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Abstract: This paper addresses the challenges of solving the quantum many-body problem, particu-

larly within nuclear physics, through the configuration interaction (CI) method. Large-scale shell

model calculations often become computationally infeasible for systems with a large number of va-

lence particles, requiring truncation techniques. We propose truncation methods for the nuclear shell

model, in which angular momentum is conserved and rotational symmetry is restored. We introduce

the monopole-interaction-based truncation and seniority truncation strategies, designed to reduce the

dimension of the calculations. These truncations can be established by considering certain partitions

based on their importance and selecting physically meaningful states. We examine these truncations

for Sn, Xe, and Pb isotopes, demonstrating their effectiveness in overcoming computational limits.

These truncations work well for systems with either a single type of valence nucleon or with both

types. With these truncations, we are able to achieve good convergence for the energy at a very small

portion of the total dimension.

Keywords: configuration interaction shell model; monopole Hamiltonian; seniority; nuclear structure

1. Introduction

The solving of the quantum many-body problem is essential for the understanding of
various microscopic systems like nuclei, atoms, and condensed matter, as well as quantum
chemical multi-electron systems. In the present super-computation and machine-learning
era, the importance of ab initio modelling has been repeatedly emphasized. Of all the
ab initio many-body methods [1–12] that have been developed, the configuration interac-
tion (CI) approach [13–18] may be one of the easiest to understand and most convenient
to use but it is also one of the most difficult tools to implement efficiently on a supercom-
puter. CI involves essentially a matrix-eigenvalue equation involving an atomic or nuclear
many-body Hamiltonian. One can expect to attain the exact solution of the many-body
Hamiltonian if the full configuration interaction calculation involving all possible orbital
bases can be carried out, which, however, is often not the case. As the dimension of the
CI problem increases exponentially as the number of particles increases, in most cases one
has to implement various truncation algorithms. By truncation, one aims at limiting the
number of basis states for the CI model space. Unlike coupled-cluster [8–10] or many-body
perturbation theory [19,20] approaches, the approximate solution of the CI after truncation
can still be deemed as variational. One may be able to recover different parts of the correla-
tion energy depending on the truncation strategy applied. Other CI approaches like the
Monte Carlo shell model [21–24], variation after projection [25], and generator coordinate
method [26] have also been developed to overcome the dimension difficulty, but they often
started from deformed rather than spherical Slater determinants and therefore require very
different algorithms.

Another important aspect to consider when designing a truncation algorithm is the
possible breaking of the underlying symmetry. The restoration of the symmetry may be
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quite computationally heavy. In this paper, we focus in particular on the nuclear many-body
system where the angular momentum is conserved and therefore the rotational symmetry
is important to restore. We will review very briefly the different truncation algorithms
that have been applied in nuclear CI approaches. Then we will introduce the monopole-
interaction-based importance truncation (referred to as monopole truncation) and further
truncation by considering the seniority truncation as inspired by the presence of strong
pairing correlation. Finally, we will test these truncations on the system that contains
only one type of valence nucleon, with an equal number of valence protons and neutrons
and with an unequal number of valence protons and neutrons.

The paper is divided into the following sections: In Section 2, we have briefly described
the configuration interaction shell model and different shell model algorithms, focusing
on the angular momentum projection in the NushellX formalism. We have proposed
different truncation approaches in Section 3 in order to overcome the dimensionality issue.
In Section 4, details are given about the model spaces and the effective interactions used
in the present calculations. Shell model results of low-lying energy spectra with full and
truncated basis states for tin, lead, and xenon isotopes are presented in Section 5. We have
also calculated reduced electric quadrupole transition probability B(E2) for Sn and Xe
isotopes. Finally, conclusions are drawn in Section 6.

2. The Nuclear Configuration Interaction Shell Model

The CI approach is more commonly referred to as the nuclear shell model in the
nuclear physics community, as it has its root in the independent particle model (the “shell
model”) that was introduced 75 years ago [27–30]. The nuclear shell model has long been
one of the most successful and accurate approaches in describing the nuclear structure prop-
erties. To put the nuclear shell model in a general context, one may take the independent
particle model as the starting point, which may be well estimated from Hartree-Fock (HF)
approaches, and the CI with effective interactions as the post-HF treatment. CI calculations
can be carried out without or with assuming an inert core. The latter is more common, as
the computation is often too heavy to include the core excitations and by considering the
fact that the atomic nucleus is indeed characterized by strong shell effects.

A nucleus is considered to be made of interacting A-nucleons (with Z protons and N
neutrons) outside a frozen inert core. The Hamiltonian for such a system of A-nucleons can
be expressed in terms of single-particle energies and two-body matrix elements such as

HA = T + V = ∑
α

ϵαa†
αaα +

1
4 ∑

αβδγJT

⟨jα jβ|V|jγ jδ⟩JT A†
JT:jα jβ

AJT:jδ jγ . (1)

where α defines a single-particle state within a given model space with the set of quantum
numbers {n, l, j, t} and the single particle energy corresponding to the state is given by
ϵα. The operators a†

α and aα are the creation and annihilation operators, respectively.
⟨jα jβ|V|jγ jδ⟩JT are the antisymmetrized two-body matrix elements, and A†

JT and AJT are the
fermion pair creation and annihilation operators, respectively. With the above-expressed
effective Hamiltonian, the eigenvalue and eigenfunctions can be calculated in the full
configuration interaction shell model approach. The corresponding shell model energy of
the state can be given by

ECal.
SM = ⟨Ψ| HA |Ψ⟩ (2)

where Ψ is the calculated shell-model wave function of the state. The ground state energy
can be calculated by variational methods as well, which is equivalent to the CI approach.

