
University of Arkansas, Fayetteville University of Arkansas, Fayetteville 

ScholarWorks@UARK ScholarWorks@UARK 

Graduate Theses and Dissertations 

5-2020 

A Study of Optical Nonlinearities at the Single-Photon Level for A Study of Optical Nonlinearities at the Single-Photon Level for 

Quantum Logic Quantum Logic 

Balakrishnan Viswanathan 
University of Arkansas, Fayetteville 

Follow this and additional works at: https://scholarworks.uark.edu/etd 

 Part of the Atomic, Molecular and Optical Physics Commons, Optics Commons, and the Quantum 

Physics Commons 

Citation Citation 
Viswanathan, B. (2020). A Study of Optical Nonlinearities at the Single-Photon Level for Quantum Logic. 
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3596 

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for 
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more 
information, please contact scholar@uark.edu. 

https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3596?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu


A Study of Optical Nonlinearities at the Single-Photon Level for Quantum Logic

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy in Physics

by

Balakrishnan Viswanathan
University of Oklahoma

Master of Science in Electrical Engineering, 2012

May 2020
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Julio Gea-Banacloche, Ph.D.
Dissertation Director

Surendra Singh, Ph.D. William Harter, Ph.D.
Committee Member Committee Member

Min Xiao, Ph.D. Omar Manasreh, Ph.D.
Committee Member Committee Member



Abstract

In this dissertation, we shall focus on theoretically studying quantum nonlinear optical

schemes to construct a conditional phase gate at the single-photon level. With an aim to

develop analytical models, we shall carry out a rigorous quantized multimode field analysis

of some of these schemes involving only the interacting field operators. More specifically, we

shall first study the three-wave mixing process involving two single-photons in a

second-order nonlinear medium (χ(2)) under two different cases viz. when the photons are

traveling with equal velocities and when they are traveling with different velocities, and

explore the possibility of using them for building a conditional phase phase gate.

Finally, we shall study the interaction of single-photon wavepackets with a realistic

atomic system viz. an ensemble of five-level atoms, to construct a phase gate. We will

particularly look at the “giant Kerr” effect in electromagnetically induced transparency to

explore the possibility of using this scheme for achieving a conditional phase shift and to

understand how the bandwidth gets restricted naturally in such an atomic system.
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Chapter 1

A synopsis on quantum logical operations

1.1 Introduction

Quantum information science is one of the most splendid mansions in the vast estate of

modern physics. It is a magnificent edifice built upon the solid foundations of quantum

mechanics. The field of quantum information science addresses a variety of problems, both

of fundamental nature and of high practical importance. It encompasses a wide range of

sub-fields such as quantum computing, quantum error correction, quantum cryptography,

quantum entanglement, quantum communication etc. Each of these sub-fields is a

challenging endeavor in its own right with several decades of intensive research having been

put into it. Needless to say, no single research document can do adequate justice to all of

these areas, in all its detail and rigor.

This dissertation focuses on a very specific problem in quantum computing, viz.

exploring the theoretical aspects of constructing quantum logical gates with photons as

qubits [1]. Qubits are the basic units for quantum computing and are analogous to the bits

in a classical computer. It is important to note that there are many candidates for qubits in

addition to photons such as trapped ions [2], electron spin, superconducting qubits [3] etc.

However, photons are one of the most effective carriers of quantum information and they

have certain inherent advantages over the other systems. One of them is that photons

interact weakly with the environment. In addition to this, the information encoded in

photons can be transmitted to a long distance with minimum loss. Furthermore, quantum

logical operations involving photons can be performed at room temperature which may not

1



be possible in other systems.

1.2 Controlled NOT gate

Quantum logical gates are the fundamental building blocks of quantum circuits analogous

to the digital gates in a classical computer. The fundamental quantum logical operation is

the Controlled NOT (CNOT) gate which is given by the following transformation [4]:

|00〉 → |00〉,

|01〉 → |01〉,

|10〉 → |11〉,

|11〉 → |10〉,

(1.1)

where in the generic state |AB〉, |A〉 is the control qubit and |B〉 is the target qubit. In

the gate operation, if the control qubit is |1〉, the target qubit gets flipped. We can see from

Eq. (1.1) that both the input states |10〉 and |11〉 get transformed to |11〉 and |10〉,

respectively. This is a universal quantum gate, i.e. all the other quantum logical gates can

be constructed using the CNOT gate, which is the reason why most of the efforts in

quantum computing are devoted to the construction of the CNOT gate. The single-qubit

gates with photons are pretty much trivial and the challenge is in getting a universal

two-qubit gate such as CNOT. The success of this endeavor will facilitate the operation of

other quantum logical gates from this universal gate.

2



Using photons as qubits, the construction of a CNOT gate is a two-step process. It is a

combination of a conditional phase (CPHASE) gate and two Hadamard gates. We shall

denote the qubits |0〉 and |1〉 by the following column vectors:

|0〉 ≡
(

1
0

)

and

|1〉 ≡
(

0
1

)
.

The Hadamard gate (UH) is defined as

UH |0〉 ≡
1√
2

(|0〉+ |1〉),

UH |1〉 ≡
1√
2

(|0〉 − |1〉). (1.2)

In the (|0〉, |1〉) basis, the Hadamard gate can be explicitly represented by the following

2× 2 matrix:

UH =
1√
2

(
1 1
1 −1

)
. (1.3)

It can be easily seen that UH is unitary.

3



The conditional phase (CPHASE) gate is described by the following transformation [4]:

|00〉 → |00〉,

|01〉 → |01〉,

|10〉 → |10〉,

|11〉 → −|11〉. (1.4)

Since the CPHASE gate involves two qubits, the matrix corresponding to the

transformation in Eq. (1.4) will be 4× 4 which is represented as

UCPHASE =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (1.5)

Next, we shall explicitly construct a matrix representation for the CNOT gate. Since we

have two qubits, i.e. the control and the target, it is obvious that this gate has to be

represented by a 4× 4 matrix. We shall consider a general matrix of the form:

UCNOT =


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

 ,

where we have to determine all the matrix elements. We shall use the transformation in

Eq. (1.1) to compute the matrix elements and hence construct the matrix for the CNOT

gate.

4



The column vector for the state |00〉 can be expressed as

|00〉 = |0〉 ⊗ |0〉 =

(
1
0

)
⊗
(

1
0

)
=


1
0
0
0

 .

Eq. (1.1) tells us that UCNOT |00〉 = |00〉. We can now express this transformation

explicitly in terms of the matrices for UCNOT and the state |00〉.


c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44




1
0
0
0

 =


1
0
0
0

 , (1.6)

which then yields


c11

c21

c31

c41

 =


1
0
0
0

 . (1.7)

This implies that c11 = 1 and c21 = c31 = c41 = 0.

The second transformation in Eq. (1.1) can be expressed as UCNOT |01〉 = |01〉. The

column vector for the state |01〉 can be written as

|00〉 = |0〉 ⊗ |0〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 .

5



The transformation for the state |01〉, in terms of the matrices, is given by


1 c12 c13 c14

0 c22 c23 c24

0 c32 c33 c34

0 c42 c43 c44




0
1
0
0

 =


0
1
0
0

 , (1.8)

which then gives us


c12

c22

c32

c42

 =


0
1
0
0

 . (1.9)

This implies that c22 = 1 and c12 = c32 = c42 = 0.

The third transformation in Eq. (1.1) is given by UCNOT |10〉 = |11〉. The column vectors

for the states |10〉 and |11〉 can be written as

|10〉 = |1〉 ⊗ |0〉 =

(
0
1

)
⊗
(

1
0

)
=


0
0
1
0


and

|11〉 = |1〉 ⊗ |1〉 =

(
0
1

)
⊗
(

0
1

)
=


0
0
0
1

 .

The matrix representation of the transformation for the state |10〉 is given by


1 0 c13 c14

0 1 c23 c24

0 0 c33 c34

0 0 c43 c44




0
0
1
0

 =


0
0
0
1

 , (1.10)

6



which then yields


c13

c23

c33

c43

 =


0
0
0
1

 . (1.11)

This implies that c43 = 1 and c13 = c23 = c33 = 0.

The final transformation in Eq. (1.1) is UCNOT |11〉 = |10〉 which in the matrix

representation can be written as


1 0 0 c14

0 1 0 c24

0 0 0 c34

0 0 1 c44




0
0
0
1

 =


0
0
1
0

 , (1.12)

from which we obtain


c14

c24

c34

c44

 =


0
0
1
0

 . (1.13)

This implies that c34 = 1 and c14 = c24 = c44 = 0.

We have thus, computed all the matrix elements of UCNOT . Now we have an explicit

matrix representation for the CNOT gate that is given by

UCNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (1.14)

It can be easily seen that UCNOT is unitary and furthermore, Eq. (1.14) can be

decomposed into the following form:

7




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


︸ ︷︷ ︸

UCNOT

=
1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


︸ ︷︷ ︸

I⊗UH


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


︸ ︷︷ ︸

UCPHASE

1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


︸ ︷︷ ︸

I⊗UH

, (1.15)

where

I ⊗ UH =

(
1 0
0 1

)
⊗ 1√

2

(
1 1
1 −1

)
=

1√
2


1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

 .

We mentioned earlier that a CNOT gate is a combination of a CPHASE gate and two

Hadamard gates, and Eq. (1.15) shows this result explicitly. In order to appreciate this

point better and see more clearly how these two transformations indeed act on the qubits

themselves, we shall work out an example, i.e. we shall see how the CPHASE and the

Hadamard gates act on the state |10〉 to perform the CNOT operation. From Eq. (1.1), we

can see that |10〉 CNOT−−−→ |11〉. In the state |10〉, |1〉 is the control qubit and |0〉 is the target

qubit. In order to perform the CNOT operation on the state |10〉 using a CPHASE gate,

we must first perform the Hadamard transform [see Eq. (1.2)] on the target qubit.

|10〉 ≡ |1〉 ⊗ |0〉 Hadamard−−−−−−→ |1〉 ⊗ [UH |0〉] = |1〉 ⊗ 1√
2

(|0〉+ |1〉) =
1√
2

(|10〉+ |11〉)︸ ︷︷ ︸
|ψ〉

. (1.16)

8



Next, we shall apply the CPHASE transformation [see Eq. (1.4)] on the state |ψ〉 which

yields

|ψ〉 ≡ 1√
2

(|10〉+ |11〉) CPHASE−−−−−→ 1√
2

(|10〉 − |11〉) =
1√
2
|1〉 ⊗ (|0〉 − |1〉)︸ ︷︷ ︸

|ψ′〉

. (1.17)

Finally, we shall once again apply the Hadamard transform [see Eq. (1.2)] on the target

qubit in the state |ψ′〉 which is |0〉 − |1〉. Following this step, we obtain

|ψ′〉 ≡ 1√
2
|1〉⊗ (|0〉 − |1〉) Hadamard−−−−−−→ 1√

2
|1〉 ⊗ ([UH |0〉]− [UH |1〉])

=
1

2
|1〉 ⊗ [|0〉+ |1〉 − |0〉+ |1〉] = |1〉 ⊗ |1〉 ≡ |11〉, (1.18)

which is the desired output, i.e. |10〉 CNOT−−−→ |11〉. From Eqs. (1.16), (1.17) and (1.18), we

can clearly see that a combination of a CPHASE transform and two Hadamard transforms

indeed perform the CNOT gate operation for the state |10〉. We can follow the same

procedure and perform the gate operation for the other states in Eq. (1.1).

1.3 Schemes to perform quantum logic with photons

Despite the many advantages that the photons have as qubits for quantum logical

operations, there are some serious challenges to their physical realization. The major

challenge that needs to be surmounted is the realization of a CPHASE gate at the

single-photon level. The fourth transformation in Eq. (1.4), i.e. |11〉 → −|11〉, is extremely
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hard to realize in a lab using photons. This transformation tells us that if we send two

photons into the system, we want the two outgoing photons to acquire a phase π with

respect to the incoming ones. It is important to note that the photons do not interact with

each other directly. This means we need a suitable medium to mediate the interaction

between the photons to achieve the desired phase shift without distorting the state. One

such mechanism is to use a nonlinear optical medium toward this goal.

In the subsequent chapters, we shall study the interaction of single-photons with a

nonlinear medium. To be specific, we will study the three wave mixing process involving

two single-photons in a second-order nonlinear medium (χ(2)) and see under what

conditions such schemes would work to construct a CPHASE gate. The method we adopt

to solve this problem is to first characterize the medium by a pertinent Hamiltonian and

then derive the relevant equations of motion for the system. Following this, we shall solve

the dynamical equations analytically in an appropriate limit (with an aim to develop an

analytical model) and analyze the solution to determine the possibility of using nonlinear

optical schemes to construct a phase gate at the single-photon level. Many researchers have

done extensive work in exploring the “Kerr” medium (i.e. third-order nonlinearity) for

quantum logical operations with single-photons. We shall compare and contrast our results

in the subsequent chapters with those for the third-order ones.

In chapters 2 and 3, we shall consider the “macroscopic” picture of the nonlinear

medium. By “macroscopic”, we mean that we won’t be concerned with the internal

constituents of the medium. Here, we shall use an appropriate Hamiltonian for the

nonlinear medium involving only the interacting field operators and in our model, the only

parameter associated with the medium that will figure in our analysis is the nonlinear

10



coupling strength. With this approach, we shall explore the theoretical possibilities of

constructing a phase gate. We shall discuss both the positive and negative results and in

addition, we shall explore ways to circumvent the objections to the possibility of

conditional phase shifts on single-photons raised earlier.

We shall take the positive results from the macroscopic model, and search for a realistic

atomic system that could help us physically realize a phase gate experimentally. This will

be our endeavor in chapter 4. Here, we shall consider an ensemble of five-level atoms

interacting with single-photon wavepackets to construct a conditional phase gate. We will

be looking at the “giant Kerr” effect in electromagnetically induced transparency (EIT)

which is equivalent to a conventional third-order nonlinear medium, in an atomic system.

We shall develop a model based on adiabatic perturbation theory. We shall conclude our

work with a discussion on the promises and challenges in this model toward the physical

realization of a conditional phase gate with single-photons as qubits.
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Chapter 2

Conditional phase gate based on second-order nonlinearity

2.1 Introduction

The exploitation of optical nonlinearities to implement quantum logical gates at the

single-photon level has been an active problem of investigation over the past decade with

considerable research efforts having been invested into it. The primary goal in this

endeavor is to achieve a controlled phase shift, described by the transformation [4]:

|00〉 → |00〉,

|01〉 → eiφ1|01〉,

|10〉 → eiφ1|10〉,

|11〉 → eiφ2|11〉,

(2.1)

where the useful phase for quantum logic is φ = φ2 − 2φ1. In the ideal case, we want

φ = π. This operation is equivalent to a CNOT gate since we can indeed construct this

gate with a controlled phase shift and a Hadamard transform. All the efforts to explore

nonlinear optical schemes are to achieve this controlled phase shift by using the nonlinear

medium to mediate photon-photon interaction.

Initially, the proposals for controlled phase shifts involved Kerr-type nonlinearities,

which are conventionally classified as “third-order” because the susceptibility arises from

terms that are cubic in the field, in the expansion of the polarization of the nonlinear
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medium. However, Shapiro [5, 6, 7] in a seminal paper on conventional Kerr nonlinearity

argued that when the multimode nature of a finite wavepacket interacting with a

finite-bandwidth medium is considered, there is always an unavoidable trade-off between

the desired phase shift and the achievable fidelity. By “conventional”, it is meant that

Shapiro’s model for Kerr nonlinearity was a direct generalization of classical nonlinear

optics to the quantized-field picture.

The primary cause for the degradation of fidelity in Shapiro’s formalism is the phase

noise arising from the Langevin operators introduced in the theory to preserve the

commutation realtions of the field operators. Speaking in mathematical terms, the origin of

this difficulty is the need to limit the medium’s bandiwdth in order to avoid divergence in

the theory. Physically, the finite bandwidth is connected to a finite response time for the

medium, which is what we expect for a real optical system [8, 9, 10, 11]. The finite

response time is incorporated in the theory by assigning a memory to the nonlinear index

of refraction [5] and following this, the dynamical equations for the quantized field are

written down. This, however, has a profound ramification. The free-field commutators

obtained by solving these evolution equations no longer preserve the canonical

commutation relation unless the “Langevin noise terms” are added.

The effect of the phase noise is negligible when the duration of the pulses are much

larger than the response time of the medium. This is indeed the “large bandwidth limit”.

In this limit, Shapiro had found that the cross-Kerr phase shift goes to zero. We can

visualize this in the following way: in a long pulse, the probability to find two photons

within the same narrow time window corresponding to the response time of the medium is

negligible which means that two photons will not even interact with the medium. This is
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the reason why the optical nonlinearity vanishes in this limit.

These noise terms can also be neglected in the opposite limit (i.e. the short-pulse limit)

because here, we send a broadband wavepacket through a narrowband optical medium and

what happens is that the medium will either reject or absorb the incoming wavepackets. So

once again, there is no phase shift.

Thus, the only relevant regime is when the bandwidth of the medium and the pulse are

evenly matched in the frequency space. However, over here, the phase noise cannot be

neglected and this indeed degrades the gate performance.

This view was further strengthened by Gea-Banacloche [12] in a Hamiltonian treatment

of the “giant-Kerr effect”. The main obstacle here to the high performance of the

conditional phase gate is the spectral entanglement of the outgoing photons. The origin of

this mechanism is the following: In order to get a large phase shift, the photons must

interact very strongly with the nonlinear medium. This means that the incoming photons

get destroyed and recreated inside the medium several times. However, when two photons

co-propagate with equal velocities, the only constraint for the entire process is the

conservation of momentum (or phase matching), which is the same as the conservation of

energy, in this case. Thus, the only mathematical condition to be satisfied by the outgoing

photons with frequencies ω1 and ω2 is ω1 + ω2 = ω′1 + ω′2, where ω′1 and ω′2 are the

frequencies of the incoming photons. This results in an entangled spectrum (for the final

state) of the form

f(ω1, ω2) ∼
∫
dω′ f0(ω′) f0(ω′, ω1 + ω2 − ω′)
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in terms of the the incoming spectrum f0 of the individual photon.

Thus, it has been concluded that the difficulties to the realization of such phase gates in

Kerr media with high fidelity are due to time-nonlocality of the conventional nonlinear

media and spectral entanglement of the final state.

A few years ago, Langford et al. [13] proposed a scheme for constructing a phase gate

based on second-order nonlinearity and on the coherent evolution of a two-photon state

through successive up- and down-conversion processes. Assuming three modes a, b and c,

the basic process would be

|011〉abc → −i|100〉abc → −|011〉abc. (2.2)

Here, we start with a two-photon state, i.e. a b, c pair, which annihilates inside the

nonlinear medium to create an a photon. This is the parametric up-conversion process. Still

later, the a photon annihilates to create a new b, c pair which is the down-conversion

process. We want the final two-photon state to pick up a phase π with respect to the initial

one, as shown in Eq. (2.2). This can be accomplished with the Hamiltonian

Ĥ = ~ε (â† b̂ ĉ+ â b̂† ĉ†), (2.3)

where ε is the strength of the nonlinear coupling. The description provided by the

Hamiltonian in Eq. (2.3) is a “single mode” picture because only one mode operator is

assigned to each of the three photons involved. We can in fact understand the process

described in Eq. (2.2) quantitatively by solving the equations of motion for this system.

The state, in the single mode representation, is written as
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|ψ(t)〉 = ξa(t) â
†|0〉a|0〉b|0〉c + ξbc(t) |0〉a b̂†|0〉b ĉ†|0〉c. (2.4)

On inserting Eqs. (2.3) and (2.4) in the Schrödinger equation: |ψ̇〉 = −(i/~)Ĥ|ψ〉, we

get the following pair of differential equations for the a and the b, c photons:

ξ̇a = −iε ξbc,

ξ̇bc = −iε ξa, (2.5)

whose solutions are written as ξa(t) = −i sin(εt) and ξbc(t) = cos(εt) with the initial

condition that there is no a photon at t = 0.

Thus, we can formally write the state of the system as

|ψ(t)〉 = −i sin(εt) |100〉abc + cos(εt) |011〉abc. (2.6)

From Eq. (2.6), we can clearly see that beginning with the state |011〉abc, evolution

under the Hamiltonian in Eq. (2.3) produces the middle state, −i|100〉abc at time t = π/2ε,

and the final state −|011〉abc at t = π/ε. It is evident that the states without an a photon

and with only one b or c photon are not affected by this Hamiltonian.

It should, however, be noted that a single-mode description is not adequate to describe

a traveling wavepacket. Our aim in this chapter is to find out what happens when we study

the scheme suggested by Langford et al. in a multimode framework which is an appropriate

description for single-photon pulses in a nonlinear medium.
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One way to generalize the treatment based on Eq. (2.3) to a multimode framework is to

simply replace the single-mode operators a, b and c by their corresponding multimode

representations such as

â→ Â(t) =

∫
dω âω e

−iωt, (2.7)

where ω represents a deviation around the central frequency associated with the

“a”-type modes. Similarly, we can define the multimode operators for the b and the c

photons too. Nonetheless, a direct substitution of Eq. (2.7) into the Hamiltonian leads to

diverging integrals in the model. In order to obtain finite results, it is imperative to account

for the finite bandwidth that any real nonlinear medium must have. One way to accomplish

this is to truncate the spectrum of the fields by hand. This is done by introducing upper

and lower cutoffs in the integrals, in Eq. (2.7). This procedure can be justified by arguing

that the medium has a finite transparency window, and absorbs all the spectral components

outside its bandwidth. This is the approach that we shall pursue in the next section.

Another approach to study this problem is to place the nonlinear medium inside an

optical cavity whose decay rate provides a natural bandwidth for the system. We shall

work out this case in detail, in section 2.3.

2.2 Free space configuration

In this section, we shall study the evolution and propagation of a two-photon state through

a second-order nonlinear [χ(2)] medium. As mentioned in the previous section, we group the

modes involved into three sets, denoted by the indices a, b and c. We shall use the
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continuous mode formalism to solve this problem.

We assume that the pulse incident on the medium has one b and one c photon traveling

in the same direction, and no a photon. As this pulse travels through the medium, the b

and the c photons are annihilated to create an a photon. Later, the a photon is annihilated

to create a new b− c pair. We choose the length of the medium such that the interaction

stops at this point, i.e. just when the new b, c pulse leaves the medium. Furthermore, we

assume that the three photons viz. a, b and c have the same speed.

Under these assumptions, the Hamiltonian of the system, in the Schrödinger picture, is

written as

Ĥ = Ĥ0 + Ĥint,

Ĥ0 = ~v
∫
dk k â†k âk + ~v

∫
dk k b̂†k b̂k + ~v

∫
dk k ĉ†k ĉk,

Ĥint = ~ε
∫ z0+l

z0

dz

∫ kmax

−kmax

dka

∫ kmax

−kmax

dkb

∫ kmax

−kmax

dkc e
i(ka−kb−kc)z

× â(ka) b̂
†(kb) ĉ

†(kc) +H.c., (2.8)

where Ĥ0 is the Hamiltonian of the free field, Ĥint is the Hamiltonian corresponding to

the second-order optical nonlinearity. Here we have labeled the modes by wavevectors

instead of frequency for notational convenience. We will solve this problem in the

interaction picture. The next step, obviously, is to transform Ĥint from the Schrödinger

picture to the interaction picture and the unitary transformation that does this is

18



ĤI
int = eiĤ0t/~ Ĥint e

−iĤ0t/~,

where the superscript I symbolically denotes the interaction picture. This

transformation yields us the following expression for Ĥint in the interaction picture:

ĤI
int = ~ε

∫ kmax

−kmax

dka

∫ kmax

−kmax

dkb

∫ kmax

−kmax

dkc

∫ z0+l

z0

dz ei(ka−kb−kc)z

× eivt
∫
dk′ k′ â†(k′)â(k′) â(ka) e

−ivt
∫
dk′ k′ â†(k′)â(k′)

× eivt
∫
dk′ k′ b̂†(k′)b̂(k′) b̂†(kb) e

−ivt
∫
dk′ k′ b̂†(k′)b̂(k′)

× eivt
∫
dk′ k′ ĉ†(k′)ĉ(k′) ĉ†(kc) e

−ivt
∫
dk′ k′ ĉ†(k′)ĉ(k′) +H.c.,

ĤI
int = ~ε

∫ z0+l

z0

dz

∫ kmax

−kmax

dka

∫ kmax

−kmax

dkb

∫ kmax

−kmax

dkc e
−i(vt−z)(ka−kb−kc)

× â(ka) b̂
†(kb) ĉ

†(kc) +H.c., (2.9)

where

eivt
∫
dk′ k′ â†(k′)â(k′) â(ka) e

−ivt
∫
dk′ k′ â†(k′)â(k′) = â(ka) e

−ivkat,

eivt
∫
dk′ k′ b̂†(k′)b̂(k′) b̂†(kb) e

−ivt
∫
dk′ k′ b̂†(k′)b̂(k′) = b̂(kb) e

−ivkbt,

and

eivt
∫
dk′ k′ ĉ†(k′)ĉ(k′) ĉ†(kc) e

−ivt
∫
dk′ k′ ĉ†(k′)ĉ(k′) = ĉ(kc) e

−ivkct.
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This is the natural multimode generalization of the Hamiltonian in Eq.(2.3), under the

assumptions that the interaction takes place between two co-propagating wavepackets

traveling at the same velocity v, in a medium of length l. The bandwidth cutoff actually

makes the interaction nonlocal in space. The field operator (say for the a photon)

∫ kmax

−kmax

â(ka) e
−i(vt−z)ka dka

does not act at single space-time point, but over a range of values of vt− z, of the order of

1/2kmax. In other words, the truncated field operators in Eq. (2.9) annihilate and create a

photon, not necessarily precisely at z, but rather in a region of space of width 1/2kmax.

The most general field state under our assumptions (only one b and one c photons or

only one a photon) is written as

|ψ(t)〉 =

∫
dk1 ξa(k1, t) â

†(k1)|0〉a|0〉b|0〉c +

∫
dk2

∫
dk3 ξbc(k2, k3, t) |0〉a

× b̂†(k2)|0〉b ĉ†(k3)|0〉c. (2.10)

We shall now use Eqs. (2.9) and (2.10) to write down the Schrödinger equation:

|ψ̇〉 = −(i/~)ĤI
int|ψ〉, to get the equations of motion for the a and the b, c pulses. We have

assumed that the medium has a finite bandwidth 2kmax, so that photons with frequencies

which lie outside this window do not contribute to the time evolution.
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This procedure yields the following pair of differential equations:

∂

∂t
ξa(ka, t) = −iε

∫ z0+l

z0

dz

∫ kmax

−kmax

dkb

∫ kmax

−kmax

dkc e
i(vt−z)(ka−kb−kc) ξbc(kb, kc, t),

∂

∂t
ξbc(kb, kc, t) = −iε

∫ z0+l

z0

dz

∫ kmax

−kmax

dka e
−i(vt−z)(ka−kb−kc) ξa(ka, t). (2.11)

In order to solve this system of equations, we will introduce “envelope functions” f(t, z)

and g(t, z) for the a and the b, c pulses, respectively, which are defined as

f(t, z) ≡
∫ kmax

−kmax

dk ξa(k, t) e
−i(vt−z)k,

g(t, z) ≡
∫ kmax

−kmax

dk′
∫ kmax

−kmax

dk′′ ξbc(k
′, k′′, t) e−i(vt−z)(k

′+k′′). (2.12)

In terms of these two envelope functions, Eq. (2.11) can be rewritten as

∂

∂t
ξa(ka, t) = −iε

∫ z0+l

z0

dz ei(vt−z)ka g(t, z),

∂

∂t
ξbc(kb, kc, t) = −iε

∫ z0+l

z0

dz ei(vt−z)(kb+kc) f(t, z). (2.13)
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Clearly, the functions f(t, z) and g(t, z) satisfy the following propagation equation:

(
∂

∂t
+ v

∂

∂z

)
f(t, z) =

∫ kmax

−kmax

dk ξ̇a(k, t) e
−i(vt−z)k,

= iε

∫ z0+l

z0

dz′ g(t, z′)

∫ kmax

−kmax

dk eik(z−z′), (2.14)

where we have substituted for ξ̇a from the first of Eqs. (2.13). If we assume that the

“acceptance bandwidth” of the medium, 2kmax, is very large for the a photon, then we

could approximate the integral over k on the right hand side of Eq. (2.14) by a δ function,

2πδ(z− z′). However, to justify this approximation, 1/(2kmax) should be much smaller than

both l and the spatial width of the b, c pulse. This simplifies Eq. (2.14) to

(
∂

∂t
+ v

∂

∂z

)
f(t, z) ' −2πiε g(t, z) rect(z, z0, z0 + l), (2.15)

where the rectangle function rect(z, z0, z0 + l) is equal to 1 if z0 < z < z0 + l and zero

otherwise.

Next, we shall get the propagation equation for g(t, z). Clearly, we have

(
∂

∂t
+ v

∂

∂z

)
g(t, z) =

∫ kmax

−kmax

dk′
∫ kmax

−kmax

dk′′ ξ̇bc(k
′, k′′, t) e−i(vt−z)(k

′+k′′),

= −iε
∫ z0+l

z0

dz′ f(t, z′)

∫ kmax

−kmax

dk′ eik
′(z−z′)

∫ kmax

−kmax

dk′′ eik
′′(z−z′), (2.16)
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where we have substituted for ξ̇bc in the previous equation from the second of Eqs.

