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Abstract

This thesis contains the theoretical work produced to achieve three goals. Firstly, by
understanding the basics of density matrices and open quantum systems, the intricacies of
the equations of motion could be understood and a new, key feature, the window operator,
could be added to the coupled-channel density-matrix (CCDM) model. From this, the
addition of quantum observable calculations such as entropy, energy dissipation and purity
were made possible, but more importantly this permitted the calculation of energy-resolved
fusion probabilities that were previously unobtainable with this fully quantum dynamical
method.

The next step was motivated by the curiosity of heavy-ion fusion in hot, dense plasmas. A
review of the potential effects of plasma on heavy-ion fusion reactions was conducted, and
significant results were found for one attribute of the plasma: temperature. It is known
that the higher-end of plasma temperatures in stellar environments become hot enough
that heavy-ions with low-lying excited states are significantly populated prior to a nuclear
reaction. However, this has not been applied to nuclear fusion and hence the CCDM model
was employed to fill this void. Temperature was found to increase fusion probabilities
compared to calculations that did not include temperature effects, and a short theoretical
explanation of the increase was provided.

Finally, the CCDM model was applied in the context of nuclear friction. Using an adjusted
phenomenological friction form factor introduced by Gross and Kalinowski, the effects of
friction were included as an environment. The inclusion of friction resulted in increased
fusion probabilities compared to frictionless calculations, and an improvement on the barrier
distribution when comparing theory to experimental results.

Key words: Coupled-channels density-matrix, open quantum systems, sub-barrier nuclear
fusion, quantum tunnelling, Lindblad dynamics, plasma environment, nuclear friction
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Chapter 1

Introduction

Nuclear fusion is considered one of the most important reaction mechanisms for stellar

evolution and the production of heavy elements in the Universe. The idea that nuclear fusion

was the source of power within stars was conceptualised by Eddington in the 1920’s [1],

following the discovery by Aston that the mass equivalent of four hydrogen atoms was

heavier than one helium atom. With the theory of quantum mechanics being formalised

around this time, researchers were quick to test this theory and it was Hund [2] who was

credited as the first to apply ‘penetration through a potential barrier’ principles to molecular

dynamics. The generalised mathematical theory of quantum tunneling was then developed

by Gamow [3,4] and then independently and almost simultaneously by Gurney and Condon.

The work by Bethe [5] was instrumental for establishing a cascade of reactions that lead

to energy generation within stars, which is now known as Branch II of the proton-proton

chain reaction. This paved the way for further stellar nucleosynthesis research [6].

To this day, much effort has been invested experimentally and theoretically to eventually

gain a complete picture of stellar nucleosynthesis [7–10]. Nucleon interactions are funda-

mental for building theoretical frameworks and developing new experimental methods, both

of which are essential for pushing the boundaries of research. This thesis aims to extend

our theoretical knowledge of low-energy heavy-ion fusion reactions. The following sections

provide a succinct historic review of the developments within heavy-ion fusion models, and

the extension to literature from this work.

1
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1.1 The one dimensional single barrier penetration model

If one considers only the most fundamental interactions between two nuclei, nuclear fusion

calculations using simple models can be done using a real one dimensional potential barrier

formed from attractive nuclear and repulsive Coulomb interactions [11]. The single dimen-

sion here is the distance between the centre of mass of each nucleus. The one dimensional

potential barrier is the Coulomb barrier when the angular momentum l = 0, and one can

assume that a nucleus fuses once it overcomes or tunnels through the Coulomb barrier and

the loss of kinetic energy means it cannot escape the potential well. However, there is a

limit to this assumption due to the strong repulsive Coulomb force when Z1Z2 increases,

which leads to a shallow potential pocket that is easily escapable [12]. Quantum tunneling

is the key mechanism that allows the fusion of nuclei at stellar energies [11,12], and it is a

relatively poorly understood phenomenon that is crucial in the study of low-energy nuclear

fusion reactions [13]. For fusion to occur, the Coulomb barrier between a projectile and tar-

get must be overcome classically or ‘tunnelled through’. Using purely classical mechanics,

fusion would not occur for any incoming particle with an energy below the Coulomb bar-

rier energy, VB. Low-energy fusion reactions occur at energies well-below the height of the

Coulomb barrier and as a result, the cross sections are often too small to be experimentally

measured directly and models are needed to extrapolate the data [14].

Within the one dimensional single barrier potential models, the fusion cross section σ(E0)

with a mean centre of mass energy E0 can be calculated as a sum of partial waves [15],

σ(E0) =
π}2

2µE0

∞∑
l=0

(2l + 1)Tl(E0), (1.1)

where µ is the reduced mass of the two-nuclei system, l is the partial wave number (angular

momentum contributions) and Tl is the barrier penetration probability.

The early calculations of fusion cross sections were often based on classical mechanics,

and semi-classical models became popular as quantum mechanics was better understood.

A semi-classical model is a model where the system is treated with both classical and

quantum mechanics, and these were used to reduce computationally intensive calculations

but still include features of quantum mechanics. Hence early models were able to calculate
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below-barrier fusion cross sections by including quantum tunneling effects into classical

calculations.

A common method was to use transport equations, and these assume that the important

characteristics of dynamic fusion processes can be described by the main collective degrees of

freedom. Typical equations that were used in models include Fokker-Planck, Langevin and

master equations [16–19]. Classical microscopic methods such as time-dependent Hartree-

Fock (TDHF) have also been used to investigate interactions between heavy nuclei, with

some of these applied to fusion reactions [20–22]. However, the use of TDHF models was

limited due to the significant computational resources required [23].

1.2 Building on the one dimensional single barrier penetra-

tion model

Comparison of experimental results to those of the single barrier penetration model us-

ing only the entrance (ground state) channel showed that the model calculations of fusion

cross section agreed sufficiently with above-barrier incident energies, but found that the

sub-barrier calculations were lower than the empirical fusion cross sections [24]. In general

the discrepancy was minimal for light nuclei (Z1Z2 < 250) collisions, and increased to a few

orders of magnitude for medium-sized nuclei with a charge product of 250 < Z1Z2 < 1600.

Above Z1Z2 > 1600, the formation of a compound nucleus after the reduced mass traverses

the Coulomb barrier (the capture process) is not guaranteed and additional considerations

must be made [11, 12, 15]. These are problems that are faced by those interested in super-

heavy element formation.

The work in this thesis is focused on medium-sized nuclei. It was not immediately clear

why there was an enhancement of fusion cross section at below-barrier energies for these

medium-sized nuclei, but experimental results highlighted the internal structure as the cause

of the enhancement [25]. This led to the development of coupled-channels formalisms, the

details and assumptions of which can be found in Refs. [26–28]. The two intrinsic degrees of

freedom which primarily influence fusion cross sections are deformations of the target and

projectile (rotational) and low-lying collective excitations (related to surface vibrations).
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(a) (b)

Figure 1.1: A visual representation of a spherical projectile approaching a deformed nucleus

at two orientations. In Fig.1.1a, the projectile approaches the shortest diameter of the de-

formed target. Fig.1.1b shows the projectile approach the largest diameter of the deformed

target.

Both of these intrinsic degrees of freedom can be implemented in the calculations in this

work, and this is demonstrated in the present work by the excited states in the targets

of 144Sm, 188Os and 92Zr. To visualise the effect of these intrinsic degrees of freedom,

Fig.1.1 shows a spherical projectile approaching a rotationally deformed target nucleus at

two orientations. It is expected that the resulting nuclear and Coulomb forces between the

target and projectile for both cases would be different to that of two spherical nuclei.

By coupling the nuclear intrinsic degrees of freedom to the relative motion, the coupled-

channels equations can be numerically solved to determine the fusion cross sections of the

reduced system [11,12,29]. The coupled-channels equations have typically been constructed

based on a stationary time-independent Schrödinger equation (TISE), which can be solved

to provide fusion cross sections for couplings to all orders for a relatively large number of

channels. The coupled-channels equations are given as [15,26],

[
− }2

2µ

d2

dr2
+
J(J + 1)}2

2µr2
+ V

(0)
N (r) +

ZPZT e
2

r
+ εn − Ec.m

]
ψn(r) +

∑
m

Vnm(r)ψm(r) = 0,

(1.2)

where r is the radial co-ordinate of the relative motion, µ is the reduced mass, Ec.m is the

total energy in the centre of mass reference frame and εn is the nth channel excitation energy.
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V
(0)
N (r) is the nuclear potential in the entrance channel where the superscript denotes the

multipolarity (0 = monopole), and Vnm(r) is the coupling matrix consisting of Coulomb and

nuclear components, where the higher order multipole information is contained. For heavy-

ion reactions, the isocentrifugal approximation was shown to be valid for fusion reactions [30]

and hence the orbital angular momentum usually present in Eq.(1.2) is replaced with the

total angular momentum quantum number, J .

A user-friendly implementation of the coupled-channels equations was created by Hagino

[31] and this led to the widespread use of the CCFULL code since its conception. Calculations

from CCFULL are used to verify that the results from this thesis are in agreement with current

literature for standard calculations that do not include novel effects, such as the effects from

plasma temperature or nuclear friction. Further details on the coupled-channels TISE and

the CCFULL code can be found in Ref. [31].

It is worth mentioning that the motivation to improve theoretical heavy-ion fusion mod-

els has been greatly influenced by research on the production of superheavy nuclei. The

coupled-channels approaches have been key to modelling superheavy element formation,

and have improved our knowledge on how couplings between nuclear intrinsic degrees of

freedom and relative motion affect capture cross sections [32–34]. However, when dealing

with heavy nuclear systems, there are additional considerations that must be included due

to processes that occur when nuclei become large and the repulsive Coulomb force increases

significantly, such as quasi-fission, fusion-fission and deep inelastic collisions (Fig. 1.2). The

assumption that nucleons immediately form a singular compound nucleus once reaching a

critical distance is no longer valid, and other reaction outcomes may occur instead. Models

based on a dinuclear system (DNS) [35,36] were developed as an alternative way of describ-

ing the fusion mechanism. The DNS treats fusion as a nucleon transfer process between

two touching nuclei, and uses mass (charge) asymmetry, neck formation and deformation

factors as parameters in the calculations. It was found to agree well with experimental

results for both cold and hot fusion reactions∗ [37].

A step toward the use of fully quantum dynamical models was the time-dependent coupled-

channels wave packet (TDCCWP) [38]. This method combines the time-dependent wavepacket

∗Cold and hot fusion reactions refer to the formation of a compound nucleus with energies of between

10 − 20 MeV and 40 − 50 MeV respectively.
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Figure 1.2: A schematic figure showing various outcomes of heavy-ion collisions. Figure

from [37].

(TDWP) approach with the previously mentioned coupled-channels equations, and allows

for the quantum treatment of radial motion and coupled the radial motion to intrinsic ex-

cited states. The TDCCWP was shown to calculate transmission coefficients in agreement

with TISE calculations for a wide range of energies and angular momenta. However, in

order to include environmental effects, this method would be difficult to use since there is

no intuitive method to include decoherence since a wave function can only describe pure

states.

1.3 The proposed development for heavy-ion fusion reactions

Constant advancements in technology have created an abundance of viable techniques that

can be exploited for the modelling of increasingly specific mechanisms using the open quan-

tum system approach [39–42]. Figure 1.3 gives a visual representation of the open quantum

system, and more details are given in Section 2.2. Choosing the correct implementation

is important to balance the amount of useful and accurate information produced from the

model, the complexity of calculations and computational run time.

The technique used in this thesis is the coupled-channels density-matrix (CCDM) method
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Figure 1.3: A graphic of an open quantum system. The reduced system contains the

nondissipative dynamics whereas the environment is related to the dissipative dynamics.

Note that this method is not restricted to a singular environment and many more can be

included subject to numerical restrictions.

[43–45], using the Markovian Liouville-von Neumann (LvN) equation with Lindblad dy-

namics describing the dissipation to the environment. The LvN equation has been widely

discussed and applied in quantum molecular dynamics [46–49] and the generality of its

application allows for its rich literature to be used in this interdisciplinary physics research.

The first uses of this method in the nuclear scale involved an investigation into dissipative

quantum dynamics and the effects of quantum decoherence on reaction observables [50,51].

This was motivated by fusion measurements that did not agree with coherent coupled-

channels approach calculations [52].

In the context of nuclear reactions, the CCDM method considers the excitation of both

the projectile and target nuclei on a radial grid. A wave packet represents a distribution

of incident energies for the projectile-target radial motion, which allows one to use a finite

radial grid for computational simulations. The propagation in time is approximated using

Faber polynomials [53], a polynomial expansion technique that significantly improves the

computational run time compared to directly solving the LvN equation. This method
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preserves the trace of the density matrix and allows the observation of the interactions

before, during and after fusion. The use of a dynamic approach, based on the LvN equation

and using the CCDM, offers a range of additional information that could not be obtained

before. For example, this method gives the ability to follow the time propagation and

observe the density of probability at any time step, which is useful for visualisation and

analysis of the dynamics.

The present work concerns new developments in heavy-ion fusion reaction theory. This

involves the use of the aforementioned method to implement effects on heavy-ion fusion

due to a surrounding environment, or due to couplings to the internal structure of the

colliding nuclei (non-collective excitations). To do this, we first apply a test case nucleus

that is well-studied and compare the CCDM method to TISE calculations. Then the path

is clear to begin studying environmental effects. The ability to include these effects as part

of the open quantum system formalism is the main improvement of our dynamic approach

over the stationary approach. The report structure below gives a brief insight into each

chapter within this thesis and chronologically describes the journey of this research project.

1.4 Report structure

The report is structured as follows. Chapter 2 introduces some relevant theoretical back-

ground including the construction of the initial density matrix and the equations of motion.

In Chapter 3, the numerical methods are explained along with a short literature review of

other methods that address similar problems. The coupled-channels density-matrix ap-

proach that is used throughout this thesis is described in detail in Chapter 4. Chapter

5 provides information on the window operator and how it is used to provide accurate

energy-resolved fusion probabilites. Chapter 6 shows the model validation results of the

16O+ 144Sm collision and gives details of techniques used to enhance the model calculations.

Chapter 7 describes the study of plasma effects on heavy-ion fusion reactions. Chapters 6

and 7 are extensions to a research letter and article, published by the author in the jour-

nals Physics Letters B and Physical Review C respectively [54,55]. Chapter 8 presents the

background and results of the effect of nuclear friction on heavy-ion fusion. Conclusions

and further work are given in Chapter 9.



Chapter 2

Theoretical Background

2.1 Basic density matrix theory

Nuclear physics has been described both classically and within the theory of quantum

mechanics depending on the observable of interest. Observations of macroscopic interac-

tions described using classical mechanics have been instrumental in the development of

nuclear physics, famous examples being the discovery of Rutherford scattering by Ruther-

ford, Geiger and Marsden [56, 57] and Bohr’s theory of nuclear fission based on the liquid

drop model [58]. The application of quantum mechanics to nuclear physics allowed re-

finements in calculations, so that individual nucleus interactions with a physical system

could be described by a state vector, |ψ〉, for calculations where a pure state has been

prepared [59],

|ψ〉 =
∑
n

cn |vn〉 , (2.1)

where cn are complex coefficients and |vn〉 are the eigenvectors of a particular operator,

such as the Hamiltonian operator. Then the pure state density matrix is defined as

ρpure = |ψ〉 〈ψ| , (2.2)

and the mean value of an operator Â in matrix form Amn = 〈vm| Â |vn〉, for a system in a

pure state described above is given by,

9
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〈Â〉 =
∑
mn

Amn c
∗
mcn. (2.3)

In quantum mechanics, systems are often simplified and pure states are used to describe

physical interactions. However, it is unlikely that a superposition of coherent pure states

exists in nature due to the presence of environments that cause decoherence and dissipation

[60]. Mixed states are used when we do not have the exact information on the quantum

system and can be mathematically described using a density matrix.

The mean value of Â for an incoherent superposition of many pure states ψ(i) can be

described by statistical weights p(i) multiplied by the expected value of the operator for

each pure state 〈Â〉i [61],

〈Â〉 =
∑
i

p(i)〈A〉i =
∑
nm

Amn
∑
i

p(i)c∗(i)m c(i)n . (2.4)

The mixed state density matrix can then be written as a weighted sum with
∑

i p
(i) = 1,

of pure state density matrices,

ρnm =
∑
i

p(i)
∣∣∣ψ(i)
n

〉〈
ψ(i)
m

∣∣∣ =
∑
i

p(i)c∗(i)m c(i)n , (2.5)

and hence

〈Â〉 =
∑
mn

Amnρnm = Tr(Âρ̂), (2.6)

since the trace of Tr(Âρ̂) is the sum of the diagonal elements of the matrix Âρ̂. The

concept of a density matrix can be used to describe the state of a quantum system in any

circumstance, from a pure, coherent scenario to a mixed, incoherent scenario. It is the most

general mathematical object to describe any quantum state. To quantify how mixed a state

is, the purity P and von Neumann entropy Svn are used and are given below,

P = Tr[ρ̂2], (2.7)
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Svn = −Tr[ρ̂ ln(ρ̂)], (2.8)

and for pure states P = 1 and Svn = 0. These quantities are useful for numerically

describing the decoherence within an open system and the irreversibility due to energy

dissipation to an environment. Further information on purity and entropy is provided later

in this work.

2.2 Open quantum systems

An open quantum system is a quantum system that is coupled to an environment that

may also be another quantum system. In a reduced density matrix, the full system is

usually separated into two parts: the reduced system S and the environment∗ B. The

reduced system is the primary system of interest that may change from internal dynamics

or interactions with the environment. Then the total, global Hamiltonian consists of 3

terms [62]

H = HS +HB +HI , (2.9)

where HI denotes the interaction Hamiltonian between the system and bath. The combined

system and bath (S + B) is considered a closed system and follows unitary Hamiltonian

dynamics [60], since we assume any further interactions, for example interactions of the

environment with the environment’s surroundings, are negligible. However, the state of the

reduced system can be influenced by the interactions with its environment(s), and these

system-environment interactions can lead to non-unitary Hamiltonian dynamics. In this

work, a phenomenologically determined Hamiltonian is used and is described in Section

4.2. This is necessary due to the absence of a fully described microscopic model†, which

would have its own limitations due to memory and computational run time. In fact, the

∗The environment can also be called a reservoir or heat bath depending on the thermal equilibrium

conditions.
†The model being fully described by quantum mechanics.
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main reason open quantum systems are used is due to the complications involved with

creating a complete mathematical model for combined system dynamics.

