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It is well known that there is a particle-hole symmetry for spin-polarized electrons with two-body
interactions in a partially filled Landau level, which becomes exact in the limit where the cyclotron energy
is large compared to the interaction strength; thus, one can ignore mixing between Landau levels. This
symmetry is explicit in the description of a half-filled Landau level recently introduced by Son, using Dirac
fermions, but it was thought to be absent in the older fermion-Chern-Simons approach, developed by
Halperin, Lee, and Read (HLR) and subsequent authors. We show here, however, that when properly
evaluated, the HLR theory gives results for long-wavelength low-energy physical properties—including
the Hall conductance in the presence of impurities and the positions of minima in the magnetoroton spectra
for fractional quantized Hall states close to half-filling—that are identical to predictions of the Dirac
formulation. In fact, the HLR theory predicts an emergent particle-hole symmetry near half-filling, even
when the cyclotron energy is finite.
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I. INTRODUCTION

A series of recent developments have focused renewed
attention on the problem of a two-dimensional system of
interacting electrons at, or close to, a half-filled Landau
level. In particular, in a very original work, Son [1]
proposed a description of the half-filled Landau level that
employs a collection of relativistic Dirac fermions, inter-
acting with an emergent gauge field with no Chern-Simons
term. This description is in contrast to the more traditional
description in terms of nonrelativistic “composite fer-
mions” (CFs) interacting with a Chern-Simons gauge field,
developed by Halperin, Lee, and Read (HLR) [2] and
others, about 20 years ago (see, e.g., Refs. [3–11]).
The Son-Dirac description has led to a number of

valuable insights into the conventional problem of two-
dimensional electrons in a strong magnetic field [12–16],
and it has also served to elucidate connections to other
physical problems, such as exotic electronic states that
could arise at the surface of a three-dimensional topological
insulator [12,17,18], time-reversal-invariant Uð1Þ quantum
spin liquids in three dimensions [12,19,20], and a class of
field theory dualities in (2þ 1) dimensions [12,18,21–25].

The Dirac picture seems to have some significant
advantages compared with the HLR description for the
conventional two-dimensional electron system, in particu-
lar, with respect to particle-hole (PH) symmetry. It is well
known that a partially filled Landau level of spin-polarized
electrons with two-body interactions should have an exact
PH symmetry about half-filling, in the limit where the
electron-electron interaction is weak compared to the
cyclotron energy; thus, one can neglect mixing between
Landau levels [26]. Numerical calculations, either through
trial wave functions motivated by the composite Fermi-
liquid picture [27,28] or through unbiased energetic cal-
culations [14,27], seem to confirm that this symmetry is
unbroken in the incompressible phase. This symmetry is
made manifest in the Dirac model by setting a single
parameter equal to zero, the Dirac mass mD.
By contrast, the HLR approach is not explicitly PH

symmetric, and in fact, it has been questioned whether
the approach is even compatible with PH symmetry
[29,30]. It has been suggested that the Dirac theory and
the HLR theory actually represent different fixed points and
that there might necessarily be some kind of discontinuous
phase transition separating these fixed points [1,29–31].
These suggestions have been based on analyses of several
key physical properties, in which it appeared that predic-
tions of HLR were contradictory to PH symmetry.
In this paper, we reexamine several of these properties,

and we find that when properly analyzed, the HLR theory
gives identical results to the Dirac theory, in the limit of
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long wavelengths and low energies, near half-filling. Some
of the confusion about these points has arisen simply
because the predictions of HLR theory were not previously
analyzed with sufficient care. Despite our limitations to
long wavelengths and low energies, we believe that our
analysis casts strong doubt on the possibility that there is
any regime of parameters in which the Dirac description
and the HLR description correspond to two different phases
of matter. Specifically, we have carried out detailed studies
of two types of properties, where it has been suggested
that there are irreconcilable differences between the HLR
and Son-Dirac descriptions—the Hall conductance of a
half-filled Landau level in the presence of disorder, and the
momentum values of the minima in the magnetoroton
spectra of fractional quantized Hall states that are sym-
metrically displaced from ν ¼ 1=2.
In the presence of a disorder potential that is statistically

PH symmetric, symmetry dictates that the Hall conductance
should be exactly e2=2h, in the absence of Landau level
mixing. Since 1997, it has been widely believed that HLR is
incompatible with this requirement and that HLR implies
deviations in theHall conductance proportional to the inverse
square of the mean-free path of the composite fermions.
We show below, however, that when properly evaluated,
these deviations are absent in the HLR theory, at least in the
case of weak, long-wavelength, disorder potentials.
For a system where the electronic filling factor ν is close

to one-half, oscillations in the conductivity at finite wave
vector q and frequency ω have been predicted, and in some
cases observed, as a function of the deviations from half-
filling. These oscillations involve excitation or modulation
at a nonzero wave vector q, where maxima or minima in
some characteristic of the response are predicted to occur at
a series of values of q, approximately given by

qn ≈
znjeΔBj
ℏkF

; ð1Þ

where zn is the nth zero of the J1 Bessel function, ΔB is the
deviation of the magnetic field from the field at half-filling,
and kF is the Fermi wave vector of the composite fermions.
PH symmetry requires that if the electron density is varied
while the magnetic field is held fixed, the wave vectors qn
should be precisely independent of the sign of ΔB. In the
Son-Dirac theory, Eq. (1) directly obeys this PH symmetry
because the value of kF is a constant, determined by the
magnetic field, independent of the electron density. In HLR,
however, kF is determined by the electron density, whichwill
be slightly different for positive and negative values of ΔB.
Therefore, if one were to treat Eq. (1) as an exact equality,
using the definition of kF in HLR, one would find that PH
symmetry is obeyed to first order in ΔB but is violated at
second order.
We show below that a careful evaluation of the locations

of minima in the magnetoroton excitation spectrum in

fractional quantum Hall states close to ν ¼ 1=2, originally
discussed by Simon and Halperin (SH) [10], using the HLR
approach, gives predictions that are PH symmetric, at least to
order ðΔBÞ2. We show that these predictions coincide with
the predictions of the Son-Dirac theory. The SH formulas
actually contain corrections to Eq. (1), which vanish in the
limit ΔB → 0 but are nonzero at order ðΔBÞ2 and which
precisely eliminate the PH asymmetry at this order.
We note that the results described above were both

obtained by careful evaluation of the HLR theory at the
random phase approximation (RPA) level and did not
require any explicit assumption of particle-hole symmetry,
or any apparent assumption about the ratio between the
electron interaction strength and the bare electron cyclotron
energy. These results suggest that even when this ratio is
finite, so that the electrons are not projected into a single
Landau level, there may be an emergent PH symmetry,
which becomes asymptotically exact in the limit of low
frequency, long wavelength, and small deviation from half-
filling. Our results show that for the properties we have
analyzed, this is true at least to some nontrivial orders in
frequency, momentum, and deviation from half-filling.
Within the context of HLR theory, we find that a similar

degree of PHsymmetry should emerge in thevicinity of other
fractions of the form 1=ð2nÞ, such as 1=4, 1=6, etc. As a
practical matter, this is only of interest for small values of n
since, at least for the case of Coulomb interactions between
the electrons, the ground state for values of n > 3 appears to
be a Wigner crystal of electrons, rather than a liquid of
composite fermions. Nevertheless, an emergent PH sym-
metry at ν ¼ 1=4 or 1=6 would be noteworthy since there is
no exact particle-hole symmetry about fractions other than
1=2, even for electrons confined to a single Landau level.
The structure of the paper is the following. In the next

section, we review the HLR approach to the half-filled
Landau level. In Sec. III, we address the issue of dc transport
at ν ¼ 1=2 in the presence of disorder, and we show how
the HLR approach yields results that are consistent with
the requirements of particle-hole symmetry. In Sec. IV,
we address “commensurability oscillations,” which occur
at fillings slightly away from ν ¼ 1=2, with a focus on the
locations of minima in the dispersion curves for the lowest-
energymagnetoroton excitations in fractional quantizedHall
states near half-filling. We show how an analysis within the
HLR approach yields results that are consistent with the
requirements of particle-hole symmetry. In Sec. V,we review
the Son-Dirac approach and make a comparison between
results of that approach and our analyses based on HLR.
We conclude with a summary section.

II. REVIEW OF THE HLR APPROACH

A. Definition of the problem

We consider a two-dimensional system of interacting
electrons in a strong magnetic field, with a Landau level
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filling fraction ν that is equal to or close to ν ¼ 1=2.
We assume that the electrons are fully spin polarized, so we
may neglect the spin degree of freedom. The Hamiltonian
of the system may be written in the form

H0 ¼
X
j

jpj −AðrjÞj2
2m

þ V2; ð2Þ

where V2 is a two-body interaction of the form

V2 ¼
1

2

X
i≠j

v2ðri − rjÞ; ð3Þ

andA is the vector potential due to a uniform magnetic field
B in the z direction. In the case where v2 is a long-range
potential, theHamiltonianmust include interactions between
the electrons and a uniform neutralizing background, which
we include inV2. In the presence of impurities, we add a one-
body potential V1ðrjÞ which depends on position; for the
present, however, we consider a system without impurities,
so we take V1 ¼ 0. Except where otherwise stated, we use
units where the electron charge is positive and equal to unity,
and ℏ ¼ c ¼ 1.
The system under consideration has several important

properties. First, it is Galilean invariant, so it must obey
Kohn’s theorem, which states that the response to a uniform
time-varying electric field should be the same as for a system
of noninteracting electrons in the given magnetic field.
Second, as mentioned in the Introduction, in the limit where
the electron mass m is taken to zero, so that the cyclotron
energy becomes infinite while the electron-electron inter-
action is held fixed, the system should manifest an exact PH
symmetry about the Landau level filling fraction ν ¼ 1=2.
We shall see to what extent these properties are preserved
by approximations that have been proposed for treating
the system.