(2.13). Here we cannot simply let kmax go to infinity, since at least one of the integrals in

Eq. (2.16) will diverge. We can, nonetheless, under the same assumptions as before, replace

one of the integrals over k on the right hand side of the previous equation by 2πδ(z − z′),

following which the other integral will just have the value 2kmax, resulting in a more

compact equation for g(t, z):

(
∂

∂t
+ v

∂

∂z

)
g(t, z) = −4πiε kmax f(t, z) rect(z, z0, z0 + l). (2.17)

We now have to solve the system in Eqs. (2.15) and (2.17). To start with, we shall make

the following coordinate transformations: t′ = t− (z − z0)/v and z′ = z. In terms of these

new coordinates,

∂

∂t
+ v

∂

∂z
= v

∂

∂z′
.

Thus, Eqs. (2.15) and (2.17) can be rewritten as

∂

∂z′
f(t′, z′) = −2πiε

v
g(t′, z′), (2.18)

and

∂

∂z′
g(t′, z′) = −4πiεkmax

v
f(t′, z′). (2.19)
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It is evident that Eqs. (2.18) and (2.19) are coupled. The standard trick is to decouple

them and then solve for the envelope functions. We shall differentiate both sides of Eq.

(2.18) with respect to z′ and substitute for ∂g/∂z′ from Eq. (2.19), which would yield

∂2

∂z′2
f(t′, z′) = −8π2ε2kmax

v2
f(t′, z′) = −Ω2

v2
f(t′, z′), (2.20)

where Ω2 ≡ 8π2ε2kmax. The formal solution to this differential equation is

f(t′, z′) = A cos

[
Ω

v
(z′ − z0)

]
+B sin

[
Ω

v
(z′ − z0)

]
, (2.21)

where A and B are quantities which are independent of z′ but may well depend on t′.

At z′ = z0, A = f(t′, z0).

Next,

∂

∂z′
f(t′, z′) = −Ω

v
A sin

[
Ω

v
(z′ − z0)

]
+

Ω

v
B cos

[
Ω

v
(z′ − z0)

]
. (2.22)

From the previous equation, we see that at z′ = z0, B = (v/Ω)(∂f/∂z′)z′=z0 , and from

Eq. (2.18), we get B = −(2πiε/Ω)g(t′, z0). Note that f(t′, z0) = 0, since there is no a

photon until the interaction begins inside the medium [see Eq.(2.12)], which makes A

vanish, i.e. A = 0. This simplifies the solution in Eq.(2.21) to

f(t′, z′) = −2πiε

Ω
g(t′, z′ = z0) sin

[
Ω

v
(z′ − z0)

]
. (2.23)
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Our next task is to express the envelope function f in the previous equation, in terms of

the original coordinates (t, z). Noting that t′ = t− (z − z0)/v and z′ = z, we can see that at

t=0 and some constant t′, zinitial = −vt′ + z0. On substituting for t′ in terms of the original

coordinates, we get zinitial = z − vt, at t = 0. Thus, in terms of the original coordinates, Eq.

(2.23) gives us following solution, in the region z0 ≤ z ≤ z0 + l,

f(t, z) = −2πiε

Ω
g(0, z − vt) sin

[
Ω

v
(z − z0)

]
,

= − iΩ

4πεkmax
g(0, z − vt) sin

[
Ω

v
(z − z0)

]
, (2.24)

where we have substituted explicitly for Ω in the previous equation. On substituting the

formal solution for f(t, z) from Eq. (2.24) in Eq. (2.15), we get

g(t, z) = g(0, z − vt) cos

[
Ω

v
(z − z0)

]
. (2.25)

Our goal here is to obtain an explicit expression for ξbc(kb, kc, t). So as a first step toward

this goal, we shall substitute for f(t, z) from Eq. (2.24) in the second of Eqs. (2.13) to get

∂

∂t
ξbc(kb, kc, t) = − ω

4πkmax

∫ z0+l

z0

dz ei(vt−z)(kb+kc) g(0, z − vt)

× sin

[
Ω

v
(z − z0)

]
, (2.26)

and then formally integrate both sides of Eq. (2.26) with respect to time.
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This yields,

ξbc(kb, kc, t) = ξbc(kb, kc, 0)− Ω

4πkmax

∫ z0+l

z0

dz e−iz(kb+kc) sin

[
Ω

v
(z − z0)

]
×
∫ t

0

dτ ei(kb+kc)vτ g(0, z − vτ). (2.27)

Now the integral with respect to τ in Eq. (2.27) involves the spatial profile of the b, c

pulse. From the second of Eqs. (2.12), we get

g(0, z − vτ) =

∫ kmax

−kmax

dk′
∫ kmax

−kmax

dk′′ ξbc(k
′, k′′, 0) e−i(vτ−z)(k

′+k′′). (2.28)

The b and the c photons enter the medium (i.e. z = z0 ) at time t = 0. Note that the

variable z in Eq. (2.28) is confined to the range: z0 ≤ z ≤ z0 + l. This means that for t ≤ 0,

g(0, z − vt) should be negligible, in which case we can harmlessly extend the lower limit of

integration over τ to −∞. Furthermore, since we are ultimately interested in the state long

after the interaction with the medium is over, we can also formally extend the upper limit

of integration to ∞. So, now on inserting Eq. (2.28) in Eq. (2.27), we find that

∫ t

0

dτ ei(kb+kc)vτ g(0, z − vτ) =

∫ kmax

−kmax

dk′
∫ kmax

−kmax

dk′′ ξbc(k
′, k′′, 0) eiz(k

′+k′′)

×
∫ ∞
−∞

dτ ei(kb+kc−k′−k′′)vτ︸ ︷︷ ︸
(2π/v) δ(kb+kc−k′−k′′)

. (2.29)
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The δ function allows us to replace exp[iz(k′ + k′′)] in Eq. (2.29) by exp[iz(kb + kc)]

which will then cancel out its complex conjugate in Eq. (2.27).

Thus, on substituting Eq. (2.29) in Eq. (2.27), we obtain, in the long-time limit (t→∞)

ξbc(kb, kc, t→∞) = ξbc(kb,kc, 0)− Ω

2vkmax

∫ kmax

−kmax

dk′
∫ kmax

−kmax

dk′′ ξbc(k
′, k′′, 0)

× δ(kb + kc − k′ − k′′)
∫ z0+l

z0

dz sin

[
Ω

v
(z − z0)

]
. (2.30)

Our next task is to evaluate the integral over z which gives us

∫ z0+l

z0

dz sin

[
Ω

v
(z − z0)

]
=
v

Ω

[
1− cos

(
Ωl

v

)]
. (2.31)

We want to ensure that there is no a photon after the interaction with the medium is

over, i.e. for z > z0 + l, for all t. This means that we specifically want f(t, z0 + l) = 0, in Eq.

(2.24). Consequently, this implies that sin(Ωl/v) = 0 which means the integral in Eq. (2.30)

is either zero or 2v/Ω and when we incorporate this result in Eq. (2.30), we end up with

ξbc(kb, kc, t→∞) = ξbc(kb, kc, 0)− 1

kmax

∫ kmax

−kmax

dk′
∫ kmax

−kmax

dk′′ ξbc(k
′, k′′, 0)

× δ(kb + kc − k′ − k′′). (2.32)

From this result, the major obstacle to obtain a high fidelity, i.e. a large overlap with

the initial state, is immediately apparent. The two outgoing b and c photons with momenta
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kb and kc may be created from an initial pair having any momenta, k′ and k′′, subject to

the constraint k′ + k′′ = kb + kc. This is indeed the condition for momentum conservation.

This means that the final state may not spectrally resemble the initial state, very much at

all. Even if we assume that the initial state is factorizable, the final state given by Eq.

(2.32) is entangled in momentum. This is exactly the same problem one confronts in

schemes involving Kerr nonlinearities.

The expression for the final state in Eq. (2.32) may be simplified a little by introducing

two new variables η and Λ such that kb = (η + Λ)/2 and kc = (η − Λ)/2. This makes

dk′ dk′′ = (1/2) dΛ′ dη′. In terms of these new variables, Eq. (2.32) can be rewritten as

ξbc(η,Λ, t→∞) = ξbc(η,Λ, 0)− 1

2kmax

∫ 2kmax+|η′|

−2kmax+|η′|
dΛ′

∫ 2kmax

−2kmax

dη′ ξbc(η
′,Λ′, 0)

× δ(η − η′). (2.33)

On enforcing the δ function, we get a slightly more compact expression for the final

state given by

ξbc(η,Λ, t→∞) = ξbc(η,Λ, 0)− 1

2kmax

∫ 2kmax+|η|

−2kmax+|η|
dΛ′ ξbc(η,Λ

′, 0). (2.34)
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We can define a combined phase and fidelity, by the following quantity:

√
Feiφ = 〈ψ(0)|ψ(t)〉

=

∫ kmax

−kmax

dkb

∫ kmax

−kmax

dkc ξ
∗
bc(kb, kc, 0) ξbc(kb, kc, t→∞)

=
1

2

∫ 2kmax

−2kmax

dη

∫ 2kmax−|η|

−2kmax+|η|
dΛ ξ∗bc(η,Λ, 0) ξbc(η,Λ, t→∞). (2.35)

Fidelity is the overlap of the final state with the initial one. Note that the right-hand

side of this equation is always a real quantity. Unlike in a Kerr medium, the phase φ, here,

can take only two values, zero or π. The quantity in Eq. (2.35) would be equal to −1 for

the ideal transformation in Eq. (2.2).

On substituting Eq. (2.34) in Eq. (2.35), we get

√
Feiφ =

1

2

∫ 2kmax

−2kmax

dη

∫ 2kmax−|η|

−2kmax+|η|
dΛ |ξbc(η,Λ, 0)|2 − 1

4kmax

∫ 2kmax

−2kmax

dη

×

∣∣∣∣∣
∫ 2kmax−|η|

−2kmax+|η|
dΛ ξbc(η,Λ, 0)

∣∣∣∣∣
2

. (2.36)

This is the most general expression for a combined fidelity and phase, for an arbitrary

initial state. Next we shall calculate the fidelity for two different kinds of initial pulses viz.

a Gaussian and a hyperbolic secant. First we will do the calculation for a Gaussian pulse of

the form ξbc(η,Λ, 0) = 1/(σ
√
π) e−(η2+Λ2)/4σ2

.
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For this case, Eq. (2.36) can be rewritten as

√
Feiφ =

1

2πσ2

∫ 2kmax

−2kmax

dη

∫ 2kmax−|η|

−2kmax+|η|
dΛ e−(η2+Λ2)/2σ2

︸ ︷︷ ︸
I1

− 1

4πσ2kmax

∫ 2kmax

−2kmax

dη

∣∣∣∣∣
∫ 2kmax−|η|

−2kmax+|η|
dΛ e−(η2+Λ2)/2σ2

∣∣∣∣∣
2

︸ ︷︷ ︸
I2

. (2.37)

Our next task is to evaluate the two integrals I1 and I2.

I1 =
2

πσ2

∫ 2kmax

0

dη e−η
2/2σ2

∫ 2kmax−η

0

dΛ e−Λ2/2σ2

︸ ︷︷ ︸
I12

, (2.38)

where

I12 = σ

√
π

2
erf

(
2kmax − η
σ
√

2

)
.

In Eq. (2.38), we have exploited a property of the definite integrals for an even

integrand, and in the second integral, we have simply set Λ/σ
√

2 ≡ y and invoked the

definition of error function:

erf(x) ≡ 2√
π

∫ x

0

dz e−z
2

.

From this intermediate result, it is very clear that it is not possible to get an exact

expression for I1. We have to leave the final result as an integral involving error function.

30



On explicitly substituting for I12 in Eq. (2.38), we obtain

I1 =

√
2

σ
√
π

∫ 2kmax

0

dη e−η
2/2σ2

erf

(
2kmax − η
σ
√

2

)
=

2√
π

∫ √2kmax/σ

0

dx e−x
2

erf

(√
2kmax
σ

− x

)
, (2.39)

where in the second step of the previous equation, we have set η/
√

2σ ≡ x.

Following this, we shall now evaluate I2.

I2 =
2

πσ2kmax

∫ 2kmax

0

dη e−η
2/2σ2

∣∣∣∣∣∣∣∣
∫ 2kmax−η

0

dΛ e−Λ2/4σ2

︸ ︷︷ ︸
I21

∣∣∣∣∣∣∣∣
2

, (2.40)

where

I21 = σ
√
π erf

(
2kmax − η

2σ

)
.

We have followed the same procedure to evaluate I21 as we did for I12. Just like I1, it is

not possible to get an exact expression for I2. On substituting explicitly for I21 in Eq.

(2.40), we get

I2 =
2

kmax

∫ 2kmax

0

dη e−η
2/2σ2

∣∣∣∣erf

(
2kmax − η

2σ

)∣∣∣∣2
=

2
√

2σ

kmax

∫ √2kmax/σ

0

dx e−x
2

∣∣∣∣∣erf

[
1√
2

(√
2kmax
σ

− x

)]∣∣∣∣∣
2

, (2.41)

where in the second step of the previous equation, we have once again set η/
√

2σ ≡ x.
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On substituting Eqs. (2.39) and (2.41) in Eq. (2.37), we obtain

√
Feiφ =

2√
π

∫ √2kmax/σ

0

dx e−x
2

erf

(√
2kmax
σ

− x

)
− 2
√

2
σ

kmax

×
∫ √2kmax/σ

0

dx e−x
2

∣∣∣∣∣erf

[
1√
2

(√
2kmax
σ

− x

)]∣∣∣∣∣
2

. (2.42)

For a normalized Gaussian pulse, ξ(k) = (1/σ1/2π1/4) e−k
2/2σ2

, the variance of k is

related to σ by 〈k2〉 = σ2/2. This result is straightforward.

〈k2〉 =

∫ ∞
−∞

dk k2 |ξ(k)|2 =
1

σ
√
π

∫ ∞
−∞

dk k2 e−k
2/σ2

=
σ2

2
.

The bandwidth of the medium is also defined by the variance of its spectral

distribution. In this case, we have a rectangle function from −kmax to kmax. Thus, the

normalized spectral distribution of the medium is given by f(k) = 1/
√

2kmax and

∆k = kmax/
√

3 which can be easily shown:

(∆k)2 =

∫ kmax

−kmax

dk k2 |f(k)|2 =
1

2kmax

∫ kmax

−kmax

dk k2 =
k2
max

3
.

We shall introduce a dimensionless parameter α ≡ ∆k/
√
〈k2〉 =

√
2kmax/

√
3σ, in terms

of which Eq. (2.42) can be rewritten as

32



√
Feiφ =

2√
π

∫ √3α

0

dx e−x
2

erf(
√

3α− x)− 4√
3α

∫ √3α

0

dx e−x
2

×
∣∣∣∣erf

[
1√
2

(
√

3α− x)

]∣∣∣∣2 . (2.43)

The parameter α is the ratio of the medium’s bandwidth to the rms frequency spread of

the incoming pulse.
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Figure 2.1: Square-root fidelity and phase for hyperbolic secant (red) and Gaussian (blue)
pulses, as functions of α. In this figure, φ has only two values, zero when the overlap is
positive and π when it is negative.

The fidelity of a Gaussian pulse is plotted as the blue curve in figure (2.1), for a range

of values of α and we find that that it is always low, i.e. F < (−0.3)2 = 0.09.
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Next we shall calculate the fidelity of a hyperbolic secant pulse of the form

ξb(kb) = 1/(
√

2σ) sech(kb/σ) and ξc(kc) = 1/(
√

2σ) sech(kc/σ). In terms of the new

variables η and Λ that we introduced earlier, this pulse can be rewritten as

ξbc(η,Λ, 0) = 1/(2σ) sech[(η + Λ)/2σ] sech[(η − Λ)/2σ].

On inserting the hyperbolic secant pulse in Eq. (2.36), we get

√
Feiφ =

1

8σ2

∫ 2kmax

−2kmax

dη

∫ 2kmax−|η|

−2kmax+|η|
dΛ sech2

(
η + Λ

2σ

)
sech2

(
η − Λ

2σ

)

− 1

16kmaxσ2

∫ 2kmax

−2kmax

dη

∣∣∣∣∣
∫ 2kmax−|η|

−2kmax+|η|
dΛ sech

(
η + Λ

2σ

)
sech

(
η − Λ

2σ

)∣∣∣∣∣
2

. (2.44)

Here, it is effective to use the following identity:

sech

(
η + Λ

2σ

)
sech

(
η − Λ

2σ

)
=

2

cosh(η/σ) + cosh(Λ/σ)
.

On using this identity in Eq. (2.44), we get

√
Feiφ =

1

2σ2

∫ 2kmax

−2kmax

dη

∫ 2kmax−|η|

−2kmax+|η|
dΛ

(
1

cosh(η/σ) + cosh(Λ/σ)

)2

︸ ︷︷ ︸
I3

− 1

4kmaxσ2

∫ 2kmax

−2kmax

dη

∣∣∣∣∣
∫ 2kmax−|η|

−2kmax+|η|
dΛ

1

cosh(η/σ) + cosh(Λ/σ)

∣∣∣∣∣
2

︸ ︷︷ ︸
I4

. (2.45)
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The next task, obviously, is to evaluate I3 and I4.

I3 =
2

σ2

∫ 2kmax

0

dη

∫ 2kmax−η

0

dΛ

(
1

cosh(η/σ) + cosh(Λ/σ)

)2

︸ ︷︷ ︸
I31

, (2.46)

where

I31 =
σ

2
cosech2

(η
σ

)[
2 coth

(η
σ

)(
log

[
cosh

(
kmax
σ

)]
− log

[
cosh

(
kmax
σ
− η

σ

)])]
− σ

2
cosech2

(η
σ

)
sech

(
kmax
σ

)
sech

(
kmax
σ
− η

σ

)
sinh

(
2kmax
σ
− η

σ

)
.

In Eq. (2.46), we have once again invoked the property of an even integrand over a

symmetric range of integration and set Λ/σ ≡ x to compute I31. On explicitly substituting

for I31 in Eq. (2.46) and furthermore, setting η/σ ≡ y, we obtain

I3 = 2

∫ 2kmax/σ

0

dy cosech2(y) coth(y)

([
log

(
kmax
σ

)]
− log

[
cosh

(
kmax
σ
− y
)])

−
∫ 2kmax/σ

0

dy cosech2(y) sech

(
kmax
σ

)
sech

(
kmax
σ
− y
)

sinh

(
2kmax
σ
− y
)
. (2.47)

This is the best we can get analytically for I3. We cannot obtain a closed form solution

for this integral. Following this, we shall evaluate I4.

I4 =
2

kmaxσ2

∫ 2kmax

0

dη

∣∣∣∣∣∣∣∣∣
∫ 2kmax−η

0

dΛ
1

cosh(η/σ) + cosh(Λ/σ)︸ ︷︷ ︸
I41

∣∣∣∣∣∣∣∣∣
2

, (2.48)
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where

I41 = σ cosech
(η
σ

)(
log

[
cosh

(
kmax
σ

)]
− log

[
cosh

(
kmax
σ
− η

σ

)])
.

We have followed the same procedure here that we did to evaluate I3. It is evident from

this result that it not possible to get an exact expression for I4 either. We have to leave the

final result as an integral. On explicitly substituting for I41 in Eq. (2.48) and once again

setting η/σ ≡ y, we obtain

I4 =
2σ

kmax

∫ 2kmax/σ

0

dy cosech2(y)

(
log

[
cosh

(
kmax
σ

)]
− log

[
cosh

(
kmax
σ
− y
)])2

.

(2.49)

Now, on directly substituting Eqs. (2.47) and (2.49) in Eq. (2.45), we get the following

expression for fidelity of a hyperbolic secant pulse:

√
Feiφ = 2

∫ 2kmax/σ

0

dy cosech2(y) coth(y)

([
log

(
kmax
σ

)]
− log

[
cosh

(
kmax
σ
− y
)])

−
∫ 2kmax/σ

0

dy cosech2(y) sech

(
kmax
σ

)
sech

(
kmax
σ
− y
)

sinh

(
2kmax
σ
− y
)

− 2σ

kmax

∫ 2kmax/σ

0

dy cosech2(y)

(
log

[
cosh

(
kmax
σ

)]
− log

[
cosh

(
kmax
σ
− y
)])2

.

(2.50)
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For a normalized hyperbolic secant pulse, the variance of k is related to σ by

〈k2〉 = π2σ2/2 which can be easily shown:

〈k2〉 =

∫ ∞
−∞

dk k |ξ(k)|2 =
1

2σ

∫ ∞
−∞

dk k2 sech2(k/σ) = π2σ2/12.

We have already seen earlier that for the medium, ∆k = kmax/
√

3. Once again, we shall

define α ≡ ∆k/
√
〈k〉2. For a hyperbolic secant pulse, we have α = 2kmax/πσ, in terms of

which we can rewrite Eq. (2.50) as

√
Feiφ = 2

∫ πα

0

dy cosech2(y) coth(y)
([

log
(π

2
α
)]
− log

[
cosh

(π
2
α− y

)])
−
∫ πα

0

dy cosech2(y) sech
(π

2
α
)

sech
(π

2
α− y

)
sinh (πα− y)

− 4

πα

∫ πα

0

dy cosech2(y)
(

log
[
cosh

(π
2
α
)]
− log

[
cosh

(π
2
α− y

)])2

. (2.51)

The fidelity of a hyperbolic secant pulse is plotted as the red curve in figure (2.1). It is

very clear from this figure that for both these pulses, the fidelity is always low. The limit

α→ 0 corresponds to the narrow bandwidth regime. Reducing the medium bandwidth

results in less and less of the wavepacket being transmitted through the medium which is

why the fidelity (F ) goes to zero as α→ 0. On the other hand, the opposite limit α→∞

corresponds to the large bandwidth regime which represents fast nonlinearity. In other

words, in this limit the response time of the medium is much shorter compared to the

duration of the pulses. Thus, in a long pulse, the probability that two photons could

randomly be found within the same narrow time window corresponding to the response
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time of the medium, is negligible as a result of which the nonlinear effects vanish in this

limit. This simply means that when the bandwidth of the medium is large, the two photons

propagate without interacting with the medium which is why F → 1 as α→∞. In both

the cases, the largest overlap with the initial state (with a π phase shift) happens around

α = 1. In this regime, the medium bandwidth and the pulse bandwidth are evenly

matched, in the frequency domain.

Based on the analytical calculation, the conclusion that we get a π phase shift when the

medium bandwidth and the pulse bandwidth are of the same order of magnitude

invalidates some of the approximations we made in our theoretical analysis, particularly

the introduction of delta functions in Eqs. (2.15) and (2.17) under the assumption that the

medium’s “acceptance bandwidth” is much larger than the rms frequency of the pulse.

So, in order to get a better understanding of the result in this crucial region (α = 1), we

have carried out a numerical integration of Eq. (2.11) without any further approximation

and assumption. For our numerical calculation, we place the pulse and the medium (with a

set of discrete modes) in a region of space of length L with periodic boundary conditions,

and integrate for one round trip. Changing the bandwidth of the medium is equivalent to

changing the number of modes used in the calculations. So the result is given by a set of

discrete points in figure (2.2). For each point, i.e. for a given number of modes, we have

looked for the value of ε that optimizes the fidelity.

Figure (2.2) shows that our analytical calculation underestimates the achievable fidelity

around α ' 1. However, the fidelity still remains small (F < 0.36). For an initial Gaussian

pulse, two sets of results are plotted in figure (2.2). In the first case, we simply plot the

overlap between the final and initial state as given by the numerical calculation and filtered
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by the medium. Here, the norm of the final state will most likely be less than 1, reflecting

the possibility of absorption of photons in the medium. In the second case which is more

favorable, we renormalize the final b− c state before calculating the overlap with the initial

state. This means that we are calculating a “conditional” fidelity on the assumption that

the b and the c photons do not get absorbed in the medium.
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Figure 2.2: Numerically calculated fidelity for Gaussian pulses (dots) compared to the an-
alytical approximation (continuous line). The darker dots (upper trace) show the result for
the un-normalized wavepacket, so they implicitly include the effect of medium absorption.
The lighter dots (lower trace) use a renormalized wave function, so they give the fidelity
conditioned on the photons not being absorbed.

2.3 Cavity configuration

In this section, we place the nonlinear medium inside a one-sided optical cavity. One of the

primary reasons to study this system is because cavities can help enhance weak
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nonlinearities. Besides, a cavity provides a natural bandwidth for the system through the

field’s decay rate, and as an added incentive, in the absence of other losses, it provides us

with a setup for which an analytical solution can be obtained.

The system comprising of a nonlinear medium in a cavity, and neglecting absorption

losses or spontaneous emission into off-axis modes, can be considered to be a closed system

that can be treated by the Hamiltonian formalism. Once again, we shall work in the

continuous mode description in the interaction picture, but here, for notational

convenience, we label the modes by frequency instead of wave vector.

The most general state is written as

|ψ(t)〉 =

∫
dω ξa(ω, t) â

†
ω|0〉a|0〉b|0〉c +

∫
dω′
∫
dω′′ ξbc(ω

′.ω′′, t) |0〉a b̂†ω′|0〉b ĉ
†
ω′′|0〉c (2.52)

and the Hamiltonian corresponding to the nonlinear interaction in a cavity is written as

Ĥ = ~g[Â†(t) B̂(t) Ĉ(t) + Â(t) B̂†(t) Ĉ†(t)], (2.53)

where g is the coupling strength and Â(t), B̂(t) and Ĉ(t) are the cavity quasimode

operators, which in the continuous mode formalism [14, 15] can be written as
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Â(t) =

∫
dω

√
κ/π

κ− i(∆a + ω)
âωe

−iωt,

B̂(t) =

∫
dω

√
κ/π

κ− i(∆b + ω)
b̂ωe
−iωt,

Ĉ(t) =

∫
dω

√
κ/π

κ− i(∆c + ω)
ĉωe
−iωt. (2.54)

In Eq. (2.54), κ is the cavity decay rate and ∆a, ∆b and ∆c are the cavity-field

detunings for the a, b and c photons, respectively. The operators âω, b̂ω and ĉω obey the

canonical commutation relations: [âω, â
†
ω′ ] = [b̂ω, b̂

†
ω′ ] = [ĉω, ĉ

†
ω′ ] = δ(ω − ω′).

Assuming a doubly resonant cavity, i.e. ∆a = ∆b = ∆c = 0 and on inserting Eqs. (2.52),

(2.53) and (2.54) in the Schrödinger equation: |ψ̇〉 = −(i/~)Ĥ|ψ〉, we get the following pair

of differential equations for the a and the b, c pulses:

∂

∂t
ξa(ω, t) = −ig

(κ
π

)3/2 eiωt

κ+ i ω

∫
dω′
∫
dω′′

e−i(ω
′+ω′′)t

(κ− i ω′)(κ− i ω′′)
ξbc(ω

′, ω′′, t),

∂

∂t
ξbc(ω

′, ω′′, t) = −ig
(κ
π

)3/2 ei(ω
′+ω′′)t

(κ+ i ω′)(κ+ i ω′′)

∫
dω

e−iωt

κ− i ω
ξa(ω, t),

(2.55)

which can be solved by the method of Laplace transform [16]. The Laplace transform of

the system in Eqs. (2.55) is given by

s ξ̃a(ω, s)− ξa(ω, 0) = −ig
(κ
π

)3/2
∫
dω′
∫
dω′′

ξ̃bc(ω
′, ω′′, s+ i(ω′ + ω′′ − ω))

(κ+ iω)(κ− iω′)(κ− iω′′)
, (2.56)
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and

s ξ̃bc(ω
′, ω′′, s)− ξbc(ω′, ω′′, 0) = −ig

(κ
π

)3/2
∫
dω

ξ̃a(ω, s+ i(ω − ω′ − ω′′))
(κ− iω)(κ+ iω′)(κ+ iω′′)

, (2.57)

where ξ̃a and ξ̃bc are the Laplace transform of ξa and ξbc, respectively. Our next step is

to substitute for ξ̃bc(ω
′, ω′′, s+ i(ω′ + ω′′ − ω)) in Eq. (2.56) in terms of ξ̃a using Eq. (2.57).

In Eq. (2.57), on shifting s→ s+ i(ω′ + ω′′ − ω), we get

ξ̃bc(ω
′, ω′′, s+ i(ω′ + ω′′ − ω)) =

ξbc(ω
′, ω′′, 0)

s+ i(ω′ + ω′′ − ω)
− ig

(κ
π

)3/2 1

s+ i(ω′ + ω′′ − ω)

×
∫
dω′′′

ξ̃a(ω
′′′, s+ i(ω′′′ − ω))

(κ− iω′′′)(κ+ iω′)(κ+ iω′′)
. (2.58)

Now, on directly substituting Eq. (2.58) in Eq. (2.56) and furthermore setting

ξa(ω, 0) = 0 since there is no a photon at t = 0, we obtain

ξ̃a(ω, s) =− ig
(κ
π

)3/2 1

s(κ+ iω)

∫
dω′
∫
dω′′

ξbc(ω
′, ω′′, 0)

[s+ i(ω′ + ω′′ − ω)](κ− iω′)(κ− iω′′)

−
(κ
π

)3

g2 1

s(κ+ iω)

∫
dω′
∫
dω′′

1

[s+ i(ω′ + ω′′ − ω)](κ2 + ω′2)(κ2 + ω′′2)︸ ︷︷ ︸
I

×
∫
dω′′′

ξ̃a(ω
′′′, s+ i(ω′′′ − ω))

κ− iω′′′
,

(2.59)
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where

I =
(π
κ

)2 1

s+ 2κ− iω
.

