge-mass ratio of
the RN BH is sufficiently high, the RN BH becomes unsta-
ble to scalar perturbations, and the formation of these hairy
BHs is hypothesized to represent the endpoint of the insta-
bility [22-24]. This technically simpler model facilitated
the investigation of the domain of solutions’ existence, par-
ticularly outside the spherical sector, as well as the per-
formance of completely non-linear dynamical evolutions
[19].

While comparing the difference between Eqs. (3) and (4),
it’s natural for one to consider whether the Bekenstein’s
theorem can be extended from (3) to (4), thus consider-
ing the general non-minimal coupling between the scalar
field and the Maxwell field. Since so many solutions to
EMS theories with various chosen couplings have been con-
structed and studied as shown above, then it’s interesting to
foresee that under conformal transformations, they should
also circumvent the no-hair theorem as the BBMB solu-
tion did, and overcome the defects of the BBMB solu-
tion (we will apply the extended theorem to the Einstein—
Maxwell-dilaton theory to illustrate this ). It’s easy for one
to preliminarily think that applying the conformal trans-
formation to the metric solutions of Eq. (4) will gener-
ate solutions of EMcS theories with general non-minimal
couplings between the scalar field and Maxwell field. For

@ Springer

example, one can refer to Zou and Myung [25,26] for the
investigation of a EMcS theory with a non-minimal cou-

pling:
SEMes = L d*xJ=g [R - (1 + a¢>2> Fpy MY
167
%)
1 2

- (¢ R+ 63,@3%)]
where the coupling between the scalar field and the Maxwell
field is 1 + a¢?. They have obtained infinite branches of
scalarized charged black holes through scalarization in the
EMcS theory. These are regarded as charged black holes
with scalar hair because they all have a primary scalar
which takes a finite value on the horizon. They also con-
sider the radial perturbation of the scalarized black hole
in this theory. Indeed, the perturbation of general EMcS
theories can revert to the perturbation of corresponding
EMS theories by the theorem we will introduce in this
paper.

In this paper, we will not be content with extending Beken-
stein’s theorem to action (4), we will also include the case of
scalar potential, i.e., considering the following action:

1

S -

4
= e d*x/=g (R —20,¢0"¢

—K(p)Fuw F*" = V(9)). (6)

For example, One can refer to [27-29] to study spontaneous
scalarization of asymptotically anti-de Sitter charged black
holes in various EMS theories with different K (¢), where
we can all set V(¢) = 2, or refer to ( [24,30]) for scalar-
ized charged black holes with scalar mass term, where we
can set V(¢) = 2mé¢2. The paper is organized as follows.
In Sect. 2, we exhibit two actions where the the metric is
conformal to the other, and explore how the solutions of the
matter fields between these two actions are connected. The
strict proof of the theorem is provided in this section. In
Sect. 3, we focus on the Einstein-Maxwell-dilaton theory
[31] as an example to interpret the theorem. The conformal
solution and corresponding thermodynamics are derived. In
Sect. 4, we concentrate on the rotating dilaton solution for
a specific coupling between the scalar and Maxwell fields,
which is first achieved by the Kaluza—Klein black hole solu-
tion [32]. Thanks to this extended theorem, the conformal
rotating dilaton solution can be achieved straightforwardly.
We investigate the first law of thermodynamics and find that
all the quantities are unchanged under conformal transforma-
tion. In Sect. 5, inspired by the investigation of the dilaton
theory, we prove that for the general EMS theory, all the
physical quantities in the first law of thermodynamics are
conformally invariant provided that the spacetime is asymp-
totically flat and the scalar field asymptotically vanishes at
infinity. In Sect. 6, we give the conclusion and discussion.
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2 Extend Bekenstein’s theorem

Since we need to compare the solutions of two different
actions repetitiously, we first need to list the two actions.
Let us rewrite the Eq. (6),

1

S| = o d*x/=g[R —2V,9V" ¢

—Ki(®)Fuu F*™ — Vi(9)]. @)

Variation of S; with respect to g, gives

Guv (8uv) = 2 {Suv [8uvs &] + T

[gv: K1(9). Vi(®), Fuv]}. ®)

where
1 B
S/w [gp.v, ¢] = _Eguvg ¢,a¢,ﬁ + ¢,M¢,v: )
and
Ty [gll.Uv K1(¢), Vi(¢), F;w] = K1(¢)
, F? 1
X\ Fuy Fv' — Tg;w - Zg,uvvl (@). (10