In practice, one commonly applies the frozen-core approximation and limits the single-
particle orbitals to be the few that are just above the core orbitals (usually those within one
or a few major shells). Those orbitals define the model space, while all orbitals above the
model space are skipped. The single-particle energies can be taken from experimental data,
HF calculations, and/or fitting to experimental data. The two-body matrix elements can be
evaluated from realistic nucleon-nucleon potentials via standard perturbation theory or in-
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medium Similarity Renormalization Group methods [31,32] and by fitting to experimental
data [33–35]. Very often the effective Hamiltonian is provided as a list of numbers, including
the single-particle energies and two-body matrix elements for a given model space. Most
of the existing CI codes are designed in that way. We ignore here the three-body matrix
elements. There have been recent efforts in including the three-body effects either at the
mean-field (single-particle) or in explicit three-body matrix elements [36,37]. The latter is
straightforward to implement in existing CI algorithms but the inclusion of three-body
matrix elements can make the Hamiltonian matrix very dense and hard to handle on
a supercomputer.

There are several efficient shell model codes available to construct the basis states and
the Hamiltonian matrix and then solve the Hamiltonian matrix with the Lanczos [38] or
similar iterative methods. Those codes are based on either angular momentum coupled
J(T)-scheme (with parity, spin, and optionally isospin conserved) or uncoupled M-scheme
(with only parity and total M quantum number conserved). The M-scheme is the de facto
standard choice for large-scale calculations, as it is easier to handle on a modern computer.
There are public codes in the M-scheme available, like BigStick [39] and KSHELL [40], both
of which are highly optimized for parallel calculations on supercomputers with hybrid
MPI+openMP algorithms. An M-scheme calculation can be implemented efficiently start-
ing with basic bit operations where each basis (Slater determinant) can be represented as an
integer. The disadvantage of the M-scheme is that the dimension maximizes. The dimen-
sion for a problem with certain J instead of M in the angular-momentum-coupled bases
can be much smaller. The angular momentum coupling can be carried out via the coeffi-
cients of fractional parentage (cfp) [41], in multisteps [42], or through the correlated basis
method re-using part of the rotationally-invariant Hamitonian as the angular momentum
projector [43].

2.1. M-Scheme Algorithms

The many-body Hamiltonian is invariant under rotations, which means that the total
Ĵ2 and Ĵz operators commute with the Hamiltonian. Consequently, the eigenstates of the
Hamiltonian have both J and M as good quantum numbers. Because the Hamiltonian
cannot connect many-body states with different M, it becomes advantageous to use the
so-called M-scheme basis, where all many-body basis states share the same M value. This
approach is particularly convenient since M is an additive quantum number. To determine
the M for a Slater determinant, one can add the mi of the occupied single-particle states.
The eigenvalue can only depend upon J, not M, allowing the M-scheme to eliminate the
rotational degeneracy and significantly reduce the size of the basis. When dealing with
systems involving two types of particles, the structure of the many-body basis becomes
more complicated. In such cases, the concept of factorizations is used to represent the
many-body basis in order to manage this complexity.

In the case of a nucleus, we have two species of fermions, protons and neutrons. Any
wavefunction can be expanded as a sum of product wavefunctions of protons and neutrons.

|Ψ⟩ = ∑
µν

cµν |µp⟩ |νn⟩ (3)

One constructs the many-body state |µp⟩ , |νn⟩ from a finite set of orthonormal single-
particle states ϕi. The single-particle states must have a good quantum number as total
angular momentum, j, and z-component of the angular momentum, m, and parity π. One
can think of the single-particle states as eigenstates of a rotationally invariant single-particle
Hamiltonian. For a given state ϕi, we need to know ji, mi, and πi, where all possible mi are
allowed for a given ji. We construct the many-body states from the single-particle states as
Slater determinants using the antisymmetrized product of single-particle states.

On computers, it is convenient to represent the occupation of single-particle states us-
ing bit representations, with occupied states represented by bit 1 and unoccupied states by
bit 0. This factorization makes the calculation of the may-body matrix elements of Hamilto-
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nian simplified and the number of non-zero matrix elements is limited. Another M-scheme-
based shell model code is KSHELL developed by N. Shimizu and collaborators [40].

2.2. Angular Momentum Projection and the NuShellX Code

The NuShellX code is one of the most popular CI codes, which gives exact eigenener-
gies and eigenwave functions in angular momentum coupled bases. Here, the code starts
with a M-scheme basis, and the angular momentum is restored by applying a projection
algorithm [44]. That hybrid algorithm was also applied in older OXBASH code [45] and
our in-house code [46].