On explicitly substituting for I in Eq. (2.59), we get

ξ̃a(ω, s) = −ig
(κ
π

)3/2 1

s(κ+ iω)

∫
dω′
∫
dω′′

ξbc(ω
′, ω′′, 0)

[s+ i(ω′ + ω′′ − ω)](κ− iω′)(κ− iω′′)

−
(κ
π

)
g2 1

s(κ+ iω)

1

s+ 2κ− iω

∫
dω′′′

ξ̃a(ω
′′′, s+ i(ω′′′ − ω))

κ− iω′′′
. (2.60)

In order to make our calculation more compact, we shall define the following two

functions:

F (ω, s) ≡ −ig
(κ
π

)3/2 1

s(κ+ iω)

∫
dω′
∫
dω′′

ξbc(ω
′, ω′′, 0)

[s+ i(ω′ + ω′′ − ω)](κ− iω′)(κ− iω′′)

and

E(s− iω) ≡
(κ
π

)
g2 1

s+ 2κ− iω
.

In terms of these new definitions, Eq. (2.60) can be rewritten as

ξ̃a(ω, s) = F (ω, s)− 1

s

E(s− iω)

κ+ iω

∫
dω′′′

ξ̃a(ω
′′′, s+ i(ω′′′ − ω))

κ− iω′′′
. (2.61)

Eq. (2.61) can be solved by shifting to dummy arguments in the same equation, viz.

ω → ω′ and s→ s+ i(ω′ − ω).
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This yields,

ξ̃a(ω
′, s+ i(ω′ − ω)) = F (ω′, s+ i(ω′ − ω))− 1

s+ i(ω′ − ω)

E(s− iω)

κ+ iω′

×
∫
dω′′′

ξ̃a(ω
′′′, s+ i(ω′′′ − ω)

κ− iω′′′
. (2.62)

Following this, we shall divide both sides of the previous equation by κ− iω′ and

integrate over ω′ which results in

∫
dω′

ξ̃a(ω
′, s+ i(ω′ − ω))

κ− iω′︸ ︷︷ ︸
Ĩ

=

∫
dω′

F (ω′, s+ i(ω′ − ω))

κ− iω′
− E(s− iω′)

×
∫
dω′

1

(s+ i(ω′ − ω))(κ2 + ω′2)︸ ︷︷ ︸
II

×
∫
dω′′′

ξ̃a(ω
′′′, s+ i(ω′′′ − ω))

κ− iω′′′︸ ︷︷ ︸
Ĩ

, (2.63)

where

II =
π

κ

1

s+ κ− iω
.

On explicitly substituting for II in Eq. (2.63), we can easily solve for Ĩ which is given by

Ĩ =

∫
dω′

F (ω′, s+ i(ω′ − ω))

κ− iω′
− π

κ

E(s− iω)

s+ κ− iω
Ĩ,

Ĩ =

(
1 +

π

κ

E(s− iω)

s+ κ− iω

)−1 ∫
dω′

F (ω′, s+ i(ω′ − ω))

κ− iω′
. (2.64)
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Next, we shall substitute the explicit expression for Ĩ in Eq. (2.61), which yields

ξ̃a(ω, s) = F (ω, s)− 1

s

E(s− iω)

κ+ iω

(
1 +

π

κ

E(s− iω)

s+ κ− iω

)−1

×
∫
dω′′′

F (ω′′′, s+ i(ω′′′ − ω))

κ− iω′′′
, (2.65)

where in the previous equation, we have replaced the variable of integration in the last

integral to ω′′′. In the definition of F , on shifting ω → ω′′′ and s→ s+ i(ω′′′ − ω), we get

the following explicit form for F (ω′′′, s+ i(ω′′′ − ω)):

F (ω′′′, s+ i(ω′′′ − ω)) = −ig
(κ
π

)3/2 1

[s+ i(ω′′′ − ω)] (κ+ iω′′′)

×
∫
dω′
∫
dω′′

ξbc(ω
′, ω′′, 0)

[s+ i(ω′ + ω′′ − ω)](κ− iω′)(κ− iω′′)
. (2.66)

On directly substituting Eq. (2.66) and the explicit form for E [see below Eq. (2.60)] in

Eq. (2.65), we obtain

ξ̃a(ω, s) = −ig
(κ
π

)3/2 1

s(κ+ iω)

∫
dω′
∫
dω′′

ξbc(ω
′, ω′′, 0)

[s+ i(ω′ + ω′′ − ω)](κ− iω′)(κ− iω′′)

+ ig3
(κ
π

)5/2 1

s(κ+ iω)

s+ κ− iω
g2 + (s+ 2κ− iω)(s+ κ− iω)

∫
dω′′′

1

[s+ i(ω′′′ − ω)](κ2 + ω′′′2)

×
∫
dω′
∫
dω′′

ξbc(ω
′, ω′′, 0)

[s+ i(ω′ + ω′′ − ω)](κ− iω′)(κ− iω′′)
. (2.67)
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The next step is to substitute for ξ̃a in Eq. (2.57) in terms of ξbc(ω
′, ω′′, 0) from Eq.

(2.67). In the previous equation, on shifting to dummy arguments viz. ω → ω′′′ and

s→ s+ i(ω′′′ − ω′ − ω′′), we get

ξ̃a(ω
′′′, s+ i(ω′′′ − ω′ − ω′′)) = −ig

(κ
π

)3/2 1

[s+ i(ω′′′ − ω′ − ω′′)](κ+ iω′′′)

×
∫
dω1

∫
dω2

ξbc(ω1, ω2, 0)

[s+ i(ω1 + ω2 − ω′ − ω′′)](κ− iω1)(κ− iω2)

+ ig3
(κ
π

)5/2 1

[s+ i(ω′′′ − ω′ − ω′′)](κ+ iω′′′)

× s+ κ− i(ω′ + ω′′)

g2 + [s+ 2κ− i(ω′ + ω′′)] [s+ κ− i(ω′ + ω′′)]

×
∫
dω3

1

[s+ i(ω3 − ω′ − ω′′)] (κ2 + ω2
3)

×
∫
dω1

∫
dω2

ξbc(ω1, ω2, 0)

[s+ i(ω1 + ω2 − ω′ − ω′′)] (κ− iω1) (κ− iω2)
. (2.68)

This can be directly substituted in Eq. (2.57) which finally yields

ξ̃bc(ω
′, ω′′, s) =

1

s
ξbc(ω

′, ω′′, 0)− g2
(κ
π

)3 1

s

∫
dω′′′

1

[s+ i(ω′′′ − ω′ − ω′′)](κ2 + ω′′′2)

× 1

(κ+ iω′)(κ+ iω′′)

∫
dω1

∫
dω2

ξbc(ω1, ω2, 0)

[s+ i(ω1 + ω2 − ω′ − ω′′)](κ− iω1)(κ− iω2)

+ g4
(κ
π

)4 1

s

∫
dω′′′

1

s+ i(ω′′′ − ω′ − ω′′)
1

(κ+ iω′)(κ+ iω′′)(κ2 + ω′′′2)

× s+ κ− i(ω′ + ω′′)

g2 + (s+ 2κ− i(ω′ + ω′′))(s+ κ− i(ω′ + ω′′))

×
∫
dω3

1

[s+ i(ω3 − ω′ − ω′′)](κ2 + ω2
3)

×
∫
dω1

∫
dω2

ξbc(ω1, ω2, 0)

[s+ i(ω1 + ω2 − ω′ − ω′′)](κ− iω1)(κ− iω2)
. (2.69)
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Eq. (2.69) is the formal solution to our problem in the s-domain. In order to get the

formal solution as a function of time, we have to invert the previous equation. But full

inversion of Eq. (2.69) could be substantially complicated. In many cases, it might not even

be possible. However, we are only interested in the pulse long after its interaction with the

nonlinear medium inside the cavity. In other words, we only require the asymptotic state,

i.e. limt→∞ ξbc(ω
′, ω′′, t). We can then exploit the final value theorem of operational calculus

which says that limt→∞ ξbc(ω
′, ω′′, t) = lims→0 s ξ̃bc(ω

′, ω′′, s).

This gives us

lim
s→0

[s ξ̃bc(ω
′, ω′′, s)] = ξbc(ω

′, ω′′, 0)− g2
(κ
π

)3 1

(κ+ iω′)(κ+ iω′′)

× lim
s→0

∫
dω′′′

1

[s+ i(ω′′′ − ω′ − ω′′)](κ2 + ω′′′2)︸ ︷︷ ︸
I1

× lim
s→0

∫
dω1

∫
dω2

ξbc(ω1, ω2, 0)

[s+ i(ω1 + ω2 − ω′ − ω′′)](κ− iω1)(κ− iω2)︸ ︷︷ ︸
I2

+ g4
(κ
π

)4 1

(κ+ iω′)(κ+ iω′′)
lim
s→0

∫
dω′′′

1

[s+ i(ω′′′ − ω′ − ω′′)](κ2 + ω′′′2)︸ ︷︷ ︸
I1

× κ− i(ω′ + ω′′)

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω”)]

× lim
s→0

∫
dω3

1

[s+ i(ω3 − ω′ − ω′′)](κ2 + ω2
3)︸ ︷︷ ︸

I1

× lim
s→0

∫
dω1

∫
dω2

ξbc(ω1, ω2, 0)

[s+ i(ω1 + ω2 − ω′ − ω′′)](κ− iω1)(κ− iω2)︸ ︷︷ ︸
I2

, (2.70)
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where

I1 =
π

κ

1

κ− i(ω′ + ω′′)
,

and

I2 = 2π

∫
dω1

ξbc(ω1, ω
′ + ω′′ − ω1, 0)

(κ− iω1)[κ− i(ω′ + ω′′ − ω1)]
.

The integral I2 is evaluated from the calculus of residues. We have computed this

integral over ω2 and expressed the result in terms of an integral over ω1. We shall assume

that the initial state ξbc(ω1, ω2, 0) is factorizable, i.e. ξbc(ω1, ω2, 0) = ξb(ω1, 0) ξc(ω2, 0). It is

legitimate to assume that the wavepacket ξ(ω) vanishes as ω →∞ since it must be

normalizable. Since we are integrating over ω2, what we need to compute is

∫
dω2

ξc(ω2)

[s+ i(ω1 + ω2 − ω′ − ω′′)](κ− iω2)
.

Note that ξc(ω2) is the Fourier transform of the incoming pulse, which we we may take

to vanish for t < 0. Thus, the function ξc(ω2) ought to be of the form

ξc(ω2) ∼
∫ ∞

0

ξc(t) e
iω2t dt.

Since t > 0, we close the contour using a semicircle in the upper half of the complex ω2

plane [i.e. Im(ω2) > 0] and then we shall evaluate the integral using the theorem of

residues. Since we are in the upper half plane, only the poles with positive imaginary part
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will contribute to the result. In the integral over ω2, of the two terms in the denominator,

only [s+ i(ω1 + ω2 − ω′ − ω′′)] has a pole with a positive imaginary part, i.e. for this term,

the pole is at ω2 = ω′ + ω′′ − ω1 + is. So we just need to calculate the residue at this pole

which then gives us the final result for I2.

Next, on explicitly substituting for I1 and I2 in Eq. (2.70) and carrying out some

simplification, we obtain

lim
s→0

[s ξ̃bc(ω
′, ω′′, s)] = ξbc(ω

′, ω′′, 0)− 2g2κ2

π

1

(κ+ iω′)(κ+ iω′′)

× 2κ− i(ω′ + ω′′)

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)]

×
∫
dω1

ξbc(ω1, ω
′ + ω′′ − ω1, 0)

(κ− iω1)[κ− i(ω′ + ω′′ − ω1)]
. (2.71)

The integral in Eq. (2.71) can be simplified by making use of a partial fraction

decomposition. Note that

1

(κ− iω1)[κ− i(ω′ + ω′′ − ω1)]
=

1

2κ− i(ω′ + ω′′)

[
1

κ− iω1

+
1

κ− i(ω′ + ω′′ − ω1)

]
. (2.72)
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On substituting Eq. (2.72) in Eq. (2.71), we get

lim
s→0

[s ξ̃bc(ω
′, ω′′, s)] = ξbc(ω

′, ω′′, 0)− 2g2κ2

π

1

(κ+ iω′)(κ+ iω′′)

× 1

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)]

×
(∫

dω1
ξbc(ω1, ω

′ + ω′′ − ω1, 0)

κ− iω1

+

∫
dω1

ξbc(ω1, ω
′ + ω′′ − ω1, 0)

κ− i(ω′ + ω′′ − ω1)

)
.(2.73)

In the second integral on the right hand side of the previous equation, if we set

ω′ + ω′′ − ω1 ≡ ω, it becomes identical to the first integral, which then simplifies Eq. (2.74)

to the following form:

lim
s→0

[s ξ̃bc(ω
′, ω′′, s)] = ξbc(ω

′, ω′′, 0)− 4g2κ2

π

1

(κ+ iω′)(κ+ iω′′)

× 1

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)]

∫
dω1

ξbc(ω1, ω
′ + ω′′ − ω1, 0)

κ− iω1

. (2.74)

In order to get the actual spectrum of the outgoing field, we should multiply the

expression in Eq. (2.74) by the “empty cavity” factors (κ+ iω′)/(κ− iω′) and

(κ+ iω′′)/(κ− iω′′).

50



Thus, the expression for fidelity, i.e. the overlap of the final state with the initial one, is

then expressed as

√
Feiφ =

∫
dω′
∫
dω′′

(
κ+ iω′

κ− iω′

) (
κ+ iω′′

κ− iω′′

)
ξ∗bc(ω

′, ω′′, 0) lim
s→0

[s ξ̃bc(ω
′, ω′′, s)]

=

∫
dω′
∫
dω′′

(
κ+ iω′

κ− iω′

) (
κ+ iω′′

κ− iω′′

)
|ξbc(ω′, ω′′, 0)|2 − 4g2κ2

π

×
∫
dω′
∫
dω′′

1

(κ− iω′)(κ− iω′′)
ξ∗bc(ω

′, ω′′, 0)

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)]

×
∫
dω1

ξbc(ω1, ω
′ + ω′′ − ω1, 0)

κ− iω1

. (2.75)

We can obtain a particularly simple result in the strong-coupling limit in which g is

much greater than both the cavity bandwidth κ and the pulse bandwidth as a result of

which we can approximate g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)] ≈ g2. In this limit, the

expression for square-root fidelity and phase in Eq. (2.75) simplifies to

√
Feiφ =

∫
dω′
∫
dω′′

(
κ+ iω′

κ− iω′

) (
κ+ iω′′

κ− iω′′

)
|ξbc(ω′, ω′′, 0)|2 − 4κ2

π

×
∫
dω′
∫
dω′′

ξ∗bc(ω
′, ω′′, 0)

(κ− iω′)(κ− iω′′)

∫
dω1

ξbc(ω1, ω
′ + ω′′ − ω1, 0)

κ− iω1

. (2.76)

A common situation is when the initial b and c pulses are identical that can be

represented by some function of time, ξ(t). In such a case, the initial spectrum is given by

ξbc(ω
′, ω′′, 0) = 1

2π

∫
dt′ eiω

′t′ ξ(t′)
∫
dt′′ eiω

′′t′′ ξ(t′′).
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On substituting for the initial pulse in Eq. (2.76) in terms of time-domain integrals, we

get

√
Feiφ =

1

4π2

∫
dω′
∫
dω′′

(
1− 2κ

κ− iω′
− 2κ

κ− iω′′
+

4κ2

(κ− iω′)(κ− iω′′)

)
×
∫
dt1 ξ

∗
b (t1) e−iω

′t1

∫
dt2 ξ

∗
c (t2) e−iω

′′t2

∫
dt3 ξb(t3) eiω

′t3

×
∫
dt4 ξb(t4) eiω

′′t4 −
(
κ2

π3

)∫
dt1 ξ

∗
b (t1)

∫
dt2 ξ

∗
c (t2)

∫
dt3 ξb(t3)

×
∫
dt4 ξb(t4)

∫
dω′

eiω
′(t4−t1)

κ− iω′

∫
dω′′

eiω
′′(t4−t2)

κ− iω′′

∫
dω1

eiω1(t4−t2)

κ− iω1

. (2.77)

In the previous equation, we have made use of the following identity in the first term:

(κ+ iω)/(κ− iω) = −1 + (2κ/κ− iω). Note that κ > 0.

In order to simplify Eq. (2.77) further, we shall repeatedly use the following result:

∫
dω

eiω(t−τ)

κ− iω
=


2π eκ(t−τ), if t− τ < 0

0, otherwise.

(2.78)

In Eq. (2.77), we shall denote the first term as T1 and the second term as T2. Thus, on

simplifying each term (i.e. T1 and T2) in Eq. (2.77) separately using the result in Eq.

(2.78), we obtain the following expressions for the two terms:
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T1 ≡
1

4π2

∫
dω′
∫
dω′′

(
1− 2κ

κ− iω′
− 2κ

κ− iω′′
+

4κ2

(κ− iω′)(κ− iω′′)

)
×
∫
dt1 ξ

∗
b (t1) e−iω

′t1

∫
dt2 ξ

∗
c (t2) e−iω

′′t2

∫
dt3 ξb(t3) eiω

′t3

×
∫
dt4 ξb(t4) eiω

′′t4

= 1− 2κ

∫ ∞
−∞

dt1 ξ
∗
b (t1) e−κt1

∫ t1

−∞
dt3 ξb(t3) eκt3 − 2κ

∫ ∞
−∞

dt2 ξ
∗
c (t2) e−κt2

×
∫ t2

−∞
dt4 ξc(t4) eκt4 + 4κ2

∫ ∞
−∞

dt1 ξ
∗
b (t1) e−κt1

∫ t1

−∞
dt3 ξb(t3) eκt3

×
∫ ∞
−∞

dt2 ξ
∗
c (t2) e−κt2

∫ t2

−∞
dt4 ξc(t4) eκt4 , (2.79)

and

T2 ≡
(
κ2

π3

)∫
dt1 ξ

∗
b (t1)

∫
dt2 ξ

∗
c (t2)

∫
dt3 ξb(t3)

×
∫
dt4 ξb(t4)

∫
dω′

eiω
′(t4−t1)

κ− iω′

∫
dω′′

eiω
′′(t4−t2)

κ− iω′′

∫
dω1

eiω1(t4−t2)

κ− iω1

= 8κ2

∫ ∞
−∞

dt4 ξc(t4) eκt4
∫ ∞
t4

dt1 ξ
∗
b (t1) e−κt1

∫ ∞
t4

dt2 e
−κt2

×
∫ t4

−∞
dt3 ξb(t3) eκt3 . (2.80)

Next, on substituting the results from Eqs. (2.79) and (2.80) in Eq. (2.77) and

furthermore, assuming that ξb(t) and ξc(t) are identical and real, we finally obtain, in the

strong coupling limit, the following expression for fidelity, in terms of time-domain integrals:
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√
Feiφ = T1 − T2

= 1− 4κ

∫ ∞
−∞

dt ξ(t) e−κt
∫ t

−∞
dt′ ξ(t′) eκt

′

+ 4κ2

[∫ ∞
−∞

dt ξ(t) e−κt
∫ t

−∞
dt′ ξ(t′) eκt

′
]2

− 8κ2

∫ ∞
−∞

dt ξ(t) eκt
[∫ ∞

t

dt′ ξ(t′) e−κt
′
]2

×
∫ t

−∞
dt′′ ξ(t′′) eκt

′′
. (2.81)

Now we shall consider some specific examples to calculate the combined fidelity-phase.

First, we shall consider the case in which the initial pulse is a Gaussian of duration T . As

mentioned earlier, we shall assume that the initial state is factorizable, i.e.

ξbc(ω
′, ω′′, 0) = ξb(ω

′, 0) ξc(ω
′′, 0), where ξb and ξc are both given by

ξ(ω, 0) =
√
T/
√
π exp[−ω2 T 2/2]. We shall use Eq. (2.75) to calculate the fidelity. On

substituting the explicit form for a Gaussian wavepacket in Eq. (2.75), we get

√
Feiφ =

T 2

π

∫
dω′
∫
dω′′

(κ+ iω′)(κ+ iω′′)

(κ− iω′)(κ− iω′′)
e−(ω′2+ω′′2)T 2 − 4g2κ2

π

T 2

π

×
∫
dω′
∫
dω′′ e−(ω′2+ω′′2)T 2/2 1

(κ− iω′)(κ− iω′′)

× 1

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)]

×
∫
dω1

e−ω
2
1T

2/2 e−(ω′+ω′′−ω1)2T 2/2

(κ− iω1)︸ ︷︷ ︸
III

, (2.82)
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where

III = π e−T
2(ω′+ω′′)2/4 eT

2[κ−i(ω′+ω′′)/2]2 erfc

[
κT − iT

(
ω′ + ω′′

2

)]
.

On explicitly substituting for III in Eq. (2.82), we obtain

√
Feiφ =

T 2

π

∫
dω′
∫
dω′′

(κ+ iω′)(κ+ iω′′)

(κ− iω′)(κ− iω′′)
e−(ω′2+ω′′2)T 2 − 4g2κ2T 2

π

×
∫
dω′
∫
dω′′

e−(ω′2+ω′′2)T 2/2

(κ− iω′)(κ− iω′′)
e−T

2(ω′+ω′′)2/4 eT
2[κ−i(ω′+ω′′)/2]2

× 1

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)]

× erfc

[
κT − iT

(
ω′ + ω′′

2

)]
. (2.83)

In order to save space and make the subsequent calculation easier to follow, we shall

compute each term in Eq. (2.83) separately. We shall label the two terms in the previous

equation TI and TII where,

TI ≡
T 2

π

∫
dω′
∫
dω′′

(κ+ iω′)(κ+ iω′′)

(κ− iω′)(κ− iω′′)
e−(ω′2+ω′′2)T 2

,

and

TII ≡
4g2κ2T 2

π

∫
dω′
∫
dω′′

e−(ω′2+ω′′2)T 2/2

(κ− iω′)(κ− iω′′)
e−T

2(ω′+ω′′)2/4 e−T
2(ω′+ω′′)2/4 eT

2[κ−i(ω′+ω′′)/2]2

× 1

g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)]
erfc

[
κT − iT

(
ω′ + ω′′

2

)]
.
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First we shall work on TI . Here, we shall once again make use of the identity:

(κ+ iω)/(κ− iω) = −1 + (2κ/κ− iω) and expand the product, after which we shall make

use of the following result:

∫ ∞
−∞

dω
e−ω

2T 2

κ− iω
= π eκ

2T 2

erfc(κT ),

to compute TI . This procedure yields

TI =
[
2
√
π α eα

2

erfc(α)− 1
]2

, (2.84)

where α ≡ κT is a dimensionless parameter. Next we shall calculate TII . Here, we shall

introduce two new variables η and Λ such that η = (ω′ + ω′′)/2 and Λ = (ω′ − ω′′)/2. In

terms of these new variables, TII can be rewritten as

TII =
8g2κ2T 2

π

∫
dη e−2η2T 2 eT

2(κ−iη)2 erfc [T (κ− iη)]

g2 + 2(κ− iη)(κ− 2iη)

×
∫
dΛ

e−Λ2T 2

[κ− i(η + Λ)][κ− i(η − Λ)]
.

We can now make a partial fraction decomposition of the denominator in the last

integral (over Λ). This gives us

1

[κ− i(η + Λ)][κ− i(η − Λ)]
=

1

2(κ− iη)

[
1

κ− i(η + Λ)
+

1

κ− i(η − Λ)

]
.
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On explicitly substituting this decomposition in TII , we get

TII =
8g2κ2T 2

π

∫
dη

e−2η2T 2

2(κ− iη)

eT
2(κ−iη)2 erfc [T (κ− iη)]

g2 + 2(κ− iη)(κ− 2iη)

×


∫
dΛ

e−Λ2T 2

κ− i(η + Λ)︸ ︷︷ ︸
I+

+

∫
dΛ

e−Λ2T 2

κ− i(η − Λ)︸ ︷︷ ︸
I−

 ,

where

I+ = I− = π eT
2(κ−iη)2 erfc [T (κ− iη)] .

On explicitly substituting for I+ and I− in TII , we obtain

TII = 8(gT )2α2

∫
dη

e−2η2

α− iη
e2(α−iη)2 [erfc(α− iη)]2

(gT )2 + 2(α− iη)(α− 2iη)
, (2.85)

where once again, α ≡ κT . Now on substituting Eqs. (2.84) and (2.85) in Eq. (2.83), we

finally obtain the following explicit expression for the fidelity of a Gaussian wavepacket:

√
Feiφ =

[
2
√
π α eα

2

erfc(α)− 1
]2

− 8 (gT )2α2

×
∫
dη

e−2η2

α− iη
e2(α−iη)2 [erfc(α− iη)]2

(gT )2 + 2(α− iη)(α− 2iη)
. (2.86)

In the strong-coupling limit, (gT )2 + 2(α− iη)(α− 2iη) ≈ (gT )2. Thus, in this limit, the

expression for the fidelity in Eq. (2.86) reduces to
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√
Feiφ =

[
2
√
π α eα

2

erfc(α)− 1
]2

− 8 α2

∫
dη

e−2η2

α− iη
e2(α−iη)2 [erfc(α− iη)]2 . (2.87)
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Figure 2.3: Square-root fidelity and phase for a Gaussian pulse, as a function of κT , for
different values of the coupling strength g. From top to bottom: gT = 7; gT = 14; gT = 21;
and the strong-coupling limit (gT →∞), Eq. (2.89).

Figure (2.3) shows a plot of the square-root fidelity of a Gaussian wavepacket for

different values of the coupling strength.

For a hyperbolic secant pulse of duration T , whose profile in the time domain is given

by ξ(t) = (1/
√

2T ) sech(t/T ), an explicit expression for the fidelity using Eq. (2.75) is

extremely complicated to evaluate analytically. Instead we have only done this calculation

numerically in the strong-coupling limit. Figure (2.4) shows this result.
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Figure 2.4: Square-root fidelity and phase for a hyperbolic secant pulse, as a function of κT ,
in the strong-coupling limit.

As these figures show, we obtain the optimal results when the bandwidth of the cavity

and the pulse are more or less evenly matched, i.e. they are of the same order of magnitude

(κT ∼ 1), similar to what we have seen in the free space scenario. However, we get a

slightly higher fidelity (F ) in the cavity configuration. For a moderately large coupling,

gT ∼ 7, we get F ' 0.5, while in the strong coupling limit, F ' 0.6.

In both the figures, (2.3) and (2.4), we see that as κT → 0, the fidelity (F ) approaches

1. This is because in this limit, the pulse is simply reflected off of the mirror at the

entrance of the cavity. On the other hand, we see that in the opposite limit, i.e. as

κT →∞, F → 1. In this limit, the cavity empties itself very fast (over a time scale of the

order of 1/κ� T ) as a result of which the probability for two photons to be present at the

same time is negligible. This means that the two photons in all likelihood do not interact

with the medium. Furthermore, when the bandwidth of the cavity is very large, the
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spectral distortion of the wavepackets is negligible, which is why the fidelity again

approaches 1 in this limit.

2.4 Kerr medium inside a one-sided cavity

The possibility of obtaining an analytical solution in a cavity configuration as we have seen

in detail, in the previous section, motivated us to explore the case where we replace the χ(2)

medium in a one-sided cavity with a Kerr [χ(3)] medium. We were driven by a curiosity to

see if the results for this case would be any different from the second-order one.

For this problem, we only have two types of photons viz. a and b, in a general state of

the form

|ψ(t)〉 =

∫
dω′
∫
dω′′ ξab(ω

′, ω′′, t) â†ω′ |0〉a b̂†ω′′|0〉b (2.88)

and the Hamiltonian describing the third-order nonlinear interaction is written as

Ĥ = ~g [Â†(t)Â(t)B̂†(t)B̂(t)], (2.89)

with the operators Â†(t), Â(t), B̂†(t) and B̂(t) given by Eq. (2.54).

On substituting Eqs. (2.88), (2.89) and (2.54) in the Schrödinger equation, we obtain

under perfect resonance (i.e. ∆a = ∆b = 0), the following equation of motion:
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∂

∂t
ξab(ω

′, ω′′, t) = −ig
(κ
π

)2 ei(ω
′+ω′′)t

(κ+ iω′)(κ+ iω′′)

∫
dω1

∫
dω2

e−i(ω1+ω2)t

(κ− iω1)(κ− iω2)

× ξab(ω1, ω2, t), (2.90)

which can indeed be solved by the method of Laplace transform. The Laplace transform

of Eq. (2.90) is given by

ξ̃ab(ω
′, ω′′, s) =

1

s
ξab(ω

′, ω′′, 0)− ig
(κ
π

)2 1

s

1

(κ+ iω′)(κ+ iω′′)

×
∫
dω1

∫
dω2

ξ̃ab[ω1, ω2, s+ i(ω1 + ω2 − ω′ − ω′′)]
(κ− iω1)(κ− iω2)

. (2.91)

The recipe to proceed further is the same as what we had done in the previous section.