On the other hand, the Einstein equations for EMcS theories
with general couplings can be derived from the action

1 PO R
Sy =— [ d*/=g | R—=2V,yViy — —y?
167 3 (11

—Ka(Y) Eypy FHY — v2<w)] ,

and they read
G (guv) =2 [(”)lw [glm W]
FTn [ K20, V20, Fra ||

1 L) 12
X<_§1//) ) ()

where
O [ ¥] = Sun [ ¥] = 29900
+égmﬁ"‘w2, (13)
Sy (8o, V] = T+ (14)

2
T [ 8 Ko ), V20, | = Ka()

B 1
X (F/Lvay - Tg/w) - Zguvv2(¢)~ (15)
Here, we denote the quantities in the action Sy with a tilde
except those concerning the scalar field — a symbol sys-
tem similar to what was in Bekenstein’s original work. The
comma derivative is just a convenient notation for a partial

derivative with respect to one of the coordinates. It should be
noted that the equation for the scalar field corresponding to
&>, which reads

WR_dKs()) 2 dVa() _

3 dy dy
isn’tconformally invariant after considering the non-minimal
coupling between the Maxwell field and the scalar field.
However, the name “conformally coupled” remains in the
action due to the inclusion of

/ d*xy/—g (gx/ﬂ + (WV) ,

as it’s the fundamental character of gravity admitting confor-
mally scalar equation, and this convention can also be found
in [25,26]. We now exhibit the theorem that connects the two
action S1 and S».

4V, Vi —

0, (16)

Theorem If g,,, ¢, F},, form a solution of Einstein’s equa-
tions described by action Sy, then g, = Q_zg,w, v o=
/3 tanh % and I:“,w = F with Q! = cosh % form a
solution to the EMcS theory described by action Sy pro-

vided that Kr(y) = Kj («/§tanh %) = Ki(¢) , and

2
2i9) = (1- %) Vi/3uanh™! L) = Vo).

Proof Under the conformal transformation

guv = L&y, (17)
the Einstein tensor transforms as
G/w [g,uv] = le [guv] - 69_2®;w [g/uh Q] . (18)

According to the definition of Eq. (10), and assuming F wy =
F,., we have

Tuv [8uvs K1(), Vi(9), Fun] = @ 2100
|2 K19), 2*Vi(9). | (19)

It follows then from Eq. (9)

i 0\ . -
S/w [gu.v, ¢] = S,u.v [g/wv ¢] = <w) S;Lv [guv» lﬁ] .
(20)
If we let €2 satisfies
Q2=1- %wz, 1)

and regard ¥ as some unspecified function of ¢, then Eq. (18)
reduces to

Guv [gw] =2 { [(g:;)z - (1 - '/’32)2 ‘ﬂ Spv [8uv W]

1. -~ Ty~ ~
+Q72 [—gvuvuxpz + g‘%vyvywz
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1[G K1 (@), V19, o || } . @)

in view of Egs. (19) and (20).
Let us make the following assumptions:
1. v satisfies

2 2\ 2
() -==(-5)"

which can be solved by

= +/3tanh i or = +/3tanh™! l (24)
v VIR NG
and thus the conformal factor is
1 1
92=1—§w2=1—tanh21= (25)

2 6
V3 cosh 7
2. The couplings in S; and S; satisfy the following relations:

K2(¥) = Ko (ﬁ tanh %) = K1(9),
26)

QVi(¢) = vy Vtanh! L) =
1(¢) = 1—? Vi | V3 tanh NG = V().

. 39 \?
Then one finds that in Eq. (22), the term (W)

2\—2 2 -
— (1 — ‘%) ‘/’T:| = é, and the term 7,y [Zv, K1(),

VL), Fur | = T [ v K2 ), Va), Fiy ] and thus
the Eq. (22) will reduce to Eq. (12), which is exactly the
Einstein equation for EMcS theory described by action S.

Now let’s make an examination of whether the new solu-
tion is consistent with all the equations of motion. The equa-
tions of motion for the Maxwell field is

u[V—gKi@F"]=0. (27)

It’s not hard to verify that the quantity in the square bracket
remains unchanged under conformal translations. So we have

on [V=gKa(0) F*] =0, (28)

which is the equation of motion for Maxwell field in action
S.