The starting point for such an algorithm is to generate a set of bases with a good
magnetic quantum number in the M-scheme. Neutrons and protons can be naturally
blocked into two spaces. The shell model codes ANTOINE and NATHAN [47] proposed
the idea of factorization into complementary parts, which reduces the requirement of
storing the many-body Hamiltonian matrix. The dimensions in the proton and neutron
spaces separately are small, even for large dimensions in the total space. The bases are
classified according to the distributions of particles in the single-particle orbits (referred
to as partitions). Since the angular-momentum projection operator can only change the
magnetic quantum number, the projection can be completed for each partition separately.
Within each partition, vectors with good angular momentum can be expanded in M-scheme
bases as

|ΨJ
i ⟩ = ∑

m≤i

MimPJ |αm⟩, (4)

where PJ is the projection operator and |α⟩ a set of specially chosen M-scheme bases. M
is a lower triangle matrix. Vectors with good angular momentum are the orthonormal
and satisfy,

⟨ΨJ
i |Ψ

J
j ⟩ = ⟨ΨJ

i | ∑
m≤j

MjmPJ |αm⟩

= ∑
m≤j

Mjm⟨Ψ
J
i |αm⟩

= δij. (5)

Elements of M can be obtained by inverting the matrix ⟨ΨJ
i |αm⟩. Since the projection

operator satisfies PJ · PJ = PJ , the n-th vector can be obtained through,

|Qn⟩ = |αn⟩ − ∑
i<n

⟨Oi|αn⟩∑
j≤i

Mij|αj⟩, (6)

and
|ΨJ

n⟩ = PJ |Qn⟩(⟨Qn|P
J |Qn⟩)

−1/2. (7)

For the angular momentum projection, one has the freedom to restore the total angular
momentum or to do the projection separately for the proton and neutron blocks and couple
them to certain total angular momentum (via standard angular momentum coupling).

The angular momentum projection can still be quite time-consuming, but it is much eas-
ier than standard cfp calculations. The advantage is that, after the projection, the dimension
of the coupled bases would be much smaller, which makes it easier for the diagonalization.
The disadvantage is that one has to store a large amount of angular-momentum projection
coefficients either in memory [46] or on a disk as in the case of NuShellX [48]. NuShellX
was written in Fortran90 by W.D.M. Rae. The proton and neutron angular momentum
projections are made separately using the NuShell code, which are coupled together to
make the total wave function. The NuShell is the modified version (more accurate and
significantly faster) of the original JT projection code OXBASH [48]. In the version we have
been developing at KTH, the code is separated into different independent codes including
NuBasis (which generates the list of partitions and the M-scheme bases), NuProj which
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implements the angular momentum projection and gives the J-scheme bases defined in the
M-scheme bases, NuMatrix which generates the pp and nn matrices in a semi-orthogonal
basis, NuOrth that completes the orthogonalization of the J-scheme matrix produced by
NuMatrix, NuOper (converts the interaction into an m-scheme operator), NuOp produces
a J-scheme particle-hole transformation of the np interaction, NuOpm calculates all the
m-scheme operators, NuOpd converts the m-scheme operator matrix elements to reduced
matrix elements in J-scheme, NuLnz (the standard Lanczos module), and NuVec that gives
the eigenvectors and eigenvalues.

3. Truncation

The shell model calculations for heavy isotopes with a large number of valence parti-
cles can easily go beyond the capability of the most advanced computational resources due
to the huge M-scheme dimension. A truncation criterion must be implemented in most
calculations. Several works have been carried out by Horoi and co-workers [49–51] in order
to develop the exponential convergence method (ECM), which reduces the whole configu-
ration space into a subspace by concerning the average centroid of partitions. A simple and
natural approach is to restrict the number of particle-hole excitations across a major shell
gap or a subshell closure. It is called n-particle-n-hole truncation. If there is more than one
major shell included in the model space, nh̄ω truncation can be applied to limit the number
of excitations crossing the major shells (which is often the case in no-core shell model
calculations). Such truncation is easy to implement in both M-scheme and J-scheme codes,
which essentially only limits the number of partitions in the calculation. All M-scheme or
J-scheme bases within the kept partition are included, which avoids the symmetry break
effect. Such truncation may not be very effective. Instead, in such cases, and if there is no
major-shell or subshell closure, we have introduced monopole-based truncation in the shell
model diagonalization method, which is described below in detail. In the present work,
we have implemented the truncations in the KTH version of the popular shell model code
NuShellX (where the code sources and inputs are simplified) [48].

One may design an algorithm that directly truncates the M-scheme bases. Methods
like density matrix renormalization group [52–55] and importance truncation [56–59]. We
have also introduced a truncation based on a pseudo-seniority-like truncation (C. Qi and
N. Shimizu (unpublished).) in M-scheme [60]. The truncation in the M-scheme may, however,
lead to the breaking of the rotational symmetry and the angular momentum conservation
and, as a result, convergence issues.

3.1. Monopole-Based Truncation

The single-particle energy in the Hamiltonian can be deemed as the HF state energy.
In principle, for a system with a large number of valence particles, one may consider
starting with an HF calculation for the present shell-model Hamiltonian and re-express
the two-body matrix elements in the new HF bases. There are methods developed in
that or similar manners. However, it can be difficult to implement numerically, as the HF
bases thus calculated may very well be deformed. Instead, the total Hamiltonian can be
re-written as [61]

HA = Hm + HM. (8)

where Hm and HM represent the monopole and multipole Hamiltonians. The energy
corresponding to the monopole Hamiltonian is expressed as

Em = ⟨Ψ| Hm |Ψ⟩ = ∑
α

ϵα ⟨N̂α⟩+ ∑
α≤β

Vm;αβ ⟨
N̂α(N̂β − δαβ)

1 + δαβ
⟩ . (9)
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In the above expression, ∑α ⟨N̂α⟩ = N the total number of valence particles and

∑
α≤β

⟨
N̂α(N̂β − δαβ)

1 + δαβ
⟩ =

N(N − 1)
2

.

The monopole interaction Vm;αβ is expressed as the angular momentum weighted
average value of the diagonal matrix elements for a given set of jα, jβ, and T.