In an open quantum system, the presence of an environment creates correlations between

the states of the system and the states of the environment. This creates a statistical

mixture of eigenstates from the initial coherent or partially coherent quantum state, which

mathematically can be used to determine the degree of decoherence in the measured system,

using Eq.(2.7) for example. The environment can also be thought as a quantum probe

which performs an indirect measurement on the open system, causing the deterioration of

superpositions of some states within the system, destroying quantum coherences [63]. There

are still many answers to be found regarding decoherence, such as its role in determining

the boundary between classical and quantum mechanics. The use of environment states

provides the model with a method of removing probability from the density matrix, and

therefore it is possible to make correlations between physical observables and decoherence.

The inclusion of an open quantum system environment is the primary improvement over

previously conducted research. To demonstrate the capability of this method, a ‘fusion’

environment is used for describing dissipation to an environment using an open quantum

systems approach. When nuclear fusion occurs, the newly formed compound nucleus has

complex states that causes a loss of flux from the reduced system, in the form of energy and

radial probability density. Hence the fusion environment is not a physical environment, but

it is modelled as an environment to allow the measurement of the flux lost due to nuclear

fusion, throughout the time propagation. This technique is used further for treating nuclear

friction as an environment in the model. The nuclear friction environment represents the

energy dissipation from the reduced system that could occur as a result of radially-induced

non-collective excitations. More information about the friction environment is given in

Chapter 8.

2.3 Equations to describe dissipation

To describe dissipation, quantum mechanical semigroups were introduced with the most

general form given by Lindblad in 1976 [64, 65]. These semigroups are essentially a family

of maps that have a few key properties, the most important for this research being complete
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positivity. The complete positivity condition for a density matrix means that all diagonal

values in the density matrix are positive or zero. The probabilities related to the trace of

the density matrix and the coherence information at intermediate time steps in the time

propagation are therefore retained. More details about quantum dynamical semigroups can

be found in Ref. [66].

While the Lindblad master equation is used in this work as an ansatz to form the equa-

tions of motion (EOM) (see Chapter 4), it is not the only method available for describing

dissipation in quantum dynamical systems. Another well-known alternative is the Redfield

approach [67], a method based on a Markovian master equation that has been used in

works over the last 50 years [68–70]. The Redfield equations were created using a second

order perturbative approach and it also uses the reduced density matrix formalism. Direct

integration is achievable for small-medium problems, however the use of stochastic wave

function methods is often necessary for scaling. Outside of the weak coupling limit, the

Redfield equations become less useful as it is a perturbative method. Another key disad-

vantage of using the Redfield equations is the non-positivity of the density matrix, that is,

the information in the density matrix no longer relates to physical properties. It is only

when the average over all time steps is taken that the results are physical. In nuclear fusion

reactions, the information from the density matrix can produce some interesting results

at intermediate time steps during the time propagation [50], which makes the Redfield

approach less useful than the Lindblad approach in this work.

Another alternative approach for describing dissipation to an environment is the Caldeira-

Leggett model [71]. This model was developed in 1983 and describes a Brownian particle

interacting with a bosonic bath. The quantum system is bilinearly coupled to an infinite

bath of harmonic oscillators, which accounts for quantum Brownian diffusion. The coupling

with the surrounding thermal bath induces dissipation and decoherence of the system. To

achieve this, Caldeira-Leggett starts with the following ansatz: the bath is created with

harmonic oscillators coupled to the reduced system, often based on the proximity of the

particle and bath. It uses the Markovian approximation and assumes that the system does

not affect the bath, i.e., as the bath is assumed to be infinitely large, any information

imprinted on the bath by the system is immediately washed away. Although this model

has been widely used, it makes some fundamental assumptions of the underlying spectral
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density, which describes the ‘noise’-spectrum of the bath and assumes a simple Ohmic

distribution. However, we choose to use the Lindblad master equation since it is more

general and versatile. For example, no assumptions about the spectral density need to be

made, and the form of the environment-system interactions is less restricted.

The use of Lindblad dynamics for the evolution of the reduced system is justified due to

weak coupling of the system to the complex environment. Additionally, the Markovian

approximation is valid due to the adiabatic nature of the nuclei movements compared to

the relaxation timescale of the environmental degrees of freedom. For example, once the

projectile nucleus is within the fusion pocket, it is assumed that the compound nucleus is

formed instantaneously. The complete positivity of the dynamical map means that real

probabilities can be derived from diagonal elements of the density matrix at any discretised

time step, and the small probabilities linked with tunnelling are well preserved in the

auxiliary fusion state.

2.3.1 Applied uses of Lindblad dynamics

Davidsson and Koweleski [47] used the Markovian Lindblad master equation in a molecu-

lar dynamics scenario. The wave packet formulations previously employed were unable to

record the photon decay which populate intermediate states that contribute to the molec-

ular dissociation of a MgH+ molecule. Additionally, they note that decoherence is an

inevitability when observing photon decay processes and that pure state wavefunctions are

unsuitable for modelling this process.

In nuclear physics, the use of Lindblad dynamics was first suggested by Săndulescu, Scu-

taru and Scheid [72] for describing dissipative deep-inelastic heavy-ion collisions. This was

further developed by Isar [73] and it was shown that Lindblad theory could be used for

modelling a one-dimensional damped harmonic oscillator and the time evolution of the

density matrix was explored. This is relevant to various processes such as cold fission [74],

quasifission reactions [75], giant resonances [76, 77] and in theoretical models of quantum

optics [78,79].

Recently, a recurrent neural network (RNN) approach has been used to reproduce the

entire time evolution of a two-level atom reduced density matrix which obeys a Lindblad-
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like master equation by Burgess and Florescu [80]. Non-Markovian effects were generated

by a divergence of the local density of states of the electric field at a photonic crystal band

gap. The RNN was able to learn the Lindblad equation and thus was able to solve the

dynamics of the system much faster than conventional techniques. The results showed that

the RNN was capable of reproducing the non-Markovian effects of the environment, due to

the implicit time dependence of the RNN architecture.

In quantum biology, an investigation into proton transfer along the hydrogen bonds in a

base pair was conducted by Godbeer, Al-Khalili and Stevenson [81] due to the surface

having the shape of an asymmetric double-well potential. Proton tunneling would then

occur for some protons with less energy than the barrier potential. To measure the effect

that quantum tunneling has on the creation of tautomers in DNA, Lindblad theory was

used to describe transitions between energy eigenstates and the effect of an environment

(water molecules) on energy eigenstate populations. The results showed that environmental

couplings increased the tunneling probability in this model but the increase was negligible.

2.4 Summary

This chapter provides general theoretical background that is relevant for understanding key

concepts within this thesis. The chosen topics reinforce the relationship between the wave

function and a density matrix, provides some background on open quantum systems and

how it is used in this work. The use of the Lindblad master equation is justified and a few

cases where it has been used in literature are presented.



Chapter 3

The Numerical Methods

3.1 Literature review of numerical methods for time propa-

gation

The Lindblad master equation [60] is composed of the LvN equation for the nondissipative

system dynamics and a dissipative Liouvillian, L̂D, for the dissipative dynamics,

˙̂ρ(t) = − i
}

[
ĤS , ρ̂(t)

]
+ L̂Dρ̂(t). (3.1)

Further details of the EOM used in the present method are given in Chapter 4, from Eq.(4.4)

to Eq.(4.13). This section focuses on the numerical methods that are available to solve the

Lindblad master equation.

Trying to solve Eq.(3.1) exactly is ideal but this is difficult for problems with large matrix

sizes. The calculation of the exponential of an M × M matrix leads to a number of

calculations of order O(M3), and this is unsustainable when using a large radial grid,

considering energy eigenstates of the projectile or target, and then calculating this over

many time steps [82]. As a result, approximations via direct or indirect methods to compute

the time evolution of the density matrix are commonly used. The direct methods directly

propagate the density matrix and are theoretically more accurate since they contain fewer

approximations and often the systematic error is lower [41, 83]. Indirect methods try to

16
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approximate the propagation of the density matrix by using many wave packets. These

methods tend to be faster and require less memory than direct methods, but due to the

approximations that must be made they are less accurate and struggle to be useful when

small probabilities are required.

When using a direct approach, Eq.(3.1) must be solved via numerical integration and in

matrix form given below

ρρρ(τ) = exp(τLLL)ρρρ0, (3.2)

where LLL is a M ×M matrix representation of the Liouvillian, and ρ(0) = ρρρ0.

The direct approaches of Lindblad and Redfield [64, 67] create an exponential of a large

matrix which must be approximated for problems with meaningful sizes. This is because

the large matrix must be calculated for every time step which is computationally expen-

sive. There are a few ways to do this including Runge-Kutta integration, split operator

techniques, Lanczos methods and polynomial expansions [84–87].

While the Runge-Kutta method is relatively simple to implement and the direct integration

was shown to be accurate for calculations in a open quantum system [88], it is relatively

slow for large matrix calculations and instead it is often used as verification algorithm [89].

The polynomial expansion methods were found to be of interest due to the advantage of

having useful accuracy and realistic propagation times. It is not explicitly known which

technique is best for the integration, although one work [53] showed promising results

and reasonable execution times for calculation of the time evolution operator on a density

matrix, in addition to a relatively simple implementation. This is the technique that was

used in this research, the Faber polynomial expansion method. A brief description of

this numerical method and other interesting integration methods are given below, with an

explanation of their key advantages and disadvantages.

3.2 Polynomial expansion methods

Polynomial expansion methods are a useful numerical tool which can be used to approximate

the exponential of a large matrix, often to a sufficient degree of accuracy while maintaining
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reasonable computational run times. Polynomial expansion techniques have been used in

literature for the propagation of a wavefunction [46,84].

Two polynomial expansion methods that have been shown to be effective when using a

density matrix are the Faber polynomials and the Newton interpolation method. The

Newton interpolation has been used previously for density matrix propagation, whereas

Faber polynomials have been shown to produce similar results, be easier to implement,

have better numerical stability and have similar efficiency [53].

The following subsection gives an outline of the Faber polynomial expansion method used

and the reasoning behind its use. For more information on the method, see Ref. [53].

3.2.1 Faber polynomials

The Faber polynomials used together with conformal mapping are given by the following

recursion relation [53],

Fk+1(z) = z · Fk(z)−
k∑
j=0

γj · Fk−j(z)− k · γk, k ≥ 1 (3.3)

here γk are coefficients from the Laurent expansion of the wavefunction at ∞,

ψ(w) = w + γ0 + γ1w
−1 + γ2w

−2 + ... , (3.4)

and they depend on the shape of the domain, G, which is elliptical for the Faber approxi-

mation. The specific conformal mapping is chosen to reduce the memory requirements of

the system by maximising the number of non-zero terms in the Laurent expansion,

ψ(w) = w +m+
d

w
, (3.5)

where w is a complex number that satisfies the normalisation condition lim|w|→∞ ψ(w)/w =

1 and m and d are complex parameters that determine the ellipse shape and position. In

matrix form, the recursion relation in Eq.(3.3) becomes a three-term recursion [53],

Fk+1(LLL)ρρρ0 = (LLL −m · III)Fk(LLL)ρρρ0 − d · Fk−1(LLL)ρρρ, k > 1 (3.6)
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where the first three terms are given by,

F0(LLL)ρρρ0 = ρρρ0,

F1(LLL)ρρρ0 = (LLL −m · III)ρρρ0,

F2(LLL)ρρρ0 = (LLL −m · III)F1(LLL)ρρρ0 − 2d · ρρρ0.

Using Eq.(3.6) with the parameters: m = 0 and d = 1
4 , the Faber polynomials Fk were

found to be related to the normalised Chebyshev polynomials Tk by the relation Fk(z) =

21−kTk for k ≥ 1 with the initial condition F0 = T0. Chebyshev polynomials are special

Faber polynomials which have been shown to be useful due to their simplicity in a variety

of situations for approximating functions [90]. However, their use cannot be applied to this

work because these polynomials are not flexible with changes to the strength of dissipation,

and the matrix values we use are typically complex whereas the Chebyshev approximation

is suited to computing either real or imaginary eigenvalues.

The density matrix propagation in time is approximated accordingly [53],

ρρρ(τ) = exp(τLLL)ρρρ0 ≈
n∑
k=0

ck(τ)Fk(LLL)ρρρ0, (3.7)

where the coefficients ck(τ) are solved using the conformal mapping term from Eq.(3.5),

ck(τ) =
1

2πi

∫
|w|=1

exp{τ(w +m+ d/w)}
wk+1

dw, (3.8)

and then using the identity exp
{
z (x+1/x)

2

}
=
∑

k(x/i)
kJk(iz), a contour integral can be

used and the analytical solution is,

ck(τ) =

(
−i√
−d

)k
exp(τm)Jk(2τ

√
−d), (3.9)

where Jk is a Bessel function of the first kind. If the maximum modulus of the eigenvalues

(λ) is known, then the optimal ellipse parameter, m ∈ [−2, 0], can be determined using the

following equation,
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(1 + r2)m3 + (6r2 − 2)m2 + 12r2m+ 8r2 = 0 (3.10)

where r = Im(λ)/Re(λ). This sets a couple of constraints: d = −(m + 1), as this ensures

the ellipse never enters the right part of the complex plane, and the scaling factor is defined

as σ = |λ/q| where q =
√

1 + r2 2rm(2 +m)2/(m2 + r2(2 +m)2).

The Frobenius norm and the coefficients ck(n) are used to determine the stability of the

recursion,

||Â|| =
√

tr(Â†Â) (3.11)

where Â is Fn(L)ρ̂0. The Frobenius norm is stable at approximately 1, and it is sensitive

to the scaling of the eigenvalues of L. The modulus of the coefficients is sensitive to the

position of the domain, and it is correct when it decreases by many orders of magnitude as

more polynomials are used until it becomes stable. Therefore, a local error estimate formed

from these quantities can be used [53],

εloc(k) = |ck(n)|
√

tr(F∗kFk). (3.12)

3.2.2 Newton interpolation

The complex Newton interpolation uses a uniform approximation of an analytic function, F ,

in a domain G. Interpolation is useful when the approximating function has known values

at certain points. The method follows a sequence of steps to approximate a solution [41]:

1. A domain, G, is defined using conformal mapping

2. The interpolation points must be calculated either analytically or numerically

3. The value of the function F can then be calculated on these points

4. The divided difference sequence ak is then constructed.
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The Newton interpolation often uses a rectangular shaped scaled domain [91], however the

shape of the domain is not restricted unlike in the Faber approximation. The conformal

mapping relation for the Newton interpolation is given as,

ψ(w) = w +m− 1

(2w)3
, where m ∈ C, (3.13)

and this specifies a family of rounded rectangles centered at m. The interpolation sampling

points zk should be evenly spaced on the boundary of the domain and are often chosen

to be the eigenvalues λn of the superoperator LLL. A 2 term recursion gives the Newton

polynomials {ωk(LLL)ρρρ0}k∈N in matrix form,

ωk+1(LLL)ρρρ0 = (L − zk+1 · III)ωk(LLL)ρρρ0, (3.14)

with the initial condition being ω0(L)ρρρ0 = ρρρ0.

The expansion coefficients ak are calculated from the divided difference algorithm, the first

two terms are given as an example: a0 = F (z0), a1 = (F (z1)− F (z0))/(z1 − z0) [41].

By expanding an analytic function within the domain of G, f(LLL)ρρρ0 = exp(τLLL)ρρρ0 , the

Newton interpolation of order n is given by the following

exp(τLLL)ρρρ0 ≈ P τn (LLL)ρρρ0 =

n∑
k=0

ak exp (ωk(LLL))ρρρ0, (3.15)

After the interpolation points and divided difference coefficients are calculated, the error

can be checked by testing a value of the polynomial Pm(ztest) and the function F (ztest).

More polynomials should be included if the calculated error is too high. One disadvantage

of this method is that the errors are not smooth due to the divided difference coefficients

i.e. the error will oscillate as n increases.

A previous study conducted a review of the Faber approximation and Newton interpolation

methods within a molecular dynamics setting [53], using a damped harmonic oscillator

with weak dissipation and using a grid with 128 points. The overall finding was that both

methods were similar in many respects – memory occupation, generation of coefficients,
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efficiency of their algorithms. The primary difference was that the Faber approximation is

simpler to implement and was slightly more stable at higher polynomial orders.

3.3 Indirect methods

Indirect methods do not propagate a density matrix but instead the density matrix is

represented as a function of wave vectors. These approaches are statistical and have the

advantage of being numerically efficient which is important as numerical propagation of a

density matrix is a limitation for direct methods. A few relevant methods that have been

used in literature are discussed below.

3.3.1 Variational wave packet (VWP) method

This method used in Ref. [92] takes the reduced density operator and expands it into a

basis of time-dependent wave functions,

ρ̂(t) =

n∑
u=1

n∑
v=1

ρuv(t) |ψu(t)〉 〈ψv(t)| , (3.16)

where |ψu,v(t)〉 are the time-dependent expansion wave functions, ρuv(t) are the time-

dependent coefficients and n is the number of expansion wave functions used. For a di-

mension N in the relevant Hilbert space, the number of matrix elements for a density

matrix is N2. The density operator in Eq.(3.16) would use n2 + nN number of matrix

elements. The number of expansion wave functions n can be much smaller than N and

therefore computational resources needed for the time propagation of the density matrix

could be greatly reduced.

