University of Arkansas, Fayetteville

ScholarWorks@UARK

Graduate Theses and Dissertations

5-2020

A Study of Optical Nonlinearities at the Single-Photon Level for
Quantum Logic

Balakrishnan Viswanathan
University of Arkansas, Fayetteville

Follow this and additional works at: https://scholarworks.uark.edu/etd

0 Part of the Atomic, Molecular and Optical Physics Commons, Optics Commons, and the Quantum

Physics Commons

Citation
Viswanathan, B. (2020). A Study of Optical Nonlinearities at the Single-Photon Level for Quantum Logic.
Graduate Theses and Dissertations Retrieved from https://scholarworks.uark.edu/etd/3596

This Dissertation is brought to you for free and open access by ScholarWorks@UARK. It has been accepted for
inclusion in Graduate Theses and Dissertations by an authorized administrator of ScholarWorks@UARK. For more
information, please contact scholar@uark.edu.


https://scholarworks.uark.edu/
https://scholarworks.uark.edu/etd
https://scholarworks.uark.edu/etd?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/195?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/204?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/206?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uark.edu/etd/3596?utm_source=scholarworks.uark.edu%2Fetd%2F3596&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholar@uark.edu

A Study of Optical Nonlinearities at the Single-Photon Level for Quantum Logic

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy in Physics

by

Balakrishnan Viswanathan
University of Oklahoma
Master of Science in Electrical Engineering, 2012

May 2020
University of Arkansas

This dissertation is approved for recommendation to the Graduate Council.

Julio Gea-Banacloche, Ph.D.
Dissertation Director

Surendra Singh, Ph.D. William Harter, Ph.D.
Committee Member Committee Member
Min Xiao, Ph.D. Omar Manasreh, Ph.D.

Committee Member Committee Member



Abstract

In this dissertation, we shall focus on theoretically studying quantum nonlinear optical
schemes to construct a conditional phase gate at the single-photon level. With an aim to
develop analytical models, we shall carry out a rigorous quantized multimode field analysis
of some of these schemes involving only the interacting field operators. More specifically, we
shall first study the three-wave mixing process involving two single-photons in a
second-order nonlinear medium (y?) under two different cases viz. when the photons are
traveling with equal velocities and when they are traveling with different velocities, and
explore the possibility of using them for building a conditional phase phase gate.

Finally, we shall study the interaction of single-photon wavepackets with a realistic
atomic system viz. an ensemble of five-level atoms, to construct a phase gate. We will
particularly look at the “giant Kerr” effect in electromagnetically induced transparency to
explore the possibility of using this scheme for achieving a conditional phase shift and to

understand how the bandwidth gets restricted naturally in such an atomic system.
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Chapter 1

A synopsis on quantum logical operations

1.1 Introduction

Quantum information science is one of the most splendid mansions in the vast estate of
modern physics. It is a magnificent edifice built upon the solid foundations of quantum
mechanics. The field of quantum information science addresses a variety of problems, both
of fundamental nature and of high practical importance. It encompasses a wide range of
sub-fields such as quantum computing, quantum error correction, quantum cryptography,
quantum entanglement, quantum communication etc. Each of these sub-fields is a
challenging endeavor in its own right with several decades of intensive research having been
put into it. Needless to say, no single research document can do adequate justice to all of
these areas, in all its detail and rigor.

This dissertation focuses on a very specific problem in quantum computing, viz.
exploring the theoretical aspects of constructing quantum logical gates with photons as
qubits [1]. Qubits are the basic units for quantum computing and are analogous to the bits
in a classical computer. It is important to note that there are many candidates for qubits in
addition to photons such as trapped ions [2], electron spin, superconducting qubits [3] etc.
However, photons are one of the most effective carriers of quantum information and they
have certain inherent advantages over the other systems. One of them is that photons
interact weakly with the environment. In addition to this, the information encoded in
photons can be transmitted to a long distance with minimum loss. Furthermore, quantum

logical operations involving photons can be performed at room temperature which may not



be possible in other systems.

1.2 Controlled NOT gate

Quantum logical gates are the fundamental building blocks of quantum circuits analogous
to the digital gates in a classical computer. The fundamental quantum logical operation is

the Controlled NOT (CNOT) gate which is given by the following transformation [4]:

|00) — ]00),
|01) — |01),
[10) — [11),
11) — [10),

(1.1)

where in the generic state |[AB), |A) is the control qubit and |B) is the target qubit. In
the gate operation, if the control qubit is |1), the target qubit gets flipped. We can see from
Eq. (1.1) that both the input states [10) and |11) get transformed to [11) and |10),
respectively. This is a universal quantum gate, i.e. all the other quantum logical gates can
be constructed using the CNOT gate, which is the reason why most of the efforts in
quantum computing are devoted to the construction of the CNOT gate. The single-qubit
gates with photons are pretty much trivial and the challenge is in getting a universal
two-qubit gate such as CNOT. The success of this endeavor will facilitate the operation of

other quantum logical gates from this universal gate.



Using photons as qubits, the construction of a CNOT gate is a two-step process. It is a
combination of a conditional phase (CPHASE) gate and two Hadamard gates. We shall

denote the qubits |0) and |1) by the following column vectors:

and

The Hadamard gate (Ug) is defined as

1
Usl0) = 75 (10 + 1),

1
Usf1) = 75 (10) = 1) (12

In the (]0), |1)) basis, the Hadamard gate can be explicitly represented by the following

2 X 2 matrix:

Uy = % G _11> . (1.3)

It can be easily seen that Uy is unitary.



The conditional phase (CPHASE) gate is described by the following transformation [4]:

100) — 100,
01) — [01),
10) — [10),

11) — —[11). (1.4)

Since the CPHASE gate involves two qubits, the matrix corresponding to the

transformation in Eq. (1.4) will be 4 x 4 which is represented as

1 00 O
01 0 O

Ucrnase =g g 1 o (1.5)
000 —1

Next, we shall explicitly construct a matrix representation for the CNOT gate. Since we
have two qubits, i.e. the control and the target, it is obvious that this gate has to be

represented by a 4 x 4 matrix. We shall consider a general matrix of the form:

Ci1 Ci12 C13 Ci4

U _ | C21 Co2 C23 Co24
CNOT — 5
C31 C32 C33 C34

C41 Cq2 C43 C4q
where we have to determine all the matrix elements. We shall use the transformation in
Eq. (1.1) to compute the matrix elements and hence construct the matrix for the CNOT

gate.



The column vector for the state |00) can be expressed as

100) = 10) @ |0) = ((1)) ? <(1)> B

Eq. (1.1) tells us that Uonor|00) = |00). We can now express this transformation

o O O

explicitly in terms of the matrices for Uoyor and the state |00).

C11 Ci2 Ci13 Ci4 1 1
Co1 Cog C23 Cog 0 0
= ) 1.6
C31 C32 C33 C34 0 0 (1.6)
C41 Ca2 C43 Cyq 0 0
which then yields
C11 1
c1 | |0
031 _ 0 (17)
C41 0

This implies that ¢;; = 1 and ¢o1 = ¢31 = ¢41 = 0.
The second transformation in Eq. (1.1) can be expressed as Uonyor|01) = |01). The

column vector for the state |01) can be written as

o
2
I
S
®
S
Il
N
O =
~__
&
VRN
— O
~
Il
O O = O



The transformation for the state |01), in terms of the matrices, is given by

which then gives us

o O O

C12
C22
C32
C42

C13
Ca3
C33
C43

C12
C22
C32
C42

C14 0 0
Coyq 1 . 1
. ol = 1ol (1.8)
Cy4 0 0
0
1
=10 (1.9)
0

This implies that coo = 1 and ¢19 = ¢35 = ¢40 = 0.

The third transformation in Eq. (1.1) is given by Ucnor|10) = |11). The column vectors

for the states |10) and |11) can be written as

and

[10) = [1) @ |0) = (?) ? ((1)> B

1) = [1) @ [1) = ((1)) ® (g) _

O = O O

_ o O O

The matrix representation of the transformation for the state |10) is given by

S OO -

o O = O

C13
C23
C33
C43

C14 0 0
Co4 0 - 0
il =1ol (1.10)
Cyq4 0 1



which then yields

C13
Ca3
C33
C43

(1.11)

_— o O O

This implies that c43 = 1 and ¢13 = 93 = ¢33 = 0.

The final transformation in Eq. (1.1) is Uonor|11) = |10) which in the matrix
representation can be written as
C14
Co4

C34
Cq4

: (1.12)

o O O
o O = O
_ o O O
_ o O O
o= O O

from which we obtain

C14
Ca4
C34
C44

(1.13)

o= O O

This 1mphes that C3q4 — 1 and Clgy = Cq = Cy4 = 0.
We have thus, computed all the matrix elements of Usyor. Now we have an explicit

matrix representation for the CNOT gate that is given by

1 000
01 00

Uenor= 14 o 0 1 (1.14)
0010

It can be easily seen that Uoyor is unitary and furthermore, Eq. (1.14) can be

decomposed into the following form:



1 000 1 1 0 0 1 00 O 1 1 0 0
0100_L1—100 0100i1—100 (1.15)
0 0 01 _\/§ 0O 0 1 1 001 0]4210 0 1 1 [ '
0 010 0O 0 1 -1 000 —1 0O 0 1 -1
UC‘J\:OT I(E;(,JH UCP;;ASE I@;{JH
where
1 1 0 0
10 1 /1 1 1 1 -1 0 0
I®UH_<0 1)®E<1 —1)‘% 00 1 1
0 0 1 -1

We mentioned earlier that a CNOT gate is a combination of a CPHASE gate and two
Hadamard gates, and Eq. (1.15) shows this result explicitly. In order to appreciate this
point better and see more clearly how these two transformations indeed act on the qubits
themselves, we shall work out an example, i.e. we shall see how the CPHASE and the
Hadamard gates act on the state |10) to perform the CNOT operation. From Eq. (1.1), we
can see that |10) CNOT, |11). In the state |10), |1) is the control qubit and |0) is the target

qubit. In order to perform the CNOT operation on the state |10) using a CPHASE gate,

we must first perform the Hadamard transform [see Eq. (1.2)] on the target qubit.

Hadamard

10) = [1) ®|0) ——— [1) @ [Un[0)] = [1) ® —= (|0) + |1)) = —= (]10) + [11)) . (1.16)

-

)

-

1
V2 2




Next, we shall apply the CPHASE transformation [see Eq. (1.4)] on the state |¢)) which

yields

(10 + 1) <% (o) — 1)) = <= (DO () ~|). (117

N J/
-~

|%")

) =

Sl
g

2

Finally, we shall once again apply the Hadamard transform [see Eq. (1.2)] on the target

qubit in the state |¢)') which is |0) — |1). Following this step, we obtain

Sl

) 1)@ (|0) — [1)) TR, % 1) ® ([Ua]0)] — [Un|1)])

1
=5 D@ [0) +[1) = [0) + [1)] = 1) ®[1) = [11), (1.18)
which is the desired output, i.e. |10) CNOT, 111). From Egs. (1.16), (1.17) and (1.18), we
can clearly see that a combination of a CPHASE transform and two Hadamard transforms
indeed perform the CNOT gate operation for the state |10). We can follow the same

procedure and perform the gate operation for the other states in Eq. (1.1).

1.3 Schemes to perform quantum logic with photons

Despite the many advantages that the photons have as qubits for quantum logical
operations, there are some serious challenges to their physical realization. The major
challenge that needs to be surmounted is the realization of a CPHASE gate at the

single-photon level. The fourth transformation in Eq. (1.4), i.e. [11) — —|11), is extremely



hard to realize in a lab using photons. This transformation tells us that if we send two
photons into the system, we want the two outgoing photons to acquire a phase m with
respect to the incoming ones. It is important to note that the photons do not interact with
each other directly. This means we need a suitable medium to mediate the interaction
between the photons to achieve the desired phase shift without distorting the state. One
such mechanism is to use a nonlinear optical medium toward this goal.

In the subsequent chapters, we shall study the interaction of single-photons with a
nonlinear medium. To be specific, we will study the three wave mixing process involving
two single-photons in a second-order nonlinear medium (x®) and see under what
conditions such schemes would work to construct a CPHASE gate. The method we adopt
to solve this problem is to first characterize the medium by a pertinent Hamiltonian and
then derive the relevant equations of motion for the system. Following this, we shall solve
the dynamical equations analytically in an appropriate limit (with an aim to develop an
analytical model) and analyze the solution to determine the possibility of using nonlinear
optical schemes to construct a phase gate at the single-photon level. Many researchers have
done extensive work in exploring the “Kerr” medium (i.e. third-order nonlinearity) for
quantum logical operations with single-photons. We shall compare and contrast our results
in the subsequent chapters with those for the third-order ones.

In chapters 2 and 3, we shall consider the “macroscopic” picture of the nonlinear
medium. By “macroscopic”, we mean that we won’t be concerned with the internal
constituents of the medium. Here, we shall use an appropriate Hamiltonian for the
nonlinear medium involving only the interacting field operators and in our model, the only

parameter associated with the medium that will figure in our analysis is the nonlinear

10



coupling strength. With this approach, we shall explore the theoretical possibilities of
constructing a phase gate. We shall discuss both the positive and negative results and in
addition, we shall explore ways to circumvent the objections to the possibility of
conditional phase shifts on single-photons raised earlier.

We shall take the positive results from the macroscopic model, and search for a realistic
atomic system that could help us physically realize a phase gate experimentally. This will
be our endeavor in chapter 4. Here, we shall consider an ensemble of five-level atoms
interacting with single-photon wavepackets to construct a conditional phase gate. We will
be looking at the “giant Kerr” effect in electromagnetically induced transparency (EIT)
which is equivalent to a conventional third-order nonlinear medium, in an atomic system.
We shall develop a model based on adiabatic perturbation theory. We shall conclude our
work with a discussion on the promises and challenges in this model toward the physical

realization of a conditional phase gate with single-photons as qubits.

11



Chapter 2
Conditional phase gate based on second-order nonlinearity

2.1 Introduction

The exploitation of optical nonlinearities to implement quantum logical gates at the
single-photon level has been an active problem of investigation over the past decade with
considerable research efforts having been invested into it. The primary goal in this

endeavor is to achieve a controlled phase shift, described by the transformation [4]:

00) — 100,

01) — €1|01),
110) — €1]10),
111) — e™2]11),

(2.1)

where the useful phase for quantum logic is ¢ = ¢35 — 2¢;. In the ideal case, we want
¢ = w. This operation is equivalent to a CNOT gate since we can indeed construct this
gate with a controlled phase shift and a Hadamard transform. All the efforts to explore
nonlinear optical schemes are to achieve this controlled phase shift by using the nonlinear
medium to mediate photon-photon interaction.

Initially, the proposals for controlled phase shifts involved Kerr-type nonlinearities,
which are conventionally classified as “third-order” because the susceptibility arises from

terms that are cubic in the field, in the expansion of the polarization of the nonlinear

12



medium. However, Shapiro [5, 6, 7| in a seminal paper on conventional Kerr nonlinearity
argued that when the multimode nature of a finite wavepacket interacting with a
finite-bandwidth medium is considered, there is always an unavoidable trade-off between
the desired phase shift and the achievable fidelity. By “conventional”, it is meant that
Shapiro’s model for Kerr nonlinearity was a direct generalization of classical nonlinear
optics to the quantized-field picture.

The primary cause for the degradation of fidelity in Shapiro’s formalism is the phase
noise arising from the Langevin operators introduced in the theory to preserve the
commutation realtions of the field operators. Speaking in mathematical terms, the origin of
this difficulty is the need to limit the medium’s bandiwdth in order to avoid divergence in
the theory. Physically, the finite bandwidth is connected to a finite response time for the
medium, which is what we expect for a real optical system [8, 9, 10, 11]. The finite
response time is incorporated in the theory by assigning a memory to the nonlinear index
of refraction [5] and following this, the dynamical equations for the quantized field are
written down. This, however, has a profound ramification. The free-field commutators
obtained by solving these evolution equations no longer preserve the canonical
commutation relation unless the “Langevin noise terms” are added.

The effect of the phase noise is negligible when the duration of the pulses are much
larger than the response time of the medium. This is indeed the “large bandwidth limit”.
In this limit, Shapiro had found that the cross-Kerr phase shift goes to zero. We can
visualize this in the following way: in a long pulse, the probability to find two photons
within the same narrow time window corresponding to the response time of the medium is

negligible which means that two photons will not even interact with the medium. This is
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the reason why the optical nonlinearity vanishes in this limit.

These noise terms can also be neglected in the opposite limit (i.e. the short-pulse limit)
because here, we send a broadband wavepacket through a narrowband optical medium and
what happens is that the medium will either reject or absorb the incoming wavepackets. So
once again, there is no phase shift.

Thus, the only relevant regime is when the bandwidth of the medium and the pulse are
evenly matched in the frequency space. However, over here, the phase noise cannot be
neglected and this indeed degrades the gate performance.

This view was further strengthened by Gea-Banacloche [12] in a Hamiltonian treatment
of the “giant-Kerr effect”. The main obstacle here to the high performance of the
conditional phase gate is the spectral entanglement of the outgoing photons. The origin of
this mechanism is the following: In order to get a large phase shift, the photons must
interact very strongly with the nonlinear medium. This means that the incoming photons
get destroyed and recreated inside the medium several times. However, when two photons
co-propagate with equal velocities, the only constraint for the entire process is the
conservation of momentum (or phase matching), which is the same as the conservation of
energy, in this case. Thus, the only mathematical condition to be satisfied by the outgoing
photons with frequencies wy and wy is wy + wy = Wi + wy, where w] and w) are the
frequencies of the incoming photons. This results in an entangled spectrum (for the final

state) of the form
F(wn,ws) ~ / d fole) folson + s — o)
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in terms of the the incoming spectrum f, of the individual photon.

Thus, it has been concluded that the difficulties to the realization of such phase gates in
Kerr media with high fidelity are due to time-nonlocality of the conventional nonlinear
media and spectral entanglement of the final state.

A few years ago, Langford et al. [13] proposed a scheme for constructing a phase gate
based on second-order nonlinearity and on the coherent evolution of a two-photon state
through successive up- and down-conversion processes. Assuming three modes a, b and c,

the basic process would be

1011)gpe — —[100)ape — —|011) gpe. (2.2)

Here, we start with a two-photon state, i.e. a b, ¢ pair, which annihilates inside the
nonlinear medium to create an a photon. This is the parametric up-conversion process. Still
later, the a photon annihilates to create a new b, ¢ pair which is the down-conversion
process. We want the final two-photon state to pick up a phase m with respect to the initial

one, as shown in Eq. (2.2). This can be accomplished with the Hamiltonian

H=nhe (a' be+abéh, (2.3)

where € is the strength of the nonlinear coupling. The description provided by the
Hamiltonian in Eq. (2.3) is a “single mode” picture because only one mode operator is
assigned to each of the three photons involved. We can in fact understand the process
described in Eq. (2.2) quantitatively by solving the equations of motion for this system.

The state, in the single mode representation, is written as
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[(t)) = €a(t) @7]0)a[0)5]0)c + Eue(t) [0)a 5|0, &|0).. (2.4)

On inserting Egs. (2.3) and (2.4) in the Schrédinger equation: [¢)) = —(i/h)H|¢), we

get the following pair of differential equations for the a and the b, ¢ photons:

éa - —iG fbc;
ébc = —ie€ &, (2'5>
whose solutions are written as &,(t) = —i sin(et) and &,.(t) = cos(et) with the initial

condition that there is no a photon at ¢t = 0.

Thus, we can formally write the state of the system as

[9(t)) = —1 sin(et) |100) g + cos(et) |011) gpe. (2.6)

From Eq. (2.6), we can clearly see that beginning with the state |011) ., evolution
under the Hamiltonian in Eq. (2.3) produces the middle state, —i|100) 4. at time ¢ = 7/2¢,
and the final state —|011) 4. at t = 7/e. It is evident that the states without an a photon
and with only one b or ¢ photon are not affected by this Hamiltonian.

It should, however, be noted that a single-mode description is not adequate to describe
a traveling wavepacket. Our aim in this chapter is to find out what happens when we study
the scheme suggested by Langford et al. in a multimode framework which is an appropriate

description for single-photon pulses in a nonlinear medium.
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One way to generalize the treatment based on Eq. (2.3) to a multimode framework is to
simply replace the single-mode operators a, b and ¢ by their corresponding multimode

representations such as
a— At) = /dw a, et (2.7)

where w represents a deviation around the central frequency associated with the
“a”-type modes. Similarly, we can define the multimode operators for the b and the ¢
photons too. Nonetheless, a direct substitution of Eq. (2.7) into the Hamiltonian leads to
diverging integrals in the model. In order to obtain finite results, it is imperative to account
for the finite bandwidth that any real nonlinear medium must have. One way to accomplish
this is to truncate the spectrum of the fields by hand. This is done by introducing upper
and lower cutoffs in the integrals, in Eq. (2.7). This procedure can be justified by arguing
that the medium has a finite transparency window, and absorbs all the spectral components
outside its bandwidth. This is the approach that we shall pursue in the next section.

Another approach to study this problem is to place the nonlinear medium inside an
optical cavity whose decay rate provides a natural bandwidth for the system. We shall

work out this case in detail, in section 2.3.

2.2 Free space configuration

In this section, we shall study the evolution and propagation of a two-photon state through
a second-order nonlinear [y(®] medium. As mentioned in the previous section, we group the

modes involved into three sets, denoted by the indices a, b and c. We shall use the
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continuous mode formalism to solve this problem.

We assume that the pulse incident on the medium has one b and one ¢ photon traveling
in the same direction, and no a photon. As this pulse travels through the medium, the b
and the ¢ photons are annihilated to create an a photon. Later, the a photon is annihilated
to create a new b — ¢ pair. We choose the length of the medium such that the interaction
stops at this point, i.e. just when the new b, ¢ pulse leaves the medium. Furthermore, we
assume that the three photons viz. a, b and ¢ have the same speed.

Under these assumptions, the Hamiltonian of the system, in the Schrodinger picture, is

written as

ﬁ = I:[O + ﬁintu

Hozhv/dkk&L&k+m/dkk1§;Bk+hv/dkké,ték,

. Z()'H k'ma:ﬁ krnaw kma:c i
Hmt:he/ dz/ dk:a/ dk:b/ dk, ¢ika—t—ke)z
20 —Rmazx —kmaz —kmazx

x a(ka) b (ky) et (ko) + H.c., (2.8)

where ﬁo is the Hamiltonian of the free field, Hmt is the Hamiltonian corresponding to
the second-order optical nonlinearity. Here we have labeled the modes by wavevectors
instead of frequency for notational convenience. We will solve this problem in the
interaction picture. The next step, obviously, is to transform H;, from the Schrodinger

picture to the interaction picture and the unitary transformation that does this is
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I _ _iHot/h 71H0t/h
Hmt € H )

where the superscript I symbolically denotes the interaction picture. This

transformation yields us the following expression for H,,; in the interaction picture:

kmaz kmaz kmaz zo+1 )
H] nt — hf/ dka / dk’b / dk‘c / dZ el(ka_kb_kc)z
kmaz — - 20

kmaz kmu.z

X e ivt [dk’ K af(K)a(k") &(ka) efwtfdk’ K at(K)a(k)
et [ k' K bt (k" )b(K") 5*(/%) ot [ dk' K bt (k" )b(K)

o it Ak K et (R)e) &t (k) et [k K E(k)eR) | H.c.,

ZO+l kmam kmax kmazx
mt - hE/ / / dkb / dk’ e —i(vt—2)(ka—kp—ke)
kmaz - -

kmaz kmaz

x a(kg) b (ky) et (ko) + H.c.,

where

wtfdk’ k' at (k)a(k) &(ka) —ivt [dk’ k' at(K)a (k") _ (ka) e—ivkat7

Q>

pivt [k kB (k)b(K') BT(k’b) —ivt [ dk' k' bt (k')b(K') B(kb) eivhut.

and

vt [dk' Kt (k)e(k!)