Vm;αβ =
∑J(2J + 1) ⟨jα jβ|V |jα jβ⟩J

∑J(2J + 1)
. (10)

The monopole interaction, together with the single-particle energies, determines the
mean field/bulk properties of the shell-model Hamiltonian, while the residual multi-
pole interactions are essential for the mixture of different Slater determinants and the
correlation energy.

The wave function is constructed as a linear combination of all possible antisymmetric
Slater determinants within a valence space. The valence space, or model space, is a set of
single-particle orbitals near the Fermi surface. In the full configuration interaction shell
model calculations, one needs to define the basis in terms of partitions. A partition is
defined as a set of configurations with the same number of particles in each single-particle
orbital. The total number of partitions for Pb isotopes with valence neutrons are presented
in Ref. [62]. Then, the wave function is constructed for each partition in the j − j coupled
scheme or the uncoupled M scheme.

In the M-scheme, M(jz) and Tz are good quantum numbers only; angular momentum
is not explicitly. It is difficult to implement the truncations, which leads to large dimensions
of the bases. If we remove part of the bases within a given partition, it will create problems.
Instead, it will be convenient if one includes only a limited number of partitions and
considers all the M-scheme bases within a given partition. We can simply include some
partitions and exclude the rest to reduce the dimension, according to their importance. We
implemented an importance truncation based on the total monopole energy by taking the
multipole Hamiltonian as a perturbation. The monopole energy for a given partition is
written as

EP
m = ⟨Ψ| Hm |Ψ⟩ = ∑

α

ϵαNP;α + ∑
α≤β

Vm;αβ

NP;α(NP;β − δαβ)

1 + δαβ
, (11)

where NP;α is the distribution of the valence particles within a given partition P. First,
one needs to calculate the monopole energies for all partitions (which is carried out using
Equation (11)), and all M-scheme basis states for a given partition have the same monopole
energy. One needs to determine the minimum monopole energy. We defined the cutoff en-
ergy Ecutoff, which is the energy relative to the lowest one of all the partitions. We select the
partitions whose energies are smaller than the cutoff energy and create a subspace in which
the wavefunction is spanned. This truncation is referred to as “sharp cutoff truncation.”
If we set the Ecutoff equal to its maximum value, all the partitions are taken into account,
and the dimension corresponds to the full space dimension. As the cutoff energy increases,
the number of configurations (partitions) included also increases, and consequently, the di-
mension of the subspace increases. This implies that by removing restrictions, we approach
the full space calculation.

Apart from the sharp cutoff truncation, we propose an idea of the “distribution type
cutoff truncation” for the first time. We consider a distribution function that is defined as

X =
1

1 + e((Emono − Emono_min − Ecutoff)/a)
,

where Emono is the monopole energy for a particular partition, Emono_min and Ecutoff repre-
sent the minimum monopole energy and the sharp cutoff energy, respectively, and a defines
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the smoothness of the distribution curve. We use a random number generator to select
the bases in such a way that if the generated random number for a partition is less than
the defined function X, the corresponding basis states are included; otherwise, they are
excluded. The idea behind the distribution-type cutoff is to include important partitions—
those excluded in the sharp cutoff monopole truncation—based on the smoothness of
the function.

In the third case, we remove a part of the J-scheme bases associated with each partition
based on function X. We define the allowed basis as X times the number of total bases
(X ∗nJT). To check these different types of monopole-based truncations, we have performed
the shell-model calculations for various isotopes. There have been attempts in the past to
use an approach similar to the monopole-based truncation, and this is based on spectral
distribution theory, described in Refs. [63–65].

3.2. Seniority Truncation

The seniority scheme provides a good approximation for the low-lying states of
systems containing the same kind of particles [66]. This arises from the fact that monopole
pairing interactions with J = 0 dominate the T = 1 two-body matrix elements. The seniority
quantum number is defined as the number of unpaired nucleons in a nuclear state, i.e., the
number of particles not coupled to J = 0. Recent works on the study of the seniority
coupling scheme are reported in Refs. [67–69]. In Ref. [70], it is reported that the pairing
Hamiltonian, described by the v = 0, J = 0 states in many shells, can provide the exact
solution. These states show only a small fraction of the total wave function but represent
the most significant components for describing low-lying nuclear states. Interestingly,
the number of v = 0 states is even smaller than the total number of partitions. Alternatively,
v = 0 states can be constructed within the M-scheme, which offers a straightforward
approach. However, the dimension of the bases in such a scheme is considerably larger
compared to that in the jj-scheme.

It is not trivial to define seniority in an uncoupled M-scheme or partition. Instead, we
start simply with a seniority-like or quasi-seniority scheme in the M-scheme instead and
define a nucleon pair as seniority (or quasi-seniority)-0 if they couple to the M quantum
number M = 0 (of course, in practice such pairs can exhibit non-zero angular momentum
and be of seniority two, strictly speaking). We hope that such configurations are the
most favored components of the low-lying states, as they are expected to be dominated
by low-seniority states that can be projected from those pairs. In NuShellX, a projection
algorithm [44] is applied to store the angular momentum as described in Section 2.2.
The angular momentum projection method [44] starts with a random M-scheme basis
|αm⟩ of Equation (4) on which we make an important selection. A random selection of M-
scheme basis leads to a random set of J-states, which means that the eigenvectors obtained
may correspond to different J values. Instead, a more effective and meaningful strategy
is to begin with the basis that already has a good angular momentum J. This ensures
that all the eigenvectors thus obtained have the same angular momentum. The chosen
basis state should contain the most significant features about the Hamiltonian within each
partition. Compared to the random projected basis used in the projection approach [44],
these bases are more physically meaningful. One thus has the opportunity to perform
different truncation schemes within this approach. Basis states with lower seniority are
expected to play a crucial role in describing low-lying states. Ground states of even-even
nuclei are generally assumed to have zero seniority (fully paired), whereas those of odd-A
nuclei typically have seniority one. We implement a truncation to the selection of M states
with low seniority, so that we end up with the J-states that are relevant to the ground state.
We introduce the seniority quantum number (ν) as ν = N − 2 ∗ Np, where N is the number
of valence nucleons and Np the number of paired nucleons. Firstly, we check the number
of nucleon pairs and determine the seniority of all M-scheme bases within each partition.
For example, the M-scheme bases are 1111011 and 10001011011 in 202Pb. These states have
3 and 2 pairs, respectively. Thus the respective seniority quantum numbers are 0 and 2.
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Then, we identify the minimum seniority for each partition. Finally, we do the projection
by selecting a starting M-state with low seniority.