B. HLR hypothesis

The fermion-Chern-Simons approach employed in HLR
began with an exact unitary transformation, a singular
gauge transformation, where the many-body electron wave
function is multiplied by a phase factor that depends on the
positions of all the electrons, such that the transformed
Hamiltonian acquires a Chern-Simons gauge field aμ, with
−2 flux quanta attached to every electron. The transformed
problem may be expressed in Lagrangian form by the
following Lagrangian density:

L0 ¼ ψ̄

�
iDt − μþ D · D

2m

�
ψ −

ada
8π

þ Lint; ð4Þ

ada≡ εμνλaμ∂νaλ; ð5Þ

Dμ ≡ ∂μ þ iðaμ þ AμÞ: ð6Þ

Taking the variation of the Lagrangian with respect to a0,
we obtain the constraint

∇ × a ¼ −4πψ̄ψ ¼ −4πnelðrÞ: ð7Þ

In these equations, ψ is the Grassmann field for a set of
transformed CFs, whose density ψ̄ψ is identical to the
electron density nelðrÞ.
At this stage, we have merely transformed one insoluble

problem into another. However, the transformed problem
admits a sensible mean-field approximation, whereas the
original problem did not. In particular, if the Landau level is
half full, so that there is one electron for each quantum of
electromagnetic flux, the mean-field problem describes a
set of noninteracting fermions in the zero magnetic field.
To go beyond mean-field theory, one must include the
effects of fluctuations in the gauge field and fluctuations in
the two-body potential. The central hypothesis of HLR is
that, in principle, one could obtain the correct properties of
the system by starting from the mean-field solution, treating
the omitted fluctuation terms via perturbation theory.
This assumes that the interacting ground state can be reached
from the mean-field solution by turning on the perturbing
terms adiabatically, without encountering any phase tran-
sition. Among the consequences of this assumption are that
the ground state at ν ¼ 1=2 should be compressible and that
there should be something like a Fermi surface, with a well-
defined Fermi wave vector, kF ¼ 4πnel [2,8,9,11].
Experimentally, in GaAs two-dimensional electron sys-

tems, it appears that the HLR hypothesis is correct for
electrons in the lowest Landau level. However, it appears
that the HLR hypothesis breaks down for electrons in the
second Landau level, where one observes an incompress-
ible fractional Hall state with an energy gap at half-filling in
high-quality samples [32]. It is widely believed that this
quantized Hall state may be understood as arising from an
instability of the Fermi surface to formation of Cooper pairs
in the second Landau level [33–36]. In still higher Landau
levels, it appears that the Fermi surface is unstable with
respect to the formation of charge density waves, which can
lead to a large anisotropy in the measured electrical
resistivity at low temperatures [37–40].
If one is interested in dynamic properties, such as the

response to a time-dependent and space-dependent electric
field, the first level of approximation, beyond static mean-
field theory, is the RPA, or the time-dependent Hartree
approximation. In this approximation, the composite fer-
mions are treated as noninteracting fermions, with the bare
massm, driven by an effective electromagnetic field, which
is the sum of the applied external electromagnetic field, the
Hartree potential arising from the interaction V2 (in the case
where there are induced modulations in the self-consistent
charge density), and induced electric and magnetic fields
arising from modulations of the Chern-Simons gauge field.
These fields may be written as
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e ¼ −4πẑ × jel; b ¼ −4πnel; ð8Þ

where jel is the electron current density at the point in
question.
As we shall discuss further below, many properties of

the system near ν ¼ 1=2 are described properly by the RPA,
including the response of the system to a uniform time-
dependent electric field. However, use of the unrenormalized
electron mass as assumed in the RPA can lead to a serious
error in the energy scale for various excitations. A proper
low-energy description of the composite-fermion liquid
requires the use of an effective mass m�, which may be
very different than the baremassm. In particular, one expects
that the renormalized mass should be determined by the
electron-electron interaction v2, and should be independent
ofm, in the limitwherem → 0 and the cyclotron energy goes
to infinity. The renormalized mass enters directly in the low-
temperature specific heat, and it also is manifest in the
magnitudes of the energy gaps at fractional quantized Hall
states of the form ν ¼ p=ð2pþ 1Þ, where p is a positive or
negative integer, in the limit jpj → ∞ or ν → 1=2 [2,11].
A simple modification of the RPA, which we denote

RPA*, would consist of replacing m by m� in the RPA.
Although this would correctly give the energy scale for the
specific heat and energy gaps in the fractional quantized
Hall states, this would change the response to a time-
dependent uniform electric field, which was correctly given
in RPA. Specifically, if we write E ¼ ρ̂ðωÞjel at frequency
ω, then it is required by Kohn’s theorem that the resistivity
tensor should be given by

ρ̂ðωÞ ¼ −imω − 4πϵ̂; ð9Þ

where ϵ̂ is the unit antisymmetric tensor, ϵxy ¼ −ϵyx ¼ 1.
Using RPA*, one would find, incorrectly, thatm is replaced
by m� in the formula for ρ̂.
This defect in RPA* is familiar from the theory of

ordinary Fermi liquids. In order to get the correct low-
frequency response functions in the presence of a renor-
malized effective mass, it is necessary to include effects
of the Landau interaction parameters Fl. These may be
defined by the energy cost to form a distortion of the Fermi
surface. Specifically, a small distortion of the form

δkFðr; θÞ ¼
X∞
l¼−∞

ulðrÞe−ilθ ð10Þ

will have an energy cost

δE ¼ v�FkF
4π

Z
d2r

X∞
l¼−∞

ð1þ FlÞjulðrÞj2; ð11Þ

where v�F ≡ kF=m�. For a Galilean-invariant system, we
must have

F1 ¼ F−1 ¼ ðm=m�Þ − 1 ¼ ðv�F=vFÞ − 1: ð12Þ

As noted in SH [10], inclusion of these interaction
parameters will also restore the correct response for the
composite-fermion system at ν ¼ 1=2. In the presence of
a nonzero current, the l ¼ �1 parameters lead to an extra
force on the electrons, which restores m� to m in the
resistivity tensor (9).
We remark that it is also necessary to take into account a

Landau interaction parameter if one wishes to obtain the
correct value for the electron compressibility. As in a
normal Fermi liquid, we have

dμ
dnel

¼ 2π

m� ð1þ F0Þ; ð13Þ

where μ is the chemical potential (defined to exclude the
contribution of the macroscopic electrostatic potential).

C. Infrared divergences

As was already observed in HLR, in the case of Coulomb
interactions, which behave as 1=r for large separations r, an
analysis of contributions to the effective mass m� arising
from long-wavelength fluctuations of the Chern-Simons
gauge field predicts a logarithmic divergence in m� as
one approaches the Fermi surface. A similar divergence is
found in the Landau interaction parameters, however, so
that Galilean invariance is preserved, and the compress-
ibility remains finite. The decay rate for quasiparticles close
to the Fermi energy is predicted to be small compared to the
quasiparticle energy, in this case, so that the quasiparticle
excitations remain well defined, and the composite-fermion
system may be described as a “marginal Fermi liquid.”
Similar infrared divergences are found in the Son-Dirac
theory of the half-filled Landau level.
It is believed that these infrared divergences will be

absent, and m� will remain finite, if one assumes an
electron-electron interaction that falls off more slowly than
1=r so that long-wavelength density fluctuations in the
electron density are suppressed. Moreover, these divergen-
ces are irrelevant to the issues of PH symmetry which are
the focus of the current investigation. Consequently, we
assume, for the purposes of our discussion, that we are
dealing with an electron-electron interaction that falls off
more slowly than 1=r and that m� is finite.
We remark that for short-range electron-electron inter-

actions, fluctuations in the gauge field lead to divergences
that are stronger than logarithmic, and long-lived quasi-
particles can no longer be defined at the Fermi surface.
Nevertheless, it is believed that many predictions of the
HLR theory remain valid in this case [8,9]. We expect that
the results of the present paper with regard to particle-hole
symmetry should also apply in the case of short-range
interactions, but we have not investigated this case in detail.
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D. Energy gaps at ν = p=ð2p+ 1Þ
According to the HLR picture, if there is a finite effective

mass m� at ν ¼ 1=2, then for fractional quantized Hall
states of the form ν ¼ p=ð2pþ 1Þ, where p is a positive or
negative integer, the energy gaps, in the limit p → ∞,
should have the asymptotic form

Eg ¼
jΔBj
m� ; ð14Þ

where ΔB is the deviation from the magnetic field at
ν ¼ 1=2 for the given electron density, i.e.,

ΔB ¼ B − 4πnel ¼
B

2pþ 1
: ð15Þ

Note that the allowed values of ΔB are symmetric about
ν ¼ 1=2, assuming that the electron density is varied while
B is held fixed, since ΔBðpÞ ¼ −ΔBð−p − 1Þ.
In the limit m → 0, PH symmetry requires that the

energy gap should be the same for ΔB and −ΔB, assuming
that B has been held fixed. Equation (14) will satisfy this
requirement, at least to first order in ΔB. Symmetry beyond
first order depends on the choice ofm� used in the formula.
Although the HLR analysis specifies that m� should be
evaluated under the condition of ν ¼ 1=2, there is still an
ambiguity when ΔB ≠ 0 because one must decide whether
to use the value appropriate for the given magnetic field or
for the given electron density. These conditions are pre-
cisely equivalent to each other only when ΔB ¼ 0. If one
employs in Eq. (14) the value of m� calculated at the given
value of B, then the formula will exhibit PH symmetry to all
orders in ΔB. If one were to use the value of m� calculated
at the given value of nel, however, there would be violations
of PH symmetry at second order in ΔB.
In practice, the value of the renormalized mass cannot be

calculated entirely within the HLR approach, so the value
of m� to be used in the effective theory must be obtained
from experiment or from some other microscopic calcu-
lation. Thus, we can say that the HLR theory is compatible
with PH symmetry in the fractional quantized Hall energy
gaps, but it can only be deduced from the theory to first
order in ΔB. We remark that the same situation occurs in
the Son-Dirac theory. Precise PH symmetry, in that case,
depends on a separate assumption that the renormalized
value of the Dirac velocity should be determined by the
magnetic field and not by the electron density.

III. DC TRANSPORT AT ν = 1=2

PH symmetry, in the limit m → 0, implies that the Hall
conductivity in response to a spatially uniform electric field
should be precisely given by

σxy ¼ −σyx ¼
1

4π
; ð16Þ

regardless of the applied frequency. This should be true
even in the presence of impurities, provided that the
disorder potential V imp is PH symmetric in a statistical
sense. This means that if one chooses the uniform back-
ground potential such that the average hVimpi ¼ 0, then all
odd moments of the disorder potential must vanish.
In the absence of impurities, we may use the result (9)

for a Galilean-invariant system to calculate the conductivity
tensor

σ̂ðωÞ ¼ ρ̂−1ðωÞ ¼ −imωþ 4πϵ̂

16π2 −m2ω2
: ð17Þ

If m ¼ 0, this gives σ̂ðωÞ ¼ −ϵ̂=4π, which satisfies the
condition for PH symmetry. As we have seen, the HLR
theory will satisfy Galilean invariance if the F�1 interaction
parameter is taken into account. However, if one were to
use the renormalized mass without the F�1 interaction, one
would find thatm is replaced bym� in Eq. (17), so particle-
hole symmetry would not be satisfied for ω ≠ 0.
Of greater interest is the dc Hall conductivity in the

presence of impurities. For many years, beginning with the
work of Kivelson et al. in 1997 [29], it has been widely
believed that the HLR approach must give a result for the dc
Hall conductivity that is inconsistent with PH symmetry, at
least at the level of RPA and perhaps beyond, if the mean
free path for composite fermions is finite. The reasoning
goes as follows. Within the HLR approach, the electron
resistivity tensor is related to the resistivity tensor of the
composite fermions by