>

CT(]{?C) et [k K et (ke(k") _ é(kc) ekt
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This is the natural multimode generalization of the Hamiltonian in Eq.(2.3), under the
assumptions that the interaction takes place between two co-propagating wavepackets
traveling at the same velocity v, in a medium of length [. The bandwidth cutoff actually

makes the interaction nonlocal in space. The field operator (say for the a photon)

kma(E
/ &(ka) e—i(vt—z)ka dka

kmax
does not act at single space-time point, but over a range of values of vt — z, of the order of
1/2kmaz- In other words, the truncated field operators in Eq. (2.9) annihilate and create a
photon, not necessarily precisely at z, but rather in a region of space of width 1/2k;44-
The most general field state under our assumptions (only one b and one ¢ photons or

only one a photon) is written as

[W(t)) = /dk’l a(k1, ) dT(kl)’0>a|O>b|0>c+/dkz/dk3 pe(ka, ks, t) |0)q

X 0T (k2)]0)y &F(k3)[0)e. (2.10)

We shall now use Egs. (2.9) and (2.10) to write down the Schrédinger equation:
o)) = —(i/h)f[{ntW}, to get the equations of motion for the a and the b, ¢ pulses. We have
assumed that the medium has a finite bandwidth 2k,,,.., so that photons with frequencies

which lie outside this window do not contribute to the time evolution.
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This procedure yields the following pair of differential equations:

a Zo+l kmaz kmaz .
—Eo(ka,t) = —ie / dz / dky / dk, Wt Fa—ko=ke) ¢, (ke k. 1),
at knlaz _kmax
ZO+Z kmaac .
§bc(kb, ke, t) = / / dky eVt ka=ko—ke) ¢ (L ). (2.11)
kmaz

In order to solve this system of equations, we will introduce “envelope functions” f(t, z)

and ¢(t, z) for the a and the b, ¢ pulses, respectively, which are defined as

kmaz
f(t,z)z/ dk &,(k,t) e7it=2)k

_kmaz
k'mazc k:TVL(I,CL ’ .

q(t, 2) z/ dk:’/ dk" Ee(K' K" 1) e ORI RHRT). (2.12)
_kmaz _kmax

In terms of these two envelope functions, Eq. (2.11) can be rewritten as

) 2o+l
8256 (koo t) = / dz Wt=ke gt ),
zo+1
fbc(k;b,kc,t e / dz elt=2)ktke) fp 2 (2.13)
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Clearly, the functions f(t,z) and g¢(t, z) satisfy the following propagation equation:

909 p, ) = / Tk (k) e ik
at az 9 a Y 9

_k'max'
zo+l kmaz . ,
= z’e/ dz’ g(t,z’)/ dk e*==2), (2.14)
20 —kmaz

where we have substituted for &, from the first of Egs. (2.13). If we assume that the
“acceptance bandwidth” of the medium, 2k,,.., is very large for the a photon, then we
could approximate the integral over k on the right hand side of Eq. (2.14) by a ¢ function,
270(z — 2'). However, to justify this approximation, 1/(2k;u..) should be much smaller than

both [ and the spatial width of the b, ¢ pulse. This simplifies Eq. (2.14) to

3} 0 :
(a + v&) f(t,z) >~ —2mie g(t, z) rect(z, 2o, 20 + 1), (2.15)

where the rectangle function rect(z, zg, 29 + [) is equal to 1 if zg < z < zg + [ and zero
otherwise.

Next, we shall get the propagation equation for g(¢, z). Clearly, we have

a a kmaz kmazx . A ) B
<_ + U_)g(ta z) = / dk"/ dk" & (k' K" 1) e~ ivt=2) (K +k ),
z _

kmaz kmaz

zo+! kmaz - , kmaz o ,
= —ie / dz f(t,2) / dk’ e*' (=== / dk” e*" =2 (2.16)
20

kmaz kmaz
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where we have substituted for &, in the previous equation from the second of Eqs.
(2.13). Here we cannot simply let k,,,, go to infinity, since at least one of the integrals in
Eq. (2.16) will diverge. We can, nonetheless, under the same assumptions as before, replace
one of the integrals over k on the right hand side of the previous equation by 27d(z — 2),
following which the other integral will just have the value 2k,,,., resulting in a more

compact equation for g(t, z):

0 0 :
(a + v&> g(t,z) = —4Ami€ kpas f(t, 2) rect(z, zo, 20 + 1). (2.17)

We now have to solve the system in Egs. (2.15) and (2.17). To start with, we shall make
the following coordinate transformations: ¢ =t — (2 — z) /v and 2’ = z. In terms of these

new coordinates,

Thus, Egs. (2.15) and (2.17) can be rewritten as

o .., 2mie .,
and
0 N .13
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It is evident that Eqs. (2.18) and (2.19) are coupled. The standard trick is to decouple
them and then solve for the envelope functions. We shall differentiate both sides of Eq.

(2.18) with respect to 2z’ and substitute for dg/02’ from Eq. (2.19), which would yield

0? ., 872 kmaz » .1 a0
aZ,Qf(t7Z):_—2f<t72):_ﬁf<taz>7 (22())

v

where O? = 872€%k,,4.. The formal solution to this differential equation is

f(t',2') = A cos [%(z’ — zo)] + B sin {%(z’ - zo)] : (2.21)

where A and B are quantities which are independent of 2’ but may well depend on t'.
At 2/ = z9, A= f(t, 20).

Next,

0 Q Q Q Q

5 (t',2) = —;A sin [;(z' - zo)} + EB cos [E(z’ - Zg)} : (2.22)
From the previous equation, we see that at 2’ = zg, B = (v/Q)(9f/07) /=, and from

Eq. (2.18), we get B = —(2mie/Q)g(t', 29). Note that f(t', zp) = 0, since there is no a

photon until the interaction begins inside the medium [see Eq.(2.12)], which makes A

vanish, i.e. A = 0. This simplifies the solution in Eq.(2.21) to

F(t,2) = ="t 2 = 2) sin {9(2' . ZO)} . (2.23)

v
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Our next task is to express the envelope function f in the previous equation, in terms of
the original coordinates (¢, z). Noting that ¢’ = ¢ — (z — z) /v and 2z’ = z, we can see that at
t=0 and some constant t’, z;,iria = —0t' + 2zo. On substituting for ¢’ in terms of the original
coordinates, we get Ziniriar = 2 — vt, at t = 0. Thus, in terms of the original coordinates, Eq.

(2.23) gives us following solution, in the region zy < z < zy + 1,

f(t,z) = —% g(0,z — vt) sin [%(z - zo)} :
i€ LY
e 9(0, z — vt) sin {;(z — zo)} , (2.24)

where we have substituted explicitly for €2 in the previous equation. On substituting the

formal solution for f(t, z) from Eq. (2.24) in Eq. (2.15), we get

g(t, 2) = g(0, 2 — vt) cos [%(2 - ZO)} . (2.25)

Our goal here is to obtain an explicit expression for &.(ky, k., t). So as a first step toward

this goal, we shall substitute for f(¢, z) from Eq. (2.24) in the second of Egs. (2.13) to get

9 W k)
— ky, k.. t) = — dz e"\VrTA\bTRe — ot
atfbc( by ke, T) T /ZO ze g(0, z — vt)
Q
X sin [;(2 - zo)} : (2.26)

and then formally integrate both sides of Eq. (2.26) with respect to time.
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This yields,

L . 0
ébc(kby km t) = £bc(kb7 kcu O) - / dz eiz)Z(karkC) sin |:_<Z - ZO):|
v

A kmar J .,

t
X / dr e FotkelvT (0, 2 — or). (2.27)
0

Now the integral with respect to 7 in Eq. (2.27) involves the spatial profile of the b, ¢

pulse. From the second of Eqgs. (2.12), we get

kmaz kmaz
9(0,z —vr) = / dk’ / dk" Epo(K' K", 0) et 02 (KHRT) (2.28)

kma:c _krnaac

The b and the ¢ photons enter the medium (i.e. z = 2y ) at time ¢t = 0. Note that the
variable z in Eq. (2.28) is confined to the range: zy < z < zy + [. This means that for ¢ <0,
g(0, z — vt) should be negligible, in which case we can harmlessly extend the lower limit of
integration over 7 to —oo. Furthermore, since we are ultimately interested in the state long
after the interaction with the medium is over, we can also formally extend the upper limit

of integration to co. So, now on inserting Eq. (2.28) in Eq. (2.27), we find that

t kfma,:c kmaz
/ dr ei(kb-i-k’c)vT g(O, . UT) _ / d/{:// dk" fbc(k/, k‘”, O) Giz(k/+k//)
0 — —

kma.’l)

X / dr ikethe—k =k ot (2.29)

—00
/

(27 /v) O(kp+ke—Kk'—Kk'")
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The 6 function allows us to replace expliz(k' + k”)] in Eq. (2.29) by expliz(ky, + k.)]
which will then cancel out its complex conjugate in Eq. (2.27).

Thus, on substituting Eq. (2.29) in Eq. (2.27), we obtain, in the long-time limit (¢ — o)

0 kmax kmaw
gbc(kby kcat — OO) = €bc(kb7kca O) - 2wk / dk'// dk// fbc(k/, k’//, O)

kmam kmaac

2o+l 0
X S(ky + ke — K — k") / dz sin [Z<Z - ZO):| : (2.30)

20

Our next task is to evaluate the integral over z which gives us

/:” d> sin [%(z — 20)] - [1 — cos (%)} . (2.31)

We want to ensure that there is no a photon after the interaction with the medium is

Dl

over, i.e. for z > zy+ 1, for all t. This means that we specifically want f(¢, 29+ 1) = 0, in Eq.
(2.24). Consequently, this implies that sin(2l/v) = 0 which means the integral in Eq. (2.30)

is either zero or 2v/€) and when we incorporate this result in Eq. (2.30), we end up with

1 kfmaw k?maac
el Krt = 00) = Gk K, 0) — / K / 0K & (K K", 0)

kma:t:

kmaz kmaz

x 8(ky + ke — K — k). (2.32)

From this result, the major obstacle to obtain a high fidelity, i.e. a large overlap with

the initial state, is immediately apparent. The two outgoing b and ¢ photons with momenta
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ky, and k. may be created from an initial pair having any momenta, k&’ and k”, subject to
the constraint &' + k" = ky + k.. This is indeed the condition for momentum conservation.
This means that the final state may not spectrally resemble the initial state, very much at
all. Even if we assume that the initial state is factorizable, the final state given by Eq.
(2.32) is entangled in momentum. This is exactly the same problem one confronts in
schemes involving Kerr nonlinearities.

The expression for the final state in Eq. (2.32) may be simplified a little by introducing
two new variables n and A such that k, = (n+ A)/2 and k. = (n — A)/2. This makes

dk’ dk" = (1/2) dA’ dn'. In terms of these new variables, Eq. (2.32) can be rewritten as

2kmaz+|n| 2kmaz
E4o1, Ayt 5 00) = 40(1, A, 0) — / qN / d' &, X', 0)

2kma$ —kaaz-‘r‘nl‘ _kaaz

X d(n—mn). (2.33)

On enforcing the 0 function, we get a slightly more compact expression for the final

state given by

fbc(ﬁ, At — OO) = 566(777 A, O) -

2kmax+|n|
/ AN &,.(n, N, 0). (2.34)

2kma$ _kaax‘HUl
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We can define a combined phase and fidelity, by the following quantity:

VFe? = (p(0)[ (1))

kmaz kmaz
= / dk‘b/ dkc fgc<kb7 kc, 0) §bc(kb, kc,t — OO)

kmazx —kmaz
1 2kmaz kaaz_“]‘
= 5/ dn/ dA &.(n,\,0) &e(n, Ayt — 00). (2.35)
_kaaac _2kmax+|7]|

Fidelity is the overlap of the final state with the initial one. Note that the right-hand
side of this equation is always a real quantity. Unlike in a Kerr medium, the phase ¢, here,
can take only two values, zero or 7. The quantity in Eq. (2.35) would be equal to —1 for
the ideal transformation in Eq. (2.2).

On substituting Eq. (2.34) in Eq. (2.35), we get

) 1 2kmaz 2kmaz*‘77| 1 2kmaz
VFe? = 5/ dn / dA |&)C(77,A,O)|2 — / dn

—2kmax _kaaz'i‘l"?‘ 4kmaz —2kmax

katm_w
/ dA €u(n, A, 0)

72kmaz+|"7‘

2

o (2.36)

This is the most general expression for a combined fidelity and phase, for an arbitrary
initial state. Next we shall calculate the fidelity for two different kinds of initial pulses viz.

a Gaussian and a hyperbolic secant. First we will do the calculation for a Gaussian pulse of

the form &..(n, A,0) = 1/(o+/7) o~ (?+A?)/40%
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For this case, Eq. (2.36) can be rewritten as

) 1 2kmax kaazfl'r]‘
VFe? = / dn / dA =P +A%)/20

?WUQ 2kmaz 2kmaz+|n]
I
1 2k maz 2kmaz—|n] o ent 2
_ —47T027€max /_% dn /_% . dA e ) (2.37)
; ma maz+[7| )
In

Our next task is to evaluate the two integrals I; and Is.

2 2kmaa 5 5 2kmaz—n 5 5
I =— dn e /% / dA e N/207 (2.38)
2
o 0 0
he

where
T 2k maz — M
lip =04/ = erf | ——— ] .
. \[2 ( av/2 )

In Eq. (2.38), we have exploited a property of the definite integrals for an even
integrand, and in the second integral, we have simply set A/ov/2 = y and invoked the

definition of error function:

T

P

erf(z) =

dz e~

2
VT Jo
From this intermediate result, it is very clear that it is not possible to get an exact

expression for /;. We have to leave the final result as an integral involving error function.
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On explicitly substituting for I;5 in Eq. (2.38), we obtain

I = —\/5 /kaaz dn 1% erf <—2km‘w - 77)
O'ﬁ 0 0\/§
\/ik‘maz/o'
2 2 2k maz
= 7/ dr e " erf <\/_ — x) , (2.39)
T Jo o

where in the second step of the previous equation, we have set 71/ V20 = z.

Following this, we shall now evaluate I.

2

2 2kmax _7]2/202 2kmax—n —A2/4a'2
]2 = 7'[‘02—]{jmax ; d’l’] € ; dA e s (240)
I

where

20

2 _
121 = Uﬁ erf (M> .

We have followed the same procedure to evaluate I5; as we did for I1. Just like [, it is
not possible to get an exact expression for I,. On substituting explicitly for I5; in Eq.

(2.40), we get

2

2 Zkmaz 2 /0 2
I, = / dn e /%
0

kmax

exf (—2’%;2_ - 7’)
)
A\ o

where in the second step of the previous equation, we have once again set 7/v/20 = z.

2 2 \/ikma:c/a'
- V2o / dr e : (2.41)
0

kmaz
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On substituting Eqgs. (2.39) and (2.41) in Eq. (2.37), we obtain

fkmaz/o' 22
VFe' = —/ " erf (—ﬁ];maz — ) — 2\/_

\/ikma.r/o' 5
X / dr e
0

ot | L (Y 2maa
T \/§ o x

= (1/0/271/4) e7¥°/29” the variance of k is

related to o by (k?) = 02 /2. This result is straightforward.

2

(2.42)

For a normalized Gaussian pulse, £(k)

<’f2>=/oodk k? € (k) \/_/ dk k2 e o = T

The bandwidth of the medium is also defined by the variance of its spectral

distribution. In this case, we have a rectangle function from —k,,,; to k,,4.. Thus, the

normalized spectral distribution of the medium is given by f(k) = 1/v/2kne. and
Ak = Eppaz/+/3 which can be easily shown:

(Ak)?

kmaz 1 kma,z k,2
/ dk K* |f(k)]* = / dk k* = ~mer
—kmaz kaa:p

_kmaz 3

We shall introduce a dimensionless parameter a = Ak/+/(k2) = v/2kpaz/+/30, in terms
of which Eq. (2.42) can be rewritten as
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V3a V3a
VFei? = i/ dz e erf(v/3a — z) — i/ dz e
VT Jo V3a Jo

erf {%(\@a - x)}

2

X (2.43)

The parameter « is the ratio of the medium’s bandwidth to the rms frequency spread of

the incoming pulse.

JF o0

0.0

a

Figure 2.1: Square-root fidelity and phase for hyperbolic secant (red) and Gaussian (blue)
pulses, as functions of a. In this figure, ¢ has only two values, zero when the overlap is
positive and 7 when it is negative.

The fidelity of a Gaussian pulse is plotted as the blue curve in figure (2.1), for a range

of values of o and we find that that it is always low, i.e. F' < (—0.3)? = 0.09.
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Next we shall calculate the fidelity of a hyperbolic secant pulse of the form

&(ky) = 1/(v/20) sech(ky/o) and &.(k.) = 1/(v/20) sech(k,/o). In terms of the new

variables 7 and A that we introduced earlier, this pulse can be rewritten as
&oe(n, A, 0) = 1/(20) sech[(n + A)/20] sech[(n — A)/20].

On inserting the hyperbolic secant pulse in Eq. (2.36), we get

. 1 kaaa: kaaac_m‘ A — A
VFe? = — dn/ dA sech? (%) sech? (772—)
_ o

802 J o, 2kmaz+(n| ’
2
1 2kmazx kaaz_‘m A — A
S / dn / dA sech nT sech | - (2.44)
16kmawO—2 —2kmax —2kmaz+|n| 20 20

Here, it is effective to use the following identity:

L +A L= AN 2
nee 20 See 20 ) cosh(n/o) + cosh(A/o)’

On using this identity in Eq. (2.44), we get

1 kaaa:
— dn
4kmax0—2 /2kmaz

N

\/_ i 1 2kmax 2kmaz_‘77| 1 2
Fe'? = — d dA\
207 Jap /2kmw+|n <COSh(77/U) + cosh(A/o) ) )

~\~

I3

. (2.45)

kaax_‘n' 1
/ dA
eant |1l cosh(n/o) + cosh(A/o)

1y
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The next task, obviously, is to evaluate I3 and Iy.

2 2kmaz 2kmaz—n A 1 2
I3 = — d d 2.4
ST o2 ), 1 /0 (cosh(n/a) + Cosh(A/a)) (246)

Y
J/

TV
I3

where

I3 = % cosech? <

) {2 coth (g) (log [cosh (k’(”f)] —log {cosh (k”; - g)} )}
) st () s (B 1) g (B )

In Eq. (2.46), we have once again invoked the property of an even integrand over a

QI3 9|3

o
5 cosech

symmetric range of integration and set A/o = x to compute I3;. On explicitly substituting

for I3; in Eq. (2.46) and furthermore, setting /0 = y, we obtain

kaax/o' k k.
I3 = 2/ dy cosech?(y) coth(y) ([log ( max)] — log |:COSh ( - - y)])
0 o o

zkmaz/U k k’ Qk
—/ dy cosech®(y) sech (M> sech ( mE y) sinh ( —E y) . (247)
0 o o o

This is the best we can get analytically for /3. We cannot obtain a closed form solution

for this integral. Following this, we shall evaluate Iy.

2 2kmax 2kmaz_77 1
I, = d dA 2.4
7 kman0? /0 g /0 cosh(n/o) + cosh(A/o) |~ (248)

- >3
g

Iy
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where

1,1 = o cosech (ﬁ> (log {cosh (km'”)} — log [cosh (kmam — Q)}) .
ag g ag g

We have followed the same procedure here that we did to evaluate I5. It is evident from
this result that it not possible to get an exact expression for I, either. We have to leave the
final result as an integral. On explicitly substituting for I,; in Eq. (2.48) and once again

setting /o = y, we obtain

2 2kmam/0' k: 2
f—— / dy cosech?(y) <log [cosh (kmax)] — log [cosh ( e y)]) :
0 o o

kmax

Now, on directly substituting Eqs. (2.47) and (2.49) in Eq. (2.45), we get the following

expression for fidelity of a hyperbolic secant pulse:

i 2kmaz/0' k k
VFe? = 2/ dy cosech?(y) coth(y) (llog ( m‘”)] —log [cosh ( max y>])
0 o o
2kmaz /0 L 1 ok
— / dy cosech®(y) sech ( max) sech ( maz _ y) sinh ( maz y>
0 o o o
2 kaa:c/a' 9
2 [ coset () (1o oost (222 ) | o eost (222 ) )
0 o o

kmax
(2.50)
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For a normalized hyperbolic secant pulse, the variance of k is related to o by

(k?*) = m%0? /2 which can be easily shown:

(k?) = /Oo dk k |¢(k)|* = % /Oo dk k? sech®(k/o) = n20?/12.

[e.e] o)

We have already seen earlier that for the medium, Ak = ky00/ v/3. Once again, we shall
define a = Ak/\/(k)2. For a hyperbolic secant pulse, we have a = 2k, /70, in terms of

which we can rewrite Eq. (2.50) as

NI /Om dy cosech?(y) coth(y) ([log (gaﬂ — log [COSh <gOé — y>D

- / dy cosech?(y) sech (ga> sech (ga - y) sinh (Ta — )
0

_ i ™ dy COSGCh2(y> (log [cosh <ga>} — log [COSh (ga — y)})z ' (2.51)

T Jo

The fidelity of a hyperbolic secant pulse is plotted as the red curve in figure (2.1). It is
very clear from this figure that for both these pulses, the fidelity is always low. The limit
a — 0 corresponds to the narrow bandwidth regime. Reducing the medium bandwidth
results in less and less of the wavepacket being transmitted through the medium which is
why the fidelity (F') goes to zero as @ — 0. On the other hand, the opposite limit o« — oo
corresponds to the large bandwidth regime which represents fast nonlinearity. In other
words, in this limit the response time of the medium is much shorter compared to the
duration of the pulses. Thus, in a long pulse, the probability that two photons could

randomly be found within the same narrow time window corresponding to the response
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time of the medium, is negligible as a result of which the nonlinear effects vanish in this
limit. This simply means that when the bandwidth of the medium is large, the two photons
propagate without interacting with the medium which is why F' — 1 as o — oco. In both
the cases, the largest overlap with the initial state (with a 7 phase shift) happens around
a = 1. In this regime, the medium bandwidth and the pulse bandwidth are evenly
matched, in the frequency domain.

Based on the analytical calculation, the conclusion that we get a 7 phase shift when the
medium bandwidth and the pulse bandwidth are of the same order of magnitude
invalidates some of the approximations we made in our theoretical analysis, particularly
the introduction of delta functions in Eqs. (2.15) and (2.17) under the assumption that the
medium’s “acceptance bandwidth” is much larger than the rms frequency of the pulse.

So, in order to get a better understanding of the result in this crucial region (o = 1), we
have carried out a numerical integration of Eq. (2.11) without any further approximation
and assumption. For our numerical calculation, we place the pulse and the medium (with a
set of discrete modes) in a region of space of length L with periodic boundary conditions,
and integrate for one round trip. Changing the bandwidth of the medium is equivalent to
changing the number of modes used in the calculations. So the result is given by a set of
discrete points in figure (2.2). For each point, i.e. for a given number of modes, we have
looked for the value of € that optimizes the fidelity.

Figure (2.2) shows that our analytical calculation underestimates the achievable fidelity
around « ~ 1. However, the fidelity still remains small (£ < 0.36). For an initial Gaussian
pulse, two sets of results are plotted in figure (2.2). In the first case, we simply plot the

overlap between the final and initial state as given by the numerical calculation and filtered
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by the medium. Here, the norm of the final state will most likely be less than 1, reflecting
the possibility of absorption of photons in the medium. In the second case which is more
favorable, we renormalize the final b — ¢ state before calculating the overlap with the initial
state. This means that we are calculating a “conditional” fidelity on the assumption that

the b and the ¢ photons do not get absorbed in the medium.

T
1

—0.6}
00 05 1.0 15 20 25 30 35

Figure 2.2: Numerically calculated fidelity for Gaussian pulses (dots) compared to the an-
alytical approximation (continuous line). The darker dots (upper trace) show the result for
the un-normalized wavepacket, so they implicitly include the effect of medium absorption.
The lighter dots (lower trace) use a renormalized wave function, so they give the fidelity
conditioned on the photons not being absorbed.

2.3 Cavity configuration

In this section, we place the nonlinear medium inside a one-sided optical cavity. One of the

primary reasons to study this system is because cavities can help enhance weak
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nonlinearities. Besides, a cavity provides a natural bandwidth for the system through the
field’s decay rate, and as an added incentive, in the absence of other losses, it provides us
with a setup for which an analytical solution can be obtained.

The system comprising of a nonlinear medium in a cavity, and neglecting absorption
losses or spontaneous emission into off-axis modes, can be considered to be a closed system
that can be treated by the Hamiltonian formalism. Once again, we shall work in the
continuous mode description in the interaction picture, but here, for notational
convenience, we label the modes by frequency instead of wave vector.

The most general state is written as

0(t) = [ dor (e t) AL0NaloNION + [ d [ o Gl ) 0)a B 100 eLsfO)e (252

and the Hamiltonian corresponding to the nonlinear interaction in a cavity is written as

~ A ~

H = hg[AT(t) B(t) C(t) + A(t) Bf(t) CH(1)], (2.53)

where ¢ is the coupling strength and A(t), B(t) and C(t) are the cavity quasimode

operators, which in the continuous mode formalism [14, 15] can be written as
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o VEIT i (2.54)

In Eq. (2.54), k is the cavity decay rate and A,, A, and A, are the cavity-field
detunings for the a, b and ¢ photons, respectively. The operators a,,, b, and ¢, obey the
canonical commutation relations: [, 4, ,] = (b, bL,] 60, é1] = 0(w — ).