Pairing correlations are anticipated to play a crucial role in describing the lowest-
lying states. Generalized seniority truncation has been proposed as a truncation scheme
for large-scale shell model calculations [66,71]. This approach has been applied to the
Sn isotopes [72,73] and Pb isotopes, considering states with generalized seniority up to
S = 6. The nucleon-pair approximation (NPA) is a pair-truncated shell-model approach
with collective pairs as building blocks, which has been used in Refs. [74,75] for the shell
model calculations. In Ref. [60], various truncation schemes for the nuclear configuration
interaction shell model approach have been reported. Our method is more general, and it
selects the most important partitions determined by the monopole interaction and starts
with low-seniority states within that partition.

4. Model Space and the Effective Interaction

We have selected tin, xenon, and lead isotopes for the shell model study.

4.1. Lead Isotopes

For the detailed structural description of lead isotopes, we have used the interaction
developed by the Stockholm group (J. Blomqvist and C. Qi (unpublished).) [62]. For the
interaction, doubly magic 208Pb is assumed as the inert core. The model space is made
up of six orbitals: 2p1/2, 1 f5/2, 2p3/2, 0i13/2, 1 f7/2, and 0h9/2 between the shell closure
N = 82 − 126 and 353 T = 1 two-body matrix elements. Calculations are carried out in
the hole-hole channel. The single-particle energies for the valence orbitals (relative to the
2p1/2) are as follows: ϵ(1 f5/2) = 0.570 MeV; ϵ(2p3/2) = 0.898 MeV; ϵ(0i13/2) = 1.633 MeV;
ϵ(1 f7/2) = 2.340 MeV; ϵ(0h9/2) = 3.414 MeV [62]. For the selected valence space, there are
21 T = 1 monopole matrix elements, for which strengths are tabulated in Table 1.

Table 1. The strength of the T = 1 monopole matrix elements ⟨jα jβ|V |jα jβ⟩J,T
of the pb

effective interaction.

jα jβ ⟨jα jβ|V |jα jβ⟩J,T

2p1/2 2p1/2 −0.0500
2p1/2 1 f5/2 0.0504
2p1/2 2p3/2 0.00625
2p1/2 0i13/2 0.0394
2p1/2 1 f7/2 0.0467
2p1/2 0h9/2 0.0242
1 f5/2 1 f5/2 0.00833
1 f5/2 2p3/2 0.0241
1 f5/2 0i13/2 0.0176
1 f5/2 1 f7/2 0.0141
1 f5/2 0h9/2 0.0886
2p3/2 2p3/2 −0.0913
2p3/2 0i13/2 0.0822
2p3/2 1 f7/2 0.0149
2p3/2 0h9/2 0.0613
0i13/2 0i13/2 −0.00357
0i13/2 1 f7/2 0.114
0i13/2 0h9/2 0.00020
1 f7/2 1 f7/2 −0.00661
1 f7/2 0h9/2 0.0482
0h9/2 0h9/2 0.0923

In Ref. [62], the M-scheme dimensions for the Mπ = 0+ and the dimensions of the
corresponding Jπ = 0+ states in the even-even Pb isotope are shown. In this work, the full
shell model calculations for 194−206Pb with the maximum dimension of 3.4 × 109 were
carried out.
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4.2. Tin and Xenon Isotopes

For the shell model calculations of tin and xenon isotopes, we have considered a
model space with the neutron and proton orbitals 0g7/2, 1d5/2, 1d3/2, 2s1/2, and 0h11/2
lying between the shell closure Z = N = 50 − 82, assuming the doubly magic 100Sn as
an inert core. In this work, we have used the effective interaction derived by applying
the Monte Carlo global optimization approach [76]. The effective interaction has been
constructed from the realistic CD-Bonn inter-nucleon interaction [77] and renormalized by
using the perturbative G-matrix approach [78]. The core-polarization effects are also taken
into account in it. The mass dependence is not considered in these calculations.

There are 5 single-particle energies and 327 two-body matrix elements for the cho-
sen interactions, 160 of which are T = 1 and 167 T = 0 elements. There are 15 T = 1
monopole terms, which are shown in Table 2. The single-particle energies are the same
for both proton and neutron orbitals. The single-particle energies are taken relative to the
0g7/2 orbital as: ϵ(1d5/2) = 0.172 MeV; ϵ(1d3/2) = 5.01279 MeV; ϵ(2s1/2) = 0.36906 MeV;
ϵ(0h11/2) = 3.24863 MeV [76]. The dimensions corresponding to Mπ = 0+ and Jπ = 0+

states in even-even Sn isotopes are shown in Ref. [76]. One can notice that the dimension
grows drastically with increasing number of valence neutron numbers. The calculated
results with this interaction on Sn isotopes can be found in Ref. [79].