ρ̂ ¼ ρ̂cf þ ρ̂CS; ð18Þ

where ρ̂CS is the Chern-Simons resistivity tensor, given by

ρ̂CS ¼ −4πϵ̂: ð19Þ

One finds that in order to obtain the PH symmetric result
for σxy, if ρxx ≠ 0, it is necessary that σcfxy ¼ −1=4π.
However, it was argued that σcfxy is necessarily equal to
zero at ν ¼ 1=2. This is because, in the absence of
impurities, the composite fermions see an average effective
magnetic field equal to zero, which is effectively invariant
under time reversal. The presence of impurities leads to
nonuniformities in the electron density, which lead to
local fluctuations in the effective magnetic field bðrÞ.
These fluctuations, in turn, will be the dominant source
of scattering of composite fermions, under conditions
where the correlation length for the impurity potential is
large compared to the Fermi wave length. If the impurity
potential is statistically PH symmetric, then there will be
equal probability to have a positive or negative value of b at
any point; thus, the resulting perturbation to the composite
fermions should again be invariant under time reversal in a
statistical sense.
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The fallacy we find here in this reasoning is that
fluctuations in b are correlated with fluctuations in the
electrostatic potential, which, though their effects are weak
compared to the effects of b, are sufficient to break the
statistical time-reversal symmetry produced by the b
fluctuations alone. We see below that when these correlated
fluctuations are taken into account, we recover precisely the
result σcfxy ¼ −1=4π required by PH symmetry.
In the subsections below, we show how disorder leads to

the desired result for σcfxy. As there are some subtleties
involved in these calculations, we present here two different
derivations, which bring different insights to the problem
and which may be applicable in somewhat different
regimes. The first derivation employs a semiclassical
analysis and uses the Kubo formula, which expresses the
conductivity in terms of equilibrium correlation functions.
The second derivation employs the Born approximation
and the Boltzmann equation, and calculates the conduc-
tivity by analyzing the effect of the electric field on the
particles’ dynamics. We also discuss consequences for
thermoelectric transport at ν ¼ 1=2.
Our calculations are restricted to the case where the

Fourier components of the disorder potential have wave
vectors that are small compared to kF. Neither the HLR nor
the Dirac theories, in their simplest forms, can quantita-
tively describe the effect of potential fluctuations with wave
vectors comparable to or larger than kF. In either theory, the
coupling between a short-wavelength potential fluctuation
and the operators that scatter a composite fermion from one
point to another on the Fermi surface will be affected by
vertex corrections, whose value is determined by micro-
scopic considerations and cannot be calculated within the
low-energy theory itself.
It should be emphasized that while the effects discussed

below may be important as a matter of principle, they are all
subleading corrections to the transport in the presence of
impurities. For small impurity concentrations, the CF Hall
conductance σcfxy ¼ −1=4π is small compared to the diagonal
CF conductance, σcfxx, which is proportional to kFlcf , where
lcf is the transport mean free path for composite fermions.
Conversely, if one were to set σcfxy ¼ 0, this would lead to a
deviation of the electronic σxy from the PH-symmetric value
by an amount proportional to σ2xx ∝ 1=ðkFlcfÞ2, which is
small compared to σxx as well as to σxy, in the limit of
large kFlcf .

A. Disorder potential and fluctuations
of the magnetic field

In general, density fluctuations produced by an external
electrostatic potential such as V imp will tend to screen
the external potential and give rise to a combined self-
consistent potential, which we denote VðrÞ. Within a
mean-field approximation, for long-wavelength potential
fluctuations, the induced density fluctuation should be
related to V by

δncfðrÞ ¼ −χVðrÞ; ð20Þ

where χ ¼ m=2π is the compressibility of noninteracting
fermions. We assume here that the potential V imp contains
only Fourier components with wave vectors q that are small
compared to kF, which is appropriate for a remotely doped
system, where the impurities are set back from the 2DES by
a distance that is large compared to the Fermi wavelength.
Beyond the mean-field approximation, we should replace

m by m�, and we should redefine the potential V to include
effects of the F0 Landau parameter. The effective magnetic
field δb ¼ hbðrÞi þ B produced by a fluctuation in the
redefined V is then given by

δbðrÞ ¼ 2m�VðrÞ: ð21Þ

Equivalently, we may describe this in terms of the induced
vector potential δa, whichmay bewritten in Fourier space as

δaðqÞ ¼ −2m�VðqÞ iẑ × q
q2

: ð22Þ

Since the gauge fluctuation will couple to the momentum
of a composite fermionwith a term−δa · pj=m�, we find that
the total effect of the impurity potential is a term in the
Hamiltonianwhosematrix element between an initial state of
momentum k0 and a final state k is given by

Ukk0 ¼ VðqÞ
�
1þ 2iðk × k0Þ · ẑ

q2

�
; ð23Þ

where q ¼ k − k0.

B. Semiclassical analysis using the Kubo formula

In this subsection, we employ a semiclassical analysis of
the dynamics of CFs of mass m� in the presence of the
(screened) impurity potential VðrÞ. We restore factors of e
and ℏ, and we consider a more general situation, where
ν ¼ 1=ð2nÞ, where n is an integer, not necessarily equal
to 1. Then, Eq. (21) for the effective magnetic field δb
should be replaced by

δb ¼ VðrÞ 2nm
�

ℏe
: ð24Þ

The semiclassical equations of motion are then

_p ¼ −∇V þ 2nVðrÞ
ℏ

p × ẑ; ð25Þ

_r ¼ p=m�: ð26Þ

(We assume, here, and in the formulas below, that the
product of the electron charge and the z component of the
external magnetic field is positive. Results for the opposite
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case may be obtained by interchanging indices for the x and
y axes.)
We consider VðrÞ to be a random function, symmetri-

cally distributed around V ¼ 0. Its correlation length ξ is
assumed to be large compared to ℏ=pF, with pF ¼ ffiffiffiffiffiffiffiffiffiffiffi

2m�ε
p

the Fermi momentum and ε the Fermi energy, as required
for validity of the semiclassical approximation. Note that
the Lorentz force (of order VpF=ℏ) is then large compared
to the force exerted by the gradient of the potential (of order
V=ξ) by a factor ξpF=ℏ. The validity of the semiclassical
analysis also requires that the typical scattering angle from
this Lorentz force,Δθ ∼ Vm�ξ=ðℏpFÞ, is large compared to
the diffraction angle ∼ℏ=ðξpFÞ, i.e., V ≫ ℏ2=ðm�ξ2Þ.
It is convenient to separate into radial and angular

coordinates, by writing

pðtÞ≡ pxðtÞ þ ipyðtÞ ¼ jpðtÞjeiθðtÞ: ð27Þ

For a particle of energy ε,

jpðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m�fε − V½rðtÞ�g

p
; ð28Þ

while the angle θ must be found by integrating

_θðtÞ ¼ 1

jpðtÞj
�
sin θ

∂V
∂x − cos θ

∂V
∂y

�
−
2nV
ℏ

ð29Þ

along the trajectory rðtÞ of the particle.
We use the classical form of the Kubo formulas for the

conductivity in terms of velocity-velocity correlation func-
tions. To this end, we construct the correlator

Kðt − t0Þ≡ 1

m�2 hpðtÞp�ðt0Þi; ð30Þ

with the average taken over the distribution of particles in
phase space. To represent the degenerate Fermi gas, we
consider the microcanonical distribution at the Fermi
energy ε. The conductivities are then

σcfxx − iσcfxy ¼
m�

2ℏ

�
e2

h

�Z
∞

0

KðtÞdt; ð31Þ

where the prefactor involves the compressibility. For fixed
Fermi energy ε, which is large compared to V, we use
Eq. (28) expanded to first order in V=ε, to write

Kðt − t0Þ≃ 2

m�

��
ε −

VðrtÞ þ Vðrt0Þ
2

�
e
i
R

t

t0

_θðt0Þdt0
�

ð32Þ

and then use Eq. (29) to replace VðrÞ≃ −ðℏ=2nÞ_θ for
ξpF=ℏ ≫ 1 at both t and t0, leading to

Kðt − t0Þ≃ 2

m�

�
ε −

iℏ
2n

d
dt

�D
e
i
R

t

t0

_θðt0Þdt0E
: ð33Þ

The correlator

D
e
i
R

t

t0

_θðt0Þdt0E ð34Þ

depends on how the particles move in real space. Assuming
that the composite mean free path lcf is large compared to
the correlation length ξ for fluctuations in the potential V,
we may expect that each particle will explore phase space
with the probability of the microcanonical distribution,
ρðp; rÞ ∝ δ½ε − jpj2=2m� − VðrÞ�. (The assumption lcf ≫ ξ
is clearly valid in the limit where the magnitude of
the potential fluctuations is small while ξ is held fixed.)
Integrating the microcanonical distribution over 2D
momentum leads to a uniform real-space density distribu-
tion [since ε > VðrÞ]. Thus, each particle moves in such a
way that its time-varying potential V½rðtÞ� has the same
probability distribution as VðrÞ. For example, from
Eq. (29), _θ vanishes under time averaging. More specifi-
cally, since the distribution of V is invariant under V → −V,
so too is that of _θ under _θ → −_θ, such that Eq. (34) is real.
Hence, from Eq. (33),

Im½KðtÞ�≃ −
ℏ

nm�
d
dt

D
ei
R

t

0
_θðt0Þdt0

E
: ð35Þ

Inserting this into Eq. (31) and noting that the correlator
(34) will vanish at t − t0 → ∞ for any disordered potential,
we obtain the result

σcfxy ¼ −
1

n

�
e2

4πℏ

�
: ð36Þ

For the case ν ¼ 1=2, where n ¼ 1, we recover our
desired result σcfxy ¼ −1=ð4πÞ, in units where e ¼ ℏ ¼ 1.
More generally, the result (36) implies that the electron
Hall conductivity at ν ¼ 1=ð2nÞ is precisely given by
σxy ¼ ðe2Þ=ð4πℏnÞ, even in the presence of impurities.
Thus, there seems to be a kind of emergent PH symmetry at
fractions such as ν ¼ 1=4 and ν ¼ 1=6.

