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Abstract

This dissertation explores various structural, geometric, statistical and information-theoretic

aspects of models of lower-dimensional holography. Chapter 2 is based on work with Ho Tat Lam,

Gustavo J. Turiaci and Herman Verlinde [1]. It explores a class of partially entangled thermal

states in the Sachdev-Ye-Kitaev model that interpolates between the thermo-field double state

and a pure (product) state. We argue that the holographic dual of this class of states consists

of two black holes with their interior regions connected via a domain wall, described by the

worldline of a massive particle. We compute the size of the interior region and the entanglement

entropy as a function of the temperature of each black hole. We argue that the one-sided bulk

reconstruction can access the interior region of the black hole. Chapter 3 is based on work with

Luca Iliesiu, Jorrit Kruthoff and Zhenbin Yang [2]. It explores a systematic classification of the

possible boundary conditions in Jackiw-Teitelboim gravity and discusses their exact quantization.

Each boundary condition that we study will reveal new features in JT gravity related to its

matrix integral interpretation, its factorization properties, ensemble averaging interpretation,

the definition of the theory at finite cutoff, its relation to the physics of near-extremal black

holes and its role as a two-dimensional model of cosmology. Chapter 4 is based partly on [3] and

on discussions with Ping Gao, Vladimir Narovlansky and Herman Verlinde. We survey several

strategies to explore the UV physics of SYK. We provide a Lorentzian Liouville quantum gravity

perspective on the double-scaled model. We then describe the construction of a matrix version

of SYK within the framework of minimal string theory.
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Chapter 1

Introduction and Background

One of the triumphs of modern high energy theoretical physics is a concrete realization of the

principle of holography [4, 5]. Indeed, it is now widely believed that the physics of conformally

invariant quantum field theories with a large number of degrees of freedom is equivalently de-

scribed by quantum gravity in one higher dimension on asymptotically Anti de-Sitter space.

This Anti de Sitter/Conformal Field Theory correspondence (AdS/CFT) [6–9] has withstood

numerous stringent checks and has been a useful tool in understanding various strongly coupled

phenomena.

On general grounds, one expects that studying this correspondence in lower dimensions will

lead to simplifications. This is indeed what happens in the case of AdS3/CFT2 where we find

enhanced symmetries on both sides that allow greater analytic control. If we try to go even

lower to two dimensions, naively we do not obtain any non-trivial physics since 2D gravity is

topological and involves only captures degenerate ground states.

In the past few years however, a systematic framework has been developed to study a de-

formed version of AdS2 holography, the nearly AdS2/CFT1 correspondence [10–15]. In this

framework, the boundary dynamics is captured by the Sachdev-Ye-Kitaev model [16, 10] which
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is a model of N Majorana fermions interacting via random couplings J

H = i
p
2

N∑

1≤i1<i2...<ip

Ji1...ip ψi1ψi2 . . . ψip . (1.1)

These couplings are drawn from a Gaussian distribution
〈
J2
i1...ip

〉
=
(
N
p

)−1J 2. The scaling with

N ensures that the model admits analytic solutions for correlation functions of the fermions at

strong coupling, 1 ≪ βJ ≪ N in terms of ‘melon’ diagrams [10].

This ensemble averaged theory of quantum mechanics has received great attention in recent

times since it exhibits various properties characteristic of chaotic black hole dynamics such as a

maximal Lyapunov exponent [10] and a ramp in the spectral form factor [17]. In the infrared,

the theory has an emergent conformal symmetry described by diffeomorphisms of the time circle.

This time reparametrisation symmetry is both spontaneously broken and explicitly broken to

SL(2, R) and the IR dynamics is governed by a Schwarzian mode.

The corresponding bulk is described by Jackiw-Teitelboim (JT) dilaton-gravity [18,19] instead

of the Einstein Hilbert action given by the action

S = − ϕ0

16πG

[∫ √
gR +

∫

∂

K

]
− 1

16πG

[∫
d2x

√
g ϕ(R + 2) + 2

∫

∂

ϕbK

]
. (1.2)

The resulting geometry can be viewed in terms of sections of 2d hyperbolic space. The bulk

is rigid and the entire dynamics is governed by fluctuations of the boundary. The boundary is

interpreted as the location where the dilaton ϕ achieves a large value1. The entire physics is

then described by the action of this mode of boundary reparametrizations living on a rigid AdS2

background which explicitly breaks the asymptotic conformal symmetry group.

One finds that the theory that describes both the dominant infrared mode of SYK as well as

1As we will see in chapter 3, other boundary conditions are also possible.

2



the reparametrization mode of JT gravity is described by the Schwarzian action.

S = −C
∫ β

0

dτ

(
{f(τ), τ}+ 2π2

β2
f ′2
)

(1.3)

where C ∼ N
J
is the Schwarzian coupling and the curly brackets denote the Schwarzian derivative,

{f(τ), τ} =
f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

. (1.4)

This is also the mode responsible for the maximal chaotic behaviour of the model. The action

of the SL(2, R) gauge symmetry on the reparametrisation mode is given by

f(τ) → af(τ) + b

cf(τ) + d
, ad− bc = 1. (1.5)

which leaves the Schwazian action invariant.

The quantization of the Schwarzian theory has received much attention and has been carried

out using various techniques - using localization [20], interpreting the Schwarzian as a particle

moving in a magnetic field [21,22] and through an embedding in Liouville theory by dimensional

reduction in a specific scaling limit [23–25].

One can also study correlations functions obtained by insertions of SL(2,R) invariant bilocal

operators in the Schwarzian with specific scaling dimensions

Oℓ(τ1, τ2) =




√
f ′(τ1)f ′(τ2)

β
π
sin
(

π
β
[f(τ1)− f(τ2)]

)




2ℓ

(1.6)

They correspond to insertion of a bulk Liouville vertex operator in the 2d Liouville interpretation.

The exact results for the correlation functions of these operators were derived in [24] and their

geometric interpretation will be reviewed in chapter 2.

Given the simplicity of these exact results, it is natural to apply this formalism to improve our

understanding of information theoretic aspects of holography, in particular how bulk spacetime

3



emerges and is encoded in the boundary theory. One of the elements of the AdS/CFT dictionary

is that thermal states in quantum field theory are described by black hole geometries in the bulk.

It is reasonable to expect that we could probe aspects of quantum gravity in the strong coupling

regime using this correspondence. This regime is suspected to be relevant to strongly coupled

gravitational physics of black hole interiors and the black hole information problem [26–29]. One

of the goals of this thesis is to understand better the emergence of the bulk for boundary physics

in the context of the simple, solvable quantum mechanical model.

Another important element of the AdS/CFT dictionary that has evolved in recent years is

the role of quantum entanglement in giving rise to the structure of spacetime. The celebrated

Ryu Takayangi formula [30] states that the entanglement entropy of a region on a given spatial

slice in the boundary CFT is given by the bulk extremal surface of minimal area homologous to

the boundary region. In the present context, as we will demonstrate explicitly in chapter 2, the

role of the extremal surface is played by the value of the dilaton along the bulk Cauchy slice.

This can be seen more explicitly by viewing Jackiw Teitelboim gravity as the effective theory

upon dimensional reduction on S2 of the near-horizon region of a four dimensional near-extremal

black hole [31]. In this case, the horizon value of the dilaton in the AdS2 black hole is directly

related to the area of the outer horizon of the 4d black hole.

An important state that exemplifies the role played by entanglement in the bulk geometry

is the thermofield double state. This is the maximally entangled state in the Hilbert space

comprising of two copies of the CFT associated to the temperature β−1

|TFD⟩ =
∑

n

e−βEn/2|n⟩
L
|n∗⟩

R
(1.7)

The one-sided density matrix looks thermal in this state

trL (|TFD⟩⟨TFD|) = e−βH (1.8)

This state has a natural interpretation in the bulk. The two CFTs live on the timelike asymp-
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totically AdS boundaries of the maximally extended AdS Schwarzschild black hole [32]. The

left and right boundaries are causally disconnected and the causal wedges corresponding to the

left and the right regions are connected by a wormhole/Einstein-Rosen bridge. The area of the

horizon at the bifurcate point measures the minimal cross section of the wormhole and hence the

entanglement entropy between the left and right CFTs. This is in contrast to pure state black

holes which have a single asymptotic region and the area of the horizon is the thermal entropy.

We find an analogous black hole solution in JT gravity.

Having established the correspondence between JT gravity at the level of the disk topology

with the Schwarzian theory, one can also extend the analysis to more general surfaces. The

corresponding theory is equivalent to a double-scaled matrix model with the expansion in the

double-scaling parameter playing the role of the genus expansion [33].

Given these developments, it is natural to consider the following intriguing possibility - if

the IR dynamics of SYK is captured by JT gravity, does the full SYK model describe a UV

completion? In particular, can one find an embedding of the model within string theory? Initial

steps in this direction were taken in [3]. The double-scaling limit of the SYK model introduced

in [17] is a particularly useful tool to study this regime since exact results are known in this limit

at arbitrary energy scales. In particular, the Schwarzian theory is replaced by a theory described

by representations of a quantum group generalisation of SL(2, R).

This thesis is organised as follows - in the rest of this section, we will provide an overview of

the background literature relevant to this thesis. We first describe correlation functions in the

Schwarzian theory with emphasis on the representation theoretic interpretation. Then, we will

describe JT gravity, its genus expansion and corresponding matrix model description. Finally,

we will present various elements of non-critical string theory with an emphasis on the study

of minimal model CFTs coupled to gravity. Our presentation will be concise and we refer the

reader to the primary literature for further details.

In chapter 2, we will study a particular class of partially entangled thermal states in the

SYK model. These states are prepared by a Euclidean path integral describing the evolution

5



over two euclidean time segments separated by a local scaling operator O. We will describe the

holographic dual of this class of states geometrically. We will also compute the entanglement

entropy in these states as a function of the scale dimension of O and study bulk reconstruction

in the interior region of the black hole.

In chapter 3, we will study a four-fold classification of possible boundary conditions in JT

gravity. We will discuss an exact quantization of the theory. In particular, we will show that

boundary conditions where the extrinsic curvature K is fixed exhibit unique factorisation prop-

erties for K > 1. We will also provide an interpretation of each boundary condition from

the matrix model point of view and describe an integral kernel that translates to the fixed K

boundary conditions from the standard ones.

In chapter 4, we probe aspects of SYK beyond the Schwarzian limit. We expect this regime

to include quantum gravity effects and establish connections with non-critical string theory. We

introduce the double scaling limit of the SYK model and comment on the dual string interpreta-

tion as a sine-dilaton gravity theory. We then discuss a proposed paradigm for realizing a matrix

SYK model within string theory. Using the large N matrix description of c < 1 string theory,

we show that the effective theory on a large number Q of FZZT D-branes in (p, 1) minimal

string theory can be mapped to a model that takes the form of disorder averaged SYK with

Jψ p interaction. The SYK fermions represent open strings between the FZZT branes and the

ZZ branes that underly the matrix model. We will observe several qualitative and quantitative

links between the SYK model and (p, q) minimal string theory and propose that the two describe

different phases of a single system. We also derive the chord diagrammatic expansion of double-

scaled SYK using a Lorentzian Liouville effective action for SYK. We end with an analysis of

the semiclassical limit of double-scaled SYK.
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1.1 Schwarzian Quantum Mechanics

In this section, we will briefly describe the evaluation of Schwarzian correlators from Liouville

theory and present a Feynman diagram-like prescription to calculate these.

In [24], it was argued that one could view the quantum partition function of the Schwarzian

action as a path integral over diffeomorphisms on the circle modulo SL(2, R) transformations.

This may be viewed as a double scaling classical limit of the chiral identity character of the

Virasoro algebra in which the modular parameter degenerates to that of an infinitesimally thin

circular tube. By expanding the identity character in the dual open string channel, one can

express this quantity as a transition amplitude between ZZ brane boundary states. One can

express insertions of bilocal operators in the Schwarzian Ol as in (1.6) as insertions of Liouville

vertex operators eℓϕ in the 2D perspective.

Using known results from the literature in Liouville theory, in particular the three point

function of primary vertex operators, the correlators were calculated in [24]. The result for the

two point function is given by

⟨Oℓ(τ1, τ2)⟩ =

∫ 2∏

i=1

dµ(ki)

k1

τ2 τ1

k2

ℓ

=

∫
dµ(k1) dµ(k2) e

−(τ2−τ1)k21−(β−τ1−τ2)k22
Γ(ℓ± ik1 ± ik2)

Γ(2l)
(1.9)

where a product over all possible signs of the gamma functions is implied and the measure

dµ(k) = k sinh 2πk dk. The diagram above is suggestive of a two dimensional AdS interpreta-

tion with the Schwarzian insertions at the boundary Euclidean times as shown and intermediate

integrals over continuous SL(2, R) representation labels ki with the appropriate Plancherel mea-

sure in the Schwarzian limit [24].

7



More generally correlators can be expressed via the following ‘Feynman rules’

τ1τ2

k

= e− k2 (τ2−τ1) ,

k2

k1
ℓ = γℓ(k1, k2) =

√
Γ(ℓ±ik1±ik2)

Γ(2l)
. (1.10)

The operator insertions on the thermal circle are supplemented by continuous momentum

labels for each region that the diagram is divided into with an appropriate factor for the prop-

agator running on the boundary thermal circle. The bilocal insertions carry discrete SL(2, R)

representation labels. A vertex factor is also added as shown which corresponds to the 3j symbol

for two continuous ans one discrete representation.

The time ordered four point function is thus given by

⟨Oℓ1(τ1, τ2)Oℓ2(τ3, τ4)⟩ =

∫ ∏

i=1,2,s

dµ(ki) ksks

ℓ1

ℓ2

k1

k4

(1.11)

There is a common intermediate momentum ks because the bilocal operator is SL(2, R) invariant

and hence commutes the Schwarzian Hamiltonian which is given by the quadratic Casimir.

Note that for the out of time ordered correlator, one also needs to add an R-matrix factor

in the diagram corresponding to crossing of two operators. This matrix is unitary and is related

to the 6j symbol of SL(2, R). In [34], it was also verified that this factor is the near horizon

scattering matrix of wavepackets in the bulk in the semiclassical limit.

Yet another approach to studying the Schwarzian theory is by using an SL(2, R) BF theory

formulation [35,36]. In this case, the constant negative curvature constraint maps to the flatness

condition for the gauge field. Boundary-anchored probe geodesics on the hyperbolic surface map

to Wilson lines.
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1.2 JT Gravity

Let us review briefly the standard analysis of JT gravity which amounts to putting Dirichlet

boundary conditions on both the metric and dilaton at asymptotic infinity [13]. We will later

generalise this discussion to include alternative boundary conditions. In Euclidean signature, it

is convenient to think of fixing the metric as fixing the proper boundary length.

Euclidean JT gravity on a manifold M and boundary ∂M is described by the action con-

sisting of three parts - a topological term, a bulk term and a boundary term,

S = Stop + Sbulk + S∂ . (1.12)

The first of these three terms is given by

Stop = −ϕ0

4π

(∫

M

√
gR + 2

∫

∂M

√
hK

)
= −ϕ0χ(M) (1.13)

with ϕ0 a constant and χ(M) = 2− 2g − n the Euler character of M for a manifold with genus

g and n boundaries. The other two pieces are given by

Sbulk = − 1

16πGN

∫

M
d2x

√
g ϕ(R + 2), S∂ = − 1

8πGN

∫

∂M
du

√
hϕ(K − 1), (1.14)

where in the remainder of this section, we work in units where 16πG = 1. Here, g is the bulk

2d metric, ϕ the dilaton and h and K are the induced metric and extrinsic curvature on the

boundary ∂M. The boundary term here is chosen so that the variational principle is well-defined

(K dependent term) and make the on-shell action finite (second term).

The equations of motion for the metric and dilaton are given by

R + 2 = 0,
(
∇µ∇ν − gµν∇2 + gµν

)
ϕ = 0. (1.15)

The metric is thus that of Euclidean AdS2 (H2). The on-shell solution of the dilaton is pa-
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rameterized by a three dimensional vector Z in embedding space corresponding to the different

SL(2, R) charges of the dilaton field. Denoting the H
2 embedding coordinates by Y we have

−Y 2
0 + Y 2

1 + Y 2
2 = −1 and ϕ = Z.Y . In particular, with Poincaré coordinates the metric and

dilaton profile are given by

ds2 =
dτ 2 + dz2

z2
, ϕ =

a1 + a2τ + a3(τ
2 + z2)

z
. (1.16)

The boundary is located at z → 0, but we can consider cutting the geometry along some

curve (τ(u), z(u)), with u the intrinsic boundary coordinate. The boundary conditions we then

impose [13] on the curve (τ(u), z(u)) are

ds2|∂M = guudu
2 =

du2

ϵ2
, ϕ|∂M =

ϕr(u)

ϵ
(1.17)

with ϵ > 0 small. We can solve these boundary conditions in an expansion in ϵ and to leading

order in ϵ we find, z(u) = ϵτ ′(u) and a corresponding solution for the dilaton. The boundary is

thus at asymptotic infinity, close to z = 0 as ϵ → 0. The extrinsic curvature in such a case is

given by,

K = 1 + ϵ2Sch(τ, u) , Sch(τ, u) =
τ ′′′

τ ′
− 3

2

(
τ ′′

τ ′

)2

(1.18)

where τ ′ = ∂uτ and Sch(τ, u) is the Schwarzian derivative. More details related to the bulk

dynamics are discussed in section 2.7.

Since the bulk term in (1.12) vanishes after integrating out the dilaton ϕ, the only remain-

ing degree of freedom is given by the reparametrization mode τ(u), whose action is given by

the Schwarzian derivative defined above. Consequently, the quantization of the theory on disk

topologies reduces to the quantization of the Schwarizan theory.
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1.3 JT Matrix Integral

One can also use the quantization of the Schwarizan theory together with results for the volumes

of the moduli space of constant curvatures Rimenann surfaces to compute the contribution of

surfaces with any topology to the JT partition function. The quantization of this theory was

studied in great detail in [24,21,22,25,33,35] and the contribution of higher genus surfaces was

computed in [33]. The central tool needed to establish these results is the correspondence with

a double-scaled matrix model.

The matrix model we will study in this section takes the form of an integral over arbitrary

N × N Hermitian matrix H weighted by a potential TrV (H). A natural class of observables

in the matrix model are those involving the correlation functions of the loop operator Z(L) =

Tr
(
e−LH

)
,

⟨Z(L1)...Z(Ln)⟩ =
1

Z

∫
dH e−NTrV (H)Z(L1)...Z(Ln).

Here, Z is an overall normalisation. These observables are related to the correlation functions

of the resolvent R(E) = Tr (E −H)−1 by a simple integral transform. They will have the

interpretation of creating boundaries of renormalised length L in the gravity description.

For a generic potential, one can study the distribution of eigenvalues of the matrix H in this

ensemble which can be described by the discontinuity across a branch cut in the resolvent2. For

the JT matrix model and matrix models corresponding to (2, p) minimal gravity, the resolvent

lives on a two-sheet Riemann surface described by the spectral curve. The double scaling limit

arises as a result of tuning the potential to a critical point while simultaneously taking the

size of the matrix to be large. This corresponds to zooming near the edge of the spectrum of

eigenvalues.

The potential that gives rise to the genus expansion of JT gravity corresponds to considering

2We will only need to consider here potentials that lead to a single cut.
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the following disk spectral density

ρ0(E) =
eS0

(2π)2
sinh(2π

√
E), E > 0, (1.19)

which one may recognise as the Schwarzian spectral density. The double scaled correlation

functions are organised in terms of an expansion in the parameter eS0 . In the gravitational

language, S0 = ϕ0 is the ground state entropy.

In a general matrix model, one can derive recursion relations between correlation functions

of the resolvent called loop equations. What is unique about the JT matrix model is that

the loop equations for the resolvents Rn,g can be systematically mapped to recursion relations

satisfied by the volume of moduli space of constant negative curvature surfaces Vg,n derived by

Mirzakhani [37]. This happens precisely when the spectral curve of the matrix model is given

by

y =
sin(2πz)

4π
, x = z2, (1.20)

in terms of a uniformising coordinate z. Using the BF theory approach, one can also see that

the symplectic form in SL(2, R) BF theory precisely maps to the Weil-Peterson form on this

moduli space.

This allows us to express the double-scaling expansion as a genus expansion,

⟨Z(L)⟩ = eϕ0Zdisk
Sch (L) +

∞∑

g=1

e(1−2g)ϕ0

∫ ∞

0

b db Vg,1(b)Z
trumpet
Sch (L, b).

=
++ + . . . (1.21)

where we introduced the amplitudes corresponding to the disk and the trumpet geomtery,

Z(Disk)(L) =
1√
2π

e
2π2

L

L3/2
, Z(Trumpet)(b; L) =

1√
2π

e−
b2

2L

L1/2
. (1.22)

These can be derived by computing the integral with the symplectic measure weighted by the
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Schwarzian action with appropriate boundary conditions.

The recipe for constructing geometries of arbitrary topology describing the contributions

to correlation functions with arbitrary number of insertions is now straightforward - to fill in

the geometry with a disk, one simply includes the contributions due to boundary wiggles - the

Schwarzian disk amplitude. For higher genus and connected geometries, one must integrate

the contributions due to boundary wiggles for each trumpet ending at a geodesic with length

bi against the appropriate Mirzakhani volumes Vg,n(b1, . . . , bn). The correct measure for this

integral that follows from the Weil-Peterson measure is simply bi and comes from integrating

over the twist. We will study the double trumpet geometry from a purely BF perspective in

chapter 3.

1.4 Liouville Quantum Gravity

In order to find an embedding of SYK in a UV complete theory, it is natural to look at 2d gravity.

The study of the path integral of 2d gravity initiated in [38] leads naturally to non-critical string

theory. In conformal gauge, the diffeomorphism invariant sum over two-dimensional worldsheets

can be described by conformal matter coupled to Liouville theory. Implementing Weyl symmetry

at a quantum level imposes non-trivial constraints on the theory, namely the total central charge

must vanish.

The full theory can be organised into the three sectors

[
Conformal

Matter

]
⊕
[

Liouville

Field ϕ

]
⊕
[

Ghosts

(b, c)

]
(1.23)

where the action is given by

S = SM + SL + Sg, SL =
1

4π

∫
d2z
(
(∇ϕ)2 +QRϕ+ 4πµe2bϕ

)
(1.24)

where Q = b + b−1 is the background charge that couples to the curvature and cL = 1 + 6Q2.

13



Hence the central charges are constrained via

cM + cL + cg = 0, or cM + cL = 26. (1.25)

The physical vertex operators have ghost number 1 and take the form

Om = c cOm Vα. (1.26)

where VL(α) is the Liouville dressing characterised by a complex parameter α. It is fixed by

Weyl symmetry in terms of the conformal dimensions of the matter primary,

∆(Om) + ∆(Vα) = 1 (1.27)

With the above application in mind, it is very useful to study the properties of Liouville

theory as a CFT on the Euclidean plane. The spectrum consists of scalar primaries which are

exponentials of the Liouville field, VL(α) = e2αϕ. It is useful to introduce the real parameter P

via α = Q
2
+ iP which labels the Liouville momentum. The operators are then identified under

the reflections α ↔ Q − α or P ↔ (−P ) [39]. One can impose this contraint by restricting to

P > 0.

One can express the conformal dimensions of the primaries via

∆
(
e2αϕ

)
= α(Q− α) =

Q2

4
+ P 2. (1.28)

The theory additionally contains a discrete set of operators with real α < Q/2. These

operators obey Ward identities that impose constraints on correlation functions coming from

degenerate Virasoro representations and render the theory solvable.

14



The remaining CFT data is completely specified by the Liouville three-point function

⟨Vα1(z1)Vα2(z2)Vα3(z3)⟩ =
C(α1, α2, α3)

|z12|∆1+∆2−∆3 |z23|∆2+∆3−∆1 |z31|∆3+∆1−∆2
(1.29)

where zij = zi − zj. The three point coefficient is given by the DOZZ formula [40, 41]

C(α1, α2, α3) =

[
πµγ(b2)b2−2b2

](Q−∑
i αi)/b

Υ′
b(0)Υb(2α1)Υb(2α2)Υb(2α3)

Υb(
∑

i αi −Q)Υb(α1 + α2 − α3)Υb(α1 − α3 − α2)Υb(α2 + α3 − α1)
, (1.30)

We refer the reader to [42] for the definition and properties of the special functions used here.

The µ-dependent pre-factor here is fixed by the KPZ scaling law [43]. The formula is invariant

under Liouville reflections upto a reflection phase. Note also that the formula is analytic in the

momenta of the operators.

Notice that the central charge of the theory and the correlation functions are invariant under

the transformation b → b−1 if we simultaneously map the cosmological constant to the “dual

cosmological constant” via the relation (µ̃γ(b−2))
b
= (µγ(b2))

1/b
. This is the weak-strong self-

duality of Liouville theory.

It is natural to extend this discussion to include worldsheets with boundary. We will be

primarily concerned with Neumann boundary conditions for the Liouville field first studied by

Fateev, Zamalodchikov, Zamolodchikov and Teschner (FZZT) [44,45]. This boundary condition

allows us to include an interaction term on the boundary labelled by the boundary cosmological

constant µB,

S∂
L =

1

2π

∮
du
(
QKϕ+ 2πµBe

bϕ
)
. (1.31)

where K is the extrinsic curvature at the boundary. It is often useful to introduce the parameter

s related to the boundary cosmological constant via µB =
√

µ
sin(πb2)

cosh(πbs). If one views the

Liouville boundary state as analogous to the Cardy boundary state corresponding to the Lioville

primary with momentum P , the corresponding momentum is s/2.