Table 2. The strength of the T = 1 monopole matrix elements ⟨jα jβ|V |jα jβ⟩J,T
of the sn100

effective interaction.

jα jβ ⟨jα jβ|V |jα jβ⟩J,T

0g7/2 0g7/2 0.000
0g7/2 1d5/2 −0.151
0g7/2 1d3/2 −0.139
0g7/2 2s1/2 −0.028
0g7/2 0h11/2 −0.261
1d5/2 1d5/2 −0.121
1d5/2 1d3/2 −0.607
1d5/2 2s1/2 0.203
1d5/2 0h11/2 −0.016
1d3/2 1d3/2 0.179
1d3/2 2s1/2 −0.768
1d3/2 0h11/2 −0.116
2s1/2 2s1/2 −0.749
2s1/2 0h11/2 −0.013

0h11/2 0h11/2 −0.244

5. Results and Discussion

5.1. The Energy Spectra of 202Pb

To test the importance of monopole-based and seniority truncations, we study a simple
system, 202Pb, containing six valence holes. The M-scheme dimension for the ground state
of 202Pb is 411,184. In the first case, we apply monopole truncation with a sharp cutoff
criterion in NuShellX [48]. In Figure 1, we plot the J-scheme dimensions corresponding to
spins J = 0 to 4 as a function of energy cutoff. This figure illustrates the exponential growth
of the basis states with increasing Ecutoff. We reach approximately 97% of the total states
at an energy cutoff of 14.0 MeV, as can be seen from the figure. We have calculated the
energies of the low-lying yrast positive- and negative-parity states in the truncated basis
states, the convergence behavior of which is presented in Figure 2. At Ecutoff = 10.0 MeV,
which includes 65% of the total basis states, we observe that convergence is nearly achieved.
The calculated ground state energy with Ecutoff = 10 MeV is 0.147 MeV, which is close to the
calculated energy without truncation (0.056 MeV). We found that, with increasing cutoff
energy, the energies gradually converge to the full-space results. Our results are the same
as those obtained from KSHELL [40].
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Figure 1. The J-scheme dimension for 202Pb as a function of the specified cutoff energy of the
monopole-based truncation for the states with J = 0 to J = 4.
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Figure 2. Convergence behaviour of the ground and yrast excited states of 202Pb as a function of
sharp cutoff energy.

Instead of using a sharp cutoff, we implement a distribution-type cutoff (X defined
above) in monopole-based truncation for the second case. In function X, we choose a
parameter value of a = 0.5. Whether a partition is retained or skipped depends on a
random number, so each iteration of the calculation yields a different result. These results
are displayed in Figure 3 with uncertainties. From the figure, it is evident that at lower
energy cutoffs (below 8 MeV), the distribution-type cutoff achieves faster convergence
compared to the sharp cutoff. For example, at Ecutoff = 6 MeV, the minimum energy
obtained for the 0+ state is 0.518 MeV, whereas with the sharp cutoff, the corresponding
energy is 0.617 MeV.
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Figure 3. Shell-model energies for the yrast states in 202Pb with the monopole-based truncation based
on sharp cutoff energy and a distribution-type cutoff.

As described earlier, the third type of monopole-based truncation restricts the number
of basis states within a given partition according to the function X. The corresponding
shell-model results are shown in Figure 4a. In the figure, the solid lines represent the
results obtained using a sharp energy cutoff, while the dashed red lines show the results
using this third type of truncation. For the ground state, the results with the third type of
truncation converge to those from the sharp cutoff at 14.0 MeV. However, for the excited
states, convergence is achieved earlier, at 12 MeV. To provide a better picture, we have
illustrated the convergence of the shell-model energies for the 0+1 , 2+1 , and 4+1 states as a
function of the fraction of the J-scheme basis states considered. In Figure 4b, D represents
the total number of J-scheme basis states with positive parity, while d denotes the number
of basis states included in the truncated shell-model calculations.
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Figure 4. (a) Convergence behavior of the ground and yrast excited states of 202Pb with increasing
cutoff energy. (b) Convergence of the shell-model yrast energy states of 202Pb with respect to the
fraction of the J-scheme bases considered.

Next, we incorporate the seniority truncation on top of monopole-based truncation
for the first time. As mentioned earlier, we aim to identify the most relevant basis for
the ground state by taking the lower seniority states in the M-scheme. For the system
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considered by us, the maximum number of unpaired nucleons is six. In our case, the
M-states for a partition can have seniority quantum numbers of 0, 2, 4, and 6. We identify
the minimum seniority corresponding to a partition and label it as ‘s.’ Then, we define
a function that depends on the seniority quantum number such that if the seniority for
the random M-state within a partition is zero + s (minimum seniority corresponding to
that partition), then that particular M-state is retained, following which, we proceed for
the projection. Seniorities of 2 + s, 4 + s, and 6 + s respectively correspond to 33%, 66%,
and 99% chances of generating a new basis state. In this way, we can reach a physically
meaningful starting M-basis vector, which is most relevant to the ground state.