C. Calculation using the Born approximation
and Boltzmann equation

It seems reasonable that we are justified in using a
semiclassical approximation for our problem because we
are necessarily focused on potential fluctuations on a length
scale ξ that is large compared to k−1F . However, the
requirement that the classical scattering angle exceeds
the diffraction angle [i.e., the condition V ≫ ℏ2=ðm�ξ2Þ
discussed above] leads to some subtleties in the applicabil-
ity of the classical results for weak potentials [41]. It can be
shown that the transport scattering cross section (i.e., the
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integrated cross section weighted by the square of the
momentum transfer) is correctly given by the semiclassical
approximation in this case, and it agrees with a quantum-
mechanical calculation based on the Born approximation.
However, the total scattering cross section, as well as the
differential cross section at any particular angle, is gen-
erally not given correctly by a semiclassical analysis.
Therefore, it seems useful to check that our semiclassical
calculation of the off-diagonal part of the CF conductivity
tensor can be duplicated in a more quantum-mechanical
calculation.
Here, we follow closely the analysis used by Nozières and

Lewiner (NL) [42] for the anomalous Hall effect due to spin-
orbit interactions in a spin-polarized semiconductor. In their
analysis, NL employed a Boltzmann equation to study the
evolution of the electron system in a uniform applied electric
field, paying careful attention to the effects of spin-orbit
coupling on the collision integral in the presence of the field.
In our case, we carefully study the scattering of a

composite fermion by an impurity described by an effective
Hamiltonian of the form (23). In order to use the NL
analysis directly, we must impose the condition that the
scattering matrix element Ukk0 due to a single impurity is
zero in the limit k → k0. This means that the associated
potential VðqÞ should vanish for q → 0 faster than q. In
real space, this means that the space integral of the potential
VðrÞ should vanish, as should its first spatial moments.
If individual impurities do not satisfy these conditions, the
NL analysis may still be used if impurities can be grouped
into small clusters that satisfy the conditions. In any case,
the purpose of this subsection is to provide a check of the
validity of the above-described semiclassical approxima-
tion as a matter of principle, rather than to check the validity
in a realistic situation.
It is instructive to describe our calculation in two parts. In

the first part, we consider the scattering of a single
composite fermion from momentum k to momentum k0
by the potential (23) in the absence of an electric field. We
show—following NL—that this scattering involves a “side
jump” δrq ¼ −½ðẑ × qÞ=ð2k2FÞ�, i.e., a motion of the elec-
tron in the direction perpendicular to the momentum
transferred from the disordered potential to the composite
fermion. When averaged over all scattering processes from
a momentum k, each scattering event involves a side jump,
which results in a net motion perpendicular to the direction
of k. In the presence of an electric field Ex, the net flux of
electrons that experience scattering by the potential is
proportional to eExτ, where τ≡ lcfm�=kF is the transport
scattering time. As they scatter from impurities, the extra
electrons acquire a velocity in the y direction given by Δ=τ,
where Δ is the cumulative side jump during the time τ in
which their direction of motion is randomized. SinceΔ is of
order k−1F , this results in a current in the y direction of the
order of ðe2=hÞEx, which gives rise to a nonzero contri-
bution to σcfxy that is independent of the mean free path.

In the second part, we consider the effect of an applied
electric field on the scattering. In the presence of that field,
the change in position associated with the side jump implies
that the scattering of the composite fermion also involves a
change in its kinetic energy. As explained below, that
change results in another contribution to the Hall current,
equal in magnitude and sign to the first contribution.
Throughout this subsection, we assume n ¼ 1 and return
to units where e ¼ ℏ ¼ 1.

1. Scattering rate of a single composite fermion

For the first part, suppose that a composite fermion,
described by a Gaussian wave packet, centered at a
momentum k0 on the Fermi surface, is incident on the
impurity. As discussed in Appendix B of NL, we may write
the wave function of the CF as

ψðr; tÞ ¼
X
k

CkðtÞeik·r; ð37Þ

Ck ¼ C0
k þ C1

k þ C2
k; ð38Þ

where C0
k describes the incident wave:

C0
k ¼ Ne−iεkte−ðk−k0Þ2=2Δ2 ð39Þ

where εk is the energy of a fermion of wave vector k, N is a
normalization constant, and C1 and C2 are of order U and
U2, respectively. (Note that the incident wave packet is
centered at the origin at time t ¼ 0.) In the limit of large
positive times, one finds that

C1
k ¼ −2πi

X
k0

Ukk0δðεk − εk0 ÞC0
k0 ; ð40Þ

C2
k ¼ −4π2

X
k0k00

Ukk00Uk00k0δðεk − εk00 Þ

× δðεk00 − εk0 ÞC0
k0 : ð41Þ

As noted in NL, the average position of the particle at
time t can be written as

i
2

X
k

�
C�
k
∂Ck

∂k − Ck
∂C�

k

∂k
�
¼

X
k

jCkj2rk; ð42Þ

where

rk ¼ −
∂
∂kArgCk: ð43Þ

There are two contributions to the shift of the average
position. The first is seen when we consider a momentum k
in the scattered wave, with jk − k0j ≫ Δ, so that C0

k ¼ 0.
Then, to lowest order, Ck may be replaced by C1

k, and the
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phase is equal to the phase of C1. Using Eq. (23) for U, we
find that C1 has an extra argument, beyond the contribution
from e−iεkt, arising from the complex value of Ukk0 . This
extra argument has the form ArgC1

k ∼ −q2=½2ẑ · ðk × k0Þ�,
and it leads to an extra displacement of the center of the
scattered wave packet by an amount

δrð1Þk ¼ −
ẑ × k
2k2F

: ð44Þ

The second contribution to the average displacement comes
from weight that has been asymmetrically removed from
the incident part of the wave packet, where k is close to k0.
Here, there is an interference between C0 and C2. If one
assumes that VðqÞ is vanishing for q ¼ 0, then one finds
that the contribution from this term is given by

δr0 ¼
X
k

jC1
kj2ðẑ × kÞ=ð2k2FÞ: ð45Þ

Summing the two contributions, we find that the net
displacement (side jump) associated with a particle that
scatters from a direction k0 into direction k ¼ k0 þ q
depends on the transferred momentum and is given by

δrq ¼ −
ðẑ × qÞ
ð2k2FÞ

: ð46Þ

This side jump contributes directly to the total current
through a net charge displacement per unit time

δJ ¼
X
k;k0

fðkÞWk;k0δrk0−k; ð47Þ

where fðkÞ is the occupation probability for a state of
momentum k, and Wk;k is the transition probability [see
Eq. (52) below]. We can express the side-jump contribution
δJ in terms of the current in the absence of that contribution,
J0 ¼

P
kfðkÞk=m�. Using Eq. (46) for the displacement,

and noticing that the transport scattering rate is given by

1

τ
≡X

k0
Wk;k0 ð1 − k̂ · k̂0Þ; ð48Þ

we can simplify Eq. (47) to

δJ ¼ −
m�

2τk2F
J0 × ẑ: ð49Þ

Since, to leading order, J0 ¼ ½ðneτÞ=m��E, the δJ term leads
to a contribution to σcfxy of the form

σsjxy ¼ −
1

8π
: ð50Þ

2. Scattering rate in a composite-fermion liquid
in the presence of an electric field

Equation (50) is half of the amount we need for PH
symmetry. The second half is a consequence of having a
liquid of composite fermions, in which an applied electric
field affects the occupation of momentum states. While the
scattering rate from momentum k to momentum k0 is
symmetric with respect to the sign of ðk × k0Þ · ẑ for a
single composite fermion in the absence of an electric field,
the situation is more complicated in the presence of both a
liquid of composite fermions and an electric field. In that
case, because of the electric field, the side jump is
associated with a change of the composite fermion’s kinetic
energy by an amount eE · δrq. The effect of this change of
energy on the transport is best understood by means of the
Boltzmann equation. For dc transport in the presence of
impurities, the equation reads

F ·∇kf ¼ −
X
k0

Wk;k0(fðkÞ − fðk0Þ); ð51Þ

where

Wk;k0 ¼ 2πjVk;k0 j2δðϵk þ F · δrq − ϵk0 Þ: ð52Þ

Here, f0 is the Fermi-Dirac distribution, F ¼ eE is the
force acting on the composite fermions, ϵ is the energy, and
V is the disordered potential. The δ function expresses the
change of the kinetic energy incurred by the scattered
electron, a change that is our main focus here.
As is customary, linear response to F is analyzed by

setting f to be f0 on the left-hand side of Eq. (51) and by
writing fðkÞ ¼ f0 þ f1 ¼ f0 þ ½ð∂f0Þ=∂ϵ�u · vk on the
right-hand side. The transfer of energy affects the expan-
sion of the distribution functions on the right-hand side.
Specifically, we have

X
k0

Wk;k0 ðfðkÞ − fðk0ÞÞ

¼−
∂f0
∂ϵ u ·

X
k0

�
Wk;k0 ðvðkÞ − vðk0ÞÞþ ∂f0

∂ϵ Wk;k0F · δrq

�
:

We now make use of the definition of the transport
scattering rate (48) to write the Boltzmann equation as

F ·

�
vk −

ẑ × k
2k2Fτ

� ∂f0
∂ϵ ¼ u · vk

τ

∂f0
∂ϵ ; ð53Þ

which amounts to
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f1ðkÞ ¼ τF ·

�
vk −

ẑ × k
2k2Fτ

� ∂f0
∂ϵ : ð54Þ

As this expression shows, in the limit of a small scattering
rate 1=τ, the shift of the Fermi sea that results from the
application of the electric field is primarily parallel to the
electric field but also includes a small term perpendicular to
the field. This term contributes to the Hall conductivity.
The current is J ¼ R

dkf1ðkÞvk, with
R
dk ¼

½m�=ð2πÞ2� R dϵdθ. The angular integral gives π for both
components of the current (each component from a differ-
ent term), leading to σcfxx ¼ ½ðkFvFτÞ=4π� and δσcfxy ¼
−½1=ð8πÞ�. This contribution to the Hall conductivity adds
to the side-jump contribution calculated in the previous
subsection, with the sum of the two being −½1=ð4πÞ�.

D. Thermopower and thermal transport

1. General considerations

In this subsection, we again restore ℏ and the electron
charge e. The formulas are correct for either sign of e,
provided that the product of the electron charge and the z
component of the external magnetic field is positive.
For eB < 0, the x and y axes should be interchanged.
The thermoelectric and thermal responses for the CFs

can be obtained from standard results for noninteracting
fermions, based on interpreting the CF conductivity in
terms of an energy-dependent conductivity Σcf

μνðεÞ through

σcfμν ¼
Z

Σcf
μνðεÞ

�
−
∂f
∂ε

�
dε; ð55Þ

with f the Fermi distribution. We explore the consequences,
making use only of the fact that σcfxy ¼ −ðe2=4nπℏÞ, inde-
pendent of the Fermi energy, and hence that dΣcf

xy=dε ¼ 0.
Here, we focus on the ν ¼ 1=2 state with n ¼ 1.
Although observations of thermal effects require that

the temperature not be too small, the calculations here
also assume that the temperature should not be too high.
In particular, we assume that the temperature is sufficiently
low that the mean free path for inelastic scattering of
composite fermions is large compared to the mean free path
for elastic scattering by impurities. This restriction becomes
more severe as the sample becomes more ideal.

2. Thermopower

The heat current jQ ¼ jE − μjN induced by a field Ecf

applied to the CFs is described by a response function,
jQμ ¼ Lcf

μνEcf
ν , assuming that the temperature is a constant.

For a noninteracting Fermi gas, at low temperatures,
expanding around the Fermi level leads to the general result

Lcf
μν ¼

π2k2BT
2

3e

dΣcf
μν

dE
: ð56Þ

Since the Hall conductivity of the CFs is fixed to
σcfxy ¼ −e2=2h, requiring dΣcf

xy=dE ¼ 0, then

Lcf
μν ¼ Lcf

xxδμν: ð57Þ

This (diagonal) result is of the form required by PH
symmetry, as discussed in Ref. [31], so that σcfμν and Lcf

μν

are each characterized by a single nonuniversal quantity,
σcfxx ¼ σcfyy and Lcf

xx ¼ Lcf
yy.