One can derive explicit formulas for the bulk one-point function, boundary two- and three-
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point functions as well as the bulk to boundary propagator in the CFT on the disk with FZZT

boundary conditions. In particular, the boundary two-point function is given by [44],

〈
Bµ1µ2

β1
Bµ2µ1

β2

〉
=

1

|x|2∆β1
[δ(β1 − β2)R(β1|µ1, µ2) + δ(Q− β1 − β2)] (1.32)

where the reflection coefficient R is

R(β|µ1, µ2) =
[
πµγ(b2)b2−2b2

](Q−2β)/b
(
Γb(2β −Q)

Γb(Q− 2β)

)
1

Sb

(
β ± is1

2
± is2

2

) . (1.33)

In specifying the correlation functions, we have used conventional normalisations for the Liouville

bulk and boundary vertex operators.

1.5 Minimal Strings

Of particular interest is the case when the conformal matter is described by the (p, q) minimal

models for which cM < 1. The case |p − q| = 1 specifies the unitary series. The spectrum of

primaries is finite and there are (p− 1)(q − 1)/2 primary operators Or,s with r = 1, 2, . . . , p− 1

and s = 1, 2, . . . , q− 1 along with the identification O(r,s) ≡ O(p−r,q−s). This can be implemented

by restricting to rq − sp ≥ 0. The conformal dimensions are given by

∆(O(r,s)) = ∆(O(r,s)) =
(rq − sp)2 − (p− q)2

4pq
. (1.34)

The corresponding dressed tachyon operators are Or,s. The constraint on the total central charge

imposes b2 = p/q on the Liouville coupling.

Let us review the derivation due of the disk partition function with FZZT boundary conditions

for the minimal string due to Seiberg and Shih [46].
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The starting point is the observation that

∂µZ|µB
= ⟨cce2bϕ⟩

∣∣
µB

= ⟨O2,1⟩|µB
(1.35)

where the boundary state is a product of the Liouville FZZT and matter Cardy states given

by

|µB; k, l⟩FZZT =
∑

k′

∫ ∞

0

dP ψ∗
s(P )

Skl
k′l′

√
S11

k′l′
|P ⟩⟩L |k′, l′⟩⟩M . (1.36)

The notation |P ⟩⟩ denotes the Ishibashi boundary state in the both the Liouville and minimal

matter CFTs. The Lioville FZZT states correspond to the non-degenerate primaries with label

α = Q
2
+i s

2
. Recall that s is related to the boundary cosmological constant via µB = κ cosh (πbs),

κ =
√

µ
sin(πb2)

. The FZZT wavefunction is given by

ψs(P ) = µ− iP
b cos(2πPs)

Γ
(
1 + 2iP

b

)
Γ(1 + 2iP b)

iP
(1.37)

and the modular S-matrix elements by

Skl
k′l′ = (−1)kl

′+k′l sin
(
πb2ll′

)
sin

(
πkk′

b2

)
. (1.38)

The bulk one-point function on the disk with FZZT boundary for a tachyon operator Ok,l

is computed via the overlap ⟨Ok′,l′⟩|µB
= ⟨Ok′,l′ |s; k, l⟩FZZT corresponding to the term with P

satisfying αk′l′ =
Q
2
+ iP . In this case,

∂µZ|µB
=

1

2(b2 − 1)
(
√
µ)−1+ 1

b2 cosh

(
b− 1

b

)
πs (1.39)

After integrating µ and differentiating with respect to µB (keeping µ fixed) we get the

‘marked’ partition function,

∂µB
Z|µ = (

√
µ)

1
b2 cosh

πs

b
. (1.40)
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This is evaluated by the partition function with a marked point insertion ebϕ at the boundary

which fixes the residual gauge symmetry of disk rotations.

As we will see, minimal gravity theories can be equivalently viewed in terms of double-scaled

matrix models with up to two matrix fields. From the point of view of the matrix model, this is

the quantity that the expectation value of the resolvent computes [47],

ZM(µB) ≡ ∂µB
Z|µ =

〈
Tr

(
1

µB −H

)〉
=

1

µB

∞∑

ℓ=0

mℓ µB
−ℓ (1.41)

where H is the matrix and consequently, the fixed-length partition function is given by [33]

Z(β) = i

∫

iR

dµB e
−µBβ ZM(µB) =

〈
Tr
(
e−βH

)〉
∝ (

√
µ)

1
b2

L
K 1

b2
(κL). (1.42)

Here, the integral is carried out by deforming the contour around the branch cut at µB = −κ

and computing the corresponding discontinuity [48, 47].

Defining x = µB and y = ZM(µB), it follows from Eq (1.40) that the variables x and y live

on the Riemann surface described using Chebyshev polynomials,

F (x, y) = Tp(y)− Tq(x) = 0 (1.43)

which corresponds to the large N spectral curve of the corresponding matrix model [46]. Corre-

lation functions of the dressed vertex operators in minimal gravity were computed in [49,50].

In fact, JT gravity itself can be understood in terms of the p → ∞ limit of the (2, p) series

of matrix models [33] which are one-matrix models. A quick way to see this is by considering

the discontinuity across the branch cut in the spectral curve in this case,

ρ0(E) ∝ sinh

[
p

2
arccosh

(
E

κ

)]
→ sinh

(
2π
√
EJT

)
(1.44)

in terms of the rescaled energies E
κ
= 1 + 8π

p2
EJT in the limit p → ∞. This corresponds to the
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classical b→ 0 limit of the string theory. Further evidence for this correspondence was provided

in [47]. In constrast with double-scaled SYK, this theory may be described by representation

theory of the non-compact quantum group Uq(sl(2, R)).
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Chapter 2

Partially Entangled Thermal States in

the SYK model

It is generally believed that black holes must admit a self-consistent quantum description. In

AdS/CFT, this microscopic theory takes the form of a finite temperature CFT on the asymptotic

AdS boundary. While the rules of quantum mechanics are manifestly obeyed in this holographic

setting, it has proven to be a non-trivial task to extract local bulk physics inside the black hole

horizon from the dual quantum theory. The logical tension between QM and the semi-classical

bulk description is most directly underlined by the firewall argument [26,27].

As reviewed in the introduction, an often studied finite temperature state in AdS/CFT is the

(unnormalized) thermo-field double state (1.7) living in the tensor product Hilbert space of a

left- and right CFT. It defines the purification of the thermal density matrix, and can be thought

of as obtained by performing a CFT path integral describing the euclidean time evolution over

half a thermal circle with period β. The TFD state of a holographic CFT is believed to be

dual to a maximally extended black hole space-time with two asymptotic regions separated by

a bifurcate horizon [32].

Another type of thermal states are typical pure states of some given total energy. Assuming

that the ETH applies, these states will look thermal relative to the set of local bulk observables.
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Alternatively, one can consider pure states of the form

|Ψ⟩
R

= e−
β
2
H |B ⟩

R
=

L
⟨B |TFD⟩ (2.1)

with |B ⟩ some typical CFT boundary state. Assuming |B ⟩ is uncorrelated with the local bulk

observables, this state also looks thermal from the outside. We will call them “thermal pure

states”. They are believed to describe a one-sided black hole geometry.

Our interest is to learn more about the holographic reconstruction of the black hole interior.

For thermal pure states, one can use the mirror operator construction of [28], or more generally,

the quantum error correction procedure of [29], to reconstruct the interior operators from a single

CFT. This situation must be contrasted with the thermo-field double case. For the TFD state,

the one-sided quantum state is a thermal density matrix and the firewall argument of [26, 27]

implies that the one-sided bulk reconstruction is limited to the region outside the horizon.

2.1 Partially entangled thermal states

An attractive dual perspective on the thermal pure states was recently suggested in [51], within

the context of the SYK model [10]. The SYK model is a quantum theory of N Majorana variables

{ψi, ψj} = δij dynamically coupled via the Hamiltonian (1.1).

The SYK Hilbert space contains a natural basis of 2N/2 boundary states labeled as |s⟩ ≡

|s1, s2, ..., sN/2⟩, with si taking values in {−1, 1}, defined by arranging the Majorana variables

into pairs (we assume N is even) and requiring that

(
ψ2k−1 − iskψ

2k
)
|s⟩ = 0 . (2.2)

The thermal pure state defined via

|Ψ⟩ = |s, β⟩ ≡ e−
β
2
H |s⟩ =

L
⟨s|TFD⟩ (2.3)
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Figure 2.1: The euclidean (left), lorentzian (right) space-time associated with the thermo-field double
state (top) and thermal pure state (bottom). The middle column shows the total geometry describing
the state preparation and real time evolution, obtained by gluing the euclidean and lorentzian geometry
together along the equator of the disc

looks like a thermal state relative to the class of flip invariant operators, that do not depend on the

sign of the individual Majorana variables [51]: all n-point correlation functions tr(ρs O1...On) =

⟨Ψ|O1...On|Ψ⟩ of collections of operators that are invariant under the ‘flip group’ are equal to

the thermal expectation values with inverse temperature β (as long as n≪ N).

As suggested in [51] [52], the projection
L
⟨s|TFD⟩ of the thermo-field double state onto a

particular boundary state can be holographically represented as an ‘end-of-the-world particle’

that removes the left asymptotic region of the two-sided black hole geometry, but keeps part of

the left region in place. The left region thus becomes identified with the black hole interior as

seen from the right.

A qualitative description of the proposed dual geometry corresponding to the thermo-field

double and the thermal pure states is indicated in figure 2.1, c.f. [51]. The top row indicates the

thermal circle (left), which in the holographic setting, constitutes the boundary of a Poincaré

disc, the euclidean AdS2 bulk space-time. The corresponding two-sided black hole geometry

is shown on the top right. The middle column shows the total geometry that includes the
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state preparation and the real time evolution is obtained by gluing the euclidean and lorentzian

geometry together along the equator of the disc. The bifurcate horizon is situated at the center

of the disk. The bottom row indicates the geometry of the thermal pure state. The trajectory of

the end of the world-particle starts at the intersection point between the left boundary and the

equator, where the lorentzian geometry is glued onto the euclidean half-circle. This geometric

argument that pure black hole state has a smooth interior geometry provides support for the

aforementioned (state-dependent) QEC procedure for constructing interior operators [28, 29].

Thermal pure states and the thermo-field double are both mathematical idealizations. Generic

states are somewhere in between: macroscopic systems are never in a pure state nor in a perfect

thermally mixed state, since typically we know somewhere between everything or nothing about

a system.1 In current terminology, a class of states compatible with a classical background is

called a code subspace [29] [53]. It thus becomes natural to look for a practical generalization of

the thermo-field double or thermal pure states, in the form of an interpolating family of partially

mixed thermal states.

In the context of the SYK model, there are two natural ways to define such an interpolating

family of states. The first method is a straightforward modification of the above construction of

the thermal pure states. We will describe this method first. Then we introduce a second class

of partially mixed thermal states with a better understood holographic description. This second

type of states will be the main focus of this chapter.

Consider the 2N dimensional Hilbert space H spanned by 2N Majorana variables ψi. We

assume N is even. Introduce the basis of 2N states |s⟩ defined in eqn (2.2). Next we partition

the 2N Majorana fermions into two groups of N Majorana fermions {ψ
L,R}, each spanning sub-

Hilbert spaces H
L,R of dimension 2N/2. Let H

L
and H

R
denote two identical SYK Hamiltonians

acting on each subsystem. Note that the choice of the Hamiltonian depends on the choice of

1By the same token, observables that measure properties of a macroscopic quantum system are usually defined
with reference to some classical environment or restriction. So they are typically neither purely state-dependent
nor completely state-independent.
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partition.2 Now consider the following class of 2N entangled states

|Ψ⟩ = |s; β
L
, β

R
⟩ = e

− 1
2
β
L
H

L
− 1

2
β
R
H

R |s⟩ . (2.4)

By choosing different partitions, we obtain a large class of states with different degrees of en-

tanglement between the left-sector H
L
and right-sector H

R
. The thermo-field double is a state

for which the partition into {ψ
L
, ψ

R
} precisely coincides with the division into {ψeven, ψodd}, and

for which all sk = 1. On the other end of the spectrum, the thermal pure states correspond to

the case for which the {ψ
L
} consists of N/2 Majorana pairs (ψ2k, ψ2k+1), so that the boundary

state (2.2) factorizes into left and right boundary state |s⟩ = |s⟩
L
⊗ |s⟩

R
. The state (2.4) then

factorizes into a product of two thermal pure states. For the generic choice of partition, the

states (2.4) are partially entangled thermal states with an entanglement entropy somewhere in

between zero (for the pure product states) and the thermal entropy (for the TFD state). We

discuss some further properties of the class of state (2.4) in Appendix 2.6.

In the rest of this chapter, we will study the properties and holographic dual geometry of

another class of partially entangled states of the form

|Ψ⟩ =
∑

m,n

e
− 1

2
β
L
Em− 1

2
β
R
En On,m |m⟩

L
|n⟩

R
(2.5)

where Om,n = ⟨m|O|n⟩ are the matrix elements of some arbitrarily chosen local scaling operator

O. This state satisfies the property

L
⟨ψ1|R⟨ψ2|Ψ⟩ = ⟨ψ1|e−

1
2
β
L
HOe−

1
2
β
R
H |ψ⋆

2⟩, (2.6)

with ψ1 and ψ2 labeling generic states in the left and right Hilbert spaces. From (2.6) we

recover the expression (2.5) by inserting a complete basis of H
L
⊗H

R
. As seen from the second

2Alternatively, we could have picked a fixed partition into left- and right variables {ψ
L,R}, but allowed ourselves

the freedom to chose an arbitrary partition into even and odd variables ψeven and ψodd. In this case, the
Hamiltonians H

L
and H

R
would be held fixed, and the state |s⟩ would depend on the choice of partition.
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representation, the state |Ψ⟩ can be thought of as produced by evolution of a single QM system

over a euclidean time interval β
R
, acting with a local operator O, and then evolving over a second

euclidean time interval β
L
. It is tempting to identify β

L,R with the effective temperature of the

left- and right QM system, but as we will see, this identification is in general not correct.

The class of states (2.5) includes the TFD and thermal pure states as special limits. If we

chose O = 1 with ⟨n|1|m⟩ = δnm, the state (2.5) reduces to the thermo-field double with inverse

temperature β = β
L
+ β

R
. On the other end, if we send β

L
→ ∞, we project the left CFT onto

the vacuum state. For a sufficiently random choice of the operator O, the state (2.5) then takes

the form of a thermal pure state (2.3). We will call the above general class of states ‘partially

entangled thermal states’ (PETS)3.

The reduced density matrix for QM
R
after tracing over the left Hilbert space ρ

R
= Tr

L
|Ψ⟩⟨Ψ|

is given by

ρ =
∑

m,n,n′

e
− 1

2
β
R
En On,m e

−β
L
Em Om,n′ e

− 1
2
β
R
En′ |n⟩⟨n′ | (2.7)

or more succinctly

ρ = e
−β

R
H/2 O e

−β
L
HO e

−β
R
H/2

(2.8)

In the following, we will usually choose O to be a scaling operator Oℓ, with scaling dimension

ℓ. We will be mostly interested in large scaling dimensions of order N/βJ . More generally,

we will also consider the generalization of PETS in which we replace the single operator O by

an incoherent sum of operators Oi with all approximately the same conformal dimension. The

PETS then becomes a partially entangled mixed state.

3When On,m is constant, the state factorizes into two thermal pure states of inverse temperature βL and βR.
This can happen if ℓ→ ∞ for our setup.
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2.1.1 A useful graphical notation

We are interested in determining the entanglement and thermal properties of the partially entan-

gled thermal state and of their holographic dual. For this purpose, we briefly pause to introduce

a helpful graphical notation for the three types of states.

The thermofield double state represents the purification of the (unnormalized) thermal den-

sity matrix

ρ = e−βH = β (2.9)

The TFD state can be thought of as being prepared by a euclidean path-integral of a single QM

system, evolved over half of the thermal circle

|TFD⟩ ∼= e−
β
2
H = β

2
(2.10)

Here for later convenience we adopted the congruence
∑

e−
β

2
En |n⟩l|n⟩r ∼= ∑

e−
β

2
En |n⟩⟨n| between

entangled states of two identical systems and linear operators.

Thermal pure states are states of the form [51]

| s, β ⟩ = e−
β
2
H | s⟩ = β

2
(2.11)

The half circle indicates the euclidean time evolution over β/2 and the red dot indicates the

projection onto the state |s⟩ defined in eqn (2.2). The corresponding density matrix is denoted by

ρs ≡ |s, β⟩⟨s, β| = e−
β
2
HPs e

−β
2
H =

β/2

β/2

(2.12)

with Ps = |s⟩⟨s| the projection on the state |s⟩.
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Partially entangled thermal states are represented in this notation as

|Ψ⟩ ∼= e
− 1

2
β
L
H Oℓ e

− 1
2
β
R
H

= 1
2
β
L

1
2
β
R (2.13)

As indicated by the figure, this class of PETS is prepared by performing a path integral over

two segments of a thermal circle separated by the insertion of a local scaling operator Oℓ. This

insertion has a number of non-trivial effects.

If the dimension ℓ of the operator is small, the operator insertion produces a small pertur-

bation of the TFD state. The dual space-time will just look like the two-sided black hole with a

single particle excitation propagating in the bulk. In this chapter, we will instead be interested

in the case in which the scale dimension of Oℓ is of order ℓ ∼ N/βJ . As we will see, in this

regime the insertion of the operator Oℓ leads to a non-trivial modification of the dual geometry.

This backreaction is indicated graphically in eqn (2.13) via the kink connecting the two arcs.

Due to the presence of the kink, the two arcs each span an angle bigger than π/2, reflecting the

physical difference between the quantities β
L,R , that specify the left- and right-euclidean time

lapse, and the effective temperature as seen by the corresponding one-sided observer. The ratio

between the two is parameterized by an angle θ
L,R via

β
L

eff =
2πβ

L

2π − θ
L

β
R

eff =
2πβ

R

2π − θ
R

θ
L,R ∈ [0, π] (2.14)

One of our tasks is to compute how these angles θ
L,R depend on the scale dimension ℓ of the

local operator and on β
L
and β

R
.

The density matrix in graphical notation reads

ρ = e
− 1

2
β
R
H O e

−β
L
HO e

− 1
2
β
R
H

= β
L

1
2
β
R

1
2
β
R

(2.15)

Its partition sum Zℓ = trρ reduces to the thermal SYK two-point function, with inverse temper-
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θ
L

θ
R

bacd
bacd

Figure 2.2: The euclidean and lorentzian space-time dual to the partially entangled states (2.5). The
worldline of the massive bulk particle created by the operator insertion Oℓ is indicated by the red line.
It divides the space-time into two AdS2 regions. For a sufficiently massive particle, the worldline is
hidden behind two horizons. In this figure, the left-horizon is the true ‘extremal surface’ with minimal
value ϕ

L
of the dilaton.

ature β = β
L
+ β

R
of two local scaling operators Oℓ

Zℓ(β, τ) ≡ tr(ρ) =
〈
Oℓ(0)Oℓ(τ)

〉
β

= β−τ τ (2.16)

with τ ≡ β
R
. This thermal two-point function has been analyzed and can be explicitly computed

in the Schwarzian limit of the SYK model. This is the appropriate limit for our purpose of

extracting the holographic dual interpretation of this class of partially entangled states.

2.1.2 Overview

In this chapter we will determine the 2D space-time dual to the partially entangled states (2.5)

in the SYK model (1.1), for ℓ ∼ N/βJ , and compute the entanglement entropy between the two

sides. We will work in the low energy approximation of the SYK model, described by Schwarzian

quantum mechanics. This is the appropriate regime for comparison with AdS2 gravity.

There exists an elegant and for our purpose very useful reformulation of the Schwarzian theory

in terms of the motion of a charged particle on AdS2 in a large constant magnetic (euclidean) or

electric (lorentzian) field [54] [11]. The classical action of the 1D effective theory is proportional
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to the area of AdS2 enclosed by the worldline of this charged particle. For the euclidean finite

temperature partition function, this worldline follows a circular path, which we identify with the

thermal circle. In this description, the two-point function (2.16) is obtained by adding an extra

term to the 1D effective action equal to ℓ times the length of a bulk geodesic connects the two

points t = 0 and t = τ along the worldline of the charged boundary particle. The semi-classical

path of the charged particle then looks like the squeezed thermal circle shown on the left in figure

2.2. The two thermal circle segments represent the piece-wise-circular trajectory of the charged

particle, and the red line represents the geodesic worldline of a massive bulk particle with mass

ℓ.4 The holographic dual geometry consists of two AdS2 regions glued together along the path of

the massive particle. As shown in figure 2.2, each AdS2 region contains a center point, that after

analytic continuation to lorentzian signature, corresponds to a bifurcate horizon of a two-sided

black hole.

For sufficiently large ℓ above some critical value, determined by β
L,R , the worldline of the

bulk particle is hidden in the region behind two horizons. In this regime, the state will look

thermal relative to the observables that probe the left and right exterior region. The effective

left and right temperature and the opening angles θ
L,R are determined via the effective Schwarzian

dynamics. We will compute these effective temperatures in section 2.2.

In figure 2.2, the left-horizon is the true ‘extremal surface’ with minimal value ϕ
L
of the

dilaton. In section 2.3, we will show that its value governs the entanglement entropy between

the two sides via Sent = S0 + ϕ
L
/4GN with S0 the microscopic ground state entropy of the SYK

model. In section 2.4 we will argue that this extremal surface separates the regions accessible

through one-sided bulk reconstruction from each side. In particular, the right-sided entanglement

wedge includes the regions a and c behind the horizon shown in figure 2.2. Finally, in section

2.5 we discuss some generalizations of PETS with more than one operator insertion. In the

Appendix we collect some useful formulas for determining and reconstructing the classical bulk

geometry.

4A very similar geometric set up has been considered previously in [51] and [55].
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2.2 Space Time Geometry of PETS

In this section our interest is to determine the holographic dual geometry described by the

partially entangled thermal states, in the semiclassical regime. One approach would be to start

from the Jackiw-Teitelboim model [18, 19, 12, 13, 15]. As mentioned above, this JT model can

be recast as the mechanics of a charge boundary particle in a magnetic field [54] (see also [11]

and [55]). Here we will follow a somewhat different route: we will start from the exact correlators

of the low energy effective theory of the SYK model, given by Schwarzian quantum mechanics,

computed in [24]. We then take their semiclassical limit [34] and derive the semi-classical space-

time geometry from the resulting expression. As we will see, this procedure is remarkably

efficient.

We denote the JT dilaton by ϕ. Recall that the coupling constant that appears in the

Schwarzian action is C = ϕr

8πGN
, with ϕr = ϵϕb the renormalized boundary dilaton value. In

SYK, the coupling C corresponds to the heat capacity C = αSN/J , with αS an order one

constant [10, 56]. For the Schwarzian action we follow the notation in [24]. We summarize the

coordinates and our conventions in Appendix 2.7. Following the discussion in section 1.1, we

will parametrize the energy E and thermal entropy S of a finite energy state by means of a

dimensionless ‘momentum’ variable k via

E(k) =
k2

2C
, S = S0 + 2πk, (2.17)

where S0 denotes the microscopic SYK ground state entropy.

The partition function associated with a PETS is given by the two-point function of two

operators of dimension ℓ. In order to make the connection to the bulk more explicit, we would

like to re-express the two point function (1.9) in terms of variables that have a more transparent

geometric interpretation. This can be achieved by using the following formula for the product
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of gamma functions

Γ(∆− ik)Γ(∆ + ik)

Γ(2∆)
=

∞∫

−∞

dx
eikx

(2 cosh(x
2
))2∆

(2.18)

We can apply this identity to the two point function and introduce ‘angle’ variables −θ1 =

4π + 2ix1 + 2ix2 and −θ2 = 4π + 2ix1 − 2ix2 such that

⟨O(τ)O(0)⟩β =

∫ ∏

i=1,2

dkidθi e
−S(ki,θi,τ,ℓ), (2.19)

Hence, the exact two-point function obtained in [24] can be written as 5

⟨O(τ)O(0)⟩β =

∫ ∏

i=1,2

dkiρ(ki) e
− k21

2C
τ− k22

2C
(β−τ)Γ(ℓ± ik1 ± ik2)

Γ(2ℓ)
, (2.20)

=

∫ ∏

i=1,2

dkidθi e
−I(ki,θi,τ,ℓ), (2.21)

where the ‘action’ appearing in the exponent is given by

I(ki, θi, τ, ℓ) =
∑

i=1,2

(
k2i
2C

τi + θiki − log ρ(ki)

)
+ ℓ log

(
cos

θ1
2
+ cos

θ2
2

)2

+ I0(ℓ), (2.22)

and we defined τ1 = τ , τ2 = β − τ and the density of states ρ(k) = 2k sinh 2πk. This second

way of expressing the two-point function will be very useful below. We will refer to I(ki, θi) as

the action associated to the two-point function with values ki and θi. At this point this gives an

exact expression computing the two-point function, up to an unimportant normalization factor

I0 which appears as a constant term in the action.