The last step is to check the scalar field equations in S
and S, which read

dK\(@) o dVi@) _

Mgy
4V,LV ¢ o o 0, (29)
and
4€M§MW N 21ﬁR B dK2(¢) Fz . dV2(¢) —0. (30)
3 dyr dyr

What we are going to verify is that, basing on the equations
of motion which have been previously proved together with
the scalar field equation (29), the Eq. (30) is automatically

@ Springer

satisfied. Indeed, the trace of Einstein equation (12) gives
—RQ? =2y V, VHy — 2V, (). Hence the left hand of side
for Eq. (30) turns out to be

.. 29 [2¢V, VH 4y V.
Wﬂ“w%’( A7 vf) _ V)
_AdKY) zr _ dVa(¥)
dy dy
2
=49, 90 (14 305 ) - e (1)
_dKW) 2o dVa(¥)
dy dvy
_ ANV 4 na) dKW) s dVa)
Q2 3Q2 dy dy -

On the other hand, we have
1
Vi VEp = —— (V=28 ¢.a) .
w = ( 06) B
1
- J—zshe )
Y ( 88" V. ) op

! ¢ ViZ
= @VMV v (32)

and

dK\(@) o _ dKa(Y) dy P2 dK>(y) F?
do Tody de QT dy QY
dvi9) _ d(Q7Va() dy _ d (7o)

= Q?
A av A dy
_o2dV2(y) Ay Va(y)
== BoTant (33)

Substituting Egs. (32) and (33) into Eq. (29), we obtain

W VY A Va)  dKa() my  dVa()

07
Q2 302 dy dy

(34)

which is exactly the last line of Eq. (31). Therefore, Eq. (30)
is satisfied. O

We note that in the case of K{(¢) = 1 and Vi(¢) = O,
the theorem above reduces to Bekenstein’s theorem. In the
next two sections, as applications of our theorem, we shall
take the static dilaton black hole solution and the rotating
dilation black hole solution as seed solutions to generate two
new solutions. As is known to all, it is usually very hard to
obtain a rotating black hole solution in General Relativity.
However, by using this theorem, one can straightforwardly
get a rotating black hole solution in the conformal dilaton
theory via conformal transformations.
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3 Generating new static dilaton black hole solution

The action of the Einstein-Maxwell-dilaton theory is given
by
1

S -

- d*xy—g [R —2(V$)? — e—2°‘¢’F2] . (35
167

Now we apply our theorem to this theory which has K1 (¢) =
e~2%% and Vy(¢) = 0. The corresponding spherically sym-
metric black hole solution takes the form [31]

2 2,2 dr? 2162
ds® = 221" + —5 + RMd, (36)
2a
(e L 37
with
1*&2
(=) (- 5)
r r ’
a2
R=r(1-2)"
r 9
dQ3 = d6? + sin(0)*d¢>. (38)

The physical mass M, charge Q are related to r_ and r4
as follows

2 l
ry I —a\ r- ryar— \?2
M=— — | =, =—) . 39
2 +<l+a2> 2 Q (1+a2) 39)
According to the theorem, the scalar field ¢ in corresponding
Sy is
, 20 5
1 — =) V3a+e?) —
wz«/?tanhizx/g( ) o
V3 (1- =) 0sd 41

, (40)

while the Maxwell field remains unchanged. It is simple to

recognize that v takes a limit value at the horizon r = r4

from the Eq. (40). A more general conclusion could be drawn

from Eq. (24), which shows that ¥ takes a limit value as long

as ¢ does. And for the dilaton solution, Eq. (37) shows that

the scalar field ¢ does take a limit value at the horizonr = r.
We have the corresponding coupling

—3a
wa>=e2m@mh%w%»:<3+vgw> ,

33y
Va(yr) =0, 41)
and the conformal factor
2
2-1-
3
2
2
= . (42)

(1= ) )y (1 — 22) FC0)

Itis straightforward to prove that 2 approaches unit one when
r approaches 4-o00. The black hole solution corresponding to
S is then

ds* = 1 —2%d* + ﬁ + R2d3 (43)
T2 22 2):

Since we have 2 — 1 in the spacial infinity, the spacetime
is also asymptotically flat.