To construct the thermoelectric response tensor for the
electrons (not the CFs), one must take into account the fact
that the electric field that couples to the electrons is

E ¼ Ecf þ ρ̂CSj; ð58Þ

where j is the current of either electrons or CFs and

ρ̂CS ≡ −4π
ℏ
e2

ϵ̂: ð59Þ

The response tensors for the electrons are readily found
to be

σ̂ ¼ σ̂cfð1þ ρ̂CSσ̂cfÞ−1; ð60Þ

L̂ ¼ L̂cfð1þ ρ̂CSσ̂cfÞ−1: ð61Þ

With our specific forms of σ̂cf and L̂cf , these become

σ̂ ¼ e2

4πℏ

�
ϵ̂þ e2

4πℏσcfxx

�
; ð62Þ

L̂ ¼ ϵ̂
e2Lcf

xx

4πℏσcfxx
: ð63Þ

In a thermopower experiment, one measures a voltage
gradient induced when there is a heat current, but no
electric current, flowing through the sample. Making use of
an Onsager relation [43], as well as the relations between
CF and electron coefficients, one finds

Sμν ¼
1

T
½L̂ðσ̂cfÞ−1�μν ¼

1

T
Lcf
xx½ðσ̂cfÞ−1�μν: ð64Þ

We see that the thermopower tensor has nonzero off-
diagonal elements since σcfμν is not diagonal. This contrasts
with predictions based on a naive application of the HLR
theory, pointed out by Ref. [31], in which the off-diagonal
thermopower vanishes. It recovers the central result of their
PH symmetric theory.

3. Thermal transport

In a thermal transport experiment, one seeks to measure
the heat current jQ induced by a temperature gradient ∇T,
under conditions where the electrical current is zero.
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As shown in Ref. [13], the diagonal thermal conductivity
Kxx at ν ¼ 1=2 should be related by the Wiedemann-Franz
law to the conductivity of the composite fermions, that is,

Kxx ¼ σcfxx
π2k2BT
3e2

: ð65Þ

This result is obtained in both the HLR theory and the Dirac
theory. Note that the thermal conductivity will become large
as the mean free path becomes large, while the diagonal
electrical conductivity σxx approaches zero in this limit.
It was also suggested in Ref. [16] that for a system

confined to the lowest Landau level, with a particle-hole
symmetric distribution of impurities, the off-diagonal
thermal conductivity should be given precisely by

Kxy ¼
1

2

π2k2BT
6πℏ

¼ σxy
π2k2BT
3e2

: ð66Þ

However, in an actual experiment in a strong magnetic
field, one expects that thermal gradients and currents will
be quite inhomogeneous, and a major part of the thermal
Hall current will be associated with chiral heat flow near
the sample boundaries, where particle-hole symmetry is
strongly broken [43]. Moreover, the transverse heat flow
will be small compared to the longitudinal heat current, if
the disorder scattering is weak. A proper analysis of the
transverse heat flow is, therefore, a nontrivial problem,
which we shall not address here.

IV. COMMENSURABILITY OSCILLATIONS

An important property investigated in HLR, which turns
out to be sensitive to PH symmetry, was the wave-vector-
dependent longitudinal conductivity σxxðqÞ for a wave
vector q in the x direction, in the limit of frequency
ω → 0. Precisely at ν ¼ 1=2, in the absence of impurities,
it was found, using the RPA, that

σxxðqÞ ¼
q

8πkF
; ð67Þ

independent of the renormalized mass or the bare mass.
Subsequent analyses supported the idea that this result
should be correct to all orders in perturbation theory, even
in the case of short-range electron-electron interactions or
of 1=r interactions, where the effective mass is found to
diverge at the Fermi energy [8]. In the presence of disorder,
it was predicted that Eq. (67) should hold for qlcf ≫ 1,
where lcf is the transport mean free path for the composite
fermions. For qlcf ≪ 1, the electrical conductivity
approaches a constant, given by

σxxðq ¼ 0Þ ≈ 1

4πkFlcf
: ð68Þ

(This equation may be taken as a definition of lcf .)

The nontrivial q dependence of σxx results from an
inverse q dependence of the transverse conductivity for
composite fermions, which is nonlocal, because at ν ¼ 1=2,
the composite fermions can travel in straight lines for
distances of the order of lcf , which can be very large
compared to the interparticle distance k−1F . For filling
factors that differ slightly from ν ¼ 1=2, the composite
fermions will no longer travel in straight lines but rather
should follow cyclotron orbits with an effective cyclotron
radius given by

R�
C ¼ kF

jΔBj : ð69Þ

One would expect, therefore, that the conductivity should
become independent of q for wavelengths that are large
compared to R�

C, or qR
�
C ≪ 1. Analysis at the RPA level,

using a semiclassical description of the composite-fermion
trajectories, found that the value of the conductivity in this
regime is essentially the same as the q ¼ 0 conductivity at
ν ¼ 1=2. By contrast, in the regime qR�

C ≥ 1, if lcf ≥ R�
C,

one finds that the longitudinal conductivity depends on q
and jΔBj, and is a nonmonotonic function of these
variables. If either q or ΔB is varied, one finds a series
of maxima and minima, with the maxima occurring roughly
at points that satisfy Eq. (1), or equivalently

qR�
C ≈ zn: ð70Þ

Since zn ≈ πðnþ 1
4
Þ, with a high degree of accuracy, it is

natural to describe the oscillatory dependence as a com-
mensurability phenomenon, with maxima in σxx where the
diameter of the cyclotron orbit is approximately ðnþ 1=4Þ
times the wavelength 2π=q. The calculated peaks and
valleys are generally broad if qlcf is of order unity, but
the peaks are predicted to become sharp, and the positions
of the maxima to become more precisely defined, in the
limit of a clean sample and small ΔB.
Experimentally, the values of σxxðq;ωÞ, at relatively low

frequencies, have been extracted from accurate measure-
ments of the propagation velocity of surface acoustic
waves, as a function of acoustic wavelength and applied
magnetic field, in a sample containing a two-dimensional
electron gas, by Willett and co-workers [44]. These surface
acoustic wave experiments were, in fact, very important in
establishing the validity of the HLR picture.
Another type of commensurability oscillation, com-

monly referred to as Weiss oscillations, may be observed
by measuring the dc resistivity in the presence of a periodic
electrostatic potential, which may be imposed by a periodic
array of gates or etched defects on the surface [45–51].
In this case, theory predicts, and experiments have seen,
maxima in the resistivity at magnetic fields where the wave
vector q of the array satisfies approximately Eq. (1) or
Eq. (70).
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In the following subsections, we examine a third type of
commensurability oscillation related to the existence of
local minima in the spectrum ωðqÞ of so-called magneto-
roton excitations in a fractional quantized Hall state with ν
close to 1=2. Magnetorotons may be understood as bound
states of a quasiparticle in the lowest empty composite-
fermion Landau level and a quasihole in the highest filled
level. As was discussed by Simon and Halperin [10], the
spectrum should have a series of minima, at wave vectors
given approximately by Eq. (1), which become increas-
ingly sharp for small values of jΔBj. The frequencies ωðqÞ
are manifest as poles in the response function to an applied
electric field at frequency ω and wave vector q. For certain
filling fractions, the magnetoroton minima have been
numerically calculated using composite-fermion trial wave
functions [52].
Although the magnetoroton spectrum may be difficult to

measure experimentally in the region of interest to us, [53]
it has a big advantage from a theoretical point of view
compared to predictions for the magnetoresistance in a
periodic potential or the zero-frequency longitudinal con-
ductance. The last two quantities are well defined only in
the presence of a small but finite density of impurities.
However, the behavior of a partially full composite-fermion
Landau level in the presence of weak impurity scattering
may be quite complicated and is certainly not well under-
stood. By contrast, the magnetoroton spectrum may be
studied in systems without impurities, in a fractional
quantized Hall state where there is an energy gap and where
the magnetoroton may be precisely defined, as the lowest
energy excitation for the given value of q. We comment
briefly on our understanding of the Weiss oscillations at the
end of this section.
The requirements imposed by PH symmetry on the

magnetoroton minima were stated in the Introduction.
They are not satisfied in a naive application of the HLR
approach. Below, we show how they are satisfied by a more
careful application of the HLR theory.

A. Magnetoroton spectrum at ν = p=ð2p + 1Þ
We now look for the dispersion minima of the magneto-

roton modes within the HLR composite-fermion theory,
at filling fraction ν ¼ ½p=ð2pþ 1Þ�, when jpj is large.
The magnetoroton frequencies will appear as poles in the
current response matrix Ŵðq;ωÞ to an electric field E at
wave vector q and frequency ω, defined by

jðq;ωÞ ¼ ŴEðq;ωÞ: ð71Þ

We take q to lie along the x axis, so the indices x and y refer
to longitudinal and transverse components, respectively.
Our analysis closely follows the work of SH [10], and

we first consider the response function using the RPA.
Following Eqs. (27) and (28) of SH, we may write

Ŵ−1 ¼ ρ̂þ Û; ð72Þ

ρ̂ ¼ ρ̂cfðq;ωÞ þ ρ̂CS; ð73Þ

where ρ̂cfðq;ωÞ ¼ ðσ̂cfÞ−1ðq;ωÞ is the resistivity tensor of
the composite fermions, and Û has matrix elements

Uxx ¼ i
q2

ω
v2ðqÞ; Uxy ¼ Uyx ¼ Uyy ¼ 0; ð74Þ

where v2 is the two-body interaction, defined above.
According to SH, the composite-fermion conductivity

tensor, for a general value of p, can be expressed in terms of
an infinite sum of terms involving associated Laguerre
polynomials. It the limit of large p, one can employ a
semiclassical approximation, where the sums can be carried
out, and one can write the conductivity tensor in closed
form in terms of Bessel functions. For the moment, we
employ this semiclassical approximation and later com-
ment on the corrections that would be expected if one were
to employ the full expressions for σ̂cfðq;ωÞ.