We now take a semiclassical limit, C and ℓ both large with ℓ/C fixed. Since ℓ is a dimen-

sionless number it should be compared with a dimensionless ratio such as 2πC/β. Since we will

take β to be of order one we will simply compare ℓ directly with C. In this case the integrals

over ki and θi become dominated by their saddle point. The saddle point scaling is such that

5The notation ± inside the Gamma function means one should take a product over all signs combinations.
See [24] for more details.
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ki ∼ C and θi ∼ 1. This approximation is reliable since the action scales as I ∼ C. We define

the (order one) semiclassical action Is.c. as

I(ki, θi) = CIs.c.(ki, θi). (2.23)

In this limit the action simplifies to

CIs.c.(ki, θi, τ, ℓ) =
∑

i=1,2

(
k2i
2C

τi + (θi − 2π)ki

)
+ ℓ log

(
cos

θ1
2
+ cos

θ2
2

)2

+ I0. (2.24)

We see that when ℓ ∼ O(C), the saddle point will depend on the value of ℓ. We can interpret this

as the result of backreaction of the space-time geometry. The saddle-point equations ∂kiIs.c. =

∂θiIs.c. = 0 simplify to

ki
C
τi = 2π − θi, (2.25)

ki

sin θi
2

=
ℓ

cos θ1
2
+ cos θ2

2

, (2.26)

for i = 1, 2. Using the first equations one can eliminate the angles θi. This gives the equivalent

system of equations

k1τ1
C

+ 2 arctan
k1 + k2

ℓ
+ 2 arctan

k1 − k2
ℓ

= 2π, (2.27)

k2τ2
C

+ 2 arctan
k1 + k2

ℓ
− 2 arctan

k1 − k2
ℓ

= 2π. (2.28)

The geometric meaning of the above equations will be explained below. 6

6In the small ℓ limit, ℓ/C ≪ 1, the backreaction is turned off. The solution then becomes ki ≈ 2πC/β and
θi ≈ 2πτi/β Keeping track of the subleading O(ℓ/C) terms, one finds the expected form of a thermal two-point
function in a 1D CFT

⟨O(τ)O(0)⟩ ∼
( π

β sin π
β τ

)2ℓ
. (2.29)
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X1

X2

τ2 τ1

ρ2 ρ1

θ2 θ1

ϕ

Figure 2.3: The curve that maximizes the action with two operator insertion (red dots) at τ1 = τ and
τ2 = β − τ . The horizons of each side are located at the black dots.

2.2.1 Backreaction

In this subsection we will extract the geometric interpretation of our saddle-point equations

(2.25) and compare our results with the action described in [55]. In [55], the authors exploit the

fact ( [54] and [11]) that the Schwarzian action associated to the reparametrization mode f(u),

u ∈ (0, β) is proportional to the area enclosed by the curve (ρ(u), θ(u) = 2π
β
f(u)) in a hyperbolic

space with metric

ds2 = dρ2 + sinh2 ρ dθ2 =
(dr2 + r2dθ2)

(1− r2)2
, r = tanh

ρ

2
, (2.30)

where r(u) is determined from the constraint that the induced metric is guu = 1/ϵ2, with ϵ a

small cut-off scale. This describes a cut-off version of the Poincare disk in Euclidean signature.

We summarise the coordinate systems used in Appendix 2.7.

The fixed (large) length of the boundary L is βJ = β/ϵ. This contribution appears in the

JT action from a holographic renormalization counterterm. In Poincaré coordinates, it is easy

to calculate the area under the boundary curve. Using the induced metric on the boundary,

guu =
1

ϵ2
=

4(r′2 + r2θ′2)

(1− r2)2
. (2.31)
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This can be solved for the boundary trajectory in an expansion in ϵ

r(θ) = 1− ϵθ′ +
(ϵθ′)2

2
+ . . . (2.32)

Plugging this into the expression for the area, one finds that

A =

∫
dr dθ

4r

(1− r2)2

= L− 2π + ϵ

∫
dτ

[
θ′

2
− 1

2

(
θ′′

θ′

)2
]
+ . . . (2.33)

which is precisely the Schwarzian action in the time reparametrisation variable θ.

Also note that the distance between the insertion points on the boundary can be evaluated

using

coshD(X1, X2) = −X1 ·X2 ∼
2J2

θ′1θ
′
2

(
sin

θ1 − θ2
2

)
(2.34)

where we used the fact that the radial coordinate at the boundary is large (r ∼ 1) so that

2
1−r

∼ 2
ϵθ′
. Comparing the equations (2.33) and (2.34), we find that we can re-express the action

of the Schwarzian with a bilocal insertion by identifying θ(τ) = f(τ) as the reparametrization

variable

−S = −C
∫
du Sch

(
tan

π

β
f(u), u

)
+ ℓ log

f ′(u1)f
′(u2)(

sin π(f(u1)−f(u2))
β

)2 (2.35)

≃ −C
ϵ

[
(A− L+ 2π) +

ϵℓ

C
log
(
2ϵ2 coshD(X1, X2)

)]
(2.36)

where D(X1, X2) is the geodesic distance between the location of the insertions X1, X2. The

approximation is valid when the cut-off ϵ≪ 1 so that ρ(u) is large. A denotes the area enclosed

by the trajectory of the boundary particle, and L ∼ β its length.

For a fixed length L, we would like to minimize this action. In the absence of the bilocal

operator, this would be achieved by the geometry of a circle which gives the usual Euclidean
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τ1
H

τ2

(I) ℓ→ 0

H1 H2

(II) ℓ→ ∞

Figure 2.4: Backreaction generated by an operator insertion (red dots) of dimension ℓ when ℓ → 0
and ℓ→ ∞. We indicate the backreaction by depicting the deformations of the boundary curve in the
Euclidean Poincare disk. We indicate the (local) horizons by a black dot.

black hole. In the presence of the interaction, for a given geodesic distance D12, the action is

minimized by minimizing the area on the left and right. This is achieved by circular arcs on the

left and the right terminating on the points of insertion. This gives the geometry of figure 2.3.

For ℓ≪ C we can neglect the term in the action depending on the geodesic distance between

X1 and X2. Then the curve that minimizes the area with a fixed length is given by a circle inside

the Poincare disk. In Lorenzian signature this maps to a black hole with the horizon located at

the center of the disk. The location of this circle as a function of the length (temperature) is

k =
2πC

β
, sinh ρ =

C

kϵ
. (2.37)

In this case it is easy to see that the action in (2.35) matches the first terms of our action (2.24)

using the explicit expression for the area A = 2π cosh ρ and length L = 2π sinh ρ in for the

Poincare disk.

When a heavy operator is inserted we also need to minimize the distance between the insertion

points X1 and X2. First one can approximate each side of the boundary by circles as shown in

figure 2.3. Each has a radius given by

sinh ρi =
C

kiϵ
. (2.38)
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If we define the opening angle of each circle by θi as in figure 2.3 then the length on each side is

related to the time insertions as

sinh ρi(2π − θi) =
τi
ϵ
. (2.39)

By using this equation and (2.38) one gets precisely the first relation of our saddle-point equations

(2.25). With these identifications, the geodesic distance between X1 and X2 is given by as

coshD12 = 1 + 2 sinh2 ρ1 sin
2 θ1
2

= 1 + 2 sinh2 ρ2 sin
2 θ2
2
,

≈ C2

ϵ2

(
sin θ1

2

k1

)2

=
C2

ϵ2

(
sin θ2

2

k2

)2

. (2.40)

The first line of this equation is a purely geometric result. In the second line we have used our

proposal to identify our variables with geometry. A first observation is that the two equivalent

geometric expressions become consistent when one takes into account the second set of saddle

point equations (2.25) since it implies k−1
1 sin θ1

2
= k−1

2 sin θ2
2
. From the geometry of figure 2.3

this is simply the hyperbolic version of the sine rule. A second observation is that the second

equation in (2.25) allows us to write

coshD12 =
C2

ϵ2ℓ2

(
cos

θ1
2
+ cos

θ2
2

)2

. (2.41)

Inserting this relation in the action proposed by [55] we find a match with our on-shell action

(2.24). The same is true for the ℓ independent terms in (2.24). This connection allows us to

extract the backreaction due to operator insertions in terms of our variables θ and k.

One important parameter of the geometry is the angle ϕ defined in figure 2.3 which can

be shown to be equal to ϕ = ℓϵ/C. If we take the cut-off to be ϵ ∼ 1/βJ in terms of SYK

variables, then ϕ ∼ ℓ/N . Another interesting parameter of the geometry is the distance between

the horizons (specified by the center of each circle segment). This distance DH can be expressed
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as

coshDH =
1 + cos θ1

2
cos θ2

2

sin θ1
2
sin θ2

2

=
k21 + k22 + ℓ2

2k1k2
. (2.42)

We can separate this into a minimal geodesic distance D1 (D2) between the left (right) horizon

and the world line of the bulk particle as

sinhD1 =
ℓ2 + k22 − k21

2ℓk1
, sinhD2 =

ℓ2 + k21 − k22
2ℓk2

. (2.43)

One can verify they add up to the distance between horizons D1 +D2 = DH .

Assume τ1 ̸= τ2. Then call kmax = max(k1, k2) and kmin = min(k1, k2). For any ℓ, the horizon

associated to kmin is always visible from the outside, and it is always part of the geometry. This

is not true for the other horizon associated with kmax. When ℓ takes values between ℓ = 0 and a

critical ℓ∗, the right horizon is not part of the geometry, it is removed by the gluing procedure

across the worldline of the bulk particle. The second horizon becomes visible for ℓ > ℓ∗. From the

formulas above (in particular the one for D1 and D2) one can write a condition that determines

the critical scaling dimension ℓ∗ as

ℓ2∗ = k2max(ℓ∗)− k2min(ℓ∗), (2.44)

where the momenta in the right-hand side are functions of ℓ∗, β and τ , determined by solving the

saddle point equations (2.27). From the geometry of figure 2.3 one can see that this is equivalent

to the condition θ = π (for which the bulk particle worldline crosses the horizon associated to

kmax).

Another way of writing the condition of both horizons being part of the geometry is

|∆E| = |E2 − E1| <
ℓ2

2C
. (2.45)
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In this regime, the trajectory of the bulk particle lies between the two horizons. The correspond-

ing state of the SYK system will look thermal from the perspective of simple observables that

can only measure the state outside each horizon. We will elaborate more on bulk reconstruction

for these geometries in section 2.4.

Using this knowledge about the backreaction we can analyze the cases ℓ → 0 and ℓ → ∞.

We show both cases in figure 2.4 and we explain below how these simple figures allow us to find

approximate solutions to the saddle-point equations.

When ℓ → 0 backreaction is negligible, k1 ≈ k2 ≈ 2πC/β. Then the geometry is a circle

in the Poincare disk with length ∝ β and the evaluation of the geodesic distance reproduces

equation (2.29). We will study the leading correction to this limit in section 2.3.3.

On the other hand when ℓ→ ∞ points X1 and X2 want to be as close as possible. The two

arcs become full circles touching at a point. The renormalized length of each circle is fixed to be

τ1 = τ and τ2 = β− τ . We can anticipate then k1 ≈ 2πC/τ1 and k2 ≈ 2πC/τ2 with θi ≈ 0. From

equation (2.42) we can deduce the distance between horizons as a function of the dimension in

this limit as DH ≈ 2 log βℓ
C
.

2.2.2 Dilaton Profile

The Schwarzian dynamics fixes the backreaction and therefore fixes the boundary curve as ex-

plained above. From the boundary curve, one can easily find the dilaton profile inside the bulk.

The detailed formulas are left for Appendix 2.7. Here we point out the relevant qualitative

features of the euclidean configuration and its continuation to Lorenzian signature.

The dilaton blows up near the asymptotic boundary of AdS. The boundary curve is defined

such that ϕb = ϕr/ϵ for a cut-off ϵ and a finite renormalized dilaton ϕr. The Schwarzian captures

the limiting dynamics as ϵ goes to zero. In euclidean space, the dilaton ϕ is smaller than ϕb

everywhere inside the cut-off curve and has a local minimum at each horizon. For the TFD in

euclidean space (circle in the Poincare disk) one has concentric circles of constant dilaton. In

the continuation to Lorentzian signature across the t = 0 time slice, the boundary curve splits
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t=0

(a) (b) (c)

−ϕh

ϕb

Figure 2.5: Dilaton profile. The values of the dilaton in arbitrary units go from large positive values
of ϕ at the boundary (red end of color spectrum) to large negative values ending at the inner horizon
(blue end of color spectrum): We show ℓ ∼ 0 (left), ℓ ∼ N/βJ (middle) and ℓ ∼ N (right).

into two hyperbolas (corresponding to the left and right QM) that hit the boundary of AdS after

finite global time. Inside of the lorenzian bulk, the 4d singularity is located where ϕ+ ϕ0 = 0 so

one could imagine taking as a cut-off ϕ = −ϕ0 or to be safe −ϕb. From the 4d perspective the

inner horizon is located −ϕh and it is well known to be unstable. Therefore we will cut-off the

geometry at −ϕh. We show this situation in panel (a) of figure 2.5.

For the PETS with an operator inserted during the euclidean evolution, we need to glue

two of locally TFD solutions along the world line of the bulk particle as shown in panel (b).

As reviewed in Appendix 2.7 each side of the circles have a definite SL(2,R) charge. Charge

conservation implies that the dilaton is continuous along the bulk brane when the two halves

are glued 7. As expected from the equations of motion, the slope of the dilaton is discontinuous

with a jump proportional to the mass ℓ of the boundary particle ∇ϕL −∇ϕR ∼ ℓ.

The dilaton inside of the cut-off surface stays always below the UV cut-off value fixed by

ϕbdy. Then the bulk space between the cut-off surface and the singularity can be trusted. As

the mass of the bulk brane is increased the gradient ∇ϕ grows without bound, ∇ϕ → ∞ for

ℓ → ∞. This implies that there is a critical value ℓcr of the mass such that for ℓ > ℓcr the low

energy approximation that gives JT gravity breaks down. The geometry inside the causal future

7To see this simply start from charge conservation QL = QR+Qm (these are three component vectors living in
embedding space, see Appendix 2.7 for notation). Then take the inner product with Y (coordinate in embedding
space describing EAdS2). Along the worldline of the particle Qm · Y = 0 so ϕL = ϕR.
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Figure 2.6: The boundary curve that maximizes the Schwarzian action with two pairwise operator
insertions.

of the particle position at t = 0 (V-shaped region in panel (c) of figure 2.5) describes a strongly

coupled region. The answer for what happens inside this region might depend on fine-grained

details of the operator and of the SYK dynamics. If the operator is a projection that acts on all

fermions such that ℓ ∼ N , it was argued in [51] that the region inside the V-shaped region must

be removed.

2.2.3 Multiple Insertions

In this subsection we will comment on the generalization of PETS produced by multiple operator

insertions. In the leading large N limit and low energy limit of the SYK model, we can then

compute the relevant correlation functions using the results of [24].8

Using the same procedure as described above for the two-point function, we derive that the

2n-point functions is determined by a semiclassical action which has the form

I =
∑

prop.

k2i
2C

τi +
∑

i,j paired

(
ℓ log

(
cos

θi
2
+ cos

θj
2

)2

+ θiki + θjkj

)
−
∑

i

2πki. (2.46)

In the first term the sum is over propagators over times τi with an intermediate state energy

k2i /2C. The second term is a sum over pairs of insertions into a bilocal field. Finally the third

8For our purpose, it will be sufficient to focus on channels where bulk propagators do not cross and therefore
do not involve the R-matrix of [24].
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term is a sum over momenta k that are different off-shell. From this action one can obtain

the saddle point equations and bulk geometry by a gluing procedure similar to the case of two

operators.

Example: Four-Point Function

As a concrete exercise we will apply the ideas above to the four-point function. This shares some

general features with the case of an arbitrary number of insertions. We will use the results in

section 2.5.

In figure 2.6 we show the geometry backreacted by the two bilocal insertions. We determine

the shape of the geometry from the semi-classical expression of the time-ordered four point

function9

⟨Oℓ1(X1)Oℓ1(X2)Oℓ2(X3)Oℓ2(X4)⟩.

Applying the rules of the previous section the effective action computing this correlator is given

by

I =
k2

2C
τ1 +

q2

2C
τ2 +

p2

2C
τ3 +

p2

2C
τ4

+ℓ1 log

(
cos

θk
2

+ cos
θp1
2

)2

+ θkk + θp1p+ ℓ2 log

(
cos

θq
2
+ cos

θp2
2

)2

+ θqq + θp2p

−2πp− 2πq − 2πk. (2.47)

where
∑

i τi = β. The geometric role of each variable is shown in figure 2.6. The first line

corresponds to a sum over each propagator over a time τi. There are four of them contributing,

although only three different ones (off-shell) due to a conservation law. In the second line we

sum over both pairings. Finally the third line has a sum over channels coming from the density

of states. Note that, since off-shell only three momenta differ, p contributes as 2πp and not 4πp.

Since we will use the results in this section later we will write down the saddle-point equations

9If the four operators were identical we should sum over all channels. Here we assume that they are only
pairwise identical.

41



in detail. From varying the momenta k, p, q we obtain

2π − θk =
kτ1
C
, 2π − θq =

qτ2
C
, 2π − θp1 − θp2 =

p(τ3 + τ4)

C
. (2.48)

From varying the opening angles θ’s we obtain the equations

k

sin θk
2

=
p

sin θp1
2

=
ℓ1

cos θk
2
+ cos θp1

2

,

q

sin θq
2

=
p

sin θp2
2

=
ℓ2

cos θq
2
+ cos θp2

2

. (2.49)

By eliminating the angles θ can obtain an equation for p, k and q.

2.3 Entanglement Entropy of PETS

In this section we will combine the results of the previous section (and Appendix 2.7) to compute

from first principles the entanglement entropy of the partially entangled thermal states using the

replica trick. We will begin by reviewing the case of the TFD. Then we will consider operators

without backreaction and finally the most general case. The upshot of the calculation will be

that the entanglement entropy is determined by the global minimum of the dilaton. This is

consistent with the holographic entropy prescription [30].

We will consider a bipartite PETS defined in the introduction. In this section we will study

the QMR density matrix ρ = TrL|Ψ⟩⟨Ψ| after performing a partial trace over the left QM. We

will compute the Renyi entropy of these states and from it deduce the entanglement entropy.

The Renyi entropy is defined as

Sn =
1

1− n
log

Trρn

(Trρ)n
. (2.50)

where n indicates the replica index and the limit n→ 1 gives the entanglement entropy. Another
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observable with this properties is the modular entropy defined as

Sn = −n2 ∂

∂n

[
1

n
log Trρn

]
. (2.51)

This is a more natural candidate for an entropy associated to the system of n replicas. By using

our methods we could in principle compute both. Nevertheless, only the modular entropy Sn

has a clear holographic interpretation, as found in [57] building upon [58] 10.

For these reasons explained above, in this section we will focus on Sn which, with slight abuse

of terminology, we will still refer to as Renyi entropy.

As a brief warm up, we will begin by analyzing the TFD state

|TFD⟩ = β
2

(2.52)

Its partition function Z(β) is a path integral over thermal circle of length β, as shown in figure

2.2. In the semiclassical limit, large C, it is given by

logZ = log

∫
[df ] eC

∫
dτ{tan 1

2
f(τ),τ},

= S0 + βE0 +
2π2C

β
+ . . . , (2.53)

where the dots indicate subleading terms. From the point of view of the Schwarzian theory the

extremal zero-point values of entropy and energy S0 and E0 are undetermined but large 11. In

the case of SYK S0, E0 ∼ N while near extremal corrections are subleading S − S0 ∼ N/(βJ).

The value of the dilaton at the horizon of a black hole geometry is given by ϕh = 2π
β
ϕr = GN

16π2C
β

and fixed by the temperature.

Using the replica trick, the trace of ρn is equivalent to the partition function of a circle of

10Another advantage is the fact that one can compute Sn without worrying about the normalization of the
density matrix. An attempt to divide by (Trρ)n in equation (2.51) will give the same Sn after taking the derivative
with respect to n.

11S0 is a zero-point entropy while Sn denotes the n-th modular entropy. We hope this will not cause confusion
since we will never take the n→ 0 limit of the modular entropy in this thesis.
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size nβ. This is a simple extension of the result above

Sn = −n2 ∂

∂n

[
1

n
logZ(nβ)

]
= (1− n∂n) logZ(nβ) = S0 +

4π2C

nβ
. (2.54)

We can rewrite this result as

Sn = S0 +
ϕh(n)

4GN

, (2.55)

where ϕh(n) is the dilaton at the horizon of a black hole of size nβ. This is the minimal

value and also lies at the fix point of the replica Zn symmetry 12. The entanglement entropy S =

limn→1 Sn = −Trρ log ρ is given by S = S0+
4π2C
β

. Of course since ρ ∼ e−βH we could have directly

guessed this thermodynamic relation between entropy and free energy. This thermodynamic

relation will no longer be true for PETS. 13

We can repeat this entropy calculation for the PETS described in the introduction. In

particular we will consider

|Ψ⟩ ∼= e
− 1

2
β
L
H Oℓ e

− 1
2
β
R
H

= 1
2
β
L

1
2
β
R

(2.56)

To simplify some formulas below we will parametrize this state by τ = β
R
/2 and β = β

L
+ β

R

or equivalently 1
2
β

L
= 1

2
β − τ . For reasons that will be clear below we will focus on β

R
̸= β

L
or

τ ̸= β/4. We will later generalize this state to multiple insertions in section 2.5.

The procedure, similarly to the previous computation, is to consider a thermal circle of size

nβ for n replicas, with 2n operator insertions. Then the trace of the replicas is given, in terms

12This is not true for the more standard definition Sn since Sn = S0 + (1 + n)2π2C/nβ = S0 + n+1
2

ϕh(n)
4GN

.
The right-hand side is not given by ϕh(n)/4GN unless n = 1, and we can see even in this simple example the
advantage of the modular entropy (2.51).

13From the 4d perspective, the derivation of the Jackiw-Teitelboim model reduces a near extremal black hole to
the near horizon region AdS2 × S2 (see for example [59]). The dilaton then is the perturbation from extremality
of the size of the horizon Ah = ϕ0 + ϕh. The entanglement entropy above is therefore the usual Bekenstein
entropy of a near extremal black hole since S0 = ϕ0/4GN is related to the extremal dilaton in the same way.
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of β and τ , by the following correlator

Trρn = Z0(nβ)⟨O(−τ)O(τ)O(β − τ)O(β + τ)O(2β − τ)O(2β + τ) . . .⟩nβ,

≡ Gn(τ, β), (2.57)

where the dots indicate the remaining of the 2n operators and the unperturbed TFD partition

function we reviewed above is logZ0(nβ) = S0+nβE0+
2π2C
nβ

. In the equation above we added the

partition function since, following the notation of [24], we defined correlators to be normalized

to 1 for O = 1. Then the Renyi entropy we focus on in this section (2.51) is given in terms of

correlation functions of the Schwarzian theory

Sn = −n2∂n

[
1

n
logGn(τ, β)

]
. (2.58)

The expression in equation (2.58) is naturally divided into the sum of two terms. The logarithm

of the correlator always involves S0 + nβE0 + . . .. This gives a contribution of the order N zero-

point entropy Sn = S0 + . . .. The goal will be to compute the leading near-extremal correction

Sn − S0 ∼ C contribution to the entropy, when C is large with ℓ/C fixed 14.

2.3.1 Warm-up: Light Operators

We will begin as a warm-up by analyzing the limit 1 ≪ ℓ ≪ C 15. Correlators satisfy large N

factorization and the building blocks are given by the semiclassical answer of equation (2.29),

⟨O(τ)O(0)⟩ = (π/β sin(πτ/β))2ℓ, without backreaction.

Before writing down the general answer let us begin by taking n = 2. Using factorization, the

14As mentioned in section 2.2, the dimensionless ℓ should be compared with a dimensionless ratio such as
2πC/(β

R
+ β

L
). Since we will use units in which β is of order one we will simply compare ℓ with C.

15For ℓ≪ 1 one can apply entanglement entropy perturbation theory.
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τ

τ

β − 2τ

Figure 2.7: Replica Geometry for 1 ≪ ℓ ≪ C with n = 4. We indicate the channel that dominates
when 0 < τ < β/4 (left) and β/4 < τ < β/2 (right). The central black dot indicates the Zn symmetric
horizon with minimal dilaton.

fact that all four operators are identical and the negligible backreaction gives a simple answer

Trρ2 = eS0+2βE0+
2π2C
2β



(

π

2β sin πτ
β

)4ℓ

+

(
π

2β cos πτ
β

)4ℓ

+

(
π

2β

)4ℓ

 , (2.59)

The channel combinatorics makes it hard to extend to arbitrary n. But for 1 ≪ ℓ≪ C one can

simplify this considerably. To be concrete assume first that 0 < τ < β/4. We can rewrite the

previous expression in a convenient way as

Trρ2 = eS0+2βE0+
2π2C
2β

(
π

2β sin πτ
β

)4ℓ [
1 +

(
tan

πτ

β

)4ℓ

+

(
sin

πτ

β

)4ℓ
]
,

≈ eS0+2βE0+
2π2C
2β

(
π

2β sin πτ
β

)4ℓ

[1 +O(e−ℓ)]. (2.60)

If we assume ℓ≫ 1 then the second and third term are negligible regardless of τ (the tangent is

smaller than one only for τ < β/4). If τ > β/4 then the channel contracting operators separated

by β − 2τ (term with cosine above) dominates. Using this we can run the same argument for

arbitrary n and τ . In figure 2.7 we show the situation for n = 4 as an example. The general
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answer can be written in each case as

Trρn ≈





eS0+nβE0+
2π2C
nβ

(
π

nβ sin π2τ
nβ

)2nℓ

, 0 < τ < β/4,

eS0+nβE0+
2π2C
nβ

(
π

nβ sin
π(β−2τ)

nβ

)2nℓ

, β/4 < τ < β/2.