Assuming a doubly resonant cavity, i.e. A, = A, = A, = 0 and on inserting Eqs. (2.52),
(2.53) and (2.54) in the Schrodinger equation: |¢)) = —(i/h)H|1), we get the following pair

of differential equations for the a and the b, ¢ pulses:

0 I{ 3/2 el 7Z(w it roon
a 5 (w t) _Zg <7T /dw /dw ( ( . w/,) gbC(w 7w 7t)7

K+1w 1

o - ‘ K 3/2 z w'tw' )t e iwt
grtelet w0 = =ig (£) - / —Gulwn),

/i—i—zw’ r<;—|—zw”

(2.55)

which can be solved by the method of Laplace transform [16]. The Laplace transform of

the system in Eqgs. (2.55) is given by

s &ulions) =&, 0) = —ig (£) [ [aur & Sl W I LS —0) (g 5

(k +iw)(k — iw") (kK — W)
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and

o fulef o) = el 0) = —ig (£) [ Bl me s

T K —iw)(k + iw')(k +iw")’

where éa and ébc are the Laplace transform of £, and &, respectively. Our next step is
to substitute for & (w’,w”, s + i(w' +w” — w)) in Eq. (2.56) in terms of &, using Eq. (2.57).

In Eq. (2.57), on shifting s — s+ i(w + " — w), we get

. _ Epe(W', W, 0) , </~i>3/2 1
/ " / " — ) _ _
She(w w5 (W + W' = w)) s+i(w +w' —w) ! s+i(w +w—w)

s
" ga(w”’7 S + Z’(w/// i w))
8 /dw (:‘i — iw’”)(/@ —+ iw’)(,{ + iw”)' (2.58)

Now, on directly substituting Eq. (2.58) in Eq. (2.56) and furthermore setting

&4(w,0) = 0 since there is no a photon at ¢t = 0, we obtain

~ _ . K\ 3/2 1 ’ " gbc(wlvwﬂao)
§a(w,s) = —ig (%) s(k + iw) /dw /dw [s +i(w + W —w)|(k —iw)(k — iw")

K\ 5, 1 1
_ - - d / d "
<7T> g s(fi—l—iw)/ “/ i+ — )R+ W) (2 W)
T

)

[ Bl i )

K — iw///

(2.59)
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where
() b
K S+ 2Kk — 1w

On explicitly substituting for I in Eq. (2.59), we get

: N oy e, 1,0)
&olwrs) = =i (7) m/ o [ S o =l — @)=

- () 5 1 L /dw”’ Sal, s+ il —w) (2.60)

T K+iw) s+ 2Kk — iw K —w"

In order to make our calculation more compact, we shall define the following two

functions:

L [R\3/2 1 , . Epe(w', ", 0)
Flw,s) = —ig (;) 50k + iw) / deo / T i + o — )k — i) (r — i)

and

s+ 2k —iw’

In terms of these new definitions, Eq. (2.60) can be rewritten as

K — ,l’w///

: LB [ S ) g

Eq. (2.61) can be solved by shifting to dummy arguments in the same equation, viz.

w—w and s = s+ i(w —w).

43



This yields,

~ 1 E —
Gl s+l —w)) = F(e!,s 4 =) = o =

ga(w///’ s+ i(w”’ _ w)
X / dw" ] . (2:62)

Following this, we shall divide both sides of the previous equation by x — iw’ and

integrate over w’ which results in

/dw’ Ealw ,s—l—z(w/ —w) _ /dw’ F(w ,5—|—z§wl —w)) — E(s — i)
K — 1w k=W

-~

1

N

1
X /dw’ ,
(s +i(w —w)) (K + w?)
I
ga<w///, s+ i(w/// o w))
X /dw”’ p—— , (2.63)
7
where
1
== _
K S+ KR—ww

On explicitly substituting for I; in Eq. (2.63), we can easily solve for I which is given by

/ - /_ _ . -
.f:/dw’ F(w,s+z(w w)) T Es zw) i
K — ' K S+ Kk —1w
= <1+E —E(S_“‘f))_l /dw’ Fw,s tilw —w) (2.64)
K S+ Kk —1w K — 1w
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Next, we shall substitute the explicit expression for I in Eq. (2.61), which yields

i) = Flays) - B t) (1, 2 Boo i) )

s K-+iw K S+ K—1iw
F(wlll’ s + 7:<u)/// . w))
X /dw’” T , (2.65)

where in the previous equation, we have replaced the variable of integration in the last

integral to w”. In the definition of F', on shifting w — w"” and s — s + i(w"” — w), we get

the following explicit form for F(w”, s+ i(w"” — w)):

3/2 1
N=-is(3)" T T

" gbC(wlaw”a O)
/dw /dw [s +i(w + W —w)](k —iw)(k — ") (2.66)

F(w///78+i<w1// _

On directly substituting Eq. (2.66) and the explicit form for E [see below Eq. (2.60)] in

Eq. (2.65), we obtain

(KN\3/2 ” Epe(w', w", 0)
Salw, 5) = —ig (;) m /dw /dw [s +i(w + w" — w)](k —iw)(k — w")

N < >5/2 1 s+ K — 1w / w 1
i w
g s(k +iw) g% + (s + 2k — iw)(s + K — iw) [s +i(W" — w)](K? 4+ wW"?)

" fbc(w w” 0)
/dw /dw [s +i(w + W’ — w)](k — i) (K — ") (2.67)
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The next step is to substitute for &, in Eq. (2.57) in terms of &,.(w’, w”,0) from Eq.
(2.67). In the previous equation, on shifting to dummy arguments viz. w — w”" and

s—=s+i(w —w — W), we get

g( " S+Z( ///_w/_w//)):_ig (E)ZS/Z 1
T [S + Z’(w/// —w = w”)](%& + iw”’)

Epe(wi, wa, 0)
X /dw1 /de (s +i(wy +wy —w —w](k — iwy)(k — iws)

+7,g

5/2 1
(7‘(’) [s +i(w" — W — w"](k + iw")
s+ K —i(w + w")
X ; :
P+ [s+2k—i(w+w")] [s+ K —i(w+ w")

1
d,
/ 3 [s +i(ws — w' — w")] (K2 + w?)

/ dun / des Soolwn; 02,0) . (268)
[s +i(wy +wy —w — W] (k —iwy) (kK — iws)

This can be directly substituted in Eq. (2.57) which finally yields

3 1 5 (K31 1
ébc((ﬂ/,w”,s) :g ébc(w/,wﬂ,o) —yq <_> _/dw/// [8+Z< —

T s _ w/ _ w”)](li2 + w///2)

1 Ebe (w1, wa, 0)
X - - dw1 dWQ - X .
(k +iw') (K + iw") [s +i(w) + wy — W — wW")]|(k —iwy) (K — iws)
4

) /d " 1 1

7/ s s+i(w" —w —w") (k+iw')(k + w") (K% + wW'"?)
s+ Kk —i(w + w")

24 (s4 2k —i(wW +w")(s+ Kk —i(w +w"))

1

g
< [ 5+ ifws — o — )] (2 + )
/

dwl dtdg 550(“’17 wa, 0)

. 2.69
X (s +i(wy +wy —w —w"N](k —iwy) (kK — iws) ( )
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Eq. (2.69) is the formal solution to our problem in the s-domain. In order to get the
formal solution as a function of time, we have to invert the previous equation. But full
inversion of Eq. (2.69) could be substantially complicated. In many cases, it might not even
be possible. However, we are only interested in the pulse long after its interaction with the
nonlinear medium inside the cavity. In other words, we only require the asymptotic state,
i.e. limy o &pe(w', w”, t). We can then exploit the final value theorem of operational calculus
which says that lim; e &pe (W', w”, 1) = lims_0 s ébc(w’, W’ s).

This gives us

. c ron o ron 2 E 3 1
Llelg(l) [ Spe(w, ", 5)] = G, 7, 0) — g <7r> (k + i) (K + iw”)

1
. "
e B e i ) G

I

x lim [ duy / dusy —— bcl, wn,0) .
50 [s + (w1 + wy — W — wW")](k — iwy) (K — iws)

J/

Iz
4 E>4 li d "n 1
+ g (7‘(‘ (/1 + iw')(lﬁ + z'w”) Sl_I}(l) w [8 + i(w”’ —w = w”)](nQ + w///2>
n
" Kk —i(w +w")
9> + 2k — i(w' + W[k — (W + w")]
1
li d
50 ) M st i(ws — W — )] (52 + w3
I
C 9 70
« lim / dur / dy —— Soolw, w3,0) — (2.70)
50 [s + i(w) + wy — W — W")](k — iwy) (kK — iws)
I

47



where

k—i(w +w)’

and

I, —9 /d Epe(wr, W'+ W" —wy,0)
= 4T W .
2 Yk —iwn) [k — (W 4w — w))]

The integral I is evaluated from the calculus of residues. We have computed this
integral over wy, and expressed the result in terms of an integral over w;. We shall assume
that the initial state &.(wy,ws, 0) is factorizable, i.e. &p.(wr, wa, 0) = & (w1, 0) &.(w2,0). It is
legitimate to assume that the wavepacket £(w) vanishes as w — oo since it must be

normalizable. Since we are integrating over wy, what we need to compute is

58(“’2)
/dwz [s +i(w) + ws — w' — w")]|(k — iws)

Note that &.(ws) is the Fourier transform of the incoming pulse, which we we may take

to vanish for ¢ < 0. Thus, the function {.(w,) ought to be of the form

Ee(wg) ~ /0 E.(t) e™2t dt.

Since t > 0, we close the contour using a semicircle in the upper half of the complex wo
plane [i.e. Im(wy) > 0] and then we shall evaluate the integral using the theorem of

residues. Since we are in the upper half plane, only the poles with positive imaginary part
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will contribute to the result. In the integral over ws, of the two terms in the denominator,
only [s + i(w; + wy — w’ — ")) has a pole with a positive imaginary part, i.e. for this term,
the pole is at ws = W' + W” — wy +is. So we just need to calculate the residue at this pole
which then gives us the final result for I5.

Next, on explicitly substituting for I; and I, in Eq. (2.70) and carrying out some

simplification, we obtain

2¢%K? 1

T (k+iw)(k+iw")
2k —i(w + W)
X ‘ .
9®+ 2k —i(w + W[k — i(w + w")]

% /dw §bc(w1,w’+w”—w1,0) (2 71)
Yk —iw) [k — (W 4w —w)] '

. c rn o ron .
];I_IE(I) [S ébc(w , W 78)] - fbc(w , W 70)

The integral in Eq. (2.71) can be simplified by making use of a partial fraction

decomposition. Note that

1 1 1 1
_ n . (2.72)

(k —iw)[k —i(w +w"—w)] 2k—i(w+W") |kK—iwy Kk—i(w+w—w)

49



On substituting Eq. (2.72) in Eq. (2.71), we get

2¢%K? 1

T (k+iw)(k +iw")

hII(l) [8 ébc(wla w/lu 8)] = &70(("/7 wll7 O) o
S—r

1
P 26— i@ + )k — i+ @)

/ "o / "o
« (/dw1 Spelwn, o + & = w1, 0) +/dw1 Spelwr, ' +w “’1’0)> (2.73)

K — iw K —i(w +w’ —w)

In the second integral on the right hand side of the previous equation, if we set
W + W —w; = w, it becomes identical to the first integral, which then simplifies Eq. (2.74)

to the following form:

~ 4¢%kK? 1
. oo _ oo B
Llslgcl) [5 Gelw’, &, 8)] = el 7, 0) T (k4w (k + iw")
1 ’ "
x : : /dw1 Selwp, o + 0" —w1,0) 5
9>+ 2k — i(w' + W[k — (W + w")] K — iwy

In order to get the actual spectrum of the outgoing field, we should multiply the
expression in Eq. (2.74) by the “empty cavity” factors (k + iw’)/(k — iw’) and

(k 4+ iw")/(k —iw").
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Thus, the expression for fidelity, i.e. the overlap of the final state with the initial one, is

then expressed as

K — iw K — ww”

ki \ K+ i 49°K?
:/dw’/dw” ( . /) ( : ,,) |Epe (W', ", 0)]? — J
KR — W KR — W T

X/da]//dw// 1 £bc(w7w//70)
(k —iw")(k —iw") g%+ 2k —i(w 4+ W")][k — i(w" + @")]
x/dw Epe(wr, W' +w” — wi,0)

K — Wy

- - ~
Ve — / i / i’ ("”““.“’,) (““.“’ ) £, 0", 0) Tim [s &o(w, ", 5)]

(2.75)

We can obtain a particularly simple result in the strong-coupling limit in which g is
much greater than both the cavity bandwidth x and the pulse bandwidth as a result of
which we can approximate g* + [2x — i(w’ + w")][k — i(w’ + W")] & ¢2. In this limit, the

expression for square-root fidelity and phase in Eq. (2.75) simplifies to

) < - 4 2
VFe? = /dw’/dw” (li i Z,w,> (K - Z.w,,) e, W, 0)2 —
R — 1W K — 1w n
" / "o
% /dw’/dw" gbc w W 0) ”) /dwl fbc(c")l?w + w w170). (276)

(k —iw)(k — iw K — iwy

A common situation is when the initial b and ¢ pulses are identical that can be
represented by some function of time, {(¢). In such a case, the initial spectrum is given by

&)C(w w// 0 f At ew t’ (t/)f dt" eiw"t” f(t”).
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On substituting for the initial pulse in Eq. (2.76) in terms of time-domain integrals, we

get

. 1 2 2 4K2
VFe® = — dw’/dw" 1— Mo r + n .
Zw//)

472 k—iw k—iw"  (k—iw)(k—

. /dtl &) e ™ /dt2 EX(ty) e7™"t /dtg Ep(ts) 't

< Jatstey - () [an g [ [an s

eiwl(t4—t1) eiw”(t4—t2) eiwl(t4—t2)
x /dt4 &(t) /dw’ S /dw” R /dwl T @m
R — W R — W R — W1

In the previous equation, we have made use of the following identity in the first term:
(k +iw)/(k —iw) = =1 + (2k/Kk — iw). Note that k > 0.

In order to simplify Eq. (2.77) further, we shall repeatedly use the following result:

pi(t=7) o2 et ift— 7 <0
/dw = (2.78)

0, otherwise.

In Eq. (2.77), we shall denote the first term as 7} and the second term as T. Thus, on
simplifying each term (i.e. 77 and T3) in Eq. (2.77) separately using the result in Eq.

(2.78), we obtain the following expressions for the two terms:
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1 2K 2k A2
T =— | dJ | dJ" |1 — .
=g [ e (- 25 - o)
< [an gy e [an g e [ e e
X / dty &(ty) e
[e'e] t1 o
=1-2 / dty & (t1) e / dts &(ts) €™ — 2k / dty €5 (ts) e

—00 — 00 —0o0

to o) t1
X / dty &(ts) €™ + 4/4;2/ dt1 & (t1) e_m/ dts &(t3) €

oo to
« / dts €5 (1) =2 / dty Eu(ts) e, (2.79)

and

15

e
(5) [ g [ [ e
iw’ (ta—t1) iw' (ta—ta) w1 (ta—t2)
X /dt4 fb(tz;) /dw' 6—/ /dw" 6—” /dwl 6—
K — 1w K — 1w K — Wy
= 8k? / dty E(ty) €™ / dty & (ty) e / dty e "

—0o0 ta tq

« / Uty &(ts) e, (2.80)

—0o0

Next, on substituting the results from Eqgs. (2.79) and (2.80) in Eq. (2.77) and
furthermore, assuming that &,(¢) and £.(¢) are identical and real, we finally obtain, in the

strong coupling limit, the following expression for fidelity, in terms of time-domain integrals:
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\/Feiqb = T1 - T2

=1—4r /Oo dt &(t) e—“t/t dt' E(t) e
00 t 2
+ 4K7 [ / dt £(t) e / dt' £(t) e“t’}

0o 00 2
— 87 / dt £(t) et { / dt’ £(t) e”t/]

X / " (") et (2.81)
Now we shall consider some specific examples to calculate the combined fidelity-phase.

First, we shall consider the case in which the initial pulse is a Gaussian of duration 7T'. As

mentioned earlier, we shall assume that the initial state is factorizable, i.e.

Epe(W', ", 0) = & (W', 0) €(w”,0), where &, and €. are both given by

E(w,0) = \/T//7 exp|—w? T?/2]. We shall use Eq. (2.75) to calculate the fidelity. On

substituting the explicit form for a Gaussian wavepacket in Eq. (2.75), we get

\/_€1¢> o / /d /" Ii + Zw (li + ’L:u)”) e*(w’2+w”2)T2 49 T2

(k —iw')(k — iw") T

! 1" 1
% do | do’ e« 24w")T? /2
/ . / woe (k — i) (k — iw")

P 2R — i+ )[R — i+ )]

e—w1T2/2 —(w'+w" —w1)2T2/2
X / duwn _ , (2.82)
(kK —iw)
e
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where

/ "
Iy =7 e T WHDHA TRliW ) 27 o {KT — T (w —gw )] ‘

On explicitly substituting for I;; in Eq. (2.82), we obtain

N / /d , (K +iw) (kK +iw") T 4g2K2T?

(k —iw')(k — iw") T

/2+W/l2)T2/2 2 / 11\2 2 o / 1" 2
/dw /dw” : efT (w'+w')=/4 €T [k—i(w'+w') /2]
(k —iw')(k — iw")

X

9% + 26 — (W' + W”)HH — (W +w")]

/ "
x erfc {/{T —iT (w —gw >] . (2.83)

In order to save space and make the subsequent calculation easier to follow, we shall
compute each term in Eq. (2.83) separately. We shall label the two terms in the previous

equation 77 and T7; where,

T] = T_2 /dw'/dw” (/ﬁ? + 7/-0.}/>(K, + iw”) 6_(w,2+w//2)T2,

T (K —iw')(k — iw")

and

2,.22 —w’2 w12 /2
T, = 49 KT / /dw" (WS T/ 67T2(w’+w”)2/4 €7T2(w’+w")2/4 6T2[n7i(w’+w”)/2]2
(k —iw')(k — iw")

< BT {"“T‘iT <w 5 )} |
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First we shall work on 7. Here, we shall once again make use of the identity:
(k4 iw)/(k —iw) = =1 + (2k/k — iw) and expand the product, after which we shall make

use of the following result:

> e~ T? 22
dw — =gx e erfe(kT),
N

to compute T7. This procedure yields
) 2
T, = [2\/% a e?erfe(a) — 1|, (2.84)

where a = kT is a dimensionless parameter. Next we shall calculate T7;. Here, we shall
introduce two new variables n and A such that n = (W' + w”)/2 and A = (W' —w”)/2. In

terms of these new variables, T7; can be rewritten as

T, — 82 K>T? /dn 2P eT* (=i erfe [T'(k — in)]
9>+ 2(k — in)(k — 2in)

_A2T2
X/ﬁAw~4m+Anm—un—An

We can now make a partial fraction decomposition of the denominator in the last

integral (over A). This gives us

1 1 1 1

i+ D —in—N)]  2(m—an) ln—int &) m—in—A)]
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On explicitly substituting this decomposition in 77;, we get

892 K2T? e~2PT T2 (=) orfe [T(k — in)]
Tip=——— [ dn , 5 : -
2(k —in) ¢%>+ 2(k —in)(k — 2in)

m an
X . N —"_ . AN 9
/ k—i(n+A) / k—i(n—A)

J/ J/
Vv Vv

I I_

where

I, =1 =g orfe[T(k — in)].

On explicitly substituting for I, and I_ in 777, we obtain

e’ 2o [arfe(q — in)]?

a—1in (¢7)%+2(a —in)(a — 2in)’ (2.85)

T = 8(gT)2a2/dn

where once again, o = «T". Now on substituting Eqs. (2.84) and (2.85) in Eq. (2.83), we

finally obtain the following explicit expression for the fidelity of a Gaussian wavepacket:

. 2
VFe' = [Qﬁ a e®erfe(a) — 1| —8 (gT)*a?

oo o2(a—in)? lerfc(a — in)]2
d ‘ 2.86
></ o =i (gT)? + 2(a — i) (a — 2in) o

In the strong-coupling limit, (¢7)* + 2(a — in)(a — 2in) =~ (¢7)*. Thus, in this limit, the

expression for the fidelity in Eq. (2.86) reduces to
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_27]2

. 2 .
VFe? = [2ﬁ a e erfc(a) — 1} -8 aQ/dn ¢ — 2ain)’? lerfc(ar —in))” . (2.87)
a—in

10 - - - T T ]
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Figure 2.3: Square-root fidelity and phase for a Gaussian pulse, as a function of xT', for
different values of the coupling strength g. From top to bottom: gT' = 7; ¢T = 14; ¢T = 21;
and the strong-coupling limit (¢7° — o0), Eq. (2.89).

Figure (2.3) shows a plot of the square-root fidelity of a Gaussian wavepacket for
different values of the coupling strength.

For a hyperbolic secant pulse of duration 7T, whose profile in the time domain is given
by &(t) = (1/v/2T) sech(t/T), an explicit expression for the fidelity using Eq. (2.75) is
extremely complicated to evaluate analytically. Instead we have only done this calculation

numerically in the strong-coupling limit. Figure (2.4) shows this result.

58



05 ]
© ]
s A
\; 0.0

_05 - 4

KT

Figure 2.4: Square-root fidelity and phase for a hyperbolic secant pulse, as a function of k7',
in the strong-coupling limit.

As these figures show, we obtain the optimal results when the bandwidth of the cavity
and the pulse are more or less evenly matched, i.e. they are of the same order of magnitude
(kT ~ 1), similar to what we have seen in the free space scenario. However, we get a
slightly higher fidelity (F') in the cavity configuration. For a moderately large coupling,
gl ~ 7, we get F' ~ 0.5, while in the strong coupling limit, F' ~ 0.6.

In both the figures, (2.3) and (2.4), we see that as kT — 0, the fidelity (F') approaches
1. This is because in this limit, the pulse is simply reflected off of the mirror at the
entrance of the cavity. On the other hand, we see that in the opposite limit, i.e. as
KT — oo, ' — 1. In this limit, the cavity empties itself very fast (over a time scale of the
order of 1/k < T) as a result of which the probability for two photons to be present at the
same time is negligible. This means that the two photons in all likelihood do not interact

with the medium. Furthermore, when the bandwidth of the cavity is very large, the
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spectral distortion of the wavepackets is negligible, which is why the fidelity again

approaches 1 in this limit.

2.4 Kerr medium inside a one-sided cavity

The possibility of obtaining an analytical solution in a cavity configuration as we have seen
in detail, in the previous section, motivated us to explore the case where we replace the y(*
medium in a one-sided cavity with a Kerr [X(3)] medium. We were driven by a curiosity to
see if the results for this case would be any different from the second-order one.

For this problem, we only have two types of photons viz. a and b, in a general state of

the form

W (t)) = / dw’ / dw” Eap(w' 0", 1) al,]0)a BL,|0)s (2.88)
and the Hamiltonian describing the third-order nonlinear interaction is written as
H = hg [AT0)A®)B(t)B(t)], (2.89)
with the operators Af(t), A(t), B(t) and B(t) given by Eq. (2.54).

On substituting Eqgs. (2.88), (2.89) and (2.54) in the Schrédinger equation, we obtain

under perfect resonance (i.e. A, = A, = 0), the following equation of motion:
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o L, KA 2 (w'+w")t i J —i(wy+w2)t
— (W, W' t) = —1 (—) w w -
ot anl ) av (k + iw') (K + iw") / ! / 2 (k — iwy) (K — iws)

X fab(wh W2, t)a (2'90)

which can indeed be solved by the method of Laplace transform. The Laplace transform

of Eq. (2.90) is given by

&zb(f«u/ NG S) _ 1 §ab(wl R O) _ig (E)Q l 1
T T 7/ s (k+iw)(k +iw")
rn
/dwl/d oy £abw1,w2,s—|—z(w1+w2 W —w )] (2.91)
(k —iwy) (K — iws)

The recipe to proceed further is the same as what we had done in the previous section.