We have combined the monopole and seniority truncations in this paper for the first
time. In Figure 5, we have shown the results of monopole plus seniority truncations for
202Pb. Compared to the third case, we have further reduced the J-basis states based on the
seniority quantum number. For minimum seniority ≤ 2, we increase the cutoff energy by
adding to it 0.5 × the minimum seniority value. Accordingly, X decreases, which leads to
the decrease of the J-dimension. The corresponding results are shown by dashed blue lines
in Figure 5. Then, we implement the seniority truncation in the projection module to start
with the M-state involving minimum seniority, and the corresponding results are shown in
Figure 5 by uncertainty. It is evident from the figure that seniority truncation improves the
results. As an illustration, we have displayed the convergence of the energies for the yrast
0+, 2+, and 4+ states with an increasing number of bases in Figure 5. We can clearly see
that the results obtained with monopole + seniority truncation are even better at smaller
dimensions than the calculation with monopole truncation alone.
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Figure 5. Shell-model energies for the low-lying states in 202Pb with monopole-based plus seniority
truncations as a function of cutoff energy (left) and a fraction of the bases considered (right).

5.2. The Energy Spectra and B(E2) for 106Sn

We have performed calculations for 106Sn, 6 valence neutrons on top of the 100Sn core,
using the shell model with the monopole-based truncation. We have shown the J-scheme
dimension with increasing cutoff energy in Figure 6. The dimension increases rapidly with
increasing cutoff energy. When we include all the basis states, we obtain the full-space bases.
The energies of low-lying positive-parity states with even spin are plotted in Figure 7a.
As we increase cutoff energy, our truncated results approach the full-space calculation,
with convergence being reached at the cutoff energy of 10 MeV. The obtained ground state
energy at Ecutoff = 10.0 MeV is −6.505 MeV, while the full-space result for the same is
−6.768 MeV. We noted that a very good convergence is reached with the truncated model
space, even though it is only ≈ 46% of the full model space.

A more stringent test for these truncations would be the calculation of the E2 transition
strength, since quadrupole degrees of freedom are included through off-diagonal matrix
elements (non-monopole term). We have calculated the B(E2) value for the transition
between 2+1 and 0+ in 106Sn; corresponding results are shown in Figure 7b. The exper-
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imentally measured B(E2) value of the transition 2+1 → 0+1 is 0.048 e2b2 [80]. We have
used the neutron effective charge eeff

n = 1.0e in the B(E2) calculations, the same as used in
Ref. [81]. The untruncated calculation gives a B(E2) value of 0.027 e2b2. The discrepancy
between theory and experiment might be due to missing contribution from g9/2 orbital
below Z = 50 shell closure [80]. Figure 7b shows that we get a converged B(E2) value at
small cutoff energy in 106Sn.
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Figure 6. The J-scheme dimension for 106Sn as a function of cutoff energy for the states with spins
J = 0 − 10.
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Figure 7. Convergence of (a) the shell model energies for the low-lying states and (b) the B(E2)
strength from the first 2+ to 0+ in 106Sn as a function of cutoff energy.

Similar to the 202Pb case, we have performed the shell model calculations for low-lying
energy states with combined monopole and seniority truncations in 106Sn. The results of
energies are shown in Figure 8. By imposing the seniority truncation, we can obtain a faster
convergence as compared to the monopole-based truncation calculation at small cutoff
energy. It is clear from the figure that for the high-spin states, states with high seniority are
required to get the full-space results.
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Figure 8. The shell model energies for the low-lying states in 106Sn with combined monopole and
seniority truncations as a function of cutoff energy.

5.3. The Energy Spectra and B(E2) for 108Xe

In the previous sections, we performed calculations for a system containing only one
type of nucleon. Now, we aim to test the effectiveness of monopole-based truncation in a
more complex system involving both protons and neutrons. For this purpose, we have done
truncated calculations for the nucleus 108Xe, with equal numbers of protons and neutrons
(N = Z = 54). This nucleus is predicted to lie on the proton-drip line. Experimentally, only
the ground state has been measured, which corresponds to a 0+ state [82,83].

In our calculations, we have used the same interaction (sn100) as employed in the
studies of Sn isotopes. The M-scheme dimension for the ground state of 108Xe is 7.4 × 107.
In addition to the ground state, we provide predictions for the first excited 2+ and 4+

states, which could be useful for future experimental measurements. Figure 9a shows
the calculated energies of the three lowest-lying positive parity states (0+, 2+, and 4+) in
108Xe. Without truncation, the exact energies for these states are found to be −16.377 MeV,
−15.920 MeV, and −15.193 MeV, respectively. We then applied monopole-based truncation
using a sharp cutoff criterion. With an energy cutoff of Ecutoff = 6.0 MeV, the calculated
energies are −15.011 MeV, −14.604 MeV, and −13.978 MeV for the 0+, 2+, and 4+ states,
respectively. Calculations are then performed with Ecutoff = 8.0 MeV, which corresponds to
approximately 50% of the total model space. In this case, the energies were −15.426 MeV,
−14.991 MeV, and −14.323 MeV for the above-mentioned states. Remarkably, convergence
is achieved using less than 20% of the full J-scheme basis, demonstrating the efficiency
of the monopole-based truncation method even in systems with both types of nucleons.
In Figure 9b, the convergence behavior of B(E2) for the transition 2+1 → 0+g.s. is presented
with increasing cutoff energy. There is no experimental B(E2) value available yet. The
B(E2) strength for the full-space calculation is obtained as 940.6 e2fm4. From the figure, it
appears that convergence for E2 strength can be reached at a small part of the full-space
basis. This indicates that the monopole-based truncation gives a well-converged value of
the observables with a reduced dimension of the calculation.