1. Semiclassical calculation of ρ̂

The semiclassical results of SH may be written (in units
where e2=h ¼ 1=2π) as

σcfxx ¼ i
2pR
πX2

�
−
1

2
þ πR
2 sinðπRÞ JRðXÞJ−RðXÞ

�
;

σcfxy ¼ iσcfxx þ
pR

X sinðπRÞ JRþ1ðXÞJ−RðXÞ;

σcfyy ¼ σcfxx þ i
p

sinðπRÞ JRþ1ðXÞJ1−RðXÞ; ð75Þ

where R≡ ω=Δωc and X ≡ qR�
C ¼ ½ðj2pþ 1jqkFÞ=B� ¼

½ð2jpjqÞ=kF� (R�
C is the cyclotron radius of the composite

fermion), Δωc ¼ ΔB=m, and JνðXÞ is the Bessel function
of the first kind. The full resistivity is given by the
composition rule

ρ ¼ ðσcfÞ−1 − 4πϵ̂: ð76Þ

We begin by looking for the poles of the physical
conductivity tensor, which correspond to zeros of detðρÞ.
To leading order in 1=p, these poles are located at the zeros of
detðσcfÞ, which would yield dispersion minima at X ¼ zn,
R ¼ 0, where zn is the nth zero of the Bessel function J1.
Here, however, we calculate the momenta (∝ X) at these
dispersion minima to next order in 1=p and address the
question of their PH symmetry near half-filling.
To leading order in R and ΔX ¼ X − zn, the σcf tensor is

given by
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σcfxx ¼ i
J20ðznÞ − 1

πz2n
pR;

σcfxy ¼
J20ðznÞ
πzn

pΔX;

σcfyy ¼ i
J20ðznÞ − 1

πz2nJ20ðznÞ
pRþ i

J20ðznÞ
π

pðΔXÞ2
R

; ð77Þ

where the following Bessel function identities were used to
reach the above result:

J0ðzÞ ¼ J01ðzÞ þ
J1ðzÞ
z

;

∂νJν¼1ðzÞ ¼
π

2
Y1ðzÞ þ

J0ðzÞ
z

;

2

πz
¼ J1ðzÞY0ðzÞ − J0ðzÞY1ðzÞ: ð78Þ

We are looking for values of R and ΔX that satisfy

detðρ̂σ̂cfÞ ¼ detð1 − 4πϵ̂σcfÞ ¼ 0: ð79Þ

Using Eq. (77), we find the dispersion curve

�
4ðJ20ðznÞ − 1Þ

z2nJ0ðznÞ
�
2

ðpRÞ2 ¼
�
4J0ðznÞ

zn

�
2
�
pΔX þ zn

4

�
2

þ ð1 − J20ðznÞÞ: ð80Þ

The dispersion minima are then given by

ΔX ¼ −
zn
4p

; ð81Þ

which means that, at ν ¼ p=ð2pþ 1Þ, we have

X ¼ zn

�
1 −

1

4p

�
: ð82Þ

Since the composite-fermion Fermi momentum kF is
determined solely by the electron density in the HLR
theory, we have

X ¼ 2jpjqffiffiffiffiffiffiffiffiffi
2pB
2pþ1

q ∼
2qjpjffiffiffiffi

B
p

�
1þ 1

4p

�
; ð83Þ

which gives

qn ∼
zn

ffiffiffiffi
B

p

2jpj
�
1 −

1

2p

�
: ð84Þ

For p ¼ p0 with p0 positive, we have ΔB ¼ B=ð2p0 þ 1Þ
and

qn ∼
zn

ffiffiffiffi
B

p

2p0

�
1 −

1

2p0

�
∼
znΔB
B1=2 ; ð85Þ

while for p ¼ −p0 − 1, we have ΔB ¼ −B=ð2p0 þ 1Þ
and

qn ∼
zn

ffiffiffiffi
B

p

2ðp0 þ 1Þ
�
1þ 1

2p0

�
∼
zn

ffiffiffiffi
B

p

2p0

�
1 −

1

2p0

�
; ð86Þ

which is again equal to znjΔBj=B1=2. This is consistent with
PH symmetry, at least to order 1=p2.
The frequencies corresponding to these dispersion min-

ima are given by

ωn ¼
z2nJ0ðznÞ

4jpj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − J20ðznÞ

p jΔωcj: ð87Þ

As we will see below, the exact values of qn and ωn will
receive significant corrections once we take other effects
into account. However, particle-hole symmetry of the
dispersion will still hold even after we include all the
leading corrections.

2. Corrections for the poles of Ŵ

We now discuss various corrections to the above result.
The regime we are interested in, for p ≫ 1, will have ΔX ∼
1=p and R ∼ 1=p1=2. In this regime, the components of σ̂cf

in Eq. (77) will be of order p1=2 or p0, and any correction of
higher order in 1=p will not affect our results.
First, we consider Fermi-liquid corrections including

mass renormalization and the residual Landau interaction.
To incorporate mass renormalization, we simply replace
Δωc by Δω�

c ¼ ΔB=m�. This leads to a violation of Kohn’s
theorem and the f-sum rule, which has to be compensated
by introducing the proper Landau interaction parameter F1.
The Landau parameter leads to another contribution to the
diagonal components of the composite-fermion resistivity
tensor, Δρcfxx ¼ f½iðm� −mÞω�=nelg, which is of order
1=p3=2 in the regime we consider. This will not change
our result for the dispersion minima.
We can also consider corrections to the semiclassical

expression of σcf in Eq. (77), for example, from the full
quantum-mechanical summation in Appendix A of SH
[10]. Since we expect the semiclassical expression to be
justified in the large p limit (which has been explicitly
demonstrated recently in Ref. [55]), the corrections should
be formally higher order in 1=p. In principle, several
leading-order corrections are possible:

Δσcfxy ¼ a
p
jpj ;

Δσcfyy ¼ b
ip
jpjRþ c

ipΔX
jpjR þ d

i
pR

; ð88Þ
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where other types of corrections are either higher order in
1=p (taking into account ΔX ∼ R ∼ 1=p) or forbidden by
general constraints. These constraints include σcf being odd
under p → −pwhen fixing R, and σcfxx, σcfyy being odd under
R → −Rwhen fixing p. Both constraints are closely related
to the symmetry of the conductivity matrix elements under
a change of the sign of the frequency. These terms would
give rise to corrections to the dispersion curve in Eq. (80),
which would lead to corrections of the locations of the
dispersion minima, so that

Xn ¼ zn

�
1 −

1

4p
þ α

jpj
�
; ð89Þ

with some constant α. The actual momenta at the dispersion
minima would thus be shifted to

qn ∼
zn

ffiffiffiffi
B

p

2jpj
�
1 −

1

2p
þ α

jpj
�
: ð90Þ

These corrections beyond the semiclassical approximation
could indeed shift the momenta of the magnetoroton
minima at order 1=p2. However, this correction would
be symmetric in p → −p − 1 (at order 1=p2), so particle-
hole symmetry is still preserved at this order.
The correction terms in Eq. (88) will also lead to a

correction of the frequencies at the minima:

Δðω2
nÞquantum ∼

β

p
ðΔω�

cÞ2; ð91Þ

with some constant β. This gives a frequency ωn of order
p−1=2ω�

c, which is parametrically larger than the semi-
classical result in Eq. (87).
We have numerically calculated the values of the coef-

ficients a,b, c, andd in Eq. (88) at the first twomagnetoroton
minima,n ¼ 1, 2.We find that the coefficientsa, b, and c are
all zero, and consequently, α ¼ 0 in Eqs. (89) and (90). The
values of d are nonzero, however, being equal to 0.082 at
n ¼ 1 and 0.297 at n ¼ 2. These lead to values of β equal to
0.0046 and 0.029, respectively, in Eq. (91). Hence, correc-
tions due to the difference between the semiclassical expres-
sions in terms of Bessel functions and the full quantum sum
in SH can affect the frequency at the magnetoroton mini-
mum, but do not actually contribute a shift in the wave
vectors, to order jΔBj2.
Finally, we notice that the real dispersion curve is given

by the poles of the full response tensor Ŵ in Eq. (72). This
modifies Eq. (79) to

detðŴ−1σcfÞ ¼ detð1 − 4πϵ̂σcf þ ÛσcfÞ ¼ 0: ð92Þ

This leads to an extra term

Uxxσ
cf
xx ¼

ð1 − J20ðznÞÞjpjq2v2ðqÞ
πz2njΔω�

cj
ð93Þ

on the right-hand side of the dispersion relation in Eq. (80).
Generically, this term dominates over the other terms in
Eq. (80). To see this, let us consider a very long-ranged
interaction v2ðqÞ ∼ ½1=ðjqj1þδÞ�, which gives rise to simple
Fermi-liquid behavior at low energies. In this case, the
above term becomes

Uxxσ
cf
xx ∼

pjqj1−δ
Δω�

c
∼ jpj1þδX1−δ

∼ z1−δn jpj1þδ þ ð1 − δÞz−δn jpj1þδΔX; ð94Þ

where we have used the fact that Δω�
c ∼ 1=p. The first term

∼jpj1þδ dominates over the other terms in the original
dispersion curve Eq. (80). Its effect is to set the frequency at
the dispersion minima, at leading order, to be

ωn ¼
znJ0ðznÞ
4jpj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pΔω�

cq2nv2ðqnÞ
πð1 − J20ðznÞÞ

s
: ð95Þ

In the physical case of Coulomb repulsion, v2ðqÞ ¼
2π=ϵq, where ϵ is the dielectric constant, Eq. (95) still gives
the leading result for the minimum frequency, but one
should take into account the variation of Δω� due to
logarithmic divergence of the effective mass. Specifically, it
is predicted that [11,56]

jΔω�j ¼ jΔBj
m� ∼

πe2

2ϵlBj2pþ 1j½Cþ ln j2pþ 1j� ; ð96Þ

where the constant C depends on the bare mass and on the
behavior of the interaction at short distances. For pure
Coulomb interactions and vanishing bare mass, the best
available estimate is C ≈ 4.1 [56].
The second term in Eq. (94) leads to a shift in the

momenta at the minima, giving

qn ∼
zn

ffiffiffiffi
B

p

2jpj
�
1 −

1

2p
−

γ

jpj1−δ
�
: ð97Þ

The extra shift is parametrically dominating, but it does not
depend on the sign of p, so it does not affect particle-hole
symmetry, at least to the order jpj−2 that we are consid-
ering. For Coulomb repulsion, the correction is of the form
∼ log jpj=jpj, which is again particle-hole symmetric.
The predicted magnetoroton spectra for the symmetric

fractions ν ¼ 20=41 and ν ¼ 21=41 are plotted in Fig. 1, at
our various levels of approximation, for the case of pure
Coulomb interactions.
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B. Magnetorotons near ν = 1=ð2NÞ
The analysis given above can be readily extended to the

magnetoroton spectrum in fractional quantized Hall states
of the form

ν ¼ p
2pN þ 1

; ð98Þ

where N is an integer > 1, which are close to ν ¼ 1=ð2NÞ,
for large jpj. Here, we define ΔB as

ΔB≡ B − 4πNnel ¼
B

2pN þ 1
; ð99Þ

which is the difference between B and the value corre-
sponding to ν ¼ 1=ð2NÞ at the given electron density.

Using the same analysis as for N ¼ 1, we find that the
minima of the lowest magnetoroton modes occur at
momentum values qn, which depend on the absolute value,
but not on the sign, of ΔB, at least through order jΔBj2,
provided we compare systems with different electron
densities but the same magnetic field B. Specifically, we
have

qn ¼
znjeΔBjlB
ℏN1=2 ; ð100Þ

up to small corrections that are symmetric in ΔB. Along
with our previous result that in the presence of PH-
symmetric disorder the Hall conductance at ν ¼ 1=ð2NÞ
is fixed at 1=ð4πNÞ, at least through second order in the
impurity scattering rate, this suggests that there is a type of
emergent particle-hole symmetry near all these even-
denominator fillings.
Interestingly, a similar type of emergent particle-hole

symmetry was also found when the energy gaps EG of
fractional quantum Hall states at filling factors close to
1=ð2NÞ were calculated for electrons interacting through
the Coulomb interaction. The energy gap, in this case, is
predicted to have the form [11]

jΔω�j ∼ πe2

2ϵlBN3=2j2pN þ 1j½C0 þ ln j2pN þ 1j� ; ð101Þ

which reduces to Eq. (96) for N ¼ 1. This expression is
predicted to be exact in the limit of large p, and the leading
logarithmic term is independent of the bare mass of the
electron. Moreover, the result is symmetric in ΔB, at least
to lowest order. However, the possibility of asymmetric
corrections at second order in ΔB was not investigated.