The VWP method was tested using a three-mode vibronic coupling system, weakly coupled

to a dissipative environment [92]. The conclusions stated that the computational expense

was similar to that of a Monte-Carlo wave function propagation method, but their result for

linear polarisation was closer to the converged result. This approach seemed effective for

the investigation of coherent short time dynamics, but one limitation is that this method

struggles to calculate expectation values of observables in the long time limit when the

system dynamics become completely incoherent.
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3.3.2 Monte Carlo Wave function (MCWF) method

An example of the Monte Carlo wave function (MCWF) method is given in Ref. [93],

where it is used to study the fluctuation and dissipation as a result of quantum jumps

in quantum optics. Instead of treating the dissipative coupling of a small system and a

large reservoir with a master equation, the MCWF uses a non-Hermitian Hamiltonian and

random quantum jumps, after which the wave function is renormalised. It was shown that

the MCWF is equivalent to the LvN equation and that for sufficiently large n outcomes,

one can calculate a quantum average via Eq.(3.17)

〈A〉(n)(t) =
1

n

n∑
i=1

〈
φi(t)

∣∣A ∣∣φi(t)〉 . (3.17)

The equivalence is valid since the density matrix can be described as an ensemble of systems

populating different states depending on probability. The efficiency of MCWF calculations

is dependent on the type of operator used. In this example, local operators were less efficient

than density matrix calculations, whereas global operators were equal or better than them

provided that N (the number of levels involved) was larger than n (the number of wave

functions required). One clear disadvantage is the loss of information due to the averaging

that takes place, and therefore knowledge of the contribution from individual systems to

an observable is lost.

3.3.3 Stochastic surrogate Hamiltonian Method

Another stochastic method which works by propagating many wave packets to replace the

calculation of the time evolution of a density matrix is the stochastic surrogate Hamiltonian

method [94]. This method solves the time-dependent Schrödinger equation (TDSE) instead

of the LvN equation. An initial state is obtained by averaging many realisations of the

system-bath wave packets.

The stochastic surrogate Hamiltonian method uses two baths, the second being a stochastic

bath that has the same frequency spectrum as the primary bath. At random times, bath

modes with the same frequencies are swapped, which reduces the recurrence time of the first

bath considerably. This method is an improvement over the surrogate Hamiltonian method,
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since it allows for longer time propagation of the system-bath dynamics. Additionally, every

realisation of the dynamics is unitary, linear and efficient propagation methods can be

deployed. This method shares the problems with indirect methods, where the calculations

contain too much noise and limits its ability to produce meaningful low-probability values.

While there are distinct advantages to using these indirect methods, for nuclear fusion

reactions the direct methods are often favoured because of the high accuracy needed when

using low energies well-below the Coulomb barrier. Chapter 4 gives an in-depth description

of the approach used in this work.

3.4 Methods for calculation of the kinetic energy operator

3.4.1 Fourier grid method

The main method that is used for the action of the kinetic energy operator on the density

matrix is the Fourier grid method. This method uses a combined forward and backward

discrete Fourier transform to change the representation from configuration space to mo-

mentum space [41,95],

ρ̃(kp, k
′
q) =

1

2πN

N−1∑
m=0

N−1∑
n=0

ρ̂(rm, sn)e2πi(
−pm
N

+ qn
N

), (3.18)

for N grid points, p = 0, 1.., N − 1 and q = 0, 1.., N − 1.

The advantage of this method comes from the simpler calculations required when using the

kinetic operator T̂ in momentum space,

T̂ =
}2k̂2

2µ
k̂ = − i

}
∂

∂r
, (3.19)

where µ is the reduced mass and r is the position on the radial grid. After the calcu-

lation, the inverse of this Fourier transform is used to change the representation back to

configuration space. The potential energy matrix used is diagonal,

Vii′ = δii′V (xi). (3.20)
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Although there are methods that reduce the computational cost of this calculation in con-

figuration space (see DVR method), the calculations in momentum space were notably

quicker provided that the Fourier transform does not take longer than the configuration

space calculations. Since the Fourier grid method is able to take advantage of the fast

Fourier transform (FFT) algorithm, it is much more favourable to use the Fourier grid

method for the time propagation of the density matrix. Both the Fourier grid and DVR

methods were tested and it was found that the accuracy of one method did not differ from

the other.

3.4.2 The discrete variable representation method

The discrete variable representation (DVR) gives the kinetic and potential energy in grid

point representation. This simple kinetic energy relation allows the kinetic energy to be

calculated solely using the grid spacing, provided that the grid is equally spaced. In addi-

tion, the grid representation of the kinetic energy is a property of the grid itself and not

dependent on any underlying basis set [96]. In one dimensional Cartesian coordinates for

the end points of the grid a = 1.5 fm and b = 150 fm and grid size N , the grid point

representation of the kinetic energy is given by Eq. (3.21)

Tii′ =
}2(−1)(i−i

′)

2m∆r2


π2/3− 1/2i2, i = i′

2

(i− i′)2
− 2

(i+ i′)2
i 6= i′,

(3.21)

with ∆r = (b− a)/N and the potential energy matrix Vii′ is the same as Eq.(3.20)

For in depth details on the method and the enhanced efficiency compared to a ‘full’ Hamilto-

nian matrix, see Ref. [96]. An example of a widely used DVR approach is the Lagrange-mesh

method [97].

3.5 Summary

The time propagation of the EOM is essential for the work in this thesis, and the size of

the matrix required for stable calculations is too large for exact methods to be used for
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the time propagation. The numerical methods available for the approximation of the EOM

have been discussed and the use of polynomial methods, in particular Faber polynomials,

proved to be an efficient, dependable and simple to implement method. The Fourier grid

method for calculating the action of the kinetic energy operator is explained and it is the

method of choice due to its accuracy and faster calculation time.



Chapter 4

The Coupled-Channels

Density-Matrix (CCDM)

Approach

The fundamental physics concept in the coupled-channels model is that the colliding nuclei

are in a coherent superposition of intrinsic states, due to the coupling between the radial

motion and intrinsic degrees of freedom.

The CCDM approach is based on three steps:

1. Definition of an initial density matrix

2. Time propagation

3. Analysis of the time-propagated density matrix

Steps 1 and 2 are presented in this chapter, with the numerical techniques for the time

propagation discussed in the previous chapter. Chapter 5 is devoted to a specific technique

— the window operator method, for step 3. This approach has previously been used in

literature to quantify quantum decoherence effects on asymptotic observables [51], how-

ever the energy resolution of a density matrix using the window operator is a significant

advancement in the present work.

27
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4.1 The initial density matrix

For a system of two collision partners in their ground states, the radial components of the

initial density matrix are formed by a wave packet that is a function of the radial grid

position, r,

ρrs11(t = 0) = |r〉 〈s| , (4.1)

where |r〉 and 〈s| are position states on the radial grid, that allow for indexing across the

radial space. The density matrix created from the wavefunction above would be correct if

the target and projectile nuclei were to remain only in their ground states. However, for

every position on the radial grid, the target and/or projectile could be in an excited state.

Therefore the density operator is a tensor and is formed from a mixed basis of states: the

radial position and intrinsic energy states,

ρ̂ =
∑
i,j,r,s

|r〉 |i〉 ρrsij (t) 〈j| 〈s| , (4.2)

where |i〉 and 〈j| are energy eigenstates of the asymptotic (internal) Hamiltonian of each

separate nucleus, and they describe the energy state of the system. There are some qualities

that the density operator must fulfil in order to extract meaningful probabilities at each

propagation time step. The density operator must be Hermitian and positive semi-definite∗

because the diagonal elements of the density matrix are the coefficients ρrrii (t), which have

the physical meaning of probabilities. More information on the reasoning behind this con-

dition is given below in Section 4.2.

4.2 Equations of motion

4.2.1 Nondissipative dynamics

It is well-known that the TDSE describes the time evolution of a wavefunction [98],

∗Positive semi-definite: all eigenvalues within the density matrix must be equal to or above 0.
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i}
d

dt
|ψ(t)〉 = Ĥ |ψ(t)〉 . (4.3)

The equivalent equation to describe the time evolution of a density matrix is the nondissi-

pative Liouville-von Neumann (LvN) equation [41,99],

L̂H ρ̂(t) =
∂ρ̂(t)

∂t
= − i

}

[
ĤS , ρ̂(t)

]
, (4.4)

where
[
ĤS , ρ̂(t)

]
= ĤS ρ̂(t) − ρ̂(t)ĤS is the commutator, and ĤS is the reduced system

Hamiltonian,

ĤS = Ĥ1(r) + Ĥ0(ξ) + V (r, ξ). (4.5)

Further definition of the ĤS components are described below:

1. The nuclear and Coulomb forces between the two nuclei, Ĥ1(r) = T̂ + Û , where T̂ and

Û are the kinetic energy operator and the total bare nucleus-nucleus real potential

respectively. Explicitly, Û is the monopole interaction potential between two nuclei

in their ground states.

2. The intrinsic Hamiltonian determined from the considered excited states of the target

or projectile, Ĥ0(ξ).

3. The total real coupling potential which determines how the radial motion affects the

population of the internal energy spectrum, V (r, ξ).

Here Û = UN (r) +UC(r) where UN is the strong force nuclear potential, which is modelled

using the Woods-Saxon potential,

UN (r) = − VWS

1 + exp

(
r −RWS

aWS

) , (4.6)

where VWS is the strength of the potential, RWS = rWS(A
1/3
P + A

1/3
T ) is the range of the

Woods-Saxon potential and aWS is the diffuseness parameter. The Woods-Saxon constants
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used for the 16O + 144Sm system are given in Table 6.1. The Coulomb potential UC(r) is

given by the Coulomb law for the electrostatic potential between two point charges,

UC(r) =
ZPZT e

2

r
, (4.7)

where ZP and ZT are the unit charges of the projectile and target respectively. This

approximation is adequate for the calculations in this work since we do not consider the

dynamics of when the colliding nuclei overlap, similarly to the coupled-channels equations

in Eq.(1.2). If one is interested in considering the dynamics of overlapping nuclei, detailed

modelling of the colliding nuclei is required, and this can be achieved with models based

on TDHF theory [22].

The model values of Û and V (r, ξ) for the test nuclei 16O + 144Sm are plotted in Fig. 4.1

to show the position and strength of these potentials, in addition to the Γ decay function, a

function used to model fusion in these calculations. Plotting V (r, ξ) shows the localisation

of the coupling potential which is negligible until a position near the Coulomb barrier is

reached. The coupling potential is composed of coupling matrix elements, V rr
ij , that are

functions of the radial position, β deformation parameter and energy level of the excited

state. For the calculations in this work, we require the use of rotational and vibrational

couplings, and these are implemented in the same manner as Ref. [31].

Including these terms and using the density matrix given in Eq. (4.2), the nondissipative

dynamics are described by the following equation,

(L̂H ρ̂)rsij = − i
}

{
ρrsij (ei − ej) +

M∑
t=1

(T rt ρtsij − ρrtij T ts)

+ ρrsij (U rr − U ss) +
N∑
µ=1

(V rr
iµ ρrsµj − ρrsiµ V ss

µj )

 , (4.8)

where ei and ej are the eigenenergies of the intrinsic Hamiltonian Ĥ0, and M and N

determine the maximum size of the radial grid and the number of energy levels included

respectively. A derivation of Eq.(4.8) is given in Appendix A.
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Figure 4.1: The potentials for the test collision 16O + 144Sm, as a function of internuclear

radius, r. The thick purple solid line is the total, bare nucleus-nucleus potential U(r) and

the dashed line is the total coupling potential, V (r, ξ), between the ground state and the

3− vibrational excited state (1.81 MeV) of 144Sm. This state is chosen since it was shown

to have a greater effect on fusion than the low-lying 2+ excited state [12]. The thin black

solid line is the decay function Γ, a Fermi function that removes positional probability from

the reduced system density matrix due to compound nucleus formation.

4.2.2 Dissipative dynamics

In nuclear fusion reactions, the formation of an excited compound nucleus leads to ir-

reversible dissipation of energy that happens within the fusion pocket, located past the

Coulomb barrier. For a nucleus to interact with the fusion environment and become an

excited compound nucleus, it must have enough energy to overcome the Coulomb barrier

or if the energy is near or below the barrier it can penetrate the Coulomb barrier via quan-

tum tunneling. The latter interaction is more interesting since above-barrier calculations

and experiments can be described classically and are relatively simple to conduct. When

any part of the reduced mass wave packet is localised inside the fusion barrier, fusion is

considered to happen instantaneously and a compound nucleus with its own nuclear states

is formed. Another environment that has been considered is created by giant dipole reso-

nances (GDRs) [100]. GDRs are the result of collective excitations of the nucleons within

the nucleus, causing the protons and neutrons to oscillate, move collectively against each
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other and create a separation between the centre of mass and charge which generates an

electric dipole moment [101]. The decay of the GDR is independent of the dynamical cou-

plings and only non-collective excited states would be coupled to a GDR excitation, causing

thermal excitations in the nuclei [102]. These two environments contain complex nuclear

excitation modes which cannot currently be described within the reduced system Hamilto-

nian and a method of treating dissipation is needed. Note that the calculations in this work

do not include the GDR environment, but it has been used successfully in literature [50,51].

The irreversible dynamics in this work are described using the dissipative part of the Lind-

blad master equation (also called the Gorini–Kossakowski–Sudarshan–Lindblad equation),

which introduces quantum decoherence and dissipation through a dissipative Liouvillian:

L̂Dρ̂ =
∑
α

(
Ĉα ρ̂ Ĉ†α −

1

2

[
Ĉ†αĈα, ρ̂

]
+

)
(4.9)

where [...]+ denotes an anticommutator. The Lindblad operators, Ĉα, are used to treat the

dissipation of the system to the environment. These are often phenomenologically chosen

depending on calculated relaxation rates. The probability of the transition between energy

states |j〉 → |i〉 at a given radial position r is given by Γrrij and the Lindblad operator for a

spontaneous decay can be rewritten as

Ĉij =
√

Γrrij |i〉 〈j| . (4.10)

To describe the decay to environmental states, the |i〉 basis is enlarged and replaced by

|k〉, such that |i〉 ⊂ |k〉. This allows the dissipation of energy from the ground state and

excited states of the nuclei to these environment states, which are referred to as auxiliary

states since they are not reaction channels but simply states that measure the dissipation of

the reduced system [103]. Then the dissipative dynamics for the open system is explicitly

described by the following equation

(LDρ̂)rskl = δkl
∑
ν

√
Γrrkν ρ

rs
νν

√
Γsskν −

1

2

∑
ν

(Γrrνk + Γssνl)ρ
rs
kl , (4.11)

where ν runs over all the |k〉 basis states and Γrrkk =
∑

ν 6=k Γrrνk. This condition records the

transitions from the |k〉 states to other states within the diagonal elements of the decay
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matrix Γrrkk and is positive to keep the density matrix positive semi-definite [48]. Then

the EOM describing the time evolution of the density matrix are separated into a density

matrix for the reduced system given as

ρ̇rsij = − i
}

{
ρrsij (ei − ej) +

M∑
t=1

(T rt ρtsij − ρrtij T ts)

+ ρrsij (U rr − U ss) +
N∑
µ=1

(V rr
iµ ρrsµj − ρrsiµ V ss

µj )


+ δij

B∑
ν

√
Γrriν ρ

rs
νν

√
Γssiν −

1

2

B∑
ν

(Γrrνi + Γssνj)ρ
rs
ij , (4.12)

and the time evolution of the density matrix involving the environmental states is given

below

ρ̇rskl = δkl

B∑
ν

√
Γrrkν ρ

rs
νν

√
Γsskν −

1

2

B∑
ν

(Γrrνk + Γssνl)ρ
rs
kl , (4.13)

where B is the total number of excited states and environment states. In Eq.(4.13), either

k or l must be different from the i (excitation channel) states, otherwise this equation

would only be describing the reduced system dissipation. For example, if the |i〉 basis

contains the |1〉 and |2〉 states and an environment state is described by |3〉, then k = 3

and l = 1 or l = 2 describes the dissipation from |1〉 or |2〉 to |3〉. The Γ function in

Fig.4.1 determines the strength of the transitions between states or the absorption to an

environmental state depending on the internuclear distance, r. Details of the derivation of

the dissipative Liouvillian are given in Appendix B.

4.3 Collision dynamics of the present numerical method

In this model, conceptually there is a projectile nucleus (AP ) and a target nucleus (AT )

that are initially separated at a distance so that virtually no interactions between them are

present (due to nuclear and Coulombic effects) and they reside in their ground states. The

collision described is direct and it is assumed that there is no change in angular momentum

(L = 0).
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To record the dynamics between the two nuclei of interest, a wave packet is used to describe

the relative motion of the nuclei. The wave packet describes the reduced mass moving

forward in space and a visual representation is shown in Fig.4.2.

Figure 4.2: A visual representation of the propagation dynamics. The wave packet (red

dashed line) with average energy E0 and initial centroid position r0 moves closer to the

Coulomb barrier (blue solid line) in time steps of 10−22 s. The fusion environment is

localised behind the Coulomb barrier in which fusion takes place when the wave packet

encounters the Γ function (green dot dashed line).

Two wave packets were tested to examine the effects of different wave packet constructions

on the dynamics. Firstly, an initial minimum uncertainty Gaussian wave packet in the

centre of mass reference frame was used,

ψ(r, r0, σ0, k0) = N−1 exp

(
−(r − r0)2

2σ20

)
e−ik0r, (4.14)

here r0 is the initial, central position of the Gaussian wave packet, r is the set of grid

positions that the wave packet can occupy, k0 is the average wave number and σ0 is the

spatial dispersion. N = (2πσ20)1/4 is a normalisation constant. This wave packet is used to

construct the radial part of the density matrix in Eq. (4.2).

The minimum uncertainty Gaussian wave packet initially implemented assumed an asymp-

totic free-particle Hamiltonian, H0. It is thought that the small fusion probabilities asso-
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ciated with energies below Ec.m./VB < 0.9 could be affected by Coulomb interactions at

relatively long distances [104, 105]. Hence, an alternative Coulomb wave packet was con-

structed, which considers the Coulomb interaction at large distances by replacing the plane

wave in Eq.(4.14) by an incoming Coulomb wave H−L=0 [106],

ψCoul(r, r0, σ0, k0) = N−1 exp

(
−(r − r0)2

2σ20

)
H−L=0(k0r) (4.15)

where the Coulomb wave argument k0r is the product of the average wave number and the

position on the radial grid. Theoretically, the initial position of the wave packet should

no longer be affected by the ‘tail’ of the Coulomb barrier, and the propagation dynamics

should be more accurate.
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Figure 4.3: For the 16O + 144Sm system, an initial Gaussian wave packet (solid black line)

was compared to an initial Coulomb wave packet (dashed purple line) in k space at t = 0 zs.