(2.61)

Note that we are not using a properly normalized density matrix. This is not a problem for

computing Sn (2.51) (although Sn is sensitive to normalization). Using this result the Renyi

entropy is given by

Sn = S0 +
4π2C

nβ
+ 2ℓ

(
n− 2πx

β
cot

2πx

nβ

)
, x = min

(
τ,
β

2
− τ

)
. (2.62)

From this expressions taking the limit n → 1 is straightforward. The corrections to these

expressions are of order O(1/ℓ) and O(1/C) so that for 1 ≪ ℓ ≪ C this is well justified. The

only subtelty occurs at precisely τ = β/4. For this choice there is a phase transition where the

Renyi (or entanglement) entropy is continuous but with a jump in the first derivative. Another

feature is the symmetry under τ → β/2− τ (β
L
↔ β

R
) due to the fact that |Ψ⟩ ∈ HL ⊗HR is a

pure state and therefore SL = SR.

2.3.2 Heavy Operators

The main issues appearing when attempting to compute Sn is the channel combinatorics and the

presence of contractions with crossing legs that imply non-trivial gravitational interactions (the

appearance of the R-matrix from [24]). Both these problems can be avoided in the semiclassical

limit of large C and large ℓ ∼ C in a way similar to the previous case. Correlators of an arbitrary

number of operators, as reviewed in section 2.2, are exponential in C meaning that

Gn(τ, β) =
∑

channel k

eCIk(τ,β,ℓ/C) ≈ eCImax(τ,β,ℓ/C)[1 +O(e−C)]. (2.63)

47



Therefore to exponential accuracy in C, the correlator is dominated by the channel which mini-

mizes the classical action Ik appearing in the exponent. This is similar to the situation in higher

dimensions where large N ensures that one picks the saddle-point of minimal action as long as

there are no degeneracies.

This solves both problems since a single channel dominates and moreover channels with

crossing legs never win (the reason is analogous to the statement in Lorenzian time that OTOC

cannot be bigger than time ordered ones). For the calculation of the Renyi entropy of the state

defined above there are two cases in which different channels dominate (1) 0 < τ < β/4 and (2)

β/4 < τ < β/2.

Case I: 0 < τ < β/4 (β
R
< β

L
)

We need the correlator of 2n operators placed periodically at a distance alternating between

2τ and β − 2τ . For case I the channel that dominates has a contraction between operators

separated a distance 2τ . We show this channel in figure 2.8, where we define the intermediate

channel momenta ki and p.

The configuration has a Zn symmetry of permuting the replicas and a Z2 symmetry of

time reversal. This is important for finding the saddle-point of the classical action giving this

correlator (momenta running along outer circles ki are different off-shell but coincide on-shell

ki ≡ k thanks to the Zn symmetry). In general the correlator is given semiclassically as

logGn(τ, β) = S0 + nβE0 + 2πp+
n∑

i=1

2πki +
n∑

i=1

Ĩi(p, ki, ℓ, τ, β) (2.64)

the explicit formula for the terms Ĩi and the saddle-point equations can be obtained from the

general methods explain in section 2.2. Using that ki ≡ k the correlator simplifies to

logGn(τ, β) = S0 + nβE0 + 2πp+ n
[
2πk + Ĩ(p, k, ℓ, τ, β)

]
(2.65)
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k1
k3

k2

k4

p

p

p

p

(I) 0 < τ < β/4 (p < k)

k

k

k

k

p1 p2

p4 p3

(II) β/4 < τ < β/2 (k < p)

Figure 2.8: Geometry generated by the insertion of heavy operators (red dots) for n = 4 (replicas are
separated by dashed lines). Case I: Four local dilaton local minima at the horizons (black dots) with
ϕi ∝ ki(n) ≡ k(n) and at the central, (global) minimum Zn symmetric, horizon with ϕmin ∝ p(n) <
k(n). Case II: Four local minima at the horizons (black dots) with ϕi ∝ pi(n) = p(n) and at the Zn

symmetric horizon with ϕmin ∝ k(n) < p(n).

Using this we can compute the Renyi entropy Sn as

Sn = −n2∂n
1

n
logZn = S0 − n2 ∂

∂n

1

n

(
2πp+ n

[
2πk + Ĩ(p, k, ℓ, τ, β)

])
(2.66)

Now we can see the advantage of this definition of the Renyi entropy. When taking the derivative

with respect to n one has the explicit n depence and the implicit dependence through the saddle-

point value of p(n) and k(n). When evaluated on the saddle-point solution, the derivative with

respect to the implicit dependence on n vanishes exactly. Taking derivatives only to the explicit

factors of n simplifies considerably

SRenyi
n = S0 + 2πp(n) = S0 +

ϕh(n)

4GN

,

= S0 + min
Y ∈ Bulk

ϕ(Y )

4GN

, (2.67)
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ϕ
r

ϕL ϕR
QMRQML

Figure 2.9: Dilaton profile (blue curve) at time τ = 0 as a function of the radial direction. Below we
show the Euclidean evolution that creates the state with an insertion of Oℓ (red dot). The profile has
two local minima at the horizons ϕL/R at the left/right horizons. We show the case τ < β/4 for which
ϕL < ϕR, then the microscopic entanglement entropy is given by ϕL.

where the saddle-point equation defining p(n) and k(n) is given by

k

C
2τ + 2 arctan

k + p

ℓ
+ 2 arctan

k − p

ℓ
= 2π, (2.68)

p

C
(β − 2τ) + 2 arctan

k + p

ℓ
− 2 arctan

k − p

ℓ
=

2π

n
. (2.69)

Y is the position in embedding space parametrizing the bulk dual to the boundary with n replicas.

As we see in figure 2.8, there are several local minima of the dilaton (only two are different due

to Zn symmetry). The Renyi entropy is given by the global minimum which corresponds to the

value ϕh(n) at the Zn symmetric central horizon in the figure. Indeed for 0 < τ < β/4 and any

ℓ the condition p(n) < k(n) is always satisfied.

This is consistent with the holographic prescription derived in higher dimensions in [57]. The

standard Renyi entropy Sn does not have such a simple formula but it is still computable using

the explicit expressions of the semiclassical action.

Now we can take the n → 1 limit. The local minimal values of the dilaton at the left and

right horizons are

ϕL

4GN

= 2πp(n = 1) and
ϕR

4GN

= 2πk(n = 1), (2.70)

we show this in terms of the black hole bulk geometry in figure 2.9. We explained in section 2.2

that one of the horizons might be hidden and would not be part of the geometry for a range of
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ℓ. It is easy to see that from the two horizons the one with minimal horizon dilaton is always

visible.

Case II: β/4 < τ < β/2 (β
L
< β

R
)

After case I, deriving the results for case II is straightforward. The channel that dominates now

has contractions between nearest neighboring operators separated by β
L
= β − 2τ . The Renyi

entropy is given by the momentum which does not appear with a factor of n in the semiclassical

action. For case I this was p and for case II it is k instead (see right panel of figure 2.8). This

gives

Sn = S0 + 2πk(n) = S0 + min
Y ∈ Bulk

ϕ(Y )

4GN

. (2.71)

Then the holographic prescription is still valid for case II. The saddle-point equations are different

though and now become

k

C
2τ + 2 arctan

k + p

ℓ
+ 2 arctan

k − p

ℓ
=

2π

n
, (2.72)

p

C
(β − 2τ) + 2 arctan

k + p

ℓ
− 2 arctan

k − p

ℓ
= 2π, (2.73)

which coincides with the previous case for n = 1 but in general might be different. In this case

now k(n) < p(n) for any choice. The situation for n = 1 also gets reversed with respect to the

previous case. The prescription of choosing the minimal value of the dilaton still gives the right

answer

2.3.3 Summary

Putting everything together we can write the general result valid as long as τ ̸= β/4 (β
L
̸= β

R
).

Looking at figure 2.9 we see that the dilaton profile has two potential local minima given by the

horizons value ϕL = ϕ(YHL
) and ϕR = ϕ(YHR

), which are proportional to p and k respectively.

For arbitrary n the minima occurs in the Zn invariant point which is always given by min(p, k).

Therefore the entanglement entropy for these partially entangled states labeled by the operator
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Figure 2.10: Clover diagram for ℓ/C ≫ 1, τ < β/4 and n = 4. Dashed lines separate replicas and the
dots indicate the local horizons of each part of the geometry.

insertion ℓ and τ is given by

S = S0 + 2π min(p, k),

= S0 + min
Y ∈ Bulk

ϕ(Y )

4GN

, (2.74)

where the choice of p or k is equivalent to finding the minimum between the local minima ϕL

and ϕR. The dependence of the entanglement entropy on the PETS parameters ℓ and τ is given

implicitly by the saddle point equation

k

C
2τ + 2 arctan

k + p

ℓ
+ 2 arctan

k − p

ℓ
= 2π, (2.75)

p

C
(β − 2τ) + 2 arctan

k + p

ℓ
− 2 arctan

k − p

ℓ
= 2π, (2.76)

taken from the previous section for n = 1. This can be easily rewritten in terms of ϕL and ϕR.

In general this system of equations needs to be solved numerically. In practice we can derive

analytic formulas in two cases. First when ℓ/C ≪ 1. This was studied above as a warm-up using

a different approach but the same answer can be derived from equations (2.75) and (2.76). This
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gives (for τ < β/4) the approximation

k(n) ≈ 2πC

nβ
+ 2ℓ

(
n+

2πτ

β
cot

2πτ

nβ

)
, p(n) ≈ 2πC

nβ
+ 2ℓ

(
n− 2πτ

β
cot

2πτ

nβ

)
. (2.77)

This corresponds to a small perturbation to the TFD value of the dilaton due to the operator

backreaction, since the correction is of order δS ∼ ℓ ∼ O(1). We see that since τ < β/4 the

global dilaton minimum is indeed given by p(n).

On the other extreme we can take ℓ/C ≫ 1. Then the ‘clover’ diagram describing the

backreaction (see figure 2.10) gives a graphical representation that gives the approximation (for

the τ < β/4 case, β
R
< β

L
)

k(n) ≈ 2πC

2τ
=

2πC

β
R

, p(n) ≈ 2πC

n(β − 2τ)
=

2πC

nβ
L

. (2.78)

When τ > β/4 the roles of p and k are replaced. In this case the correction is of order δS ∼ O(C)

due to the semiclassical backreaction. We also see that indeed the global minimum of the dilaton

corresponds to p for τ < β/4 (and k in the other extreme).

For general values of ℓ/C the parameter p and k interpolate between these limits. As a

summary of this discussion the Renyi entropies are given in each limit by the approximations

Sn =





S0 +
4π2C
nβ

+ 2ℓ
(
n− πx

β
cot πx

nβ

)
, for ℓ/C ≪ 1,

S0 +
4π2C

n (β−x)
, for ℓ/C ≫ 1.

(2.79)

which is valid for any τ and again we used x = min(2τ, β − 2τ). A numerical solution of

the saddle point equations shows that p(n) (or ϕL) and k(n) (or ϕR) interpolate smoothly and

monotonically from the ℓ→ 0 to the ℓ→ ∞ limits that we derived above.

One could ask in what sense are these states partially entangled since the entropy seems to

increase with ℓ. Consider the case such that p < k and therefore ϕL < ϕR. The TFD corresponds

to the state of maximal entropy with the constrain of a fixed average energy ER. The energy of
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the right QM in the PETS can be easily computed to be exactly ER = E0 + k2/2C. The state

that maximizes the entropy is the thermal one with an inverse temperature chosen such that

⟨HR⟩ = E0 + k2/2C. This can be purified as a TFD living in a tensor product of left- and right

QM, with entropy STFD = S0 + 2πk. This should be compared with the actual entropy which is

SPETS = S0 + 2πp. Since p < k we see that SPETS < STFD = Smax. It is in this sense that our

states are partially entangled.

The entropy 2πk has another interpretation. In the case that the bulk brane falls behind the

right horizon an observer in QMR cannot notice the state not being thermal, unless one measures

complicated observables that are able to see behind the horizon (see figure 2.11 below, we still

take ϕL < ϕR). In the usual statistical mechanical sense, a coarse-grained observer will believe

he or she is outside a TFD with temperature associated to the right horizon ϕR/4GN = 2πk.

The coarse-grained energy will be correct, ER = E0 + k2/2C but the entropy Sc.g. = S0 + 2πk

will be off with respect to the microscopic one S = S0 + 2πp.

Finally, another measure one can take to characterize the loss of entanglement from a bulk

perspective is the decay of left-right correlators at time t = 0. In the TFD state they are given

by

⟨OL(0)OR(0)⟩TFD = (π/β)2ℓP , (2.80)

where ℓP is the dimension of the probe operators, not related to the one of the operator insertion

that created the PETS. For the PETS we are considering the left-right correlator is difficult to

compute. Nevertheless for ℓP ≫ 1 we can approximate it by a renormalized geodesic distance.

This gives

⟨OLOR⟩PETS =

(
tan

θk
4
tan

θp
4

)ℓP

⟨OLOR⟩TFD,β (2.81)

This prefactor goes from 1 when ℓ is small (since for small backreaction θ ≈ π). For a large

perturbation of the TFD ℓ ≫ C and θ ≈ 0 giving ⟨OLOR⟩PETS → 0. When the left-right

correlator becomes smaller than e−S where S is the entanglement-entropy, one can say the two

QM are not connected by a smooth semiclassical wormhole (firewall instead?). For ℓ ≫ C
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the correlator behaves as
(
tan θk

4
tan θp

4

)ℓP
≈
(
kp
ℓ2

)ℓP
where pk ≈ 4π2C2

β
R
β
L

and therefore the ratio

between the PETS correlator and the TFD decays as exp(−2ℓP log ℓ
C
), controlled by the distance

between horizons.

2.4 Bulk Reconstruction

In this section we will comment about bulk reconstruction of PETS. We will focus on the case

in which the operator Oℓ has dimension ℓ ∼ C ∼ N/βJ , so that the bulk geometry is the one

shown in figure 2.11. We will argue in this section that the regions that can be reconstructed from

either side are as shown in the right panel of figure 2.11. We will give two separate arguments

in support of this proposal, one using entanglement wedge reconstruction [60] and one using a

tensor network representation of the bulk state 16.

2.4.1 Entanglement wedge reconstruction

To put this discussion in context, we first take a step back to a pure higher dimensional AdS

bulk space-time. Pick a region A included in the boundary of AdS. A natural question to ask

is to what extent can we reconstruct bulk operators using CFT operators living on this region

A. Semiclassically, one can apply the BDHM/HKLL prescription to reconstruct local operators

included in the bulk causal wedge CA of A [62–64]. In contrast, it is believed that from operators

in region A one should be able to reconstruct operators inside the entanglement wedge EA of

A, defined as the bulk domain of dependence of the region between A and its extremal RT

surface [60,65,66,53,67]. Since the entanglement wedge can in general be bigger than the causal

wedge, CA ⊂ EA, it is an interesting problem to find natural ways to represent local operators ϕ

such that ϕ lives in the algebra of operators associated to EA but not on C.

In [68] the authors propose a concrete way to construct operators in the entanglement wedge

16In [24] the correlators of the Schwarzian theory were related to local insertions in 2D Liouville between ZZ-
branes. It would be interesting to study bulk reconstruction using the insertion of cross-caps as in [61]. We leave
this for future work.
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HL HR

(a) Naive: CW

HL HR

bacd

(b) Correct: EW

Figure 2.11: Dual geometry to a PETS created by acting with a heavy operator during euclidean
evolution. We indicate the region reconstructed by the left QM by blue and by the right QM by green.
The reconstruction of the red region requires both sides. Naively, each side can only see its causal
wedge (CW). Instead, we argue below that each side can in principle reconstruct the full entanglement
wedge (EW). The right EW includes regions a, b and c.

(see also [69] and [70]). Their construction involves defining the zero-mode of a CFT operator

O under modular flow associated to the modular Hamiltonian KA, defined via ρA = e−KA with

ρA the density matrix associated to region A. The modular zero-mode is given by (a properly

regulated version of)

O0 =

∫
ds eiKAs O e−iKAs. (2.82)

It is argued in [68] that this highly non-local CFT operator, that lives in the algebra of operators

of inside the region A, is dual to an operator that lives on the RT surface

O0 =

∫

RT

dµ(YRT) ϕ(YRT). (2.83)

Here Y labels a point in AdS restricted to the RT surface. In this expression the integral is

over the RT surface associated to A, namely the boundary (in the bulk) of the entanglement

wedge, and ϕ(YRT) is a local bulk operator. The measure dµ(Y ) of the integral over Y is given

by a bulk boundary propagator. We will not need its explicit form here. The proposal gives a

concrete construction of (non-local) bulk operators outside of the causal wedge, at the edge of

the entanglement wedge.

Let us apply this construction to the geometry of figure 2.11. We pick parameters such
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that the left horizon HL is the horizon with minimal dilaton and therefore the extremal surface.

According to the result of our previous section, its area fixes the entanglement between left- and

the right QM systems. In the panel (a) of figure 2.11 we show the causal wedges of QML (region

in red) and QMR (region in blue). A naive intuition would be that observables in QMR can only

reconstruct operators in the green region and operators in QML can only reconstruct operators

in the blue region. The red region is outside the causal wedges and naively would require a

two-sided reconstruction in terms of operators that act in both QML and QMR.

The construction of [68] provides an example showing that the naive expectation is not

correct. Instead one should consider the full entanglement wedges. The entanglement wedge

associated to the left QM coincides with its causal wedge and its shown in blue in figure 2.11.

In this low dimensional setting, the RT surface becomes a point namely

RT surface = left horizon HL. (2.84)

The entanglement wedge of the right QM becomes therefore the green region in panel (b) of

figure 2.11 which includes the interior spatial regions a and c. Therefore we propose that this

picture is the correct one describing the bulk reconstruction in this PETS. We will motivate this

proposal in two ways.

As a first motivation, we can use the construction in [68] as explained above. Our setup has

two advantages. First by construction the Hilbert space factorizes H = HL ⊗HR. Secondly, the

RT surface is a point. Therefore the modular flow zero-mode defined in (2.82) becomes a local

insertion (2.83) located at the left horizon. We can formally define the modular Hamiltonian

associated to the density matrix of the right QM written down in equation (2.91) defined as

ρ
R
= e

−K
R with ρ

R
the density matrix of the PETS given in eqn (2.91). Then the suggestion

of [68] implies that, up to normalizations,

∫
ds e

isK
R O e

−isK
R = ϕO(YHL

) (2.85)
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where O is an operator living in the right QM.

This is an interesting result for the following reason. A naive observer in the right QM would

be led to believe (by doing generic measurements) that she lives in a thermal state and therefore

K
R

naive = β
R
H

R
. We call this the coarse-grained modular hamiltonian. Then by applying the

prescription of [68] she would end up reconstructing an operator in the boundary of the causal

wedge, the right horizon

Onaive
0 =

∫
ds e

isH
R O e

−isH
R = ϕO(YHR

). (2.86)

Of course, upon closer inspection, if the observer is able to do fine-grained measurements and

discover that her density matrix is not thermal, correcting for the modular flow will allow her

to reconstruct up to the left horizon. Even though it is believed that the entanglement wedge

reconstruction gives the right microscopic answer, in practice it may still be extremely hard to

reconstruct operators between the two horizons HL and HR using the right QM alone.

2.4.2 Tensor network representation

The above conclusion is supported by the following tensor network argument, first presented in

a talk at IAS by Almheiri in [71]. In [71] it was shown how the QEC property of AdS/CFT [53]

can be applied to reconstruct the interior of pure SYK black holes. This section highlights and

generalizes his approach and points out its equivalence with the QEC procedure for constructing

the black hole interior developed in the earlier work [29].

Figure 2.12 shows a tensor network representation for the bulk reconstruction map for the

thermo-field double state (left) and the thermal pure state (right) [71]. Let us first explain the

former. We assume that the left and right CFT Hilbert space can be factorized into the tensor

product of a (visible) bulk QFT Hilbert space Hqft
L,R

and (hidden) horizon Hilbert space Hhor
L,R

Hcft
L

= Hqft
L

⊗Hhor
L
, Hcft

R
= Hqft

R
⊗Hhor

R
(2.87)
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bd ba

bd

T† T

ba

T† TP

Figure 2.12: Tensor network representation of the one-sided reconstruction of interior and exterior
operators for the thermo-field double state (left) and the thermal pure state (right). The reconstruction
map of the bulk operators is indicated by the corresponding red arrows. Figure taken from

Each tensor T denotes the embedding of the tensor product into the respective CFT Hilbert

space. The left- and right horizon Hilbert space is assumed to be in unique maximally entan-

gled state between the two sides, and is therefore represented by the lines connecting the two

tensors [71]. For the TFD state, each bulk QFT Hilbert space is reconstructed in terms of the

corresponding CFT. This reconstruction map is indicated by the red arrows. Hence each side

can only reconstruct its causal wedge. In this sense, the thermo-field double state has a firewall:

a one-sided infalling observer (that can only use one-sided observables) cannot pass the horizon

unscathed. This conclusion follows from the AMPS argument: the one-sided states are thermal

mixed states, and do not encode the local entanglement that is required to ensure smoothness

of the horizon.

The situation is different for the thermal pure state. Let us write the thermal pure state as

|Ψ⟩
R

=
L
⟨s |TFD⟩

R
(2.88)

The tensor network for the TFD state is the same as before, but it is now capped off on the

left with a projection onto the left state ⟨s |, indicated by the triangle [71]. In the space-

time diagram the projection is indicated by the ‘end-of-the-world particle, that cuts off the left
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HL HR bad c

T† TT† T

Figure 2.13: Tensor network representation of the partially entangled thermal state.

asymptotic region [51]. Since there is now only one CFT, the bulk reconstruction has to proceed

towards the right. Concretely, the above figure indicates that a bulk QFT operator A inside the

black hole region a with matrix elements with Anm = ⟨n|A|m⟩ acts on the CFT Hilbert space

as (c.f. [29])

A =
∑

m,n

Anm PT† |n⟩⟨m|TP (2.89)

where P denotes the projection onto the state |s⟩. This tensor network is a schematic rep-

resentation of the state-dependent reconstruction map of [28], or equivalently, of the general

construction of the interior operators of [29] based on the application of quantum error correc-

tion technology and also works for partially mixed states. For the thermal pure state, there is

no quantum information theoretic obstruction to reconstruct the black hole interior.

Finally, we turn to the tensor network representation of the partially entangled thermal

states shown in figure 2.13. It is useful to think about PETS as a local operator Oℓ sandwiched

between two thermal field double states with temperature β
L
and β

R
. Since each TFD state is

a tensor product state, this leaves a (partially) entangled state. Each TFD state is represented

by a pair of tensors T and T †. The operator O, viewed as an element of the tensor product of

two QM Hilbert spaces, is a partially entangled state – it is partially transmitting (entangled)

and partially reflecting (product of pure). In the above tensor network, this is indicated by the

partial projections, depicted by the red triangles.

The number of lines between the successive tensors in figure 2.13 indicates the amount of

entanglement across the corresponding interface. As indicated, the left horizon HL supports the
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minimal amount of entanglement, and thus forms the information bottleneck between the left-

and right CFT. Hence the left horizon is the bifurcation between the left- and right entanglement

wedge. The reconstruction of the bulk QFT modes in each region proceeds as indicated by the

right arrows. The rule is that the arrow points in the direction of the nearest interface with the

largest number of lines, since this is the direction that dominates entropically: the bulk modes

are entangled with the largest nearby Hilbert space. This entropic argument underscores the

entanglement wedge reconstruction proposal.

The QEC reconstruction procedure of [29] directly applies to region a, and with minor mod-

ification, to region c. The density matrix of the right system

ρ
R

= e
− 1

2
β
R
HOℓe

−β
L
HOℓe

− 1
2
β
R
H

(2.90)

is only partially mixed: its von Neumann entropy is strictly smaller than the thermal entropy.

The operator insertions in effect restrict ρ to lie within a certain code subspace of the total

Hilbert space. This enables the QEC reconstruction of the interior operators. The density

matrix of the left system is maximally mixed, and the QEC procedure does not work in this

case. The left entanglement wedge is equal to the left causal wedge, the outside region to the

left of the horizon.

2.5 Generalizations

In this section we discuss two generalizations of partially entangled states. In the first subsection,

we introduce a coarse-graining by including an incoherent sum over different operators of the

same scale dimension, all inserted at the same euclidean time instant. Then we briefly discuss

the case of two different operators insertions at different euclidean times.
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2.5.1 Coarse graining and tripartite entanglement

Looking at figure 2.9 we have learned that the entanglement entropy is fixed by (the extremal

entropy S0 plus) the one associated to the smaller horizon (ϕ
L
in the figure). But we could ask

the following question. Which physical quantity is associated to the other horizon where the

dilaton attains a local minimum ϕ
R
> ϕ

L
in the cases for which both horizons are part of the

geometry? If both describe the microscopic von Neumann entropy of the corresponding QM

system, the total combined state can no longer be in a pure state. This observation makes it

natural to wonder if one should also associate an entropy with the operator insertion itself, and

consider the PETS as a tripartite state.

Specifically, instead of the density matrix ρ = e
− 1

2
β
R
HOe−β

L
HOe−

1
2
β
R
H

of the right QM

system, we study instead consider the following class of mixed states

ρ =
K∑

i=1

e
− 1

2
β
R
HOie

−β
L
HOie

− 1
2
β
R
H

=
K∑

i=1

i

i

β
L

1
2
β
R

1
2
β
R

(2.91)

where we sum over K ≫ 1 operators with dimensions ℓi ≈ ℓ constant. Since we assume that

ℓ ∼ N/βJ ≫ 1, the scaling dimension is large and it is natural to expect a correspondingly

large degeneracy K of operators with dimension close to ℓ. The density matrix (2.91) does not

correspond to tracing out the left QM in a pure state in HR ⊗ HL. In particular, the entropy

is not the same for the right-QM or left-QM, SL ̸= SR. One can add a Hilbert space associated

to the operator Hop, with one basis element for each value of the index i = 1, . . . , K. Then the

state can be purified in the tensor product HR ⊗ HL ⊗ Hop. We will comment below on this

tripartite structure of entanglement.