Now we turn to the thermodynamics of the old (Eq. (36))
and new black hole (Eq. (43)) solutions, which are connected
by conformal transformation. The energy can be calculated
for the new black hole by the Komar Mass. If one denotes the
timelike vector by k, which is normalized at spatial infinity,
the Komar mass is then given by

1

Mg = ——

VHEY dS),,. 44
57 b, v (44)

The integration is performed on a closed 2-surface . in %;.
Here X; provides a 3 4 1 foliation (X;);cr of the spacetime.
The line element of the surface .%; is

dS. = (sunv - nﬂsv) V4 d2y, (45)

where n is the unit timelike vector normal to %, s is the unit
vector normal to .} within X; which is oriented towards the
exterior of .%;. y* = (y!, y?) are coordinates spanning .%;. ¢
isdefined as ¢ := det (q4p) and g, are the components of the
metric induced by g on .%;. In order to calculate the Komar
mass (and the angular momentum in the next sections), we
closely follow the detailed procedures given by Gourgloul-
hon [33]. The timelike vector 9, = k of the spacetime can be
decomposed using the lapse vector Nr and shift vector 8

k= Nn+8B. (46)

Then the Komar mass (44) takes the form

Mg = — (siDiN - K,-,-s"ﬁf) V7 d%y. 47)
dm Jo
K;; the extrinsic curvature tensor of X, and D; is the covari-
ant derivative operator which is compatible with the induced
metric on ¥;. The components in the integrand can be easily
expressed with the metric g,, according to [33]. The shift
vector B¢ = —g% /g% vanishes for a static spacetime. Thus,
only the first term in the integrand makes a contribution to

the integration. The unit vector s’ normal to . is

s = (V1/g11.0.0), (48)
and N = /—1/¢%, /g = \/822833. To calculate the Komar

mass M for the corresponding &>, we should replace the
metric in the integrand with g,,,. Therefore, we obtain

s'=VQ2 2~ 14 0(1/r), (49)

@ Springer
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- A2 ry 1 —a?
0N =05~ 15+ 1a2 —\/rr+ 01/,
(50)
VG = R*/Q%sin0 ~ r’sin + O(r). 51)
The Komar mass is
~ 1 T4 1—a?\ r_
M=— — — | sinfdOd
4 [2+(1+a2 2}8"1 ¢
ry 1—a?\ r_
= — =M, 52
2 +<1+a2> 2 52)

namely the mass is invariant.

Let us turn to the other physical quantities corresponding
to S in this case. The electric potential ® conjugated to Q
is given by ® = Ap(r4) = % The temperature T is

I —0d-800 L 5,
= ——1, = —Q)
47 \/—go0g11 4
1-¢?
(1 —r_/ry)i+e?
= Tﬁ (53)
Jr

Temperature’s conjugate variable can be regraded as the Wald
entropy [34,35]. Given the Lagrangian density £, the Wald
entropy is

5L
S =2n / — T €€up/qd 3, (54)
S Rp.vaﬁ

where €"" is the binormal vector to the bifurcation surface
4, q is the determinant of induced metric on .#;. The varia-
tion of the action with respect to R, is to be carried out by
regarding the Riemann tensor R, 4 as formally independent
on the metric g,,,. In the static spacetime, .#; has two normal
directions along r and ¢. We can construct an antisymmetric
2-tensor €, along these directions so that €,; = ¢, = —1.
For the action S| we only need to concentrate on the scalar
curvature

= T Ruvans™8"".
oL Ll
DR~ Tom 2 88"~ 8", 3)

Then the Wald entropy yields

1 1
S=3 / 3 (88" — " 8"’ (cuveap) V7d3
1

2

2a
A _\ 1+4a?
ﬂdo2=TH=ri(l—r—)” . (6)
57

r+

which is equal to the Bekenstein-Hawking entropy [36] as
expected. Armed with these expressions, one can construct
the first law of thermodynamics and the Smarr formula

dM = TdS + ®dQ, M =2TS+ ®Q. (57)

@ Springer

Now let us discuss the thermodynamic quantities of the
conformal version S;. The temperature of the black hole (43)

e@)r

- 1
T = — [ p—
4 32 e 47 %
Q2 Q22
1 2N/
= E(X Y, =T. (58)

The penultimate equation holds because A2 |, + = 0.Thus, the
temperature remains unchanged after the conformal transfor-
mation. In the calculation of the corresponding Wald entropy
in Sy, one need only consider the term 11/6’ /3 Ryvapg"® g,
Compared to Eq. (55), there is only one more factor: 1—2 /3.

Therefore, the Wald entropy S in the corresponding S; is

T+a?
_ 2 (1 - ’_—) s, (59)

Namely, the Wald entropy remains unchanged. We should
emphasize that the entropy here is not the Bekenstein—
Hawking entropy A H /4, but the Wald entropy Q2Ay /4 (or

equivalently, (1 — T)A g /4). Itis only the Wald entropy that
plays the role of the Noether charge that can be applied in the
first law of thermodynamics. For more instances of theories
involving a conformally coupled scalar field, one can refer
to [37,38].