Both of these wave packets had initial radial positions of r0 = 70 fm and spatial dispersion

σ0 = 10 fm.

Testing this Coulomb wave packet showed that it could not describe fusion probabilities

lower than those obtained using the Gaussian wave packet. However, it was better at

describing the entire spectrum of energies than the Gaussian wave packet. This is useful

when the Gaussian wave packet is only able to describe a narrow range of energy-resolved

fusion probabilities. Inspecting the shape of an initial Coulomb wave packet compared to
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an initial Gaussian wave packet in Fig.4.3, the Coulomb wave packet had a broader peak

toward higher k-numbers which could explain the worse resolution at low energies but wider

range of correct energy-resolved fusion probabilities. Both of these wave packets are used

throughout this study to benefit from their respective strengths.

As AP moves toward AT in coordinate space, the density matrix stores the interaction

information for each discretised time step. The initial density matrix at t = 0 describes a

pure, coherent state (P = 1 and Svn = 0), and it is represented in a mixed basis of states

composed of: i) the eigenstates of the internal Hamiltonian of each individual nuclei and ii)

a radial grid basis for their radial motion. The coupled-channels method uses a Hamiltonian

that couples the target and projectile excitations with their radial motion so that induced

excitation can occur. For the sake of simplicity and to reduce the computational time, in

the studies with 144Sm, only the ground state (0+) and one excited state (3−, 1.81 MeV)

of the 144Sm target are considered due to computational considerations. This limitation

is not expected to affect the dynamics significantly because the probability of higher-level

induced excitations above the first excited state is much lower. A similar constraint is

applied to the calculations involving 188Os. For the nuclear friction calculations using 92Zr,

two excited states with energies of 0.93 and 2.34 MeV are used. These are included since

coupling to these states are non-negligible and studies in literature have included both

excited states, and to demonstrate the handling of multiple excited states by the CCDM

method. Nevertheless, future studies would benefit from the inclusion of higher level states

for completeness, when the means to do so becomes available. Coupling to the 16O projectile

was neglected due to its first excited state being 6.13 MeV, hence the coupling to this state

is negligible.

Lastly, a Woods-Saxon shaped potential is used for the Γ function within the fusion pocket,

allowing positional probability to be removed from the reduced density matrix since the

target and projectile will become a compound nucleus after fusion. This is represented by

Γ(r) in Fig. 4.2. The removal of probability is important for describing the irreversibility of

fusion. The shape of the Γ function ensures that only wave packet components that reach

the fusion well are absorbed. The numerical algorithm used for the time propagation of the

EOM was the Faber polynomial expansion, explained in Chapter 3.
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Figure 4.4: Snapshots of the diagonal elements of the density matrix (using an initial

Gaussian wave packet shape) as a function of the internuclear distance for various times in

the propagation: 0 zs (purple, solid line), 3 zs (green, dotted line) and 6 zs (blue, dotted

and dashed line). The bare nucleus-nucleus potential for the test nuclei 16O + 144Sm is

the thick black solid line. This figure shows the time evolution of the density matrix at

significant times in the propagation, from the initial density matrix at t = 0 zs, to a point

of near approach at t = 3 zs, to the reflected, reduced amplitude density matrix at t = 6

zs.

As stated earlier, one of the benefits of this approach is the ability to visualise the dynamics

at any time step of the calculation as shown in Figure 4.4. The dynamics can be followed

for every time step however three were chosen to highlight what happens to the density

matrix during the time evolution. At t = 0 zs‡, the initial density matrix with a minimum

uncertainty Gaussian shape is positioned at r0. At t = 3 zs, the nuclei are around their

point of nearest approach, and hence the density matrix probability is strongly localised

just outside the barrier and has begun to be reflected. Finally at t = 6 zs, the density

matrix elements that did not encounter the fusion pocket are reflected back, retaining its

Gaussian shape with a lower amplitude due to the loss of probability. It should be noted

‡1 zs = 1 × 10−21 s
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that a very similar result is obtained when using the Coulomb wave packet.

4.4 Summary

This chapter discusses two of the steps required to apply the CCDM method to heavy-ion

reactions: defining an initial density matrix and describing the equations of motion that are

used for the time propagation. The nondissipative and dissipative dynamics are presented,

with the former describing the reduced system Hamiltonian and includes couplings between

the internal excited states and the latter describing dissipation to environment states. This

method uses a wave packet that propagates in time and there are two types that we consider,

Gaussian and Coulomb wave packets. The strengths and weaknesses of both are discussed.

Conceptual information is provided to assist the reader in visualising the collision dynamics.



Chapter 5

The window operator

By modelling the projectile and target as a wave packet moving in space, the wave packet

has a distribution of energies, with average energy E0. To calculate the fusion probability

of the wave packet, the standard approach is to sum the fusion probability contributions

from all energies within the wave packet, obtaining the total fusion probability for a fu-

sion reaction. However, summing the contributions does not allow for the observation of

small probability contributions from energies well-below the Coulomb barrier, since the

higher energies dominate the fusion probability. Therefore, a method is needed to resolve

the energies of the wave packet and calculate energy-resolved fusion probabilities to fully

understand these low-energy contributions.

After time propagation of the EOM described in Chapter 4, the window operator is applied

to the time-propagated density matrix to obtain the energy-resolved fusion probabilities.

This chapter gives some background on how the window operator has been used in previous

studies and the modifications conducted to apply the window operator to a density matrix.

5.1 Introduction to the window operator method

The window operator, ∆̂, is an operator that can be used to resolve the energy of the initial

and final wave packets of the time propagation to obtain the probability (P (Ek, n, ε)) of

finding a projectile nucleus with initial energy Ek inside the fusion pocket [107]. It is an

39
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established method for calculations involving wave functions [38,108,109] and the equations

for its use with a final-state wave function with a final-state Hamiltonian H is given below,

∆̂(Ek, n, ε) =
ε2

n

(Ĥ − Ek)2n + ε2n
, (5.1)

P (Ek, n, ε) = 〈ψf | ∆̂(Ek, n, ε) |ψf 〉 . (5.2)

The window operator is dependent on three inputs: Ek as described above, ε which is

effectively a resolution parameter and determines the width of the energy bins, and n is

a parameter that determines the overlap of the energy bins, with higher values creating

increasingly separated rectangular bins. Figure 5.1 plots the window function for a range

of arbitrary E values above and below Ek. Using Eqs.(5.1) and (5.2), the meaning of the

window function is clear from Eq.(5.3) where P (Ek, n, ε) is the sum over the projection onto

all eigenstates |m〉 of H within the energy range Ek± ε, multiplied by the window function,

P (Ek, n, ε) =
∑
m

| 〈ψf |m〉 |2
ε2

n

(Em − Ek)2n + ε2n
. (5.3)

Using the window function means that some contributions from energies outside the energy

bin of interest will be included in the calculation of energy-resolved fusion probability for

each Ek value (unless n = ∞), but at n = 2 these contributions are already insignificant.

Figure 5.1 also demonstrates why the correct spacing between successive values of Ek is

always 2ε, as it gives the optimal amount of overlap between successive window function

operations and avoids misleading results.

When using n = 1, which would require the least computational resources, the overlap is

too significant with a sharp peak resulting in poor separation of the energy bins. It was

found that the overlap between bins was sufficiently small enough when n = 2, and higher

n values decreases the overlap further but the additional accuracy did not increase [107].

For n = 2, successive linear equations can be solved to obtain a vector |χk〉

(Ĥ − Ek +
√
iε)(Ĥ − Ek −

√
iε)
∣∣∣χ(2)
k

〉
= |ψf 〉 , (5.4)
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Figure 5.1: The two window functions, centred around energies Ek and Ek+1, with the

spacing between energies being 2ε. The values of n and ε were 2 and 0.35 MeV respectively.

where
〈
χ
(2)
k

∣∣∣χ(2)
k

〉
= P (Ek, n, ε). In the limit of n→∞, the window function is rectangular,

and the evaluation of the window function becomes

lim
n→∞

[
∆̂(Ek, n, ε)

]
=


1, for (Ek − ε) ≤ Ek ≤ (Ek + ε)

0, otherwise.

(5.5)

In this study we have applied the window operator to a density matrix, firstly using Eq.(2.6)

to express P (Ek, n, ε),

P (Ek, n, ε) = Tr
[
∆̂(Ek, n, ε)ρ̂s

]
. (5.6)

Adjustments must be made because we are propagating a density matrix with four dimen-

sions and the simple complex conjugate vector
∣∣∣χ(2)
k

〉
cannot be utilised, so therefore a

different form must be used. By expanding for n = 2, the successive linear equations to

obtain a density matrix ρ′k can be written as
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(Ĥ − Ek +
√
i
3
ε)(Ĥ − Ek −

√
i
3
ε)(Ĥ − Ek +

√
iε)(Ĥ − Ek −

√
iε)ρ′k = ε4ρs (5.7)

P (Ek, n = 2, ε) = Tr(ρ
′
k) (5.8)

In general, the amount of work necessary scales as 2n/ε. Here ε should be chosen to be

larger than the eigenstate spacing, to avoid inaccuracies or misleading results. Therefore

the choice of ε depends on the size of the numerical grid too, since the grid size determines

the energy eigenvalues. This approach of direct energy resolution of a density matrix has

not been demonstrated before in literature, as far as this author’s knowledge. The accuracy

of the energy-resolved parameters as a result of using the window operator method is given

in Chapter 6.

5.2 Summary

The window operator was a key energy-resolving method that allowed the calculation of

energy-resolved fusion probabilities using the CCDM method. An introduction to the

window operator equations is provided, along with a simplification that can be used when

choosing n = 2 for a wave function. The adaptation of the window operator to a density

matrix is discussed, and the successive linear equations that must be solved to obtain

energy-resolved fusion probabilities are presented.



Chapter 6

Model improvements, features and

verification

6.1 Optimising hardware usage

The consideration of numerical methods is essential for the efficient running of programs

and this is particularly important for density matrix calculations. This is because, like

many computational projects, the limiting factor is often computational run time and hence

the complexity of the model must be appropriate for the current hardware and methods

available.

Parallelisation of a program is one method of fully utilising the available hardware and can

be implemented simply if only a few subroutines need to be parallelised. OpenMP paralleli-

sation was used for the calculations in this work due to the simplicity of the implementation

and the structure of the code. It must be said that parallelisation cannot be applied to

the entire program and it should only be used where computationally beneficial. Parallel

programming should be included in structures in the code that have significant run time, in

excess of the overhead cost that comes with parallelisation due to the internal communica-

tion between threads of a CPU. In addition, it can only be applied to blocks of code where

the outcome of one parallel process would not affect any of the others. Message passing

interface (MPI) parallel programming was considered because of the ability to not only
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parallelise through nodes, but also benefit from distributed memory and the capability to

run on heterogeneous systems — collections of processors with distinct architectures [110].

This allows for much better scaling than OpenMP. However, the current difficulty and

length of the problem would make MPI parallelisation excessive, and the time spent on

implementation may not even provide savings in execution time due to the overhead time

spent communicating between processors.

After profiling the code using GPROF and finding the most time intensive subroutines

(see Appendix C), the top subroutines that uses the largest proportion of run time of

32.07% is the cdft subroutine. This subroutine is necessary for the fast Fourier algorithm,

and unfortunately it cannot be parallelised, since cdft is already simple and optimised.

Hence, parallelising this subroutine would take longer due to the overhead associated with

parallelisation. A similar problem occurs for the fft subroutine. Hence, the next clear

choice for parallelisation was the Liouvillian operation subroutine, the subroutine that

calculates the density matrix using the Faber polynomial approximation for each time step.

Parallelisation is applicable here since the calculations within each time step do not depend

on previous calculations.

The overall time saving for a single run was 10−15% depending on the system used. Should

the run time become > 24 hours, it could become favourable to take another profile of the

code and further parallelise the code using OpenMP or MPI techniques. It should be noted

that MPI parallelisation has great synergy with high performance computing clusters (i.e.

EUREKA, University of Surrey, UK) and these should be utilised to maximise the benefit

from this method.

6.2 Methods used to improve the numerical calculations

Prior to this work, only the total summed fusion probability was calculated for an initial

centroid energy E0 of the propagating wave packet. For low energy nuclear fusion reactions,

this meant that the higher energy plane waves within the wave packet dominated the fusion

cross sections and information at energies below the Coulomb barrier was lost or intangible.

With this new method, energy-resolved fusion probabilities can be calculated and this allows

one to compare results against TISE calculations implemented within the CCFULL code [31]
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and ensure that the results at sub-barrier energies are correct. The ability to calculate

energy-resolved fusion probabilities could also be useful to experimentalists who practically

use mono-energetic beams, and these measured values can be compared to quantum model

calculations.

As stated earlier, the window operator method requires the input of two variables, the

energy bin width ε and the overlap parameter n. From initial tests, it was found that there

was agreement of the energy-resolved fusion probabilities with CCFULL for values up to

Ec.m./VB > 0.9. However, investigating deep-sub barrier energies would require agreement

further below the barrier. This section describes the various techniques that were explored

in an attempt to improve the agreement of our results over a larger range of Ec.m..

6.2.1 Alternative method of calculating the transmission coefficient

Firstly, we examined the current method of calculating the fusion probability, which involves

calculating the reflection coefficient and simply using the relation given in Eq.(6.1),

T (Ek) = 1−
Pfinal(Ek)
Pinit(Ek)

, (6.1)

where Pinit(Ek) and Pfinal(Ek) are the initial and final energy-resolved wave packet ampli-

tudes for {Ek}. This method is useful since it does not require use of additional variables to

calculate the transmission coefficient, and the reflection coefficient is calculated as a ratio

of the initial and final energy-resolved wave packet amplitudes. However, it was thought

that this method of calculating the reflection coefficient could cause instability errors when

the values were below 10−10.

In an attempt to improve the calculation of the transmission coefficient, alternative methods

of calculating energy-resolved transmission coefficients were investigated and the following

equation from Ref. [111] was implemented,

T ′(Ek) =
−(8/}νk) ε4 Tr

[
ρ̂s · Im(Ŵ )

]
Pinit(Ek)

, (6.2)
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where νk =
√

2Ek/µ and Im(Ŵ ) < 0 denotes a strong, imaginary Woods-Saxon potential

used to remove probability from the density matrix.

This was used to successfully obtain energy-resolved transmission coefficients using the

TDWP method. For the coupled-channels density matrix method, this method of calculat-

ing the transmission coefficients was unstable and the results were intangible. The instabil-

ity is related to the resolution parameter being too small, therefore causing oscillations in

the calculations. This transmission coefficient was successfully calculated in Ref. [111] due

to the large grid size (1000 fm) and smaller grid spacing used, which was feasible since the

TDWP method was used and fewer numerical restrictions on the grid size were in place.

Therefore their energy eigenvalues (assuming a free particle in a radial box) were smaller

and the energy resolution was sufficient, which was not the case for our calculations.

6.2.2 Extension of the grid size during the calculation of the energy-

resolved probability

Through testing, it was shown that using a larger grid size for the whole time propagation of

the density matrix was unfeasible numerically, as the computational run time in hours would

increase by an order of magnitude. This prompted an attempt to expand the radial grid for

the kinetic and potential energy operators only during the calculation of energy-resolved

probability. To do this, the radial grid was increased to 300 − 500 fm when applying the

window operator to the final density matrix. The radial dimensions would then be larger

and the energy eigenvalues (again assuming a free particle in a radial box) would be lower,

so in theory a smaller energy resolution could be used.

After implementation, the run time increased significantly (≈ 50%) and the energy-resolved

fusion probabilities improved for higher energies but did not improve for deep sub-barrier

energies. Despite the benefit of using a smaller energy resolution parameter, this extension

does not increase the number of grid points where fusion takes place on the grid, and

therefore the calculations involving the smallest probabilities did not improve.
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6.2.3 Reduction in the size of the radial grid

It was initially thought that reducing the size of the radial grid would decrease the resolution

available to the window operator and reduce the accuracy of the results, since the energy

eigenvalues are dependent on the size of the system and ε would need to be increased for a

smaller system. However, it was found that reducing the size of the radial grid from 250 fm

to 150 fm but keeping the radial step size dr constant increases the number of grid points

and improves the resolution. The radial energy eigenvalues are increased and therefore a

larger value of ε must be used, but agreement of our results with TISE calculations at lower

fusion probabilities can be reached with this smaller grid. However, there was a limit to the

reduction of configuration space and decreasing the grid further led to problems assumed to

be due to energy eigenvalues that are too large. In addition, the wave packet may interact

significantly with the boundaries of the grid because the probabilities of either a minimum

uncertainty Gaussian or Coulomb wave packet at the tail could be significant when confined

to a smaller grid space causing unwanted effects.

6.3 Model verification results

6.3.1 Model parameters for 16O + 144Sm

The required parameters used to perform the calculations in this chapter are presented in

Table 6.1. These parameters are used throughout this thesis unless otherwise stated. Table

6.2 gives the Woods-Saxon potential parameters used for the 16O + 144Sm collision.

6.3.2 Dynamics of the calculation

Previously, the dynamics of the calculations were shown in two dimensions in Fig.4.4, and

snapshots of the radial wave packet at key points in time were shown. This can be further

developed by including all times within the propagation to understand the variations in

wave packet amplitudes for any of the states within the reduced system. This is shown

in Fig.6.1, for the elastic and inelastic (3−, 1.81 MeV) channels of 16O + 144Sm. The

ability to follow the dynamics across the whole time propagation is a useful tool to ensure
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Table 6.1: The general parameters used for the numerical calculations for the test case

collision 16O + 144Sm. These are subsequently used in all other calculations throughout

this work unless specifically stated otherwise.