This generalization has a few motivations. First, taking K large makes it more straightfor-

ward to decide which contraction channel dominates in the correlator involved in the computation

of the nth Renyi entropy. Take the entropy for the right CFT. In the large K limit one can see

that the channel in the left panel of figure 2.8 dominates. This is true independently of β
L
and
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Figure 2.14: The euclidean and lorentzian space-time dual to the extremal partially entangled state
(2.5) with β

L
→ ∞ and ℓ = k

R
.

β
R
as long as K is taken to be sufficiently large (but not larger than N). In this way we obtain

SR = S0 + 2πk = S0 +
ϕR

4GN

. (2.92)

Here ϕ
R
is a local minimum of the dilaton, but not necessarily the global minimum. On the

other hand, repeating this analysis for the left QM gives

SL = S0 + 2πp = S0 +
ϕL

4GN

(2.93)

since now the opposite channel dominates. This should be contrasted with the entropy of pure

PETS in which case the entanglement entropy in both cases is equal to the minimum between

SL and SR.

In the type of states discussed in this section we have computed SL and SR. What is the

maximal value of SLR, the entropy of the left- and right system combined? Since the tripartite

state living in the enlarged Hilbert space HR ⊗ HL ⊗ Hop is pure, the entropy of the reduced

density matrix on HR ⊗HL is equal to the entropy of the density matrix on Hop, which in turn

is bounded by the degeneracy of operators with scaling dimensions in the neighborhood of ℓ. We

will call the log of this level density the spectral entropy Sℓ. We will now argue in favor of the

following inequality and equality

SLR ≤ Sℓ with Sℓ = 2πℓ. (2.94)
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To motivate this proposal, consider a PETS with a fixed β
R
and take the limit β

L
→ ∞. In

this limit kL → 0 and the left QM gets frozen to its ground state 17. From the discussion in

section 2.2 it is clear that if one takes kR = ℓ then the end of the world brane sits on top of

the right horizon as shown in figure (2.14). In this special situation, it is natural to associate an

entropy to the object right at the horizon, the massive bulk particle, an entropy that is equal to

the RT entropy. This leads to the formula Sℓ = 2πkR = 2πℓ. A similar argument that motivates

this proposal can be made using the results of [72].

We conjecture that the relation in equation (2.94) is also true for general values of β
R
and

β
L
. It would be indeed interesting to verify this conjecture, that (in the regime of large scaling

dimension ℓ ≃ N/βJ) the SYK model has a universal level density of operators given by (2.94),

from a microscopic viewpoint.

Note that this assignment is consistent with subadditivity and the Araki-Lieb inequality

|SL − SR| ≤ SLR ≤ SL + SR. (2.95)

Subadditivity is satisfied since SL + SR ∼ S0 which is trivially larger than 2πℓ. One can check

that strong subadditivity is also satisfied.

Using the quantities SL, SR and setting SLR = Sℓ = 2πℓ, we can write the length of the

throat (the distance between left- and right horizon) in terms of entropies

coshDH =
S2
LR + S̃2

L + S̃2
R

2S̃LS̃R

, (2.96)

where we defined S̃ = S − S0. Similarly we can write the distance between the trajectory of the

bulk particle and the right horizon as

sinhD2 =
S2
LR + S̃2

L − S̃2
R

2SℓS̃R

(2.97)

17This is a slightly subtle argument since the SYK model has a large number of approximate ground states of
order eS0 ∼ eN . In any case we assume the dynamics of the left QM to freeze to one of its ground states.
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τ1
τ3

τ2

ϕh ∝ q ϕh ∝ p ϕh ∝ k

Figure 2.15: Backreaction by two operator insertions (red dots) with three local horizons (black circles
and black dot). Assuming that p < k, q, the middle horizon is the extremal RT surface that separates
the left- and right entanglement wedges, indicated by the blue and green regions on the right.

Requiring the D2 > 0 implies that SLR is always larger than the geometric mean of SL − SR

and S̃L+ S̃R. This implies the Araki-Lieb inequality, which only becomes an equality in the case

that S̃L = 2πkL = 0 and SR = 2πkR = 2πℓ = Sℓ.

As a final comment one can study bulk reconstruction in for these states, as in the previous

section. Then if ϕL < ϕR the right QM can only reconstruct its causal wedge (outside of the

right horizon), which coincides with its entanglement wedge for these states. If one wants to

reconstruct up to the left horizon using the right QM one needs to add the knowledge of the

degrees of freedom creating the state, associated to the bulk brane. For the system HR ⊗ Hop

the entanglement wedge reaches the left horizon past the right interior, just like for the pure

PETS considered above.

2.5.2 Mulitple operators

In this section we will generalize the previous analysis of PETS to multiple insertions. For

simplicity we will begin with two insertions. Generalization to more operators is straight-forward.

We show the Euclidean part that produces the state in figure 2.15. To create this state

we insert two operators of dimensions ℓ1 at τ1 and ℓ2 at τ1 + τ3 and we define τ2 such that

τ1 + τ2 + τ3 = β/2. To each propagator for time τ1, τ2 or τ3 we associate a momentum (horizon

dilaton) τ1 → k, τ2 → q and τ3 → p as shown in figure 2.15.

These dilaton values p, k, q are fixed by the saddle point equations describing the backreaction

of JT gravity as explained in section 2.2. Repeating the analysis of the previous sections, or
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equivalently applying the holographic prescription, we can compute the entanglement entropy

of this state by

S = S0 + 2π min(p, q, k). (2.98)

Depending on the choice of parameters different choices of horizon dilaton dominates. For the

case of a single insertion this choice was simply determined by whether τ < β/4 or τ > β/4. In

the two operator case we show a phase diagram as a function of time insertions τ1 vs τ2 in figure

2.16. This has an interesting behavior in terms of the ‘tricritical’ point that divides the three

different regions. The location of the tricritical point can be found in terms of a transcendental

equation derived from the saddle point relations, which should be solved numerically. In figure

2.16 we show the cases ℓ → 0 (left panel) and ℓ → ∞ (right panel) which can be analytically

found. The phase diagram for intermediate ℓ interpolates between these extreme cases.

We can also consider ‘multi’-partite states for which one averages over the microscopic choice

of operators possible such that their dimensions are approximately ℓ1 and ℓ2. Following section

2.5.1 we imagine having a large number K of operators with dimensions ℓi ≈ ℓ for i = 1, . . . , K.

In a large K limit this controls the factorization channel that dominates the Renyi entropy

calculation and gives

SL = S0 + 2πq, SR = S0 + 2πk. (2.99)

We can compare these quantities with the entanglement entropy by looking at figure 2.16.

Another interesting feature of this kind of composite PETS is the following. Let us choose

parameters such that the global minimum of the dilaton is located at the middle horizon, so that

the entanglement entropy equals S = S0 + 2πp. We choose ℓ large enough such that the two

bulk particles are hidden behind the left and right horizons. Then, as opposed to figure 2.11, the

extremal RT surface is outside the right and left causal wedges and has no overlap with it. This

situation is shown on the right in figure 2.15. Still, following the discussion in section 2.4, left-

or right observers with sufficient detailed understanding of the microscopic wave function would
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Figure 2.16: Left: Phase diagram near ℓ = 0. T denotes the ‘tri-critical’ point. Right: Phase diagram
near ℓ = ∞. We see that the tri-critical point moves towards the origin.

be able to perform a one-sided bulk reconstruction of their full entanglement wedge, indicated

by the green and blue regions in figure 2.15.

2.6 Appendix A : A Complete Basis of Partially Entan-

gled States

In this Appendix we discuss a general class of partially entangled thermal states in SYK whose

one-sided correlation functions coincide with their thermal expectation value while the two-side

correlation functions and entanglement entropy can be different.

Consider 4N Majorana variables ψi spanning a 22N dimensonal Hilbert space. Introduce the

basis of 22N states |s⟩ defined by

(
ψ2k−1 − iskψ

2k
)
|s⟩ = 0 ⇔ Sk|s⟩ ≡ 2iψ2k−1ψ2k|s⟩ = sk|s⟩ . (2.100)

We partition the 4N Majorana fermions into two groups of 2N Majorana fermions {ψL,R}, from

which, two sub-Hilbert space HL,R of dimension 2N can be built. We consider a class of states

|Ψ⟩ = |s; β
L
, β

R
⟩ = e

− 1
2
β
L
H

L ⊗ e
− 1

2
β
R
H

R |s⟩ , (2.101)

where H
L,R are Hamiltonian of the same form acting on H

L,R respectively. By choosing different
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partitions, we can obtain a class of states. with different amount of entanglement between H
L

and H
R
. The thermo-field double is the state for which everything is transmitted and for which

all sk = 1. There are 2N other states with the same amount of entanglement as the TFD state.

For generic states (2.101), K fermion pairs are reflected back and N − K fermion pairs are

transmitted from the left to the right system. These states are all partially entangled thermal

states with entanglement entropy between zero (product states) and the thermal entropy (TFD

type states).

We denote the operator that flips the sign of ψk by σk. Note that σkHL,Rσ
−1
k = H

L,R after

averaging over the random SYK couplings. The inner products of these PETS do not depend

on the partition

⟨Ψ|Ψ⟩ = 2−2N
∑

k

⟨s |σ−1
k e

− 1
2
β
L
H

L
− 1

2
β
R
H

Rσkσ
−1
k e

− 1
2
β
L
H

L
− 1

2
β
R
H

Rσk|s⟩

= Tr[e
−β

L
H

L ⊗ e
−β

R
H

R ] = Z(βL)Z(βR
) . (2.102)

The one-sided two-point correlators are

Gdiag(τ1, τ2) ≡ ⟨Ψ|ψi(τ1)ψ
i(τ2)|Ψ⟩

⟨Ψ|Ψ⟩ = GβL,R
(τ1 − τ2), if ψi ∈ {ψ

L,R} , (2.103)

which is the same as the thermal expectation value of the temperature associated to the subsys-

tem and does not depend on the details of the partition. The temperature can be different in

general. We can also compute off-diagonal two-point functions. Only the combination skψ
2k−1ψ2k

has nontrivial expectation value at leading order. Using that it is flip invariant, we compute

Goff(τ1, τ2) ≡ sk
⟨Ψ|ψ2k−1(τ1)ψ

2k(τ2)|Ψ⟩
⟨Ψ|Ψ⟩ = −2iGβL

(τ1+
1
2
β

L
)GβR

(τ2+
1
2
β

R
) . (2.104)

If ψ2k−1, ψ2k belong to the same partition, the correlation function can be interpreted as one-sided

off-diagonal correlation function. If they belong to different partition, the correlation function

can be interpreted as a two-side correlation function and ψ2k−1 is the counterpart of ψ2k at the
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other side.

2.7 Appendix B : Bulk Kinematics and Dynamics

2.7.1 Kinematics

We will summarize the coordinate systems we use to describe AdS2. It is useful to work in

embedding space Y = (Y −1, Y 0, Y 1). The metric is ds2 = ηABdY
AdY B with the inner prod-

uct Y1 · Y2 = ηABY
A
1 Y

B
2 . Then by restricting to Y · Y = −1 we obtain Euclidean AdS2 if

η = diag(−1, 1, 1) or Lorenzian AdS2 if η = diag(−1,−1, 1). For definiteness we will focus in

Euclidean signature.

A first set of convenient coordinates are (ρ, τ) such that

Y = ±(cosh ρ, sinh ρ sin τ, sinh ρ cos τ) (2.105)

In these coordinates the metric of AdS2 is

ds2 = dρ2 + sinh2 ρ dτ 2. (2.106)

This covers the Rindler patch when analytically continued to Lorenzian signature τ → itR.

Another choice of coordinates parametrizes the hyperboloid as

Y = ±
(
1 + x2 + y2

1− x2 − y2
,

2x

1− x2 − y2
,

2y

1− x2 − y2

)
(2.107)

This gives polar coordinate for the plane (x, y) = (r cos θ, r sin θ). The metric is

ds2 =
dx2 + dy2

1− x2 − y2
(2.108)

Then AdS2 is mapped to the Poincare disk x2+y2 < 1. To compare with the Rindler parametriza-
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tion one can take θ = τ and r ≡
√
x2 + y2 = tanh ρ/2.

Finally one can define coordinates giving the Poincare patch of AdS as

Y = ±
(
1 + t2 + z2

2z
,
t

z
,
1− t2 − z2

2z

)
(2.109)

this gives the metric ds2 = z−2(dt2 + dz2).

In any coordinate system, geodesic distance between two points can be computed as coshD12 =

−Y1 · Y2. This can be rewritten in any of the coordinates above. Geodesics in this geometry are

parametrized by a ray X in embedding space and is given by Y such that

X · Y = 0. (2.110)

2.7.2 Dynamics

We summarize the classical solutions of JT gravity in terms of embedding coordinates following

and using the notation of [13]. It is then straightforward to translate results to any coordinate

system described in the previous section according to convenience. Since the effective coupling

is proportional to the combination ϕb/GN involving the boundary dilaton we will take a dilaton

normalization such that 8πGN = 1 without loss of generality (since in 2D GN is dimensionless).

The dilaton in regions without matter behaves as [12] [13] [15]

ϕ(Y ) = Z · Y, for Y 2 = −1 (2.111)

where Z is an arbitrary vector in embedding space. Natural boundary conditions for JT gravity

giving boundary gravitons described by the Schwarzian action fixes metric and dilaton. Then

the boundary is described by Z · Y = ϕb = ϕr/ϵ, where ϵ denotes the cut-off. This describes a

circle (set of points at fixed geodesic distance from a center) in AdS2. The center of this circle

coincides to the horizon, where the value of the dilaton is minimal. It is easy to find this location
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as

Yh = (−Z · Z)−1/2Z, ϕh = (−Z · Z)1/2. (2.112)

To summarize, the sourceless solution is fixed by a three-component vector in embedding space

R
2,1. Its direction fixed the location of the horizon and its magnitude fixes the horizon dilaton.

Moreover for a fixed Z the boundary curve has length β/ϵ (where ϵ denotes the cut-off) with

inverse temperature β related to the magnitude of Z (or equivalently ϕh) as ϕh = 2π
β
ϕr. In this

units, the Bekenstein-Hawking entropy of this geometry is S = 2πϕh. Finally, the ADM energy

is E = ϕ2
h/(2ϕr). By adding a topological term to the action

∫
d2x ϕ0R, with ϕ0 constant, one

can account for a possible zero-point entropy S0.

These boundary trajectories of constant Z · Y correspond to circles in the Poincare disk

coordinates (x, y). Therefore it is natural to draw the backreacted boundary in the Poincare

disk coordinates such as figure 2.3 or 2.6 (nevertheless these coordinates distort the size and

location of the origin with respect to the flat (x, y) plane).

From the 2D Liouville perspective of the Schwarzian theory [24] (see [25] for more details)

the horizon dilaton ϕh corresponds to the momentum k = ϕh associated to a primary state of

Liouville with energy E = k2/(2C), with C = ϕr in units with 8πGN = 1. This is a natural

variable to label intermediate states.

Using these identifications and coordinates defined above it is a straightforward exercise to

get the equations and relations presented in section 2.2.

The SL(2, R) charge of a given solution is also fixed by the vector Z as Q = 2Z [13]. Then

one can interpret the boundary trajectory as a particle in a magnetic field [54]. More importantly

this allows to add matter in a straightforward way. Within the JT approximation of free matter

bulk particles propagate along geodesics Qm · Y = 0 with the space-like vector Qm giving the

SL(2, R) charge of the particle, normalized by the mass square Q2
m = µ2. Then one can glue

bulk solutions labeled by Z = QL/2 and Z = QR/2 along the particle geodesic with the singlet

constrain

QL +QR +Qm = 0. (2.113)
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This charge conservation constrain has the nice property of making the dilaton ϕ continuous

along the matter geodesic. But the dilaton slope jumps proportional to its mass

∂ϕ

∂s

∣∣∣
L
− ∂ϕ

∂s

∣∣∣
R
= 2µ, (2.114)

in a particle’s rest frame where Qmatter = (0, 0, µ). In this notation, the mass of the particle

µ = ℓ (for large ℓ), the dimension of the dual operator. s is a geodesic length in the direction

perpendicular to the particle’s geodesic. This is consistent with the equations of motion that

come from varying the metric which relates the matter stress tensor with the second derivative

of the dilaton.
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Chapter 3

Classifying Boundary Conditions in JT

Gravity

In recent years, two-dimensional Jackiw-Teitelboim (JT) gravity has emerged as an important

toy model for quantum gravity and near-horizon physics [19, 18, 10, 12, 14, 56, 13, 15, 33]. As we

have discussed in the introduction, the simplicity of this model allows for a detailed analytic

analysis, which covers not only perturbative features of gravity [13], but also non-perturbative

ones, such as the sum over topologies [33]. However, most of these discussions focused on a

particular set of boundary conditions that fix the asymptotic value of the dilaton and metric.

Such boundary conditions can be taken to be part of the definition of the theory, and one might

wonder whether there are other boundary conditions that one can impose and explore what new

features they exhibit.

The analysis of different boundary conditions in gravity is, of course, not new. In the past,

it has been the subject of various studies [73, 74]. Nevertheless, the focus there was mostly

on gravity theories in three or more space-time dimensions where the full quantization of the

theory is not well understood. The purpose of this chapter is to understand the role of boundary

conditions in two-dimensional gravity and, in particular, in JT gravity, where the quantization

of the theory is possible at the level of the path integral. The study of these different boundary
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Figure 3.1: Summary of the boundary conditions considered in this chapter. On the left column,
one can see the boundary conditions for fixed dilaton ϕ (D) on the boundary, whereas the right
column is for fixedK, i.e., Neumann boundary conditions on the dilaton (N). This is indicated by
the first letter of the two letters in brackets. The rows are analogous, but then for the boundary
metric guu and is specified in the second letter in brackets.

conditions can reveal various aspects of the theory that are hard, or even impossible, to study

in the (by now standard) Dirichlet boundary conditions for the metric and dilaton.

As we will explain, JT gravity admits four inequivalent boundary conditions obtained by

fixing combinations between the dilaton ϕ and boundary metric guu or their canonical momenta,

schematically given by the extrinsic curvature K and the derivative of the dilaton ∂nϕ normal

to the boundary, respectively. The properties and features of these boundary conditions are

summarized in figure 3.1.

To exemplify and compare many of these features, we start by reviewing past results in the

standard Dirichlet-Dirichlet (DD) boundary condition where the dilaton ϕ and the boundary

metric guu are fixed, when the cosmological constant in JT gravity is set to be negative. In the
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limit in which the value of the dilaton and the proper length of the boundary is large (the so-called

Schwarzian limit), such boundary conditions correspond to the thermal canonical ensemble for

the near-extremal black holes whose dynamics can be captured by JT gravity [13,75,59,76–79].

1 Consequently, one might wonder what role other boundary conditions in JT gravity play when

describing the near-horizon physics of near-extremal black holes. The other boundary condition

whose meaning is clear fixes ∂nϕ instead of guu (DN). Such a boundary condition corresponds to

the micro-canonical ensemble for the near-extremal black holes: instead of fixing the temperature

of the system (which is the case when fixing guu) we fix the ADM mass of the black hole (which

in dilaton gravity is given by ∂nϕ). When setting K instead of ϕ (ND or NN), the black hole

interpretation is somewhat unclear. In such a case, we find that the dilaton solution cannot

be fully fixed.2 Therefore, the classical solutions do not exhibit the presence of a horizon and,

consequently, such boundary conditions do not have any thermodynamical interpretation.

When accounting for corrections from manifolds with other topologies, the partition function

with the standard boundary conditions is reproduced by the insertion of the “partition function”

operator Tre−βH in a specific double-scaled matrix integral which averages over the “Hamiltoni-

ans” H [33,80,81]. Because of this interpretation as an ensemble average, or equivalently, due to

the contribution from geometries that connect different boundaries, the partition function of the

gravitational theory does not factorize when studying configurations with multiple boundaries.

To improve the dictionary between gravity and its matrix integral “dual”, we should determine

what operator insertion on the matrix integral side corresponds to studying the three other pre-

viously mentioned boundary conditions in JT gravity. For instance, if instead of fixing guu, we

fix ∂nϕ, we find that the matrix operator insertion required for considering such boundaries is

equivalent to the energy-eigenbranes (i.e. for n boundaries, we fix n eigenvalues of the random

matrix H to the ADM masses specified by ∂nϕ on each border) recently studied in [82]. Once

1Such black holes have their horizon located where the value of the dilaton (which captures the volume of the
transverse space) is minimized.

2As we shall explain, the classical dilaton solution is fixed up to three undetermined constants. For DD or
DN boundary conditions, these constants are fixed by the fact that ϕ is fixed on the boundary. For ND and NN
boundary conditions, all three constants cannot be fixed.
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again, we find that the partition function of the theory with such boundary conditions does not

factorize.

Since both the DD and DN boundary conditions exhibit this feature, we can consequently

ask whether there are other boundary conditions in JT gravity for which we instead have a

factorizable multi-boundary partition function. As we shall explain shortly, when appropriately

fixing K (instead of the boundary value of the dilaton ϕ), we will show that the multi-boundary

partition function factorizes. Specifically, when setting K > 1, we find that the multi-boundary

partition function only receives contributions from geometries with disk topology and, therefore,

factorizes.3 In the context of the baby universe Hilbert space discussed in [86–89], such bound-

aries can naturally be called α-eigenbranes; i.e. states that have a clear geometric meaning, such

as the Hartle-Hawking state, are eigenfunctions of the operators corresponding to such bound-

ary insertions. This should be contrasted with the case of the DD or DN boundary conditions

for which the α-states are an infinite linear combination of geometric states which can have an

arbitrary number of boundaries. As opposed to K > 1, for K < 1, we find that the parti-

tion function receives no contribution from disk topologies, and only higher genus or connected

multi-boundary geometries contribute.4

Another related direction that we study concerns the definition and quantization at finite cut-

off. For the standard Dirichlet-Dirichlet boundary condition the quantization of the theory with

finite proper length and dilaton value was studied in [90, 91]. However, the exact quantization

of the theory for all values of the proper length remains ambiguous: in [90] non-perturbative

corrections in the proper length to the partition function could not be fixed, while in [91] it

was found that for small enough proper lengths, there is no effective theory which can describe

the dynamics of the boundary. Furthermore, neither of these works fully accounted for the

3When coupling the theory to matter (which we can take to couple solely to the metric, and not to the
dilaton), our conclusions regarding the factorization of the multi-boundary partition functions for |K| > 1 remains
unchanged. In the context of black holes and in the presence of matter, the existence of Euclidean wormholes
that connect different boundaries has been crucial to reproducing the Page curve predicted by requirements of
unitarity [83–85]. Nonetheless, since the ND or NN boundary conditions do not have solutions that contain a
clear horizon, the interpretation of the gravitational theory in terms of black hole physics is now unclear.

4Throughout this chapter, we shall focus on the case with K > 0.
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contributions from higher genus geometries. As we shall explain shortly, due to the rigidity of

two-dimensional hyperbolic space, by fixing K instead of ϕ, the theory is easy to define at finite

cutoff, and its partition function can be computed in a genus expansion.

JT gravity, this time with a positive cosmological constant, has recently been used as a

cosmological toy model [92–94]. When computing expectation values of operators within this

setting, one could use the path integral in the gravitational theory to prepare the density matrix

of the system [92, 84, 94, 95]. Thus, one is typically interested in computing the path integral

for both connected and disconnected geometries in the presence of two or more boundaries.

If one fixes the standard Dirichlet-Dirichlet boundary condition, the contribution of connected

geometries, some of which are called bra-ket wormholes, resolves an inconsistency in the entropy

of the theory when coupled to matter [84, 94]. Since the connected geometries play such an

important role, one can ask, just like in the case of AdS2, whether there exist boundary conditions

which disallow the existence of such connected manifolds with multiple boundaries. Once again,

we find that by appropriately fixing K (this time, K < 1) the path integral which prepares

the density matrix in the gravitational theory does not receive contributions from connected

geometries, and, in particular, from the bra-ket wormhole geometries. Such boundary conditions,

where one fixes guu in addition to K, are in fact, quite natural in higher-dimensional models of

cosmology [96]; in such a case, one fixes the trace of the extrinsic curvature K and the conformal

metric. K can then be taken to be a clock (called York time) that parametrises the slices in the

bulk.

3.1 A classification of boundary conditions

We reviewed the results for the Dirichlet-Dirichlet boundary conditions in Section 1.2, we will

now consider JT gravity with alternative boundary conditions. For each case, we will conduct

both a classical and quantum analysis similar to the Dirichlet-Dirichlet case, briefly discussed

above. However, as opposed to the Dirichlet case, for several boundary conditions that we study,
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we will easily be able to go beyond the nearly-AdS2 limit, to a finite patch of AdS2.

To start our analysis, we first review the variation of the bulk action (see also appendix

3.6 for details) and map out all different boundary conditions consistent with a well-defined

variational problem together with the appropriate boundary terms. We point out that there are

two different sets of conjugate variables that are natural to consider, giving, in total 6 different

type of boundary conditions, of which only 4 are physically inequivalent. In subsequent sections

we will then discuss these boundary conditions (excluding the standard Dirichlet case) in more

detail, not only classically, but also quantum mechanically.

The bulk action for JT gravity was given in (1.14) and in appendix 3.6 we review its variation.