Since the Faraday tensor is invariant as requested by the
theorem F, w = Fu, we have A u = Ay. Therefore, the
conjugate variable to charge 0,ie., ® = AO (r4+) isequal to
® = Ap(ry). The electric charge Q is determined by

0

_4i / Kx(Y)*FdQ3 (60)
™)

where * F denotes the dual form of Faraday tensor. Note that
0=-4 [y, Ki (¢)*Fd23 and K1 (¢) = K2(), thus, we
have O = Q.

In conclusion, both the old and new black holes have iden-
tical thermodynamics Concretely, they have the same Komar
masses M = M, electric charges 0 = 0, electric potentials
® = @, temperature T = T and Wald entropy S = § (but
different Bekenstein—-Hawking entropy).We underline that,
while having identical physical quantities in the first rule of
thermodynamics, dM = TdS + ®d Q , they are fundamen-
tally distinct spacetimes.
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4 Generating new rotating dilaton black hole

A rotating dilaton black hole solution with a special coupling
constant @ = +/3 is found by Frolov et al. [32]. For this value
of «, the action is simply the Kaluza—Klein action, which
is obtained by dimensionally reduction of five dimensional
vacuum Einstein action. Applying our theorem, we can derive
a new rotating black hole solution.

The metric for a rotating dilaton black hole with @ = v/3
is given by [31].

1-27 2aZ sin’ 0
dSz - _ dt2 — dtd
B BA/1 =2 Y
> 2 2
+B—dr°+ BXdo
Ag
Z
+ |:B <r2 + az) + a? sin? 9§i| sin® 0d¢?, (61)
where
B= [1+-22 UZZ 7=
1— oz

) (62)
Ag=r1r"+ a® — 2mr,

) =r2+a200529

Here, m and a are related to the mass M , angular momentum
J and charge Q of the black hole by

M:m[Hv_z} 0o M

2(1—v2) ’ 1—v?’

J=_4 (63)
V1 =2

The constant v is the velocity of the boost. The vector poten-
tial and the dilaton field are

A — v Z
T B
v Z
Ay = —asin® ——— —, (64)
¢ 21— 2 B?
3
¢ = —%—logB

The theorem tells us K> () = <%>_3 and the confor-
mal factor is
2 ) :
) =\——= - (65)
BTVE

So the line element for the black hole gives

Q% = <—2
/3 4 o—9/\3

1 1-Z 2aZ sin* 6
4 = — 1 - —Zarr - 2
Q B BN1 —v?

Z
+ |:B <r2 + az) + a®sin® 9§i| sin? 9d(p2
X5 2
+B—dr- + BXdo (66)
Ao

The scalar field is

_ LB (67)

B ¢ ef—l
w—«/gtanh——«/— T8

V3 ef—i—l

To compute the Komar mass M of the rotating black hole
corresponding to &», it is necessary to account for the extrin-
sic curvature term in (47). It is obvious that the compo-
nents of shift vector g = —g"” / g% are conformal invariant.
Taking into consideration the “3 + 1” foliation associated
with the standard Boyer Lindquist coordinates (¢, r, 6, @),
the non-vanishing component of g is 8¢ (or 3 ). Therefore,
we only need to concentrate on K,,s" B¢ considering that
st =(s",0,0) (see Eq. (48)). The extrinsic curvature K, is
evaluated via 2N K;; = Zpy;; in the case of dy;; /0t = 0,
with y;; the induced metric on the space. Then we have

1
Kr(p = ﬁgﬂynp
3)/ ,3“’ ap? 1 ap?
— —(/3"7 4y Yoo ——— o + Vro ago) ﬁ)&pr
\,d ——
0 0
(68)

Therefore, and recalling that the components in the integrand
can be express with the metric components: s = /1/g11,

N = V=1/80, ypp = g3, 82 = =%/, V7 =

/822833; we have
Krps"BY g = VW 8 :3 Va
03
1 [—g00 3(55)?

=1 ;:1 833+/822833 (69)

In order to calculate the mass M of corresponding S, in this
situation, we must insert the metric g,., into the aforemen-

tioned equation. In the limit of » — oo, we get ,/ %?O ~1,
3(%)2 2Aalm?
80833 ~ risinf, —5 i
Therefore, we have I%r(pfrﬁ‘p\f ~ O(1/r3) which does not
contribute to the integral in the definition of Komar mass.
Then, considering the term 5t D,~1\~/ \/5 again, we have

833 ~ r?siné,

e m2 — v?) /gw

Tl 4N~ S r?sing. (70
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As a result, the Komar mass for the rotating black hole (66)
according to Eq. (47) is

_ 2 —? 2 —v?
Mz_yg Mm@V G odode = TETY)
v 2(1 —v?) 2(1 —v?)