Parameter Value Description

N 1024 The number of radial grid points

i 2 The number of states

kenv 1 The number of environment states

rmin 1.5 fm Minimum value of the radial grid

rmax 150 fm Maximum value of the radial grid

r0 70 fm Initial position of wave packet

σ0 10 fm Typical spatial dispersion of wave packet

∆t 1 × 10−22 s Time step used in propagation

Wfus 50 MeV Γ decay function height

rfus 1.1 fm Γ decay function radius empirical constant

afus 0.3 fm Γ decay function diffusivity

that couplings between states are correctly implemented, and the fusion environment is

functioning correctly, i.e., the wave packets are not radially localised beyond the Coulomb

barrier. It is worth mentioning that the 2D time propagation figure is still a useful tool

since a better view of the wave packet shape can be seen, and it is easier to compare the

magnitude of the initial and final wave packets.

6.3.3 Energy-resolved fusion probabilities for 16O + 144Sm

Fig. 6.2 shows the fusion probabilities calculated using optimal initial conditions for the

Gaussian and Coulomb wave packets for the test case collision 16O + 144Sm. The height of

the Coulomb barrier between these two nuclei is 61.1 MeV, and this was calculated using

the São Paulo potential [112]. By adjusting the Woods-Saxon parameters, the Coulomb

barrier height of Û was matched to this value, while retaining an ideal potential shape.

The single channel calculations show the impact of including coupled-channels into the

calculations. The difference arises from the apparent distribution of fusion barriers [12] that
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Table 6.2: The Woods-Saxon parameters used for the numerical calculations for the 16O +

144Sm collision.

Parameter Value Description

VWS -105.1 MeV Woods-Saxon potential well depth

rWS 1.1 fm Woods-Saxon nuclear radius empirical constant

aWS 0.75 fm Woods-Saxon diffuseness parameter

is created from the coupling between the radial motion and intrinsic nuclear excitations.

In turn this increases fusion probabilities as the total potential barrier will be lower for

some inelastic channels of the interacting nuclei [11,12]. Fusion probability is the quantity

of choice to display our results instead of fusion cross sections, since cross sections are

dependent on the projectile and target of the system and are less comparable between

different systems of collision partners.

The Gaussian wave packet calculations clearly provide the best results in terms of energy-

resolved fusion probability at deep sub-barrier energies (Ec.m./VB < 0.9), where they are

convergent with the CCFULL calculations to an order of magnitude of 10−8. Having

accurate values of fusion probability for low-energy fusion reactions allows us to extend

the scope of our calculations and validate interesting effects in these low fusion probability

regions. The Coulomb wave packet does not reach the same order of magnitude as the

Gaussian wave packet, but the results are reasonable up to ≈ 10−6, and the broadness of

this wave packet in momentum space allows a better global description of energy values near

and above the barrier (Ec.m./VB > 0.9). This could be useful for reducing computational

run times if the lowest probability values are not important. Furthermore if the energy-

resolved fusion probabilites are unstable, the Coulomb wave packet is more reliable and

more likely to give a larger set of accurate results. The calculated points with physical

meaning in Fig. 6.2 are the invariant values when the initial mean energies E0 are changed.

The probabilities that lie outside of the trend are likely because of the small error associated

with the window function, and are numerically inaccurate.
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Figure 6.1: Radial position probability as a function of internuclear radius and time for a

head-on collision of 16O + 144Sm with a mean energy of 60 MeV. The radial probability

decreases and increases for (a) the elastic and (b) inelastic channels respectively, as the

nuclei approach their Coulomb barrier (r ≈ 10 fm). For visualisation, when the mean

radius is larger than 20 fm, the time step is 3× 10−22 s.
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Figure 6.2: The energy-resolved fusion probabilities from the CCDM method for different

initial wave packets for a head-on collision of 16O + 144Sm for a range of Ec.m values

above and below the Coulomb barrier. These probabilities are compared with those from

CCFULL [31], which were benchmarked by experimental data for this collision [13]. The

CCFULL results (solid red line) are reproduced by the CCDM method (symbols).

6.3.4 Entropy, energy dissipation and purity

An additional benefit of using a quantum dynamical model is the ability to calculate quan-

tum properties of the heavy-ion collision. These quantities are useful to understand the

validity of the model, confirm expected phenomena and help us establish relationships

between the calculation outcomes and fundamental quantum mechanical properties.

The von Neumann entropy of a state expresses the degree of ‘mixing’. It is the quantum

analogue to Gibb’s entropy from classical statistical mechanics. The von Neumann entropy

is a useful quantity to calculate because it offers us information about the disorder in the

system of interest, and with the quantum dynamical model used we are able to sample

this at any time step within the propagation. Additionally, from the second law of ther-

modynamics, we know that the entropy of an isolated, physical thermodynamic system

cannot decrease. Calculating the von Neumann entropy of the reduced density matrix

has provided some indication of the correctness of the underlying quantum physics of the
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theoretical framework. The dynamics of quantum coherence can be described by the time-

dependent purity, P(t) and the von Neumann entropy, S(t), in the reduced-system density

matrix, ρs(t) ≡ {ρrsij } given in Eq.(4.12),

P(t) = Tr
[
ρ2s(t)

]
, (6.3)

S(t) = −Tr{ρs(t) ln[ρs(t)]} = −
∑
j

ηj(t) ln[ηj(t)], (6.4)

where ηj(t) are the eigenvalues of ρs(t), and ρs(t) is normalised to unity when calculating

these physical quantities.

Fig. 6.3 displays the dynamics of energy dissipation and entropy production for the collision

scenario shown in Fig. 6.1. The energy loss is determined by the change of the average

energy of the reduced system relative to its initial value, i.e., E0 − Tr
[
ĤSρS(t)

]
. It is

interesting to observe that the transient, strong interaction of the reduced system with the

fusion environment makes the dynamics dissipative and decoherent (the entropy increases

and the purity of the reduced-system density matrix decreases) as shown in Fig. 6.4. When

the nuclei re-separate, there is a revival of quantum coherence and, asymptotically, the

elastic and inelastic channels move in a coherent superposition. A question that comes to

mind: Does the transient decoherent phase of the collision affect the fusion probability?

Since CCFULL does not include decoherence, these results indicate that the transient

quantum decoherence caused by the fusion environment localised in the nucleus-nucleus

potential does not affect fusion probability. The change in purity in Fig. 6.4 (Lindblad)

is caused by the effect of the irreversible coupling between the fusion environment and the

reduced system. Without the fusion environment, the dynamics of the CCDM model would

be Hamiltonian, and would preserve energy, entropy and the purity of the reduced density

matrix.
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Figure 6.3: The evolution of energy dissipation and entropy during the collision dynamics

for 16O + 144Sm. The energy loss (thick solid red line) and entropy (thin solid black line)

increase as the nuclei approach their Coulomb barrier, and reach a plateau as the nuclei

reseparate. The dotted black line shows the average internuclear radius of the reduced

system.

6.4 Model error analysis

Evaluating the errors of a model is essential to understand abnormalities in results, and to

ensure the validity of the method. For the error analysis of the Faber propagator, we use

Eqs. (3.11) and (3.12) as discussed in Chapter 3. These are the Frobenius norm and local

error co-efficient respectively, and the final values for these quantities after using n = 470

polynomials for each time step in the calculations are shown in Fig. 6.5 for 16O + 144Sm.
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Figure 6.4: The comparison of purity in three different calculations for 16O + 144Sm. The

solid black line is calculated using Hamiltonian dynamics with no dissipation, the solid green

line is calculated using a non hermitian Hamiltonian, in which an imaginary potential is used

to remove flux from the wave packet. Lastly the Lindblad dynamics, which is used in this

work, is represented by the dashed red line and shows decoherence as the relative position

of the nuclei approach the Coulomb barrier. There is a resurgence of coherence as the nuclei

reseparate and the interaction with the fusion environment diminishes. Asymptotically, the

elastic and inelastic channels evolve in a coherent superposition.

At the beginning and end of the calculations, the Frobenius norm and local error are stable.

It is clear that there is a very minimal increase when the propagation time approaches

35× 10−22 s, this is the period where the nuclei are localised around the Coulomb barrier.

For these calculations, it was found that the local error was stable below 1× 10−27 and the

Frobenius norm should be of the order of unity. Both of these criteria were satisfied for

these calculations, and subsequent calculations showed a similar or lower order of error.
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Figure 6.5: The local error, εloc(k) and Frobenius norm. The local error gives an indication

of difference between the polynomial of degree k and exact solution. A stable value for the

local error across the entire propagation is shown.

6.5 Summary

The strong agreement between the CCDM and CCFULL calculations demonstrates the

reliability of the CCDM approach and shows that it can be successfully used for describing

low-energy heavy-ion reactions. The application of the window operator was applied to a

density matrix for energy resolving purposes and was crucial for validating the treatment

of fusion using the CCDM method. Unexpectedly, the transient decoherence within the

fusion pocket does not affect the fusion probability [52]. This method has the advantage

of allowing us to study quantities throughout the time propagation of the density matrix,

such as coherence dynamics, energy dissipation and entropy. Additionally, we confirm that
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the formation of a compound nucleus can be represented as an environment as part of the

open quantum systems methodology. This chapter sets the foundations for further work

such as the involvement of physical environments or couplings to the internal structure of

colliding nuclei in the following chapters.



Chapter 7

The effects of plasma on heavy-ion

fusion reactions

On Earth, experimental nuclear reactions are often conducted in a vacuum, without an

environment. During nucleosynthesis in stars, this is not the case; the fusion reactions take

place within a dense, particle-rich plasma. Therefore it is unjustified to assume that the

information obtained by experimental reactions conducted in a laboratory setting provide a

realistic approximation to stellar environment reactions. In nature, nuclear fusion reactions

take place only in hot, dense environments containing a mixture of ions and electrons.

These environments are often referred to as high energy density plasmas (HEDPs). These

environments are complex and the exact influence on fusion reactions is unknown due to

the difficulty of performing experiments under these conditions, and microscopic model

calculations are currently impossible due to the many degrees of freedom involved. Hence

the CCDM model is employed to provide an intuitive platform for describing the effects of

HEDPs on heavy-ion fusion.

We begin with an initial analysis of the well-known plasma effects to understand how fusion

reactions are affected by plasma at various temperatures and pressures. In the literature,

the primary effects of a plasma on nuclear reactions are said to be dominated by either

Coulombic or thermal effects. A first order approximation of their relative importance can

be carried out by calculating a Coulomb parameter, Λ, which is essentially a ratio between

Coulomb and thermal energies [113–115],

57
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Λ ≡ 〈Zie〉
2

aiT
, (7.1)

where 〈Zie〉 is the average ion charge in the plasma, ai is the average inter-ionic distance

and T is the temperature in MeV. When Λ � 1, the Coulomb energy is insignificant to

thermal energy and a Debye-Hückel potential is assumed [116], and for Λ� 1, the Coulomb

energy dominates the plasma interaction, and this regime is modeled with an ion-sphere

potential. The outcome of a modified version of Eq.(7.1) is given in Section 7.3.

For the calculations in this chapter, a few assumptions were made of the plasma. The

plasma is initially in thermal equilibrium and the excited states are populated before the

target and projectile interact, due to the long lifetime of the plasma compared to the time

of the heavy-ion collision [117, 118]. The plasma temperature and density do not change

over the course of the reaction. In open quantum system terms, the plasma is considered a

bath and the reduced system does not affect its properties. Temperatures of HEDPs vary

between a few eV to a few MeV, and this leads to a wide range of interactions that can alter

the outcomes of nuclear collisions. In this work, plasma temperatures around 100−500 keV

are used, which is typical for explosive astrophysical scenarios [119]. The plasma density

range was chosen as (10 – 105 gcm−3). Although there is scope to increase the density to

extreme environments such as the crust of a neutron star (108 gcm−3), this is much more

complicated since the electrons in the plasma would be highly degenerate and relativistic

effects would certainly be non-negligible. For Coulomb screening effects, a choice of the

plasma constituents must be made, and this is further discussed in Section 7.3.

Then the lesser-known effects from nuclear plasma interactions (NPIs) were implemented.

The term NPIs refers to all the atomic process that can excite or de-excite nuclei. From

literature, there are two NPIs that are of interest: nuclear excitation by electron capture

(NEEC) or transition (NEET) [120–122]. It is expected that these are likely to change

reaction cross sections in HEDPs [123,124]. One of the purposes of this work is to estimate

the contribution that these NPIs have in heavy-ion fusion reactions. The strength of the

NPIs are dependent on the plasma conditions, and this will change the excitation and

de-excitation rates.

The purpose of this chapter is to review the processes in which a plasma environment can
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impact a fusion reaction, identify if particular effects of a plasma environment affect fusion

probabilities, and to demonstrate that the magnitude of these effects can be quantified.

This work builds upon the foundations of the CCDM model, and if it is evident that the

effects are significant, then a comprehensive study that includes a list of strong candidate

nuclei and known nuclear excited states would be the natural progression to determining

the overall effect of HEDPs on stellar fusion reaction rates.

7.1 A note on the target and projectile choice

For plasma effects to be effective, the system must include low-lying excited states, typically

below 1 MeV. Although this limits the number of relevant fusion reactions since excited

states in the nucleus are typically in the MeV range, the summed effect of all relevant fusion

reactions could have a significant impact on fusion reaction rates in stellar environments.

Initially, the nucleus of choice to test plasma effects on heavy-ion fusion was 237U. This

nucleus has an extremely low nuclear first excited state of 11.5 keV and it is expected that

this target nucleus would produce the most pronounced effects for a ground state nucleus.

Unfortunately, the required information for the model is not publicly available due to the

use of uranium for energy and defence purposes [125]. Additionally, the CCDM model is

designed to handle rotational and vibrational excited states, and this requires the use of

even-even nuclei.

Hence a 188Os target nucleus is used due to its low-lying 2+ rotational excited state at 155

keV [126] and a 16O projectile nucleus that has a high 6.13 MeV first excited state. This

simplifies the calculations, since the oxygen projectile can be considered inert. The 188Os

nucleus has further excited states, as shown in Fig.7.1, but these are ignored since couplings

to these channels will be weaker than for the first excited state, and extra channels will

increase the computation time significantly as explained in Chapter 3. Therefore we only

consider the ground state of 16O and the ground and first excited state of 188Os, and this

calculation will serve as a first order approximation.
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Figure 7.1: A partial 188Os level scheme, showing the ground state rotational band and the

respective energy levels in keV. Figure adapted from [127].

7.2 Model parameters for 16O + 188Os

The model parameters for the calculations in this chapter are the same as those in Section

6.3.1. The Woods-Saxon parameters required for the 16O + 188Os collision are given in

Table 7.1.

7.3 Coulombic effects

Coulombic effects in a plasma are related to the effective electron screening of the positive

target nucleus charge from the incoming projectile nucleus. An overly simplified picture of

this is given in Fig.7.2.

For the high temperatures within stars, the atoms are almost completely stripped of their

atomic electrons and hence it would be simple to assume that electron screening does not

affect nuclear reactions in stars. In fact, the plasma surrounding the nuclei contains a

sea of free electrons, in which their arrangement changes depending on the strength of the
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Table 7.1: The Woods-Saxon parameters used for the numerical calculations for the 16O +

188Os collision.

Parameter Value Description

VWS -60.64 MeV Woods-Saxon potential well depth

rWS 1.2 fm Woods-Saxon nuclear radius empirical constant

aWS 0.63 fm Woods-Saxon diffuseness parameter

Figure 7.2: An ideal and simplified picture of Coulomb screening, showing an electron

cloud reducing the Coulomb potential of a bare nucleus. Ec is the Coulomb potential, and

E is the initial energy of the projectile. Rn is the nuclear radius, Ra is the atomic radius

and Rc is the classical turning point. Figure from Ref. [116].

screening regime determined in Eq.(7.1). For the weak-screening regime, where temperature

is high and/or the density is low, the electrons surround nuclei at the Debye-Hückel radius,

RD =

(
kT

4πe2ρNAξ

)1/2

(7.2)
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here ξ =
∑
i

(Z2
i + Zi)

Xi

Ai
, where the sum is over the all positive ions and Xi is the mass

fraction of each nuclei within the plasma. It is worthy noting that there are many assump-

tions and conditions that must be fulfilled for this theory to be valid. Firstly, this model

for electron screening is based on classical theory, and hence there is a minimum value of

rmin that is required so that the uncertainty principal is not invalidated. By relating rmin

to the uncertainty energy, an approximation to the correctness of this theory can be made,

as long as the uncertainty energy is small compared to the mean thermal energy of the

electrons. It is also assumed that the stellar gas is ‘nearly perfect’ [116], which leads to the

assumption that electrons surround the nuclei in spherical shells.

For the system of nuclei we are investigating, we must choose how to interpret the distri-

bution of mass and charge within the plasma. Since we are using 16O and 188Os as the

collision partners, the approximation of a nucleus with large charge and low abundance

can be used. Then Z1 = 76 is the charge of 188Os, Z2 = 8 is the charge of 16O and z is

the average charge of the plasma, which we can take as either the charge of 4He or 16O.

When Z1 � Z2, it can be assumed that only the charge cloud around the much larger

nucleus needs to be taken into account [113]. Additionally, the charge cloud around radius

R1 can be assumed constant during a nuclear collision. The low abundance of Z1 means the

distance between these nuclei should be large compared to their charge cloud, and hence

only the charge cloud of one nucleus needs to be considered.

We can use another parameter that has a very similar form to Eq.(7.1) to determine the

expected strength of screening effects for this special case of plasma,

F =
Z1ze

2

RzkT
, (7.3)

where Rz is the Debye radius calculated using only the average charge of the plasma z.

When F � 1, weak screening approximations should be used, and when F � 1, strong

screening approximations should be used. The intermediate region must be approximated

between the two screening regimes [113].

Taking the most extreme case, where z = 8 and Z1 and Z2 are defined above and using the

lowest considered temperature in the calculations (100 keV), the maximum effect of electron
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screening in this approximation is given in Table 7.2. In this case, the plasma screening

effects are weak or intermediate until a density of 105 g/cm3, where they become significant

relative to the thermal energy. Although Coulomb screening effects could be significant

at high, non-degenerate densities for the projectile and target used, these estimates are

exaggerated and attempt to maximise the screening effects. Since the conditions stated are

ideal for screening, and the effects are in general insignificant, the Coulomb screening effect

at these densities are not included in the present calculations.

Table 7.2: A table of maximum values of the F parameter using an extreme environment

assuming a plasma consisting of mainly 16O with small amounts of 188Os, for non-degenerate

plasma densities.