In NuShellX, we have implemented the cutoff criteria separately for protons and
neutrons, since projection is done separately for them. On the other hand, in KSHELL,
the monopole-based truncation is made on the total monopole Hamiltonian, which contains
the proton-neutron part as well. The monopole-based truncation with Ecutoff = 8.0 MeV
yields the energies of −14.795, −14.376, and −13.761 MeV for the 0+, 2+, and 4+ states,
respectively. It indicates that, for the system with both kinds of valence nucleons, calculated
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results are different from these two shell-model codes. Recently, shell model calculations
have been performed for 200Hg without truncation and 199,199Hg with monopole-based
truncation at Ecutoff = 12 MeV and other Hg isotopes at Ecutoff = 10 MeV using the
KSHELL [84].
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Figure 9. (a) Energies of the lowest three states of 108Xe as a function of the fraction of the bases taken
into consideration. (b) Calculated B(E2) value for the transition 2+1 → 0+g.s. in 108Xe against the cutoff
energy of the monopole truncation.

5.4. The Energy Spectra and B(E2) for 110Xe

We now extend our study to a more complex system, the extremely neutron-deficient
N = Z + 2 nucleus, 110Xe, which contains an unequal number of protons and neutrons
(4 valence protons and 6 valence neutrons). The M-scheme dimension for the ground state
of this nucleus is 1.7 × 109, which is the maximum dimension that current shell-model
codes can handle. In Ref. [85], the energies of the three lowest states in 110Xe have been
experimentally observed. The excitation energies of the tentative 2+ and 4+ states were
measured to be 470 keV and 1113 keV, respectively. Interestingly, the results from Ref. [85]
revealed a deviation from the normal trend of increasing energies with decreasing neutron
number, which was attributed to enhanced collectivity. This anomaly is suggested to arise
from the T = 0 neutron-proton interaction in nuclei near the N = Z region.

We have performed full-space shell-model calculations using the sn100 interaction for
110Xe, and the obtained energies for the lowest three states are −20.143 MeV, −19.789 MeV,
and −19.141 MeV. The calculated excitation energies for the 2+ and 4+ states are 354 keV and
1002 keV, respectively, which show good agreement with the experimental data [85]. The
calculations considering monopole-based truncation have also been performed. Figure 10
shows the convergence of the three low-lying states for 110Xe as a function of the fraction of
the J-scheme bases taken into account. At a cutoff energy of 2 MeV, the obtained ground
state energy is −13.919 MeV. Hence, the difference between the full space calculation
and the calculation with Ecutoff = 2 MeV is 6.224 MeV. For the calculation considering
∼37% of the total dimension (Ecutoff = 10 MeV), the difference is reduced to 752 keV.
With increasing cutoff energy, the energy of the ground state approaches the exact value.
NuShellX gives the results of −19.391, −19.098, and −18.536 MeV for 0+, 2+, and 4+ states,
respectively, while the corresponding energies are −18.750, −18.436, and −17.887 MeV
with KSHELL at Ecutoff = 10.0 MeV. The convergence is even faster when focusing solely
on the spectrum relative to the ground state, as shown in Figure 10. There is a one-to-one
correspondence between d/D and the cutoff energy in the left and right panels of Figure 10.
The convergence is already achieved by taking only around 37% of the total bases. These
calculations are significantly faster than the full space calculation. We have checked the
predictive power of the monopole-based truncation by calculating the reduced E2 transition
strength for the open-shell nucleus 110Xe (with 4 valence protons and 6 valence neutrons).
In Figure 11, we have plotted the B(E2) between first 2+ and 0+ states for 110Xe. Although
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it is expected that achieving B(E2) convergence is challenging for deformed nuclei, our
results show a well-converged value is achieved at 10 MeV cutoff energy. This indicates
that the monopole-based truncation with small cutoff energy is sufficient in reproducing
the full-space transition strength for the open-shell nuclei.
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Figure 10. (Left) Energies of the lowest three states of 110Xe as a function of the fraction of the bases
taken into consideration. (Right) Excitation energies of first 2+ and 4+ states relative to the ground
state as a function of Ecutoff.
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Figure 11. Convergence of the B(E2) value for 110Xe with the cutoff energy of the monopole-
based truncation.

The monopole and seniority truncations are straightforward to implement in the shell
model code. Based on the results of low-lying energy spectra and reduced E2 transition
strength, we can conclude that these truncations are among the most efficient truncations
(without breaking symmetries) for reducing the computational demands of large-scale
shell-model calculations. Our results show that considering ∼10–30% of the total dimension
gives a reasonable result for both spherical and deformed nuclei. These truncations would
be beneficial for the systems with many valence nucleons, allowing for feasible and accurate
calculations of the nuclear structure properties.

6. Conclusions

In the present work, we have introduced two truncation techniques for the configu-
ration interaction shell model approach to tackle the huge dimension of the Hamiltonian
matrix: monopole-based truncation and seniority truncation inspired by strong pairing
correlation. These truncations incorporate the selection of certain partitions according to
their importance and retain M-basis states with lower seniority within each partition. As a
benchmark, we have carried out large-scale shell model calculations for various systems,
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including 106Sn, 108,110Xe, and 202Pb, comparing the calculated energies of ground and ex-
cited states and B(E2) values in both truncated and full basis spaces. A good convergence
is obtained with a small part of the total bases, which demonstrates the effectiveness of
these truncations in reducing the dimension. These truncation methods hold promise for
extending the reach of shell-model calculations to heavier nuclei, where the conventional
shell model becomes computationally challenging.
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