47
(71)

As for the electric charge 0 and the Wald entropy S , they
also remain unchanged under the conformal transformation,
ie. Q = 0, S = S. In order to calculate the temperature
of this rotating black hole, one can refer to [39,40] where it
shows the temperature is given by

3r\/_8zt - 2ganH - 8¢¢Q%-1
277»\/grr '

for the four-dimensional rotating black hole. Here Qp =
5"" |-—ry 1s the conjugate variable to angular momentum
of the black hole — angular velocity of the black hole. It is
very obvious that the angular velocity of the black hole is not
changed under conformal transformation g,,, — é guv- For
the metric, there exists the the Killing field x = 9, + Q4 9,
which is normal to the horizon. If we denote —x*x, =
—8i1 — 28100 — 8pp 2%, by X, then we get X = 0 on
the horizon since the horizon is a null surface. Then, under
conformal transformation g,, — é guv, We arrive at

Ty = lim (72)

r—rg

arvX 8”\/Zz

2”\/5 27'r\/gT

_ ard_ ( )X_ arv'x (73)
271\/g7 \/; N

Then it follows that 7 = T from Eqs. (72) and (73). The
electric potential is defined by

= Aux"|,_,, = Aux"| (74)

where A, denotes the vector potential. Since Qy = Qp we
achieve x,, = ¥,. Taking A, = A, into account, we obtain
= .

Turning to angular momentum for (66), we have the defi-
nition of Komar angular momentum [33,41]

1
Jk i= —

Tom V“qﬁ”dS,w (75)

where ¢" is the Killing vector, and .%; share the same mean-
ing as in the definition of Komar mass in Sect. 3. It is natural
to choose a foliation adapted to the axisymmetric in the sense
that the Killing vector ¢ is tangent to the hypersurface ;.
Then we have n - ¢ = 0 and the integrand in (75) is

VHGY dSjy = Vudy (sHn® — nts?) Vg &%y
= 2Vudustn' /g d?y

@ Springer

= —2s"pyVyun'Jq a2y = 2Kl-js"¢j\/§d2y. (76)

So Eq. (75) becomes

1
Jk = —

o 2
- KijS'¢"\/§d y. (77

Let us use the “3 + 1” foliation associated with the stan-
dard Boyer-Lindquist coordinates (t, r, 6, ¢) and evaluate the
integral (77) by choosing for .#; as a sphere r = const. Then,
we have y* = (0, ¢). The Boyer-Lindquist components of ¢
are ¢! = (0, 0, 1) and those of s are s’ = (s”, 0, 0) because
yij is diagonal in this coordinate system. Thus Eq. (77)
reduces to

JK = — Krps" /g d6dg. (78)

87 Jr—const
Recalling the Eq. (68) for extrinsic curvature K, one needs
to read off the components of the shift vector for the rotating
conformal dilaton black hole

—az
(/3 A /3¢> (O > V1 =v2[B2(r? + a?) + za? sin’ 9]) ‘
(79)

Keeping in mind the expression for extrinsic curvature (68),
we find the Komar angular momentum is

1 s”
Jg =

ap?
— Y, dode. (80)
167 r=const IV “ or or V4

For the new rotating dilaton black hole, we must replace the
metric g, into the integrand, which results in

q= g33v 8283 = ,/ g33\/g2283

g°'/*°° B (81)

> oo
N
- Nwa, A=

In the limit of  — o0, the following relationships hold: s” ~
1+0(1/r), L~ l—i—O(l/r),yW ~r¥sin?0+0(r), /g ~
r2sin6 + 0(r), ar \/6“& T+ O(1/r°). Therefore, we
arrive at 5\/ Yoo "f, va ~ \/ﬁ"i sin® 6. Replace it with the

6am

metric g,,, and we get that ﬁywa_r\/a ~ e sin® 6
because of é ~ 1+ O(1/r?). Thus, the Komar angular
momentum for (61) is

1 6am ma
16w J /1 -2 /T — 2
All physical quantities of the rotating black holes in the
first law of thermodynamics dM = TdS + QydJ + ®dQ
are not changed after conformal transformation, just as they

are in the case of static black holes. In this sense, they are
twin solutions, yet they are fundamentally distinct.