We shall define

1
B Eap(W,w",0) = F(w, W' s),

following which, we shall shift to dummy arguments in Eq. (2.91) viz. W’ — w3, W’ — wy

and s = s + i(w3 + wy — w’ — W”). This procedure yields

fab[wg,w4, s+ i(ws +wy —w' — W) = Flws,wy, s +i(ws + wy — ' — "))

. </£>2 1 1
_7/ —
g s+ilws+wy —w —w") (k+iws)(k + iwy)
/dwl/d " fabwl,wg,s—l—z(wl +wy —w —w )] (2.99)

(k —iwr) (K — iws)
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Next, we shall divide both sides of the previous equation by (k — iws3)(k — iw4) and

integrate over w3 and wy, which then gives us

/dwg/d 4§abw3,w4,s+z(w3+w4—w —w"]

(k —iws) (K — iwy)

/dw /dw wg,w4,3+@(w3+w4—w — w")]
’ ! (k —iws)(Kk — iwy)

1 1
zg /dW3/dw4 s+ i(ws +ws —w —w”) (K% + w? )(H2+w4)
>
/dwl/d o, Eaplwr, wa, 5 4+ i(wy +wy — W' — w )]7 (2.93)
(k —iwy) (K — iws) )

I/

where

r=() ;
C\k/) 542k —i(W H W)

On explicitly substituting for I” in Eq. (2.93), we get

F . R A .
[’:/dw3/dw4 [ws, Wy, s +i(ws +wy —wW —w )}_( ig ))I’, (2.04)

(k —iws) (K — iwy) s+ 2k —i(w + W’

from which it is straightforward to obtain an expression for I’. In the previous equation,
we just need to move the term involving I’ on the right hand side to the left following

which we can express I’ in terms of F'.
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Thus, we obtain

/dwl/d 2§abw1,w2,s+z(w1+w2—w — w")]

K}—lwl (k — iws)

( . (2.95)
19 wg,w4,s+zw3+W4—w—w
=(1 d d .
( +s+2/<:—zcu—1—w”) / u}3/ . (k — iws) (K — iwy)
On substituting Eq. (2.95) in Eq. (2.91), we obtain
Eap(W W, s) = F(W,W", s) —ig <E>2 ! ! 1+ g h
W T s (k4 iw')(k + iw") s+ 2k —i(wW + w")
/dw3/dw4 wg,w4,s+z(w3 +wy —w —w")]
(k —iws3) (K — iwy)
(2.96)
In the definition of F' [see below Eq. (2.91)], on shifting w’ — w3, w” — w4 and
s = s+i(ws +wy —w —w”), we get the following explicit form for
Flws,wy, s +i(wz +wy — ' — )]
a Y ’O
Flws,ws, s+ i(ws + wy — ' — w")] = Sap(ws, 1, 0) (2.97)

s+ i(ws+wy —w —w")’

Now, on directly substituting Eq. (2.97) in Eq. (2.96) and expressing F(w’,w”, s) in

terms of {y(w’,w”, 0) from the definition of F', we obtain
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Ep(0 W, 8) = = Epl(w',W", 0) — ig <E>21 1

1
s /) s (k+iw)(k +iw")
~1
x (1
( +s+2m—z(w +w”))

x/dwg/ Sl 00, 0) . (2.98)

[s + i(ws + wy — W — W")](k — iws)(k — iwy)

Eq.(2.98) is the formal solution to our problem in the s-domain. We can clearly see that
the full inversion of this equation is extremely hard. So once again, we shall only compute
the asymptotic final state by using the final value theorem of operational calculus:

hmt—)oo Sbc(wl> w,/v t) = hms—>0 S gbc(w/a (JJ”, 3)~

This yields

- 1
lim [s €un(@, ", 5)] = (e, ,0) — ig (=

2
s—0 7r> (k 4 iw')(k + iw")
" 2k — (W + W)
ig + 2k — (W' + w")
gab(w37w47 0)

li d d :
% w3/ i [s +i(ws +wy — W —wW")]|(k — iws) (K — iwy)

Iy

(2.99)

The integral I/ in Eq. (2.99) is identical to the integral I in Eq.(2.70) which can then
be evaluated to give us the following result [see the discussion below Eq. (2.72) for

justification]:
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I, — 27T/dw fab(wg,w' +w’ - w3, 0)
I P (k —iws) [k — i(W + W — ws)]

On explicitly substituting the result for /; in Eq. (2.99), we get

- 2igr> 1
. oo _ 1o B
£1_r>r(1) |5 San(w', ", 5)] = Lap(w, 0", 0) T (k4w (k + iw")

x( 2K — o + w") >> /dw( San(w, & + W = w,0) (2.100)

ig+ 2k —i(w + W k—iw)k —i(w +w” —w)|’

where in the last integral, the variable of integration is replaced by w. The integral in
Eq. (2.100) is identical to the integral in Eq. (2.71). So, the partial fraction decomposition
in Eq. (2.72) can be used here to simplify the result. Thus, substituting Eq. (2.72) in Eq.

(2.100) leaves us with

2igK? 1
7 (k4w (k +iw")|ig + 2k — i(wW + w")]
/ " !/ " __

K —iw k—i(w +w' —w)

lim [s gab(w’,w”, s)] = Eup(W',W",0) —
s—0

(2.101)

In the previous equation, if we set w’ + w” —w = w; in the second integral, it becomes

identical to the first integral, which then simplifies Eq. (2.101) to
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4igr? 1

lim [s Egp(w/, 0", 8)] = Emp(W/,w", 0) —

50 (k4w (k +iw")|ig + 2k — (W + w")]
s
K —iw

(2.102)

Next, we must multiply Eq. (2.102) by the “empty cavity” factors (k + iw')/(k — iw’)
and (k +iw")/(k — iw") to get the outgoing field, following which we can compute the

fidelity that is given by

- -
VFei? :/dw’/dw” (HJM,LU) (FHFZ.W ) Eap(@',w”,0) lim [s Ep(w',w”, 5)]
s—

K — ww' K — ww’
/ " R + iw/ K + ,L.w” / " 2
= [ dw' | dw — — | [€ap(w',w", 0)]
K — 1w K — tw

. 4ig/€2 /dw’ / dw" : 1 : : be(w/7 .W//a O)
T (k — i) (k —iw") ig + 2k — i(w' + w")]

’ "
X /dw Sanlw, o + " = w, 0) (2.103)

K — 1w

From the expression in Eq. (2.103), it is clear that the Kerr medium placed inside an
optical cavity is not likely to give us any better result than the second-order case. In the

strong-coupling limit, i.e. ig + [2k — i(W' 4+ w")] ~ ig, Eq. (2.103) reduces to

- ! /)
\/Feid’:/dw'/dw" (K—{_Zw,) <K/+Z~w//) Ifab(wlaw//a0>|2
R — W R — W

/dw /dw” Sap, ", 0) /dw G +g —w,O)y (2.104)

(k — i) (k — iw") K —iw
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which is identical to Eq. (2.76). Interestingly, we find that in the strong-coupling limit
which is the most favorable case for the cavity configuration, the second- and the

third-order nonlinearities are completely equivalent.

2.5 Drawbacks of an optical cavity

The major shortcoming of using an optical cavity for single-photon quantum logic is that
even an empty cavity will, in general, considerably distort an incident pulse. Hence, we
should essentially expect low fidelities for such cavity systems. However, the results shown
in figures (2.3) and (2.4) for the two-photon gate may be called surprisingly high.

In order to appreciate this point better, we shall consider the situation when only one
photon is incident on the cavity. This would correspond to either one of the states |01) or
|10) in Eq. (2.1), which on a random basis, may be expected to happen half the time. It is
important to note that when we do quantum logic, the initial state has be considered
unknown by definition. The goal in quantum logic, in the most ideal case, is to realize the
transformation in Eq. (2.1) with unit fidelity for all the four input states. This is the reason
why we resort to nonlinear optical schemes to build a phase gate.

In the case of a single-photon incident on the cavity, the spectrum of the outgoing field
is

K4+ iw =

Four(w) = fin(w), (2.105)

K — 1w

where f;,(w) could stand for either &(w,0) or &(w,0), and the overlap with the initial

state is simply given by
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VFe — / " For() o)

> K+iw\ = 9
_/_mdw (H_w) | Fon (). (2.106)

For a Gaussian pulse fi,(w) = v/T/\/7 exp(—w?T?/2), the square-root fidelity given by

Eq. (2.106) can be easily computed as shown below.

: T * 2K 22
F'L¢):_ d -1 —wT
VFe ﬁ/_oow( +/<a—iw>€

T o a2 26T [ e~w'T?
= dw e T + == d
VT o v e * VT ) —
= —1 4 2@k "1 erfe(kT), (2.107)

which makes

, 2
F = [2v/7kT "1 erfe(kT) — 1] :

We can see that F' is equal to 1 in the limits k7" = 0 and KT" — oo. In particular,
around kT = 0.8, where the two-photon gate performs best, the single-photon fidelity is
very low, i.e. F' ~ 0.15.

The two limits where the cavity does not distort the incident pulse are, as we have just
seen, the small bandwidth limit k7" — 0 (where the pulse is simply reflected off of the
entrance mirror) and the adiabatic limit k7" — o0o. Most of the feasible cavity based

schemes for single-photon quantum logic operate in the adiabatic limit, such as the
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Duan-Kimble gate [17], or the Koshino-Ishizaka-Nakamura gate [18]. However, in these two
limits, as figures (2.3) and (2.4) reveal, the gate operation involving two photons incident
on the cavity fails to produce the desired phase shift for the state |1,1).

Finally, we shall discuss a special case where the distortion of the incoming pulse by an
empty cavity is, in principle, reversible. This happens when the pulse has the form of a
rising exponential with a time constant . This is in fact, the time reversal of the pulse
leaking out of the cavity, at least in the absence of a nonlinear medium inside. The use of
time-reversed pulses for the transmission of quantum information between two optical
cavities was first proposed by Cirac et al. in [19]. However, it is essential to note that this is
a very different scheme, and in a very distinct context from what we have considered here.
It is important to keep in mind that in quantum computation, the two qubits must be
identical. So in this case, either we must choose a rising exponential or a decaying
exponential for the qubits. If we settle on, say the rising exponential as our default pulse,
then the time reversal operation has to be arranged to happen automatically for all the
four states in Eq. (2.1) since the initial state is unknown by definition when we do
quantum logic. The time reversal operation is accomplished in practice through optical
phase conjugation, which is a nonlinear process in itself, and which, as far as we know, has
not yet been demonstrated for single-photo pulses [20]. In our theoretical analysis, phase
conjugation is formally just the complex conjugation of the spectrum.

If we send in a single-photon as a rising exponential pulse with the spectrum

K 1

fm(w) i VA

T (k+iw)’
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then from Eq. (2.105), the pulse coming out of the cavity after phase conjugation is

x K [ K+ iw 1 : K 1
fout(w) - - . X . - - -
T\K—Ww K+iw T (K +iw)

From here, the calculation of the fidelity is straightforward.

VFee - [ " o () Fonlw)

A e 1
S dow ————
T /Oo YR W
/k
= 1. (2.108)

We see that for the single-photon case, the fidelity is of course, 1. Next we shall see
what happens if we send in two photons as rising exponential pulses with the spectrum of

the form

/Y _(F 1
Shelt, w7, 0) = <7r> (k +iw) (K +iw")’

We shall compute the outgoing field for the two-photon case in the strong-coupling
limit since this turned out the be the most favorable situation in the cavity configuration.
We can write down the general expression for the outgoing spectrum in the asymptotic
limit by reducing Eq. (2.74) to the case in which the nonlinear coupling strength is strong
(i.e. g + 2k —i(w' + W")][k — i(W + w")] =~ ¢*) and multiplying the resulting expression by

the “empty cavity” factors (k +iw')/(k —iw') and (k + iw")/(k — iw"). This yields
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- K+ i’ K+ iw”
fout(w/aw”at - OO) = ( ) ( ; ) gbc(wl, Cd”, 0)

K — W' K — 1w
4 2 1 . / "o
- : : /dw1 Soelwr, o £ = w1, 0) (2.109)
T (kK —iw)(k —iw") K — iw;

On explicitly substituting for the rising exponential in Eq. (2.109), we get

E (ot — 00) (FJ) 1 43 1
out\W', ) = \= . . - T 9 . .
! 7/ (k—iw)(k —w") 7w (k—iw)(k—iw")

1 1
d, 2.110
X/ 1 (k2 +w}) k+i(w +w —w)’ ( )

I

N

where

1
2K + i(w + W)

="
KR

On explicitly substituting for I in Eq. (2.110), we obtain

~ K 1 452 1 1
Sout = (;) (k—i)(k—iw") 7 (k—iw)(k—iw") 2k +i(w +w") (2.111)

Next, we shall perform the phase conjugation on éout which then gives us

>, K 1 4K? 1 1
Sout = (—) — = — — — . (2.112)
7/ (k+i)(k+w”) 7w (k+iw)(k+iw") 26 —i(w +w")
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Finally, we shall compute the fidelity for this case which is given by

VFe® = /dw’/dw" & (W W' 0) &L (W Wt — 00)

K 2 / 1 1 1
B <;) /dw K2+ w' /dw K2+ w'"?

/K /K
453 1 1
7 d ! d 1!
2 / w / w (k2 + w?) (k2 + W) 2k —i(wW + ")’
2 413
—1-1=0. (2.113)

We can clearly see that in the case of two incoming photons, in the strong-coupling
limit, after the interaction with the nonlinear medium and phase conjugation, the fidelity
turns out be exactly zero. So these pulses would not be useful at all for quantum logic even

in the most ideal case.

2.6 Conclusion

We have carried out a thorough multimode quantized field analysis of the proposal to use a
second-order optical nonlinearity to perform a conditional phase shift between two
co-propagating single-photon pulses traveling with equal speeds. Our study has revealed
that in the “free-space scenario” where the pulses travel through a nonlinear medium with
a finite transmission bandwidth, the maximum fidelity that we could achieve is less than
0.4. Following this, we have extended our analysis to a situation in which the nonlinear

medium is placed inside a one-sided cavity and found that here fidelities as large as 0.6 are
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theoretically possible. In both these cases, we obtained optimal results when the medium
bandwidth and the pulse bandwidth are more or less evenly matched in the frequency
space.

In both, the “free-space” and the cavity configuration, we conclude based on our
analysis that the spectral entanglement of the final state is indeed an important fidelity
degrading mechanism. In other words, once the two incident photons are destroyed in the
medium, the two “re-created” photons are constrained only by the energy and momentum
conservation (which is the same for both of them here since the pulses travel with the same
speed) and the spectral properties of the medium, and indeed they need not resemble the
initial state very much. We have seen that the final state is in general, spectrally entangled
in momentum even though we assumed the initial state to be factorizable.

Perhaps most intriguingly, we have found that if the second-order nonlinear medium is
replaced by a third-order medium in the cavity, the fidelity in the strong-coupling limit is
given by the same mathematical expression.

We thus, conclude that for schemes involving two co-propagating single-photon pulses
with equal velocities, the second-order nonlinearities suffer from the same limitations as the
third-order ones and do not have any apparent advantage over “Kerr” media for

conditional single-photon quantum logic [21].
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Chapter 3
Conditional phase shift in a nonlocal nonlinear medium

3.1 Introduction

In the previous chapter, we carried out a multimode quantized field analysis of a
conditional phase gate based on y® nonlinearity using two co-propagating single photon
wavepackets traveling with equal speeds, both in free space and a one-sided optical cavity.
We concluded that spectral entanglement of the final state is an important fidelity
degrading mechanism, and this scheme suffers from the same limitations as the third-order
ones. The conventional wisdom until now which is the culmination of all these studies is
that it is impossible to achieve unit fidelity with a 7 phase shift. This was indeed the
original claim made by Shapiro [5] and further strengthened by Gea-Banacloche [12] and a
few others [22, 23, 24]. Nevertheless, in recent times there have been a number of claims
that appear to challenge this view [25, 26, 27, 28, 29, 30] and present a strong case for high
fidelity conditional phase shift. The other reassuring theoretical results have been presented
in [31, 32]. In particular, we were strongly motivated by couple of theoretical papers viz.
one by Xia et al. [28] and the other one by Brod et al. [30], which showed that it is indeed
possible to achieve unit fidelity with a 7 phase shift.

In this chapter, we shall develop an analytical model for the system studied numerically
by Xia et al. Our problem here is to study the conditional phase shift between two
co-propagating single-photon wavepackets traveling with different speeds in a x® medium.
When the b and the ¢ photons travel with different speeds, it means that they are no longer

identical as would be required for qubits in quantum computation. One possible way to
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circumvent this difficulty, in principle, is to use different polarizations for the two photons
in a birefringent medium, assuming that the qubit is not encoded in the polarization state.
Following Xia et al., we treat the nonlinear medium as being spatially nonlocal, as a result
of which we can derive the Hamiltonian without the need for any noise operators.
Assuming three modes a, b and ¢, we envisage a region of interaction that consists of a Y
medium upon which the b and the ¢ photons are incident. The pulses travel with different
speeds, so they pass through each other. As they do, the b and the ¢ photons annihilate to
create an a photon. Still later, the a photon annihilates to create a new b — ¢ pair. This
scheme in a simplified, single-mode picture could be described by the Hamiltonian

H= he(al bé+a bt ¢'), where € is the strength of nonlinear coupling. We consider here the
most general (still one dimensional) multimode version of this problem and generalize the
results of Xia et al. to deal with an arbitrary response function, initial state and pulse
velocity. In our model, we assume that the width of the pulse (corresponding to the a, b

and ¢ photons) remains constant during the entire process.

3.2 Analytical model for a spatially nonlocal y® medium

The system that we wish to study is described by the following Hamiltonian in the

continuous mode representation:

H = Hy+ Hyy,
Hozhva/dkk:&L ak+mb/dmz§; Bk+hvc/dkkéz ér (3.1)

L L L
Fine = he / dz, / dz / dze (220, 2) Al(z0) Blzy) Oze) + Hee,
0 0 0

1)



where ﬁo is the Hamiltonian of the free field, ]:Imt is the Hamiltonian corresponding to
the interaction with the nonlinear (X(Z)) medium and H.c stands for hermitian conjugate.
In our problem, we consider the most general case, in which the three photons, a, b and c,
travel with different speeds viz. v,, vy and v, respectively. The length of the region of
interaction is taken to be L, however, this will not figure in our calculation because we will
let one pulse sweep across the other and assume that the interaction starts well after both
the photons enter the medium and ends well before they leave. The function f(z4, 2p, 2¢)
describes the nonlocal response of the nonlinear medium. We shall assume the response

function to have the following general form

f(za, 26, 2¢) = h(za — 2) h(za — 2¢), (3.2)

where h(z) is an appropriate real function. Physically, the two photons b and ¢ don’t
have to annihilate at the same location in the region of interaction. They can be at
different locations within a characteristic length which we will call the length scale of
medium nonlocality. In other words, the b and the ¢ photons have to be present in a region
of space inside the nonlinear medium characterized by this length scale of medium
nonlocality, for them to interact, i.e. to undergo parametric up- and down-conversion
processes. Otherwise, these two photons will never interact. So they cannot be at arbitrary
locations inside the medium. Similarly, the a photon can be created anywhere within this
length scale and later when it annihilates to create a new b, ¢ pair, these two photons can
be created anywhere within this characteristic length. Mathematically speaking, in our

analysis, we use the coordinate of the center of the wavepacket of the a photon, z,, as a
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reference to connect the centers of the wavepackets of the b and the ¢ photons, i.e. z, and
Z., respectively, to incorporate this physical requirement. This is the reason for assuming
the form in Eq. (3.2) for the response function of the medium.

The operators A(z,), B(z) and C(z.) are defined as

A 1 .
Azy) = Nz / dk ™ ay,
A 1 N
B(z) = Nz /dk e*= by,

A 1 )
C(z.) = Ton / dk e ¢, (3.3)

and they satisfy the canonical commutation relations [A(z), Af(2')] =

~

[B(2), Bi(2)] = [C(2), C()] = 6(= — ).

On explicitly substituting for operators A, B and C from Eq.(3.3) in Eq.(3.1), we get

the following expression for f[mt:

- he L L L .
H,,=— i
int (27T)3/2/0 dza/o dzb/O dze f(2a, 2, 2¢) /dk‘a e

X / dky, e / dk. €™ af, by, ¢, + H.c. (3.4)

We shall work out this problem in the Schrodinger picture and in the momentum

representation, where the most general state of the field is written as
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[W(t)) = /dk‘l Ealki,t) @' (k1)|0)q |0)p |0)e +/ dkz/dk‘:a Epe(kz K, 1) |0)q b (K2)]0)y & (K3) 0).c.

(3.5)

The equations of motion for the a and the b — ¢ pulses can be derived from the
Schridinger equation: |¢) = —(i/k)H|1), using Eqs.(3.1), (3.4) and (3.5). On doing so, we

get

J . i€ ik
<a + 1 v, k‘a) Ealky,t) = —<27T)3/2 /dza e /dzb/dzc f(za, 2, 2¢)

X / dky, e*oz / dk, e*% &.(ky, ke, 1), (3.6)

o . . i€
(5 Fivktiv k) 6l b 1) =~ / dz, / a2 / dze f(za 20 2)

Our next step is to insert the response function from Eq. (3.2) in Egs. (3.6) and (3.7) to
get the exact equations of motion for our problem. In all the subsequent steps, we shall let
the limits of the integrals over z,, 2, and z. to extend from —oo to oo because as we
discussed earlier, in this scheme, we let the pulses pass through each other and assume that
the interaction starts well after both of them enter the medium and ends well before they
leave. So, we can harmlessly extend the limits of these integrals (over spatial coordinates)

to infinity without affecting the result. We shall first work on the equation of motion for
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the a pulse. On substituting the response function in Eq. (3.6), we get

o . i€ ik
(E +i v, k) Eulkart) = —W/dkb/dkc gbc(k;b,kc,t)/dza e
X /dzb ek Bz, — 2) /alzc ekeze Bz, — z.). (3.8)

[ A /
' v~

Iy Ipr

Next, we have to evaluate the two integrals viz. I; and I;;. To begin with, let us set

Zy — 2z = x in I7. In terms of z, we can rewrite I; as

II = 2 GZkbza \/—2_7T /dSU 67”%33 h(JJ),

h(k)

V3 e ), (39)

where h(k) is the Fourier transform of h(z).

Similarly,

Irr = V2w % (k). (3.10)

On inserting Eqgs. (3.9) and (3.10) in Eq.(3.8), we obtain
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0 . 1€ - -
<§ + 1 v, k:a) Ealky, t) = _\/ﬁ /dk‘b/dk‘c h(ky) h(ke) Epe(kp, ke, t)

X / dz, e'Frthe=ha)za (3.11)

N J/

27 §(ky+ke—ka)

On enforcing the 0 function, we get the following equation of motion for the a pulse,

(% +i v, k> Ealka t) = —iev/2m / dky h(ky) h(ka = ko) Epelky, ko — ki, t).  (3.12)

Following this, we shall work on the equation of motion for the b, ¢ pulses. On

substituting the response function in Eq.(3.7), we get
O vy i ve ke )Gl s t) — —— € dky €4k, t
a"f'zvb b+lvc c gbc( b ca)—_W aga( aa)

X /dzb e~ kv b (2, — z) /dzc e keze Bz, — 2.). (3.13)

J/

' TV
Irrr Irv

The procedure from here is similar to what we did for the a pulse. We have to evaluate
the integrals, I;;; and Iy along the same line. We shall set z, — 2, = y in I;;; and rewrite

this integral in terms of y.
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This yields

I = V2 e ez /dy ™Y h(y),

vl
3

. 1 . *
= 2 €_Zkbza (_—271- /dy e_Zkby h(y)) )
E:(;b)

— VB e Ry,

where h*(k) is the complex conjugated Fourier transform of h(z).

Similarly,

]IV =27 e—ikcza il*(kc)

On inserting Eqgs. (3.14) and (3.15) in Eq. (3.13), we obtain

1€

V2r

(ﬁ + 17 v k?b +1 v, k'c) gbc<kb7kcvt) ==

ot E*(kb) B*(kc) /dka €a<kaat)

X /dza ei(ka_kb_kc)za )

N J/

27 §(ka—ky—ke)

On enforcing the § function, we get the following equation for the b, ¢ pulses,

(% +i vy k4 v, k) Evelkp, ke, t) = —ieV/2m B* (k) B* (ko) Ealky + keyt).
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Thus, we have obtained the equations of motion for the system with a Hamiltonian
formalism involving only field operators satisfying canonical commutation relations. Having
obtained the equations of motion, we now have solve this system of equations. Before we
embark on this, we shall once again write down the two equations of motion in one place

together for convenience so that we don’t have to go back for any reference.

(ﬁ + m) Ealka, t) = —ieV/2m / dky h(ky) h(ka — k) Eve(kp, kq — Ky, 1),

ot
(% + ikyvy + ikc%) Euelkv, ke, t) = —ieV/2m I (ky) 17 (ke) Ea(ky + ke, ). (3.18)

We shall solve this system of differential equations by the method of Laplace transform.

The Laplace transform of Eqgs. (3.18) with respect to time is written as

(5 + ikqa) Ea(ka, 5) — Ea(ka, 0) = —ieV/2m / dky h(ky) h(ke — k) Eve(kp, ko — Ky, s), (3.19)

(s 4 ikyvy + ikove) Enelky, ke, 8) — Epe(kp, ke, 0) = —ie/2m h*(ky) h*(ke) Ealky + ke, s), (3.20)

where &, and &, are the Laplace transform of &, and &, respectively.
On substituting for &,(k, + ke, s) in terms of &, from Eq. (3.19) in Eq. (3.20), and

furthermore, setting &,(k,,0) = 0 since there is no a photon at ¢ = 0, we obtain
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Golky ke, 0) 2w (k)" (k)
s+ ikpve + ikeve s+ i(ky + ko)ve S+ ikpup + ikve

gbc(kby kca 3) =

X / dk: (k) h(ky + ke — k) Eve(k, by + ke — k. 5). (3.21)

The next step is to evaluate the integral on the right hand side of Eq.(3.21). This can
be accomplished by shifting to dummy arguments in the same equation, i.e. ky, — k' and
k. — ky + k. — k'. Following this, we shall multiply both sides of Eq. (3.21) by

h(k') h(ky + k. — k') and finally integrate both sides of the equation over &’. This yields,

h(E") h(ky + ke — k')
s+ivy K +ive (ky+ke—Fk)
2

[= /dk’ W) hky + ke — k') oK Ky + ke — K 5) = /dk'
2me

s+i v, (ky + ke)

[ SR s b=
s+ivy K +ive (ky+ke—Fk)

X (K kp + ke — K',0) —

X /dk h(k) hky + ke — k) &k, ky + ke — k. ) .