Density (g/cm3)

Temperature 10 102 103 104 105

100 keV 0.0452 0.143 0.453 1.43 4.53

An extensive inclusion of electron screening would include higher density effects such as ion-

ion and ion-electron correlations within degenerate electron liquids [114,128], and relativistic

effects such as pair production at high temperatures (≈ 1 MeV or higher). The complexity

of these effects are better reserved for a comprehensive study solely focused on electron

screening and hence they are not elaborated on further in this work. For interested readers,

reviews on weak- and strong-screening regimes in HEDPs can be found in Refs. [5,129,130].

7.4 Thermal effects

The temperature of plasma has been known to contribute to stellar nuclear fusion for many

years, and this led to many great discoveries and foundations in nuclear astrophysics such

as the Gamow window, known to be the region of overlap between the Maxwell-Boltzmann
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distribution and the rate of quantum tunneling for a system of colliding nuclei at a particular

temperature [131]. This was without a doubt, a major discovery due to the understanding

that fusion reactions that happen within this window are likely to contribute to stellar

fusion reaction rates.

Since then, additional knowledge of environmental temperature effects have not progressed

much and the effect of HEDP temperature on fusion reactions has been limited to the

thermal distribution of collision energies within stellar environments, and how these directly

affect thermonuclear reaction rates [132]. Something that has not been investigated in detail

is the presence of low-lying nuclear excited states in heavy-ion fusion reactions that can be

populated in these HEDP environments. One case where the thermal population of low-

lying excited states has been previously studied was in neutron capture studies using the

Hauser-Feshbach statistical model [133,134]. The neutron cross sections were weighted with

temperature-dependent population probabilities of the target’s excited states, leading to a

stellar enhancement factor. However, these effects have been ignored in heavy-ion fusion

studies so far and hence it is the focus of this work.

To implement thermal effects into the model, we introduce Boltzmann factors, wα, into the

initial density matrix [55],

ρrsαα(t = 0) = wα |r〉 〈s| , (7.4)

where |r〉 refers to a Gaussian or Coulomb wave packet describing the internuclear motion

on a radial grid [54], and the density matrix is diagonal in the energy eigenstate basis,

denoted by |α〉. The initial population of the energy eigenstates is given as,

wα =

(2Iα + 1) exp

−
eα

T


N∑

α′=1

(2Iα′ + 1) exp

−
eα′

T


. (7.5)

where 2I + 1 is the spin degeneracy factor. The present calculations only include excited

states of the 188Os ground-state rotational band, and hence the spin degeneracy factors
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are not necessary for the following calculations due to the the use of the isocentrifugal

approximation, which does not consider the Coriolis interaction.

Excited states are thermally populated before the target and projectile interact with each

other and thermodynamic equilibrium is assumed at t = 0. As known from coupled-channels

calculations, coupling of the radial motion to energy eigenstates can cause changes in fusion

probability. Population of excited states in either the target or projectile nucleus due to

surface vibrations or rotational excited states lead to an overall increase in fusion probability

due to coherent coupled-channels effects [11].

7.4.1 Fusion probability results and analysis for 16O + 188Os

We construct the coupled-channels fusion probability of a zero temperature, environment-

less fusion reaction for an inert 16O projectile and 188Os target with two states (ground

and first excited state), given in Fig. 7.3. Multiple wave packets with different initial mean

energies (E0) were used to check that the results converge [54]. This serves as verification

of the method and a baseline that allows us to measure the thermal effects of the plasma.

To isolate the effects of temperature on fusion probability, the increase in energy-resolved

fusion probability was calculated using the ratio between coupled-channels calculations

at either T = 0.1 MeV or T = 0.5 MeV and T = 0 MeV, shown in Fig. 7.4. The

fusion probability was calculated by taking the average energy-resolved fusion probability

for initial wave packets with varying E0. For T = 0.1 MeV, the green (square) points were

calculated using a Gaussian wave packet with E0 = 60, 63, 65, 67 and 70 MeV, and the blue

(circle) points were calculated using a Coulomb wave packet with E0 = 65, 67 and 70 MeV.

The same method was used for both T = 0 and T = 0.5 MeV. The error bars are relative

errors, due to statistical uncertainties associated with the differences in fusion probability at

each value of E0. Error propagation was used to ensure the resulting error bars considered

the error from both the baseline calculations and the calculations with temperature.

We use a Gaussian wave packet for its accuracy at deep sub-barrier energies compared to a

Coulomb wave packet. However, a Coulomb wave packet offers a better global description of

fusion probability around and above the Coulomb barrier, as discussed in Ref. [54]. Below

the Coulomb barrier, the average increase in fusion probability was 15.5% and 36.9% for the
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Figure 7.3: A construction of the energy-resolved fusion probability for a 16O projectile

and 188Os target with coupled-channels but without a plasma environment (T = 0 MeV).

Gaussian and Coulomb wave packets are used, taking the average energy-resolved fusion

probability for a range of incident mean energies, E0. Error bars due to statistical error are

included but most are insignificant. The nominal Coulomb barrier between these nuclei is

71.7 MeV.

0.1 MeV and 0.5 MeV temperatures respectively. Above the Coulomb barrier, the increase

quickly diminishes to a few percent.

The results in Fig. 7.4 are an advancement on work that showed that sub-barrier fusion

is enhanced when channel couplings are included, due to the fusion contribution of excited

states [135]. The thermal increase in fusion probability can be explained by studying the

initial density matrix of the entrance channel,

ρ0 = (1− w2) |ψ1〉 〈ψ1|+ w2 |ψ2〉 〈ψ2| , (7.6)

where |ψ1〉 〈ψ1| and |ψ2〉 〈ψ2| are the pure state density matrices of the ground state and

excited state respectively. The excited state Boltzmann factor calculated in Eq. (7.5) is
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Figure 7.4: The increase in fusion probability for a 16O projectile and 188Os target due to

the presence of a thermal plasma environment. For each temperature (T = 0.1 MeV and

0.5 MeV), the fusion probability increase is calculated using the ratio of averaged thermal

environment calculations to averaged baseline calculations with no environment (Fig. 7.3).

For the Gaussian wave packet, calculations were initiated with E0 = 60, 63, 65, 67 and 70

MeV and for the Coulomb wavepacket, E0 = 65, 67 and 70 MeV.

denoted by w2 and this probability corresponds to a statistical ensemble of states. Two

effective Coulomb barriers are created from a linear combination of two dynamically coupled

state vectors, |ψ1〉 and |ψ2〉, as shown in Fig. 7.5.

The decoupled symmetric and anti-symmetric eigenchannels, |χs,a〉, are defined as,

|χs,a〉 =
1√
2

(|ψ1〉 ± |ψ2〉) . (7.7)

The height of the Coulomb barrier for the symmetric eigenchannel (|χs〉) is significantly

smaller than that of the anti-symmetric eigenchannel (|χa〉), leading to an increase of the

fusion probability relative to a single channel calculation involving the state |ψ1〉 only.

Temperature affects the fraction of the eigenchannels contained in the entrance channel
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Figure 7.5: The Coulomb barriers of the decoupled eigenchannels. The symmetric barrier is

the lowest, dominating the fusion process at energies below the nominal, 71.7 MeV Coulomb

barrier of the bare potential, U(r).

configuration in Eq. (7.6),

ρ0 =
1

2

[
|χs〉 〈χs|+ |χa〉 〈χa|

]
+

(
1

2
− w2

)
·
[
|χa〉 〈χs|+ |χs〉 〈χa|

]
. (7.8)

In Eq.(7.8), ρ0 represents the thermal ensemble in a mixed state. In a scenario where

temperature is zero (w2 = 0), fusion has an equal probability of occurring quantum me-

chanically (where the symmetric and anti-symmetric states are superimposed) as it does

occurring in both of the symmetric and anti-symmetric channels and therefore it is affected

by their interference. On the other hand, if temperature is infinite (i.e., w2 = 1/2) then

fusion will occur with equal probability (50%) in either the symmetric or anti-symmetric

channel, without interference effects. From this deduction, the increase in temperature

destroys the interference term and leads to a higher contribution of the symmetric channel

– with its lower Coulomb barrier – to the average fusion probability of the initial thermal

ensemble. The effect is more prominent with increasing temperature, which is supported

by our results in Fig. 7.4
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7.5 Atomic effects

The idea of the internal inverse electron conversion process was first published by Goldanskii

and Namiot [136] regarding the isomer excitation of 235mU, whereby the temperature of

a plasma around the 50 − 100 eV range should be able to populate the 235mU isomeric

state of 73 eV. Soon after, an improved approach was published and changes to nuclear

excitation rates due to high temperatures was suggested by Doolen [137]. They investigated

the changing lifetimes of nuclei due to the population of their nuclear excited states, and

introduced both the equilibrium population of a nucleus with a ground state and first

excited state and the inverse internal conversion process which is now referred to as nuclear

excitation by electron capture (NEEC). NEEC is a resonant process where a free electron

is captured into a bound atomic state and the difference between the kinetic energy and

binding energy of the electron causes an excitation in the nucleus. Following the work by

Doolen, further studies have been conducted to explore nuclear excitation effects via atomic

processes in detail. When nuclear excited states exist slightly above an isomeric state, the

nuclear excitation from atomic processes can cause an excitation to the higher energy level

and subsequently decay to the ground state [138,139]. This effectively enhances the decay

rate of the isomer. These atomic interactions with a nucleus are called nuclear plasma

interactions (NPIs).

Since these NPIs are capable of increasing the population of low-lying nuclear excited states

in dense astrophysical plasmas [124], there is an interesting opportunity to investigate

whether there are any changes to the fusion probability of heavy-ion fusion reactions due to

these effects. NPIs are included in the calculations by introducing new Lindblad operators

into Eq.(4.13),

Γrr12 = γ12, (7.9)

Γrr21 = γ21, (7.10)

where γ12 and γ21 are the respective excitation and de-excitation rates between the ground

state and first excited state of 188Os. These rates are dependent on the temperature and

density of the plasma. Relevant excitation and de-excitation rates for this work are shown
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in Table 7.3, and were calculated using the ISOMEX code [138], which is based on the

relativistic average atom model and assumes local thermal equilibrium for the electron and

photon populations. The considered excitation processes due to NPIs are: resonant photon

absorption, inelastic electron scattering, NEEC and NEET. The de-excitation processes

include spontaneous photon emission, induced photon emission, internal conversion, bound

internal conversion (BIC) and superelastic electron scattering. Since the 155 keV excited

state of 188Os is much greater than the binding energy of the K-shell atomic orbitals, NEET

and BIC do not contribute to the plasma induced nuclear transition rates.

Table 7.3: Excitation (γ12, left column) and de-excitation (γ21, right column) rates for NPIs

between the ground state and first excited state of a 188Os nucleus for different temperatures

and densities, calculated using the ISOMEX code [138].

Density T = 0.01 MeV T = 0.1 MeV T = 1 MeV

10 g/cm3 6.0 · 102 / 6.5 · 108s−1 7.3 · 108 / 6.9 · 108s−1 1.6 · 1010 / 3.8 · 109s−1

103 g/cm3 7.0 · 102 / 7.6 · 108s−1 7.3 · 108 / 6.9 · 108s−1 1.6 · 1010 / 3.8 · 109s−1

105 g/cm3 8.0 · 102 / 8.6 · 108s−1 7.8 · 108 / 7.3 · 108s−1 1.6 · 1010 / 3.8 · 109s−1

It was found that the effects of NPIs on fusion probability were negligible (< 10−6% increase

in fusion probability) for the 16O projectile and 188Os target, at all temperatures and

densities used in the calculations. Considering that the timescale of the fusion reactions

are of the order 10−22 s, the effective excitation rates are too low to have an impact on the

population of the excited state [139] and therefore the overall effect on fusion is weak.

7.6 Summary

In this chapter, a review of the effect of plasma on heavy-ion fusion reactions was conducted

and the effects of temperature and NPIs were implemented into the CCDM model. Applying

plasma temperature as an environment surrounding a system of colliding nuclei containing

a low-lying excited state was found to enhance fusion, with a larger enhancement induced
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by higher temperature. From these findings, there is now an opportunity for these effects

to be tested on Earth by preparing targets in excited states using x-ray laser fields [140].

A theoretical explanation of why the fusion probabilities are increased was provided.

To improve the theoretical study, firstly an extensive study on Coulomb effects should be

conducted to probe these effects in extreme high density environments. A large project

could then be started by calculating the cumulative effect of a whole range of fusion pro-

cesses with low-lying collective states, in a variety of stellar environment conditions. This

would improve our understanding stellar evolution and nucleosynthesis.

In terms of improving our knowledge through experiments, it has been theoretically shown

that the use of x-ray free electron lasers on a solid state target can create electron holes and

plasma conditions suitable for NEEC to take place [141]. An improvement on this work

would be to find a nucleus with a lower first excited state, or to find an isomer with a highly

deformed excited state just above the isomer energy level. Laser excitation experiments

could then be conducted to investigate whether this method is viable for the purpose of

understanding NPIs as a fusion cross section enhancement process in a laboratory setting.



Chapter 8

The effects of nuclear friction on

heavy-ion fusion reactions

In classical mechanics, friction is often depicted as a resistance force acting in the opposite

direction of motion that leads to a irreversible loss of energy, typically in the form of

thermal energy. Nuclear friction is analogous to classical friction, except the energy loss

mechanism is due to the irreversible flow of energy from collective to intrinsic motion [142].

Friction is relevant in various branches of nuclear physics and nuclear astrophysics, such

as nuclear structure, fusion and fission [143]. The study of nuclear friction arose from the

need to describe nuclear damping phenomena in the 1950’s, which was then built upon when

heavy-ion experiments indicated that frictional forces affected processes that occur during

heavy-ion collisions, such as deep inelastic collisions (DICs), multinucleon transfer (MNT)

and quasi-fission. In particular DICs were investigated since they often resulted in a large

loss of energy and small mass transfer, although maximising the mass transfer as a result of

these collision has been of interest to those producing superheavy nuclei [144]. The intrinsic

structure is thought to be the cause of nuclear friction, and this is due to the excitation

of individual nucleons to a high energy density spectrum. These excited states are called

non-collective∗ excitations and they are difficult to model microscopically, due to the lack

of information on the occupied excited states and the large number of channels that need

to be accounted for. In Ko’s paper [145], they provided the first, semi-classical attempt at

∗These are also described as statistical excitations

72
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a unified description of the effects of collective and non-collective excitations on low-energy

heavy-ion collisions. Ko’s model introduces these collective and non-collective excitations

into the framework of the coupled-channels equations, and was important for demonstrating

that both of these excitation effects can be treated in DICs. In this chapter, we introduce

and calculate the effects of collective and non-collective excitations on heavy-ion fusion.

Understanding the role of nuclear friction is crucial for explaining experimental results in

sub-barrier heavy-ion fusion, for which theoretical models do not currently describe well.

Missing weak couplings were highlighted in an experiment using 20Ne + 90,92Zr [146]. This

projectile-target pair was chosen because the deformation parameters in 90,92Zr are less

prevalent than those in 20Ne, and hence calculations show that the quasi-elastic barrier

distributions (BDs) should be comparable in both reactions. However, the research showed

a discrepancy in the results – the BDs were different and the 92Zr target showed virtually

no structure. After comparing inelastic, backscattered Q-value spectra between experiment

and theory, it was concluded that a background of non-collective excitations must be present

in 92Zr, due to the two valence neutrons outside of the close N = 50 neutron shell. This

reasoning was supported by Fig. 8.1, due to the higher density of non-collective states in

92Zr compared to 90Zr.

A relatively recent attempt at modelling nuclear friction was conducted by Yusa, Hagino

and Rowley [147]. This method used an extension of the TISE coupled-channels equations,

with the couplings to the non-collective excitations included using a random matrix model.

The excitation energies and spins of the relevant Zr nuclei are known, but the deformation

parameters (coupling strengths) are unknown. Hence the coupling matrix elements are

estimated in the random matrix model, and they used the level density as a variable to

estimate the strength of the coupling form factor. The quasi-elastic BDs inclusive of non-

collective excitations were calculated to explain the discrepancy between 20Ne + 90,92Zr.

The results were an improvement on solely coupled-channels results, although there were

still discrepancies at energies below the barrier.
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Figure 8.1: Known collective and non-collective states for 90,92Zr up to 5300 keV. Figure

adapted from Ref. [146].

8.1 Review of nuclear friction models

Many models testing theoretical approaches to nuclear friction have been published, includ-

ing classical, quantum, fluid dynamical, and statistical models [148, 149]. This section will

give a brief overview of the various models, their application to heavy-ion collisions and

how the problem has evolved to the present day.

8.1.1 Classical models

The first models created to describe nuclear friction were based on classical mechanics,

since this is merely the application of damped systems to nuclear collisions. Considering a

system with a particle of mass m moving in one-dimensional space under the influence of a
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conservative force ∂V/∂q and a linear friction force γ0mq̇,

mq̈ + γ0mq̇ +
∂V

∂q
= 0, (8.1)

where γ0 is a friction co-efficient. In order to form the EOM for the system, the Lagrange

equations were often chosen since it is not limited by the use of Cartesian co-ordinates and

they provided a convenient way to include the frictional forces. The Lagrange equations

with friction are given as,

d

dt

∂L

∂q̇i
− ∂L

∂qi
+
∂F

∂q̇i
= 0, (8.2)

where L is the Lagrangian, the generalised coordinates are qi, and F is the Rayleigh dis-

sipation function. The Lagrange functions are simply found in this case by identifying an

integrating factor [150], I = eγ0t, for Eq.(8.1), and hence a suitable Lagrangian is,

L = eγ0t
(

1

2
mq̇2 − V (q)

)
. (8.3)

Transformation to Hamiltonian mechanics, in which the velocities of the Lagrangian are

replaced with momenta, first starts with identifying the total momentum,

p =
∂L

∂q̇
= eγ0tmq̇, (8.4)

and hence the classical Hamiltonian in one dimension is,

H = q̇p− L = e−γ0t
p2

2m
+ eγ0tV (q). (8.5)

Trajectory calculations were popular to model at the time and these initially allowed for a

few friction features such as sliding friction and the dissipation of orbital angular momentum

via a tangential friction force. A second tangential force named sticking-rolling friction [151]

was shown to be important in some cases, although for grazing interactions it can be

assumed to be negligible.
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Now we can describe the frictional force in Eq.(8.2), which is formed from the sum of

forces that oppose the radial motion, and this can be expressed by the Rayleigh dissipation

function [152],

F =
1

2

(
Zrṙ

2 + r2Ztϑ̇
2 + r2Zsϕ̇

2
)
, (8.6)

where ϑ is the tangential, and ϕ is the rolling angle and Zr, Zt, Zs are auxiliary functions

of r. As stated, these equations are only applicable for linear velocity-dependent friction.