J=1J= sin’ 0d0dg = (82)
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5 Conformal invariance of physical quantities when the
scalar potential vanishes

So far, we have found that physical quantities in the first law
of thermodynamics remain unchanged under the conformal
transformation for dilaton black hole solutions. By examin-
ing the aforementioned procedures for calculating quantities,
one can observe that, according to the definition, quantities
such as temperature 7', entropy S, angular velocity of black
hole Qp, electric potential @ and electric charge Q do not
change under the conformal transformations 2! = cosh %
regardless of choices of K1 (¢) . The remaining quantities are
mass M and angular momentum J, which raises the ques-
tion of whether they are also invariant under general confor-
mal transformations Q™! = cosh % corresponding to EMS
theories beyond the dilaton theory? We will investigate the
problem for the case of V(¢) = 0 to address the case of
asymptotical black holes, so that Komar mass and angular
momentum can be well defined.

Indeed, one may deduce from the definition of angu-

N

r ¢ . .
lar momentum (80), that the term NVW%\/E is multi-
plied by # under conformal transformations. Therefore, to

guarantee the convergence of the integration, N Yoo 35:) JVa
should converge to a constant a; multiplied by sin® 0, i.e.
N Voo a(;)sr V9~ a sin®@ + O(1/r). Then the associated
angular momentum is

1
= Ton aj sin’ 9d0d(p = a61

(83)
If the scalar field ¢ vanishes at infinity, we obtain Q! =
cosh(0) =1 at space infinity. Therefore, according to (81),

we obtain sﬁfw o \f ~ aisin(®)® + O(1/r), indicat-
ing that the black hole’s angular momentum is conformally
invariant J = J. By returning to the definition of Komar
mass (47) and concentrating first on the second term, i.e.
(69). it is trivial to demonstrate that under the conformal

transformation, we have

S s o 1

K5 B9V G = @K”/,s’ BYVq. (84)
Recalling the computation in Sect. 4, the first term of the
integrand in Eq. (47) yields

; [g2g33, | 1
SlDiN\/aZ 2 o —gm, (85)

and it is straightforward to demonstrate that under conformal
transformations, we have

i )= | 1
$'D;N q:@le,-N\/ﬁ—i—ar(zQz)s N.q. (86)

If it is shown that the second term 9, (2—5122)s’ N ./q makes no
contribution to the integral used to define Komar mass, then

combing Egs. (84) and (86) yields
<§iDiN - kijsiﬁj) \/67 = = (SiDiN - Kijsiﬂj) ﬂ
(87)

In this case, considering that we have =5 ~ 1 at space infin-

QZ
ity, the Komar mass (see Eq. (47)) stays unaltered M = M
for the same reason as for conformal invariance of angular
momentum (see discussion concerning the angular momen-
tum above). Therefore, the last challenge is to demonstrate
that 8r(2]?)s’N /g genuinely does not make contributions
in the integral. Assuming that at space infinity, the scalar
field ¢ vanishes and can be expanded into the series in the
following form:

p=ci/r+cr)rP+--, (88)

then the conformal transformations can be expanded into

&
é:cosh2 (%) —1+3—2+0(1/V ), (89)

resulting in a,(ﬁ) ~ —% + O(1/r%). If the solution of
the black hole for Sj is also asymptotically flat, we obtain
at space infinity s” = /1/g;1 ~ 1, N = /—1/g% ~ 1,
Va4~ r2. Thus, when all of the criteria above are satisfied,
we get 8,(2—;22)5’Nf ~ O(1/r), which doesn’t contribute
to the integral used to define Komar mass. As a result, all
the physical quantities in the first law of thermodynamics
dM = TdS + ®dQ + QudJ are conformally invariant
considering the Komar mass is conformally invariant.

Why is it necessary that ¢ should be expanded into the
Taylor series at space infinity? The following counterexam-
ple can illustrate this point. If ¢ equals 1/4/r, it cannot be
expanded to Taylor series. In this instance, the conformal
transformation may be expanded into

% =1+ % +0(1/r). (90)
This yields o, (#)s’N Ja ~ —%, which contributes to the
integral in the definition of Komar mass. Consequently, M =
M cannot be established in this circumstance.