[ J/
~~
1

(3.22)

From the previous equation, it is straightforward to get an expression for I which can
be done by moving the term involving I on the right hand side to the left and expressing I

in terms of the initial state, &..(k, ky + k. — k,0) and the response function of the medium.
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This gives us

/dk Py + ke — k) ok by + Fo — K, )

L+ / (k)2 |h(ky + ke — k)|
S+1 v, kb—i-k) s+ivyk+iv (ky+ke—k)

) h(ky + ke — k)
dk (ke ky+ ko — k. 0). 2
X/ s—l—zvbk—i-zvc(kb—i-k:—k)&)( bt 0) (3.23)

Now, on substituting Eq. (3.23) in Eq. (3.21), we obtain the following expression for

gbc(kba km S):

Eoe kv, ke, 0) 2me? b (ky) h*(k,)

ook, Koy 8) = -
Shel(Fi K, ) stikyvptikeve s+ive (kp+ke) s+ivyky+iveke

~ ~ —1
2 2 _ 2
w14 | 2me /dk |h(k)| |h<kb+kc k)|
s+i v, (kp+ ke) s+iuvy k+iv. (ky+ke— k)

dk ok, ky +k.—k,0). .24
X/ s+ivy k+iv. (ky+ ke —k) Shel(ks i + 0) (3.24)

Eq. (3.24) is the formal solution to our problem in the s- domain. The next step should
naturally be inverting the Laplace transform in order to obtain the expression for the final
state, & as a function of time. However, full inversion of the Laplace transform is in
general not possible. Moreover, we are not interested in the detailed time evolution of the
final state, but only in the asymptotic state of the b, c wavepacket long after the interaction
is over (i.e. as t — o00). In such a scenario, our first thought would be to exploit the final

value theorem of operational calculus that says:
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lim ek, ke, t) = lim s Ee(kp, ke, s)-

However, this result is not applicable here because in the absence of interaction (i.e.
when € = 0), the system of equations in Eqs.(3.18) does not evolve toward a constant value,

but rather we have

fbc(km kc; t) = eii(kbvbJrkch)t ébc(kba km 0)

This can be easily seen by setting € = 0 in Egs. (3.18). When we turn on the
interaction, we expect that we should be able to separate the changing phase factor from

the slowly varying spectral amplitude as follows:

lim [e!Fevethevelt ¢ (f k. t)] = lim s Eve(k, ke, s — ikyvp — ikevy). (3.25)
s—

t—o0

Consequently, we make the substitution s — s — ikyv, — ik.v. in Eq. (3.24) and take the

limit in Eq. (3.25) to obtain

lim [efkevsthevalt & (f Ko )] = ek, ke, 0)

t—o00
B ome? h*(ky) h* (k) Iy (ky, ko)
iky(vy — vp) + ike(vy — ve) + 2me2 Io(ky, ke)’

(3.26)
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where we have defined

I =1im [ dk h(k) h(ky + k. — k)
50 s+i(k — ky)(vy — ve)

Ebc(ka kb + kc - ka 0)7 (327)

and

\h(K) 2 |R(ky + ke — k)2
s+i(k —ky)(vp —v.)

I, = lli% dk (3.28)
We can in fact simplify Eq.(3.27) with some straightforward assumptions. First we shall
assume that in this scheme, the b photon starts far behind the ¢ photon and travels with a
higher speed than the ¢ pulse such that both of them meet only in the region of
interaction. We shall denote the initial position of the center of the b wavepacket by —z
and the center of the ¢ wavepacket is taken to be z. = 0. Furthermore, we shall also assume

that the initial state is factorizable. Thus, we can write

Epe(k ky + ke — k,0) = e &,(k,0) E(ky + ke — k,0), (3.29)

where &,(kp, 0) and &.(k.,0) are the Fourier transforms of wavepackets centered around
2, = 0 and z, = 0, respectively. The exponential factor e?*# arises in Eq. (3.29) because as
we have stated above, the initial position of the b wavepacket is z, = —zy. So a
displacement in spatial coordinate introduces a phase shift in the Fourier space (or here,

the momentum space). Following this, we shall make use of the following identity
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1 o0 ,
= [ dt etk el 3.30
s+i(k —kp)(vp — ve) /0 (3.30)

to rewrite I; as

Il :llm dt eiSt eikbvbct / dk eik(Z()fvbc)t
0 _

o0

X h(k) h(ky + ke — k) &(k,0) E(ky + k. — k,0), (3.31)

where v, = v, — v.. In the previous equation, the integral over k when integrated gives
a function that depends only on t. Since, physically, we want z; to be much larger than the
width of the wavepackets and the length scale of medium nonlocality [i.e. the width of the
function h(z)|, it is reasonable to assume that the integral over k represents a function of ¢
that peaks around ¢t =ty = 29/ and decays sufficiently rapidly for both ¢ > ¢, and
t < tg. We can also assume that this decay is exponential or faster. So we could first take
the limit s — 0 and then formally extend the lower limit of the integral over ¢t to —oo. This

procedure yields

I = /Oo dk ™ h(k) h(ky + ke — k) &(k, 0)&c(ky + ko — k. 0)

[ee]

X / dt e'ko=R)vect (3.32)

—0o0
N J/
-~

(27r/vbc) [(kb_k)vbc]
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On enforcing the § function, Eq. (3.32) gets simplified to the following compact

expression

2r -~ ~

I (ky, ke) = . h(ky) h(k.) fikbzo & (K, 0) §c(k:670)17
‘ )
2m - ~
= ) (K ool i 0). (3.33)

The second integral,I> [Eq. (3.28)] can be partially simplified by using a well-known

result from the theory of analytic functions, involving Cauchy’s principal value:

T ~ ~
Dok, ko) = E/dk; 51(k — Ey)vne] |ACR)[2 Ry + ke — &)
. 7 2 17 . 2
i p [ it r
Ube k—ky

7

P

= [h(ha)? (ko) ~ 1, (334
where P stands for the principal value and I, is the notation to denote this integral for
brevity. An added advantage of Eq. (3.34) is that it explicitly shows the real and imaginary
part of the result.
On substituting Eqs. (3.33) and (3.34) in Eq. (3.26) and setting
(kpvap + keVae)Vpe — 2721, = x and 272€? |B(kb>|2 |l~z(k‘c) 2 =y, to save space and make the

intermediate steps easier to follow, where v, = v, — v, and v, = v, — v, We obtain
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. 2y
o(ky, ke, t — 00) = elFrovthevelt & (fy k., 0) (1 —
gb ( by Ivey OO) € fb ( by Ivey ) Z$+y )

e s 10 (252),

= bk 1y, ) (2521, (335)

T — 1y

Eq.(3.35) can be reduced to a more compact form and thus, the final state can be

written as:

Epe(kp, Kooy t — 00) = e Rmthevdll ¢ (f k. 0) e20nke) (3.36)

where the first phase factor is just the free evolution and the second one is the phase

arising from the interaction with the nonlinear medium:

B(ky, ko) = tan~ (—
(o, k) = tan x kpvap + kevae)Upe — 2m€? 1,

y) R (( 272e? |l~1(kb|2 |l~1(k‘c)|2 ) ' (3.37)

In order to get a m phase shift with unit fidelity, we want 6 ~ 7/2 in the previous
expression, to a reasonably good approximation, for all the relevant values of k, and k.. It
would be very illustrative to see how this can be accomplished by considering a specific

example in the following section.
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3.3 Specific Example: Gaussian pulses and medium response

We shall now consider a specific case where the response function of the medium is
Gaussian and the initial state is also a Gaussian pulse. For this example, the response

function in the real space is written as

f(zas 26y 2¢) = h(2a — 25) h(za — 2c)

_ 1 6_(za—zb)2/20'2 e—(za_26)2/202 (338)

)
mo3

where o is the length scale of medium nonlocality. In the momentum space, we have

- 1/4
h(k) = <3> e~o?/2 (3.39)
T
The initial state is written as
Ere(ky, oo, 0) = \"—; eihvo o=kiod/2 o—kiah/2 (3.40)
T

where o is the width of the wavepacket.

We shall first evaluate I5(kyp, k.) for this specific example. We shall henceforth denote
this integral by simply I5 for brevity. For a Gaussian response function [see Eq.(3.39)],
Eq.(3.28) becomes

00 —02k? —0?(kpt+ke—Fk)?

g e e
I, = — i dk
2 ™ Sl—r>% 0 s+ Z(k} — kb)vbc

(3.41)
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where vy, = v, — v.. We shall make use of Eq.(3.30) to evaluate this integral and
interchange the order of integration, i.e. we shall first integrate over k and then integrate

over t. This yields

I, = 7 lim dt e~ eikb”bct/ dk e~ gm0 (kythe—k) ethveet. (3.42)
0 _

7 s—0
[\ J/
-~

I/

where

I l\/f o itvne(kythe) /2 —1202/80% —o2(kythe)2/2
o\ 2

On substituting I’ in Eq.(3.42) and integrating over ¢, we get

o
2 2 . _ . 42,2 2 .
e (kotke)®/2 iy dt e~ 5t ethvvnet o=t v /807 o —ilvpe(ky kc)/z, (3.43)

V2 529 Jo

J/

-~

I//

where

=12 2n e (ho—ke)*/2 (1 + 1 erfi l—g(kb _ kc)}) .
V2

On substituting I” in Eq. (3.43), we obtain

Io(ky, k) = % e~ (ko k) (1 +ief [%D . (3.44)
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On comparing Eq.(3.44) with Eq.(3.34), we can easily see that the principal value

integral can be evaluated as
ky — ke
I, =—0 e (kpt+ke) (1 + ¢ erfi {M}) , (3.45)

which is proportional to the Hilbert transform of a Gaussian.

It is very straightforward to evaluate I (ky, k.) for this specific example. All we have to
do is to directly substitute Egs. (3.39) and (3.40) in Eq.(3.33) to get I; for a Gaussian
response and a Gaussian initial state.

Once we have calculated I; and I, we shall substitute these two expressions in

Eq.(3.26) and furthermore, set

(kbvab + kcvac)vbc 602(k§+k2) =
2melo

r

and

orfi [a<kb\/_§ kc)} .

to save space and make the intermediate steps easier to follow. We thus, obtain the

following expression for the final state, in the same form as Eq.(3.36), for this special case,
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. . .
Epe(kpy keyt — 00) = e—z(kbvb—l—kcvc)tgbc(kb, ke, 0) (M) |

i(r+q)+1

_ itk kvt 90 ikyzo ,—oB(k+k2)/2 (r+q)+ Z) ’

VT (r+q) —1
_ —ilkpoptkeve)t OO0 ikyzo —o2(k24K2)/2 2i0(ky.ke) (3.46)
=e e e e )

VT ’

pelkie,0)
where
0(ky, ke) = cot ™ (r + q)
Te2o

In order to get a m phase shift, we want the argument of the inverse cot function to be

very close to zero for all the relevant &, and k.. We can see that the initial state in Eq.

(3.40) restricts |kp|, |kc| to be of the order of 1/0¢ as a result of which the argument of the

erfi function goes as o/0g. So the condition oy > ¢ makes the erfi function negligible and

the exponential exp[o?(kZ + k2)] ~ 1, in Eq.(3.47). We still need to make the first term in

the same equation small enough, to make the argument of the inverse cot function close to

zero. To accomplish this, we require |Av|? < 2me?c0g, where Awv is the characteristic

velocity difference (i.e. vyp, vae Or vp.). However, note that we cannot let v, = v. because

this would invalidate the whole analysis; in such a case, the b photon would never catch up

with, and interact with, the ¢ photon. Similarly, we cannot completely remove the

nonlocality (i.e. let 0 — 0) because then it would not be possible to keep the first term in
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Eq. (3.47) small.

As in the previous chapter, we define the fidelity F' and the phase shift ¢ as the overlap
between the initial and final state, i.e. v Fe' = (1(0)[t)(t)). In order to remove the phase
factor exp[—i(kyvp + kcv.)t], we substitute this phase factor (due to free evolution) for

|1)(0)) in the calculation of fidelity. We thus have,

VFei® = / dk, / ke &Ky, ke, 0) /O Ml & (R eyt — 00). (3.48)

We can clearly see from both Egs. (3.36) and (3.46) that when we substitute the
expression for the final state in the previous equation, the phase factors due to free
evolution cancel each other. The next step is to explicitly calculate the fidelity for our
specific problem, i.e. for a Gaussian response and a Gaussian state. On substituting Eqs.
(3.33), (3.39), (3.40) and (3.44) in Eq.(3.26) and using Eq.(3.48) to calculate the fidelity,

we have

VFe —1ao [ ae [ an e~ 0T+ +52)
e =1—4e‘o . ,
/ ’ /oo ivbc(vabkb + Uackc> + 277—620-6_62(kg—i_kg)erfc[_ia(kb - kc)/\/i]

(3.49)

o0

where we have used the identity 1 + i erfifo(ky — k.)/V/2] = erfc[—io(ky — k.)/+/2] in the
previous equation. At this stage, we shall switch to dimensionless variables of integration,
Viz. /;:b = koo and /;;c = k.oo. Furthermore, we shall introduce two more dimensionless

parameters o = v,.vp./€20% and T = /0. This scaling simplifies the numerical calculations
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to follow and makes it much clearer the limit in which we may expect v Fe ~ —1.
In terms of these new dimensionless variables and parameters, we obtain the following

expression for the fidelity:

4 oo poo e~ (P21 (k3 +k2)
\/ﬁewﬁ:1—4/ dk:b/ dke —— _ — — .
—o0 —o0 iTo(kyVap/Vae + ke) + 2me Rtk erfe[—iT (ky — ke)/V/2]

(3.50)

In the special case considered by Xia et al., the a and the b photons are assumed to
travel with the same speed, i.e. v, = v,. In this case, the term containing v,;, would vanish

in Eq. (3.50) and thus, we get a more simplified expression for the fidelity that is given by

dk, = 202+ 2 2 I ’
o0 irak, + 2me " Wtk Derfe[—ir(ky — k) /2]

\/Fei¢:1—4/ diﬂb

— 00

0o e~ (T2 +1) (K2 +4k2)
/ (3.51)

where now a = v?, /e?0?. We can clearly see from both Egs. (3.50) and (3.51) that when
7 < 1and ar < 1, we get V/Fe® ~ —1. In this limit, the first term in the denominator of
the two previous equations is negligible and the complimentary error function approaches
1. Moreover, the exponential term in the denominator exp[—72(kZ 4 k2)] approaches 1, and

the numerator reduces to simply exp|—(k? + k2)].
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So when at < 1 and 7 < 1, we obtain

= —1. (3.52)

Figures (3.1) and (3.2) show the result for v/Fe'® as a function of a and 7, respectively,
for the case where the three photons travel with different velocities. Here ¢ is limited to
take on the values 0 and 7, since the quantity being evaluated is real. These figures show
that it is more essential to have a small 7 than a small « to get unit fidelity with © phase
shift, and indeed it does not matter how large « is, we can always achieve the desired result
by making 7 small enough. This can be clearly seen from figure (3.2). Note that «
essentially contains only the medium parameters such as nonlinear coupling strength, pulse
speeds and the characteristic length of medium nonlocality, whereas 7 depends on the
“initial condition”, namely the spatial extent of the initial pulse oy. So, what this seems to
suggest is that irrespective of the properties of the medium, we can always “in principle”
get this scheme to work by making the pulse long enough.

The condition on velocity v, = vy # v of Xia et al. seems quite unnatural in a true y?
medium since in that case we would expect the b and the ¢ photons to be much closer in
frequency to each other than they are to the a photon in order to satisfy the condition on
the conservation of energy: w, = wy, + w.. However, the scheme conceived by Xia et al. is in

fact a four-wave mixing process with a classical pump, so we actually have
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Wp + We = Wy + we, and here all the three photons a, b and ¢ could be very close to each
other in frequency. Nevertheless, we can clearly see from figures (3.3) and (3.4) that this
condition is not really necessary and it does not affect the fidelity in any serious way. Both

the cases viz. v, = v, and when all the photons have different velocities yield similar results.
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Figure 3.1: Fidelity and phase shift as a function of « for different values of 7 when the three
photons have different velocities. Here v, = 2v, and v, = 1.1v..

3.4 Removal of spectral entanglement

In the previous section, we developed a rigorous analytical model for the scheme in which
two co-propagating photons travel with different speeds in a nonlocal y® medium. In the
end, we obtained a solution which tells us that we can “in principle” get unit fidelity with a

7 phase shift when the pulse is very long compared to the characteristic length of the
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medium’s nonlocality (i.e. 7 < 1) and a7 < 1. Furthermore, we can see from Eq. (3.52)
that in this limit, the spectral entanglement of the final state disappears. In this section, we

shall discuss in detail the underlying physical mechanism that makes this result possible.
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Figure 3.2: Fidelity and phase shift as a function of 7 for different values of « for the case
where the three photons have different velocities. Here v, = 2v, and v, = 1.1v,.

We have assumed an effectively infinite medium (i.e. we have formally let L — oo) in
our calculation. The interaction Hamiltonian [see Eq. (3.4)] is invariant under translation
because the response function f(z,, 2, z.), due to the form we have assumed for it in Eq.
(3.2), remains invariant under a displacement of the spatial coordinates z,, z, and z. by a
constant amount. This ensures that linear momentum is conserved. We can see that
momentum conservation is already enforced in Egs. (3.18). From the first of Egs. (3.18), it
is clear that any momentum component k, of the a photon will grow from any two
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momentum components k; and k. of the b and the ¢ photons, respectively, that add up to
kq. The second of Eqs. (3.18) expresses the same fact in reverse, i.e. k, splits into two
components k;, and k. such that they once again up to k,. The mathematical condition for
momentum conservation is k!, + k;, = k, + kp. In fact, this is the origin of spectral

entanglement in nonlinear processes.
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Figure 3.3: Fidelity and phase shift as a function of « for different values of 7 when v, = .

Following momentum conservation, the next ingredient, conservation of energy, comes
into action when dealing with the integrals in Eq. (3.24), especially the last one on the
right hand side. The denominator of this integral through the pole of the Laplace
transform gives us the long-time dependence of &, in the form of a phase factor
exp[—i(kyvp + klve)t], where kj = k and k., = k;, + k. — k. On comparing this with the
free-evolution phase factor exp[—i(kyvp + kcv.)t] from Eq. (3.36), we get the requirement for
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the conservation of energy: kjv, + klv. = kyvp + kev.. The treatment of I (k, k.) [Eq.(3.27)]
in the limit s — 0 or the long-time limit as discussed below Eq.(3.31) yields a § function
d(ky — k}). When we enforce this § function, we get k, = kj and k. = k.. We thus see that
the simultaneous enforcement of momentum and energy conservation [30] removes the main
source of spectral entanglement in the final state. In the previous chapter we just had one
condition for both momentum and energy conservation since the two photons traveled with
the same speed. So over there, we obtained just one ¢ function 0(k, + k» — k|, — k;), which

when enforced resulted in the spectral entanglement of the final state.
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Figure 3.4: Fidelity and phase shift as a function of 7 for different values of o when v, = .

We can indeed see the disappearance of spectral entanglement for our problem in the
long-time limit, in the approximate time-domain solution to the equations of motion, Eqs.
(3.18).
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In the limit that we have determined as leading to unit fidelity with a 7 phase shift
(T < 1), it is possible to obtain an approximate solution to Egs. (3.18) in the
time-domain. We approach this problem in the following way.

First we shall formally integrate the equation of motion for &, i.e. the second of Egs.

(3.18). This gives us

Evelkp, ke t) = Epe(ky, koo, 0) e Rovotheve )t e /o p* (k) h* (ke)

t
y / At e~ ikvvytkeve) (t=t') Ealky + ke, t)). (3.53)
0

Next, on substituting this in the equation for £, i.e. the first of Egs. (3.18), we obtain

<% + ivaka> alka,t) = —ieV 27T/dk:b B(ky) To(kg — ki) e~ iloovst(ka—ko)uclt

t
X Epelh, Fia — i, 0) — 2m2/ dt’/dk;b (k)2 (ke — B2
0

5 e—i[kbvb+(ka_kb)UC](t_t/) ga(k(m t’)‘ (354)

The integral over k; in the previous equation can be evaluated for a specific form of the
function h. We shall compute this integral in the second term for Gaussian functions that
we have assumed for A in Eq. (3.39). On substituting for (k) from Eq. (3.39) in the second

term of Eq. (3.54), we get the following result for the integral over ky,

101



I. = g /OO dky ¢~ o2k} =02 (ka—hy)? e—i[kbvb—i—(kza—kc)vc](t—t’)’
m _

_ 1 efkgo'z/Q efvgc(tft’)z/&f2 efika(vbJrvc)(tft’)/Z' (355)

Now, we shall substitute this result in Eq. (3.54), which gives us

<(‘38t —+ ZUa a> fa(kaa t) = —ieV2 /dkb kb (k _ kb) —i[kpvp+(ka—kp)vet

t
X Epo(k, ko — ki, 0) — €232 e Fao™/? / dt' €4k, t)
0

> efik,l(vbJrvc)(tft’)/Z ef'ugc(tft’)Q/Ba2 ) (356)

We will now make an approximation that &, is slowly varying compared to
exp[—vi,(t — t')?/80?] which essentially only requires o to be small enough. So pulling
€a(kq,t) out of the integral and extending the lower limit of integration over ¢ to —oo, and

finally completing the squares of the exponential terms, Eq. (3.56) becomes

<(‘38t —+ Z’Ua a) fa(kaa t) = —ieV2 /dkb kb (k —k ) —i[kpvy+(ka—kp)vet

X Epelk, ko — ki, 0) — €232 e Fao” Wh+vD/vie ¢ (k, 1)

t
X/ dt' efvgc[(tft’)JrQikaaz(vb+vc)/vgc}2/80'2’ (357>

J/

-~

I

102



where

[, oV2m (1_Z-erﬁ [MD
Ube \/évbc

We now have the following equation for &,,

<% + i?}aka> ga(ka, t) = —ieV 27?/(1/% ;L(kb) ;L(ka — kb) e_i[kbvb-i-(ka—kb)vc]t

2 2
X Epelky, ko — ky, 0) — 2 ket 0Dk ¢ ()

Ube

« (1 e {%@j“)}) | (3.58)

We are working in the limit where 7 < 1. In other words, o0 < 0(. Furthermore, we
shall assume that k, ~ 1/0g. So under these conditions, we set the arguments of both the
exponential (in the second term of the previous equation) and the error function to ~ 0.
This approximates the exponential to 1 and the error function to zero. Thus, we end up

with a simpler equation for &,:

0 -
(5 + ivgha + ”y) Eolkiast) =~ —ieV/2r / dic h(k) h(kq — k)

w emilbvbethavelt ¢ (k ko k), (3.59)

where v = 27¢%0 /vy, is the rate at which the a photon decays.
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This equation can be formally integrated to yield

Ealka,t) = —ieV/2m e~ (VFikava)t / dk h(k) h(ky — k) &k, ko — k,0)

t
" / dt! el ilkava=tvne—kave)lt' (3.60)

. J/
~\~
1

where

6['y+i(kavafkvbcfkavc)}t

- Y + i<kavac - kvbc) .

The factor exp[—(y + ik,v,)t] cancels with its complex conjugate from /. Hence, we

obtain the following result:

gbc(ka ka - k: 0)
v+ i(kqUae — kvpe)

Eulka, t) = —ieV/2m e el / dk h(k) h(k, — k) e et (3.61)
We can make one final simplification of Eq. (3.61). We can assume that

¥ > |kqUae — kvpe|. So we can approximate the denominator in Eq. (3.61) to simply ~.