For non-linear frictional forces, an extension to the Rayleigh-Lagrange formalism can be

applied [153] or a general dissipation function would be required.

From here, the friction auxiliary functions were separated into scaling factor constants κi

and form factors fi(r) that could be determined by the properties of the system,

Zi(r) = κifi(r) i = r, t, s. (8.7)

The form factor should then be chosen based on the type of approximation used for the

collision dynamics. A ‘fast’ approximation assumes that when the nuclei interpenetrate,

they do not redistribute and form a compound nucleus. This leads to a greatly increased

density in the overlap region, and the frictional force is estimated using the folding inte-

gral. In this approximation, all form factors are proportional to the overlap volume. The

inability to rearrange and the hard core of the nucleon-nucleon force results in the sudden

nuclear potential which is repulsive. Alternatively, after the nuclei are sufficiently close

or overlapping, we can assume that they are no longer separate nuclei and they form a

compound nucleus. The adiabatic nuclear potential in this case will stay attractive and

contribute to the formation of the compound nucleus.

It was soon discovered that these model calculations disagreed with experimental results by

underestimating the energy losses by about 30%, and it was speculated that the projectile

and target may not be spherical throughout the collision, as assumed in previous model

calculations. Deformation degrees of freedom were soon tested in one model [154], however

it was the models that used adjusted friction force parameters that were best at repro-

ducing experimental data [155]. The friction force was found to be roughly proportional
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to the excitation energy and the dissipation is proportional to the square of the nuclear

temperature.

An important model for this work is the Gross-Kalinowski (GK) model [57], a semi-classical

model used to describe the effects of friction in heavy-ion reactions. It is semi-classical

because the radial motion is treated classically, but the intrinsic system is treated with

quantum mechanics, and governed by the TDSE. The TDSE was solved for a sum of sin-

gle particle equations relating to the single particle wave functions. Gross and Kalinowski

initially used friction form factors of Woods-Saxon shape, but found that form factors pro-

portional to the square of the derivative of the nuclear potential were better suited to both

light and heavy systems, opposed to only light systems. In their model, angular momentum

is restricted to only dissipate into the intrinsic structure instead of spins by ignoring the

spins of the reaction nuclei about their axes. Additionally, an incoming trajectory can lead

to fusion if it is trapped in the potential pocket, or it can leave the range of the nuclear

and friction forces (r ≈ 2.5R0). The final energy and angular momentum determine the

parameters of the final trajectories, which were then plotted against the scattering angle

and compared to experimental results.

8.1.2 Quantum models

In classical models, fusion reactions and deep inelastic heavy-ion collisions are well-described

when the incident energy is higher than the Coulomb barrier. When the incident energy is

near or below the barrier, the agreement is less clear. This is due to quantum tunneling,

and this is the primary reason for why quantum mechanical treatment of the problem is

necessary in these conditions.

For these models, the TDSE must be used if the considered frictional force is dependent

on velocity. Starting with the classical equation of motion in Eq.(8.1) and substituting

p = mq̇, the energy is defined as,

E = T + V = p2/2m+ V (q), (8.8)

and the time derivative,
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dE

dt
=
γ0
m
p2. (8.9)

In a recent attempt by Tokieda and Hagino [156] to quantify the effects of friction on quan-

tum tunneling, three friction models were applied to a one-dimensional tunneling problem.

In the Caldirola-Kanai model, they quantise the classical Hamiltonian in Eq.(8.5),

d

dt
〈p〉+ γ0〈p〉+ 〈∂V

∂q
〉 = 0, (8.10)

where the expectation values are evaluated as such in Eq.(2.3) and p is as defined in Eq.(8.4).

The momentum operator in this formalisation is explicitly time-dependent. The energy

dissipation reads,

d

dt
〈E〉 = −γ0

m
〈p2〉, (8.11)

where these quantum variables obey Ehrenfest’s theorem in the classical limit. An alterna-

tive method is to use a non-linear Schrödinger equation with a Hamiltonian containing a

quantum friction potential, W ,

H =
p2

2m
+ V (q) + γ0W, (8.12)

and here the momentum operator is time independent. This is the method used in the

Kostin and Albrecht models [157, 158]. The difference arises in the way the nonlinear

potential is defined. Firstly in the Kostin model,

WK =
~
2i

(
ln

ψ

ψ∗
−
〈
ψ

ψ∗

〉)
, (8.13)

and then in the Albrecht model,

WA = 〈p〉(q − 〈q〉). (8.14)

To obtain energy-resolved tunneling probabilities, Tokieda and Hagino broaden the spatial

distribution of a Gaussian wave packet until the energy distribution is sufficiently narrow
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and integrate the TDSE to calculate the tunneling probabilities, Twp(Ei). These models

are able to produce a reasonable agreement with exact, frictionless tunneling probability

calculations down to 10−4. It was found that the linearity of the Caldirola-Kanai equations

allowed for more accurate integration than those of Kostin and Albrecht. The friction co-

efficient strengths were chosen to coincide with weak (5 MeV) or strong (30 MeV) energy

loss. Regardless, the three models led to very similar results for their approximation of

weak and strong friction, and showed reduced tunneling probability for both, with the

latter reducing tunneling probability more greatly.

8.1.3 Non phenomenological models

Naturally there have been attempts to describe nuclear friction without the influence of

experimental results, since the predictive power of phenomenological models can be limited

[142]. However, the results from these models have been limited and have had less success

than the phenomenological models mentioned in the previous section. For completeness,

these non phenomenological models are briefly discussed and their strengths and weaknesses

highlighted.

A simple relation can be made between nuclear friction and fluid dynamics, since it is

thought that under certain extreme conditions nuclei can behave as a strongly interacting

fluid [159]. These were based upon the liquid drop model and modified to include viscosity.

The complication arises when examining the conditions for fluid dynamics to be applicable,

that is the assumption that the mean free path of a nucleon in a nucleus is shorter than the

radius of the nucleus, `� R0. This contradicts the assumptions from the shell model and

Fermi gas model. Nevertheless, the fluid dynamics can be described by the Navier-Stokes

equation and the inclusion of viscosity is useful when dealing with small oscillations for the

purpose of modelling fission. However, heavy-ion dynamics cannot be described well, with

some of the key problems being that the transition between two individual nuclei and a

compound nucleus during fusion is not necessarily continuous, and high angular momentum

is only treatable if the assumption of axially symmetric flow is relaxed.

Statistical models propose the opposite approach in that the Fermi gas model is applied,

and implies that the the mean free path is larger than the radius `� R0 [160]. In the piston
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model, the dynamics are determined by the collisions of particles with a moving wall that

can be thought of as the collective coordinate. In a simple model, a few assumptions are

made to simplify the calculations, such as the collisions of the nuclei with the piston being

instantaneous so acceleration is ignored and the time between collisions is large compared

to the period of the piston. In the gas-kinetic models, these consider the exchange of

momentum through either an area of contact or the overlapping volume between the two

colliding nuclei. Both of these have their disadvantages in that the former is not useful

for describing radial motion due to lack of Galilean invariance and latter suffers from the

assumption that the projectile and target are distinguishable.

8.2 Implementation of nuclear friction in the CCDM model

The theory behind this work is based on the semi-classical model developed by Gross and

Kalinowski [57]. We chose to base our model calculations on the GK model due to the

simple form of the friction form factor and parameters. The GK model used a form factor

to mimic the effects of friction, the parameters of which were empirically determined from

experimental results. We introduce similar friction form factors into the CCDM model and

calculate the effects of friction on fusion probability by implementing friction as an environ-

ment within an open quantum system. Additionally, our model shares similar limitations

to the GK model and the main improvement in this work is the quantal treatment of the

radial motion along with coupled-channels effects, and hence this is a dynamical quantum

mechanical model solution to nuclear friction.

There were many challenges to overcome when including friction into the CCDM model. At

first, the friction form factor was included using an auxiliary state outside of the reduced

system, similar to that of the fusion auxiliary state (see Fig. 8.2). The friction form

factor absorbed the probabilities of the wave packet as intended. However, our method of

calculating the energy-resolved fusion probabilities involves using the reflected wave packet

to calculate the difference in the initial and final wave packets. As a result the absorption

to any single potential could not be isolated and the energy-resolved fusion probabilities

were overestimated, since these calculations included the absorption to both the friction

and fusion auxiliary states. To fix this issue, the easiest and most logical option was to
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include the friction environment within the reduced system. In this approach, the friction

auxiliary state is propagated along the radial co-ordinate axis and is governed by the EOM

of the CCDM method. This state is populated due to the coupling of the projectile and

target nuclei to the friction auxiliary state, and this is visually represented in Fig.8.3. The

strength of this coupling is determined using Eq.(8.15) and this is the friction form factor

shown in Fig.8.2. Additionally, the couplings from the explicitly treated collective states of

the ions to the friction auxiliary state are irreversible.
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Figure 8.2: The radial position and strength of the implemented friction form factor (orange

dashed line). The couplings to the radial wave packet are included in the same manner as

the Γ function (fusion environment form factor, black line).

Instead of the bare potential, the friction auxiliary state interacts with a total potential with

a barrier height consistent with the GK model (Fig. 8.4). Finally, once the propagation has

reached an asymptotic time, the friction auxiliary state is included in the energy filtering

method and the correct fusion probability can be obtained. In terms of the underlying

physics, this is valid since it is likely that friction occurs at a close distance and then once

energy has been dissipated, the elements excited to the high-lying non-collective states

would move away from the interaction region.
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Figure 8.3: The population of the friction auxiliary state as a function of time and radial

position. The state is virtually unpopulated until the reduced system wave packet reaches

a radial position where the coupling to the friction auxiliary state is significant.

8.2.1 Choice of target and projectile

The choice of the 92Zr target is due to the previously mentioned discrepancy between a

90Zr and 92Zr target. Instead a 16O projectile will be used due to it being inert, and

we consider the structure of 92Zr. The excited state parameters used for the following

calculations are given in Table 8.1. By coupling the elastic and inelastic channels to the

friction environment, the impact on fusion probability can be calculated.



8.2. Implementation of nuclear friction in the CCDM model 83

Table 8.1: The excited state parameters for the two considered excited states of 92Zr [161].

Spin Parity Excited state energy (MeV) β

2+ 0.93 0.103

3− 2.34 0.170

8.2.2 Parameters, form factors and potentials

The model parameters for the calculations in this chapter are the same as those in Section

6.3.1, except kenv = 2 and the number of states i = 3. The Woods-Saxon parameters

required for the 16O + 92Zr collision are given in Table 8.2.

Table 8.2: The Woods-Saxon parameters used for the numerical calculations for the 16O +

92Zr collision.

Parameter Value Description

VWS -54.2 MeV Woods-Saxon potential well depth

rWS 1.188 fm Woods-Saxon nuclear radius empirical constant

aWS 0.63 fm Woods-Saxon diffuseness parameter

To model the friction form factor, the procedure used in Ref. [57] was followed. Here the

friction co-efficient, Kr, was determined with two forms, firstly with a Fermi function and

then secondly with a form that is proportional to the square of the nuclear force. The latter

is used in this work, due to it being much better at describing a wider range of heavy ion

collisions,

Kr = K0
r (∇VN )2 (8.15)

where the friction free-parameter is phenomenologically determined from experiments, and

is given as K0
r = 4 · 10−23 s / MeV [57]. In terms of choosing the potentials to model
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friction, we began by using the same potential as the GK model which was a single folding

nuclear potential,

V12(r) =

∫
v12(r − r′)ρ1(r′)d3r′, (8.16)

where v12 is the nucleon-nucleus interaction between a nucleon in the projectile with a

target nucleus, and ρ1 is the nucleon density distribution of the projectile, and this can be

made symmetric by taking VN = 1
2(V12 + V21). The parametrised form used by Gross and

Kalinowski was,

VNSF
= −

5∑
n=1

An(r −R)n−1 ln

[
1 + exp

(
−r −R

a

)]
, (8.17)

where R = r0(A
1/3
P +A

1/3
T ), a and r0 are fixed nuclear constants, and An are fitting coeffi-

cients that are chosen give the best fit to the folding potential. A good approximation for

these coefficients that was found to be independent of the projectile and target system was

A1 = 33, A2 = 2, A3 = 3, A4 = A5 = 0 [57].

When using this potential in our model, there was no potential pocket in the bare central

potential and at very short distances it was not repulsive, as shown in Fig.8.4. In response

to this, we instead used a Woods-Saxon nuclear potential and re-scaled the WS parameters

so that the friction potential barrier height was consistent with the single folding potential.

The rescaled Woods-Saxon parameters required to calculate the friction form factor in

Eq.(8.15) are given in Table 8.3.

Furthermore, a proportionality coefficient, η was introduced to Eq.(8.15), and this con-

nects the friction coefficient with a transition probability rate from the explicitly treated

elastic and inelastic channels to the friction auxiliary state. Including η leads to a friction

form factor that has transition probability rates of the same order as the fusion auxiliary

state. In this work, η = 0.04 fm2/s, and these units are used since it also gives the correct

units of MeV for Kr. It is kept constant throughout the dynamics, similarly to calcula-

tions performed in literature. Further discussion on the possibility of informed dynamical

proportionality coefficients are discussed in Section 8.4.
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Table 8.3: The Woods-Saxon parameters used to calculate the friction form factor for the

16O + 92Zr collision.

Parameter Value Description

VWS -55.20 MeV Woods-Saxon potential well depth

rWS 1.188 fm Woods-Saxon nuclear radius empirical constant

aWS 0.848 fm Woods-Saxon diffuseness parameter
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Figure 8.4: The bare potential of the 16O + 92Zr collision compared to the central potential

created using the Gross-Kalinowski (GK) nuclear potential and an adjusted Woods-Saxon

(WS) nuclear potential that replicates the same Coulomb barrier shape as the GK potential.

8.2.3 Assumptions for friction model calculations

Assumptions must be made for the nuclear friction calculations due to the shear quantity of

processes that happen during a nuclear collision. Even today, a comprehensive microscopic
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theory for nuclear friction in heavy-ion collisions has not been published. By reducing the

number of effects within the model, reasonable computational times can be achieved.

In this study, we solely focus on radial friction due to the utilisation of head-on collisions,

allowing us to maintain manageable calculation run times by excluding angular momentum

considerations. This is justified as the radial friction is considered the main source of

energy loss, whereas tangential friction describes the loss of angular momentum and a lesser

amount of energy loss (Kϑ = 0.025Kr). Angular momentum is conserved when tangential

friction is not considered. This is consistent with the GK model as it inherently considers

Zr � Zt [57]. The calculations are Markovian, and it is assumed that the couplings to

the non-collective states are irreversible. Therefore, the transfer of probability from the

reduced system to the friction environment is not reversible, and the friction form factors

do not vary based on previous time steps.

Lastly, a choice needs to be made for whether friction is considered strong or weak. When

friction is strong, the interaction is instantaneous and energy is dissipated immediately

when entering the region where friction takes place. If friction is weak, then a nucleus

with small angular momentum within the fusion pocket would not lose all of its energy

and the fusion cross sections would be altered, as only a window of angular momentum

values would contribute to the fusion cross section. Weak friction is difficult to include due

to the requirement of additional details about the nuclear potential of intersecting nuclei,

which would require more intricate calculations such as using TDHF methods. Since there

has been no indication in experiments that friction is weak or strong, the strong friction

assumption is used as additional models are not required to calculate complex nuclear

potentials.

8.3 The effects of nuclear friction on fusion probability for

16O + 92Zr

The fusion probabilities with friction are compared to the frictionless calculations as a ratio

in Fig. 8.5. This figure was created by using the CCDM model with projectile and target

parameters as stated in Section 8.2.2 for the 16O + 92Zr collision using a Coulomb wave
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packet. To obtain results with reasonable error, a range of initial E0 are used, with the

average change in fusion probability of low (34 – 36 MeV), medium (37 – 39 MeV) and high

(40 – 45 MeV) plotted. Averaging results around the same E0 values reduces the number

of data points that are unphysical and improves the statistical error.
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Figure 8.5: Fusion probability calculations using 16O + 92Zr when including the friction

environment compared to the fusion calculations without friction. The height of the nominal

Coulomb barrier is 42.4 MeV. The figure represents the change in fusion probability as a

ratio, and uses sets of initial parameters to ensure soundness of the energy-resolved fusion

probabilities for each value of E0. The low, medium and high sets include initial E0 values

of 34 – 36, 37 – 39 and 40 – 45 MeV respectively.

The results show that fusion probability is increased by a few orders of magnitude for

deep-sub barrier energies, and the ratio decreases exponentially (linearly in log scale) as E0

approaches the Coulomb barrier. Above the barrier, the ratio is stable at values just above

unity. The effects of friction on fusion probability are still unknown, with some models

predicting both increased and decreased transmission through a barrier [143,162]. Here the

large increase due to friction could be due to a number of factors. Firstly, the Coulomb

barrier observed by the friction auxiliary state is lower than the Coulomb barrier in the
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entrance channel, and where there is coupling to the friction auxiliary state, it is easier

for fusion to occur due to the lower potential barrier. Another reason for increased fusion

probability could be the location of the friction form factor. The location of the friction

form factor in shown in Fig. 8.2. It is localised very close to the fusion pocket and therefore

the coupling between the friction environment and the fusion environment will be strong.

This leads to significant transfer of probability from the friction auxiliary state to the fusion

auxiliary state and as a result, fusion is enhanced compared to calculations without friction.
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Figure 8.6: The theoretical and experimental BDs for 16O + 92Zr. The calculated theo-

retical values with friction (black triangles) are an improvement on the same calculations

without friction (green squares). The experimental data is taken from Ref. [161].