We shall define

1

s
ξab(ω

′, ω′′, 0) ≡ F (ω′, ω′′, s),

following which, we shall shift to dummy arguments in Eq. (2.91) viz. ω′ → ω3, ω′′ → ω4

and s→ s+ i(ω3 + ω4 − ω′ − ω′′). This procedure yields

ξ̃ab[ω3,ω4, s+ i(ω3 + ω4 − ω′ − ω′′)] = F [ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)]

− ig
(κ
π

)2 1

s+ i(ω3 + ω4 − ω′ − ω′′)
1

(κ+ iω3)(κ+ iω4)

×
∫
dω1

∫
dω2

ξ̃ab[ω1, ω2, s+ i(ω1 + ω2 − ω′ − ω′′)]
(κ− iω1)(κ− iω2)

. (2.92)
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Next, we shall divide both sides of the previous equation by (κ− iω3)(κ− iω4) and

integrate over ω3 and ω4, which then gives us

I ′ ≡
∫
dω3

∫
dω4

ξ̃ab[ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)]
(κ− iω3)(κ− iω4)

=

∫
dω3

∫
dω4

F [ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)]
(κ− iω3)(κ− iω4)

− ig
(κ
π

)2
∫
dω3

∫
dω4

1

s+ i(ω3 + ω4 − ω′ − ω′′)
1

(κ2 + ω2
3)(κ2 + ω2

4)︸ ︷︷ ︸
I′′

×
∫
dω1

∫
dω2

ξ̃ab[ω1, ω2, s+ i(ω1 + ω2 − ω′ − ω′′)]
(κ− iω1)(κ− iω2)︸ ︷︷ ︸
I′

, (2.93)

where

I
′′

=
(π
κ

)2 1

s+ 2κ− i(ω′ + ω′′)
.

On explicitly substituting for I ′′ in Eq. (2.93), we get

I ′ =

∫
dω3

∫
dω4

F [ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)]
(κ− iω3)(κ− iω4)

−
(

ig

s+ 2κ− i(ω′ + ω′′)

)
I ′, (2.94)

from which it is straightforward to obtain an expression for I ′. In the previous equation,

we just need to move the term involving I ′ on the right hand side to the left following

which we can express I ′ in terms of F .

62



Thus, we obtain

I ′ ≡
∫
dω1

∫
dω2

ξ̃ab[ω1, ω2, s+ i(ω1 + ω2 − ω′ − ω′′)]
(κ− iω1)(κ− iω2)

=

(
1 +

ig

s+ 2κ− i(ω′ + ω′′)

)−1 ∫
dω3

∫
dω4

F [ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)]
(κ− iω3)(κ− iω4)

.

(2.95)

On substituting Eq. (2.95) in Eq. (2.91), we obtain

ξ̃ab(ω
′, ω′′, s) = F (ω′, ω′′, s)− ig

(κ
π

)2 1

s

1

(κ+ iω′)(κ+ iω′′)

(
1 +

ig

s+ 2κ− i(ω′ + ω′′)

)−1

×
∫
dω3

∫
dω4

F [ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)]
(κ− iω3)(κ− iω4)

(2.96)

In the definition of F [see below Eq. (2.91)], on shifting ω′ → ω3, ω′′ → ω4 and

s→ s+ i(ω3 + ω4 − ω′ − ω′′), we get the following explicit form for

F [ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)]:

F [ω3, ω4, s+ i(ω3 + ω4 − ω′ − ω′′)] =
ξab(ω3, ω4, 0)

s+ i(ω3 + ω4 − ω′ − ω′′)
. (2.97)

Now, on directly substituting Eq. (2.97) in Eq. (2.96) and expressing F (ω′, ω′′, s) in

terms of ξab(ω
′, ω′′, 0) from the definition of F , we obtain
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ξ̃ab(ω
′, ω′′, s) =

1

s
ξab(ω

′, ω′′, 0)− ig
(κ
π

)2 1

s

1

(κ+ iω′)(κ+ iω′′)

×
(

1 +
ig

s+ 2κ− i(ω′ + ω′′)

)−1

×
∫
dω3

∫
dω4

ξab(ω3, ω4, 0)

[s+ i(ω3 + ω4 − ω′ − ω′′)](κ− iω3)(κ− iω4)
. (2.98)

Eq.(2.98) is the formal solution to our problem in the s-domain. We can clearly see that

the full inversion of this equation is extremely hard. So once again, we shall only compute

the asymptotic final state by using the final value theorem of operational calculus:

limt→∞ ξbc(ω
′, ω′′, t) = lims→0 s ξ̃bc(ω

′, ω′′, s).

This yields

lim
s→0

[s ξ̃ab(ω
′, ω′′, s)] = ξab(ω

′, ω′′, 0)− ig
(κ
π

)2 1

(κ+ iω′)(κ+ iω′′)

×
(

2κ− i(ω′ + ω′′)

ig + 2κ− i(ω′ + ω′′)

)
× lim

s→0

∫
dω3

∫
dω4

ξab(ω3, ω4, 0)

[s+ i(ω3 + ω4 − ω′ − ω′′)](κ− iω3)(κ− iω4)︸ ︷︷ ︸
If

. (2.99)

The integral If in Eq. (2.99) is identical to the integral I2 in Eq.(2.70) which can then

be evaluated to give us the following result [see the discussion below Eq. (2.72) for

justification]:
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If = 2π

∫
dω3

ξab(ω3, ω
′ + ω′′ − ω3, 0)

(κ− iω3)[κ− i(ω′ + ω′′ − ω3)]
.

On explicitly substituting the result for If in Eq. (2.99), we get

lim
s→0

[s ξ̃ab(ω
′, ω′′, s)] = ξab(ω

′, ω′′, 0)− 2igκ2

π

1

(κ+ iω′)(κ+ iω′′)

×
(

2κ− i(ω′ + ω′′)

ig + 2κ− i(ω′ + ω′′)

) ∫
dω

ξab(ω, ω
′ + ω′′ − ω, 0)

(κ− iω)[κ− i(ω′ + ω′′ − ω)]
, (2.100)

where in the last integral, the variable of integration is replaced by ω. The integral in

Eq. (2.100) is identical to the integral in Eq. (2.71). So, the partial fraction decomposition

in Eq. (2.72) can be used here to simplify the result. Thus, substituting Eq. (2.72) in Eq.

(2.100) leaves us with

lim
s→0

[s ξ̃ab(ω
′, ω′′, s)] = ξab(ω

′, ω′′, 0)− 2igκ2

π

1

(κ+ iω′)(κ+ iω′′)[ig + 2κ− i(ω′ + ω′′)]

×
[∫

dω
ξab(ω, ω

′ + ω′′ − ω, 0)

κ− iω
+

∫
dω

ξab(ω, ω
′ + ω′′ − ω, 0)

κ− i(ω′ + ω′′ − ω)

]
.

(2.101)

In the previous equation, if we set ω′ + ω′′ − ω ≡ ω1 in the second integral, it becomes

identical to the first integral, which then simplifies Eq. (2.101) to
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lim
s→0

[s ξ̃ab(ω
′, ω′′, s)] = ξab(ω

′, ω′′, 0)− 4igκ2

π

1

(κ+ iω′)(κ+ iω′′)[ig + 2κ− i(ω′ + ω′′)]

×
∫
dω

ξab(ω, ω
′ + ω′′ − ω, 0)

κ− iω
.

(2.102)

Next, we must multiply Eq. (2.102) by the “empty cavity” factors (κ+ iω′)/(κ− iω′)

and (κ+ iω′′)/(κ− iω′′) to get the outgoing field, following which we can compute the

fidelity that is given by

√
Feiφ =

∫
dω′
∫
dω′′

(
κ+ iω′

κ− iω′

) (
κ+ iω′′

κ− iω′′

)
ξ∗ab(ω

′, ω′′, 0) lim
s→0

[s ξ̃ab(ω
′, ω′′, s)]

=

∫
dω′
∫
dω′′

(
κ+ iω′

κ− iω′

) (
κ+ iω′′

κ− iω′′

)
|ξab(ω′, ω′′, 0)|2

− 4igκ2

π

∫
dω′
∫
dω′′

1

(κ− iω′)(κ− iω′′)
ξ∗ab(ω

′, ω′′, 0)

ig + [2κ− i(ω′ + ω′′)]

×
∫
dω

ξab(ω, ω
′ + ω′′ − ω, 0)

κ− iω
. (2.103)

From the expression in Eq. (2.103), it is clear that the Kerr medium placed inside an

optical cavity is not likely to give us any better result than the second-order case. In the

strong-coupling limit, i.e. ig + [2κ− i(ω′ + ω′′)] ' ig, Eq. (2.103) reduces to

√
Feiφ =

∫
dω′
∫
dω′′

(
κ+ iω′

κ− iω′

) (
κ+ iω′′

κ− iω′′

)
|ξab(ω′, ω′′, 0)|2

− 4κ2

π

∫
dω′
∫
dω′′

ξ∗ab(ω
′, ω′′, 0)

(κ− iω′)(κ− iω′′)

∫
dω

ξab(ω, ω
′ + ω′′ − ω, 0)

κ− iω
, (2.104)
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which is identical to Eq. (2.76). Interestingly, we find that in the strong-coupling limit

which is the most favorable case for the cavity configuration, the second- and the

third-order nonlinearities are completely equivalent.

2.5 Drawbacks of an optical cavity

The major shortcoming of using an optical cavity for single-photon quantum logic is that

even an empty cavity will, in general, considerably distort an incident pulse. Hence, we

should essentially expect low fidelities for such cavity systems. However, the results shown

in figures (2.3) and (2.4) for the two-photon gate may be called surprisingly high.

In order to appreciate this point better, we shall consider the situation when only one

photon is incident on the cavity. This would correspond to either one of the states |01〉 or

|10〉 in Eq. (2.1), which on a random basis, may be expected to happen half the time. It is

important to note that when we do quantum logic, the initial state has be considered

unknown by definition. The goal in quantum logic, in the most ideal case, is to realize the

transformation in Eq. (2.1) with unit fidelity for all the four input states. This is the reason

why we resort to nonlinear optical schemes to build a phase gate.

In the case of a single-photon incident on the cavity, the spectrum of the outgoing field

is

f̃out(ω) =
κ+ iω

κ− iω
f̃in(ω), (2.105)

where f̃in(ω) could stand for either ξb(ω, 0) or ξc(ω, 0), and the overlap with the initial

state is simply given by
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√
Feiφ =

∫ ∞
−∞

dω f̃ ∗in(ω) f̃out(ω)

=

∫ ∞
−∞

dω

(
κ+ iω

κ− iω

)
|f̃in(ω)|2. (2.106)

For a Gaussian pulse f̃in(ω) =
√
T/
√
π exp(−ω2T 2/2), the square-root fidelity given by

Eq. (2.106) can be easily computed as shown below.

√
Feiφ =

T√
π

∫ ∞
−∞

dω

(
−1 +

2κ

κ− iω

)
e−ω

2T 2

= − T√
π

∫ ∞
−∞

dω e−ω
2T 2

+
2κT√
π

∫ ∞
−∞

dω
e−ω

2T 2

κ− iω

= −1 + 2
√
πκT e(κT )2 erfc(κT ), (2.107)

which makes

F =
[
2
√
πκT e(κT )2 erfc(κT )− 1

]2

.

We can see that F is equal to 1 in the limits κT = 0 and κT →∞. In particular,

around κT = 0.8, where the two-photon gate performs best, the single-photon fidelity is

very low, i.e. F ' 0.15.

The two limits where the cavity does not distort the incident pulse are, as we have just

seen, the small bandwidth limit κT → 0 (where the pulse is simply reflected off of the

entrance mirror) and the adiabatic limit κT →∞. Most of the feasible cavity based

schemes for single-photon quantum logic operate in the adiabatic limit, such as the
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Duan-Kimble gate [17], or the Koshino-Ishizaka-Nakamura gate [18]. However, in these two

limits, as figures (2.3) and (2.4) reveal, the gate operation involving two photons incident

on the cavity fails to produce the desired phase shift for the state |1, 1〉.

Finally, we shall discuss a special case where the distortion of the incoming pulse by an

empty cavity is, in principle, reversible. This happens when the pulse has the form of a

rising exponential with a time constant κ. This is in fact, the time reversal of the pulse

leaking out of the cavity, at least in the absence of a nonlinear medium inside. The use of

time-reversed pulses for the transmission of quantum information between two optical

cavities was first proposed by Cirac et al. in [19]. However, it is essential to note that this is

a very different scheme, and in a very distinct context from what we have considered here.

It is important to keep in mind that in quantum computation, the two qubits must be

identical. So in this case, either we must choose a rising exponential or a decaying

exponential for the qubits. If we settle on, say the rising exponential as our default pulse,

then the time reversal operation has to be arranged to happen automatically for all the

four states in Eq. (2.1) since the initial state is unknown by definition when we do

quantum logic. The time reversal operation is accomplished in practice through optical

phase conjugation, which is a nonlinear process in itself, and which, as far as we know, has

not yet been demonstrated for single-photo pulses [20]. In our theoretical analysis, phase

conjugation is formally just the complex conjugation of the spectrum.

If we send in a single-photon as a rising exponential pulse with the spectrum

f̃in(ω) =

√
κ

π

1

(κ+ iω)
,
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then from Eq. (2.105), the pulse coming out of the cavity after phase conjugation is

f̃out(ω) =

√
κ

π

(
κ+ iω

κ− iω
× 1

κ+ iω

)∗
=

√
κ

π

1

(κ+ iω)
.

From here, the calculation of the fidelity is straightforward.

√
Feiφ =

∫ ∞
−∞

dω f̃ ∗in(ω) f̃out(ω)

=
κ

π

∫ ∞
−∞

dω
1

κ2 + ω2︸ ︷︷ ︸
π/κ

,

= 1. (2.108)

We see that for the single-photon case, the fidelity is of course, 1. Next we shall see

what happens if we send in two photons as rising exponential pulses with the spectrum of

the form

ξbc(ω
′, ω′′, 0) =

(κ
π

) 1

(κ+ iω′)(κ+ iω′′)
.

We shall compute the outgoing field for the two-photon case in the strong-coupling

limit since this turned out the be the most favorable situation in the cavity configuration.

We can write down the general expression for the outgoing spectrum in the asymptotic

limit by reducing Eq. (2.74) to the case in which the nonlinear coupling strength is strong

(i.e. g2 + [2κ− i(ω′ + ω′′)][κ− i(ω′ + ω′′)] ' g2) and multiplying the resulting expression by

the “empty cavity” factors (κ+ iω′)/(κ− iω′) and (κ+ iω′′)/(κ− iω′′). This yields
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ξ̃out(ω
′,ω′′, t→∞) =

(
κ+ iω′

κ− iω′

) (
κ+ iω′′

κ− iω′′

)
ξbc(ω

′, ω′′, 0)

− 4κ2

π

1

(κ− iω′)(κ− iω′′)

∫
dω1

ξbc(ω1, ω
′ + ω′′ − ω1, 0)

κ− iω1

. (2.109)

On explicitly substituting for the rising exponential in Eq. (2.109), we get

ξ̃out(ω
′, ω′′, t→∞) =

(κ
π

) 1

(κ− iω′)(κ− iω′′)
− 4κ3

π2

1

(κ− iω′)(κ− iω′′)

×
∫
dω1

1

(κ2 + ω2
1)

1

κ+ i(ω′ + ω′′ − ω1)︸ ︷︷ ︸
I

, (2.110)

where

I =
π

κ

1

2κ+ i(ω′ + ω′′)
.

On explicitly substituting for I in Eq. (2.110), we obtain

ξ̃out =
(κ
π

) 1

(κ− iω′)(κ− iω′′)
− 4κ2

π

1

(κ− iω′)(κ− iω′′)
1

2κ+ i(ω′ + ω′′)
. (2.111)

Next, we shall perform the phase conjugation on ξ̃out which then gives us

ξ̃∗out =
(κ
π

) 1

(κ+ iω′)(κ+ iω′′)
− 4κ2

π

1

(κ+ iω′)(κ+ iω′′)

1

2κ− i(ω′ + ω′′)
. (2.112)
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Finally, we shall compute the fidelity for this case which is given by

√
Feiφ =

∫
dω′
∫
dω′′ ξ∗in(ω′, ω′′, 0) ξ∗out(ω

′, ω′′, t→∞)

=
(κ
π

)2
∫
dω′

1

κ2 + ω′2︸ ︷︷ ︸
π/κ

∫
dω′′

1

κ2 + ω′′2︸ ︷︷ ︸
π/κ

− 4κ3

π2

∫
dω′
∫
dω′′

1

(κ2 + ω′2)(κ2 + ω′′2)

1

2κ− i(ω′ + ω′′)︸ ︷︷ ︸
π2/4κ3

,

= 1− 1 = 0. (2.113)

We can clearly see that in the case of two incoming photons, in the strong-coupling

limit, after the interaction with the nonlinear medium and phase conjugation, the fidelity

turns out be exactly zero. So these pulses would not be useful at all for quantum logic even

in the most ideal case.

2.6 Conclusion

We have carried out a thorough multimode quantized field analysis of the proposal to use a

second-order optical nonlinearity to perform a conditional phase shift between two

co-propagating single-photon pulses traveling with equal speeds. Our study has revealed

that in the “free-space scenario” where the pulses travel through a nonlinear medium with

a finite transmission bandwidth, the maximum fidelity that we could achieve is less than

0.4. Following this, we have extended our analysis to a situation in which the nonlinear

medium is placed inside a one-sided cavity and found that here fidelities as large as 0.6 are
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theoretically possible. In both these cases, we obtained optimal results when the medium

bandwidth and the pulse bandwidth are more or less evenly matched in the frequency

space.

In both, the “free-space” and the cavity configuration, we conclude based on our

analysis that the spectral entanglement of the final state is indeed an important fidelity

degrading mechanism. In other words, once the two incident photons are destroyed in the

medium, the two “re-created” photons are constrained only by the energy and momentum

conservation (which is the same for both of them here since the pulses travel with the same

speed) and the spectral properties of the medium, and indeed they need not resemble the

initial state very much. We have seen that the final state is in general, spectrally entangled

in momentum even though we assumed the initial state to be factorizable.

Perhaps most intriguingly, we have found that if the second-order nonlinear medium is

replaced by a third-order medium in the cavity, the fidelity in the strong-coupling limit is

given by the same mathematical expression.

We thus, conclude that for schemes involving two co-propagating single-photon pulses

with equal velocities, the second-order nonlinearities suffer from the same limitations as the

third-order ones and do not have any apparent advantage over “Kerr” media for

conditional single-photon quantum logic [21].
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Chapter 3

Conditional phase shift in a nonlocal nonlinear medium

3.1 Introduction

In the previous chapter, we carried out a multimode quantized field analysis of a

conditional phase gate based on χ(2) nonlinearity using two co-propagating single photon

wavepackets traveling with equal speeds, both in free space and a one-sided optical cavity.

We concluded that spectral entanglement of the final state is an important fidelity

degrading mechanism, and this scheme suffers from the same limitations as the third-order

ones. The conventional wisdom until now which is the culmination of all these studies is

that it is impossible to achieve unit fidelity with a π phase shift. This was indeed the

original claim made by Shapiro [5] and further strengthened by Gea-Banacloche [12] and a

few others [22, 23, 24]. Nevertheless, in recent times there have been a number of claims

that appear to challenge this view [25, 26, 27, 28, 29, 30] and present a strong case for high

fidelity conditional phase shift. The other reassuring theoretical results have been presented

in [31, 32]. In particular, we were strongly motivated by couple of theoretical papers viz.

one by Xia et al. [28] and the other one by Brod et al. [30], which showed that it is indeed

possible to achieve unit fidelity with a π phase shift.

In this chapter, we shall develop an analytical model for the system studied numerically

by Xia et al. Our problem here is to study the conditional phase shift between two

co-propagating single-photon wavepackets traveling with different speeds in a χ(2) medium.

When the b and the c photons travel with different speeds, it means that they are no longer

identical as would be required for qubits in quantum computation. One possible way to
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circumvent this difficulty, in principle, is to use different polarizations for the two photons

in a birefringent medium, assuming that the qubit is not encoded in the polarization state.

Following Xia et al., we treat the nonlinear medium as being spatially nonlocal, as a result

of which we can derive the Hamiltonian without the need for any noise operators.

Assuming three modes a, b and c, we envisage a region of interaction that consists of a χ(2)

medium upon which the b and the c photons are incident. The pulses travel with different

speeds, so they pass through each other. As they do, the b and the c photons annihilate to

create an a photon. Still later, the a photon annihilates to create a new b− c pair. This

scheme in a simplified, single-mode picture could be described by the Hamiltonian

Ĥ = ~ε(â† b̂ ĉ+ â b̂† ĉ†), where ε is the strength of nonlinear coupling. We consider here the

most general (still one dimensional) multimode version of this problem and generalize the

results of Xia et al. to deal with an arbitrary response function, initial state and pulse

velocity. In our model, we assume that the width of the pulse (corresponding to the a, b

and c photons) remains constant during the entire process.

3.2 Analytical model for a spatially nonlocal χ(2) medium

The system that we wish to study is described by the following Hamiltonian in the

continuous mode representation:

Ĥ = Ĥ0 + Ĥint,

Ĥ0 = ~va
∫
dk k â†k âk + ~vb

∫
dk k b̂†k b̂k + ~vc

∫
dk k ĉ†k ĉk

Ĥint = ~ε
∫ L

0

dza

∫ L

0

dzb

∫ L

0

dzc f(za, zb, zc) Â
†(za) B̂(zb) Ĉ(zc) +H.c,

(3.1)

75



where Ĥ0 is the Hamiltonian of the free field, Ĥint is the Hamiltonian corresponding to

the interaction with the nonlinear (χ(2)) medium and H.c stands for hermitian conjugate.

In our problem, we consider the most general case, in which the three photons, a, b and c,

travel with different speeds viz. va, vb and vc, respectively. The length of the region of

interaction is taken to be L, however, this will not figure in our calculation because we will

let one pulse sweep across the other and assume that the interaction starts well after both

the photons enter the medium and ends well before they leave. The function f(za, zb, zc)

describes the nonlocal response of the nonlinear medium. We shall assume the response

function to have the following general form

f(za, zb, zc) = h(za − zb) h(za − zc), (3.2)

where h(z) is an appropriate real function. Physically, the two photons b and c don’t

have to annihilate at the same location in the region of interaction. They can be at

different locations within a characteristic length which we will call the length scale of

medium nonlocality. In other words, the b and the c photons have to be present in a region

of space inside the nonlinear medium characterized by this length scale of medium

nonlocality, for them to interact, i.e. to undergo parametric up- and down-conversion

processes. Otherwise, these two photons will never interact. So they cannot be at arbitrary

locations inside the medium. Similarly, the a photon can be created anywhere within this

length scale and later when it annihilates to create a new b, c pair, these two photons can

be created anywhere within this characteristic length. Mathematically speaking, in our

analysis, we use the coordinate of the center of the wavepacket of the a photon, za, as a
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reference to connect the centers of the wavepackets of the b and the c photons, i.e. zb and

zc, respectively, to incorporate this physical requirement. This is the reason for assuming

the form in Eq. (3.2) for the response function of the medium.

The operators Â(za), B̂(zb) and Ĉ(zc) are defined as

Â(za) =
1√
2π

∫
dk eikza âk,

B̂(zb) =
1√
2π

∫
dk eikzb b̂k,

Ĉ(zc) =
1√
2π

∫
dk eikzc ĉk, (3.3)

and they satisfy the canonical commutation relations [Â(z), Â†(z′)] =

[B̂(z), B̂†(z′)] = [Ĉ(z), Ĉ†(z′)] = δ(z − z′).

On explicitly substituting for operators A, B and C from Eq.(3.3) in Eq.(3.1), we get

the following expression for Ĥint:

Ĥint =
~ε

(2π)3/2

∫ L

0

dza

∫ L

0

dzb

∫ L

0

dzc f(za, zb, zc)

∫
dka e

−ika

×
∫
dkb e

ikb

∫
dkc e

ikc â†ka b̂kb ĉkc +H.c. (3.4)

We shall work out this problem in the Schrödinger picture and in the momentum

representation, where the most general state of the field is written as
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|ψ(t)〉 =

∫
dk1 ξa(k1, t) â

†(k1)|0〉a |0〉b |0〉c +

∫
dk2

∫
dk3 ξbc(k2, k3, t) |0〉a b̂†(k2)|0〉b ĉ†(k3)|0〉c.

(3.5)

The equations of motion for the a and the b− c pulses can be derived from the

Schrödinger equation: |ψ̇〉 = −(i/~)Ĥ|ψ〉, using Eqs.(3.1), (3.4) and (3.5). On doing so, we

get

(
∂

∂t
+ i va ka

)
ξa(ka, t) = − iε

(2π)3/2

∫
dza e

−ikaza
∫
dzb

∫
dzc f(za, zb, zc)

×
∫
dkb e

ikbzb

∫
dkc e

ikczc ξbc(kb, kc, t), (3.6)

(
∂

∂t
+ i vb kb + i vc kc

)
ξbc(kb, kc, t) = − iε

(2π)3/2

∫
dza

∫
dzb

∫
dzc f(za, zb, zc)

× e−ikbzb e−ikczc
∫
dka e

ikaza ξa(ka, t). (3.7)

Our next step is to insert the response function from Eq. (3.2) in Eqs. (3.6) and (3.7) to

get the exact equations of motion for our problem. In all the subsequent steps, we shall let

the limits of the integrals over za, zb and zc to extend from −∞ to ∞ because as we

discussed earlier, in this scheme, we let the pulses pass through each other and assume that

the interaction starts well after both of them enter the medium and ends well before they

leave. So, we can harmlessly extend the limits of these integrals (over spatial coordinates)

to infinity without affecting the result. We shall first work on the equation of motion for
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the a pulse. On substituting the response function in Eq. (3.6), we get

(
∂

∂t
+ i va ka

)
ξa(ka, t) = − iε

(2π)3/2

∫
dkb

∫
dkc ξbc(kb, kc, t)

∫
dza e

−ikaza

×
∫
dzb e

ikbzb h(za − zb)︸ ︷︷ ︸
II

∫
dzc e

ikczc h(za − zc)︸ ︷︷ ︸
III

. (3.8)

Next, we have to evaluate the two integrals viz. II and III . To begin with, let us set

za − zb = x in II . In terms of x, we can rewrite II as

II =
√

2π eikbza
1√
2π

∫
dx e−ikbx h(x)︸ ︷︷ ︸
h̃(kb)

,

=
√

2π eikbza h̃(kb), (3.9)

where h̃(k) is the Fourier transform of h(z).

Similarly,

III =
√

2π eikcza h̃(kc). (3.10)

On inserting Eqs. (3.9) and (3.10) in Eq.(3.8), we obtain
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(
∂

∂t
+ i va ka

)
ξa(ka, t) = − iε√

2π

∫
dkb

∫
dkc h̃(kb) h̃(kc) ξbc(kb, kc, t)

×
∫
dza e

i(kb+kc−ka)za︸ ︷︷ ︸
2π δ(kb+kc−ka)

. (3.11)

On enforcing the δ function, we get the following equation of motion for the a pulse,

(
∂

∂t
+ i va ka

)
ξa(ka, t) = −iε

√
2π

∫
dkb h̃(kb) h̃(ka − kb) ξbc(kb, ka − kb, t). (3.12)

Following this, we shall work on the equation of motion for the b, c pulses. On

substituting the response function in Eq.(3.7), we get

(
∂

∂t
+ i vb kb + i vc kc

)
ξbc(kb, kc, t) = − iε

(2π)3/2

∫
dka ξa(ka, t)

×
∫
dzb e

−ikbzb h(za − zb)︸ ︷︷ ︸
IIII

∫
dzc e

−ikczc h(za − zc)︸ ︷︷ ︸
IIV

. (3.13)

The procedure from here is similar to what we did for the a pulse. We have to evaluate

the integrals, IIII and IIV along the same line. We shall set za − zb = y in IIII and rewrite

this integral in terms of y.
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This yields

IIII =
√

2π e−ikbza
1√
2π

∫
dy eikby h(y),

=
√

2π e−ikbza
(

1√
2π

∫
dy e−ikby h(y)

)∗
︸ ︷︷ ︸

h̃∗(kb)

,

=
√

2π e−ikbza h̃∗(kb), (3.14)

where h̃∗(k) is the complex conjugated Fourier transform of h(z).

Similarly,

IIV =
√

2π e−ikcza h̃∗(kc). (3.15)

On inserting Eqs. (3.14) and (3.15) in Eq. (3.13), we obtain

(
∂

∂t
+ i vb kb + i vc kc

)
ξbc(kb, kc, t) = − iε√

2π
h̃∗(kb) h̃

∗(kc)

∫
dka ξa(ka, t)

×
∫
dza e

i(ka−kb−kc)za︸ ︷︷ ︸
2π δ(ka−kb−kc)

. (3.16)

On enforcing the δ function, we get the following equation for the b, c pulses,

(
∂

∂t
+ i vb kb + i vc kc

)
ξbc(kb, kc, t) = −iε

√
2π h̃∗(kb) h̃

∗(kc) ξa(kb + kc, t). (3.17)

81



Thus, we have obtained the equations of motion for the system with a Hamiltonian

formalism involving only field operators satisfying canonical commutation relations. Having

obtained the equations of motion, we now have solve this system of equations. Before we

embark on this, we shall once again write down the two equations of motion in one place

together for convenience so that we don’t have to go back for any reference.

(
∂

∂t
+ ikava

)
ξa(ka, t) = −iε

√
2π

∫
dkb h̃(kb) h̃(ka − kb) ξbc(kb, ka − kb, t),(

∂

∂t
+ ikbvb + ikcvc

)
ξbc(kb, kc, t) = −iε

√
2π h̃∗(kb) h̃

∗(kc) ξa(kb + kc, t). (3.18)

We shall solve this system of differential equations by the method of Laplace transform.

The Laplace transform of Eqs. (3.18) with respect to time is written as

(s+ ikava) ξ̃a(ka, s)− ξa(ka, 0) = −iε
√

2π

∫
dkb h̃(kb) h̃(ka − kb) ξ̃bc(kb, ka − kb, s), (3.19)

(s+ ikbvb + ikcvc) ξ̃bc(kb, kc, s)− ξbc(kb, kc, 0) = −iε
√

2π h̃∗(kb) h̃
∗(kc) ξ̃a(kb + kc, s), (3.20)

where ξ̃a and ξ̃bc are the Laplace transform of ξa and ξbc, respectively.