Noting that we should expect k, k, ~ 1/0g, we observe that this is essentially the same

condition as ar < 1. This can be easily seen. Note that v = 27e?0 /vy, and

QT = Vgelpe/€2009. Now, v can be rewritten as (27)(€200¢/UpeVac) (Vae/00). This is same as

v =2m(1/at)(kavee). Since aT < 1, this implies that v > 1. This justifies the final

simplification that we intend to make and it now gives us the following simplified

expression for &,:
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Eolka,t) o —i—2be  mikavet / dk h(k) h(kq — k) e et &0k, ko — K, 0), (3.62)

2meo

where we have explicitly substituted for v in the previous equation. If we substitute this

into the second of Egs. (3.18), we obtain

(% +ikyvy + zkv) Epelky, Koy t) = — 2 emibRIet () R (k) / dlc e~ vt
g

x h(k) h(ky + ke — k) Epe(k, ky + ko — Kk, 0). (3.63)

In the previous equation, k, has been replaced by kj + k., which is due to momentum

conservation. Next, formally integrating this equation yields

Sbc(kbv km t) = e_i(kbvb+kcv6)t Sbc(kba kca O) - % e_i(kbvb—‘rkCUC)t ﬁ*(kb) il‘*(kc)
g
X /dk h(k) hiky + ko — k) Ee(k, ky + ko — k,0)

t
X / dt’ e~ kko)vet’ (3.64)
0

Here again, we can take the lower limit of the integral over ¢’ to —oo since the term in
question is negligible before ¢ = 0 and extend the upper limit to co to get the long-time
limit. When this is done, we observe that the integral over ¢’ gives us a ¢ function
276[(k — ky)vpe] which is the same as what we obtained while treating the integral I; in the

limit s — 0. As discussed earlier, this is indeed the condition for energy conservation. On
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enforcing this 6 function and with the choice of Gaussian function for h(k) [Eq.(3.39)] in

the previous equation, we get the following expression for &, in the long-time limit

Snelhiy by £) =2 ettt (1 007 (34KD) ¢ (k, k,,0), (3.65)

Noting that ky, k. ~ 1/0¢ in the limit 0 < 0 or 7 < 1, the exponential term in Eq.

(3.65) approaches 1 which then yields the desired result,

Epe(p, ke, t) = —e vvothevelt ¢ (o o t). (3.66)

We have quantitatively seen that in the limit a7 < 1, the spectral entanglement of the
final state is removed in the long-time limit due to the simultaneous enforcement of

momentum and energy-conservation.

3.5 Advantage of a long pulse

Whenever we talk about a single-photon pulse, we have to keep in mind that the photon
can be anywhere in the pulse. In fact, the photon appears everywhere in the pulse with
different probabilities. In the case of co-propagating pulses traveling at the same speed
through a nonlinear medium (the problem studied in the previous chapter), increasing the
pulse length in fact tends to eliminate the phase shift altogether, because the probability
that both the photons would be found in the same narrow time window (determined by the
response time of the medium) becomes negligible. This means that in such a case, the two

photons may not even interact in the medium in which case no phase is built. However, the
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situation considered here is different. Since one pulse sweeps across the other, it is certain
that the two photons would meet and interact in the medium, no matter “where in the
pulse” each photon is initially.

We can coherently split the wavepackets corresponding to the b and the ¢ photons into
roughly N ~ g¢/0 slices of width o (the characteristic length of medium nonlocality), and
the photons will meet in one of those N slices in the region of interaction. Once the two
photons meet, they typically have a time t4;, ~ /vy to interact before the b pulse slips
past the ¢ pulse beyond the range of the characteristic length of the medium.

The b+ ¢ — a conversion process can be be understood semiquantitatively as follows. It
is perhaps easiest to visualize this process in the reference frame of the ¢ photon. We shall
assume for simplicity that both the pulses (corresponding to the b and the ¢ photons) have
the same width oy, and divide each of them into N slices.

The state of the b, ¢ pair before the interaction can be symbolically written as

1 & 1
V) initial = ﬁ ; |20)6 ® \/_N Z . (3.67)

m=1

where |z,) represents a state in which the b photon is found in the slice centered at
z = z, and likewise, |2} ) represents a state in which the ¢ photon is found in the slice
centered at z = 2/ and 1/4/N is the normalization factor. Note that there are N? states in
the superposition in Eq. (3.67). Since the two photons are guaranteed to meet and interact
in the medium for a time tg;,, all the N? states in the superposition will be converted into
a state that has an a photon in some slice with the probability amplitude etg;,. It would be

erroneous to assume that the width of the a pulse is also gy. This can be easily determined.
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Since we are working in the reference frame of the ¢ photon, it means that the ¢ pulse is at
rest. Now the b pulse sweeps across the ¢ pulse and in the course of this process, the a
photon is created. The time available for the b pulse to pass through the ¢ pulse is

tint = 00/Vpe, Where vy, is the velocity of the b photon in the reference frame of the ¢ photon.
In order to compute the width of the a pulse, all we have to do is to simply multiply this
time by the velocity of the a photon in the reference frame of the ¢ photon which is v,..
Thus, the width of the a pulse is clearly ogv,./vp. and it contains N’ = Nv,./vp. slices of
width o. All the N? terms from the superposition in Eq. (3.67) will be distributed among
the N’ slices of the a pulse. Thus, each slice of the a pulse will contain N?/N’ terms, all
with the same amplitude etg;,. So the state of the a pulse can be symbolically written as

N/

1 N?
|¢>a = N Z ﬁ 6tslip |Zn>a~ (368)

n=1

The probability for b + ¢ — a conversion is proportional to the norm which is

Ne?o? ooy 1

P~ (W) (€t2,,) = = =—. (3.69)

VacVbe VbcVac aT

This explains in a semiquantitative manner why the scheme works in the limit ar < 1.

We should, however, note that the conversion b + ¢ — a is really only half the process,
since what we ultimately want is a new b, ¢ pair. The eventual decay of the a photon is
assured as long as it stays in the nonlinear medium for a sufficiently long time, which is
automatically guaranteed in our formalism since we are only interested in the ¢ — oo limit.

In the previous section, we defined v = 2we?0 /vy, as the rate of decay of the a photon. So,

108



the lifetime of the a photon is 7, = 1/7. If we consider a medium of length L, the time spent
by the a photon inside the medium is ¢, = L/v,. The condition that needs to be satisfied to
ensure that the a photon decays into a new b, ¢ pair before it leaves the medium is

ta/Ta = 7L/ve > 1. In other words, we want the time available for the a photon inside the
medium to be much larger than its lifetime. Otherwise, the a photon will leave the medium
even before the down-conversion process which would ruin the whole scheme. So, what we
have to see now is whether the limit in which we operate, i.e. a7 < 1 ensures the condition
stated above. As we have discussed earlier, the time available for the b photon to interact
with the ¢ photon is ¢;,; = 0¢/vp.. The time that the b photon spends inside the nonlinear
medium is L/v,. Clearly, we require L/v, > 0¢/vpe, otherwise the two photons may not
even interact with each other. This means that L > oguy/vpe. If we multiply both sides of

this inequality by 7/v, and explicitly substitute for 7 on the right hand side, we see that

E - 2melo oy v

Vg Vpe Vbe Vq

o op €000 U Voo _ 2T Uy Vae (3.70)

VbcVac, Va Vbe aT Vg Upe
N——

1/ar

We can clearly see from Eq.(3.70) that as long as v, and v, are not too dissimilar,
vL/v, > 1 since ar < 1. In other words, the same condition that ensures that b+ ¢ — a
conversion happens will also guarantee that a — b + ¢ conversion too happens in the
medium.

We can physically understand the high fidelity shown in the plots in figures (3.2) and

109



(3.4) in the following way. When 7 < 1, we see that we obtain unit fidelity with a 7 phase
shift. We can make 7 extremely small by either making o very small or oy very large. In
any case, the width of the pulse will be much larger than the length scale of the medium
nonlocality. From the Fourier relation, the bandwidth of the medium goes as 1/0 and the
width of the wavepacket goes as 1/0g. So, the limit 7 < 1 means that the bandwidth of the
medium is much larger than the width of the wavepackets (in k- space). In this large
bandwidth limit, the nonlinearity of the medium interacts with all the spectral components
of the wavepackets, or the medium does not filter out any component of the wavepackets,
which is why they do not get distorted when they leave the medium. Since the wavepackets
travel with different speeds, one sweeps across the other ensuring that they interact in the
medium and the three-wave mixing generates a large phase shift. These two features
together give us unit fidelity with a 7 phase shift in this limit.

As 7 gets larger, the nonlinearity of the medium does not interact with all the spectral
components of the wavepackets because in this case, the width of the wavepackets is larger
than the bandwidth of the medium. Here, the medium filters out some of the components
of the incoming wavepackets. This results in spectral distortion of the outgoing
wavepackets and a low phase shift since the interaction between the two photons is not
strong enough. One way to visualize why the interaction is not very strong in this case, is
to split the wavepackets into a number of slices or “bins” (in the momentum space). Noting
that the photon can be in any one of the slices, there would be no interaction between the
two wavepackets if the photons happen to be in the “bins” that get filtered out by the
medium in which case the phase that gets built will be low.

Finally, when 7 > 1 we see from figures (3.2) and (3.4) that the fidelity approaches 1
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and the phase shift is zero. This is because, this limit corresponds to the case where the
bandwidth of the medium is very much narrower than the width of the wavepackets. So the
nonlinearity of the medium does not interact with the wavepackets at all. In other words,
the wavepackets will travel as if there is no nonlinear medium, as a result of which there is

no spectral distortion and the phase shift is zero since they do not interact with each other.

3.6 Role of nonlocality

We have clearly seen in our discussion until now that we can indeed get the desired high
fidelity and large phase shift for any value of the nonlocality parameter o, as long as it is
not exactly zero and provided we make the pulse very long. We might be inclined to
contend that this scheme should be physically realizable since we could expect any real
world optical medium or a material to exhibit certain degree of spatial nonlocality. In fact,
on this specific point, Xia et al. [28] cite quite a few references that talk about possible
nonlocal effects in four-wave mixing materials due to different physical processes such as
charge transport in photorefractive crystal [33] and optical rectification in
noncentrosymmetric material [34]. However, it should be mentioned that there is no real
physical justification in either these sources or the other available references on nonlinear
optical materials, for choosing Gaussian functions for the nonlocal response of the medium,
in Eq. (3.38). In this chapter, we have chosen this form for the response function to
compare our results with the conclusions of Xia et al [28].

It is perhaps best to think of spatial nonlocality as a mathematical artifice to restrict
the system’s bandwidth in the momentum space to make the theory well behaved. This can
be easily seen since the bandwidth Ak ~ 1/0 which explains why we cannot let o — 0.
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This would make the bandwidth infinite which is not physical. It is due to this spatial
nonlocal response in our model that we were able to extend the limits of all the integrals
over k to infinity and still avoid divergence. The nonlocality ensures a finite bandwidth for
the nonlinear medium. This is, in effect, equivalent to the truncation of the system’s

bandwidth by hand which we will explicitly verify in the following section.

3.7 “Ad hoc” truncation of interaction bandwidth

In this section, we will assume that the nonlinear interaction involves only a finite range of
frequencies around the pulse’s central frequency, and all the frequencies outside this “pass”
bandwidth are unaffected by the nonlinearity of the medium. The goal here is to verify in
an unambiguous manner that we can still get results identical to a nonlocal medium, by
truncating the bandwidth by hand (by introducing “cut-offs” in the Hamiltonian).

The Hamiltonian of the free field is still the same as in Eq. (3.1). However, the

Hamiltonian corresponding to the y(? interaction in this case, is written as

Hiny = he /ZO dz [A(z) BY(z) Cl(2) + Al(2) B(z) C(2)), (3.71)

20

where once again, we have considered an interaction region of length L.

The operators A, B and C are defined as
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. 1 Ak/2 4
Cz) = — / dk e** ¢(k), (3.72)

and satisfy the following commutation relations:

A~ ~ A

[A(2), A1) = [B(2), B(=)] = [C(2), C1(+)] = (Ak/2n) sinc[Ak(z — /)/2]. On
substituting for A, B and C from Eq. (3.72) in Eq. (3.71), we get the following expression

for I:[mt in the Schrodinger picture,

A Fie Ak/2 Ak/2 Ak/2 . .
Hi = —/ dk, / dk / dk. a(k,) b'(ky) ¢' (k.
' (2m)3/2 —Ak/2 —Ak/2 ’ —Ak/2 (ha) B1(ks) €1 (e)

zo+L )
X / dz elFa=ke—ke)z L [T ¢ (3.73)

20
We shall solve this problem in the interaction picture. The unitary transformation that
takes ffmt from the Schrodinger picture to the interaction picture is
ol — eiHot/h [:[int e—iHOt/h
9

nt

where the superscript I symbolically denotes the interaction picture. This transformation

gives us the following expression for H;,, in the interaction picture,
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~ he Ak/2 Ak/2 Ak/2 ot L |
HiInt = 3/2 / dka / dk‘b / dkc / dz e’t(k‘a—kb—k‘c)z
(27T) —Ak/2 —Ak/2 —Ak/2 20

% eivatfdk’ K at(K)a(k') d(ka) e—ivatfdk’ K at(K)a(k)
« elvt [ k' K bt (K)b(K") BT( k) o—ivnt [ dK K bt (k")b(K)

x eivet [ A K SRR ot () givet [k K W)W 4y o

. hie Ak/2 Ak/2 Ak/2 .
o= ——s / dk, / dk, / dk, e (kavekuvs—heve)t
(2732 J_aky2 N —Ak/2
R zo+L
X a(ky) DY (ky) ¢f (k) / dz eftka=Ro=ke)z 4 pT ¢ (3.74)
20
where

eivatfdk’ k' at(k)a(k") d(ka) efivatfdk’ k' at(k)a(k") (ka) e’i”“k"t,

Q>

pivvt [k K bT (K)b(k) l;T(kb) o—ivvt [ dk’ K b (K")b(k") _ l;(krb) ookt

I

and

eivctfdk’ ket (k)ek) éf(kc) 67ivetfdk/ Eet(k)ek') _ é(kc) o iveket
The general state of the system for this problem is same as what we have in Eq. (3.5).
Thus, on substituting Eqs. (3.5) and (3.74) in the Schrédinger equation:

i) = —(i/h)HL |4, we get the following equations for the a and the b, ¢ pulses:

9 ie Ak/2 Ak/2 oo o)
— t(kava—kpvp—keve)t
afﬁ(kaat) = @ /_Ak/2 dky /—Ak;/Q dk. e b Ebe (K, Ky t)
zo+L )
X / dz e~ ika=ko=ke)z (3.75)
20
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and

aé (k k t) i€ /Ak/2 dk —i(kava—kpvp—kcve)t f (]i] f})
—&he , Ke, = — " e aVa cVUc " -
ot > @22 s
zo+L ]
X/ dz ez(kafkbfkc)z‘ (376)

20

In both the equations above, i.e. Egs. (3.75) and (3.76), we shall let the limits of the
integral over z to extend from —oo to oo because as we have already discussed in section
3.2, we let the pulses pass through each other and assume that the interaction starts well
after both of them enter the medium and ends well before they leave. This yields us a ¢
function 27d(k, — ky — k.), whose argument is the condition for momentum conservation
(see section 3.4). On enforcing the § function in both of these equations, we obtain the

following pair of dynamical equations:

O g (hart) = ——< / Ty O g (hy ky— k)
at a\va, \/% k)2 b be\ Vb, va by V)
a 7;6 —i(k:bv b+kcvac)t
agbc(kba kcat) = —\/ﬁ € “ ga(k:b + kcat)a (377)

where v,. = v, — v, and vy, = vy — Ve.
We shall once again use the method of Laplace transform to solve this system of
differential equations. The Laplace transform of the system of equations in Eq. (3.77) can

be written as
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~ : Ak/2 ~
S ga(k:aa S) - ga(kay 0) = _\/Z;—ﬂ_ /Ak/z dkb gbc(kba k;a - kba s — Z.kfiavac + Z‘k‘bvbc)a (378)

1€~

s ébc(kb, ke, s) — Epel(kp, ke, 0) = _\/_2_7r Ealkp + ke, 8 + ikpvay + ikevae), (3.79)

where éa and ébc are the Laplace transforms of &, and &, (with respect to t),
respectively. Next, we shall substitute for &, in Eq. (3.79) in terms of & from Eq. (3.78).
However, before we do this, we shall shift the arguments of éa in Eq. (3.78), viz.
ko = kp + ke and s — s + ikyvap + ikevae and set &,(kq,0) = 0, since there is no a photon at

t = 0. This gives us

) 1€ 1
a k kc, k a .kc ac) = ) )
5 ( by + 5 + 1RpUqp + 1RV ) /97 S + thkyUgp + 1kcUge

Ak/2
« / i Enlles by + ke — 5+ 0k — ky)use). (3.80)
N

On substituting Eq. (3.80) in Eq.(3.79), we obtain

g fbc(kba k'cv 5) 62 1
(kps by 8) = ———— — — . .
Shel(ks ) S 21 s(s + tkyvay + 1kevge)
Ak/2
« / dic €y, by + ko — Ky s+ i(k — ky)one). (3.81)
~Ak/2
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The next step is to evaluate the integral on the right hand side of Eq. (3.81). This can
be accomplished by shifting to dummy arguments in the same equation, i.e. k, — k,
ke — ky+ k. — k and s — s+ i(k — kp)vp.. Following this, we shall integrate both sides of

this equation over k. This yields,

Ak/2 B Ak/2 k. k L. —k 2
I'= / dk Sk, by + ke — ks + i(k — ky)vpe) = / gy Sclkoko £ ke —£,0) €
_Ak/2 _Ak/2 s+ i(k — ky)vec 27

) [ ae
s+ Zkbvab + chvac —Ak/2 5+ Z<k - kb)vbc

I/l

Ak/2 B
X / dk/ 'Sbc(k/, kb + kc — k,, S+ Z(/ﬁl — kb)ch),

J—ak/2
I
(3.82)
where
o /Ak/2 0 | 1 _ ,Lln s+ z:vbc(Ak/2 — k) '
_akgp Stk =Ky )vee  ivee |5 — ivpe(Ak/2 + k)
On substituting explicitly for I” in Eq. (3.82), we get
. /Ak/Z " §ba(kalfb + k. —k,0) I’ & | 1 |
A2 s+ i(k — kp)vpe 21 s + ikpvgp + 1kUge
1 Upe( Ak /2 — K
i g[Sl AK/2 — k) (3.83)

ivbc S — M)bC(Ak}/Q + k)b) .
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From the previous equation, it is straightforward to get an expression for I’ which can
be done by moving the term involving I’ on the right hand side to the left, and expressing

I’ in terms of the initial state, &..(k, ky + k. — k,0). This procedure gives us

Akj2
[/ = / dk fbc(k, k:b—l—kc—k,s—l—z'(k—kb)vbc)
~Ak/2
9 . _ -1
_(14_€ | 1 | |5t @.vbc(Ak/2 k)
2MiVpe S + ThkpUgp + 1keUge s — ivpe(Ak/2 + ky)
Ak/2 koky+ k. —k
x / gy Soelks Ko & ke — £, 0) (3.84)
—Ak/2 S+ Z(k - kb)”bc
On substituting Eq. (3.84) in Eq. (3.81), we obtain the following expression for
gbc(kba km S):
. L - 9
&by o 5) = Coclkp, ke, s) €0y
s s
. . . +ivpe(Ak/2 — k) ]\ 7
20i08e(5 + ikyvay + ikevae) + ¢ln | >
X ( TiVpe (S + thkpUap + 1keVae) + €I S io (AE2 T )
Ak/2 kyky + ke — k,0
y / ity ek Ko & ke — £, 0) (3.85)
N s +i(k — kp)vpe

Eq.(3.85) is the formal solution to our problem in the s-domain. Of course, full
inversion of this equation is not possible. As we have already seen in section 3.2, we are
only interested in the asymptotic state of the wavepacket, long after the interaction is over

(i.e. as t — 00). Here, we can certainly exploit the final value theorem in the form:

lim Epe(kp, ke, t) = lim s Eye(ky, ke, 5).
t—o0 s—0
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Unlike the situation in section 3.2, this result is applicable here because in the absence
of interaction, i.e. when € = 0, &, evolves toward a constant value. This can be readily seen

from the system in Eq. (3.77). Thus, the final state in the long-time limit is given by

. . —1
Epeks Koyt — 00) = Epo(Kp, Koy 0) — (%(kbvab + kotae) — ——In {MD

Vbe (Ak/2 + kb)
Ak/2 _
x lim iy Soelks Ko & ke — . 0) (3.86)
=0 ) _ Ak s+ i(k — kp)vpe

In the model that we developed with spatial nonlocality (see sections 3.2 and 3.3), we
identified the limit 7 << 1 as leading to the largest fidelity with a 7 phase shift (see section
3.5 for details). This limit corresponds to the case in which the bandwidth of the medium
is much larger compared to the width of the wavepacktets. We shall work in the same
regime here. Hence, we can approximate Ak/2 + k, ~ Ak/2. In this limit,

In[—(Ak/2 — ky) /(Ak/2 + kp)] ~ In(—1) = im. The integral on the right-hand side of Eq.
(3.86) is same as Eq. (3.27) except for the fact that here k is confined to vary only within a
finite bandwidth Ak. In the large bandwidth limit, Ak can be treated as a “ regularizing
factor” which makes the theory formally finite but can be harmlessly taken to infinity in
the final result. As discussed in detail below Eq. (3.28) in section 3.2, this integral in the
large bandwidth limit yields a § function 27 0[(k — kp)vs.] which is the condition for energy
conservation (see section 3.4). On enforcing the 0 function and the large bandwidth limit in

Eq. (3.86), we obtain
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27>
ckykcat = ckakcao 1-— - ;
Shel(ky = 00) = Gelhy ) ( €2 + 2mivpe (kyvap + kcvac)>

271 pe (kpap + keVae) — e
2miVpe (KpVab + Keac) + 7T€2)
27 Upe(kpVap + keVae) + ime?

27 Upe (ka4 Fevae) — iWEQ) '

= gbc(klh kca O) (

= pe(kb, ke, 0) ( (3.87)

The final state in the previous equation can be expressed in a more compact form:

Epe(kp, Kooy t — 00) = Epe(kp, ke, 0) e20F0rke) (3.88)

where

62

0(ky, ko) = tan ™t '
(K, ke) an 20pe (kpVap + keVac)

(3.89)

We can evidently see from Eq. (3.89) that when we make the nonlinear coupling
strength € very large and ensure that v,, v, and v, are not too dissimilar, we can indeed get
a m phase shift.

In this section, we have explicitly demonstrated with our analysis that a finite
bandwidth medium yields similar results as a spatially nonlocal medium as long as we get
two separate mathematical conditions for the conservation of energy and momentum, and

we make the bandwidth of the medium much larger than the width of the wavepackets.
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3.8 Conclusion

In this chapter, we have carried out a thorough analytical study of the scheme proposed by
Xia et al. [28] that confirms their claim that a 7w phase shift with unit fidelity is very much
possible. Our analysis also expounds the underlying physical mechanisms that make this
outcome feasible.

We have shown that by considering a setup in which the interacting pulses travel with
different velocities, the requirements for the conservation of energy and momentum lead to
non-equivalent algebraic conditions on the wavevectors and frequencies of the interacting
photons which when enforced simultaneously remove the spectral entanglement of the final
state.

Our study has also revealed that we can generate a large phase shift by making the
pulse very long. This is because when we make the length of the pulse much larger than
the characteristic length of medium nonlocality, we essentially make the bandwidth of the
medium very large compared to the width of the wavepackets. Thus, in this limit, all the
spectral components of the interacting photons contribute to three-wave mixing, as a result
of which a large phase shift is generated.

Finally, the nonlocal response is just an artifice to restrict the system’s bandwidth to
make the theory well behaved. In order words, in effect, this is equivalent to the truncation
of the bandwidth by hand to make it finite which is what we expect for any real nonlinear
medium. The assumed nonlocality may not even be required for the eventual realization of
a conditional phase gate. All that is really necessary is that whatever physical mechanism

restricts the system’s bandwidth should not degrade the pulse’s coherence [35].
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Chapter 4

An atomic model for a phase gate with the “giant Kerr” effect

4.1 Introduction

In the last couple of chapters, we had developed a macroscopic model for a phase gate at
the single-photon level involving only the interacting field operators. Over there, we had
ignored the composition of the nonlinear medium and instead, we characterized the
medium by an appropriate Hamiltonian in the multimode framework. We had concluded
that as long as we can ensure a finite bandwidth for the medium, we can in principle
obtain unit fidelity with a 7 phase shift. In our theoretical analysis, this was facilitated by
the simultaneous enforcement of two separate mathematical conditions for the conservation
of energy and momentum.

However, it is to be noted that the models developed in the previous chapters cannot be
directly tested in a laboratory. In the current chapter, our goal is to search for a realistic
atomic system where the bandwidth-limiting process occurs naturally and develop a
consistent, well behaved theory of the interaction of wavepackets with such a medium. Our
efforts in this chapter will be to find a plausible scheme that could be physically realized in
a laboratory and used for the construction of a conditional phase gate. We are looking at
the giant Kerr effect in electromagnetically induced transparency (EIT) as a starting point
(36, 37, 38]. We will develop a model to study the interaction of two co-propagating
single-photon wavepackets with an ensemble of five-level atoms. In particular, we shall try
to understand how the bandwidth of the medium gets restricted here and whether this

restriction can be realized without introducing phase noise in the system. Furthermore, in
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this model, we would like to see if we once again obtain two separate algebraic conditions
for the conservation of energy and momentum and whether their simultaneous enforcement

removes the spectral entanglement of the final state.