The variation of this bulk term is given by,

δSbulk = −EOM−
∫

∂M
du

√
h ([(∂nϕ)h

µν − ϕKµν ] δhµν − 2ϕδK) , (3.1)

where EOM refers to the equations of motion in (1.15), hµν is the induced boundary metric and

K is the trace of the extrinsic curvature. We can reduce to two dimensions Kµν = Khµν and

express the boundary metric in terms of the variable guu

guu = hµνt
µtν ⇔ ds2 = hµνdx

µdxν = guudu
2 , (3.2)

with tµ a tangent vector to the boundary of M. This results in

δSbulk = −EOM−
∫

∂M
du ([2 (∂nϕ− ϕK)] δ (

√
guu)− [2ϕ

√
guu] δK) . (3.3)

From this we immediately recognize the following canonically conjugate pairs

ϕ
√
guu ↔ K ,

√
guu ↔ ∂nϕ− ϕK , (3.4)
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Our convention is to denote the left side of the pairs in (3.4) to be associated to the coordinates

while the right side are the canonical momenta. Fixing the coordinate means a Dirichlet bound-

ary condition, which we will abbreviate with D, whereas for fixing the canonical momentum, we

will use N to denote a Neumann boundary condition. As we will discuss below the choice of

canonical conjugates pairs is not unique and it is interesting to study the spectrum of choices.

At the level of the path integral it is natural to study the case in which one fixes on the

boundary either one of the two sides of the two canonical pairs in (3.4). This allows us to study

the following four possible boundary conditions and the boundary terms required in order for

the problem to have a well defined variational principle:

DD : Fixed ϕ and guu

This is the standard JT gravity theory with Dirichlet boundary conditions. In this case, we

require the addition of a boundary term 5

SDD = Sbulk − 2

∫
du

√
guu [ϕK +M1(u)ϕ+M2(u)] . (3.5)

Here, M1(u) and M2(u) are arbitrarily fixed functions that do not affect the equation of motion.

Thus, they serve as possible counter-terms to be added to the Euclidean path integral. In the

usual JT gravity literature it is customary to take these to be M1(u) = −1 and M2(u) = 0

which fixes the vacuum energy of the equivalent boundary Schwarzian theory to be 0 and renders

the on-shell action finite.

5Below, when writing SDD/ND/DN/NN we are not including the topological term in (1.12). The variational
problem for this term will be discussed at the end of this section.
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ND : Fixed K and guu

In this case one does not require an additional boundary terms. possible counterterms which do

not affect the equations of motion are given by

SND = Sbulk − 2

∫
du

√
guu (KM1(u) +M2(u)) . (3.6)

When both M1(u) = 0 and M2(u) = 0 the equivalent sl(2,R) gauge theory is purely topological.

NN : Fixed K and (∂nϕ− ϕK)

In this case the additional boundary term is

SNN = Sbulk + 2

∫
du

√
guu (∂nϕ− ϕK) . (3.7)

If we again specialise to (∂nϕ− ϕK) constant, the boundary action is proportional to the length

of the boundary. However, since we are not fixing the boundary metric
√
guu, if we do choose

(∂nϕ− ϕK) and K(u) to not be a constant (but rather depend on u) we have to specify how

to choose the parametrization of the boundary time. One can for instance choose to fix a

boundary diffeomorphism gauge in which
√
guu = constant and u → [0, 2π], without fixing the

diffeomorphism invariant proper length. In such a case the boundary observer specifies the 2π

periodic functions (∂nϕ− ϕK) and K(u).6

6Alternatively, if we do not fix a boundary diffeomorphism gauge we can specify the values of K(u) and
(∂nϕ− ϕK) (u) according to the boundary proper length from a given boundary point. While this makes sense
in Lorentzian signature, in Euclidean signature where the boundary is periodic, the proper boundary length is no
longer fixed and therefore we do not know the periodicity of the functionsK(u) and (∂nϕ− ϕK) (u). Furthermore,
if we do not choose to fix boundary diffeomorphisms we see that there is no consistent diffeomorphism invariant
counter-term that could be added to the action.
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DN ∗ : Fixed ϕ
√
guu and (∂nϕ− ϕK)

In this case, both the boundary terms need to be added

SDN = Sbulk + 2

∫ √
guu (∂nϕ− 2ϕK + ϕM1(u) + (∂nϕ− ϕK)ϕM2(u)) . (3.8)

where M1(u) and M2(u) represent the possible counter-term whose variation vanishes.

An alternate set of conjugate variables can be obtained by rewriting (3.3) as,

δSbulk =

∫
du ([2ϕ] δ (

√
guuK)− [2 (∂nϕ)] δ (

√
guu)) . (3.9)

With this choice, the pair of canonical conjugates pairs are given by

ϕ ↔ √
guuK ,

√
guu ↔ ∂nϕ . (3.10)

Using this pair of canoncial variables two alternative boundary conditions follow:

NN∗: Fixed
√
guuK and (∂nϕ)

In this case the additional boundary term is

SNN∗ = Sbulk + 2

∫
du

√
guu [∂nϕ+M1(u)K + (K∂nϕ)M2(u)] . (3.11)

Again, M1(u) and M2(u) represent the possible counter-terms.
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DN: Fixed ϕ and (∂nϕ)

In this case, two boundary terms need to be added in order to cancel the variation in (3.9)

SDN∗ = Sbulk + 2

∫
du

√
guu (∂nϕ− ϕK) . (3.12)

As in the case of NN boundary conditions there are no possible counter-terms which are invariant

under boundary diffeomorphisms.

We can also analyze the variation of the topological term in (1.12). On the one hand, because

the bulk plus boundary terms in the action is invariant under metric fluctuations (since the

action solely depends on the Euler characteristic of the manifold), it is clear that the variation

should vanish regardless of the boundary conditions that we imposed. On the other hand,

explicitly checking that the boundary term of the topological term arises from consistency with

the variational principle serves as a non-trivial consistency check. Following 3.3, the variation of

the bulk topological term is

δStop, bulk = −EOM+

∫

∂M
du [2ϕ0Kδ (

√
guu) + 2ϕ0

√
guuδK] . (3.13)

With the addition of the boundary topological term the variation of Stop always vanishes regard-

less of whether we set δK = 0, δ
√
guu = 0 or δ(

√
guuK) = 0.

In summary, we have listed 6 boundary conditions for JT gravity, which, in fact are also valid

for any other dilaton gravity. However, since we only have two pairs of conjugate variables, it

suffices to study four of them or three actually as we will not consider the standard Dirichlet

case here. Below we will therefore consider the boundary conditions ND, NN and DN in more

detail. We will study the associated classical solutions space, the quantum theory, coupling to

matter and comment on the physical aspects of the boundary conditions and what properties of

JT gravity they probe.
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3.2 Fixing K and guu: towards factorization

The fixed K boundary conditions have a less clear interpretation from the “boundary dual”

point of view.7 Still, JT gravity with these boundary conditions is a rich theory that allows us,

as we will show, to turn on (leading to factorization) or off (leading to an ensemble average)

the sum over topologies depending on the value of the extrinsic curvature. As we shall explain

below, in the particular case when K = 0, the partition function of JT gravity is given by the

Weil-Peterson volumes whose recursion relation was determined by Mirzakhani [37, 97]. Thus,

the results for the partition function with boundaries given by different values of K and guu can

be viewed as a generalization of the results previously obtained in the mathematical literature.

3.2.1 Classics

Before we begin our classical analysis, we emphasize that, as opposed to the Dirichlet boundary

conditions reviewed in section 3.1, or to the micro-canonical boundary conditions which we will

study in section 3.4 [33], the fixed K and guu boundary conditions allow for the existence of

richer on-shell higher topology or multi-boundary solutions.8

With this in mind, we start by studying solutions when K ≡ k is fixed to a constant. To

understand such solutions we provide three different perspectives. The first is purely geometric

and reviews the classification of constant K curves on the Poincaré plane or disk and on its

quotients. The second explicitly solves for fixed K curves by working in the Fefferman-Graham

gauge for the metric. Using this metric, it becomes clear why fixing |k| > 1 solely isolates

disk topologies while |k| < 1 isolates topologies with a higher genus or a higher number of

boundaries. Finally, in our third approach we will again solve for curves of constant K, this

time reformulating JT gravity as a PSL(2,R) BF theory. This latter perspective allows us to

7Such boundary conditions are however very natural to consider in the context of cosmology, where one can
take K to be a clock (called York time) that parametrises slices in the bulk. In the current context, however, we
have a time-like boundary and we cannot use this intuition.

8This is because in the previously studied cases the problem with the existence of such solutions stemmed
from imposing a boundary value of the dilaton and from imposing the dilaton equation of motion in the bulk.
In this section, since we do not fix the boundary value of the dilaton, we can always study the trivial (but not
necessarily unique) solution ϕ(x) = 0.
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study the case with varying K ≡ k(u). In particular, we show that such solutions can in turn

be mapped to solutions of the Hill equation whose classification has been extensively studied.

A geometric construction

Before explicitly solving for curves of constant K = k on the hyperbolic plane, it is useful to

develop a geometric intuition that will be made concrete through the explicit computations in

the next subsection. Just as in flatspace, curves with constant k are circles in the Poincaré

half-plane or disk. The circles in the Poincaré half-plane can be classified by their relation to

the axis that bounds the half-plane (or on the Poincaré disk by their relation to the boundary

of the disk):

• Geodesics (k = 0). As is well known the geodesics of hyperbolic space are the semi-circles

perpendicular to the axis (or the boundary circle of the Poincaré disk).

• Hypercycles (|k| < 1) are the circles that intersect the boundary at exactly two points.

An alternative definition that we will make use of is that it is the locus whose points have

the same orthogonal distance from a given geodesic.

• Horocycles (|k| = 1) are the circles which are tangent to the boundary of the Poincaré

half-plane or disk.

• Curves of interest. (|k| > 1) are the circles which are fully contained in the Poincaré

half-plane or in the disk.

We show examples of such curves in figure 3.2. We will for now focus on k ≥ 0. Since curves

with k < 1 always intersect the boundary of hyperbolic space we can therefore never have a disk

geometry whose boundary has k < 1 at every point. Therefore, solutions with disk topology

only exist for k > 1.

We now explain why a stronger statement also follows from the above classification: when

0 ≤ k < 1, solely higher topology or multi-boundary geometries contribute, while if k > 1 only
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k = 0

k = 1

|k| < 1

|k| > 1

|k| ≤ 1

k = 0

|k| > 1 k = 1

Figure 3.2: Figure showing the different curves of constant k in the Poincaré plane and disk.
The sign of k is dependent on the direction of the normal vector perpendicular to the boundary;
for instance, for |k| > 1, k > 1 is the boundary of the compact space (the disk), and k < −1 is
the boundary of the non-compact space (the outside of the disk). In this chapter, we will focus
on k > 0 to simplify our higher genus analysis.

the disk topology contributes. To do this, we first note that in order to construct higher genus

or multi-boundary surfaces we need to glue a bordered higher genus Riemann surface whose

boundaries are all closed geodesics to “trumpets”. Such “trumpets” on one side have a closed

geodesic, while on the other they have the fixed K and guu boundary that we are interested in.

Thus, in order to understand the higher genera or multi-boundary case we need to study the

possible boundaries that can be present on one end of the trumpet. To construct the trumpet,

we consider the Z quotient of hyperbolic space by identifying two geodesics (for instance G1

and G2 in Figure 3.3). Then, the trumpet is identified as the (top) patch separated by the

three geodesics G0, G1, and G2, where G0 is perpendicular to both G1 and G2. Thus, on the

trumpet, G0 is the closed geodesic whose length, b, is the distance between the geodesics G1 and

G2. To construct the other boundary of the trumpet, we need to consider a fixed K = k curve

that intersects G1 and G2 at an equal distance from the intersection points between these two

geodesics and G0 (the red points in figure 3.3). Furthermore, in order for the fixed K = k curve

to be smooth when taking the Z2 quotient, the curve of fixed K = k should be perpendicular
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0 ≤ k ≤ 1

G0, b

G1

G2

Figure 3.3: Figure showing a region of a trumpet which ends on a single geodesic boundary
G0 of length b. The red curves represent geodesics on the Poincaré disk and the two geodesics
G1 and G2 which are dotted are identified (G1 = G2). In order to be able to identify such two
geodesics we require them to be perpendicular to the closed geodesic containing the segment of
length b. To construct boundaries with constant K in the same homotopy class as the geodesic
boundary with length b we construct hypercycles (shown in green) which, by definition, intersect
the two geodesics G1 and G2 at equal distances. Note that because the hypercycles need to
pass through the points where G0 intersects the boundary, the hypercycles can never be fully
contained on the Poincaré disk and always have k < 1.

to the two geodesics. Consequently, we are precisely replicating the definition of a hypercycle

which we have reviewed earlier, where this hypercycle has a constant distance from the geodesic

G0. Therefore, only hypercycles (with k < 1) can serve as the other boundary of the trumpet

and, consequently, higher genus or multi-boundary surfaces can all only have boundaries with

k < 1. Next, we explicitly solve for such solutions and show that fixing k uniquely fixes the

proper length of the boundary.

Finding the boundary curve

Let us focus on Euclidean signature. To fix K = k in the usual Poincaré metric where we cut

out an arbitary shape parametrized by (t(u), z(u)) is non-trivial, since the expression for K is

rather cumbersome. We would therefore like to study the fixed K boundary conditions with a

different metric. A convenient metric, which has a more manageable expression for K and that
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solves R + 2 = 0 is one in Fefferman-Graham gauge

ds2 =
dr2

r2
+

(
r − b(u)

r

)2

du2. (3.14)

This is a solution for any (smooth) b(u). We will normalise the coordinate u such that u ∼ u+2π

and hence, b(u) needs to be 2π periodic. However it is important to note that not every b(u)

gives rise to a smooth geometry.

For this metric, the extrinsic curvature on constant r slices and their length is,

K(u) ≡ k(u) =
1 + K̃(u)

1− K̃(u)
, K̃(u) =

b(u)

r2
, L =

∫ 2π

0

du

∣∣∣∣r −
b(u)

r

∣∣∣∣ (3.15)

where we have defined K̃ for later convenience. From this, the advantage of using Fefferman-

Graham gauge for these boundary conditions is also clear, since K(u) is so simple. In order to

gain some intuition for this metric, let us again first focus on u-independent metrics: k(u) = k

and so b(u) ≡ b0.
9 The time-dependent solutions are more intricate to consider and will be done

below.

For b0 = 0 this metric is the Poincaré patch of AdS2, with (non-compact) boundary at r = ∞

and the Poincaré horizon at r = 0. When b0 > 0 the metric has a conical singularity at r =
√
b0.

This singularity is avoided when we pick b0 = 1/4. For a smooth geometry, the value of b0 is

thus fixed,10 and take r > 1/2 as our space-time with the boundary located at r = ∞.11

In the case of b0 < 0, the metric is completely smooth. In fact, this geometry has two

boundaries, one at r = 0 and another at r = ∞. Furthermore, the thermal circle takes a

minimum value for guu at r =
√
−b0. This is precisely the double trumpet with the size of the

9In embedding coordinates Yi the geometry is given by

Y0 =

√
b0
2r

(
1 +

r2

b0

)
, Y1 =

1

2
√
b0

(
r − b0

r

)
cos(2

√
b0u), Y2 =

1

2
√
b0

(
r − b0

r

)
sin(2

√
b0u). (3.16)

10If we allow a different periodicity for u, say u ∼ u+ β, b0 will be fixed to π2/β2.
11One could also take r < 1/2, but that patch can be mapped to the r > 1/2 patch through the diffeomorphism

r → 1
4r .
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neck set by b0. One can readily check that K = 0 at the neck. Finally, let us make the following

important remark. The geometries with b0 < 0 are all diffeomorphic to the b0 = −1 solution as

can be seen by rescaling r and u as r →
√
−b0r and u → u/

√
−b0. Notice that for b0 > 0 the

geometry was already fixed at a particular value for b0 (if fixing the periodicity of u) and so we

cannot do this rescaling. This is not true for the Lorentzian geometries, where we can do the

rescaling for any sign of b0.

Our primary focus in what follows will be boundaries at large, constant r and we want to fix

the extrinsic curvature on those slices.12 At constant r = r0 slices, we have

k =
r20 + b0
r20 − b0

. (3.17)

As we will see this greatly simplifies some of the analysis below. An important relation that we

will use throughout this chapter is that for b0 > 0 and r0 >
√
b0 (or r0 <

√
b0) we have that

k > 1, while for b0 < 0 we find k < 1.

The geometries at b0 > 0 (and so b0 = 1/4) or b0 < 0 or, equivalently, k > 1 or k < 1,

respectively, can also be brought in more conventional form through the following coordinate

transformations,

b0 =
1

4
: r =

1

2
coth

ρ

2
⇒ ds2 =

dρ2 + du2

sinh2 ρ
, (3.18)

b0 < 0 : r =

√
−b0
2

tan
ρ

2
, û = u

√
−b0 ⇒ ds2 =

dρ2 + dû2

sin2 ρ
, (3.19)

where in the second case ρ ∈ [0, π). In the first case one can do another coordinate transformation

to bring the geometry the form,

ds2 = (r2 − 1)dτ 2 +
dr2

r2 − 1
. (3.20)

12In the standard Dirichlet case, this metric can also be used to get the boundary Schwarzian action, see for
instance [98, 99]
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Figure 3.4: Summary of the classical Euclidean geometries for fixed K and guu boundary con-
ditions. For k > 1 we can have a smooth bulk geometry, the disk. For k < 1 the geometry is
cylindrical and we have drawn (in slightly darker green) another fixed K and guu boundary in
the middle and cutting the geometry there gives the trumpet geometry.

This looks like the familiar Euclidean black hole solution, but we will see below that such an

interpretation is misleading.

Having discussed the solution to the equations of motion, let us now impose the various

boundary conditions. Let us first consider the Euclidean theory. We want to fix K and
∫
du

√
guu

at some radial slice r = r0:

K|r=r0 = k,

∫

r=r0

du
√
guu = L . (3.21)

Notice that with these boundary conditions we cannot fix b0 (in case it is negative) to −1,

since such rescalings would change the boundary length. Solving this for b0 and r0, we find

r0 =
L(k + 1)

4π
, b0 =

L2(k2 − 1)

16π2
. (3.22)

For k > 1 we have b0 > 0 and hence b0 = 1/4, which means that L and k are not independent:

For disk: L =
2π√
k2 − 1

. (3.23)

On the other hand, for k < 1 only b0 < 0 is a consistent bulk geometry. At this point we can

reiterate the important observation that we have made in the previous subsection. We know

that for b0 > 0 the geometry has the disk topology, but for b0 < 0 it is cylindrical. So depending

89



on k > 1 or k < 1 we either get a disk or cylinder geometry. In fact, we can also construct the

trumpet geometry with the metric (3.14) by cutting the geometry at that radial location where

the thermal circle becomes geodesic. This happens at r =
√
−b0. The trumpet geometry is thus

(3.14) with r ≥
√
−b0 and conventionally we set the boundary length of the geodesic boundary

to b,13 which we can then relate to b0 as

b = 4π
√

−b0 , (3.24)

and, hence, for the trumpet geometry we get a relation between L, k and b:

For trumpet: L =
b√

1− k2
. (3.25)

Thus, we conclude that only for k < 1 the trumpet is an allowed (by the boundary conditions)

bulk geometry and so only for those values of k higher topologies contribute to the partition

function. Such geometries do not contribute when k > 1. In that case only disks contribute.

Finally, it is also interesting to consider the case when the manifold has a conical defect,

which, for convenience, we can place at r =
√
b0, which is real since b0 > 0 now. In this case, we

want 4b0 = Θ2 where the angular deficit is 2π(1−Θ). In such a case we find, using (3.22), that

L =
2π|Θ|√
k2 − 1

. (3.26)

which is analogous to (3.25) with the geodesic length b identified with the the deficit angle Θ

– this makes sense since we can understand this geometry as an analytic continuation of the

trumpet geometry.

Before moving on to studying the solution of the dilaton, let us briefly mention the Lorentzian

13This should not be confused with the function b(u) in the Fefferman-Graham metric (3.14).
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theory. The Lorentzian geometries take the form (again for constant b(u))

ds2 =
dr2

r2
−
(
r − b0

r

)2

dt2, (3.27)

which, by the rescaling mentioned above, are diffeomorphic to the geometry with b0 = 1 when

b0 > 0 and diffeomorphic to the geometry with b0 = −1 whenever b0 < 0. This is possible since

the time direction covers the entire real line. Through analytic continuation u = it (or û = it)

we can map the Euclidean solutions to Lorentzian ones. For k > 1 we get the Lorentzian black

hole solution, but as we mentioned before such an interpretation is subtle, whereas for k < 1 we

get global AdS2. To impose the boundary conditions we fix the boundary metric and not the

fixed length (because that is infinite). This is morally the same and gives the same values for r0

and b0 as in (3.22), but with L→ 2πα if we fix guu = α2 at r = r0.

In both the Lorentzian and Euclidean case, the geometry is completely fixed by the boundary

conditions. The opposite is true for the dilaton. For these particular boundary conditions, we

do not impose any constraint on the dilaton. To gain some intuition of what this means, we

can solve the Euclidean bulk equations of motion for the dilaton in the coordinates (3.14). For

constant b(u) we have

ϕ =
A

r

(
1 +

r2

b0

)
+

(
r − b0

r

)(
B cos(2

√
b0u) + C sin(2

√
b0u)

)
. (3.28)

where the constants A, B, and C are arbitrary constants. Since A, B, and C cannot be fixed

from the boundary conditions, we cannot say whether ϕ has a minimum, maximum or no local

extremum at all. Therefore, since the location at which ϕ is at its local minimum is typically

interpreted as the location of a 2D black hole horizon, when fixing K = k and
∫
du

√
guu = L

we cannot specify whether the geometries under consideration contain a black hole or not. We

will briefly come back to this issue in section 3.5.

Next, we proceed by studying the classical solutions from a different perspective, by refor-

mulating JT gravity as a PSL(2,R) gauge theory.
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Connections to the BF formulation of JT gravity and varying K(u)

It is also useful to think about the classical geometries in the gauge theory formulation of JT

gravity, in particular when we want to study boundaries with a varying, i.e. time-dependent

extrinsic curvature. For the present boundary conditions, there are no boundary terms,14 and so

the JT action is that of an pure PSL(2,R) BF gauge theory with action [100,101,36,25, 33,35]

S = −i
∫

TrBF (3.29)

with B an adjoint scalar and F = dA + A ∧ A the field strength of an sl(2) gauge field. These

variables are given in terms of the gravitational variables as (see for instance [33])

A =
1

2




−e1 e2 − ω

e2 + ω e1


 =




−dr
2r

rdu

− b(u)
r
du dr

2r


 , B = −i




ϕ1 ϕ2 + ϕ

ϕ2 − ϕ −ϕ1


 (3.30)

Here the ei are the tweibeins of the 2d metric and ω the spin connection,

e1 =
dr

r
, e2 =

(
r − b(u)

r

)
du, ω = −

(
r +

b(u)

r

)
du . (3.31)

The fields ϕi are additional Lagrange multiplier fields necessary to enforce torsionlessness of the

metric. In the second equality we have put in the explicit metric einbeins in the Fefferman-

Graham gauge (3.14). The equations of motion for B give us flatness of the sl(2,R) connection

and is the analogue of the R + 2 = 0 equation. There is a beautiful way to solve such flatness

conditions: A = g−1dg. Let us directly study the general case of time-dependent b(u) and

consider,

g =



r−1/2ψ′

1(u) r1/2ψ1(u)

r−1/2ψ′
2(u) r1/2ψ2(u)


 . (3.32)

14Apart from counter terms which we can set to zero.
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The flatness of the connection then tells us that

ψ′′
1,2(u) + b(u)ψ1,2(u) = 0. (3.33)

This differential equation is known as Hill’s equation and is a central object in the study of

Schrodinger operators with a periodic potential (recall b(u) is periodic) and coadjoint orbit

theory [102]. Next, we need to make sure that g is an PSL(2,R) element, which is nothing but

a normalisation of the Wronskian,

det g = 1 ⇔ ψ′
1ψ2 − ψ1ψ

′
2 = 1. (3.34)

Thus ψ1,2 need to be linearly independent solution to the Hill equation such that the Wronskian

is normalised to unity. Finally, to ensure that the connection corresponds to a smooth bulk

geometry, meaning that for the disk topology the boundary is contractible, the holonomy of the

gauge field A needs to be trivial. We define the holonomy U to be

U = P exp

(
−
∮
A

)
= g−1(2π)g(0), (3.35)

where in the second equality we used flatness of A = g−1dg. Triviality of U thus means g(0) =

±g(2π) (recall we are working with PSL(2,R) here). Other geometries with a different topology

can be obtained by considering a different value for the holonomy.

Let us exemplify this method of finding smooth geometries by taking constant b. It is

straightforward to check that the holonomy is given by (at some radius r)

U =




cos(2π
√
b0) − r√

b0
sin(2π

√
b0)

√
b0
r

sin(2π
√
b0) cos(2π

√
b0)


 . (3.36)

So, when
√
b0 = n/2 for n ∈ N, U = ±1 and we have as smooth disk geometry. Furthermore,

we know that
√
b0 is related to k and L as given in (3.22) and so one can easily see that this
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integer n corresponds to a geometry with a ’boundary’ that winds n times. This is not a smooth

orientable geometry and is therefore not present in the gravity path integral and as a result only

n = 0, 1 are relevant here. In fact, for n = 0 we are dealing with the Poincaré patch, which

has a real line as its boundary and so clearly does not have the topology of a disk. This case is

therefore excluded as well. The only relevant geometry is thus n = 1.