In order to compare the fusion probability values calculated using the CCDM method

with experimental cross sections, it was found that a useful quantity is the second energy

derivative of Eσ [163]. This is called the barrier distribution (BD), and it was found that

the first derivative of the transmission probability is related to the BD by the following

relation [11],

dT0(E)

dE
≈ 1

πR2
CB

d2

dE2
[Eσ(E)], (8.18)
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where RCB = 10.2 fm is the radius of the nominal Coulomb barrier for 16O + 92Zr. The LHS

of this equation is calculated from the theoretical fusion probability values using a two-point

central difference approximation. The second derivative on the RHS is calculated using a

three-point central difference approximation from experimental data [161]. The energy step

used for these approximations was 1.7 MeV.

The theoretical values with and without friction are plotted together with the experimental

data in Fig. 8.6. In general, the theoretical values that include friction effects fit the

experimental data better than theoretical values without friction. There are some areas that

diverge from the experimental values, around 38 MeV and 41 MeV, and it is hypothesised

that too little probability is transferred well-below the Coulomb barrier and too much is

transferred near the barrier. A solution to the discrepancy could be an adjustment to the

strength or position of the friction form factor. We can further deduce information from

two key features of the calculated friction BD. The first is the height of the BD, which is

lower than the frictionless BD and provides agreement with the increased fusion probability

values. Secondly, the width of the BD decreases when friction is present. This decrease

in width could be perceived as the calculations becoming more classical, since classical

BDs are essentially a combination of one or more Dirac delta functions, whereas quantum

mechanically, these are broader, containing a superposition of bell-shaped functions, owing

to the quantum tunneling effect [11].

Whether or not the increase in Fig. 8.5 is realistic is open to debate since details about

the scaling of the friction form factor are unknown. Regardless, the implementation of

friction in this model indicates that friction causes an increase in fusion probability for

J = 0 calculations. Furthermore, information about the non-collective excited states is

contained purely in the friction form factor. Something that may need to be considered is

that the excited states of the non-collective excitations may not fit the approximation that

compound nucleus formation occurs immediately when the wave packet is localised in the

fusion pocket of the Coulomb barrier. It is possible that nuclei in non-collective states are

able to escape the fusion pocket, and other reaction outcomes such as those in Fig.1.2 could

occur.
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8.4 Summary

We have implemented nuclear friction as an environment as part of an open quantum system

within the CCDM model. The inclusion and calculation of collective and non-collective

excitations on heavy-ion collisions using coupled-channel equations is an advancement on

the work by Ko [145]. Nuclear friction effects on fusion probability are demonstrated using

a friction auxiliary environment similar to the fusion environment that was examined in

Ref. [54]. It was found that calculations with friction caused a significant increase in the

fusion probability for below-barrier energies. The barrier distributions for the theoretical

and experimental data were compared, and the calculations that include friction showed a

better agreement with experimental data than frictionless calculations.

Despite this progress, there is still a lot of work to do to improve the description of friction

in heavy-ion collisions. Currently, a phenomenological friction coefficient is used along

with a proportionality coefficient with units of fm2/s. The next steps to improve on our

calculations would be the introduction of techniques that model the neck formation of fusing

nuclei. TDHF calculations are a prime example of a viable method that could be used to

determine parameters of neck formation, which would then inform the construction of a

dynamic friction proportionality coefficient. Additionally, mass and charge transfer could

be included by modelling a mass and charge diffusion form factor as an environment that is

a function of the contact time between the colliding nuclei. The diffusion potential would be

based on the couplings to diffusion equations [164]. It is then simple to include this diffusion

form factor as an auxiliary state in the CCDM model and couple to this potential via a

coupling matrix. Adjusting the position of the friction form factor is another method that

could help bridge the differences between theoretical and experimental data. With further

work, these improvements can be made and validated, and it is hoped that the CCDM

model could be used to study the effects of nuclear friction on other reaction processes.



Chapter 9

Summary, conclusions and outlook

This chapter starts with a full overview of the thesis, followed by concluding remarks and

avenues of further work that may be promising as a result of this research.

9.1 Thesis summary

The contribution of this thesis includes the development of the CCDM method and explores

its uses to further our understanding of low-energy heavy-ion fusion reactions. Relevant

theoretical background were discussed such as density matrix and open quantum system

theory since these concepts were fundamental to this work. Numerical methods and the use

of the chosen methods such as Faber polynomials for numerical integration were discussed.

This was due to the equations of motion being too complex to solve using exact methods.

Fourier transforms for the action of the kinetic energy operator on the density matrix were

explained and compared to techniques in literature.

An overview of the CCDM method, details of the time propagation dynamics and the

process of including an open quantum systems approach into the model were provided and

discussed. This was followed by an introduction to the window operator and its purpose for

producing energy-resolved fusion probabilities. Before introducing novel effects, the CCDM

method was tested to ensure the validity of the results compared to those of literature. After

adjusting the model parameters, the energy-resolved fusion probabilities agreed with TISE

91
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calculations up to 10−8 for the 16O + 144Sm collision using a Gaussian wave packet. Hence

the application of the window operator to a density matrix was successful and this was

a key stepping stone that allowed further research to ensue. This method had the added

benefit of being able to calculate quantum observables such as entropy, energy dissipation

and purity, which allowed for verification that the model was performing as expected and

additional insights that classical and semi-classical models cannot provide. Furthermore,

the wave packet could be visualised at each time step of the calculation, providing valuable

information about the dynamics throughout the time propagation. This work was peer-

reviewed and published in Physics Letters B, see Ref. [54]

Next, an investigation into the effects of plasmas on low-energy heavy-ion fusion was con-

ducted, since there was a lack of literature discussing the effects of external environments on

these reactions. This involved a review into the potential effects that plasma could have on

these fusion reactions, in which electron screening, thermal effects and NPIs were discussed.

It was found that fusion reactions that are initiated in hot environments (where the plasma

temperature is of the order of the first excited state energy) are enhanced when low-lying

excited states are present. These results were obtained from the 16O + 188Os collision,

and this work was peer-reviewed and published in Physical Review C, see Ref. [55]. Fur-

ther research on the effect of electron shielding, which is expected to be significant at high

densities, is required to understand the full extent of plasma effects on heavy-ion fusion.

Nuclear-plasma interactions would benefit from further studies using a target with a lower

first excited state, of the order of keV. In addition, the use of x-ray free electron lasers on

solid state targets could be a good approach to exploring these effects experimentally.

Finally, a study on nuclear friction was conducted, which started with a review of relevant

nuclear models that have been used to estimate the effects of nuclear friction. In this

work, nuclear friction was implemented as an environment as part of an open quantum

system within the CCDM model. To do this, the method used within the Gross-Kalinowski

model to calculate nuclear friction was implemented into the CCDM model as a friction

auxiliary environment similar to the fusion environment that was examined in Ref. [54]. The

inclusion and calculation of collective and non-collective excitations on heavy-ion collisions

using coupled-channel equations is an advancement on the work by Ko [145]. Using the

CCDM model allowed for the fully quantum mechanical treatment of nuclear friction, in



9.2. Concluding remarks 93

addition to including quantum coherence effects of the coupled-channels. The 16O + 92Zr

collision was used for this study, and the results showed that friction increased the fusion

probabilities until Ec.m reaches the nominal Coulomb barrier. A comparison between theory

and experiment was conducted by creating barrier distributions, and the theoretical results

including friction were found to be an improvement on frictionless calculations.

9.2 Concluding remarks

The primary aim of this thesis was to extend our theoretical knowledge of low-energy

heavy-ion fusion reactions. To do this, the idea was to take an existing fully quantum

model, the coupled-channels density matrix, and make improvements to the model which

would allow for research into plasma and nuclear friction effects on low-energy heavy-ion

fusion reactions. Much of the early work focused on improving the speed of calculations

and making use of parallelisation, to ensure that testing the model would be efficient and

that any future calculations would be done in a reasonable time. The addition of the

window operator for energy-resolution purposes was a key milestone that allowed for the

novel plasma and nuclear friction effects to be calculated. The model verification was

successful and found that the CCDM method was able to produce results that matched

experimentally-benchmarked code. In terms of code improvements, further incremental

changes could be done to improve the convergence of the fusion probability results at deep

sub-barrier energies.

Of the three plasma effects, temperature was shown to be prominent when using an ideal

projectile and target pair (16O + 188Os) and has potential to be significant in astrophysical

environments. This was good evidence that heavy-ion fusion reactions are affected by

temperature, and environmental effects may be important for certain reactions. From the

research into plasma effects, the contributions from electron screening were not significant

in this study, but it is acknowledged that electron screening can quickly become significant

under the right conditions (low temperature and high density). Additionally, although

nuclear plasma interactions did not make significant changes to the fusion probability when

their effects were included in the CCDM model, the ability to include the effects of NPIs into

the calculations is a significant step to introducing them if suitable conditions are found.
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This chapter showed that plasma effects are non-negligible when investigating low-energy

heavy-ion fusion reactions, however more research is needed to understand how much this

affects the bigger picture i.e., stellar nucleosynthesis.

It was interesting to apply nuclear friction to the model, and use an open quantum systems

approach with a fully quantum dynamical model to extract meaningful results. Nuclear

friction was applied successfully by including an auxiliary state that was propagated within

the EOM and the phenomenological approach worked well. The results from the 16O + 92Zr

collision moderately agreed with experimental data and demonstrated an improvement over

calculations that did not include any nuclear friction effects. Of course, further refinements

would have improved the results, such as implementing a dynamic proportionality coefficient

and adjusting the radial position of the friction form factor which would be expected to

improve the theoretical barrier distributions.

Overall, the CCDM model showed great promise throughout all the calculations, with

its ability to adapt being one of its greatest strengths. Implementing new effects was a

challenge, but the lack of restrictions meant that creative techniques could be used to

achieve the implementations neccessary. With additional resources, the model could be

tested further to find out the range of projectile and target pairs that could be handled.

Comparisons to a larger range of experimental results would benefit the theoretical study

greatly. Once an extensive testing has been completed, the usability to new users could

then be improved to make the code accessible to a wider audience.

9.3 Further work

In terms of further developments for this work, there are three promising ideas that could

be explored further:

1. The inclusion of relevant orbital angular momenta to fully understand the range of

effects included into the calculation. An improvement would be the implementation of

an energy-shifting formula [165] that approximates the rotational energy for a given J

and is used in conjunction with J = 0 calculations, to avoid time-consuming angular

momentum calculations.
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2. An investigation of thermal effects on neutron capture reactions that are of relevance

for the r-process in nucleosynthesis. These occur in explosive, high temperature envi-

ronments and thermal excitation of nuclear excited states may have an influence on

neutron capture reaction rates.

3. Introducing the capability within the CCDM approach to include MNT reactions,

since friction is expected to be relevant there. MNT reactions are promising pathways

for producing new heavy and superheavy isotopes.

In addition, if astrophysically relevant nuclei are identified that contain low-lying excited

states populated thermally, an exciting prospect would be to calculate fusion cross sections

of these nuclei to examine if this mechanism is significant in nucleosynthesis. Ultimately,

it is hoped that the research presented in this thesis inspires further fruitful research that

will contribute to the understanding of heavy-ion fusion reactions and nucleosynthesis in

stellar environments.
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Appendices

A Derivation of the nondissipative Liouvillian

The nondissipative Liouvillian of a density matrix is formulated from the substitution of a

unitary time-evolution operator U(t, t0) into the Schrodinger equation [60] and is defined

as

i}
∂ρ(t)

∂t
=
[
ĤS , ρ̂(t)

]
(A.1)

where the system Hamiltonian ĤS and density operator ρ̂ are given as

ĤS = Ĥ1(R) + Ĥ0(ζ) + V (R, ζ) (A.2)

ρ̂ =
∑
nm

|m〉 〈m| ρ̂ |n〉 〈n| (A.3)

=
∑
nm

ρnm |m〉 〈n| . (A.4)

The system Hamiltonian is composed of the nuclear and Coulomb interactions between the

two nuclei, Ĥ1(R), the intrinsic Hamiltonian determined from the considered excited states

of the target or projectile, Ĥ0(ζ), and the coupling potential which determines how the

radial motion affects the population of excited states, V (R, ζ).

The individual components of the Hamiltonian must be calculated,

111
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[
Ĥ1, ρ̂

]
=
∑
mn

[
Ĥ1, ρ̂mn

]
|m〉 〈n| (A.5)

=
∑
mn

{Ĥ1ρ̂mn − ρ̂mnĤ1} |m〉 〈n| (A.6)

[
Ĥ0, ρ̂

]
=
∑
mn

ρ̂mn

[
Ĥ0, |m〉 〈n|

]
(A.7)

=
∑
mn

ρ̂mn {em |m〉 〈n| − |m〉 〈n| en} (A.8)

=
∑
mn

ρ̂mn(em − en) |m〉 〈n| (A.9)

[
V̂ , ρ̂

]
=
∑
mn

[
V̂ , ρ̂mn |m〉 〈n|

]
(A.10)

using the relation [A,B · C] = [A,B] · C +B · [A,C], this equation is expanded to

[A,B] · C = [V̂ , ρ̂mn] = {V̂ ρ̂mn − ρ̂mnV̂ } |m〉 〈n| (A.11)

B · [A,C] = ρ̂mn[V̂ , |m〉 〈n|] = ρ̂mn{V̂ |m〉 〈n| − |m〉 〈n| V̂ }. (A.12)

Bringing together all parts of the Hamiltonian and substituting into Eq.(A.1),

∑
mn

{
i} ˙̂ρmn − Ĥ1ρ̂mn − ρ̂mnĤ1 − ρ̂mn(em − en)− V̂ ρ̂mn

}
|m〉 〈n|

= −
∑
mn

ρ̂mn |m〉 〈n| V̂ (A.13)

when the dot represents a partial derivative with respect to time. Then looking at the

matrix element “ij”, which includes the energy eigenstates,

i} ˙̂ρij = ρ̂ij(ek − el) + Ĥ1ρ̂ij − ρ̂ijĤ1 +
∑
n

(
−ρ̂inV̂nj + V̂inρ̂nj

)
(A.14)
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and adding in the radial basis states |r〉 and |s〉,

i} ˙̂ρrsij = ρ̂rsij (ei − ej) + 〈r| Ĥ1ρ̂ij − ρ̂ijĤ1 |s〉+
∑
n

〈r| ρ̂inV̂nj + V̂inρ̂nj |s〉 . (A.15)

Introducing a new matrix index by inserting
∑

t |t〉 〈t| into the 2nd and 3rd terms on the

right-hand side of Eq (A.15) is necessary for the kinetic energy matrix calculations and

therefore,

2nd term of RHS =
∑
t

〈r| Ĥ1 |t〉 〈t| ρ̂ij |s〉 − 〈r| ρ̂ij |t〉 〈t| Ĥ1 |s〉 (A.16)

=
∑
t

(
Hrt

1 ρ
ts
ij − ρrtijHts

1

)
(A.17)

=
∑
t

(
T rtρtsij − ρrtijT ts

)
+
(
U rrρrsij − ρrsijU ss

)
(A.18)

3rd term of RHS =
∑
n

∑
t

〈r| ρ̂in |t〉 〈t| V̂nj |s〉+ 〈r| V̂in |t〉 〈t| ρ̂nj |s〉 (A.19)

=
∑
n

∑
t

(
V rt
in ρ

ts
ij − ρrtinV ts

nj

)
(A.20)

=
∑
n

(V rr
in ρ

rs
nl − ρrsinV ss

nl ) (A.21)

where T and U are as described in Section 4.2.1. Bringing these equations together and

simplifying, the nondissipative Liouvillian is given below

(L̂H ρ̂)rsij = ρ̇rsij = − i
}

{
ρrsij (ei − ej) + ρrsij (U rr − U ss) +

+
∑
t

(
T rtρtsij − ρrtij T ts

)
+
∑
n

(
V rr
in ρ

rs
nj − ρrsinV ss

nj

)}
. (A.22)

B Derivation of the dissipative Liouvillian

The dissipative part of the Liouville von-Neumann equation is given below,
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L̂Dρ̂ =
∑
α

(
Ĉα ρ̂ Ĉ†α −

1

2

[
Ĉ†αĈα, ρ̂

]
+

)
(B.1)

where Ĉα are Lindblad operators, with α = ij being the index for each of the ordered pairs

(ij). This is determined using the following equation

Ĉα =
√

Γij(r) |i〉 〈j| . (B.2)

As per usual, Lindblad operators are phenomenologically determined and the ones used

in this study are described by the transition rates,
√

Γij(r), from the |j〉 states to the |i〉

states.

The dissipative Liouvillian can then be written as

L̂Dρ̂ =
∑
ij

√
Γij(r) |i〉 〈j| ρ̂ |j〉 〈i|

√
Γij(r)

− 1

2

(
Γij(r) |j〉 〈i|i〉 〈j| ρ̂+ ρ̂ |j〉 〈i|i〉 〈j|Γij(r)

)
(B.3)

and after taking the expectation value of ρ̂ within the |j〉 basis, and removing the inner

products, 〈i|i〉 = 1, a simplified equation is obtained

L̂Dρ̂ =
∑
ij

√
Γij(r) |i〉 ρ̂jj 〈i|

√
Γij(r)−

1

2

(
Γij(r) |j〉 〈j| ρ̂+ ρ̂ |j〉 〈j|Γij(r)

)
(B.4)

and then looking at the elements “kl”, which are the extended basis states,

(
L̂Dρ̂

)
kl

=
∑
ij

√
Γij(r) δki ρ̂jj δil

√
Γij(r)−

1

2

(
Γij(r) δkj ρ̂jl + ρ̂kj δjl Γij(r)

)
. (B.5)

Projecting Eq.(B.5) onto the radial basis states rs, the dissipative Liouvillian is expressed

as

(LDρ̂)rskl = δkl
∑
ν

√
Γrrkν ρ

rs
νν

√
Γsskν −

1

2

∑
ν

(Γrrνk + Γssνl)ρ
rs
kl . (B.6)
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C Profile of CCDM code

Figure 1: The profile of the CCDM code for 16O + 144Sm, created using gprof.
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