On substituting for ξ̃a(kb + kc, s) in terms of ξ̃bc from Eq. (3.19) in Eq. (3.20), and

furthermore, setting ξa(ka, 0) = 0 since there is no a photon at t = 0, we obtain
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ξ̃bc(kb, kc, s) =
ξbc(kb, kc, 0)

s+ ikbvc + ikcvc
− 2πε2

s+ i(kb + kc)va

h̃∗(kb)h̃
∗(kc)

s+ ikbvb + ikcvc

×
∫

dk h̃(k) h̃(kb + kc − k) ξ̃bc(k, kb + kc − k, s). (3.21)

The next step is to evaluate the integral on the right hand side of Eq.(3.21). This can

be accomplished by shifting to dummy arguments in the same equation, i.e. kb → k′ and

kc → kb + kc − k′. Following this, we shall multiply both sides of Eq. (3.21) by

h̃(k′) h̃(kb + kc − k′) and finally integrate both sides of the equation over k′. This yields,

Ĩ ≡
∫
dk′ h̃(k′) h̃(kb + kc − k′) ξ̃bc(k′, kb + kc − k′, s) =

∫
dk′

h̃(k′) h̃(kb + kc − k′)
s+ i vb k′ + i vc (kb + kc − k′)

× ξbc(k′, kb + kc − k′, 0)− 2πε2

s+ i va (kb + kc)

×
∫
dk′

|h̃(k′)|2 |h̃(kb + kc − k′)|2

s+ i vb k′ + i vc (kb + kc − k′)

×
∫
dk h̃(k) h̃(kb + kc − k) ξ̃bc(k, kb + kc − k, s)︸ ︷︷ ︸

Ĩ

.

(3.22)

From the previous equation, it is straightforward to get an expression for Ĩ which can

be done by moving the term involving Ĩ on the right hand side to the left and expressing Ĩ

in terms of the initial state, ξbc(k, kb + kc − k, 0) and the response function of the medium.
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This gives us

Ĩ ≡
∫
dk h̃(k) h̃(kb + kc − k) ξbc(k, kb + kc − k, s)

=

(
1 +

2πε2

s+ i va (kb + kc)

∫
dk

|h̃(k)|2 |h̃(kb + kc − k)|2

s+ i vb k + i vc (kb + kc − k)

)−1

×
∫
dk

h̃(k) h̃(kb + kc − k)

s+ i vb k + i vc (kb + kc − k)
ξbc(k, kb + kc − k, 0). (3.23)

Now, on substituting Eq. (3.23) in Eq. (3.21), we obtain the following expression for

ξ̃bc(kb, kc, s):

ξ̃bc(kb, kc, s) =
ξbc(kb, kc, 0)

s+ i kb vb + i kc vc
− 2πε2

s+ i va (kb + kc)

h̃∗(kb) h̃
∗(kc)

s+ i vb kb + i vc kc

×

(
1 +

2πε2

s+ i va (kb + kc)

∫
dk

|h̃(k)|2 |h̃(kb + kc − k)|2

s+ i vb k + i vc (kb + kc − k)

)−1

×
∫
dk

h̃(k) h̃(kb + kc − k)

s+ i vb k + i vc (kb + kc − k)
ξbc(k, kb + kc − k, 0). (3.24)

Eq. (3.24) is the formal solution to our problem in the s- domain. The next step should

naturally be inverting the Laplace transform in order to obtain the expression for the final

state, ξbc as a function of time. However, full inversion of the Laplace transform is in

general not possible. Moreover, we are not interested in the detailed time evolution of the

final state, but only in the asymptotic state of the b, c wavepacket long after the interaction

is over (i.e. as t→∞). In such a scenario, our first thought would be to exploit the final

value theorem of operational calculus that says:
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lim
t→∞

ξbc(kb, kc, t) = lim
s→0

s ξ̃bc(kb, kc, s).

However, this result is not applicable here because in the absence of interaction (i.e.

when ε = 0), the system of equations in Eqs.(3.18) does not evolve toward a constant value,

but rather we have

ξbc(kb, kc, t) = e−i(kbvb+kcvc)t ξbc(kb, kc, 0).

This can be easily seen by setting ε = 0 in Eqs. (3.18). When we turn on the

interaction, we expect that we should be able to separate the changing phase factor from

the slowly varying spectral amplitude as follows:

lim
t→∞

[ei(kbvb+kcvc)t ξbc(kb, kc, t)] = lim
s→0

s ξ̃bc(kb, kc, s− ikbvb − ikcvc). (3.25)

Consequently, we make the substitution s→ s− ikbvb − ikcvc in Eq. (3.24) and take the

limit in Eq. (3.25) to obtain

lim
t→∞

[ei(kbvb+kcvc)t ξbc(kb, kc, t)] = ξbc(kb, kc, 0)

− 2πε2 h̃∗(kb) h̃
∗(kc) I1(kb, kc)

ikb(va − vb) + ikc(va − vc) + 2πε2I2(kb, kc)
, (3.26)
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where we have defined

I1 ≡ lim
s→0

∫
dk

h̃(k) h̃(kb + kc − k)

s+ i(k − kb)(vb − vc)
ξbc(k, kb + kc − k, 0), (3.27)

and

I2 ≡ lim
s→0

∫
dk
|h̃(k)|2 |h̃(kb + kc − k)|2

s+ i(k − kb)(vb − vc)
. (3.28)

We can in fact simplify Eq.(3.27) with some straightforward assumptions. First we shall

assume that in this scheme, the b photon starts far behind the c photon and travels with a

higher speed than the c pulse such that both of them meet only in the region of

interaction. We shall denote the initial position of the center of the b wavepacket by −z0

and the center of the c wavepacket is taken to be zc = 0. Furthermore, we shall also assume

that the initial state is factorizable. Thus, we can write

ξbc(k, kb + kc − k, 0) = eikz0 ξb(k, 0) ξc(kb + kc − k, 0), (3.29)

where ξb(kb, 0) and ξc(kc, 0) are the Fourier transforms of wavepackets centered around

zb = 0 and zc = 0, respectively. The exponential factor eikz0 arises in Eq. (3.29) because as

we have stated above, the initial position of the b wavepacket is zb = −z0. So a

displacement in spatial coordinate introduces a phase shift in the Fourier space (or here,

the momentum space). Following this, we shall make use of the following identity
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1

s+ i(k − kb)(vb − vc)
=

∫ ∞
0

dt e−[s+i(k−kb)(vb−vc)]t, (3.30)

to rewrite I1 as

I1 = lim
s→0

∫ ∞
0

dt e−st eikbvbct
∫ ∞
−∞

dk eik(z0−vbc)t

× h̃(k) h̃(kb + kc − k) ξb(k, 0) ξc(kb + kc − k, 0), (3.31)

where vbc ≡ vb − vc. In the previous equation, the integral over k when integrated gives

a function that depends only on t. Since, physically, we want z0 to be much larger than the

width of the wavepackets and the length scale of medium nonlocality [i.e. the width of the

function h(z)], it is reasonable to assume that the integral over k represents a function of t

that peaks around t = t0 ≡ z0/vbc and decays sufficiently rapidly for both t� t0 and

t� t0. We can also assume that this decay is exponential or faster. So we could first take

the limit s→ 0 and then formally extend the lower limit of the integral over t to −∞. This

procedure yields

I1 =

∫ ∞
−∞

dk eikz0 h̃(k) h̃(kb + kc − k) ξb(k, 0)ξc(kb + kc − k, 0)

×
∫ ∞
−∞

dt ei(kb−k)vbct︸ ︷︷ ︸
(2π/vbc) δ[(kb−k)vbc]

. (3.32)
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On enforcing the δ function, Eq. (3.32) gets simplified to the following compact

expression

I1(kb, kc) =
2π

vbc
h̃(kb) h̃(kc) eikbz0 ξb(kb, 0) ξc(kc, 0)︸ ︷︷ ︸

ξbc(kb,kc,0)

,

=
2π

vbc
h̃(kb) h̃(kc) ξbc(kb, kc, 0). (3.33)

The second integral,I2 [Eq. (3.28)] can be partially simplified by using a well-known

result from the theory of analytic functions, involving Cauchy’s principal value:

I2(kb, kc) =
π

vbc

∫
dk δ[(k − kb)vbc] |h̃(k)|2 |h̃(kb + kc − k)|2

− i

vbc
P

∫
dk
|h̃(k)|2 |h̃(kb + kc − k)|2

k − kb︸ ︷︷ ︸
Ip

,

=
π

vbc
|h̃(kb)|2 |h̃(kc)|2 −

i

vbc
Ip, (3.34)

where P stands for the principal value and Ip is the notation to denote this integral for

brevity. An added advantage of Eq. (3.34) is that it explicitly shows the real and imaginary

part of the result.

On substituting Eqs. (3.33) and (3.34) in Eq. (3.26) and setting

(kbvab + kcvac)vbc − 2πε2Ip ≡ x and 2π2ε2 |h̃(kb)|2 |h̃(kc)|2 ≡ y, to save space and make the

intermediate steps easier to follow, where vab ≡ va − vb and vac ≡ va − vc, we obtain
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ξbc(kb, kc, t→∞) = ei(kbvb+kcvc)t ξbc(kb, kc, 0)

(
1− 2y

ix+ y

)
,

= ei(kbvb+kcvc)t ξbc(kb, kc, 0)

(
ix− y
ix+ y

)
,

= ei(kbvb+kcvc)t ξbc(kb, kc, 0)

(
x+ iy

x− iy

)
. (3.35)

Eq.(3.35) can be reduced to a more compact form and thus, the final state can be

written as:

ξbc(kb, kc, t→∞) = e−i(kbvb+kcvc)t ξbc(kb, kc, 0) e2iθ(kb,kc), (3.36)

where the first phase factor is just the free evolution and the second one is the phase

arising from the interaction with the nonlinear medium:

θ(kb, kc) = tan−1
(y
x

)
≡ tan−1

(
2π2ε2 |h̃(kb|2 |h̃(kc)|2

(kbvab + kcvac)vbc − 2πε2Ip

)
. (3.37)

In order to get a π phase shift with unit fidelity, we want θ ≈ π/2 in the previous

expression, to a reasonably good approximation, for all the relevant values of kb and kc. It

would be very illustrative to see how this can be accomplished by considering a specific

example in the following section.
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3.3 Specific Example: Gaussian pulses and medium response

We shall now consider a specific case where the response function of the medium is

Gaussian and the initial state is also a Gaussian pulse. For this example, the response

function in the real space is written as

f(za, zb, zc) = h(za − zb) h(za − zc)

=
1√
πσ3

e−(za−zb)2/2σ2

e−(za−zc)2/2σ2

, (3.38)

where σ is the length scale of medium nonlocality. In the momentum space, we have

h̃(k) =
(σ
π

)1/4

e−k
2σ2/2. (3.39)

The initial state is written as

ξbc(kb, kc, 0) =
σ0√
π
eikbz0 e−k

2
bσ

2
0/2 e−k

2
cσ

2
0/2, (3.40)

where σ0 is the width of the wavepacket.

We shall first evaluate I2(kb, kc) for this specific example. We shall henceforth denote

this integral by simply I2 for brevity. For a Gaussian response function [see Eq.(3.39)],

Eq.(3.28) becomes

I2 =
σ

π
lim
s→0

∫ ∞
−∞

dk
e−σ

2k2e−σ
2(kb+kc−k)2

s+ i(k − kb)vbc
, (3.41)
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where vbc ≡ vb − vc. We shall make use of Eq.(3.30) to evaluate this integral and

interchange the order of integration, i.e. we shall first integrate over k and then integrate

over t. This yields

I2 =
σ

π
lim
s→0

∫ ∞
0

dt e−st eikbvbct
∫ ∞
−∞

dk e−σ
2k2 e−σ

2(kb+kc−k)2 eikvbct︸ ︷︷ ︸
I′

, (3.42)

where

I ′ =
1

σ

√
π

2
e−itvbc(kb+kc)/2 e−t

2v2/8σ2

e−σ
2(kb+kc)2/2.

On substituting I ′ in Eq.(3.42) and integrating over t, we get

I2 =
1√
2π

e−σ
2(kb+kc)2/2 lim

s→0

∫ ∞
0

dt e−st eikbvbct e−t
2v2bc/8σ

2

e−itvbc(kb+kc)/2︸ ︷︷ ︸
I′′

, (3.43)

where

I ′′ =
σ
√

2π

vbc
e−σ

2(kb−kc)2/2

(
1 + i erfi

[
σ(kb − kc)√

2

])
.

On substituting I ′′ in Eq. (3.43), we obtain

I2(kb, kc) =
σ

vbc
e−σ

2(k2b+k2c )

(
1 + i erfi

[
σ(kb − kc)√

2

])
. (3.44)

91



On comparing Eq.(3.44) with Eq.(3.34), we can easily see that the principal value

integral can be evaluated as

Ip = −σ e−σ2(k2b+k2c )

(
1 + i erfi

[
σ(kb − kc)√

2

])
, (3.45)

which is proportional to the Hilbert transform of a Gaussian.

It is very straightforward to evaluate I1(kb, kc) for this specific example. All we have to

do is to directly substitute Eqs. (3.39) and (3.40) in Eq.(3.33) to get I1 for a Gaussian

response and a Gaussian initial state.

Once we have calculated I1 and I2, we shall substitute these two expressions in

Eq.(3.26) and furthermore, set

(kbvab + kcvac)vbc
2πε2σ

eσ
2(k2b+k2c ) ≡ r

and

erfi

[
σ(kb − kc)√

2

]
≡ q,

to save space and make the intermediate steps easier to follow. We thus, obtain the

following expression for the final state, in the same form as Eq.(3.36), for this special case,
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ξbc(kb, kc, t→∞) = e−i(kbvb+kcvc)tξbc(kb, kc, 0)

(
i(r + q)− 1

i(r + q) + 1

)
,

= e−i(kbvb+kcvc)t σ0√
π
eikbz0 e−σ

2
0(k2b+k2c )/2

(
(r + q) + i

(r + q)− i

)
,

= e−i(kbvb+kcvc)t σ0√
π
eikbz0 e−σ

2
0(k2b+k2c )/2︸ ︷︷ ︸

ξbc(kb,kc,0)

e2iθ(kb,kc), (3.46)

where

θ(kb, kc) = cot−1(r + q)

= cot−1

[
(kbvab + kcvac)vbc

2πε2σ
eσ

2(k2b+k2c ) + erfi

(
σ(kb − kc)√

2

)]
. (3.47)

In order to get a π phase shift, we want the argument of the inverse cot function to be

very close to zero for all the relevant kb and kc. We can see that the initial state in Eq.

(3.40) restricts |kb|, |kc| to be of the order of 1/σ0 as a result of which the argument of the

erfi function goes as σ/σ0. So the condition σ0 � σ makes the erfi function negligible and

the exponential exp[σ2(k2
b + k2

c )] ' 1, in Eq.(3.47). We still need to make the first term in

the same equation small enough, to make the argument of the inverse cot function close to

zero. To accomplish this, we require |∆v|2 � 2πε2σσ0, where ∆v is the characteristic

velocity difference (i.e. vab, vac or vbc). However, note that we cannot let vb = vc because

this would invalidate the whole analysis; in such a case, the b photon would never catch up

with, and interact with, the c photon. Similarly, we cannot completely remove the

nonlocality (i.e. let σ → 0) because then it would not be possible to keep the first term in
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Eq. (3.47) small.

As in the previous chapter, we define the fidelity F and the phase shift φ as the overlap

between the initial and final state, i.e.
√
Feiφ ≡ 〈ψ(0)|ψ(t)〉. In order to remove the phase

factor exp[−i(kbvb + kcvc)t], we substitute this phase factor (due to free evolution) for

|ψ(0)〉 in the calculation of fidelity. We thus have,

√
Feiφ =

∫ ∞
−∞

dkb

∫ ∞
−∞

dkc ξ
∗
bc(kb, kc, 0) ei(kbvb+kcvc)t ξbc(kb, kc, t→∞). (3.48)

We can clearly see from both Eqs. (3.36) and (3.46) that when we substitute the

expression for the final state in the previous equation, the phase factors due to free

evolution cancel each other. The next step is to explicitly calculate the fidelity for our

specific problem, i.e. for a Gaussian response and a Gaussian state. On substituting Eqs.

(3.33), (3.39), (3.40) and (3.44) in Eq.(3.26) and using Eq.(3.48) to calculate the fidelity,

we have

√
Feiφ = 1−4ε2σ

∫ ∞
−∞

dkb

∫ ∞
−∞

dkc
e−(σ2+σ2

0)(k2b+k2c )

ivbc(vabkb + vackc) + 2πε2σe−σ
2(k2b+k2c )erfc[−iσ(kb − kc)/

√
2]
,

(3.49)

where we have used the identity 1 + i erfi[σ(kb − kc)/
√

2] = erfc[−iσ(kb − kc)/
√

2] in the

previous equation. At this stage, we shall switch to dimensionless variables of integration,

viz. k̃b ≡ kbσ0 and k̃c ≡ kcσ0. Furthermore, we shall introduce two more dimensionless

parameters α ≡ vacvbc/ε
2σ2 and τ ≡ σ/σ0. This scaling simplifies the numerical calculations
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to follow and makes it much clearer the limit in which we may expect
√
Feiφ ' −1.

In terms of these new dimensionless variables and parameters, we obtain the following

expression for the fidelity:

√
Feiφ = 1− 4

∫ ∞
−∞

dk̃b

∫ ∞
−∞

dk̃c
e−(τ2+1)(k̃2b+k̃2c )

iτα(k̃bvab/vac + k̃c) + 2πe−τ
2(k̃2b+k̃2c )erfc[−iτ(k̃b − k̃c)/

√
2]
.

(3.50)

In the special case considered by Xia et al., the a and the b photons are assumed to

travel with the same speed, i.e. va = vb. In this case, the term containing vab would vanish

in Eq. (3.50) and thus, we get a more simplified expression for the fidelity that is given by

√
Feiφ = 1− 4

∫ ∞
−∞

dk̃b

∫ ∞
−∞

dk̃c
e−(τ2+1)(k̃2b+k̃2c )

iταk̃c + 2πe−τ
2(k̃2b+k̃2c )erfc[−iτ(k̃b − k̃c)/

√
2]
, (3.51)

where now α ≡ v2
bc/ε

2σ2. We can clearly see from both Eqs. (3.50) and (3.51) that when

τ � 1 and ατ � 1, we get
√
Feiφ ' −1. In this limit, the first term in the denominator of

the two previous equations is negligible and the complimentary error function approaches

1. Moreover, the exponential term in the denominator exp[−τ 2(k̃2
b + k̃2

c )] approaches 1, and

the numerator reduces to simply exp[−(k̃2
b + k̃2

c )].
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So when ατ � 1 and τ � 1, we obtain

√
Feiφ ' 1− 2

π

∫ ∞
−∞

dk̃b e
−k̃2b︸ ︷︷ ︸

√
π

∫ ∞
−∞

dk̃c e
−k̃2c︸ ︷︷ ︸

√
π

,

= −1. (3.52)

Figures (3.1) and (3.2) show the result for
√
Feiφ as a function of α and τ , respectively,

for the case where the three photons travel with different velocities. Here φ is limited to

take on the values 0 and π, since the quantity being evaluated is real. These figures show

that it is more essential to have a small τ than a small α to get unit fidelity with π phase

shift, and indeed it does not matter how large α is, we can always achieve the desired result

by making τ small enough. This can be clearly seen from figure (3.2). Note that α

essentially contains only the medium parameters such as nonlinear coupling strength, pulse

speeds and the characteristic length of medium nonlocality, whereas τ depends on the

“initial condition”, namely the spatial extent of the initial pulse σ0. So, what this seems to

suggest is that irrespective of the properties of the medium, we can always “in principle”

get this scheme to work by making the pulse long enough.

The condition on velocity va = vb 6= vc of Xia et al. seems quite unnatural in a true χ(2)

medium since in that case we would expect the b and the c photons to be much closer in

frequency to each other than they are to the a photon in order to satisfy the condition on

the conservation of energy: ωa = ωb + ωc. However, the scheme conceived by Xia et al. is in

fact a four-wave mixing process with a classical pump, so we actually have
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ωp + ωa = ωb + ωc, and here all the three photons a, b and c could be very close to each

other in frequency. Nevertheless, we can clearly see from figures (3.3) and (3.4) that this

condition is not really necessary and it does not affect the fidelity in any serious way. Both

the cases viz. va = vb and when all the photons have different velocities yield similar results.
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Figure 3.1: Fidelity and phase shift as a function of α for different values of τ when the three
photons have different velocities. Here va = 2vb and vb = 1.1vc.

3.4 Removal of spectral entanglement

In the previous section, we developed a rigorous analytical model for the scheme in which

two co-propagating photons travel with different speeds in a nonlocal χ(2) medium. In the

end, we obtained a solution which tells us that we can “in principle” get unit fidelity with a

π phase shift when the pulse is very long compared to the characteristic length of the
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medium’s nonlocality (i.e. τ � 1) and ατ � 1. Furthermore, we can see from Eq. (3.52)

that in this limit, the spectral entanglement of the final state disappears. In this section, we

shall discuss in detail the underlying physical mechanism that makes this result possible.
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Figure 3.2: Fidelity and phase shift as a function of τ for different values of α for the case
where the three photons have different velocities. Here va = 2vb and vb = 1.1vc.

We have assumed an effectively infinite medium (i.e. we have formally let L→∞) in

our calculation. The interaction Hamiltonian [see Eq. (3.4)] is invariant under translation

because the response function f(za, zb, zc), due to the form we have assumed for it in Eq.

(3.2), remains invariant under a displacement of the spatial coordinates za, zb and zc by a

constant amount. This ensures that linear momentum is conserved. We can see that

momentum conservation is already enforced in Eqs. (3.18). From the first of Eqs. (3.18), it

is clear that any momentum component ka of the a photon will grow from any two
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momentum components kb and kc of the b and the c photons, respectively, that add up to

ka. The second of Eqs. (3.18) expresses the same fact in reverse, i.e. ka splits into two

components kb and kc such that they once again up to ka. The mathematical condition for

momentum conservation is k′a + k′b = ka + kb. In fact, this is the origin of spectral

entanglement in nonlinear processes.
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Figure 3.3: Fidelity and phase shift as a function of α for different values of τ when va = vb.

Following momentum conservation, the next ingredient, conservation of energy, comes

into action when dealing with the integrals in Eq. (3.24), especially the last one on the

right hand side. The denominator of this integral through the pole of the Laplace

transform gives us the long-time dependence of ξbc, in the form of a phase factor

exp[−i(k′bvb + k′cvc)t], where k′b ≡ k and k′c ≡ kb + kc − k. On comparing this with the

free-evolution phase factor exp[−i(kbvb + kcvc)t] from Eq. (3.36), we get the requirement for
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the conservation of energy: k′bvb + k′cvc = kbvb + kcvc. The treatment of I1(kb, kc) [Eq.(3.27)]

in the limit s→ 0 or the long-time limit as discussed below Eq.(3.31) yields a δ function

δ(kb − k′b). When we enforce this δ function, we get kb = k′b and kc = k′c. We thus see that

the simultaneous enforcement of momentum and energy conservation [30] removes the main

source of spectral entanglement in the final state. In the previous chapter we just had one

condition for both momentum and energy conservation since the two photons traveled with

the same speed. So over there, we obtained just one δ function δ(ka + kb − k′a − k′b), which

when enforced resulted in the spectral entanglement of the final state.
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Figure 3.4: Fidelity and phase shift as a function of τ for different values of α when va = vb.

We can indeed see the disappearance of spectral entanglement for our problem in the

long-time limit, in the approximate time-domain solution to the equations of motion, Eqs.

(3.18).
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In the limit that we have determined as leading to unit fidelity with a π phase shift

(ατ � 1), it is possible to obtain an approximate solution to Eqs. (3.18) in the

time-domain. We approach this problem in the following way.

First we shall formally integrate the equation of motion for ξbc, i.e. the second of Eqs.

(3.18). This gives us

ξbc(kb, kc, t) = ξbc(kb, kc, 0) e−i(kbvb+kcvc)t − iε
√

2π h̃∗(kb) h̃
∗(kc)

×
∫ t

0

dt′e−i(kbvb+kcvc)(t−t′) ξa(kb + kc, t
′). (3.53)

Next, on substituting this in the equation for ξa, i.e. the first of Eqs. (3.18), we obtain

(
∂

∂t
+ ivaka

)
ξa(ka, t) = −iε

√
2π

∫
dkb h̃(kb) h̃(ka − kb) e−i[kbvb+(ka−kb)vc]t

× ξbc(kb, ka − kb, 0)− 2πε2
∫ t

0

dt′
∫
dkb |h̃(kb)|2 |h̃(ka − kb)|2

× e−i[kbvb+(ka−kb)vc](t−t′) ξa(ka, t
′). (3.54)

The integral over kb in the previous equation can be evaluated for a specific form of the

function h̃. We shall compute this integral in the second term for Gaussian functions that

we have assumed for h̃ in Eq. (3.39). On substituting for h̃(k) from Eq. (3.39) in the second

term of Eq. (3.54), we get the following result for the integral over kb,
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Ih̃ ≡
σ

π

∫ ∞
−∞

dkb e
−σ2k2b e−σ

2(ka−kb)2 e−i[kbvb+(ka−kc)vc](t−t′),

=
1√
2π

e−k
2
aσ

2/2 e−v
2
bc(t−t′)2/8σ2

e−ika(vb+vc)(t−t′)/2. (3.55)

Now, we shall substitute this result in Eq. (3.54), which gives us

(
∂

∂t
+ ivaka

)
ξa(ka, t) = −iε

√
2π

∫
dkb h̃(kb) h̃(ka − kb) e−i[kbvb+(ka−kb)vc]t

× ξbc(kb, ka − kb, 0)− ε2
√

2π e−k
2
aσ

2/2

∫ t

0

dt′ ξa(ka, t
′)

× e−ika(vb+vc)(t−t′)/2 e−v
2
bc(t−t′)2/8σ2

. (3.56)

We will now make an approximation that ξa is slowly varying compared to

exp[−v2
bc(t− t′)2/8σ2] which essentially only requires σ to be small enough. So pulling

ξa(ka, t) out of the integral and extending the lower limit of integration over t′ to −∞, and

finally completing the squares of the exponential terms, Eq. (3.56) becomes

(
∂

∂t
+ ivaka

)
ξa(ka, t) = −iε

√
2π

∫
dkb h̃(kb) h̃(ka − kb) e−i[kbvb+(ka−kb)vc]t

× ξbc(kb, ka − kb, 0)− ε2
√

2π e−k
2
aσ

2(v2b+v2c )/v2bc ξa(ka, t)

×
∫ t

−∞
dt′ e−v

2
bc[(t−t′)+2ikaσ2(vb+vc)/v2bc]2/8σ2

︸ ︷︷ ︸
It′

, (3.57)
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where

It′ =
σ
√

2π

vbc

(
1− i erfi

[
kaσ(vb + vc)√

2vbc

])
.

We now have the following equation for ξa,

(
∂

∂t
+ ivaka

)
ξa(ka, t) = −iε

√
2π

∫
dkb h̃(kb) h̃(ka − kb) e−i[kbvb+(ka−kb)vc]t

× ξbc(kb, ka − kb, 0)− 2πε2σ

vbc
e−k

2
aσ

2(v2b+v2c )/v2bc ξa(ka, t)

×
(

1− i erfi

[
kaσ(vb + vc)√

2vbc

])
. (3.58)

We are working in the limit where τ � 1. In other words, σ � σ0. Furthermore, we

shall assume that ka ∼ 1/σ0. So under these conditions, we set the arguments of both the

exponential (in the second term of the previous equation) and the error function to ' 0.

This approximates the exponential to 1 and the error function to zero. Thus, we end up

with a simpler equation for ξa:

(
∂

∂t
+ ivaka + γ

)
ξa(ka, t) ' −iε

√
2π

∫
dk h̃(k) h̃(ka − k)

× e−i(kvbc+kavc)t ξbc(k, ka − k, 0), (3.59)

where γ ≡ 2πε2σ/vbc, is the rate at which the a photon decays.
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This equation can be formally integrated to yield

ξa(ka, t) = −iε
√

2π e−(γ+ikava)t

∫
dk h̃(k) h̃(ka − k) ξbc(k, ka − k, 0)

×
∫ t

−∞
dt′e[γ+i(kava−kvbc−kavc)]t′︸ ︷︷ ︸

I

, (3.60)

where

I =
e[γ+i(kava−kvbc−kavc)]t

γ + i(kavac − kvbc)
.

The factor exp[−(γ + ikava)t] cancels with its complex conjugate from I. Hence, we

obtain the following result:

ξa(ka, t) = −iε
√

2π e−ikavct
∫
dk h̃(k) h̃(ka − k) e−ikvbct

ξbc(k, ka − k, 0)

γ + i(kavac − kvbc)
. (3.61)

We can make one final simplification of Eq. (3.61). We can assume that

γ � |kavac − kvbc|. So we can approximate the denominator in Eq. (3.61) to simply γ.