To summarize, In the case of V(¢) = 0, the following
criteria must be fulfilled in order for all physical quantities
in the first law of thermodynamics to remain conformally
invariant regardless of the choices of K (¢)

1. The spacetime is asymptotically flat so that quantities
such as Komar mass and angular momentum can be well
defined;

2. At spatial infinity, the scalar field should vanish and be
expanded into the Taylor series: ¢ = ¢1/r +ca/r*>+- - -
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One may check that both the static dilaton black hole solution
and the precise rotating dilaton black hole solution satisfy the
two criteria above, ensuring that the prior analysis of these
two solutions is self-consistent.

6 Conclusion and discussion

Originally, Bekenstein attempted to obtain exact solutions of
conformally invariant scalar equations in Einstein’s frame.
He established the theorem by which the Einstein-conformal-
scalar solution can be deduced from the initial ordinary solu-
tion. We take it a step further by taking into account the
non-minimal coupling between the scalar and Maxwell fields
when a scalar potential is also included, which has generated
considerable attention as a consequence of studies on the
scalarization of black holes.

The paper starts with the extension of Bekenstein’s the-
orem to EMS theories. Then, using the dilaton theory as an
illustration of the extended theorem, the conformal dilaton
solution is found straightforwardly. Concerning the exact
spinning dilaton black hole, its conformal counterpart is
obtained and studied. We examine the thermodynamics of the
two solutions. We find that the Bekenstein—-Hawking entropy
formula no longer applies in the conformal theory and should
be replaced with the Wald entropy formulas, since the geom-
etry quantity is (1 — ‘%2)15 instead of the Ricci scalar R.
A thorough study shows that the solutions in the dilaton
theory and their conformal counterparts analogues possess
the same thermodynamic quantities, and therefore they are
cousin models.

After examining these two specific theories, we find that
if one can establish that the mass M and angular momen-
tum J are conformally invariant for any conformal factor
Q! = cosh % regardless of choices of K1(¢), then all the
quantities in the first law of thermodynamics dM = TdS +
QpdJ+dd Q are conformally invariant. It is therefore found
that when V (¢) = 0, if the following conditions are satis-
fied: (i) the spacetime is asymptotically flat; (ii) the solution
for scalar field in S; vanishes at spatial infinity and can be
extended into the Taylor series: ¢ = c1/r+c2/r>+- - -, then
the physical quantities in the first law of thermodynamics are
always conformally invariant.

In terms of potential applications of the extended theorem,
one might start with the spontaneous scalarization of black
holes. The following three instances has been found to allow
for spontaneous scalarization of charged black holes. [19—
21]: (i). exponential coupling, K1(¢) = e_“¢2, Vi(g) =0,
(ii). power-law coupling, K{(¢) = 1 — ad?, Vi) =0;
(iii). fractional coupling, Ki(¢) = ﬁ, Vi) = 0 ;
Therefore, it is intriguing to examine the scalarization of
charged black holes’ conformal counterparts. Another possi-
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ble application of the extended theorem is to study black
hole perturbations in EMcS theories. The theorem estab-
lishes that the solutions of S} and S, are connected via
conformal translation regardless of whether they are static,
stationary, or even non-stationary. Considering that the per-
turbations of black holes are always added to background
spacetime and the backreactions are neglected, thus the per-
turbation in generic EMcS theories can be converted into
the investigation of the perturbation in EMS theories. Zou
et al. [25,26] examined the stability problem of scalar hairy
black holes in the EMcS theory with the quadratic coupling
KxW) =1+ on/fz, Vo(yr) = 0. Indeed, one may per-
form the stability analysis by using the conformal transfor-
mation on the initial solutions in the EMS theory first, and
then the perturbation of the EMcS is accomplished by mul-
tiplying the perturbation in the EMS theory by the confor-
mal factor, which is determined by the unperturbed solu-
tion of the EMS theory. Furthermore, Blazquez-Salcedo et
al. [42] find that, the EMS theory with the higher power-
law coupling K1(¢) = 1 — ozd)“, Vi(¢) = 0 exhibits an
intriguing two-branch space of scalar hair solutions that coex-
ists with the conventional Reissner—Nordstrom black hole.
We think this character may then be readily extended to
its conformal counterpart. For the case of V(¢) # 0, one
can take the dilaton black holes in de Sitter or Anti-de Sit-
ter universe as an example [43], where K (¢) = e 2 and
V() = r+ %)» (¢** + ¢729), It’s interesting to research
the corresponding EMcS theory. Finally, one can also apply
the theorem to EMS theories with V(¢) = 2A [27-29] or
V(p) = 2mé¢2 [24,30] and investigate the spontaneous
scalarization in the corresponding EMcS theories.
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