We can also extract the other geometries we found before. For the three different geometries,

disk, defect and wormhole, we found the three different conjugacy classes U can be in. To

determine them, we simply look at the trace of U :

TrU = 2 cos(2π
√
b0). (3.37)

The conjugacy classes are then determined as follows,

TrU =





< 2 b0 > 0, b0 ̸= n2/4 Elliptic

= 2 b0 = n2/4 Parabolic

> 2 b0 < 0 Hyperbolic

. (3.38)

An elliptic U thus corresponds to the defect geometry, a parabolic one to the disk and the

wormhole is realised by an holonomy in the hyperbolic conjugacy class. This concludes our

discussion of the constant b(u) = b0 solutions. For varying b(u) it is much more complicated to

find solutions, in particular due to the path ordering involved in the definition of U . However,

for the disk topologies, we need to find periodic/anti-periodic solutions to Hill’s equatin and we

can ask about the existence of such solutions.

For a generic potential b(u) = r2K̃(u), the Hill equation does not have such solutions. How-

ever, so far, we have not fixed the value of r at which the boundary is located; therefore, we wish

to understand whether there exist values of r such that the Hill equation ψ′′
1,2 + r2K̃(u)ψ1,2 = 0

has periodic/anti-periodic solutions. In turn, if there exists a value of r for which such a solution

exists, then this in turn fixes the values of the proper length L. Following the intuition developed
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for the case with constant K = k where only configurations with k > 1 exist on the disk, we will

first focus on the case k(u) > 1 and consequently, K̃(u) > 0. For such a case, assuming that

K̃(u) is sufficiently differentiable, Lyapunov [103] proved that there exist an infinite series of

values of r for which the Hill equation has a periodic/anti-periodic solution. The proof relies on

the Liouville transformation; i.e. solutions of ψ′′
1,2 + r2K̃(u)ψ1,2 = 0 can be mapped to solutions

of

d2ξ1,2
dx2

+ (r2γ2 +Q(x))ξ1,2 = 0 , (3.39)

via the map

x =
1

γ

∫ u

0

K̃1/2(ũ)dũ , γ =
1

π

∫ 2π

0

K1/2(ũ)dũ , ξ(x) = K̃
1
4 (u)ψ(u) , (3.40)

and

Q(x) = (K̃(u))−
1
4
d2(K̃(u))

1
4

dx2
. (3.41)

Eq. (3.39) can be viewed as an eigenvalue equation for the differential operator d2

dx2 +Q(x) with

eigenvalue −r2γ2. Since, when Q(x) and γ are real, such an operator has an infinite number

of real eigenvalue when imposing periodic or anti-periodic solutions and it then follows that

there are an infinite number of values of r that yield a manifold which is smooth. As can be

seen from the case of constant k, different values of r correspond to different windings of the

boundary. Since we are interested in surfaces that have a boundary which is not self-intersecting

we will solely be interested in a single value (out of the infinite series) of r, which we call rs.

Consequently, the proper length is fixed to

L = rs

∫ 2π

0

du |1− K̃(u)| . (3.42)

One can similarly prove that when 0 < k(u) < 1 (K̃(u) < 0) then the Hill equation does not

have any periodic or anti-periodic solutions. Therefore, in that case the boundary conditions

exclude all surfaces with the topology of a disk.
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To summarize, while we have not found the analytic constraint that relates k(u) to L (since

we have not explicitly determined rs in (3.42)) we have proven that given k(u) > 1, there

always exists a single value of L for which a hyperbolic surface with disk topology exists. For

−1 < k(u) < 1 the disk topology never exists, therefore generalizing the results found for

constant k.

3.2.2 Quantum theory

The disk topology

Let us now compute the partition function for fixed K = k and guu boundary conditions. We

have seen that with these boundary conditions no boundary terms are necessary and when setting

the counter terms Mi to zero, we just need to path integrate over the bulk action. We thus wish

to calculate (in Euclidean signature),

ZND[k, ℓ] =

∫ DϕDg
Vol(diff)

eϕ0χ(M)e
∫
M

d2x
√
g ϕ(R+2). (3.43)

The manifolds we sum over in this path integral are denoted by M. For now will restrict our

attention to orientable manifolds with a single boundary and discuss multiple boundaries below.

Here the contour of ϕ is chosen to be along the imaginary axis, in which case the path integral

over ϕ gives a delta functional δ(R + 2) and our path integral simply counts the number of

hyperbolic metrics having a boundary with fixed k and ℓ modulo diffeomorphisms:

ZND[k, ℓ] =

∫ Dg
Vol(diff)

eϕ0χ(M) δ(R + 2). (3.44)

The easiest way to compute this partition function is by going to a BF theory formulation of

JT gravity that reviewed above.15 The path integral is then just a function of the holonomy U

of the gauge field A around the boundary circle, The partition function of the PSL(2,R) gauge

15In [33] this was done for closed manifolds, which then also has no boundary terms, but the boundary conditions
are different, so we cannot directly apply their formulae to the current case.
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theory is [33]

ZND[U ] =

∫ DADB
Vol(gauge)

eϕ0χ(M)ei
∫
TrBF =

∫ DA
Vol(gauge)

eϕ0χ(M)δ(F ), (3.45)

with χ(M = D2) = 1. This partition function thus computes the number of flat connections

modulo gauge transformations, but with one important caveat. In the gauge theory only connec-

tions A that are not related by smooth gauge transformations are counted seperately, whereas

in the gauge theory variables such connections might be related by large diffeomorphisms, i.e.

elements on the mapping class group of the underlying manifold. In the gravity theory metrics

related by the mapping class group are not counted separately and in the gauge theory we need

to account for that. This imposes no subtleties in the disk for which the mapping class group is

trivial, but does so for the cylinder or higher topologies as the mapping class group is non-trivial

in those cases. The disk partition function ZDisk[k, L] for constant k (b(u) = b0) can thus be

computed rather directly in the PSL(2,R) gauge theory. In fact, there is only one flat PSL(2,R)

connection (modulo gauge transformations) on the disk and the partition function is

Z
(Disk)
ND [U ] = eϕ0δ(U − 1). (3.46)

To write this in terms of the diffeomorphism invariant gravity variables k and ℓ, we need to

express the holonomy U in terms of k and ℓ. The holonomy was given in (3.36) and so the

remaining step is to rewrite the δ-function on the PSL(2,R) group manifold in terms of Dirac-

delta functions solely dependent on L and k. There are two possible ways in which one can rewrite

the δ-function on the group manifold, dependent on the space of test-functions which we plan to

integrate the test function against. The first, (a) are general functions on the group manifold,

while the second (b) are trace-class functions. If we fix PSL(2,R) gauge transformations on

the boundary (or, equivalently, fixing gravitational diffeomorphisms), then, in order to get some

generic observable, one can integrate the partition function against a general function on the

group manifold, while if one does not fix gauge transformations on the boundary, the holonomy is
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not gauge invariant but its conjugacy class is. To summarize, the interpretation of the δ-function

on the group as a distribution in L and K depends on whether we fix diffeomorphisms on the

boundary.

In appendix 3.8 we give a detailed account about the difference between the resulting con-

version for the δ-function on the group manifold. When studying the distribution (a) we find

that (3.46) becomes

Z
(Disk)
ND [k, ℓ] =

eϕ0

2π
δ2(0)δ

(√
b0 −

1

2

)
=

2eϕ0

√
k2 − 1

δ2(0)δ

(
L− 2π√

k2 − 1

)
, (3.47)

where we used (3.22). When studying the distribution (b) that acts on the space of trace-class

functions, we instead find

Z
(Disk)
ND [k, ℓ] =

eϕ0

2π
δ′′
(√

b0 −
1

2

)
=
eϕ0

2π
δ′′
(
L
√
k2 − 1

4π
− 1

2

)
. (3.48)

We can perform a further check of this result by going in between Dirichlet-Dirichlet and

Dirichlet-Neumann boundary conditions using a Laplace transform on the boundary value of

the dilaton field ϕr(u). In the limit in which the proper length of the boundary L is large (i.e.

the Schwarzian limit when studying Dirichlet-Dirichlet boundary conditions) the path integral

that we need to evaluate is (omitting the topological term)

Z
(Disk)
ND =

∫
Dϕb(u)e

−2
∫ β
0 du

√
guuϕb(u)k ∼

∫
Dϕr(u)

∫
Df(u)e

∫ β
0 duϕr(u)(Sch(f,u)−κ)

∼
∫
Df(u)δ(Sch(f, u)− κ) (3.49)

where the ”∼” means equality up to counterterms which have the role to eliminate an overall

divergent constant multiplying the partition function. Furthermore, above, we define the renor-

malized quantities k = 1 + ε2κ and ϕr(u) = ϕb(u)/ε. In appendix 3.7 we compute the path

integral (3.49) explicitly and show that the result agrees with the BF computation from (3.47).

This concludes our brief discussion of the disk partition function with fixed k and L boundary
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conditions. For varying Kr=rs = k(u) we can use the results about the Hill equation with general

potential we discussed above, in particular (3.42) and we get a δ-function that activates when

L −
∫ 2π

0
du
∣∣∣rs − k(u)

rs

∣∣∣ = 0. As previously mentioned, for a given k(u), we cannot determine

rs analytically; rather as described in section 3.2.1, it is determined by the solution of the Hill

equation.

The trumpet and cylinder with fixed K

We can compute the partition function on the trumpet or cylinder, again, in two different ways.

In the first, we again rely on the BF formulation of JT gravity and need to glue the opposite

sides of the gravitational theory when placed on a manifold with the topology of a square. This

is very similar to the computation of the partition function of the conventional BF theory on

a cylinder with one important distinction. This is that in the gravitational theory we should

also quotient by the mapping class group of the cylinder (given by Z) while in conventional BF

theory this is not necessary. As we will see, considering this quotient is important in obtaining

a convergent partition function.

In the second approach, we will again transform the partition function with DD boundary

conditions to that with ND boundary conditions via a Laplace transform. This amount to

evaluating the Schwarzian path integral (3.49) on a different orbit than we did in the subsection

above; i.e. Diff(S1)/U(1) instead of Diff(S1)/SL(2,R).

We begin by presenting the first approach. Formally we want to compute

Z
(Cylinder)
ND (UL, UR) =

∫

PSL(2,R)/Z

dh δ(ULh
−1U−1

R h) , (3.50)

where U1 and U2 are the holonomies along the edges of the cylinder and h is the holonomy along

a line uniting the two sides. The difficulty in computing this partition function is partly due

to the quotient and in particular in explaining what quotient of PSL(2,R) we need to consider.

To figure this out, we will consider a particular on-shell metric solution, convert it to the gauge
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theory variables, and compute the holonomies around the non-contractible cycle and along the

gluing curve. From the metric variables, it will be clear what identifications we need to make in

order to quotient out the mapping class group and the above procedure will tell us what part of

the gauge theory variables, in particular the group element, needs to be identified.

To that end, it is first useful to consider an on-shell hyperbolic configuration which has the

following metric [33]

ds2 = dρ2 + cosh(ρ)2[bdx+ τδ(ρ)dρ]2 , x ∼ x+ 1 . (3.51)

The variable τ represents the distance of a twist made along the closed geodesic at ρ = 0. To

see that the metric (3.51) is equivalent to a purely hyperbolic metric one can introduce the

coordinate y:

y = bx+ τθ(ρ) , dy = bdx+ τδ(ρ)dρ . (3.52)

In such a case, it is clear that τ should be identified up τ ∼ τ+b since the coordinate x is compact

and periodically identified. In fact, shifts of τ by b are precisely identified with the Dehn twists

which generate the mapping class group Z of the cylinder. Therefore, in our computation of the

cylinder partition function we will need to identify holonomies for which τ is shifted by b.

To achieve this we start by writing the frame and spin-connection for the metric (3.51),

e1 = dρ , e2 = b cosh(ρ)dx+ τ cosh(ρ)δ(ρ)dρ, ω = − sinh(ρ)(bdx+ τδ(ρ)dρ),

A =
1

2




−dρ beρdx+ τeρδ(ρ)dρ

be−ρdx+ τe−ρδ(ρ)dρ dρ


 .

(3.53)

and consider the holonomy around the closed cycle of the cylinder at the left and right boundary,

UL,R = P exp

(
−
∮

ρ=const

A

)
=




cosh(b/2) −eρbdyL,R sinh(b/2)

−e−ρbdyL,R sinh(b/2) cosh(b/2)


 (3.54)
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whose eigenvalues are (eb/2, e−b/2) for all ρ. Thus, we see that the conjugacy class of the holonomy

around the closed cycle of the cylinder is independent of the location at which the holonomy is

evaluated. This of course follows from the fact that the connection is flat and from the gluing

formula (3.50) we clearly see that the δ-function only activates when UL and UR are in the

same conjugacy class, regardless of the integration space for h. To understand the quotienting

procedure we consider the Wilson line along a curve with constant x, from one end of the cylinder

to the other. In such a case,

h = P exp

(
−
∫ ρ=ρbdyR

ρ=ρbdyL

A

)
=




e
ρbdyR

−ρbdyL
2 cosh(τ/2) −e

ρbdyR
+ρbdyL
2 sinh(τ/2)

−e−
ρbdyR

+ρbdyL
2 sinh(τ/2) e

ρbdyL
−ρbdyR
2 cosh(τ/2)


 (3.55)

where we assume ρbdyL < 0 and ρbdyR > 0.16 We will thus assume that the holonomy along

the two-sides of the cylinder take the form (3.54) where b is determined by the proper length

and extrinsic curvature on each side while the “gluing” holonomy is given by (3.55) up to a Z

identification. It is convenient to re-express (3.50) in terms of the conjugacy classes of UL and

UR. To diagonalize UL and UR we have that

Z
(Cylinder)
ND (UL, UR) =

∫
dhδ(ŨLALh

−1A−1
R Ũ−1

R A−1
R hA−1

L ), (3.56)

where UL,R = A−1
L,RŨL,RAL,R

A1,2 =
1√
2



−e−ρL,R/2 eρL,R/2

−e−ρL,R/2 eρL,R/2


 , (3.57)

and where we can change integration variables to h̃ = ALh
−1A−1

R ,

Z
(Cylinder)
ND (UL, UR) =

∫
dh̃δ(ŨLh̃ŨRh̃

−1) . (3.58)

16This assumption is unimportant since one can always perform a diffeomorphism which places the δ-function
in (3.51) at any ρ-location.
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For the on-shell configuration studied above h̃ can be expressed as

h̃ = e−τσ3/2 , (3.59)

and thus (since we are studying an on-shell configuration) for these values of ŨL, ŨR and h̃ the

δ-function activates.

Nevertheless, this computation allows us to see which elements h or h̃ are related by a large

diffeomorphism. Namely, we have learned that the quotient we want to do is on elements in

PSL(2,R) which are related by multiplication by a hyperbolic diagonal group element. To be

more specific, given two elements h1 and h2, we want to identify them when they are related by a

right multiplication by the element e−bσ3/2. Concretely, let us consider the KNA decomposition

of a general element of PSL(2,R),

h̃ = KNA , K =




cos(θ) sin(θ)

− sin(θ) cos(θ)


 , N =



1 n

0 1


 , A =



ea 0

0 e−a


 , (3.60)

for which the Haar measure can be written as dh̃ = dθ dn da. Thus our identification is a

restriction on the range of a, which we take to be from 0 to b/2 (while in PSL(2,R) this range

is non-compact).

Let us now return to the general problem, i.e. evaluating (3.58). Using the above de-

composition the delta function of a group element in the KNA decomposition is given by

δ(U) = δ(θ)δ(n)δ(a). We take U = ŨLh̃ŨRh̃
−1 with h̃ written in the KNA decomposition

and consider (the possibly off-shell configuration) ŨL,R = exp(σ3λL,R/2). The only thing left

to do is to evaluate the one-loop factor, which can be done straightforwardly by expanding the

argument of the delta function close to θ = 0 and n = 0, since the delta function only fires when
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h̃ is diagonal

δ(ŨLh̃ŨRh̃
−1) = δ




e(λ1−λ2)/2 2eλ1/2(n+ θ) sinh(λ2/2)

2e−λ1/2θ sinh(λ2/2) e−(λ1−λ2)/2


+O

(
nθ, n2, θ2

)
(3.61)

The coordinate a does not appear in the integrand and directly gives a factor of b/2 = λL/2 =

λR/2. The cylinder partition function is thus,

Z
(Cylinder)
ND (λL, λR) = λL

δ(λL − λR)

4 sinh2 λL/2
, (3.62)

where e±λL/2 and e±λR/2 are the eigenvalues of the holonomies g̃L and g̃R.

Naively, the trumpet partition function would be defined by taking λL = b, i.e. the geodesic

boundary has a holonomy determined by b. However, this is too quick, because the cylinder

is obtained by gluing two trumpets and there can be a non-trivial measure factor appearing in

the gluing depending on how we define the trumpet. In fact, since here we have expressed the

partition function as a delta function on the conjugacy classes of the boundary holonomies, there

is indeed a non-trivial measure as can be seen from the Weyl integration formula for PSL(2,R),

see appendix 3.8. Furthermore, if we would have constructed two trumpets from (3.62), we

would have implicitly taken two twist integrals (the integrals over a that gave us a factor of b/2)

into account, whereas we need only one. To account for that, we divide by b/2 in the gluing of

two trumpets. We thus get

Z
(Cylinder)
ND (λL, λR) =

∫ ∞

0

db
(
2 sinh2 b/2

)(
b
δ(b− λL)

4 sinh2 λL/2

)(
b
δ(b− λR)

4 sinh2 λR/2

)(
2

b

)
, (3.63)

where each term in brackets corresponds to the measure obtained from the Weyl integration

formula,17 the two cylinders, and the division by b to account for overcounting, respectively.

From this, we define the trumpet partition function by distributing the measure (the first term

17Here we picked a particular normalisation (α = 1) of the measure instead of keeping it around as was done
in [33].
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in round brackets) in the definition of the trumpet,

Z
(Trumpet)
ND (b, λL) =

δ(b− λL)

2 sinh b/2
, (3.64)

and the gluing measure is just the Weil-Petersson measure b db.

In appendix 3.7 we confirm this way of defining the trumpet and cylinder partition function

by doing the path integral directly using the boundary Schwarzian mode. The main difference

between the computation in for the trumpet as opposed to the disk (3.49) is the number of zero

modes for the Schwarzian field F (u) (since we are integrating over different orbits). Because of

this difference the divergent factor δ2(0) present on the disk in (3.47) is no longer present in the

case of the trumpet or cylinder.

To complete our analysis we solely need to use the relation between the conjugacy class of

the holonomy for the Neumann-Dirichlet boundary and the extrinsic curvature K together with

the proper length L. We will take the λL to be the eigenvalue of this holonomy while λR = b is

the eigenvalue of the holonomy on the closed geodesic boundary. This is given by

Z
(Trumpet)
ND (b;L, k) =

δ
(
L
√
1− k2 − b

)

2 sinh b/2
. (3.65)

The cylinder partition function then becomes,

Z
(Cylinder)
ND (L1, k1;L2, k2) =

L1

√
1− k21

4 sinh2

(
L1

√
1−k21
2

)δ
(
L1

√
1− k21 − L2

√
1− k22

)
. (3.66)
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Putting it all together

We can now consider the general genus expansion of the partition function of JT gravity with

ND b.c. We have already seen that boundaries which have K > 1 lead to factorization:

⟨ZND(k1 > 1, L1) . . . ZND(ki > 1, Li])ZND(ki+1 < 1, Li+1) . . . ZND(kn < 1, Ln)⟩ = (3.67)

= ⟨ZND(k1 > 1, L1)⟩ . . . ⟨ZND(ki > 1, Li)⟩⟨ZND(ki+1 < 1, Li+1) . . . ZND(kn < 1, Ln)⟩

with

⟨ZND(K1 > 1, L1)⟩ =
eϕ0

2π
δ′′
(
L
√
k2 − 1

4π
− 1

2

)
(3.68)

Thus, we simply want to discuss the genus expansion of ⟨ZND(K1 < 1, Li+1) . . . ZND(Kn <

1, Ln)⟩. As previously specified, we simply have to integrate the partition function the trumpet

against the Weil-Petersson volumes (denoted here by Volg,n(b1, . . . , bn) for a manifold of genus g

and with n geodesic boundaries with lengths b1, . . . bn) using the Weil-Petersson measure. This

yields,

⟨ZND(K1 < 1, L1) . . . ZND(Kn < 1, Ln)⟩

∼
∞∑

g=0

eϕ0χg,n

∫
db1b1 · · ·

∫
dbnbn

δ(L1

√
1−K2

1 − b1)

2 sinh b1/2
· · · δ(Ln

√
1−K2

n − bn)

2 sinh bn/2

×Volg,n(b1, . . . , bn)

=

(
L1

√
1−K2

1 · · · Ln

√
1−K2

n

)

2n sinh
L1

√
1−K2

1

2
· · · sinh Ln

√
1−K2

n

2

∞∑

g=0

eϕ0χg,nVolg,n(L1

√
1−K2

1 , . . . , Ln

√
1−K2

n)

where we formally define Vol0,1(b) ≡ 0 and Vol0,2(b1, b2) ≡ δ(b1 − b2)/b1.
18 Thus, up to overall

constants the partition function for boundaries with Ki < 1 simply yields a sum over the Weil-

Petersson volumes. We will use the simplicity of this result to determine the matrix integral

interpretation for the insertion of an ND boundary in the JT gravity path integral.

18This corresponds to the Laplace transforms of the volumes Wg,n(z1, . . . , zn) to have W0,1(z) = 0 and
W0,2(z1, z2) =

1
(z1−z2)2

.
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3.2.3 Matrix integral interpretation

With the geometric result for the partition function in mind, we now wish to find the operator

insertion in the JT gravity matrix integral which reproduce the results above. To do this, we

will first attempt to understand this matrix integral interpretation by performing a path integral

for the boundary valued dilaton ϕb(u) for the matrix integral result with Dirichlet-Dirichlet

boundary conditions. While we shall not be able to perform this path integral exactly, we

will still be able to determine an integral kernel which when applied to the Dirichlet-Dirichlet

partition function reproduces the factorization properties observed in the previous subsection.

Using this kernel, we will be able to finally determine the correct operator insertion in the matrix

integral to reproduce (3.67)–(3.69).

A Transformation Kernel

As previously mentioned, ϕb(u) and K(u) are canonical conjugates. Thus, to obtain ZND from

ZDD, we need to perform the path integral

ZND[k, L] =

∫
Dϕr(u)e

1
ϵ2

∫ β
0 duϕr(u)(1−k(u))ZDD[ϕb(u), L]. (3.69)

To continue, we will use the formula for ZDD[ϕb(u), L] for varying ϕb(u) = ϕr(u)/ε, obtained

in the Schwarzian nearly-AdS2 limit (L = β/ε → ∞) by interpreting the results in appendix C

of [81] or the results reviewed in more detail in appendix A in [90]: 19

Z
(Schw)
DD [ϕb(u), L] = e

∫ β
0 du

ϕ′r(u)
2

2ϕr(u)

〈
Tr e−H

∫ β
0 du/ϕr(u)

〉
MI

, (3.70)

19In this subsection we fix the normalization of the matrix integral over H following the convention of [33] with
γ = 1.

106



where
〈
Tre−H

∫ L
0 du/ϕr(u)

〉
MI

is the expectation value of the “partition function operator” with

the effective temperature βeff[ϕr(u)] =
∫ β

0
du/ϕr(u). Thus, we would like to evaluate

ZND[k(u), L] =

∫
dL̃
〈
e−HL̃

〉
MI

×
∫ i∞

−i∞
dσ

∫
Dϕr(u)e

σ(L̃−
∫ β
0

du
ϕr(u)

)e
∫ β
0 du

ϕ′r(u)
2

2ϕr(u) e
1
ϵ2

∫ β
0 duϕr(u)(1−k)

︸ ︷︷ ︸
Fk(L̃,L)

, (3.71)

where we have introduced the Lagrange multiplier σ to emphasize that one can obtain the

ND partition function by performing an integral over L (instead of a path integral over ϕr(u))

with the appropriate kernel Fk(L̃, L). This allows us to give an exact definition of the kernel in

the Schwarzian lmit. However, the path integral over ϕb(u) in the last line of (3.71) is difficult

to perform exactly. Nevertheless, a naive semi-classical evaluation of this path integral in the

Schwarzian limit yields (integrating solely over configurations for which ϕr(u) varies only very

slowly with u)

F semi-classical
k (L̃, L) ∼ 1

L̃3/2
eL

2 (1−k)

L̃ . (3.72)

It is tempting to guess that the factorisation properties required of the kernel can be reproduced

by a simple modification of the approximate semi-classical kernel (3.72). In what follows, we

will show that this is the case. Moreover, we will see that this kernel can also be applied away

from the Schwarzian regime (k ≈ 1, L→ ∞).