4.2 A microscopic model via the giant Kerr effect in EIT

We shall first develop a model for a single five-level atomic system and then generalize it to

an ensemble by introducing the atomic density in the equations of motion.

C(t)

15)

1)

Figure 4.1: Level scheme for the giant Kerr effect. A(t) and B(t) are weak (single-photon
pulses); €. is the EIT “coupling” field.
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The Hamiltonian for the atomic system shown in figure (4.1) can be expressed as

A= "0 10) (81 4 hggy B 120041+ T 18)(21 + hws A [3)(1] + sy 14y 4
+ hgan BU) 14)(21 + Ry A16) [1)(3] + hass C() 13) (51 + hggs O10) 193], (4.)

where (. is the classical control field that connects levels |2) <+ [3) (it is the EIT
coupling field) and A, is the detuning from level |4). A(t) and B(t) represent the
single-photon operators that connect the levels |1) <+ |3) and |2) < |4), respectively. In
other words, the atom in |1) can absorb the a photon and get excited to |3). Similarly, the
atom in |2) can absorb the b photon and get excited to |4). In addition to this, we have
another operator C(t) that connects |3) + |5). The purpose of the C' photon is to
introduce decay naturally in the model. In our scheme, all the fields (i.e. A, C' and Q)
except B are assumed to be resonant with their respective transitions [see figure (4.1)]. In
this problem, we are working in the interaction picture right from the beginning which is
why the Hamiltonian in Eq. (4.1) only has terms corresponding to the interaction between
the atom and the pulses.

The most general atom-field state can be written as

(W) = |¢1) [1) + [2) [2) + [¢3) [3) + Cu [4) [0) + [¢5) [5)- (4.2)

In the previous equation, [¢1), |1s), [13) and |1)5) are the field states, |0) is the field’s

vacuum, and [1), |2), |3), |4) and |5) are the atomic states. On inserting Egs. (4.1) and
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(4.2) in the Schrodinger equation |¥) = —(i/h)H|¥), we obtain the following equations of

motion:
[iha) = —i gl AT(1) [¥s),
[ih2) = = Q [1s) =i g3 BY(t) Ca [0),
[ths) = — Q [2) =i g1z A(t) ) — i gz C(1) [Us),
Ci=—i Ay Gy — i gaa B(t) 4n),
and

W5> =1 g3 C ( ) |s3).

(4.4)

(4.6)

(4.7)

We shall begin solving this system of equations by starting with Eq. (4.7) whose formal

solution can be written as

[s(t)) = i g / at' CH (") [s(t).
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Next, substituting Eq. (4.8) in Eq. (4.5) yields

[is(t)) = —% Qe [¢a(t)) — i g1a A(t) [91(1)) — |935!2/0 dt O(t) CT(Y) [es(t).  (4.9)

Note that C(t) CT(t") = CT(t') C(t) + 6(t — t') and furthermore, C(t) |5(t')) = 0, since

there is no C' photon at time ¢’. Putting all this together in Eq. (4.9) results in

[a(8) = = % [a(8) =i gna A(D) () = lgal® | d 3¢ =) [oalt),

?

= =5 Qe [ua()) = i gus AW) [r (1)) '935' [3(2)),

B _% Qe [92(0)) — i g1z A(t) [r(1)) = [0s(2)), (4.10)

where v = |g35/%/2. Note that in the previous equation since we are enforcing the §
function in the upper limit, we get a factor of 1/2 which is absorbed in the definition of ~.

Next, we shall consider the following simplified form of Eqgs. (4.4) and (4.10) [ignoring
for the moment the quantum fields; the idea here is to treat the classical coupling field to

all orders, as is commonly done in EIT]:

o) = 5 . [¥s),

s = —5 O bia) — 7 o), (a.11)

126



which can be expressed in a more compact form as

() - 0 (), (412

(& J/

NV
M

Our motivation here is to express |i2) and |¢)3) as a linear combination of the

eigenvectors of M. Since M is a 2 x 2 matrix, we obviously have two eigenvalues given by

X=—%(7+M>,

and

We shall denote the eigenvectors corresponding to X' and N\ as [h,) and [i)3),

respectively, which can be written as

and
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If we define |¢;) = <(1)> and [1)3) = <(1)>, we could then rewrite [h,) and |13) as

) = (“ = ‘Qz> )+ 1) (4.13
and
i) = (”‘ Qf‘%) v +i (52 o (414

Our next step is to invert Eqgs. (4.13) and (4.14) so that we can express |1)2) and |¢3) in

terms of |¢)5) and |¢)3). This procedure yields

N | .

~ y
(1 - W) |12), (4.15)

c

.Y 7 7
1) = o (1 + W) |13) —

[

and

Q- v
|13) = 2\/?93 |19) — \/ﬁ [13). (4.16)

Following this, we now have to express the equations of motion in Eqs. (4.3) and (4.6)
in terms of |13) and |i)3).

Eq. (4.3) can be rewritten as

) =~ Al (51— 169 (@17
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Later, we shall come back to the previous equation, once we have the solution for |@/~)2>

and W;;} Now, we shall consider the time derivative of Eq. (4.13) which is given by

. S22 .
) = TV () 4 i), (418)

Next, on substituting for |¢5) and |¢s) from Egs. (4.4) and (4.5) in Eq. (4.18), we obtain

o) = —i%2 (7437 = @) AW ) + g3 B'(®) ealt) 10)

— 2 (V) )+ i (72;0 ) s).  (419)

Finally, on substituting for |¢) and |¢3) in the previous equation, in terms of ]122> and

|1hs) from Eqs. (4.15) and (4.16), respectively, and carrying out some simplification, we get

\J2>+% (’H\/VQ—QE) |g) = —i % (7+ V7 —92) t) |en)

C

+ g5, Ca(t) Bi(t) |0), (4.20)
which can be formally integrated to give

) = =i G2 (14 VT R) [ e VRO 4y

C

t
+ g / dt ¢~ (FVIEaR) )2 Cu(t') Bi(¥) |0). (4.21)

0
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Our next task is to consider the time derivative of Eq. (4.14) which is given by

Y= 1= v -

s .,

. Q,
|13) + i % |2). (4.22)

Next, on substituting for |¢)) and |¢5) from Eqs. (4.4) and (4.5), we obtain

z o Q.q% «
Us) = =i 52 (7= VAR AG) o) + =572 Cale) BT 10)
Q7 - (272 - 27@)

= V). (423)

—i 35 (v VA=) ) +

Finally, substituting for [¢») and |¢)3) in the previous equation, in terms of |¢)y) and

|zﬂ3> from Egs. (4.15) and (4.16), respectively, and carrying out some simplification yields

) +5 (1= VP =) Wb =i 22 (3 VP =) A0 I
Qc 954

St Calt) Bt |0), (4.24)

+

which can be formally integrated to give

o =i 92 (v =) [ OV 4y )

2y ‘ 0
O T N o Y .
g / dit e~ (VIR0 oy Bl o). (4.25)
0
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Our next task is to deal with Eq. (4.6), i.e. the equation of motion for Cy(t). On

substituting for [1,) in Eq. (4.6), in terms of |¢,) and |t3) using Eq. (4.15), we obtain

Ci+ity Gy = =12 (1 + +> B(t) 1) — 5 (1 - ﬁ) B(t) |¢2).

(4.26)

On substituting for |¢)) and |¢)3) from Eqs. (4.21) and (4.25), respectively, in Eq.

(4.26), we get

. QC t A 2_02 gy N N
Coti A, Oy = J21958 gt ¢ VP R) 2 By Ay |y (#))

2/v2—=Q2 Jo

2 ¢ 2_02) (+—+ ~ ~
_ |9224| <1 +- /727_ Q2> /0 at OV 0,4y By BY() (o)

Q t . — Y ~ ~
_i P9t [Ny o~ (VTIREOR ay Ay g (1))
27 =2 Jo

2 ¢ 2_()2 / A -
_|9224' <1+%> / ar e (VRO 0y By BI(E) (o). (4.27)
v = 0

C

In order to simplify the previous equation further, we shall make use of the following

results from the commutation relation between B and B':

and
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B (t") B(1)[0) = 0.

On exploiting these results, we shall be left with a ¢ function in the second and fourth

terms in Eq. (4.27), and to enforce the ¢ function, we shall resort to the following identity:

5 f(6)

/t dt" f(t")y ot —t") =

On using this result and furthermore, defining

(7— \/W> =T,

DN | —

and

<7+ \/m> =1y,

N | —

and carrying out some simplification, we obtain

. 2 Q t / /
Cy+ |94 LA Oy =i 924 913 Stc dt' (efI‘—(tft) I ))
2 27?2 —-92 Jo

x B(t) A(t') [ (¢), (4.28)

which can be formally integrated to give
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G241 Gi13 §2c
2 (/7% — Q2

t/
x / at" <e-F—<t’-t”>—e-F+<t’-t”>) A" 1 (7). (4.29)
0

Cy(t) =1 dt —(lg2al?/2+in8, ) (t—t") B()

Having obtained the formal solution for Cj, the next step is to substitute this result in
the solutions for |¢) and [t5), in Eqgs. (4.21) and (4.25), respectively.

We shall first consider |1,). Now, on substituting Eq. (4.29) in Eq. (4.21), we obtain

t t
o)) = 20 T2 22 [ o T A s (1) + M dt’ e T B )
Qc Jo i — 2

t/ t//
></ dt" 67(\g24\2/2+iAb)(t/7t”) E(t”) / dt" <€—F,(t”—t’”) _e—F+(t”—t”’)> A(t///) |1/)1(t”/)>.
0 0

(4.30)
Next, we shall consider |@/~)3> On substituting Eq. (4.29) in Eq. (4.25), we get
7 913 _(t—t") / ¢ 1924 913 © Lo —T_(t=t') Pty
t = —3[_ dt’ e~ A t _ dt’ e B'(t
(1) s [ ) ey i e e | @

t”
X/ dt" 67(\g24\2/2+iAb)(t’7t”) B(t//) / dt" (e—F,(t“—t”’) _e—F+(t//—t”’)) A(t/”) |¢1(t/1/>>'
0 0

(4.31)

Following this, we shall substitute Eqgs. (4.30) and (4.31) in Eq. (4.17) and carry out

some simplification which finally yields the following closed-form equation for [¢)y):
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Py 913/ iy —I'_(t—t') - (t—t")) At A+ !
) ar (1 e — Dy ) AT A ()

"

2 202 gt ¢
+ 913 2‘924| 2Qc / dt’ (e—I‘+(t—t’) . e—IL(t—t’)) / dt" e—(|g24|2/2+iAb)(t’—t”)
4(v* - Q2) 0 0

~

"
><\/' dt”’ (€—F,(t”—t“’) _6_F+(t//_t///)) AT(t) A(t///) BT(t/) B(t”) |1/}1<t”/)>. (432)
0

Until now, we have been working with field states without resorting to any specific
representation. However, at this stage, we would switch to the frequency-space using a

wavepacket to the represent the a and the b photons in a multimode framework. We shall

thus, define

[y (t)) = / dw’ / dw” (W' " t) al, bl |0).

The operators for the field interacting with an atom at a location 2’ are

A (t - Z—/> = L /dw emtwa(t=2"/c) g
c \/% a Wa

and

el
7 N\
~
|
o |
N———
Il
¥l
)

duwy, e—iwb(t—z’/c) [;wb.

We assume that the medium extends from —L/2 to L/2 and we approximate the sum

over all the atoms with coordinates 2’ by an integral over a continuous distribution p(z’).
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On inserting these definitions in Eq. (4.32) and furthermore, introducing the atomic
density p(2’) in the previous equation, we end up getting the following equation of motion

for the wavepacket:

gf(waawht) =

t
S— ] dz p(# / at’ (F_ e - _ e_m(t_tl))
ot 2/ — Q2 J_L)2 ole) 0 ’

iwe (t—2"[c) —iw! (t'—2"/c |gl3|2 |924|2 Qz Lz
x/dw’ (W), wy, t) ewalt=2/e) pmiwat'=2"/c) 4 1672 (12— ) ) dz' p(2")

L2
t
" / gt (efm(tft) fr_(tfw) / g o—(aaal? 24in) (¢ —t)
0
t/
X/ dt///( —T_(t"=t"") 7F+(t” t’”) /dw /dwb waawba ///)
0
% ezwa(t Z'/c) ezwb(t —z'/c) 6—zw Lt —2"/c) e—zw (t”—z’/c (433)

For computational convenience, we shall rewrite Eq. (4.33) in terms of k instead of w.
We shall assume that v > €, as a result of which we can approximate v? — Q2 &~ ~2. Thus,
the previous equation can be rewritten in terms of k£ under the assumption that we have

just made, in the following form:
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P 2 L/2 ¢ / /
af(k‘a, ky,t) = lgal” / dz' p(2) / dt’ (F_ e T-0=t) e—F+(t—t)>
0

27y —L/2
' o 2 202 2 (L2
Ak E ket ikq(ct—2") [ —ikl(ct'—2z") ‘g13| ’924| c / dz' /
X/ af(a7 67)6 € + 167'('2’}/2 _L/QZP(Z)
t
" / dt/( T (-t) efr_(tfw) / g o=/ (¢ —t")
0
[ (e ey L fag s, .0)
0
X e tkq(ct—2") zkb(ct’ z") e—zk’ (ct""—=2") e—zk’ (ct""—2") ) (434)
We shall define a “two-photon wavefunction” &(zq, 25, t) as
E(2q, 2, 1) = / dkq / dky ez e®oz f (L, Ky t).
So,
0 1 : , 0
—&(2a, 2y, t) = — | dky [ dkp e P — f(k,, kp, t). 4.35
i€ o annt) = oo [ dha [ dhy e e (bt (1.35)
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On substituting Eq. (4.34) in Eq. (4.35), we get

9 |913\2C L2 / / ' ' —T_(t—t') —D4 (t—t') ik
a&(za,zb,t) = (2m)% dz" p(2") dt (F, e - —Tye+ ) dk, e
T 0

—LJ2

; / 1L (ol ) 2 2 QZ C2
dk ikyzp dk'/ E ket tkq(ct—2") _—ik} (ct’'—2") |gl3| |924| c
be / flka, ko ) € ¢ T T 2m)16 22 2

t/
dz p / dt’ ( —Ii(@—t) _ e—IZ(t-ﬂ)) / dat" 6_(|924|2/2+iAb)(t’—t”)
0

/ J1 -ty e—F+(t”—t’”)> / dk, ¢aza / ey €
=11 +

/dkb kba ///) ikq (ct—2") ik:b(ct’—z') e—ik;(ct’”—z’) e—ikl’?(ct”—z’)

(4.36)

where the “linear” term

|913|2C Lz / / ' / —T_(t—t') —T4 (t—t)
T, = dz" p(Z) dt (F_ e - —Iye ™+ )
0

@)y S 1
X / dkq €™ / dky ™ / k. F(E. Ky, ) ealct=2) ikl (et =)

involves only the interaction of the field A with the EIT medium and the “nonlinear”

term
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2 202 .2 pL/2 t
T, = 9131 924 ZQCZC / 4z’ p() / dt' (e—m(t—t’) _ e—rf(t—t’)>
(2m)16 72 v —L/2 0

t/ t”
y / dt" o (lg2al? /202 (' ~t") / di" (e—F_(t”—t”’) . e—F+(t”—t’”))
0 0

> /dka eik’aza /dk’b lebzb/dk’;/dk’é f(k’;,k’é,tm) 6ika(ct—z’) eik:b(ct’—z’)

% e—ikfl(ct”’—z’) 6—z‘k‘é(ct”—z’)

Y

captures the interaction of the two fields A and B. We shall first simplify T;. Here, we
shall assume that the pulse never leaves the medium. So, we shall let L — oo and
furthermore, we shall assume a constant atomic density pg. Under these assumptions, we

have

2 t
Tl _ ’913‘ C Po dtl T e—F,(t—t’) -T €—F+(t—t’) dk‘a eikaza dkﬁb eik’bzb
(2m)%y 0 i

x e'kact /dk; f (KL, kp, t) e~ kact! / dz' etlka=hka)?" (4.37)

J/

278 (K, —ka)
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On enforcing the ¢ function in the previous equation, we obtain

2 t
T — |913|70 Po / oy (F, e T-) efm(tft’))
0

1

X oo dk, etkalzate(t=t)] / dky €™ f(k,, Ky, t')

-~

E(zgte(t—t'),2p,t')

_ |gl3|2 ¢ pPo ! ’ —I'_(t—t) —Iy(t—t) / /
=———— [ dt'(T_e e §(za +c(t —t'), 2, 1), (4.38)
v 0

Next, we shall expand the terms in the parenthesis, in the previous equation, which

then gives us

) t
T, = l913]" ¢ po I e Tt / dt' e €(zq + c(t — '), 2, 1)
2 t
lg13]* ¢ po T, e T+t / dt' e+ E(zg + c(t —t'), 2, 1),
7

(4.39)

We shall evaluate both the integrals in the previous equation by parts and furthermore,

impose the condition that £ vanishes as t — —oo. This yields

‘913|2 C Po /t T (t—t _ g 85 (?f
T, = 28 =7 ! +(t=t') _ o-T-(t=t") == 4.4
! v 0 dt (6 ¢ > ot ¢ 0z )’ (4.40)

where we have defined z, + ¢ (t — ') = z. In order to simplify the mathematical

analysis, we shall make an approximation here. Since T', > I'_, e T+(t—) « e=T-(t=)
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This approximation will be good except for very short times around ¢ = ', of the order of

|t —t'| ~1/T';. So, we shall retain only the exponential term involving I'_ in the previous
equation which then reduces Eq. (4.40) to
2 t n O 0
T — sl en / dt’ e T-(t=t) (—5 - —5) . (4.41)

y o o2

o0

Now, we shall make a plain adiabatic approximation to the evaluation of the integral in
Eq. (4.41). We will assume that the terms in the parenthesis in Eq. (4.41) vary much more

slowly than exp(—I'_t) in ¢’ as a result of which we can evaluate 0§/0t' — c 0¢/0z at t' =1,

and pull them outside the integral.

Thus,

(ag ag> IS

o~ oz ot~ 0z

This makes

B _|913|2 C pPo %3 . ¢ ! 1 _—T_(t—t))
TN=——— e Caza /_oodte

,y J
1T
2 0 0
_ _|glj/| Fi Po (& e ? >£(za,zb,t). (4.42)

140



Next, we shall simplify T, under the same assumptions which we imposed on T}.

T, = lg13]% |g2a]? Q2 2 p / dr’ (e F_(tft’)>
16 w2 ~2 0

t/
X/ dt" 67(|g24| /24+i0) (' —t")

/dz /dk:e a(2a=2"tet)

27 6(zq—2"+ct) 2w &( zb 2 +et!)

(27T) /dk//dk/ ikl (2 —ct'") zk’(z —ct"") f(k,é’k,l/wt///)’ (443)

z fct"’ 2 —ct! t/”)

/ dt/// —T_(t"—t") €7F+ (" —¢") )
0

dk’ ezkb zp—2'+ct’)

which gives us

T, — 913> 1g24]* Q2 ¢ po / o <€—r+<t—t'> _ e—Ff(t—t’))
4 2 0

t/ t//
y / At (9242 /2+i80) (' —t") / a" ( o T =t") _ e-u(t"_t/“))
0 0

X / dz' §(zg — 2"+ ct) 6(zp — 2" + ct') (2 — et 2" — ct” t"). (4.44)

—00

In the previous equation, we shall first enforce the ¢ function on the left, i.e.

d(zq — 2" + ct) to get rid of the integral over 2z’ which makes 2z’ = z, + ct.
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We thus have,

T, = lg13|* 1g24|* Q2 & po /t dr’ (e—m(tft’) _ efF_(tft’)>
4 2 0

t/ t
“ / gt ool /i) (") /
0 0

X &z + et —t"), 2o + c(t — "), t"] 0]z — 24 — c(t = 1')]. (4.45)

/)

dt/” (efF_(t”ftW) . 67F+(t”7t’"))

We shall now enforce the ¢ function in the previous equation and get rid of the integral
over t'. This makes t' =t — [(2, — 2z4)/c]. It is important to note that the integral over ¢/
goes from 0 to t. So ¢ < t means that 2z, — z, must be positive. In order to incorporate this

requirement, we shall introduce a step function ©(z, — z,) in the expression for T5.

We thus obtain,

_ |913|2 |924|2 Q? C pPo
= 17

P @(Zb — Za) (e_FJr(Zb_Za)/C _ e—Ff(Zb—za)/c)

EY o
" / gt o922 /2B (" —[(z—2a) /)
0

t//
% / dt" (671“_(t//7t///) . €7F+(t//,t///)> g[za 4 C(t - If///), Za + C(t . t//),t”/]. (4.46)
0

From the expression for 75 in the previous equation, it is quite clear that the analytical
calculation for this problem in its current form might be intractable. In order to make the
problem little simpler, we make an approximation for £. We shall assume that & varies

slowly such that we will evaluate it at t” =" =t — [(2, — 24)/c|. This is again essentially
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an adiabatic approximation to the integrals over ¢” and t".

We thus have,

Elza +ct —1"), 20 + c(t = "), 8" wr—pm =t (2201 /) = E(2, 20T = [(26 — 2a) /]).

This assumption simplifies T, to the following form:

2 2 2
_ 1913”924 €2 ¢ po Oz — 2) (e T+Ev—20/e _ o"T-(zr20)/e)

T
2 1

X E(zp, 25, — [(2 — 2a)/c]) e~ (1924]*/2+4iAp) (t=[(25—2a) /c])

SCEAYE S
" / gt elloasl/2vid)t

I
t// t//
« / A" e—F,(t”—t’”) _/ dt" €—F+(t”—t”’) ’ (447)
1/‘1:7 17IT+
where
r ellg24? /241 8) (t—[(25—2a) /c])

|924]2/2 + i

Note that in the previous equation, we have extended the lower limits of all the integrals
to —oo since this would not change anything. This is because the pulse starts at ¢ = 0. This
means that we can safely assume that at ¢ = 0, it is negligible. So, this implies that the

pulse is negligible for ¢ < 0 which would then allow us to harmlessly extend the lower limit
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of all the integrals over time to —oo. Eq. (4.47) now reduces to a more compact form:

15

2 2 QQ
= |913] |$724|72 cCPo Oz — 24) (efm(zbfza)/c - e*—(zwza)/c)

1 1 1

— = t— — 2 . 4.48
We shall further assume that 1/T'_ > 1/T";. Therefore, 1/I'_ —1/T'y ~ 1/T_.

Moreover, we shall assume that Ay > |go4|* which makes |go4|?/2 + iAy & iAy. These

additional assumptions simplify 75 further which finally results in

_.|913|2 |g24]* 22 ¢ po

Ty =
2 42T_ A,

@(Zb . za) (6—1"+(zb—za)/c . e—l",(zb—za)/c)

X &(2p, 2, t — [(2 — 2a)/])- (4.49)

On substituting Eqgs. (4.42) and (4.49) in Eq. (4.36), we obtain

|913|2 cpo O |913|2 ? po O
A, a 7t = - 5 A as 7t - _ a 7t
ot (24> 21, 1) ST atf(z zp,t) + ST azaf(z 2, 1)
-|gl3|2 |g24|2 Qz C Po —TI'i(zp—2a)/c —I'_(2p—2a4)/c
X &(2p, 26, t — [(2 — 2a)/])- (4.50)
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On moving the first term on the right hand side of Eq. (4.50) to the left and defining

the following parameters:

’913‘}0 Po = A
v I

|913|2 |924|2 QE C Po
4 ’72 I'_ Ab

A/
‘\1xa

we can rewrite Eq. (4.50) in a more compact form that reads

=B

and

v,

a @ . . B/ Ty (zp—2a)/c —I'_(2p—2a)/c
(825 v(‘?za) E(Zay 25, t) = —i <1+A’> O(zp — 2a) (e e )

X &(2py 2, t — [(2 — 2a)/])- (4.51)

Eq. (4.51) is the final simplified dynamical equation that we need to solve to obtain the

final state of the outgoing photons.