C. Weiss oscillations

As remarked above, a proper analysis of the experiments
measuring the resistivity in the presence of an imposed
periodic potential with wave vector qwould require a careful
analysis of the effects of impurity scattering at filling factors
away from ν ¼ 1=2, which is beyond the scope of the current
paper. However, one can gain insight into the problem from a
very recent investigation by Cheung, Raghu, and Mulligan
(Ref. [57] and private communications). They have calcu-
lated the change in resistivity Δρxx produced by a weak
modulating potential in an approximation where they treat
impurities in a simple relaxation approximation, where the
relaxation rate is taken to be a constant, independent of ΔB
and the scatteringwavevector, etc. Although the bulk of their
paper is based on the Son-Dirac model, they also present
results based on the HLR equations.
Treating the ratio x ¼ VðrÞm�=δbðrÞ as a free parameter,

where V is the residual screened electric potential produced
by the external periodic potential and δb is the induced
Chern-Simons magnetic field seen by the composite

FIG. 1. Magnetoroton spectrum at fractions ν ¼ 20=41 and
ν ¼ 21=41. Plots show the reduced frequency ~ω≡ ω=jΔω�j
versus the reduced wave vector q̂≡ qlB=j2ν − 1j. The curve
labeled “RPAþ Coulomb” shows the magnetoroton spectrum
computed in the HLR approach, including the correction due to
the Coulomb interaction. The curves labeled “RPA” and “Semi-
classical” show the locations of the poles in the electron
conductivity tensor σ̂ðq;ωÞ, which does not include the inter-
action effect, computed in the random phase approximation and
semiclassical approximation, respectively. Curves for ν ¼ 20=41
and ν ¼ 21=41 could not be distinguished in these plots. The
expanded figure in the lower panel includes, for comparison, a
naive approximation, which identifies the magnetoroton spec-
trum with the zeros of the determinant of the composite-fermion
conductivity σ̂cfðq;ωÞ. Although the naive approximation co-
incides with the RPA and semiclassical approximations to leading
order in the deviation from ν ¼ 1=2, it deviates from them at
second order and is not symmetric about ν ¼ 1=2 at this order.
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fermions, they find a series of curves for the induced
magnetoresistance, as a function of ΔB whose shapes
depend on x. When x ¼ 1=2, they find that the HLR
prediction coincides precisely with the Dirac prediction and
is properly symmetric in ΔB, when the density is varied
while B is held fixed. In particular, when x ¼ 1=2, it is
predicted that there will be minima in Δρxx at magnetic
fields that satisfy

jΔBj ∼
�
Bℏ
e

�
1=2 q

zn
: ð102Þ

According to the discussion in Sec. III A of the present
paper, leading to Eq. (21), the value x ¼ 1=2 is indeed the
proper choice for that parameter. (We note that the Weiss
oscillations are measured at a temperature T that is larger
than the energy scale jΔBj=m�, so the electron compress-
ibility may be taken to be the same as at ν ¼ 1=2.)
The fact that one must take into account modulations in

the Chern-Simons scalar potential as well as in the Chern-
Simons magnetic field, in order to understand in a
quantitative way the effects of an imposed periodic poten-
tial on the electrical resistivity, was previously emphasized
by Zwerschke and Gerhardts [51]. Also, a correct formula
for the magnetoresistance in the presence of modulations in
both the screened electrostatic potential and the effective
magnetic field b was contained in Ref. [30] by Barkeshli,
Mulligan, and Fisher. In that paper, however, the authors
then ignored the electrostatic potential on the grounds that
its effects would be small compared to the effect of b, so
they did not obtain the small correction necessary to restore
the PH symmetry.
Although the resistance minima observed experimentally

in Ref. [45] do obey particle-hole symmetry, the actual
positions deviate (symmetrically) from the values predicted
by Eq. (102), by amounts of order jΔBj2. We do not know
whether these deviations could be explained by a theory
that includes the effects of impurity scattering in a more
accurate way.
It should be emphasized that theoretical discussions about

the presence or absence of particle-hole symmetry generally
refer to a situation where nel is varied while B is held
constant. In experiments, however, it ismost common to vary
B while nel is held constant. In that mode of operation,
features that occur at positions we consider symmetric, such
as those given by Eq. (102), will appear asymmetric in the
data, by amounts of order jΔBj2. By contrast, the values of
jΔBj given by the naive HLR theory, where modulations in
the Chern-Simons scalar potential are ignored, would appear
symmetric about ν ¼ 1=2 in the data.

1. Ambiguity of kF
The question of what determines the Fermi momentum kF

of composite fermions, away from half-filling, has played a
significant role in the literature [30,45,58]. Naively, there are

three possible answers depending on which theory one uses:
In HLR theory, the Fermi volume is given by the particle
density, in anti-HLR it is given by the hole density, and in
Son-Dirac it is given by the half of the flux density. These
answers are identical at ν ¼ 1=2 but deviate fromone another
away from half-filling. However, one should bemore careful
when addressing this issue.
There are two sources of confusion regarding kF. First, kF

of the composite fermions is not a sharply defined quantity
away from half-filling since the composite fermions move
in a nonzero effective magnetic field ΔB and do not have a
sharp Fermi surface. The ambiguity in the definition of kF,
set by the inverse effective cyclotron radius, is of order ΔB.
The differences in kF determined from electron, hole, or
flux densities are also of this order, so the three answers are
identical within this intrinsic ambiguity.
A subtler point is that kF itself is not a measurable

quantity, especially away from ν ¼ 1=2. What can be
measured in commensurability oscillation experiments are
the commensurability momenta qn. Past work has inferred
kF from qn via Eq. (1). However, the simple relation Eq. (1)
is valid only to leading order in ΔB. Once we go to higher
order in ΔB, which is necessary to differentiate particle
density from hole density, the simple relation Eq. (1) no
longer holds, and a more careful calculation is needed. This
is exactly what we did in the earlier parts of this section. Our
results show that the commensurability momenta are indeed
particle-hole symmetric, even though in HLR theory kF,
which is not an observable by itself, appears to be formally
PH asymmetric.

V. COMPARISON WITH DIRAC THEORY

The Son-Dirac model may be defined by Lagrangian
density of the form

LD ¼ ψ†ðiDt − μ − ivDD × σ −mDσ
zÞψ

þ
�
AdA
8π

þ adA
4π

−
ada
8π

mD

jmDj
�
þ Lint; ð103Þ

Dμ ≡ ∂μ þ iaμ; ð104Þ

where ψ is a two-component Grassmann spinor, A is the
external magnetic field, σ are the Pauli spin matrices, and
Lint is a term that represents the two-body interaction v2.
The velocity vD is an input parameter, like the effective
mass m� in the HLR theory, which must be taken either
from experiment or from an independent microscopic
calculation. We are interested in a situation in which the
Fermi level is inside the band of positive-energy fermion
states. The lower Dirac band is integrated out, which
produces the �½1=ð8πÞ�ada term.
The Son-Dirac Lagrangian becomes explicitly PH sym-

metric if one takes the limit mD → 0. In this limit, the
contribution of the ada term is precisely canceled by the
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contribution from the Berry curvature, which is completely
concentrated at the bottom of the occupied states in the
positive energy Dirac band. Then, the Lagrangian may be
replaced by a form in which mD is precisely zero and the
ada term is simply omitted; i.e., there is no longer a Chern-
Simons term in the action for the gauge field aμ. In the
following discussion, we confine ourselves to the case
mD ¼ 0, except where otherwise specified.
In the Son-Dirac formulation, the composite fermions

see an effective magnetic field bðrÞ which is related to the
electron density and the applied magnetic field in the same
way as in HLR:

b ¼ ∇ × a ¼ 4πnel −∇ ×A: ð105Þ

However, the electron density and the composite-fermion
density are no longer identical. Rather, the density of Dirac
composite fermions is tied to the (local) value of the
magnetic field,

nDF ≕ ψ†ψ ≔ −
1

4π
∇ ×A: ð106Þ

Similarly, the current of the Dirac fermions is related to the
local electric field by

jDF ¼ −
1

4π
ẑ × E; ð107Þ

while the effective electric field felt by the Dirac fermions is
given by

eDF ¼ −∇a0 − ∂ta ¼ ẑ × ð4πjel − EÞ: ð108Þ

The electrical conductivity tensor, for a long-wavelength
electric field, is then given by

σ̂ ¼ ρ̂DF þ σ̂CS; ð109Þ

where ρ̂DF ¼ ðσ̂DFÞ−1 is the resistivity tensor of the Dirac
fermions, and

σ̂CS ¼ 1

4π
ε̂: ð110Þ

As in the HLR theory, the presence of potential disorder
will cause fluctuations in electron density, which will lead
to fluctuations in the effective field bðrÞ proportional to the
self-consistent electric potential VðrÞ. Potential fluctuations
do not lead to fluctuations in a0 or in the effective electric
field e. Therefore, if the potential fluctuations are sta-
tistically PH symmetric, so that all odd moments of b are
zero, the Dirac fermions will see a field that is statistically
time-reversal symmetric, and ρ̂DF will be purely diagonal.
Therefore, we recover σxy ¼ 1=4π as required by particle-
hole symmetry.

At a finite frequency ω, in the absence of impurities, in
the RPA, the resistivity tensor for Dirac fermions is readily
calculated to be

ρ̂DF ¼ −iωm�=nel; ð111Þ

where m� ¼ kF=vD. As this is purely diagonal, the ac Hall
conductivity remains fixed at the value required by PH
symmetry. However, the diagonal conductivity σxx pre-
dicted by Eq. (109) does not agree with the result
σxxðωÞ ¼ 0, which is required by Kohn’s theorem in the
limit where the electron mass m → 0, and electrons are
restricted to the lowest Landau level. As remarked above,
this can be corrected, beyond the RPA, by including the
effects of Landau interaction parameters F�1.
Using the Son-Dirac Lagrangian for mD ¼ 0, one

predicts that fractional quantized Hall states should occur
when

ΔB ¼ B
2pDF

; ð112Þ

where pDF is half of an odd integer, either positive or
negative. This condition is obviously PH symmetric, and it
is equivalent to the HLR prediction, with the identification
pDF ¼ pþ 1=2. The shift in the choice of indexing reflects
the presence of a Berry phase of π for the Dirac fermions at
the Fermi energy. The energy gaps in the quantized Hall
states are given, within RPA, by Eq. (14), with m replaced
by m� ¼ kF=vD. As remarked previously, the gaps will
obey PH symmetry provided that the velocity vD depends
on the magnetic field and not on the electron density, or
more generally, if vD is assumed to be an even function
of ΔB.
According to PH symmetry, the magneto-exciton spectra

should also be independent of the sign ofΔB. The positions
of themagnetorotonminimamay be found, to lowest order in
ΔB, by tracking the dispersion of poles in the electrical
conductivity σ̂ðq;ωÞ, as was done in Sec. IVA 1 above in the
HLR picture. Taking into account Eq. (109), we see that
within the Dirac description, poles in σ̂ðq;ωÞ coincide with
the occurrence of a zero in the determinant of the composite-
fermion conductivity tensor σ̂DFðq;ωÞ. Within the semi-
classical approximation, these zeros occur at ω ¼ 0, if

qn ¼ zn
B1=2

2jpDFj
: ð113Þ

These values are clearly PH symmetric and are identical to
the results obtained using HLR in Sec. IVA 1, through order
jΔBj2. This result for Dirac composite fermions was also
obtained in Ref. [59], to lowest order in jΔBj, paying careful
attention to interaction effects.
As in the HLR case, the actual locations of the magneto-

roton minima in the Dirac theory will be shifted from these
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values (by amounts small compared to qn), and the
frequency values will be shifted from zero because of
interaction effects and corrections to the semiclassical
theory, but all such shifts should be symmetric in ΔB.
Finally, we discuss properties of the Dirac Lagrangian