Noting that we should expect k, ka ∼ 1/σ0, we observe that this is essentially the same

condition as ατ � 1. This can be easily seen. Note that γ = 2πε2σ/vbc and

ατ = vacvbc/ε
2σσ0. Now, γ can be rewritten as (2π)(ε2σσ0/vbcvac)(vac/σ0). This is same as

γ = 2π(1/ατ)(kavac). Since ατ � 1, this implies that γ � 1. This justifies the final

simplification that we intend to make and it now gives us the following simplified

expression for ξa:
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ξa(ka, t) ' −i
vbc√
2πεσ

e−ikavct
∫
dk h̃(k) h̃(ka − k) e−ikvbct ξbc(k, ka − k, 0), (3.62)

where we have explicitly substituted for γ in the previous equation. If we substitute this

into the second of Eqs. (3.18), we obtain

(
∂

∂t
+ ikbvb + ikcvc

)
ξbc(kb, kc, t) = −vbc

σ
e−i(kb+kc)vct h̃∗(kb) h̃

∗(kc)

∫
dk e−ikvbct

× h̃(k) h̃(kb + kc − k) ξbc(k, kb + kc − k, 0). (3.63)

In the previous equation, ka has been replaced by kb + kc, which is due to momentum

conservation. Next, formally integrating this equation yields

ξbc(kb, kc, t) ' e−i(kbvb+kcvc)t ξbc(kb, kc, 0)− vbc
σ

e−i(kbvb+kcvc)t h̃∗(kb) h̃
∗(kc)

×
∫
dk h̃(k) h̃(kb + kc − k) ξbc(k, kb + kc − k, 0)

×
∫ t

0

dt′ e−i(k−kb)vbct
′
. (3.64)

Here again, we can take the lower limit of the integral over t′ to −∞ since the term in

question is negligible before t = 0 and extend the upper limit to ∞ to get the long-time

limit. When this is done, we observe that the integral over t′ gives us a δ function

2πδ[(k − kb)vbc] which is the same as what we obtained while treating the integral I1 in the

limit s→ 0. As discussed earlier, this is indeed the condition for energy conservation. On

105



enforcing this δ function and with the choice of Gaussian function for h̃(k) [Eq.(3.39)] in

the previous equation, we get the following expression for ξbc in the long-time limit

ξbc(kb, kc, t) ' e−i(kbvb+kcvc)t [1− 2eσ
2(k2b+k2c )] ξbc(kb, kc, 0). (3.65)

Noting that kb, kc ∼ 1/σ0 in the limit σ � σ0 or τ � 1, the exponential term in Eq.

(3.65) approaches 1 which then yields the desired result,

ξbc(kb, kc, t) = −e−i(kbvb+kcvc)t ξbc(kb, kc, t). (3.66)

We have quantitatively seen that in the limit ατ � 1, the spectral entanglement of the

final state is removed in the long-time limit due to the simultaneous enforcement of

momentum and energy-conservation.

3.5 Advantage of a long pulse

Whenever we talk about a single-photon pulse, we have to keep in mind that the photon

can be anywhere in the pulse. In fact, the photon appears everywhere in the pulse with

different probabilities. In the case of co-propagating pulses traveling at the same speed

through a nonlinear medium (the problem studied in the previous chapter), increasing the

pulse length in fact tends to eliminate the phase shift altogether, because the probability

that both the photons would be found in the same narrow time window (determined by the

response time of the medium) becomes negligible. This means that in such a case, the two

photons may not even interact in the medium in which case no phase is built. However, the
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situation considered here is different. Since one pulse sweeps across the other, it is certain

that the two photons would meet and interact in the medium, no matter “where in the

pulse” each photon is initially.

We can coherently split the wavepackets corresponding to the b and the c photons into

roughly N ' σ0/σ slices of width σ (the characteristic length of medium nonlocality), and

the photons will meet in one of those N slices in the region of interaction. Once the two

photons meet, they typically have a time tslip ∼ σ/vbc to interact before the b pulse slips

past the c pulse beyond the range of the characteristic length of the medium.

The b+ c→ a conversion process can be be understood semiquantitatively as follows. It

is perhaps easiest to visualize this process in the reference frame of the c photon. We shall

assume for simplicity that both the pulses (corresponding to the b and the c photons) have

the same width σ0, and divide each of them into N slices.

The state of the b, c pair before the interaction can be symbolically written as

|ψ〉initial =
1√
N

N∑
n=1

|zn〉b ⊗
1√
N

N∑
m=1

|z′m〉c, (3.67)

where |zn〉 represents a state in which the b photon is found in the slice centered at

z = zn and likewise, |z′m〉 represents a state in which the c photon is found in the slice

centered at z = z′m, and 1/
√
N is the normalization factor. Note that there are N2 states in

the superposition in Eq. (3.67). Since the two photons are guaranteed to meet and interact

in the medium for a time tslip, all the N2 states in the superposition will be converted into

a state that has an a photon in some slice with the probability amplitude εtslip. It would be

erroneous to assume that the width of the a pulse is also σ0. This can be easily determined.
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Since we are working in the reference frame of the c photon, it means that the c pulse is at

rest. Now the b pulse sweeps across the c pulse and in the course of this process, the a

photon is created. The time available for the b pulse to pass through the c pulse is

tint = σ0/vbc, where vbc is the velocity of the b photon in the reference frame of the c photon.

In order to compute the width of the a pulse, all we have to do is to simply multiply this

time by the velocity of the a photon in the reference frame of the c photon which is vac.

Thus, the width of the a pulse is clearly σ0vac/vbc and it contains N ′ = Nvac/vbc slices of

width σ. All the N2 terms from the superposition in Eq. (3.67) will be distributed among

the N ′ slices of the a pulse. Thus, each slice of the a pulse will contain N2/N ′ terms, all

with the same amplitude εtslip. So the state of the a pulse can be symbolically written as

|φ〉a =
1

N

N ′∑
n=1

N2

N ′
εtslip |zn〉a. (3.68)

The probability for b+ c→ a conversion is proportional to the norm which is

P ∼
(
N2

N ′

)
(ε2t2slip) =

Nε2σ2

vacvbc
=
ε2σσ0

vbcvac
=

1

ατ
. (3.69)

This explains in a semiquantitative manner why the scheme works in the limit ατ � 1.

We should, however, note that the conversion b+ c→ a is really only half the process,

since what we ultimately want is a new b, c pair. The eventual decay of the a photon is

assured as long as it stays in the nonlinear medium for a sufficiently long time, which is

automatically guaranteed in our formalism since we are only interested in the t→∞ limit.

In the previous section, we defined γ ≡ 2πε2σ/vbc as the rate of decay of the a photon. So,
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the lifetime of the a photon is τa = 1/γ. If we consider a medium of length L, the time spent

by the a photon inside the medium is ta = L/va. The condition that needs to be satisfied to

ensure that the a photon decays into a new b, c pair before it leaves the medium is

ta/τa = γL/va � 1. In other words, we want the time available for the a photon inside the

medium to be much larger than its lifetime. Otherwise, the a photon will leave the medium

even before the down-conversion process which would ruin the whole scheme. So, what we

have to see now is whether the limit in which we operate, i.e. ατ � 1 ensures the condition

stated above. As we have discussed earlier, the time available for the b photon to interact

with the c photon is tint = σ0/vbc. The time that the b photon spends inside the nonlinear

medium is L/vb. Clearly, we require L/vb > σ0/vbc, otherwise the two photons may not

even interact with each other. This means that L > σ0vb/vbc. If we multiply both sides of

this inequality by γ/va and explicitly substitute for γ on the right hand side, we see that

γL

va
>

2πε2σ

vbc

σ0

vbc

vb
va

> 2π
ε2σσ0

vbcvac︸ ︷︷ ︸
1/ατ

vb
va

vac
vbc

=
2π

ατ

vb
va

vac
vbc
. (3.70)

We can clearly see from Eq.(3.70) that as long as vb and va are not too dissimilar,

γL/va � 1 since ατ � 1. In other words, the same condition that ensures that b+ c→ a

conversion happens will also guarantee that a→ b+ c conversion too happens in the

medium.

We can physically understand the high fidelity shown in the plots in figures (3.2) and
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(3.4) in the following way. When τ � 1, we see that we obtain unit fidelity with a π phase

shift. We can make τ extremely small by either making σ very small or σ0 very large. In

any case, the width of the pulse will be much larger than the length scale of the medium

nonlocality. From the Fourier relation, the bandwidth of the medium goes as 1/σ and the

width of the wavepacket goes as 1/σ0. So, the limit τ � 1 means that the bandwidth of the

medium is much larger than the width of the wavepackets (in k- space). In this large

bandwidth limit, the nonlinearity of the medium interacts with all the spectral components

of the wavepackets, or the medium does not filter out any component of the wavepackets,

which is why they do not get distorted when they leave the medium. Since the wavepackets

travel with different speeds, one sweeps across the other ensuring that they interact in the

medium and the three-wave mixing generates a large phase shift. These two features

together give us unit fidelity with a π phase shift in this limit.

As τ gets larger, the nonlinearity of the medium does not interact with all the spectral

components of the wavepackets because in this case, the width of the wavepackets is larger

than the bandwidth of the medium. Here, the medium filters out some of the components

of the incoming wavepackets. This results in spectral distortion of the outgoing

wavepackets and a low phase shift since the interaction between the two photons is not

strong enough. One way to visualize why the interaction is not very strong in this case, is

to split the wavepackets into a number of slices or “bins” (in the momentum space). Noting

that the photon can be in any one of the slices, there would be no interaction between the

two wavepackets if the photons happen to be in the “bins” that get filtered out by the

medium in which case the phase that gets built will be low.

Finally, when τ � 1 we see from figures (3.2) and (3.4) that the fidelity approaches 1
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and the phase shift is zero. This is because, this limit corresponds to the case where the

bandwidth of the medium is very much narrower than the width of the wavepackets. So the

nonlinearity of the medium does not interact with the wavepackets at all. In other words,

the wavepackets will travel as if there is no nonlinear medium, as a result of which there is

no spectral distortion and the phase shift is zero since they do not interact with each other.

3.6 Role of nonlocality

We have clearly seen in our discussion until now that we can indeed get the desired high

fidelity and large phase shift for any value of the nonlocality parameter σ, as long as it is

not exactly zero and provided we make the pulse very long. We might be inclined to

contend that this scheme should be physically realizable since we could expect any real

world optical medium or a material to exhibit certain degree of spatial nonlocality. In fact,

on this specific point, Xia et al. [28] cite quite a few references that talk about possible

nonlocal effects in four-wave mixing materials due to different physical processes such as

charge transport in photorefractive crystal [33] and optical rectification in

noncentrosymmetric material [34]. However, it should be mentioned that there is no real

physical justification in either these sources or the other available references on nonlinear

optical materials, for choosing Gaussian functions for the nonlocal response of the medium,

in Eq. (3.38). In this chapter, we have chosen this form for the response function to

compare our results with the conclusions of Xia et al [28].

It is perhaps best to think of spatial nonlocality as a mathematical artifice to restrict

the system’s bandwidth in the momentum space to make the theory well behaved. This can

be easily seen since the bandwidth ∆k ∼ 1/σ which explains why we cannot let σ → 0.
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This would make the bandwidth infinite which is not physical. It is due to this spatial

nonlocal response in our model that we were able to extend the limits of all the integrals

over k to infinity and still avoid divergence. The nonlocality ensures a finite bandwidth for

the nonlinear medium. This is, in effect, equivalent to the truncation of the system’s

bandwidth by hand which we will explicitly verify in the following section.

3.7 “Ad hoc” truncation of interaction bandwidth

In this section, we will assume that the nonlinear interaction involves only a finite range of

frequencies around the pulse’s central frequency, and all the frequencies outside this “pass”

bandwidth are unaffected by the nonlinearity of the medium. The goal here is to verify in

an unambiguous manner that we can still get results identical to a nonlocal medium, by

truncating the bandwidth by hand (by introducing “cut-offs” in the Hamiltonian).

The Hamiltonian of the free field is still the same as in Eq. (3.1). However, the

Hamiltonian corresponding to the χ(2) interaction in this case, is written as

Ĥint = ~ε
∫ z0+L

z0

dz [Â(z) B̂†(z) Ĉ†(z) + Â†(z) B̂(z) Ĉ(z)], (3.71)

where once again, we have considered an interaction region of length L.

The operators Â, B̂ and Ĉ are defined as
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Â(z) =
1√
2π

∫ ∆k/2

−∆k/2

dk eikz â(k),

B̂(z) =
1√
2π

∫ ∆k/2

−∆k/2

dk eikz b̂(k),

Ĉ(z) =
1√
2π

∫ ∆k/2

−∆k/2

dk eikz ĉ(k), (3.72)

and satisfy the following commutation relations:

[Â(z), Â†(z′)] = [B̂(z), B̂†(z′)] = [Ĉ(z), Ĉ†(z′)] = (∆k/2π) sinc[∆k(z − z′)/2]. On

substituting for Â, B̂ and Ĉ from Eq. (3.72) in Eq. (3.71), we get the following expression

for Ĥint in the Schrödinger picture,

Ĥint =
~ε

(2π)3/2

∫ ∆k/2

−∆k/2

dka

∫ ∆k/2

−∆k/2

dkb

∫ ∆k/2

−∆k/2

dkc â(ka) b̂
†(kb) ĉ

†(kc)

×
∫ z0+L

z0

dz ei(ka−kb−kc)z +H.c. (3.73)

We shall solve this problem in the interaction picture. The unitary transformation that

takes Ĥint from the Schrödinger picture to the interaction picture is

ĤI
int = eiĤ0t/~ Ĥint e

−iĤ0t/~,

where the superscript I symbolically denotes the interaction picture. This transformation

gives us the following expression for Ĥint in the interaction picture,
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ĤI
int =

~ε
(2π)3/2

∫ ∆k/2

−∆k/2

dka

∫ ∆k/2

−∆k/2

dkb

∫ ∆k/2

−∆k/2

dkc

∫ z0+L

z0

dz ei(ka−kb−kc)z

× eivat
∫
dk′ k′ â†(k′)â(k′) â(ka) e

−ivat
∫
dk′ k′ â†(k′)â(k′)

× eivbt
∫
dk′ k′ b̂†(k′)b̂(k′) b̂†(kb) e

−ivbt
∫
dk′ k′ b̂†(k′)b̂(k′)

× eivct
∫
dk′ k′ ĉ†(k′)ĉ(k′) ĉ†(kc) e

−ivct
∫
dk′ k′ ĉ†(k′)ĉ(k′) +H.c.,

ĤI
int =

~ε
(2π)3/2

∫ ∆k/2

−∆k/2

dka

∫ ∆k/2

−∆k/2

dkb

∫ ∆k/2

−∆k/2

dkc e
−i(kava−kbvb−kcvc)t

× â(ka) b̂
†(kb) ĉ

†(kc)

∫ z0+L

z0

dz ei(ka−kb−kc)z +H.c., (3.74)

where

eivat
∫
dk′ k′ â†(k′)â(k′) â(ka) e

−ivat
∫
dk′ k′ â†(k′)â(k′) = â(ka) e

−ivakat,

eivbt
∫
dk′ k′ b̂†(k′)b̂(k′) b̂†(kb) e

−ivbt
∫
dk′ k′ b̂†(k′)b̂(k′) = b̂(kb) e

−ivbkbt,

and

eivct
∫
dk′ k′ ĉ†(k′)ĉ(k′) ĉ†(kc) e

−ivct
∫
dk′ k′ ĉ†(k′)ĉ(k′) = ĉ(kc) e

−ivckct.

The general state of the system for this problem is same as what we have in Eq. (3.5).

Thus, on substituting Eqs. (3.5) and (3.74) in the Schrödinger equation:

|ψ̇〉 = −(i/~)ĤI
int|ψ〉, we get the following equations for the a and the b, c pulses:

∂

∂t
ξa(ka, t) = − iε

(2π)3/2

∫ ∆k/2

−∆k/2

dkb

∫ ∆k/2

−∆k/2

dkc e
i(kava−kbvb−kcvc)t ξbc(kb, kc, t)

×
∫ z0+L

z0

dz e−i(ka−kb−kc)z, (3.75)
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and

∂

∂t
ξbc(kb, kc, t) = − iε

(2π)3/2

∫ ∆k/2

−∆k/2

dka e
−i(kava−kbvb−kcvc)t ξa(ka, t)

×
∫ z0+L

z0

dz ei(ka−kb−kc)z. (3.76)

In both the equations above, i.e. Eqs. (3.75) and (3.76), we shall let the limits of the

integral over z to extend from −∞ to ∞ because as we have already discussed in section

3.2, we let the pulses pass through each other and assume that the interaction starts well

after both of them enter the medium and ends well before they leave. This yields us a δ

function 2πδ(ka − kb − kc), whose argument is the condition for momentum conservation

(see section 3.4). On enforcing the δ function in both of these equations, we obtain the

following pair of dynamical equations:

∂

∂t
ξa(ka, t) = − iε√

2π

∫ ∆k/2

−∆k/2

dkb e
i(kavac−kbvbc)t ξbc(kb, ka − kb, t),

∂

∂t
ξbc(kb, kc, t) = − iε√

2π
e−i(kbvab+kcvac)t ξa(kb + kc, t), (3.77)

where vac ≡ va − vc and vbc ≡ vb − vc.

We shall once again use the method of Laplace transform to solve this system of

differential equations. The Laplace transform of the system of equations in Eq. (3.77) can

be written as
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s ξ̃a(ka, s)− ξa(ka, 0) = − iε√
2π

∫ ∆k/2

−∆k/2

dkb ξ̃bc(kb, ka − kb, s− ikavac + ikbvbc), (3.78)

s ξ̃bc(kb, kc, s)− ξbc(kb, kc, 0) = − iε√
2π

ξ̃a(kb + kc, s+ ikbvab + ikcvac), (3.79)

where ξ̃a and ξ̃bc are the Laplace transforms of ξa and ξbc (with respect to t),

respectively. Next, we shall substitute for ξ̃a in Eq. (3.79) in terms of ξ̃bc from Eq. (3.78).

However, before we do this, we shall shift the arguments of ξ̃a in Eq. (3.78), viz.

ka → kb + kc and s→ s+ ikbvab + ikcvac and set ξa(ka, 0) = 0, since there is no a photon at

t = 0. This gives us

ξ̃a(kb + kc, s+ ikbvab + ikcvac) = − iε√
2π

1

s+ ikbvab + ikcvac

×
∫ ∆k/2

−∆k/2

dk ξ̃bc(k, kb + kc − k, s+ i(k − kb)vbc). (3.80)

On substituting Eq. (3.80) in Eq.(3.79), we obtain

ξ̃bc(kb, kc, s) =
ξbc(kb, kc, s)

s
− ε2

2π

1

s(s+ ikbvab + ikcvac)

×
∫ ∆k/2

−∆k/2

dk ξ̃bc(k, kb + kc − k, s+ i(k − kb)vbc). (3.81)
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The next step is to evaluate the integral on the right hand side of Eq. (3.81). This can

be accomplished by shifting to dummy arguments in the same equation, i.e. kb → k,

kc → kb + kc − k and s→ s+ i(k − kb)vbc. Following this, we shall integrate both sides of

this equation over k. This yields,

I ′ ≡
∫ ∆k/2

−∆k/2

dk ξ̃bc(k, kb + kc − k,s+ i(k − kb)vbc) =

∫ ∆k/2

−∆k/2

dk
ξbc(k, kb + kc − k, 0)

s+ i(k − kb)vbc
− ε2

2π

× 1

s+ ikbvab + ikcvac

∫ ∆k/2

−∆k/2

dk
1

s+ i(k − kb)vbc︸ ︷︷ ︸
I′′

×
∫ ∆k/2

−∆k/2

dk′ ξ̃bc(k
′, kb + kc − k′, s+ i(k′ − kb)vbc)︸ ︷︷ ︸

I′

,

(3.82)

where

I ′′ ≡
∫ ∆k/2

−∆k/2

dk
1

s+ i(k − kb)vbc
=

1

ivbc
ln

[
s+ ivbc(∆k/2− kb)
s− ivbc(∆k/2 + kb)

]
.

On substituting explicitly for I ′′ in Eq. (3.82), we get

I ′ =

∫ ∆k/2

−∆k/2

dk
ξbc(k, kb + kc − k, 0)

s+ i(k − kb)vbc
− I ′ ε

2

2π

1

s+ ikbvab + ikcvac

× 1

ivbc
ln

[
s+ ivbc(∆k/2− kb)
s− ivbc(∆k/2 + kb)

]
. (3.83)
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From the previous equation, it is straightforward to get an expression for I ′ which can

be done by moving the term involving I ′ on the right hand side to the left, and expressing

I ′ in terms of the initial state, ξbc(k, kb + kc − k, 0). This procedure gives us

I ′ ≡
∫ ∆k/2

−∆k/2

dk ξ̃bc(k, kb + kc − k, s+ i(k − kb)vbc)

=

(
1 +

ε2

2πivbc

1

s+ ikbvab + ikcvac
ln

[
s+ ivbc(∆k/2− kb)
s− ivbc(∆k/2 + kb)

])−1

×
∫ ∆k/2

−∆k/2

dk
ξbc(k, kb + kc − k, 0)

s+ i(k − kb)vbc
. (3.84)

On substituting Eq. (3.84) in Eq. (3.81), we obtain the following expression for

ξ̃bc(kb, kc, s):

ξ̃bc(kb, kc, s) =
ξbc(kb, kc, s)

s
− iε2vbc

s

×
(

2πivbc(s+ ikbvab + ikcvac) + ε2ln

[
s+ ivbc(∆k/2− kb)
s− ivbc(∆k/2 + kb)

])−1

×
∫ ∆k/2

−∆k/2

dk
ξbc(k, kb + kc − k, 0)

s+ i(k − kb)vbc
. (3.85)

Eq.(3.85) is the formal solution to our problem in the s-domain. Of course, full

inversion of this equation is not possible. As we have already seen in section 3.2, we are

only interested in the asymptotic state of the wavepacket, long after the interaction is over

(i.e. as t→∞). Here, we can certainly exploit the final value theorem in the form:

lim
t→∞

ξbc(kb, kc, t) = lim
s→0

s ξ̃bc(kb, kc, s).
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Unlike the situation in section 3.2, this result is applicable here because in the absence

of interaction, i.e. when ε = 0, ξbc evolves toward a constant value. This can be readily seen

from the system in Eq. (3.77). Thus, the final state in the long-time limit is given by

ξbc(kb, kc, t→∞) = ξbc(kb, kc, 0)−
(

2πi

ε2
(kbvab + kcvac)−

i

vbc
ln

[
−(∆k/2− kb)
(∆k/2 + kb)

])−1

× lim
s→0

∫ ∆k/2

−∆k/2

dk
ξbc(k, kb + kc − k, 0)

s+ i(k − kb)vbc
. (3.86)

In the model that we developed with spatial nonlocality (see sections 3.2 and 3.3), we

identified the limit τ << 1 as leading to the largest fidelity with a π phase shift (see section

3.5 for details). This limit corresponds to the case in which the bandwidth of the medium

is much larger compared to the width of the wavepacktets. We shall work in the same

regime here. Hence, we can approximate ∆k/2 + kb ' ∆k/2. In this limit,

ln[−(∆k/2− kb)/(∆k/2 + kb)] ' ln(−1) = iπ. The integral on the right-hand side of Eq.

(3.86) is same as Eq. (3.27) except for the fact that here k is confined to vary only within a

finite bandwidth ∆k. In the large bandwidth limit, ∆k can be treated as a “ regularizing

factor” which makes the theory formally finite but can be harmlessly taken to infinity in

the final result. As discussed in detail below Eq. (3.28) in section 3.2, this integral in the

large bandwidth limit yields a δ function 2π δ[(k − kb)vbc] which is the condition for energy

conservation (see section 3.4). On enforcing the δ function and the large bandwidth limit in

Eq. (3.86), we obtain
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ξbc(kb, kc, t→∞) = ξbc(kb, kc, 0)

(
1− 2πε2

πε2 + 2πivbc(kbvab + kcvac)

)
,

= ξbc(kb, kc, 0)

(
2πivbc(kbvab + kcvac)− πε2

2πivbc(kbvab + kcvac) + πε2

)
,

= ξbc(kb, kc, 0)

(
2πvbc(kbvab + kcvac) + iπε2

2πvbc(kbvab + kcvac)− iπε2

)
. (3.87)

The final state in the previous equation can be expressed in a more compact form:

ξbc(kb, kc, t→∞) = ξbc(kb, kc, 0) e2iθ(kb,kc), (3.88)

where

θ(kb, kc) = tan−1

[
ε2

2vbc(kbvab + kcvac)

]
. (3.89)

We can evidently see from Eq. (3.89) that when we make the nonlinear coupling

strength ε very large and ensure that va, vb and vc are not too dissimilar, we can indeed get

a π phase shift.

In this section, we have explicitly demonstrated with our analysis that a finite

bandwidth medium yields similar results as a spatially nonlocal medium as long as we get

two separate mathematical conditions for the conservation of energy and momentum, and

we make the bandwidth of the medium much larger than the width of the wavepackets.
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3.8 Conclusion

In this chapter, we have carried out a thorough analytical study of the scheme proposed by

Xia et al. [28] that confirms their claim that a π phase shift with unit fidelity is very much

possible. Our analysis also expounds the underlying physical mechanisms that make this

outcome feasible.

We have shown that by considering a setup in which the interacting pulses travel with

different velocities, the requirements for the conservation of energy and momentum lead to

non-equivalent algebraic conditions on the wavevectors and frequencies of the interacting

photons which when enforced simultaneously remove the spectral entanglement of the final

state.

Our study has also revealed that we can generate a large phase shift by making the

pulse very long. This is because when we make the length of the pulse much larger than

the characteristic length of medium nonlocality, we essentially make the bandwidth of the

medium very large compared to the width of the wavepackets. Thus, in this limit, all the

spectral components of the interacting photons contribute to three-wave mixing, as a result

of which a large phase shift is generated.

Finally, the nonlocal response is just an artifice to restrict the system’s bandwidth to

make the theory well behaved. In order words, in effect, this is equivalent to the truncation

of the bandwidth by hand to make it finite which is what we expect for any real nonlinear

medium. The assumed nonlocality may not even be required for the eventual realization of

a conditional phase gate. All that is really necessary is that whatever physical mechanism

restricts the system’s bandwidth should not degrade the pulse’s coherence [35].
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Chapter 4

An atomic model for a phase gate with the “giant Kerr” effect

4.1 Introduction

In the last couple of chapters, we had developed a macroscopic model for a phase gate at

the single-photon level involving only the interacting field operators. Over there, we had

ignored the composition of the nonlinear medium and instead, we characterized the

medium by an appropriate Hamiltonian in the multimode framework. We had concluded

that as long as we can ensure a finite bandwidth for the medium, we can in principle

obtain unit fidelity with a π phase shift. In our theoretical analysis, this was facilitated by

the simultaneous enforcement of two separate mathematical conditions for the conservation

of energy and momentum.

However, it is to be noted that the models developed in the previous chapters cannot be

directly tested in a laboratory. In the current chapter, our goal is to search for a realistic

atomic system where the bandwidth-limiting process occurs naturally and develop a

consistent, well behaved theory of the interaction of wavepackets with such a medium. Our

efforts in this chapter will be to find a plausible scheme that could be physically realized in

a laboratory and used for the construction of a conditional phase gate. We are looking at

the giant Kerr effect in electromagnetically induced transparency (EIT) as a starting point

[36, 37, 38]. We will develop a model to study the interaction of two co-propagating

single-photon wavepackets with an ensemble of five-level atoms. In particular, we shall try

to understand how the bandwidth of the medium gets restricted here and whether this

restriction can be realized without introducing phase noise in the system. Furthermore, in
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this model, we would like to see if we once again obtain two separate algebraic conditions

for the conservation of energy and momentum and whether their simultaneous enforcement

removes the spectral entanglement of the final state.

4.2 A microscopic model via the giant Kerr effect in EIT

We shall first develop a model for a single five-level atomic system and then generalize it to

an ensemble by introducing the atomic density in the equations of motion.

∆𝑏

Ω𝑐

෠𝐵(t)

መ𝐴(t)

መ𝐶(t)

| ۧ1

| ۧ2

ۧ|3

| ۧ4

| ۧ5

Figure 4.1: Level scheme for the giant Kerr effect. Â(t) and B̂(t) are weak (single-photon
pulses); Ωc is the EIT “coupling” field.
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The Hamiltonian for the atomic system shown in figure (4.1) can be expressed as

Ĥ =
~Ωc

2
|2〉〈3|+ ~g∗24 B̂

†(t) |2〉〈4|+ ~Ωc

2
|3〉〈2|+ ~g13 Â(t) |3〉〈1|+ ~∆b |4〉〈4|

+ ~g24 B̂(t) |4〉〈2|+ ~g∗13 Â
†(t) |1〉〈3|+ ~g35 Ĉ(t) |3〉〈5|+ ~g∗35 Ĉ

†(t) |5〉〈3|, (4.1)

where Ωc is the classical control field that connects levels |2〉 ↔ |3〉 (it is the EIT

coupling field) and ∆b is the detuning from level |4〉. Â(t) and B̂(t) represent the

single-photon operators that connect the levels |1〉 ↔ |3〉 and |2〉 ↔ |4〉, respectively. In

other words, the atom in |1〉 can absorb the a photon and get excited to |3〉. Similarly, the

atom in |2〉 can absorb the b photon and get excited to |4〉. In addition to this, we have

another operator Ĉ(t) that connects |3〉 ↔ |5〉. The purpose of the C photon is to

introduce decay naturally in the model. In our scheme, all the fields (i.e. Â, Ĉ and Ωc)

except B̂ are assumed to be resonant with their respective transitions [see figure (4.1)]. In

this problem, we are working in the interaction picture right from the beginning which is

why the Hamiltonian in Eq. (4.1) only has terms corresponding to the interaction between

the atom and the pulses.