We note that the right-hand side of the previous equation vanishes for z, < z,. This

makes O(z, — 2z,) = 0. So, we start by solving Eq. (4.51) in that region where it reduces to

9, 0
(5 —-v aza) g(’zaa Zbat) =0. (452)
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We will then evaluate the result on the line z, = 2, and use that on the right-hand side
of Eq. (4.51) for z, > z,. In this way, an exact solution to Eq. (4.51) is possible.
We shall make the following co-ordinate transformation: ¢’ =t and 2’ = z, + vt. We

thus have,

0 0 0

ot 0z, ot

which then transforms Eq. (4.52) to

0
a7 (2, 2,t") =0, (4.53)
whose solution can be written as
g(zlvzlntl) = 77(2/7Zb)a (454)

which is a constant in ¢’. In terms of the original variables, we have when z, < z,,

&(2as 20, t) = N(2a + Vt, 2). (4.55)

It is straightforward to verify that n(z, + vt, 2,) indeed satisfies Eq. (4.52). When

2 < zg and at t =0, &(zq4, 2, 0) = (24, 2p)-
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The fact that there is no derivative with respect to z, on Eq. (4.51) means that we are
working in a reference frame where the b photon is at rest. We shall assume that the center
of the wavepacket corresponding to the b photon is at z, = 0. At ¢ = 0, the center of the
wavepacket corresponding to the a photon is at z, = zg and it starts moving to the left
(toward the b photon) as time evolves. Although, in principle, it is possible to write down
the formal solution of Eq. (4.51) for an arbitrary initial wavepacket, for definiteness in

what follows we will assume that the initial state is a Gaussian pulse.

Note that

1

(24, 2,0) = 7 / dk, e'a / dky, €™ f(kq, ky,0).

If we assume our initial state to be a Gaussian, then

1

o\

S(ZC“ Zb, 0) = e—(Za—zO)2/20—2 6_25/202 .

When 2, < z,, we know from Eq. (4.55) that

1
o\

_ N2/9.2 270 2
&(2q, 2, 1) = e~ (Fatvt=20)%/20% o=2;/20%

When 2, > z,, the time evolved state {[zp, 25, t — ((2p, — 24)/c)] for a Gaussian pulse can

be written as

1
o\/T

6—[zb—zo-‘rvt—v/c(zb—Z«Z)]Q/QU2 6—23/2‘72 X (456)

§(2p, 26t — ((2 — 24) /)] =
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On substituting Eq. (4.56) in Eq. (4.51), we get

Q 9 _ i B’ —I'y(zp—2a)/c —TI'_(2p—2a)/c
((9 Uaza> &(2q, 2p, 1) = (l—l—A’) Oz — 24) (e —e )

% e—[zb—zo+vt—v/c(zb—za)]2/202 6—z§/202 )

(4.57)

We shall once again make the same co-ordinate transformation that we made earlier,

i.e. ' =t and 2 = z, + vt, which would then transform Eq. (4.57) to the following form:

a _- B/ / / / !
%5(2/721)’1:/) _ O-\/Z% (1 n A/) @(zb — + Ut,) (e—F+(zb—z )/c e—ﬂ it e—F,(zb—z )/c e—,B ILt)

2 2 _ _ / n2 2
X e 2t [20 e [a zp—2z0+0 z—i—ozvt]/?o"

(4.58)
where we have defined 1 —v/c =« and v/c = .
The step function in Eq. (4.58) reads
1, ifz,— 2 +ot' >0
Oz — 2"+ vt') = (4.59)

0, otherwise.

This sets the lower limit for ¢/, i.e. ' > (2’ — z;)/v. On incorporating this lower bound

for t' in Eq. (4.58) and formally integrating, we obtain
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i B/ 2 2 /
£+, 2, t') — &€(2', 2, 0) = — e /% (e_r+(zb‘z /e
Vo o \1+ A
t/

X / dt” 67’3 ryt” e*[a 2p—20+8 2/ +a v t']?/20?
(2" —2) /v

/

~
Iy
t/
_ _ ! _ 1" _ _ / 2 2
—e I_(zp—2")/c / dt" e B I_t e la zp—20+8 z'+a v t']?/20 7
(z'=z) /v
N g
Vv
Irr

(4.60)

where
I; = o e Pl+(—a zp+z0—-F 2)/av 6521“102/20421)2
2 au
" (erf[azb—zo+6z’+avt’+ﬂf+ 0]
V2o V2 aw
" — r
- {Z o Bl UD , (4.61)
20 V2 awv

and

™ o _ _ 5 212 270 2,2
I;p=4/= —c¢ BT (= zpt20—B 2')/av B2 02 /2020
2 av

x( f{azb—zo+ﬁz’+avt’+6Fa}
er
V2o V2 awv

et ['Z’\/_ﬁf + %F; ZD . (4.62)
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Next, we shall substitute Egs. (4.61) and (4.62) in Eq. (4.60). Furthermore, we will

express the final state in terms of the original coordinates (¢, z,), and we shall explicitly

substitute for the functional form of a Gaussian pulse for the initial state

&(zq + vt, 2,0) = (1/(0\/7)) exp|—(zq + vt — 20)?/20?] exp[—22/20?] in Eq. (4.60). This

yields
g(z 2 t) — 1 6—(Za+’Ut—Z())2/202 6—23/20—2 . Z (
o v V2auv \1+A4
ol e e e
X (Sl — 5’2) _ e T-(m—za—vt)/c —pT-[azy+z0—B(zatvt)]/ow
X 652F2_02/2a2v2 (Sg o S4) :
where

— T
S, = exf {azb 20 + Bz, + vt N I5; +a} |

V20 V2av

— T
ngerf{zaijt zo+5 +0},

V20 V2av

— I_
S3Eerf[a2b 20+ Bz +vt B 0]’

+
V20 V2awv
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(4.63)

(4.64)

(4.65)

(4.66)



and

Ze + Ut — 2 I' o
0+/3

S, = erf .
1= V2o N

(4.67)

It is evident that the expression for the final state given by Egs. (4.63) through (4.67) is
quite complicated. Hence, it would be helpful if we make some approximations here to
reasonably simplify the final state. It is important to keep in mind that we are only
interested in the state long after the interaction is over, i.e. we are concerned only with the
limit ¢ — oo. Furthermore, in our analysis § > «. This is because in the EIT, the a photon
travels with a velocity v, (v, < ¢) and the b photon travels at c¢. However, we are implicitly
in a reference frame as seen in Eq. (4.51) where the b photon is at rest. In this frame, the a
photon travels toward the b photon with a velocity ¢ — v, = v. This means 1 —v,/c = v/c.
Thus, « =1 —v/c=v,/cand f =v/c=1—1v,/c. We assume in our calculation that v,/c
is in the range of 0.05 to 0.1. This makes 8 > «. Thus, in the long time limit and given the

fact that 8 > «, we shall approximate

S, = orf [azb — 20+ Bzq + vt N ﬁlﬂra} ~1,
V20 V2av
and
— I_
S, Eerf[azb 2%+ Pzatot P 0} ~1,
V20 V2av
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which then simplifies Eq. (4.63) to the following form:

f('zav Zb) t) =

1
o\ V2auv \1+A4

% |:€—F+(zb—za—vt)/c 6—6F+[—azb+zo—ﬂ(za+vt)]/av 662F3_02/2a21)2

_ 227952 52 /9,2 1 B’ _.2/9,2
e (zatvt—20)%/20 e zp[20% e zp [20

« erfe (za + vt — 2z N Bl o
V20 V2aw

% 6521"2_02/(2a21}2 erfe (Za +ut — 2 + BF—U):| '
\/50 \/§ow

) i efI‘_(zbfzafvt)/c 67511_[fazb+zof,8(za+vt)]/cw

(4.68)

Our next task is to simplify Eq. (4.68). In order to save space and make the

simplification easier to follow, we shall split the second term on the right hand side of the

previous equation into two parts, viz.

V20 V2w

A = e—F+(zb—za—vt)/c e—ﬂF+[—ozzb-i-zo—,é’(za-i-vt)}/av 6,821“102/20421;2 erfc (Za + vl — 2 + BPJrO-) :

and

AQ = efF_(zbfzafvt)/c efﬁl"_[fazb+zof,8(za+vt)]/av €B2F%a2/(2a2v2 erfe <Za + vt — 2o + ﬁFO’) '

V20 V2w
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We shall simplify A; and A, separately and to accomplish this, we shall make use of the

following asymptotic expansion [39]:

e erfe(z) ~ \/1%2 + # Z(—l)m —1'3“('2(5;;11_ D

, Z — 00.
m=1
For our case, we are only going to retain the first term in the asymptotic expansion. So,

we simply have

1
N

¢ erfe(z)

(4.69)

Note that we are working in the long-time limit, i.e. as ¢ — o0o. Thus, in this limit, the
argument of the complimentary error function in both A; and As becomes very large, i.e.
(24 + vt — 20)/v/20 + BT10/v/2av — co. Hence, we can legitimately exploit the

approximation in Eq. (4.69) to simplify A; and As.
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We shall start with A;.

A = 67F+(zbfza7vt)/c ef,BIq_[fozzbJrzo*ﬁ(zaJrvt)}/av eBQI‘iUQ/QanQ erfe <Za + vt — 2 ﬁF+O'>

V20 V2av

_ e—l"+(zb—za—vt)/c e—(za+vt—zo)2/202 e—BFJr[—azb+z0—ﬂ(za+vt)]/av 6—5F+(za+vt—zo)/av

- J/

exp[[l+ (zbtza —ut)/c]

< e(za+vt—zo)2/202 66F+(za+vt—zo)/av 6,6’2F2+02/2a2v2
NS ~~ >y

T/

Zq + 0t — 2o BF+0>
x erfe + )
( \/50 \/§ow

(4.70)

where

T' = exp

(za + vt — 2 N ﬁF+a)2
V20 V20w '

In the previous equation, we can see that exp[—I';(z, — z, — vt)/c] cancels with its
inverse and on explicitly substituting for 7" in Eq. (4.70) and making the asymptotic
expansion in Eq. (4.69), we obtain

1 ef(za+vtfz0)2/202

A= NG (24 + vt — 20)/V/20] + [(BT o) /v 2a0] (4.71)

Similarly, we can simplify Ay along the same line which would then yield

1 ef(za+vtfzo)2/202
A = NG (24 + vt — 20)/V/20] + [(BT_0) /v 2a0] (4.72)
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On substituting Eqgs. (4.71) and (4.72) in Eq. (4.68), we obtain

/
1 ef(za+vtfzo)2/202 67,213/20'2 1—34 (i) B
o\ v 1+ A

1 1
" <[(za + vt —2) /0] + [(BT0)/av]  [(za + vt — 20)/0] + [(610)/041)])} - (473)

f(zavzbv t) =

In the reference frame in which we are working here, the b photon is at rest. The a
photon is traveling toward the b photon with a velocity v. Initially, the center of the
wavepacket of the a photon is at z, = 2¢, far away from the b photon. We shall assume that
the wavepacket of the b photon is centered at z, = 0 and it stays there. In this frame of
reference, the wavepacket of the a photon sweeps across the wavepacket of the b photon
and after the interaction, the a pulse moves away from the b pulse.

In the long-time limit, i.e. for very large values of ¢, the center of the wavepacket of the
a photon would be far away from the b photon. So, we can approximate z, + vt & 2y in the

denominator of Eq. (4.73), which would then simplify this equation to

1 2/ 2 2 /9 2 ) B’ 1 1
. 1) = —(zatvt—20)%/20 —z; /20 1— = - . 4.74
&(2a, 2, 1) Py € € B\1+ A r, T_ ( )

Let us recall that we had earlier assumed that I'y > I"_ as a result of which we can

approximate 1/T'y — 1/T'_ ~ —1/T'_, which would then further simplify Eq. (4.74) to
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1 (o dvt—20)2 /202 —22 /952 ) B’ 1
S(Zaazbatfinal) - O'ﬁ (& (zatvt=20)"/2 (& b/2 |:1 + B (1 —|—AI> <F—):| . (475)

[

~
g(zavzbvtinitial)

Note that

I'_ =

o |2

9]

When v > Q., we can expand (1 — Q2/+?)/2 and retain only the term first-order in

(£2./7)? which would then yield

2 2
PR PR PR U | L
2 2 72 4~

Earlier we had set

A B
‘\1xa)=Y

from which we obtain

y_ e B
J

ey (4.76)

We shall once again recall the definitions of A" and B’ for convenience.

A = |913]* ¢ po
S A

Y
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and

B = 913 [g24]® 22 ¢ po
N 4 ’72 Ab I_ ’

We shall now try to express B’ in terms of the other parameters defined earlier.

B — g4 €22 g13]% ¢ po
Ay, 47 v T'_
~—
- 4= pja
2
- |gz4b| T g (4.77)

On substituting Eqgs. (4.76) and (4.77) in Eq. (4.75) and carrying out some trivial

simplifications, we get

2
g(fza; Zh, tfinal) = 5(2{17 Zb, tinitial) (1 +Z |g24b| ) . (478)

We have already assumed that Ay > |go4)?, i.e. we have assumed the detuning to be
very large so as to prevent the b photon from getting absorbed in the atomic medium. This

makes |g24]?/Ap < 1. To the same order of validity as of Eq. (4.78), then, we can write

é(zau Zhs tfinal) = é(zaa Zb, tinitial) ei|924|2/Ab7 (479)
as long as we remember that the argument of the exponential (the phase shift) must be
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small. We can thus infer from Eq. (4.79) that in the long-time limit and on the condition
that the detuning from level 4 (A,) is much larger compared to the coupling strength
between levels 2 and 4 (go4), the final state ends up being the same as the initial state with
only a small phase shift. One of the reasons for the smallness of this phase shift is that
whatever phase gets built comes out of the interaction between the two photons and only
one atom. In other words, when the a and the b photons travel through a gas of atoms, it is
necessary for both of them to be present at the same atom in order to interact and the
likelihood that they would be together in more than one atom is negligible since they are
moving at different velocities. On the other hand, the phase-shift per atom is small,
because we have to keep the detuning A, large enough to prevent the b photon from
getting absorbed in the atomic medium.

Another crucial point to observe is the fact that the norm is not preserved in Eq.
(4.78). Formally speaking, it exceeds unity. It is however, equal to 1 to first-order in the
small quantity |ge4|*/Ay as shown in Eq. (4.79).

The reason for the norm not being preserved, in general, in the expression for the final
state in Eq. (4.78) is in the various approximations we made to derive Eq. (4.50), such as
the adiabatic approximations to Eqs. (4.40) and (4.46). We had to do this to simplify the
mathematical analysis but the price that we have paid is the non-preservation of the norm
of the final state.

Now, we shall calculate the fidelity using the expression for the final state in Eq. (4.73)

without any further approximation.
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Let us recall that the combined fidelity-phase is given by

\/F eid) = /dZa / dz, 5*('2(17 Zbs tinitial) g(za’ “b tfmal)

and the initial state is given by

1
f(zaa zb7tinitial) - O_ﬁ

—(za4vt—20)2/202 —22/202
e e b .

On substituting the initial and the final state [from Eq. (4.73)] in the expression for the

fidelity, we get

. ) 1 e—(Za+Ut—zo)2/02 e—z?/o—2
Fed=1-1 /d a/d
Ve T (ava) <1+A’> © Zb 2o 0t — 20) /0] + [(BT+0)/av]
1 1 —(zatvt—20)?/0? =27 /0?
- dz, | d :
T (ava) <1+A’)/ - / Z” za—i—vt—zo)/a] [(BT_0)/a]

(4.80)

It is useful to work in terms of dimensionless variables and parameters. So, we shall
define 2,/0 = 2’ and z,/0 = 2" which would then make dz, dz, = 0% dz’ dz". Furthermore,
we shall introduce two more dimensionless parameters viz. 7 = vt/o and Z = 2p/0. In

terms of all these dimensionless variables and parameters, Eq. (4.80) can be rewritten as
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12

VF ¢ = - () ) e[ [ +i(z:2>w[2g§ria>/av1
e F B L e o

Note that A’, @ and 8 are dimensionless parameters; B has the dimensions of inverse
time, v is the velocity and o has the dimensions of length. Thus, o B'/v = x is

dimensionless.

Next, we shall consider (8T';0)/(av).

BF+U_5<F+U) c T
av o« c vooa
—

Ind 1/ﬁ

where IV =I",0/c is another dimensionless parameter.

Similarly,

where I =T'_o/c is dimensionless.
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Thus, in terms of IV and I, Eq. (4.81) can be rewritten as

—(2'+7—%)2 6—2"2
/dz /dz”
(Z+717—-2)+1T"
dz

(2 +7-2)% —2"?
/ dz" i R (4.82)

alz/+1—Z)+17

The expression for the fidelity in Eq. (4.82) is written completely in terms of
dimensionless quantities. This makes it easier to assign numerical values for various
parameters while numerically evaluating the fidelity.

Next, we shall numerically compute the fidelity for certain values of the parameters
which show up in the previous equation.

In the lab frame, we have the a photon traveling with velocity v, (its group velocity)
and the b photon traveling at c¢. However, in the reference frame in which we have solved
the final dynamical equation [see Eq. (4.51)], the b photon is at rest and the a photon is
moving toward the b photon with a velocity v = ¢ — v,. This implies that 1 —v,/c = v/c or
f=v/c=1—vy/cand a =1—-v/c=1v,/c. lf wesetv,/c=0.1, then « =0.1 and 5 =0.9.
This makes A’ = f/a = 9.

We have already imposed the condition that Ay > |g24]?. So, we could set

|g24|2/Ab =0.1.
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Let us recall that y = o B’/v. If we substitute explicitly for B’ from Eq. (4.51) in the

expression for y, we get

If we set [V =10 and I = 100 I'” = 1000, then x = 10. Note that I must be much
greater than I since I and I" are directly proportional to I'y and I'_, respectively, and in
our model, I'y > I'_. We shall set Z =15 0 =5 and for 7, we shall consider the range
0<7<2Zor0<7 <10. Physically speaking, 7 gives the ratio of the distance traveled by
the a pulse after interaction to its characteristic length. The larger the value of 7, the
farther away is the a photon from the b photon after interaction.

When we put all the numerical values of all these parameters in Eq. (4.82) and compute
the fidelity as a function of 7 in the range specified above, we obtain
VF €® =1+ 0.099005:. As a matter of fact, for all values of 7 from 0 to 10, we get the
same result for the fidelity. It is very evident that the absolute value exceeds unity for the
same reason discussed earlier. This is the consequence of the approximations that we have
made to derive Eq. (4.50) to keep the problem analytically tractable. More importantly, we

can observe that the phase shift is extremely low as predicted by our analytical calculations.

162



For the sake of completeness, we shall choose a different numerical value for a keeping
the same values for IV, I, Z. If we set a = 0.05, we get 5 = 0.95, A’ =19 and y = 20. On
substituting these new values in Eq. (4.82), we obtain v/F €' = 1 + 0.0990013i for the

same range of values for 7. We can thus see that the result is no different.

[ [ [ [ [ T4
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- . ]
04+ .

B [ ]

i [ )
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02 I~ ) ]
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Figure 4.2: Plot of the phase (¢) as a function of x when a = 0.1, 5 =09, A’ =9, Z =5,
T =10.

Finally, we shall try to see how the phase changes if we vary |ga4|?/Ay provided we keep
all the other parameters fixed. For this numerical calculation, we shall set I = 10,
["=1000, « =0.1, =09, A’ =9, Z="5 and 7 = 10. Let us recall that
X = (|g24|>/Ap) (T /). For the chosen values of I and «a, we have x = 100 (|g24|*/As).
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Now we shall vary |ge4|?/A, from 0.05 to 0.5 in steps of 0.05, i.e. 0.05 < |gaa]?/Ap < 0.5.
This would in turn fix the following range for x: 5 < y < 50. Note that we cannot
arbitrarily increase |go4]?/Ay since one of the important assumptions in our model is a very
large detuning.

Figure (4.2) shows a plot of ¢ versus x. We can clearly see that for this range of values
of x, it is very nearly equal to |gas|?/ Ay, as predicted by Eq.(4.79).

Thus, we can discern that the Kerr effect is very weak which is why the accumulated

phase in this model is to small to be of any practical significance.

4.3 Conclusion

Our aim in this chapter has been to find a conceivable way to physically realize a
conditional phase gate in a laboratory. So, we explored the most obvious candidate, “giant
Kerr effect” in EIT, to see if we could get obtain unit fidelity with a m phase shift.
However, we have seen through our detailed analysis with certain approximations that this
model doesn’t give us the desired result. One of the reasons for this negative result is that
in a completely quantum mechanical model that we have considered here, the two photons
when they propagate through an ensemble of atoms eventually interact with only one atom
in the whole ensemble. This is because in order to facilitate the atom-photon interaction,
the two pulses should be present at the same atom, at the same time and the probability
that this can happen in more than one atom is negligible. Thus, all the phase shift
essentially comes out of the interaction between the two photons and only one atom which

is why the interaction is weak as a consequence of which the total phase that is built is low.
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Another reason that has contributed to this outcome is the large detuning. We shall
recall that in our model, we had assumed a large detuning so as to prevent the b photon
from getting absorbed in the atomic medium. This resulted in a weak Kerr effect which has
yielded a negligible phase-shift.

Yet another consequence of this weak interaction between the two pulses is the absence
of distortion of the outgoing pulses which is why we obtained almost unit fidelity.

One way to overcome this challenge and come up with a scheme that could possibly be
used to construct a phase gate is to have an array of identical atoms coupled losslessly to a
one-dimensional waveguide [40].

Another setup that might be helpful for the physical realization of a conditional phase
gate is to have two counterpropagating photons travel through a discrete chain of

cross-Kerr sites [29, 30].
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Chapter 5

Summary

Photons are one of the most effective carriers of quantum information and numerous
nonlinear optical schemes have been proposed to implement quantum logical gates at the
single-photon level. Despite the many inherent advantages that the photons have as qubits
for quantum logical operations, there are some serious challenges to the physical realization
of a CPHASE gate. In this dissertation, we have focused on theoretically studying some of
these nonlinear optical schemes to construct a conditional phase gate.

Difficulties to the realization of such gates with high fidelity have been pointed out in
Kerr media (third-order optical nonlinearities) due to the time-nonlocality of conventional
nonlinear media and spectral entanglement of the final state. A few years ago, several
authors proposed a scheme based on second-order nonlinearity, and on the coherent
evolution of a two-photon state through successive up- and down-conversion processes
(with both the photons co-propagating with equal velocities). Motivated by this proposal,
we have carried out a rigorous multimode quantized field analysis of this scheme, in
chapter 2, to examine the feasibility of using a second-order optical nonlinearity to realize a
conditional phase gate between two single-photon pulses. We concluded that even here the
spectral entanglement is an important fidelity degrading mechanism. In other words, once
the two incident photons are destroyed in the nonlinear medium, the “re-created”
two-photon state is constrained only by the conservation of momentum and energy, and it
need not spectrally resemble the initial state very much. This indeed degrades the gate

performance. We thus inferred that this approach (involving second-order nonlinearity)
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suffers from the same difficulties as third-order ones, for schemes involving co-propagating
photons with equal velocities.

However, over the last few years, there have been assertions that appear to contest the
view that there is an unavoidable trade-off between high fidelity and large phase shift, in a
finite bandwidth medium. In particular, we were strongly motivated by couple of
theoretical papers viz. one by Xia et al and the other one by Brod et al which showed that
it is indeed possible to achieve unit fidelity with a 7 phase shift. We were strongly inspired
by the scheme suggested by Xia et al (which they studied only numerically) where the two
photons co-propagate with different velocities in a spatially nonlocal medium. We have
developed an analytical model in chapter 3, for the scheme suggested by Xia et al. We have
generalized their results here to deal with an arbitrary response, initial state and pulse
velocity. Our results support the numerical observation in Xia et al that a m phase shift
with unit fidelity is possible, in principle, in an appropriate limit. We have explicitly shown
through our analysis that for the scheme considered here where the two photons
co-propagate with different velocities in a spatially nonlocal medium, conservation of
energy and momentum lead to non-equivalent algebraic conditions on the wavevectors and
frequencies of the interacting photons, which when enforced simultaneously remove the
spectral entanglement of the final state. Furthermore, we realized that the role of spatial
nonlocal response for the medium is to restrict the bandwidth in order to make the theory
well behaved. This is equivalent to truncating the medium’s bandwidth by hand (by
introducing “cut-offs” in the Hamiltonian). Both these approaches yield similar results

which we have explicitly verified toward the end in chapter 3.
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It is, however, to be noted that the model developed in chapter 3 whose results were
encouraging cannot be directly verified in a laboratory. It just gives us conceptual
framework and the necessary conditions to achieve a conditional phase shift. Thus, in
chapter 4, we turned our attention to search for a realistic atomic system to build a phase
gate at the single-photon level. With this goal, we studied the interaction of two
single-photon wavepackets with an ensemble of five-level atoms. We have tried to develop
an analytical model by looking at the “giant Kerr” effect in electromagnetically induced
transparency to see whether such a system can indeed be used to build a phase gate. Based
on our analysis, we had to conclude that this model doesn’t yield the desired result, i.e.
unit fidelity with a m phase shift. The major reason for this negative outcome is the weak
atom-photon interaction in this scheme. This is because in order to facilitate the
interaction between the photons and the atomic medium, the two single-photon pulses
should be present at the same atom, at the same time. The probability that this can
happen in more than one atom is negligible. Thus, all the phase shift essentially comes out
of the interaction between the two photons and only one atom which is why the interaction
is weak, and as a result, the total phase built is low. Another consequence of this weak
interaction between the two photons is the absence of distortion of the outgoing pulses

which is why we obtained almost unit fidelity.
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