(103) in the case where the Dirac massmD is not set equal to
zero, so the theory is not explicitly PH symmetric. As was
observed by Son [1], in the nonrelativistic limit, where
mDvD ≫ kF, the Dirac action reduces precisely to the HLR
action (4), after a redefinition of the gauge field,
(aμ → aμ þ Aμ). As we have seen, the HLR theory and
the massless Dirac theory give identical results for long-
wavelength low-energy properties in the limit of ν ¼ 1=2, so
PH symmetry reappears in this case. We find that there is a
similar emergent PH symmetry for intermediate values of
mD. Since the Lagrangian for theDirac theory with finitemD
includes a Chern-Simons term identical to that in the HLR
theory, the relations between the composite fermion and the
electronic response functions are identical in the two theo-
ries. The semiclassical theory for theminima of themagneto-
roton spectra take the same form as we found in Sec. IV
above, which implies that the spectrum is, again, symmetric
inΔB, at least throughorder jΔBj2. Similarly,we find that the
Hall conductance in the presence of impurities at ν ¼ 1=2 is
fixed at 1=4π, at least through order ð1=lcfÞ2, under the same
conditions thatwe assumed in the analysis ofHLR inSec. III.
An apparent difference between HLR and a Dirac theory

with finite mD is that in the latter case the fermions near the
Fermi energy have a nonzero Berry curvature. This Berry
curvature is the same as that which results from spin-orbit
coupling in a semiconductor, which, as we have remarked, is
responsible for side-jump contributions to the anomalous
Hall effect in semiconductormodels. However, in the limit of
scattering wave vectors q much smaller than kF, which we
have assumed in our analysis, thematrix element for the spin-
orbit term is negligible compared to that from the screened
impurity potential V or the effective magnetic field fluc-
tuation b. Scattering from potential fluctuations with q of
order kF would depend on renormalized matrix elements
whose values are beyond the scope of an effective theory.
In the Dirac theory with finitemD, fermions at the Fermi

energy will have a Berry phase that is neither zero nor π. In
contrast with the Berry curvature, the total Berry phase has
no direct effect on the dc Hall conductivity in the presence
of impurities, but it does affect the ac Hall conductivity. Just
as in HLR, the finite-frequency Hall conductivity will
deviate from 1=4π at order ω2, unless the effect is counter-
acted by a nonzero Fermi-liquid interaction parameter,
whose actual value will depend on details of the original
microscopic theory.

VI. CONCLUSIONS

We have seen that in the limit of long wavelengths and
low frequencies, with ν close to 1=2, and in the limit of
small disorder potential, the Son-Dirac and HLR theories

make identical physical predictions for several key proper-
ties, provided that the HLR theory is properly evaluated.
Both theories give results for these properties that are
consistent with PH symmetry, even at the RPA level. In the
Dirac theory, PH symmetry is put in by hand, at the outset,
by setting the Dirac mass mD equal to zero. In the HLR
theory, PH symmetry seems to emerge, asymptotically, in
this limit, even though it is not put in at the beginning.
Moreover, the PH symmetry seems to emerge even if the
bare mass m is not taken to zero, which would be the
condition for electrons to be confined to a single Landau
level, where PH symmetry would be exact.
In order to get the correct energy scale for the specific

heat or for energy gaps in fractional quantized Hall states
close to ν ¼ 1=2, at the RPA level, the bare massm in HLR
must be replaced by a renormalized mass m�, whose value
cannot be obtained within the theory itself. Similarly, in the
massless Dirac theory, one must use a renormalized value
of the Fermi velocity vD. After these substitutions are made,
however, neither the Dirac theory nor the HLR theory will
give the correct response functions to perturbations at a
finite frequency, unless one also includes the effects of the
Landau interaction parameters Fl, for l ¼ �1. In the HLR
theory, this correction gives the correct frequency response,
dictated by the Galilean invariance of the original model. In
the limitm → 0, this leads to a conductivity tensor σ̂ðωÞ for
a spatially uniform electric field that is independent of ω
and that, therefore, satisfies the requirement that σxyðωÞ
should be independent of frequency by PH symmetry, for
electrons confined to the lowest Landau level. If the Landau
interaction were omitted, however, a RPA calculation with
the renormalized mass would incorrectly give a frequency
dependence to σ̂, which would result in a nonzero correc-
tion to σxyðωÞ at order ω2.
In the Dirac theory, for mD ¼ 0, one correctly obtains

σxyðωÞ ¼ 1=4π at all frequencies, even at the simple RPA
level, because of the explicit built-in PH symmetry.
However, the diagonal conductance σxxðωÞ will be incor-
rect at order ω, unless one includes the Landau interaction
correction.
We have also investigated the positions of minima in the

dispersion curve for magnetorotons, at quantized Hall
states of the form ν ¼ p=ð2pþ 1Þ, in the limit of large
p, in the absence of impurity scattering. The minima of
interest to us occur at wave vectors qn that are small
compared to kF, and at frequencies that are small compared
to the energy gap Δωc ¼ jΔBj=m�, where ΔB is the
deviation of the magnetic field B from the value corre-
sponding to ν ¼ 1=2, at the given electron density.
Therefore, the positions of these minima are a proper
subject for investigation in a theory that is supposed to be
valid in the limit of long wavelengths and low frequencies.
We have found that the HLR and Dirac theories give
identical values for the location of these minima, consistent
with PH symmetry, at least to order jΔBj2.
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It is more difficult to compare predictions of the two
theories for correlation functions or response functions at
a wave vector q that is not small compared to kF, even if
the frequency is arbitrarily small. An important example is
the correlation function studied by Geraedts et al. [14].
The authors introduce an operator PðrÞ that is proportional
to nelðrÞ∇2nelðrÞ, projected to the lowest Landau level, and
they study the correlation function for the Fourier trans-
form, hP−qPqi, for q close to 2kF. According to the Dirac
theory, this correlation function should have no observable
singularity at q ¼ 2kF because PðrÞ is even under PH
inversion, and fluctuations in such quantifies should not
give rise to backscattering across the Fermi surface at
q ¼ 2kF. Geraedts et al. have studied this correlation
function numerically, for electrons confined to the lowest
Landau level at half-filling, using density-matrix renorm-
alization group (DMRG) methods, and have found the
singularity to be missing, as predicted. By contrast, they do
observe a singularity at q ¼ 2kF, as expected, in the density
correlation function hnel−qnelq i.
There does not seem to be any obvious reason in HLR

theory why hP−qPqi should be immune from a singularity
at q ¼ 2kF, even if one imposes the requirement of particle-
hole symmetry. However, in order to actually calculate this
response function in the HLR theory, one would have to
know the correct form of the renormalized vertex that
couples Pq to the composite fermions at q ¼ 2kF. It is
certainly possible that this quantity will vanish when
m ¼ 0, but at present, we do not have an argument to that
effect. Thus, we cannot say that HLR and the Dirac theories
make identical predictions for this property, but we can say
that there is not a necessary contradiction between the two
theories, in so far as the relevant vertices are unknown.
The HLR and Dirac theories can both be extended to

describe a situation where the Fermi surface turns out to be
unstable to the formation of Cooper pairs, with the result
that the actual ground state is an incompressible fractional
quantized Hall state, with an energy gap. As Son has
observed, pairing in the Dirac theory must occur in a
channel with even angular momentum because of the Berry
phase associated with the Dirac composite fermions. The
three most obvious channels for pairing are then l ¼ 0, 2,
and −2. The symmetries of the l ¼ 2 and l ¼ −2 state
coincide, respectively, with the well-known “Pfaffian” and
“anti-Pfaffian” states, which are related to each other by PH
conjugation [33–36]. The Dirac theory predicts that these
two states should have identical energies, as is indeed
required by PH symmetry, in the limit where electrons are
confined to a single Landau level, and there are only two-
body interactions among them. Within the HLR theory, the
Pfaffian and anti-Pfaffian states would be described by
pairing in the channels l ¼ 1 and l ¼ −3, respectively.
There is no obvious reason, within the theory, why these
two states should have the same energy. However, such a
coincidence is perfectly compatible with the theory; this

means that for a PH symmetric system, the pairing
interaction must be the same in the l ¼ 1 and l ¼ −3
channels. Pairing in the l ¼ 0 channel of the Dirac model
would lead to a new PH symmetric quantized Hall state,
which Son named the PH-Pfaffian. Such a state would be
described in HLR by pairing in the channel l ¼ −1. There
does not seem to be any numerical evidence that such a
state would actually be the ground state of any quantum
Hall system with realistic parameters. Wang and
Chakravarty [60] argued that within a particular approxi-
mation scheme, the l ¼ 0 pairing appears to be unfavorable
in Dirac composite Fermi liquid. However, Zucker and
Feldman have suggested that the PH-Pfaffian state seems
compatible with existing experiments, and the state could
have been stabilized by disorder and Landau-level mixing
[61]. (The PH-Pfaffian is equivalent to the “T-Pfaffian”
state, which was proposed, independently, in the context of
surface states of topological superconductors [62].)
In summary, we have found no contradictions between

physical predictions of the HLR and Son-Dirac theories
for the low-energy properties of a half-filled Landau level.
We find that the HLR approach is quite compatible with the
existence of particle-hole symmetry, which is required in
the case where the bare electron mass is taken to zero. For
some properties, this symmetry emerges automatically
from the HLR theory, while in other cases, it may be
necessary to properly specify the value of parameters such
as the Landau interaction strengths or a renormalized finite-
momentum vertex. These results are all consistent with the
point of view that the physics described by the particle-hole
symmetric Son-Dirac theory is in fact a special case of the
HLR theory.
As this manuscript was nearing completion, however, we

became aware of recent work by Levin and Son, which
asserts that the HLR approach is not able to obtain the
correct value for the Hall viscosity at ν ¼ 1=2, in the PH
symmetric limit [63]. The Hall viscosity is reflected in a
correction to the Hall conductance at nonzero wave vector
q, which appears in the limit q → 0 and ω → 0, with
ω ≫ qv�F. Although the Hall viscosity may be very difficult
to measure experimentally, this suggests that there are
theoretical problems that need to be resolved before we can
determine the precise relation between the HLR and Son-
Dirac theories. Therefore, it is still possible that the two
theories may eventually be physically distinct, in which
case the difference in their measurable behaviors would be
much subtler than previously believed. Of course, even if
both theories agree, it remains possible that neither one is
correct in all respects.
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