The most general atom-field state can be written as

|Ψ〉 = |ψ1〉 |1〉+ |ψ2〉 |2〉+ |ψ3〉 |3〉+ C4 |4〉 |0〉+ |ψ5〉 |5〉. (4.2)

In the previous equation, |ψ1〉, |ψ2〉, |ψ3〉 and |ψ5〉 are the field states, |0〉 is the field’s

vacuum, and |1〉, |2〉, |3〉, |4〉 and |5〉 are the atomic states. On inserting Eqs. (4.1) and
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(4.2) in the Schrödinger equation |Ψ̇〉 = −(i/~)Ĥ|Ψ〉, we obtain the following equations of

motion:

|ψ̇1〉 = −i g∗13 Â
†(t) |ψ3〉, (4.3)

|ψ̇2〉 = − i
2

Ωc |ψ3〉 − i g∗24 B̂
†(t) C4 |0〉, (4.4)

|ψ̇3〉 = − i
2

Ωc |ψ2〉 − i g13 Â(t) |ψ1〉 − i g35 Ĉ(t) |ψ5〉, (4.5)

Ċ4 = −i ∆b C4 − i g24 B̂(t) |ψ2〉, (4.6)

and

|ψ̇5〉 = i g∗35 Ĉ
†(t) |ψ3〉. (4.7)

We shall begin solving this system of equations by starting with Eq. (4.7) whose formal

solution can be written as

|ψ5(t)〉 = −i g∗35

∫ t

0

dt′ Ĉ†(t′) |ψ3(t′)〉. (4.8)
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Next, substituting Eq. (4.8) in Eq. (4.5) yields

|ψ̇3(t)〉 = − i
2

Ωc |ψ2(t)〉 − i g13 Â(t) |ψ1(t)〉 − |g35|2
∫ t

0

dt′ Ĉ(t) Ĉ†(t′) |ψ3(t′)〉. (4.9)

Note that Ĉ(t) Ĉ†(t′) = Ĉ†(t′) Ĉ(t) + δ(t− t′) and furthermore, Ĉ(t) |ψ3(t′)〉 = 0, since

there is no C photon at time t′. Putting all this together in Eq. (4.9) results in

|ψ̇3(t)〉 = − i
2

Ωc |ψ2(t)〉 − i g13 Â(t) |ψ1(t)〉 − |g35|2
∫ t

0

dt′ δ(t− t′) |ψ3(t′)〉,

= − i
2

Ωc |ψ2(t)〉 − i g13 Â(t) |ψ1(t)〉 − |g35|2

2
|ψ3(t)〉,

= − i
2

Ωc |ψ2(t)〉 − i g13 Â(t) |ψ1(t)〉 − γ |ψ3(t)〉, (4.10)

where γ ≡ |g35|2/2. Note that in the previous equation since we are enforcing the δ

function in the upper limit, we get a factor of 1/2 which is absorbed in the definition of γ.

Next, we shall consider the following simplified form of Eqs. (4.4) and (4.10) [ignoring

for the moment the quantum fields; the idea here is to treat the classical coupling field to

all orders, as is commonly done in EIT]:

|ψ̇2〉 = − i
2

Ωc |ψ3〉,

|ψ̇3〉 = − i
2

Ωc |ψ2〉 − γ |ψ3〉, (4.11)
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which can be expressed in a more compact form as

d

dt

(
|ψ3〉
|ψ2〉

)
=

(
−γ −i Ωc/2

−i Ωc/2 0

)
︸ ︷︷ ︸

M

(
|ψ3〉
|ψ2〉

)
. (4.12)

Our motivation here is to express |ψ2〉 and |ψ3〉 as a linear combination of the

eigenvectors of M . Since M is a 2× 2 matrix, we obviously have two eigenvalues given by

λ′ = −1

2

(
γ +

√
γ2 − Ω2

c

)
,

and

λ′′ = −1

2

(
γ −

√
γ2 − Ω2

c

)
.

We shall denote the eigenvectors corresponding to λ′ and λ′′ as |ψ̃2〉 and |ψ̃3〉,

respectively, which can be written as

|ψ̃2〉 =

([
γ +

√
γ2 − Ω2

c

]
/Ωc

i

)
,

and

|ψ̃3〉 =

([
γ −

√
γ2 − Ω2

c

]
/2γ

i Ωc/2γ

)
.

127



If we define |ψ2〉 ≡
(

0
1

)
and |ψ3〉 ≡

(
1
0

)
, we could then rewrite |ψ̃2〉 and |ψ̃3〉 as

|ψ̃2〉 =

(
γ +

√
γ2 − Ω2

c

Ωc

)
|ψ3〉+ i |ψ2〉, (4.13)

and

|ψ̃3〉 =

(
γ −

√
γ2 − Ω2

c

2γ

)
|ψ3〉+ i

(
Ωc

2γ

)
|ψ2〉. (4.14)

Our next step is to invert Eqs. (4.13) and (4.14) so that we can express |ψ2〉 and |ψ3〉 in

terms of |ψ̃2〉 and |ψ̃3〉. This procedure yields

|ψ2〉 = −i γ
Ωc

(
1 +

γ√
γ2 − Ω2

c

)
|ψ̃3〉 −

i

2

(
1− γ√

γ2 − Ω2
c

)
|ψ̃2〉, (4.15)

and

|ψ3〉 =
Ωc

2
√
γ2 − Ω2

c

|ψ̃2〉 −
γ√

γ2 − Ω2
c

|ψ̃3〉. (4.16)

Following this, we now have to express the equations of motion in Eqs. (4.3) and (4.6)

in terms of |ψ̃2〉 and |ψ̃3〉.

Eq. (4.3) can be rewritten as

|ψ̇1〉 = −i g∗13√
γ2 − Ω2

c

Â†(t)

(
Ωc

2
|ψ̃2〉 − γ |ψ̃3〉

)
. (4.17)
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Later, we shall come back to the previous equation, once we have the solution for |ψ̃2〉

and |ψ̃3〉. Now, we shall consider the time derivative of Eq. (4.13) which is given by

| ˙̃ψ2〉 =
γ +

√
γ2 − Ω2

c

Ωc

|ψ̇3〉+ i |ψ̇2〉. (4.18)

Next, on substituting for |ψ̇2〉 and |ψ̇3〉 from Eqs. (4.4) and (4.5) in Eq. (4.18), we obtain

| ˙̃ψ2〉 = −ig13

Ωc

(
γ +

√
γ2 − Ω2

c

)
Â(t) |ψ1〉+ g∗24 B̂

†(t) c4(t) |0〉

− i

2

(
γ +

√
γ2 − Ω2

c

)
|ψ2〉+

Ω2
c − 2γ

(
γ +

√
γ2 − Ω2

c

)
2Ωc

 |ψ3〉. (4.19)

Finally, on substituting for |ψ2〉 and |ψ3〉 in the previous equation, in terms of |ψ̃2〉 and

|ψ̃3〉 from Eqs. (4.15) and (4.16), respectively, and carrying out some simplification, we get

| ˙̃ψ2〉+
1

2

(
γ +

√
γ2 − Ω2

c

)
|ψ̃2〉 = −i g13

Ωc

(
γ +

√
γ2 − Ω2

c

)
Â(t) |ψ1〉

+ g∗24 C4(t) B̂†(t) |0〉, (4.20)

which can be formally integrated to give

|ψ̃2〉 = −i g13

Ωc

(
γ +

√
γ2 − Ω2

c

) ∫ t

0

dt′ e
−
(
γ+
√
γ2−Ω2

c

)
(t−t′)/2

Â(t′) |ψ1(t′)〉

+ g∗24

∫ t

0

dt′ e
−
(
γ+
√
γ2−Ω2

c

)
(t−t′)/2

C4(t′) B̂†(t′) |0〉. (4.21)
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Our next task is to consider the time derivative of Eq. (4.14) which is given by

| ˙̃ψ3〉 =
γ −

√
γ2 − Ω2

c

2γ
|ψ̇3〉+ i

Ωc

2γ
|ψ̇2〉. (4.22)

Next, on substituting for |ψ̇2〉 and |ψ̇3〉 from Eqs. (4.4) and (4.5), we obtain

| ˙̃ψ3〉 = −i g13

2γ

(
γ −

√
γ2 − Ω2

c

)
Â(t) |ψ1〉+

Ωcg
∗
24

2γ
C4(t) B̂†(t) |0〉

− i Ωc

4γ

(
γ −

√
γ2 − Ω2

c

)
|ψ2〉+

Ω2
c −

(
2γ2 − 2γ

√
γ2 − Ω2

c

)
4γ

 |ψ3〉. (4.23)

Finally, substituting for |ψ2〉 and |ψ3〉 in the previous equation, in terms of |ψ̃2〉 and

|ψ̃3〉 from Eqs. (4.15) and (4.16), respectively, and carrying out some simplification yields

| ˙̃ψ3〉+
1

2

(
γ −

√
γ2 − Ω2

c

)
|ψ̃3〉 = −i g13

2γ

(
γ −

√
γ2 − Ω2

c

)
Â(t) |ψ1〉

+
Ωc g

∗
24

2γ
C4(t) B̂†(t) |0〉, (4.24)

which can be formally integrated to give

|ψ̃3〉 = −i g13

2γ

(
γ −

√
γ2 − Ω2

c

) ∫ t

0

dt′ e
−
(
γ−
√
γ2−Ω2

c

)
(t−t′)/2

Â(t′) |ψ1(t′)〉

+
Ωc g

∗
24

2γ

∫ t

0

dt′ e
−
(
γ−
√
γ2−Ω2

c

)
(t−t′)/2

C4(t′) B̂†(t′) |0〉. (4.25)
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Our next task is to deal with Eq. (4.6), i.e. the equation of motion for C4(t). On

substituting for |ψ2〉 in Eq. (4.6), in terms of |ψ̃2〉 and |ψ̃3〉 using Eq. (4.15), we obtain

Ċ4 + i ∆b C4 = −γ g24

Ωc

(
1 +

γ√
γ2 − Ω2

c

)
B̂(t) |ψ̃3〉 −

g24

2

(
1− γ√

γ2 − Ω2
c

)
B̂(t) |ψ̃2〉.

(4.26)

On substituting for |ψ̃2〉 and |ψ̃3〉 from Eqs. (4.21) and (4.25), respectively, in Eq.

(4.26), we get

Ċ4 + i ∆b C4 = i
g24 g13 Ωc

2
√
γ2 − Ω2

c

∫ t

0

dt′ e
−
(
γ−
√
γ2−Ω2

c

)
(t−t′)/2

B̂(t) Â(t′) |ψ1(t′)〉

− |g24|2

2

(
1 +

γ√
γ2 − Ω2

c

) ∫ t

0

dt′ e
−
(
γ−
√
γ2−Ω2

c

)
(t−t′)/2

C4(t′) B̂(t) B̂†(t′) |0〉

− i g24 g13 Ωc

2
√
γ2 − Ω2

c

∫ t

0

dt′ e
−
(
γ+
√
γ2−Ω2

c

)
(t−t′)/2

B̂(t) Â(t′) |ψ1(t′)〉

− |g24|2

2

(
1 +

γ√
γ2 − Ω2

c

) ∫ t

0

dt′ e
−
(
γ+
√
γ2−Ω2

c

)
(t−t′)/2

C4(t′) B̂(t) B̂†(t′) |0〉. (4.27)

In order to simplify the previous equation further, we shall make use of the following

results from the commutation relation between B̂ and B̂†:

B̂(t) B̂†(t′) = B̂†(t′) B̂(t) + δ(t− t′),

and
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B̂†(t′) B̂(t)|0〉 = 0.

On exploiting these results, we shall be left with a δ function in the second and fourth

terms in Eq. (4.27), and to enforce the δ function, we shall resort to the following identity:

∫ t

0

dt′ f(t′) δ(t− t′) =
1

2
f(t).

On using this result and furthermore, defining

1

2

(
γ −

√
γ2 − Ω2

c

)
≡ Γ−,

and

1

2

(
γ +

√
γ2 − Ω2

c

)
≡ Γ+,

and carrying out some simplification, we obtain

Ċ4 +

(
|g24|2

2
+ i ∆b

)
C4 = i

g24 g13 Ωc

2
√
γ2 − Ω2

c

∫ t

0

dt′
(
e−Γ−(t−t′) − e−Γ+(t−t′)

)
× B̂(t) Â(t′) |ψ1(t′)〉, (4.28)

which can be formally integrated to give
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C4(t) = i
g24 g13 Ωc

2
√
γ2 − Ω2

c

∫ t

0

dt′ e−(|g24|2/2+i∆b)(t−t′) B̂(t′)

×
∫ t′

0

dt′′
(
e−Γ−(t′−t′′) − e−Γ+(t′−t′′)

)
Â(t′′) |ψ1(t′′)〉. (4.29)

Having obtained the formal solution for C4, the next step is to substitute this result in

the solutions for |ψ̃2〉 and |ψ̃3〉, in Eqs. (4.21) and (4.25), respectively.

We shall first consider |ψ̃2〉. Now, on substituting Eq. (4.29) in Eq. (4.21), we obtain

|ψ̃2(t)〉 = −2 i Γ+
g13

Ωc

∫ t

0

dt′ e−Γ+(t−t′) Â(t′) |ψ1(t′)〉+ i
|g24|2 g13 Ωc

2
√
γ2 − Ω2

c

∫ t

0

dt′ e−Γ+(t−t′) B̂†(t′)

×
∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′) B̂(t′′)

∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
Â(t′′′) |ψ1(t′′′)〉.

(4.30)

Next, we shall consider |ψ̃3〉. On substituting Eq. (4.29) in Eq. (4.25), we get

|ψ̃3(t)〉 = −i Γ−
g13

γ

∫ t

0

dt′ e−Γ−(t−t′) Â(t′) |ψ1(t′)〉+ i
Ωc

2γ

|g24|2 g13 Ωc

2
√
γ2 − Ω2

c

∫ t

0

dt′ e−Γ−(t−t′) B̂†(t′)

×
∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′) B̂(t′′)

∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
Â(t′′′) |ψ1(t′′′)〉.

(4.31)

Following this, we shall substitute Eqs. (4.30) and (4.31) in Eq. (4.17) and carry out

some simplification which finally yields the following closed-form equation for |ψ̇1〉:
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|ψ̇1〉 =
|g13|2√
γ2 − Ω2

c

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

)
Â†(t) Â(t′) |ψ1(t′)〉

+
|g13|2 |g24|2 Ω2

c

4(γ2 − Ω2
c)

∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

) ∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)

×
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
Â†(t) Â(t′′′) B̂†(t′) B̂(t′′) |ψ1(t′′′)〉. (4.32)

Until now, we have been working with field states without resorting to any specific

representation. However, at this stage, we would switch to the frequency-space using a

wavepacket to the represent the a and the b photons in a multimode framework. We shall

thus, define

|ψ1(t)〉 ≡
∫
dω′
∫
dω′′ f(ω′, ω′′, t) â†ω′ b̂

†
ω′′ |0〉.

The operators for the field interacting with an atom at a location z′ are

Â

(
t− z′

c

)
≡ 1√

2π

∫
dωa e

−iωa(t−z′/c) âωa

and

B̂

(
t− z′

c

)
≡ 1√

2π

∫
dωb e

−iωb(t−z′/c) b̂ωb
.

We assume that the medium extends from −L/2 to L/2 and we approximate the sum

over all the atoms with coordinates z′ by an integral over a continuous distribution ρ(z′).
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On inserting these definitions in Eq. (4.32) and furthermore, introducing the atomic

density ρ(z′) in the previous equation, we end up getting the following equation of motion

for the wavepacket:

∂

∂t
f(ωa, ωb, t) =

|g13|2

2π
√
γ2 − Ω2

c

∫ L/2

−L/2
dz′ ρ(z′)

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

)
×
∫
dω′a f(ω′a, ωb, t) e

iωa(t−z′/c) e−iω
′
a(t′−z′/c) +

|g13|2 |g24|2 Ω2
c

16 π2 (γ2 − Ω2
c)

∫ L/2

−L/2
dz′ ρ(z′)

×
∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

) ∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)

×
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

) ∫
dω′a

∫
dω′b f(ω′a, ω

′
b, t
′′′)

× eiωa(t−z′/c) eiωb(t′−z′/c) e−iω
′
a(t′′′−z′/c) e−iω

′
b(t′′−z′/c). (4.33)

For computational convenience, we shall rewrite Eq. (4.33) in terms of k instead of ω.

We shall assume that γ � Ωc as a result of which we can approximate γ2 − Ω2
c ≈ γ2. Thus,

the previous equation can be rewritten in terms of k under the assumption that we have

just made, in the following form:
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∂

∂t
f(ka, kb, t) =

|g13|2 c
2πγ

∫ L/2

−L/2
dz′ ρ(z′)

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

)
×
∫
dk′a f(k′a, kb, t) e

ika(ct−z′) e−ik
′
a(ct′−z′) +

|g13|2 |g24|2 Ω2
c c

2

16 π2 γ2

∫ L/2

−L/2
dz′ ρ(z′)

×
∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

) ∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)

×
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

) ∫
dk′a

∫
dk′b f(k′a, k

′
b, t
′′′)

× eika(ct−z′) eikb(ct′−z′) e−ik
′
a(ct′′′−z′) e−ik

′
b(ct′′−z′). (4.34)

We shall define a “two-photon wavefunction” ξ(za, zb, t) as

ξ(za, zb, t) ≡
1

2π

∫
dka

∫
dkb e

ikaza eikbzb f(ka, kb, t).

So,

∂

∂t
ξ(za, zb, t) =

1

2π

∫
dka

∫
dkb e

ikaza eikbzb
∂

∂t
f(ka, kb, t). (4.35)
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On substituting Eq. (4.34) in Eq. (4.35), we get

∂

∂t
ξ(za, zb, t) =

|g13|2c
(2π)2γ

∫ L/2

−L/2
dz′ ρ(z′)

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

) ∫
dka e

ikaza

×
∫
dkb e

ikbzb

∫
dk′a f(k′a, kb, t) e

ika(ct−z′) e−ik
′
a(ct′−z′) +

|g13|2 |g24|2 Ω2
c c

2

(2π)16 π2 γ2

×
∫ L/2

−L/2
dz′ ρ(z′)

∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

) ∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)

×
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

) ∫
dka e

ikaza

∫
dkb e

ikbzb

×
∫
dk′a

∫
dk′b f(k′a, k

′
b, t
′′′) eika(ct−z′) eikb(ct′−z′) e−ik

′
a(ct′′′−z′) e−ik

′
b(ct′′−z′)

= T1 + T2,

(4.36)

where the “linear” term

T1 ≡
|g13|2c
(2π)2γ

∫ L/2

−L/2
dz′ ρ(z′)

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

)
×
∫
dka e

ikaza

∫
dkb e

ikbzb

∫
dk′a f(k′a, kb, t) e

ika(ct−z′) e−ik
′
a(ct′−z′),

involves only the interaction of the field Â with the EIT medium and the “nonlinear”

term
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T2 ≡
|g13|2 |g24|2 Ω2

c c
2

(2π)16 π2 γ2

∫ L/2

−L/2
dz′ ρ(z′)

∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

)
×
∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
×
∫
dka e

ikaza

∫
dkb e

ikbzb

∫
dk′a

∫
dk′b f(k′a, k

′
b, t
′′′) eika(ct−z′) eikb(ct′−z′)

× e−ik
′
a(ct′′′−z′) e−ik

′
b(ct′′−z′),

captures the interaction of the two fields Â and B̂. We shall first simplify T1. Here, we

shall assume that the pulse never leaves the medium. So, we shall let L→∞ and

furthermore, we shall assume a constant atomic density ρ0. Under these assumptions, we

have

T1 =
|g13|2c ρ0

(2π)2γ

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

) ∫
dka e

ikaza

∫
dkb e

ikbzb

× eikact
∫
dk′a f(k′a, kb, t

′) e−ik
′
act
′
∫ ∞
−∞

dz′ ei(k
′
a−ka)z′︸ ︷︷ ︸

2πδ(k′a−ka)

. (4.37)

138



On enforcing the δ function in the previous equation, we obtain

T1 =
|g13|2 c ρ0

γ

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

)
× 1

2π

∫
dka e

ika[za+c(t−t′)]
∫
dkb e

ikbzb f(ka, kb, t
′)︸ ︷︷ ︸

ξ(za+c(t−t′),zb,t′)

=
|g13|2 c ρ0

γ

∫ t

0

dt′
(

Γ− e
−Γ−(t−t′) − Γ+ e−Γ+(t−t′)

)
ξ(za + c(t− t′), zb, t′). (4.38)

Next, we shall expand the terms in the parenthesis, in the previous equation, which

then gives us

T1 =
|g13|2 c ρ0

γ
Γ− e

−Γ−t

∫ t

−∞
dt′ eΓ−t′ ξ(za + c(t− t′), zb, t′)

− |g13|2 c ρ0

γ
Γ+ e−Γ+t

∫ t

−∞
dt′ eΓ+t′ ξ(za + c(t− t′), zb, t′).

(4.39)

We shall evaluate both the integrals in the previous equation by parts and furthermore,

impose the condition that ξ vanishes as t→ −∞. This yields

T1 =
|g13|2 c ρ0

γ

∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

) ( ∂ξ
∂t′
− c ∂ξ

∂z

)
, (4.40)

where we have defined za + c (t− t′) ≡ z. In order to simplify the mathematical

analysis, we shall make an approximation here. Since Γ+ � Γ−, e−Γ+(t−t′) � e−Γ−(t−t′).
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This approximation will be good except for very short times around t = t′, of the order of

|t− t′| ∼ 1/Γ+. So, we shall retain only the exponential term involving Γ− in the previous

equation which then reduces Eq. (4.40) to

T1 = −|g13|2 c ρ0

γ

∫ t

−∞
dt′ e−Γ−(t−t′)

(
∂ξ

∂t′
− c ∂ξ

∂z

)
. (4.41)

Now, we shall make a plain adiabatic approximation to the evaluation of the integral in

Eq. (4.41). We will assume that the terms in the parenthesis in Eq. (4.41) vary much more

slowly than exp(−Γ−t
′) in t′ as a result of which we can evaluate ∂ξ/∂t′− c ∂ξ/∂z at t′ = t,

and pull them outside the integral.

Thus, (
∂ξ

∂t′
− c ∂ξ

∂z

)
t′=t

→ ∂ξ

∂t
− c ∂ξ

∂za
.

This makes

T1 = −|g13|2 c ρ0

γ

(
∂ξ

∂t
− c ∂ξ

∂za

) ∫ t

−∞
dt′ e−Γ−(t−t′)︸ ︷︷ ︸

1/Γ−

= −|g13|2 c ρ0

γ Γ−

(
∂

∂t
− c ∂

∂za

)
ξ(za, zb, t). (4.42)
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Next, we shall simplify T2 under the same assumptions which we imposed on T1.

T2 =
|g13|2 |g24|2 Ω2

c c
2 ρ0

16 π2 γ2

∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

)
×
∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
×
∫ ∞
−∞

dz′
∫
dka e

ika(za−z′+ct)︸ ︷︷ ︸
2π δ(za−z′+ct)

∫
dkb e

ikb(zb−z′+ct′)︸ ︷︷ ︸
2π δ(zb−z′+ct′)

×
(

1

2π

) ∫
dk′a

∫
dk′b e

ik′a(z′−ct′′′) eik
′
b(z′−ct′′) f(k′a, k

′
b, t
′′′)︸ ︷︷ ︸

ξ(z′−ct′′′,z′−ct′′,t′′′)

, (4.43)

which gives us

T2 =
|g13|2 |g24|2 Ω2

c c
2 ρ0

4 γ2

∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

)
×
∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
×
∫ ∞
−∞

dz′ δ(za − z′ + ct) δ(zb − z′ + ct′) ξ(z′ − ct′′′, z′ − ct′′, t′′′). (4.44)

In the previous equation, we shall first enforce the δ function on the left, i.e.

δ(za − z′ + ct) to get rid of the integral over z′ which makes z′ = za + ct.
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We thus have,

T2 =
|g13|2 |g24|2 Ω2

c c
2 ρ0

4 γ2

∫ t

0

dt′
(
e−Γ+(t−t′) − e−Γ−(t−t′)

)
×
∫ t′

0

dt′′ e−(|g24|2/2+i∆b)(t′−t′′)
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
× ξ[za + c(t− t′′′), za + c(t− t′′), t′′′] δ[zb − za − c(t− t′)]. (4.45)

We shall now enforce the δ function in the previous equation and get rid of the integral

over t′. This makes t′ = t− [(zb − za)/c]. It is important to note that the integral over t′

goes from 0 to t. So t′ < t means that zb − za must be positive. In order to incorporate this

requirement, we shall introduce a step function Θ(zb − za) in the expression for T2.

We thus obtain,

T2 =
|g13|2 |g24|2 Ω2

c c ρ0

4 γ2
Θ(zb − za)

(
e−Γ+(zb−za)/c − e−Γ−(zb−za)/c

)
×
∫ t−[(zb−za)/c]

0

dt′′ e−(|g24|2/2+i∆b)(t−t′′−[(zb−za)/c])

×
∫ t′′

0

dt′′′
(
e−Γ−(t′′−t′′′) − e−Γ+(t′′−t′′′)

)
ξ[za + c(t− t′′′), za + c(t− t′′), t′′′]. (4.46)

From the expression for T2 in the previous equation, it is quite clear that the analytical

calculation for this problem in its current form might be intractable. In order to make the

problem little simpler, we make an approximation for ξ. We shall assume that ξ varies

slowly such that we will evaluate it at t′′ = t′′′ = t− [(zb − za)/c]. This is again essentially
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an adiabatic approximation to the integrals over t′′ and t′′′.

We thus have,

ξ[za + c(t− t′′′), za + c(t− t′′), t′′′]t′′=t′′′=t−[(zb−za)/c] = ξ(zb, zb, t− [(zb − za)/c]).

This assumption simplifies T2 to the following form:

T2 =
|g13|2 |g24|2 Ω2

c c ρ0

4 γ2
Θ(zb − za)

(
e−Γ+(zb−za)/c − e−Γ−(zb−za)/c

)
× ξ(zb, zb, t− [(zb − za)/c]) e−(|g24|2/2+i∆b)(t−[(zb−za)/c])

×
∫ t−[(zb−za)/c]

−∞
dt′′ e(|g24|2/2+i∆b)t′′︸ ︷︷ ︸
I′

×


∫ t′′

−∞
dt′′′ e−Γ−(t′′−t′′′)︸ ︷︷ ︸

1/Γ−

−
∫ t′′

−∞
dt′′′ e−Γ+(t′′−t′′′)︸ ︷︷ ︸

1/Γ+

 , (4.47)

where

I ′ =
e(|g24|2/2+i∆b)(t−[(zb−za)/c])

|g24|2/2 + i∆b

.

Note that in the previous equation, we have extended the lower limits of all the integrals

to −∞ since this would not change anything. This is because the pulse starts at t = 0. This

means that we can safely assume that at t = 0, it is negligible. So, this implies that the

pulse is negligible for t < 0 which would then allow us to harmlessly extend the lower limit
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of all the integrals over time to −∞. Eq. (4.47) now reduces to a more compact form:

T2 =
|g13|2 |g24|2 Ω2

c c ρ0

4 γ2
Θ(zb − za)

(
e−Γ+(zb−za)/c − e−Γ−(zb−za)/c

)
×
(

1

Γ−
− 1

Γ+

)
1

|g24|2/2 + i∆b

ξ(zb, zb, t− [(zb − za)/c]). (4.48)

We shall further assume that 1/Γ− � 1/Γ+. Therefore, 1/Γ− − 1/Γ+ ≈ 1/Γ−.

Moreover, we shall assume that ∆b � |g24|2 which makes |g24|2/2 + i∆b ≈ i∆b. These

additional assumptions simplify T2 further which finally results in

T2 = −i |g13|2 |g24|2 Ω2
c c ρ0

4 γ2 Γ− ∆b

Θ(zb − za)
(
e−Γ+(zb−za)/c − e−Γ−(zb−za)/c

)
× ξ(zb, zb, t− [(zb − za)/c]). (4.49)

On substituting Eqs. (4.42) and (4.49) in Eq. (4.36), we obtain

∂

∂t
ξ(za, zb, t) = −|g13|2 c ρ0

γ Γ−

∂

∂t
ξ(za, zb, t) +

|g13|2 c2 ρ0

γ Γ−

∂

∂za
ξ(za, zb, t)

− i |g13|2 |g24|2 Ω2
c c ρ0

4 γ2 Γ− ∆b

Θ(zb − za)
(
e−Γ+(zb−za)/c − e−Γ−(zb−za)/c

)
× ξ(zb, zb, t− [(zb − za)/c]). (4.50)
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On moving the first term on the right hand side of Eq. (4.50) to the left and defining

the following parameters:

|g13|2 c ρ0

γ Γ−
≡ A′,

|g13|2 |g24|2 Ω2
c c ρ0

4 γ2 Γ− ∆b

≡ B′,

and

c

(
A′

1 + A′

)
≡ v,

we can rewrite Eq. (4.50) in a more compact form that reads

(
∂

∂t
− v ∂

∂za

)
ξ(za, zb, t) = −i

(
B′

1 + A′

)
Θ(zb − za)

(
e−Γ+(zb−za)/c − e−Γ−(zb−za)/c

)
× ξ(zb, zb, t− [(zb − za)/c]). (4.51)

Eq. (4.51) is the final simplified dynamical equation that we need to solve to obtain the

final state of the outgoing photons.

We note that the right-hand side of the previous equation vanishes for zb < za. This

makes Θ(zb − za) = 0. So, we start by solving Eq. (4.51) in that region where it reduces to

(
∂

∂
− v ∂

∂za

)
ξ(za, zb, t) = 0. (4.52)
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We will then evaluate the result on the line za = zb and use that on the right-hand side

of Eq. (4.51) for za > zb. In this way, an exact solution to Eq. (4.51) is possible.

We shall make the following co-ordinate transformation: t′ = t and z′ = za + vt. We

thus have,

∂

∂t
− v ∂

∂za
=

∂

∂t′
,

which then transforms Eq. (4.52) to

∂

∂t′
ξ(z′, zb, t

′) = 0, (4.53)

whose solution can be written as

ξ(z′, zb, t
′) = η(z′, zb), (4.54)

which is a constant in t′. In terms of the original variables, we have when zb < za,

ξ(za, zb, t) = η(za + vt, zb). (4.55)

It is straightforward to verify that η(za + vt, zb) indeed satisfies Eq. (4.52). When

zb < za and at t = 0, ξ(za, zb, 0) = η(za, zb).
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The fact that there is no derivative with respect to zb on Eq. (4.51) means that we are

working in a reference frame where the b photon is at rest. We shall assume that the center

of the wavepacket corresponding to the b photon is at zb = 0. At t = 0, the center of the

wavepacket corresponding to the a photon is at za = z0 and it starts moving to the left

(toward the b photon) as time evolves. Although, in principle, it is possible to write down

the formal solution of Eq. (4.51) for an arbitrary initial wavepacket, for definiteness in

what follows we will assume that the initial state is a Gaussian pulse.

Note that

ξ(za, zb, 0) =
1

2π

∫
dka e

ikaza

∫
dkb e

ikbzb f(ka, kb, 0).

If we assume our initial state to be a Gaussian, then

ξ(za, zb, 0) =
1

σ
√
π
e−(za−z0)2/2σ2

e−z
2
b/2σ

2

.

When zb < za, we know from Eq. (4.55) that

ξ(za, zb, t) =
1

σ
√
π
e−(za+vt−z0)2/2σ2

e−z
2
b/2σ

2

.

When zb ≥ za, the time evolved state ξ[zb, zb, t− ((zb − za)/c)] for a Gaussian pulse can

be written as

ξ(zb, zb, t− ((zb − za)/c)] =
1

σ
√
π
e−[zb−z0+vt−v/c(zb−za)]2/2σ2

e−z
2
b/2σ

2

. (4.56)
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On substituting Eq. (4.56) in Eq. (4.51), we get

(
∂

∂
− v ∂

∂za

)
ξ(za, zb, t) = − i

σ
√
π

(
B′

1 + A′

)
Θ(zb − za)

(
e−Γ+(zb−za)/c − e−Γ−(zb−za)/c

)
× e−[zb−z0+vt−v/c(zb−za)]2/2σ2

e−z
2
b/2σ

2

.

(4.57)

We shall once again make the same co-ordinate transformation that we made earlier,

i.e. t′ = t and z′ = za + vt, which would then transform Eq. (4.57) to the following form:

∂

∂t′
ξ(z′, zb, t

′) =
−i
σ
√
π

(
B′

1 + A′

)
Θ(zb − z′ + vt′)

(
e−Γ+(zb−z′)/c e−β Γ+t′ − e−Γ−(zb−z′)/c e−β Γ−t′

)
× e−z

2
b/2σ

2

e−[α zb−z0+β z′+α v t′]2/2σ2

,

(4.58)

where we have defined 1− v/c ≡ α and v/c ≡ β.

The step function in Eq. (4.58) reads

Θ(zb − z′ + vt′) =


1, if zb − z′ + vt′ ≥ 0

0, otherwise.

(4.59)

This sets the lower limit for t′, i.e. t′ ≥ (z′ − zb)/v. On incorporating this lower bound

for t′ in Eq. (4.58) and formally integrating, we obtain
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ξ(z′, zb, t
′)− ξ(z′, zb, 0) = − i

σ
√
π

(
B′

1 + A′

)
e−z

2
b/2σ

2
(
e−Γ+(zb−z′)/c

×
∫ t′

(z′−zb)/v

dt′′ e−β Γ+t′′ e−[α zb−z0+β z′+α v t′′]2/2σ2

︸ ︷︷ ︸
II

− e−Γ−(zb−z′)/c
∫ t′

(z′−zb)/v

dt′′ e−β Γ−t′′ e−[α zb−z0+β z′+α v t′′]2/2σ2

︸ ︷︷ ︸
III

 ,

(4.60)

where

II =

√
π

2

σ

αv
e−βΓ+(−α zb+z0−β z′)/αv eβ

2Γ2
+σ

2/2α2v2

×
(

erf

[
α zb − z0 + β z′ + α v t′√

2 σ
+
β Γ+ σ√

2 α v

]
− erf

[
z′ − z0√

2σ
+
β Γ+ σ√

2 α v

])
, (4.61)

and

III =

√
π

2

σ

αv
e−βΓ−(−α zb+z0−β z′)/αv eβ

2Γ2
−σ

2/2α2v2

×
(

erf

[
α zb − z0 + β z′ + α v t′√

2 σ
+
β Γ− σ√

2 α v

]
− erf

[
z′ − z0√

2σ
+
β Γ− σ√

2 α v

])
. (4.62)
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Next, we shall substitute Eqs. (4.61) and (4.62) in Eq. (4.60). Furthermore, we will

express the final state in terms of the original coordinates (t, za), and we shall explicitly

substitute for the functional form of a Gaussian pulse for the initial state

ξ(za + vt, zb, 0) = (1/(σ
√
π)) exp[−(za + vt− z0)2/2σ2] exp[−z2

b/2σ
2] in Eq. (4.60). This

yields

ξ(za, zb, t) =
1

σ
√
π
e−(za+vt−z0)2/2σ2

e−z
2
b/2σ

2 − i√
2 α v

(
B′

1 + A′

)
e−z

2
b/2σ

2

×
[
e−Γ+(zb−za−vt)/c e−βΓ+[−αzb+z0−β(za+vt)]/αv eβ

2Γ2
+σ

2/2α2v2

× (S1 − S2)− e−Γ−(zb−za−vt)/c e−βΓ−[−αzb+z0−β(za+vt)]/αv

× eβ
2Γ2
−σ

2/2α2v2 (S3 − S4)
]
, (4.63)

where

S1 ≡ erf

[
αzb − z0 + βza + vt√

2σ
+
βΓ+σ√

2αv

]
, (4.64)

S2 ≡ erf

[
za + vt− z0√

2σ
+
βΓ+σ√

2αv

]
, (4.65)

S3 ≡ erf

[
αzb − z0 + βza + vt√

2σ
+
βΓ−σ√

2αv

]
, (4.66)
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and

S4 ≡ erf

[
za + vt− z0√

2σ
+
βΓ−σ√

2αv

]
. (4.67)

It is evident that the expression for the final state given by Eqs. (4.63) through (4.67) is

quite complicated. Hence, it would be helpful if we make some approximations here to

reasonably simplify the final state. It is important to keep in mind that we are only

interested in the state long after the interaction is over, i.e. we are concerned only with the

limit t→∞. Furthermore, in our analysis β > α. This is because in the EIT, the a photon

travels with a velocity vg (vg < c) and the b photon travels at c. However, we are implicitly

in a reference frame as seen in Eq. (4.51) where the b photon is at rest. In this frame, the a

photon travels toward the b photon with a velocity c− vg ≡ v. This means 1− vg/c = v/c.

Thus, α ≡ 1− v/c = vg/c and β ≡ v/c = 1− vg/c. We assume in our calculation that vg/c

is in the range of 0.05 to 0.1. This makes β > α. Thus, in the long time limit and given the

fact that β > α, we shall approximate

S1 ≡ erf

[
αzb − z0 + βza + vt√

2σ
+
βΓ+σ√

2αv

]
≈ 1,

and

S3 ≡ erf

[
αzb − z0 + βza + vt√

2σ
+
βΓ−σ√

2αv

]
≈ 1,
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which then simplifies Eq. (4.63) to the following form:

ξ(za, zb, t) =
1

σ
√
π
e−(za+vt−z0)2/2σ2

e−z
2
b/2σ

2 − i√
2 α v

(
B′

1 + A′

)
e−z

2
b/2σ

2

×
[
e−Γ+(zb−za−vt)/c e−βΓ+[−αzb+z0−β(za+vt)]/αv eβ

2Γ2
+σ

2/2α2v2

× erfc

(
za + vt− z0√

2σ
+
βΓ+σ√

2αv

)
− e−Γ−(zb−za−vt)/c e−βΓ−[−αzb+z0−β(za+vt)]/αv

× eβ
2Γ2
−σ

2/(2α2v2 erfc

(
za + vt− z0√

2σ
+
βΓ−σ√

2αv

)]
.

(4.68)

Our next task is to simplify Eq. (4.68). In order to save space and make the

simplification easier to follow, we shall split the second term on the right hand side of the

previous equation into two parts, viz.

Λ1 ≡ e−Γ+(zb−za−vt)/c e−βΓ+[−αzb+z0−β(za+vt)]/αv eβ
2Γ2

+σ
2/2α2v2 erfc

(
za + vt− z0√

2σ
+
βΓ+σ√

2αv

)
,

and

Λ2 ≡ e−Γ−(zb−za−vt)/c e−βΓ−[−αzb+z0−β(za+vt)]/αv eβ
2Γ2
−σ

2/(2α2v2 erfc

(
za + vt− z0√

2σ
+
βΓ−σ√

2αv

)
.
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We shall simplify Λ1 and Λ2 separately and to accomplish this, we shall make use of the

following asymptotic expansion [39]:

ez
2

erfc(z) ∼ 1√
πz

+
1√
πz

∞∑
m=1

(−1)m
1.3...(2m− 1)

(2z2)m
, z →∞.

For our case, we are only going to retain the first term in the asymptotic expansion. So,

we simply have

ez
2

erfc(z) ∼ 1√
πz
. (4.69)

Note that we are working in the long-time limit, i.e. as t→∞. Thus, in this limit, the

argument of the complimentary error function in both Λ1 and Λ2 becomes very large, i.e.

(za + vt− z0)/
√

2σ + βΓ±σ/
√

2αv →∞. Hence, we can legitimately exploit the

approximation in Eq. (4.69) to simplify Λ1 and Λ2.
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We shall start with Λ1.

Λ1 ≡ e−Γ+(zb−za−vt)/c e−βΓ+[−αzb+z0−β(za+vt)]/αv eβ
2Γ2

+σ
2/2α2v2 erfc

(
za + vt− z0√

2σ
+
βΓ+σ√

2αv

)
= e−Γ+(zb−za−vt)/c e−(za+vt−z0)2/2σ2

e−βΓ+[−αzb+z0−β(za+vt)]/αv e−βΓ+(za+vt−z0)/αv︸ ︷︷ ︸
exp[Γ+(zb−za−vt)/c]

× e(za+vt−z0)2/2σ2

eβΓ+(za+vt−z0)/αv eβ
2Γ2

+σ
2/2α2v2︸ ︷︷ ︸

T ′

× erfc

(
za + vt− z0√

2σ
+
βΓ+σ√

2αv

)
,

(4.70)

where

T ′ = exp

[(
za + vt− z0√

2σ
+
βΓ+σ√

2αv

)2
]
.

In the previous equation, we can see that exp[−Γ+(zb − za − vt)/c] cancels with its

inverse and on explicitly substituting for T ′ in Eq. (4.70) and making the asymptotic

expansion in Eq. (4.69), we obtain

Λ1 =
1√
π

e−(za+vt−z0)2/2σ2

[(za + vt− z0)/
√

2σ] + [(βΓ+σ)/
√

2αv]
. (4.71)

Similarly, we can simplify Λ2 along the same line which would then yield

Λ2 =
1√
π

e−(za+vt−z0)2/2σ2

[(za + vt− z0)/
√

2σ] + [(βΓ−σ)/
√

2αv]
. (4.72)
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On substituting Eqs. (4.71) and (4.72) in Eq. (4.68), we obtain

ξ(za,zb, t) =
1

σ
√
π
e−(za+vt−z0)2/2σ2

e−z
2
b/2σ

2

[
1− i

( σ
αv

) ( B′

1 + A′

)
×
(

1

[(za + vt− z0)/σ] + [(βΓ+σ)/αv]
− 1

[(za + vt− z0)/σ] + [(βΓ−σ)/αv]

)]
. (4.73)

In the reference frame in which we are working here, the b photon is at rest. The a

photon is traveling toward the b photon with a velocity v. Initially, the center of the

wavepacket of the a photon is at za = z0, far away from the b photon. We shall assume that

the wavepacket of the b photon is centered at zb = 0 and it stays there. In this frame of

reference, the wavepacket of the a photon sweeps across the wavepacket of the b photon

and after the interaction, the a pulse moves away from the b pulse.

In the long-time limit, i.e. for very large values of t, the center of the wavepacket of the

a photon would be far away from the b photon. So, we can approximate za + vt ≈ z0 in the

denominator of Eq. (4.73), which would then simplify this equation to

ξ(za, zb, t) =
1

σ
√
π
e−(za+vt−z0)2/2σ2

e−z
2
b/2σ

2

[
1− i

β

(
B′

1 + A′

)(
1

Γ+

− 1

Γ−

)]
. (4.74)

Let us recall that we had earlier assumed that Γ+ � Γ− as a result of which we can

approximate 1/Γ+ − 1/Γ− ≈ −1/Γ−, which would then further simplify Eq. (4.74) to
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ξ(za, zb, tfinal) =
1

σ
√
π
e−(za+vt−z0)2/2σ2

e−z
2
b/2σ

2

︸ ︷︷ ︸
ξ(za,zb,tinitial)

[
1 +

i

β

(
B′

1 + A′

)(
1

Γ−

)]
. (4.75)

Note that

Γ− =
γ

2

[
1−

(
1− Ω2

c

γ2

)1/2
]
.

When γ � Ωc, we can expand (1− Ω2
c/γ

2)1/2 and retain only the term first-order in

(Ωc/γ)2 which would then yield

Γ− '
γ

2

[
1−

(
1− 1

2

Ω2
c

γ2

)]
=

Ω2
c

4γ
.

Earlier we had set

c

(
A′

1 + A′

)
= v,

from which we obtain

A′ =
v/c

1− v/c
=
β

α
. (4.76)

We shall once again recall the definitions of A′ and B′ for convenience.

A′ ≡ |g13|2 c ρ0

γ Γ−
,
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and

B′ ≡ |g13|2 |g24|2 Ω2
c c ρ0

4 γ2 ∆b Γ−
.

We shall now try to express B′ in terms of the other parameters defined earlier.

B′ =
|g24|2

∆b

Ω2
c

4 γ︸︷︷︸
Γ−

(
|g13|2 c ρ0

γ Γ−

)
︸ ︷︷ ︸

A′= β/α

=
|g24|2

∆b

Γ−
β

α
. (4.77)

On substituting Eqs. (4.76) and (4.77) in Eq. (4.75) and carrying out some trivial

simplifications, we get

ξ(za, zb, tfinal) = ξ(za, zb, tinitial)

(
1 + i

|g24|2

∆b

)
. (4.78)

We have already assumed that ∆b � |g24|2, i.e. we have assumed the detuning to be

very large so as to prevent the b photon from getting absorbed in the atomic medium. This

makes |g24|2/∆b � 1 . To the same order of validity as of Eq. (4.78), then, we can write

ξ(za, zb, tfinal) = ξ(za, zb, tinitial) e
i|g24|2/∆b , (4.79)

as long as we remember that the argument of the exponential (the phase shift) must be
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small. We can thus infer from Eq. (4.79) that in the long-time limit and on the condition

that the detuning from level 4 (∆b) is much larger compared to the coupling strength

between levels 2 and 4 (g24), the final state ends up being the same as the initial state with

only a small phase shift. One of the reasons for the smallness of this phase shift is that

whatever phase gets built comes out of the interaction between the two photons and only

one atom. In other words, when the a and the b photons travel through a gas of atoms, it is

necessary for both of them to be present at the same atom in order to interact and the

likelihood that they would be together in more than one atom is negligible since they are

moving at different velocities. On the other hand, the phase-shift per atom is small,

because we have to keep the detuning ∆b large enough to prevent the b photon from

getting absorbed in the atomic medium.

Another crucial point to observe is the fact that the norm is not preserved in Eq.

(4.78). Formally speaking, it exceeds unity. It is however, equal to 1 to first-order in the

small quantity |g24|2/∆b as shown in Eq. (4.79).

The reason for the norm not being preserved, in general, in the expression for the final

state in Eq. (4.78) is in the various approximations we made to derive Eq. (4.50), such as

the adiabatic approximations to Eqs. (4.40) and (4.46). We had to do this to simplify the

mathematical analysis but the price that we have paid is the non-preservation of the norm

of the final state.

Now, we shall calculate the fidelity using the expression for the final state in Eq. (4.73)

without any further approximation.
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Let us recall that the combined fidelity-phase is given by

√
F eiφ =

∫
dza

∫
dzb ξ

∗(za, zb, tinitial) ξ(za, zb, tfinal)

and the initial state is given by

ξ(za, zb, tinitial) =
1

σ
√
π
e−(za+vt−z0)2/2σ2

e−z
2
b/2σ

2

.

On substituting the initial and the final state [from Eq. (4.73)] in the expression for the

fidelity, we get

√
F eiφ = 1− i

π

(
1

α v σ

) (
B′

1 + A′

)∫
dza

∫
dzb

e−(za+vt−z0)2/σ2
e−z

2
b/σ

2

[(za + vt− z0)/σ] + [(βΓ+σ)/αv]

+
i

π

(
1

α v σ

) (
B′

1 + A′

)∫
dza

∫
dzb

e−(za+vt−z0)2/σ2
e−z

2
b/σ

2

[(za + vt− z0)/σ] + [(βΓ−σ)/αv]
.

(4.80)

It is useful to work in terms of dimensionless variables and parameters. So, we shall

define za/σ ≡ z′ and zb/σ ≡ z′′ which would then make dza dzb = σ2 dz′ dz′′. Furthermore,

we shall introduce two more dimensionless parameters viz. τ ≡ vt/σ and z̃ ≡ z0/σ. In

terms of all these dimensionless variables and parameters, Eq. (4.80) can be rewritten as
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√
F eiφ = 1− i

π

(
σ B′

v

)(
1

1 + A′

)
1

α

∫
dz′
∫
dz′′

e−(z′+τ−z̃)2 e−z
′′2

(z′ + τ − z̃) + [(βΓ+σ)/αv]

+
i

π

(
σ B′

v

)(
1

1 + A′

)
1

α

∫
dz′
∫
dz′′

e−(z′+τ−z̃)2 e−z
′′2

(z′ + τ − z̃) + [(βΓ−σ)/αv]
. (4.81)

Note that A′, α and β are dimensionless parameters; B has the dimensions of inverse

time, v is the velocity and σ has the dimensions of length. Thus, σB′/v ≡ χ is

dimensionless.

Next, we shall consider (βΓ+σ)/(αv).

β Γ+ σ

α v
=
β

α

(
Γ+ σ

c

)
︸ ︷︷ ︸

Γ′

c

v︸︷︷︸
1/β

=
Γ′

α
,

where Γ′ ≡ Γ+σ/c is another dimensionless parameter.

Similarly,

β Γ− σ

α v
=

Γ′′

α
,

where Γ′′ ≡ Γ−σ/c is dimensionless.
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Thus, in terms of Γ′ and Γ′′, Eq. (4.81) can be rewritten as

√
F eiφ = 1− i

π

(
χ

1 + A′

)∫
dz′
∫
dz′′

e−(z′+τ−z̃)2 e−z
′′2

α(z′ + τ − z̃) + Γ′

+
i

π

(
χ

1 + A′

)∫
dz′
∫
dz′′

e−(z′+τ−z̃)2 e−z
′′2

α(z′ + τ − z̃) + Γ′′
. (4.82)

The expression for the fidelity in Eq. (4.82) is written completely in terms of

dimensionless quantities. This makes it easier to assign numerical values for various

parameters while numerically evaluating the fidelity.

Next, we shall numerically compute the fidelity for certain values of the parameters

which show up in the previous equation.

In the lab frame, we have the a photon traveling with velocity vg (its group velocity)

and the b photon traveling at c. However, in the reference frame in which we have solved

the final dynamical equation [see Eq. (4.51)], the b photon is at rest and the a photon is

moving toward the b photon with a velocity v ≡ c− vg. This implies that 1− vg/c = v/c or

β ≡ v/c = 1− vg/c and α ≡ 1− v/c = vg/c. If we set vg/c = 0.1, then α = 0.1 and β = 0.9.

This makes A′ = β/α = 9.

We have already imposed the condition that ∆b � |g24|2. So, we could set

|g24|2/∆b = 0.1.

161



Let us recall that χ ≡ σB′/v. If we substitute explicitly for B′ from Eq. (4.51) in the

expression for χ, we get

χ =
|g24|2

∆b

(
σΓ−
v

)
A′

=
|g24|2

∆b

(
σΓ−
c

)
︸ ︷︷ ︸

Γ′′

c

v︸︷︷︸
1/β

A′︸︷︷︸
β/α

=
|g24|2

∆b

Γ′′

α
.

If we set Γ′′ = 10 and Γ′ = 100 Γ′′ = 1000, then χ = 10. Note that Γ′′ must be much

greater than Γ′ since Γ′′ and Γ′ are directly proportional to Γ+ and Γ−, respectively, and in

our model, Γ+ � Γ−. We shall set z̃ = 5 σ = 5 and for τ , we shall consider the range

0 ≤ τ ≤ 2z̃ or 0 ≤ τ ≤ 10. Physically speaking, τ gives the ratio of the distance traveled by

the a pulse after interaction to its characteristic length. The larger the value of τ , the

farther away is the a photon from the b photon after interaction.

When we put all the numerical values of all these parameters in Eq. (4.82) and compute

the fidelity as a function of τ in the range specified above, we obtain

√
F eiφ = 1 + 0.099005i. As a matter of fact, for all values of τ from 0 to 10, we get the

same result for the fidelity. It is very evident that the absolute value exceeds unity for the

same reason discussed earlier. This is the consequence of the approximations that we have

made to derive Eq. (4.50) to keep the problem analytically tractable. More importantly, we

can observe that the phase shift is extremely low as predicted by our analytical calculations.
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For the sake of completeness, we shall choose a different numerical value for α keeping

the same values for Γ′, Γ′′, z̃. If we set α = 0.05, we get β = 0.95, A′ = 19 and χ = 20. On

substituting these new values in Eq. (4.82), we obtain
√
F eiφ = 1 + 0.0990013i for the

same range of values for τ . We can thus see that the result is no different.

0 10 20 30 40 50
0.0

0.1

0.2

0.3

0.4

χ

ϕ

Figure 4.2: Plot of the phase (φ) as a function of χ when α = 0.1, β = 0.9, A′ = 9, z̃ = 5,
τ = 10.

Finally, we shall try to see how the phase changes if we vary |g24|2/∆b provided we keep

all the other parameters fixed. For this numerical calculation, we shall set Γ′′ = 10,

Γ′ = 1000, α = 0.1, β = 0.9, A′ = 9, z̃ = 5 and τ = 10. Let us recall that

χ = (|g24|2/∆b)(Γ
′′/α). For the chosen values of Γ′′ and α, we have χ = 100 (|g24|2/∆b).
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Now we shall vary |g24|2/∆b from 0.05 to 0.5 in steps of 0.05, i.e. 0.05 ≤ |g24|2/∆b ≤ 0.5.

This would in turn fix the following range for χ: 5 ≤ χ ≤ 50. Note that we cannot

arbitrarily increase |g24|2/∆b since one of the important assumptions in our model is a very

large detuning.

Figure (4.2) shows a plot of φ versus χ. We can clearly see that for this range of values

of χ, it is very nearly equal to |g24|2/∆b, as predicted by Eq.(4.79).

Thus, we can discern that the Kerr effect is very weak which is why the accumulated

phase in this model is to small to be of any practical significance.

4.3 Conclusion

Our aim in this chapter has been to find a conceivable way to physically realize a

conditional phase gate in a laboratory. So, we explored the most obvious candidate, “giant

Kerr effect” in EIT, to see if we could get obtain unit fidelity with a π phase shift.

However, we have seen through our detailed analysis with certain approximations that this

model doesn’t give us the desired result. One of the reasons for this negative result is that

in a completely quantum mechanical model that we have considered here, the two photons

when they propagate through an ensemble of atoms eventually interact with only one atom

in the whole ensemble. This is because in order to facilitate the atom-photon interaction,

the two pulses should be present at the same atom, at the same time and the probability

that this can happen in more than one atom is negligible. Thus, all the phase shift

essentially comes out of the interaction between the two photons and only one atom which

is why the interaction is weak as a consequence of which the total phase that is built is low.
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Another reason that has contributed to this outcome is the large detuning. We shall

recall that in our model, we had assumed a large detuning so as to prevent the b photon

from getting absorbed in the atomic medium. This resulted in a weak Kerr effect which has

yielded a negligible phase-shift.

Yet another consequence of this weak interaction between the two pulses is the absence

of distortion of the outgoing pulses which is why we obtained almost unit fidelity.

One way to overcome this challenge and come up with a scheme that could possibly be

used to construct a phase gate is to have an array of identical atoms coupled losslessly to a

one-dimensional waveguide [40].

Another setup that might be helpful for the physical realization of a conditional phase

gate is to have two counterpropagating photons travel through a discrete chain of

cross-Kerr sites [29, 30].
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Chapter 5

Summary

Photons are one of the most effective carriers of quantum information and numerous

nonlinear optical schemes have been proposed to implement quantum logical gates at the

single-photon level. Despite the many inherent advantages that the photons have as qubits

for quantum logical operations, there are some serious challenges to the physical realization

of a CPHASE gate. In this dissertation, we have focused on theoretically studying some of

these nonlinear optical schemes to construct a conditional phase gate.

Difficulties to the realization of such gates with high fidelity have been pointed out in

Kerr media (third-order optical nonlinearities) due to the time-nonlocality of conventional

nonlinear media and spectral entanglement of the final state. A few years ago, several

authors proposed a scheme based on second-order nonlinearity, and on the coherent

evolution of a two-photon state through successive up- and down-conversion processes

(with both the photons co-propagating with equal velocities). Motivated by this proposal,

we have carried out a rigorous multimode quantized field analysis of this scheme, in

chapter 2, to examine the feasibility of using a second-order optical nonlinearity to realize a

conditional phase gate between two single-photon pulses. We concluded that even here the

spectral entanglement is an important fidelity degrading mechanism. In other words, once

the two incident photons are destroyed in the nonlinear medium, the “re-created”

two-photon state is constrained only by the conservation of momentum and energy, and it

need not spectrally resemble the initial state very much. This indeed degrades the gate

performance. We thus inferred that this approach (involving second-order nonlinearity)
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suffers from the same difficulties as third-order ones, for schemes involving co-propagating

photons with equal velocities.

However, over the last few years, there have been assertions that appear to contest the

view that there is an unavoidable trade-off between high fidelity and large phase shift, in a

finite bandwidth medium. In particular, we were strongly motivated by couple of

theoretical papers viz. one by Xia et al and the other one by Brod et al which showed that

it is indeed possible to achieve unit fidelity with a π phase shift. We were strongly inspired

by the scheme suggested by Xia et al (which they studied only numerically) where the two

photons co-propagate with different velocities in a spatially nonlocal medium. We have

developed an analytical model in chapter 3, for the scheme suggested by Xia et al. We have

generalized their results here to deal with an arbitrary response, initial state and pulse

velocity. Our results support the numerical observation in Xia et al that a π phase shift

with unit fidelity is possible, in principle, in an appropriate limit. We have explicitly shown

through our analysis that for the scheme considered here where the two photons

co-propagate with different velocities in a spatially nonlocal medium, conservation of

energy and momentum lead to non-equivalent algebraic conditions on the wavevectors and

frequencies of the interacting photons, which when enforced simultaneously remove the

spectral entanglement of the final state. Furthermore, we realized that the role of spatial

nonlocal response for the medium is to restrict the bandwidth in order to make the theory

well behaved. This is equivalent to truncating the medium’s bandwidth by hand (by

introducing “cut-offs” in the Hamiltonian). Both these approaches yield similar results

which we have explicitly verified toward the end in chapter 3.
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It is, however, to be noted that the model developed in chapter 3 whose results were

encouraging cannot be directly verified in a laboratory. It just gives us conceptual

framework and the necessary conditions to achieve a conditional phase shift. Thus, in

chapter 4, we turned our attention to search for a realistic atomic system to build a phase

gate at the single-photon level. With this goal, we studied the interaction of two

single-photon wavepackets with an ensemble of five-level atoms. We have tried to develop

an analytical model by looking at the “giant Kerr” effect in electromagnetically induced

transparency to see whether such a system can indeed be used to build a phase gate. Based

on our analysis, we had to conclude that this model doesn’t yield the desired result, i.e.

unit fidelity with a π phase shift. The major reason for this negative outcome is the weak

atom-photon interaction in this scheme. This is because in order to facilitate the

interaction between the photons and the atomic medium, the two single-photon pulses

should be present at the same atom, at the same time. The probability that this can

happen in more than one atom is negligible. Thus, all the phase shift essentially comes out

of the interaction between the two photons and only one atom which is why the interaction

is weak, and as a result, the total phase built is low. Another consequence of this weak

interaction between the two photons is the absence of distortion of the outgoing pulses

which is why we obtained almost unit fidelity.
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