The modification of the kernel which we propose is:

FK(L̃, L) =
√
2π

e
λ2

2L̃

L̃3/2
µ(λ) µ(λ) =

(
λ

2 sinh λ
2

)
(3.73)

where we have defined

λ ≡ L
√
1− k2 . (3.74)

In the Schwarzian limit, k = 1 +O(ε2) we may also replace 1− k2 ∼ 2(1− k) in this expression

to recover the approximate kernel (3.72).
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From the BF perspective, λ is the eigenvalue of the holonomy along the corresponding bound-

ary. When k < 1, λ is real, otherwise it is purely imaginary. We will demonstrate that this

kernel satisfies the desired properties. This allows us to define the ND partition function as a

simple integral transform of the DD partition function,

ZND(k, L) =

∫

C

dL̃ Z
(g)
DD(L̃)FK(L̃, L). (3.75)

where C is a contour to be specified. Here, it is useful to think of the perturbative (in e−ϕ0) part

of the decomposition of the Dirichlet partition function into contributions from different genera

⟨ZDD(L̃)⟩ = eϕ0Z
(Disk)
DD (L̃) +

∞∑

g=1

e(1−2g)ϕ0

∞∫

0

db b Vg,1(b)Z
(Trumpet)
DD (b; L̃) (3.76)

where we have the explicit expressions for the disk and trumpet [33, 81]

Z
(Disk)
DD (L̃) =

1√
2π

e
2π2

L̃

L̃3/2
Z

(Trumpet)
DD (b; L̃) =

1√
2π

e−
b2

2L̃

L̃1/2
. (3.77)

where we are studying the theory with the effective temperature, L̃ = β/ϕr, and where b is the

proper length of the closed geodesic that separates the trumpet from the rest of the bordered

higher genus Riemann surface.

In order to study the properties of (3.75), let us first consider the trumpet contribution. In

order to specify the contour of integration for the kernel, it is useful to introduce the variable

z = L̃−1. We then chose the integration contour for z along the imaginary axis

Z
(Trumpet)
ND (k, L)

µ(λ)
=

i∞∫

−i∞

dz

z2

(
z1/2e−

b2

2
z
) (

z3/2e
λ2

2
z
)
=

i∞∫

−i∞

dz e
z
2(−b2+L2(1−k2))

=





2δ (b2 − λ2) = 1
λ
δ (b− λ) for k < 1

0 for k > 1
. (3.78)
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When k ≥ 1, the integral contour for z can be closed on the right half plane Re(z) > 0 and

hence vanishes. Thus, the trumpet does not contribute for an ND boundary with k > 1. In

the opposite case, k < 1, we have the second line which reproduces (3.64) derived from other

methods. Thus, the trumpet result

Z
(Trumpet)
ND (k, L) =

δ(b− L
√
1− k2)

2 sinh b
2

, (3.79)

agrees with (3.64) obtained from BF theory or by considering the Laplace transform of the

Dirichlet-Dirichlet partition function. Therefore, applying the kernel (3.75) to (3.78) we obtain

the sum over Weil-Peterson volumes from (3.69).

The final step needed to compare the matrix integral and geometric results is to understand

the effect of the kernel on manifolds with disk topology. The disk contribution to (3.75) is given

by

Z
(Disk)
ND (k, L)

µ(λ)
=

i∞∫

−i∞

dz

z2

(
z3/2e2π

2z
) (

z3/2e
λ2

2
z
)

=

i∞∫

−i∞

dz z e
z
(
2π2+L2

2
(1−k2)

)

(3.80)

In this case, when k ≤ 1, the integral contour for z can be closed on the left half plane Re(z) < 0

and hence vanishes. Thus the disk topology does not contribute to the partition sum in this case.

When k > 1, the integral can be evaluated exactly and yields the same type of divergence as in

(3.68). Therefore, we find that the integral kernel (3.73) reproduces the ND partition function

computed in section 3.2.2.

Operator Insertion in Matrix Integral

Given that we see that the kernel applied to the DD partition functions reproduces the correct

ND partition function we can now ask what operator in the matrix integral directly reproduces

the insertion of this latter boundary in the gravitational path integral. This is simply given by
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considering the action of the kernel on the partition function operator:

e−L̃H →
∫ +i∞

−i∞

dz

z1/2
µ(λ) eL

2 (1−K2)
2

ze−
H
z ∼





cos(L
√
1−K2

√
2H)

sinh(L
2

√
1−K2)

K < 1,

cosh(L
√
K2−1

√
2H)

sin(L
2

√
K2−1)

K > 1

. (3.81)

Thus, we conclude that

ZND[K,L] ∼ ⟨Tr cos(λ
√
2H)⟩MI , (3.82)

which has the same properties as the ones discussed above.

It is important to note however, that one needs to keep careful track of the integration contour

when evaluating this operator via analytic continuation in the matrix integral. For instance,

when integrating the K < 1 operator against the trumpet, the “energy of the Hamiltonian” H

should be integrated along the imaginary axis.

3.3 Fixing K and ∂nϕ− ϕK: a less rigid geometry

The study the partition function with fixed K ≡ k(u) and ∂nϕ−ϕK ≡ −ϕ′
b(u)/2 (NN boundary

conditions)20 is similar, yet less rigid than that for fixed K and guu. To emphasize this point

we start by re-analyzing the classical behavior discussed in the previous section. While fixing

K completely fixes the geometry of the manifold, by setting the location and proper length of

the boundary, when fixing guu the arbitrary constants in the classical dilaton solution (3.28)

could not be fixed from the ND boundary condition. For the NN boundary condition however,

fixing ∂nϕ− ϕK fixes the constant A in (3.28), however the constants B and C are still unfixed

in the classical solution. Thus, B and C are zero modes for the dilaton solution. In such a

case, the classical dilaton solution in Euclidean or Lorentzian signature (3.28) is set (in the

20The function ϕ′b(u) should not be confused with the derivative of the boundary value of the dilaton which is
not specified for these boundary conditions.
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Fefferman-Graham gauge (3.14)) to be:

r0 =

√
b0
k + 1

k − 1
,

ϕ(r, u) =
ϕ′
b

2r
√
k2 − 1

(
1 +

r2

b0

)
+

(
r − b0

r

)(
B cos(2

√
b0u) + C sin(2

√
b0u)

)
, (3.83)

with the boundary located at r0. Nevertheless, as for the ND b.c. , for k > 1 we again only

have the disk contribution, and b0 = 1/4 in order for the Euclidean geometry to be smooth. For

k < 1 and, consequently, b0 < 0, we only have contributions from higher genus or multi-boundary

geometries.

Finally, in order to compare the classical results to the partition function which we shall

obtain shortly, it is useful to compute the on-shell action (for disk topologies) coming from

boundary term in (3.7):

Son-shell
NN = −Lϕ′

b = − 2π√
k2 − 1

ϕ′
b . (3.84)

where we have used the fact that fixing K = k also fixes the proper length of the boundary L,

according to (3.23).

We now discuss the quantization of the gravitational theory with the NN boundary conditions.

We have seen in the previous section that fixing k > 1 completely fixes the topology of the

manifold and the proper length of its boundary. Therefore, since the proper length of the

boundary is not fixed by the boundary conditions, the partition function on the disk will no

longer yield a δ-function even though the geometry is fixed. Similarly, for k < 1 we again only

receive contributions from higher genus or multi-boundary manifolds. Thus, we again have that

⟨ZNN(k1 > 1, ϕ′
b,1) . . . ZNN(ki > 1, ϕ′

b,i)ZNN(ki+1 < 1, ϕ′
b,i+1) . . . ZNN(kn < 1, ϕ′

b,n)⟩ =

= ⟨ZNN(k1 > 1, ϕ′
b,1)⟩ . . . ⟨ZNN(ki > 1, ϕ′

b,i)⟩⟨ZNN(ki+1 < 1, ϕ′
b,i+1) . . . ZNN(kn < 1, ϕ′

b,n)⟩.

(3.85)

However, while in the previous section, fixing guu on the boundary completely fixes the length b
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of the closed geodesic homotopic to the boundary, in this section, since the proper length of the

boundary is not fixed, b is also, consequently, not fixed.

To make things concrete and obtain the partition function, ZNN , we can go between Dirichlet-

Dirichlet and Neumann-Dirichlet boundary conditions using a Laplace transform and integrating

over the boundary metric. Schematically this is given by21

ZNN [k(u), ϕ
′
b] =

∫ Dguu
Diff(S1)

e2
∫
du

√
guu(ϕK−∂nϕ)ZND

[
k(u),

∫
du

√
guu

]
. (3.86)

The ND system has boundary diffeomorphism symmetry which has been mode out to get a finite

result. Just like in the case of path integral of a relativistic particle, the integration over the

boundary metric can be simplified by going to the gauge where
√
guu is equal to a constant.

Then the functional integral of
√
guu can be reduced to an integral over the proper length L.22

With the existence of a marked (for instance, at u = 0) point at the boundary, we have23

ZNN [k(u), ϕ
′
b] =

∫
dLe2

∫
du

√
guu(ϕK−∂nϕ)ZND[k(u), L]. (3.87)

For simplicity, we will assume that k(u) = k and ϕ′
b(u) = ϕ′

b are constant. In such a case, we

find that for the disk:

Z
(Disk)
NN (k > 1, ϕ′

b) =

∫
dLeLϕ

′
bZ

(Disk)
ND (k > 1, L)

=
eϕ0

2π

∫
dLeLϕ

′
bδ′′
(
L
√
k2 − 1

4π
− 1

2

)
, (3.88)

where we have used (3.48) for the ND disk partition function, acting on the space of trace-class

21Below, for the NN boundary conditions we are no longer fixing guu. Therefore, we need to fix k(u) in a
diffeomorphism invariant fashion. This can be done by going to a diffeomorphism gauge where guu is constant
and where the periodicity of u is fixed. Thus, when one fixes k(u) for the ND and NN boundary conditions in
(3.86), it should be understood that u is specified in this gauge.

22See section 9.2 of [104] for discussion about the procedure of fixing boundary diffeomorphism symmetry.
23If we don’t have a marked point, there will be an additional 1

β factor coming from the time translation
symmetry.
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functions. Consequently,

⟨ZNN(k > 1, ϕ′
b)⟩ =

8πeϕ0e
2πϕ′

b√
k2−1

(k2 − 1)2
. (3.89)

This matches with the classical saddle-point obtained in (3.84). Similarly, for the trumpet we

find

Z
(Trumpet)
NN (k < 1, ϕ′

b) =

∫
dLeLϕ

′
b
δ(L

√
1− k2 − b)

2 sinh b
2

=
e

bϕ′
b√

1−k2

2
√
1− k2 sinh b

2

, (3.90)

where we have used (3.65) for the ND partition function of the trumpet. Therefore, the NN

partition function when summing over connected manifolds with n boundaries is

⟨ZNN(k1 < 1, ϕ′
b,1) . . . ZNN(kn < 1, ϕ′

b,n)⟩conn. ∼

∼
∑

g≥0

eϕ0χg,n

∫
db1 b1

∫
db2 b2· · ·

∫
dbnbn

e
−

∑n
i=1

biϕ
′
b,i√

1−k2
i

2n
(∏n

i=1

√
1− k2i sinh

bi
2

)Volg,n(b1, . . . , bn). (3.91)

Note that with the conventions from section 3.2.2 for the cylinder we have that Vol0,2(b1, b2) =

δ(b1 − b2)/b1. Therefore, the NN cylinder partition function exhibits a log-divergence coming

from the ∼ 1/b behavior in the limit b → 0 of the integrand. Therefore, if we do not consider a

more general UV completion of JT gravity,24 all partition functions with n ≥ 2 boundaries are

dominated by cylindrical contributions.

Next, with the results in section 3.2.3, we can determine what operator insertion in the matrix

integral description of JT gravity yields the NN results for the partition function obtained in

24It would however be interesting to understand whether there indeed is a UV completion of the model which
leads to a convergent cylindrical partition function for the NN boundary conditions.
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(3.85)–(3.91). By considering the Laplace transform of 3.81 we have that

ZNN(k, ϕ
′
b) ↔

∫
dLe−Lϕ′

b Tr
cos
(
L
√
1− k2

√
2H
)

sinh
(
L
2

√
1− k2

)

= Tr


−

H
(
−1

2
+

ϕ′
b√

1−k2
− i

√
2H
)
+H

(
−1

2
+

ϕ′
b√

1−k2
+ i

√
2H
)

√
1− k2


 , (3.92)

where H(x) is the analytically continued harmonic number.

3.4 Fixing ϕ and ∂nϕ: microcanonical ensemble, relation

with eigenbranes

In this section, we will discuss the DN boundary condition in JT gravity: fixed boundary value of

dilaton field ϕ(u)|∂M = ϕb and its normal derivative ∂nϕ|∂M = ϕ′
b. Let’s start by discussing the

classical solution with the DN boundary condition. Again, using the Fefferman-Graham gauge,

we have the bulk solution of the dilaton field (3.28) on a disk:

ϕ =
A

r

(
1 + 4r2

)
+

(
r − 1

4r

)
(B cos(u) + C sin(u)) . (3.93)

Since we are fixing the boundary value of dilaton and its derivative, we can perform an SL(2,R)

coordinate transformation to set B = C = 0. Then the constant ϕb condition sets the boundary

at constant r radius. Together with its normal derivative, this gives us two equations:

A =

√
ϕ2
b − ϕ′2

b

4
, r0 =

1

2

√
ϕb + ϕ′

b

ϕb − ϕ′
b

. (3.94)

Notice that ϕb and ϕ
′
b scale like 1/ε and their difference as ε.

The quantization of the theory is closely related to that with the standard DD boundary

condition where the boundary value of dilaton ϕb and the boundary metric g are fixed. As we

have explain previously, in Euclidean signature, the DD boundary condition with constant ϕb
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corresponds to the canonical ensemble of the underlying gravitational theory where the inverse

temperature β is the total regularized length ε
∫
du

√
guu.

The DN boundary condition, can be obtained from a Laplace transform of the DD boundary

conditions. In this case we have to perform an integral of the DD partition function over the

boundary metric guu with an additional weighting eεE
∫
du

√
guu :

ZDN(ϕb, E) =

∫ Dguu
Diff(S1)

eεE
∫
du

√
guuZDD(ϕb, ε

∫ √
guu). (3.95)

Due to a counter term in the DD partition function, the relation between E and ∂nϕ is

E =
2(ϕb − ϕ′

b)

ε
. (3.96)

We will again follow the gauge fixing procedure for the boundary metric described in section 3.3

to write25

ZDN(ϕb, E) =

∫
dβeEβZDD(ϕb, β). (3.97)

Given that in the matrix integral description we know that considering a DD boundary corre-

sponds to inserting a partition function operator in the matrix integral, ZDD(ϕb, β) ↔ Tre−βH ,

we then can use this Laplace transform to obtain the matrix integral description of an ND

boundary. This corresponds to the insertion of the density of states operator in the matrix

integral,26

ZDN(ϕb, E) ↔ ρ(E) = Tr δ(H − E) =
∑

i

δ(λi − E). (3.98)

It is interesting to make connection of the DN boundary with the energy-eigenbrane dicussed

in [82], which fixes one eigenvalue of the matrix H to be some fixed value E: δ(λ1 − E). Using

the permutation symmetry of the eigenvalues in the random matrix distribution, we see that the

the DN partition function is just proportional to the eigenbrane operator. Consequently, any

25Here the β integration contour is along the imaginary axis.
26The normalization of H in the matrix integral on the RHS of (3.98) is the same as in [33] when setting

γ = ϕr.
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correlator measured in JT gravity with DN boundary conditions will be equivalent to computing

the same correlator in the matrix integral in the presence of eigenbranes. For this reason, we

can identify the DN boundary conditions as energy-eigenbranes or energy-branes for short.

We now turn to the exact computation of the partition function for the DN boundary con-

ditions. As in (3.76), the DD partition function can be written as a summation of Riemann

surfaces [33]:

⟨ZDD(ϕb, β)⟩ = eϕ0Z
(Disk)
DD (ϕb, β) +

∞∑

g=1

eϕ0(1−2g)

∫ ∞

0

bdb Vg,1(b)Z
(Trumpet)
DD (b;ϕb, β) . (3.99)

To obtain the microcanonical (ND) partition function, one only needs to inverse laplace transform

the corresponding disk and trumpet partition function:

Z
(Disk)
DN (E) =

ϕr

2π2
sinh 2π

√
2ϕrE; Z

(Trumpet)
DN (E, b) =

ϕ
1/2
r cos b

√
2ϕrE

π
√
2E

. (3.100)

The moduli integral and Vg,1(b) will not change, since those are fully determined by the bulk

curvature constraint and the Weil-Petersson measure. Replace these expressions in 3.99, we have

the full genus expansion of the DN partition function,

⟨ZDN(E)⟩ = eϕ0Z
(Disk)
DN (E) +

∞∑

g=1

eϕ0(1−2g)

∫ ∞

0

bdb Vg,1(b)Z
(Trumpet)
DN (E, b) (3.101)

Since we take the asymptotic limit ϕb → ∞, the integral range of b is from zero to infinity.

Finally, note that non-perturbative corrections for correlators of the form (3.101) were computed

in the context of energy-branes in [82]. With these results in mind we proceed to discuss the

implications of these results to black hole toy models and, in particular, their relation to the

microcanonical thermofield double and to fixed area states.
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3.5 Applications

We can now use the results derived in sections 3.2–3.4 in the setting of black hole thermodynam-

ics, holography, cosmology, of the minimal string, and of the baby universe Hilbert space where

JT gravity has served as a toy model in the past [83, 84, 92–94].

In the case of black hole thermodynamics, we will only focus on the case of fixed ϕ and ∂nϕ

in which a black hole horizon is present. We again emphasize that for fixed K = k, one cannot

know whether the geometry has a horizon or not since the solution for ϕ cannot be fully fixed.

Consequently, the factorization properties (that we point out in the previous sections) are not in

tension with the Page curve analysis from [83,84] for which the contribution of connected replica

wormholes is required.

Nevertheless, as we will see, the fixed K = k and guu boundary condition is natural in the

context of cosmological toy models, where similar factorization properties can be derived. For

the convenience of the reader, it is useful to rephrase these factorization properties (both in AdS2

and dS2) in the baby universe Hilbert space language of Marolf and Maxfield [86]; in turn, this

will motivate the renaming of the fixed K boundary conditions as α-eigenbranes, or α-branes

for short.

Furthermore, it will prove informative to interpret the change of boundary conditions that

we have studied throughout this chapter in the larger context of AdS/CFT. In that case, un-

derstanding the change of boundary conditions in the bulk amounts to studying the flow of the

boundary theory under a multi-trace deformation. While for JT gravity, the exact boundary

dual is still uncertain, it is interesting to speculate about the role of such deformations in the

SYK model.

Finally, we will comment on the relation with (2, p) minimal string theories. Specifically,

in [33], it was shown how the spectral density of JT gravity arises from the large p limit of the

(2, p) minimal string. Here, we show how JT gravity’s different boundary conditions can be

explicitly mapped to boundary conditions in the minimal string.
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3.5.1 Cosmology

So far, we have discussed mostly the anti-de Sitter case in two dimensions, but the attentive

reader might have noticed that our analysis in section 3.1 applies to general dilaton potentials.

In particular, it also holds for potentials with negative cosmological constant, where for instance,

we have the action

Stop + Sbulk = −χ(M)ϕ0 +

∫

M

√
gϕ(R− 2)− 2

∫

∂M

√
γϕK. (3.102)

This theory was considered in detail in [92]. Instead of time-like asymptotic boundaries as in the

AdS case, we now have space-like asymptotic boundaries, and we can ask what type of boundary

conditions we can put on the phase space variables there since such variables are identical to

those in AdS2. While the variables are the same, there are a few differences. First of all, the

object we compute in de Sitter is not a partition function but rather a wavefunctional. Second, in

AdS, there are time-like boundaries, and so we can interpret some of the boundary conditions as

different ensembles in quantum mechanics, but for dS it is not clear how to do that. For instance,

fixing the normal derivative of the dilaton in the AdS case corresponded to fixing the energy of

the boundary quantum mechanics, but in dS such an identification is not possible. From the

gravitational path integral point of view, such boundary conditions are however well-defined.

One very natural and common boundary condition in cosmology (in 2D) fixes the metric

and extrinsic curvature on the Cauchy slice. In particular, the extrinsic curvature can be used

as a time coordinate conjugate to the volume of the spatial slice [96]. For JT in dS2, these

boundary conditions mean that we fix the extrinsic curvature and metric at the asymptotic past

and future. This boundary condition was already discussed extensively in section 3.2, so we will

be brief here and highlight the important implications for dS2.

If we solve the equations of motion coming from varying (3.102), we find the following global
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metric for dS2 and the following profile for the dilaton:

ds2 = −dτ 2 + cosh2 τ dφ2, ϕ = ϕh sinh τ, (3.103)

where φ ∼ φ+2π for the Hartle-Hawking state. In the Fefferman-Graham gauge used in equation

3.14 we can write the metric solution as

ds2 = −dt
2

t2
+

(
t+

f(φ̃)

t

)2

dφ̃2. (3.104)

Here t and τ are to be thought of as complex, representing a Euclidean section when purely

imaginary and Lorentzian when real and a particular contour in the complex t or τ plane cor-

responds to a particular gluing of a Lorentzian section to a Euclidean one. For instance, when

computing the Hartle-Hawking wavefunction we employ the no-boundary proposal and continue

the metric (3.103) (at τ = 0 we set τ = iθ) to a hemisphere to cap off the space-time.

As noted in [92], since R = 2 for these metrics, it seems, naively that we cannot have higher

genus contributions. This can be overcome by taking a different contour for the metric. There

the contour τ = iπ/2 + τ̃ was used [105] and sends the metric in (3.103) to

ds2 = −(dτ̃ 2 + sinh2 τ̃ dφ2), (3.105)

which was dubbed −AdS for obvious reasons. This then naturally paves the way for considering

geometries like the trumpet but with an overall sign in front of the metric. In this way, one

can indeed have higher genus contributions to the wavefunction. From the Fefferman-Graham

gauge, equation (3.104), it is also amusing to see that the usual contour would already work. If

we take t = iτ̃ , then the metric becomes

ds2 = −
(
dτ̃ 2

τ̃ 2
+

(
τ̃ − f(φ̃)

τ̃

)2

dφ̃2

)
. (3.106)
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Figure 3.5: Contributions to two examples of gravitational density matrices. The lighter green
boundaries indicate the ket and the darker ones the bra. In the top row we indicated the
contributions to the density matrix associated to the Hartle-Hawking state (ρHH = |ΨHH⟩ ⟨ΨHH|)
for k < 1 and k > 1. In the latter case, any topology other than the disk contributes as long
as there are no bra-ket wormholes (wormholes connecting the ket and bra). In the bottom row,
we indicated what topologies contribute to the Page density matrix. The situation is similar in
the top row; however, since the Page state allows bra-ket wormholes, there can be topologies
connecting the bra and ket. Notice that ρHH = ρPage for k < 1, whereas they are unequal for
k > 1 due to the appearance of bra-ket wormholes. In each geometry, we have indicated the
gluing of the Lorentzian with the Euclidean section with a small green curve.

This is precisely minus the metric (3.14). So the minus trumpet would be obtained by taking

f(φ̃) constant and negative and cut the geometry at the minimal waist size. There we can then

glue higher genus geometries.

Now that we understand how to glue higher genus topologies to an asymptotic de Sitter

boundary, let us see what fixed K|∂ = k 27 and guu implies. In fact, all conclusions in the AdS

case similarly go through in this case. First, for k < 1 (as opposed to k > 1 in AdS2) we

only have disk contributions and so this means that when we compute a wavefunction with a

27Recall that we only focus on K > 0.
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number of future boundaries, it will just be the product of the wavefunctions for the disk for

each boundary. Furthermore, if we are computing matrix elements of a gravitational density

matrix, so there are a number past and future boundaries, there are no bra-ket wormholes, i.e.,

a geometry connecting the bra and ket boundary, [94,95,84]. Second, for k > 1, this situation is

reversed as there will only be higher genus and no disk contributions. Therefore, matrix elements

of the gravitational density matrix would allow for bra-ket wormholes.

A few comments are in order. As noted in [95], when computing gravitational density ma-

trices, it is important to specify the global state in the baby universe Hilbert space HBU. If one

computes the Hartle-Hawking density matrix, the matrix elements are computed by a product

of two path integrals, and so no bra-ket wormholes can exist in the first place, regardless of what

the extrinsic curvatures of the boundaries are. For the Page density matrix, there can be bra-ket

wormholes but with these fixed k boundary conditions, they only exist for k > 1, leading to the

non-trivial statement that for k < 1 the Page density matrix appears to be equivalent to the

Hartle-Hawking state. We have summarized the case for the Hartle-Hawking state and Page

density matrix in figure 3.5.

3.5.2 α-states in JT gravity

In section 3.2 and 3.5.1, we saw that depending on whether the extrinsic curvature is bigger or

smaller than one, we allow or disallow higher genus corrections to the gravitational path integral.

If such higher genus topologies (say in the case of l boundaries with k > 1) do not contribute,

it means that the full perturbative partition function equals the disconnected contribution, i.e.,

it is a product of l disk partition functions. This allows us to define α-states directly. Following

[86–89] we define the operator ẐND[k, L] as an operator in the baby universe Hilbert space HBU

that creates a boundary with proper length L and extrinsic curvature k. An α state is then an

eigenstate of the operator ẐND[k, L].
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For an l-point function of such boundary creating operators with k > 1, we have

⟨Ẑ>
ND,1 · · · Ẑ>

ND,l⟩ = ⟨Ẑ>
ND,1⟩ · · · ⟨Ẑ>

ND,l⟩ = ZDisk
ND,1 · · ·ZDisk

ND,l , (3.107)

where the subscript indicates the the argument (ki, Li), the superscript k > 1 and the expectation

value is in the Hartle-Hawking state. This is a curious equation, because it says that the Hartle-

Hawking state is an α state for k > 1 boundary creating operators

Ẑ>
ND[k, L] |HH⟩ = ZDisk

ND (k, L) |HH⟩ , k > 1 . (3.108)

Furthermore, it is easy to construct more α states |αl⟩ by acting with Ẑ<
ND[k, L] on the Hartle-

Hawking state but now restricting k < 1,

|αl⟩ = Ẑ<
ND,1 · · · Ẑ<

ND,l |HH⟩ (3.109)

These operators with k < 1 do not factorize by themselves, since higher genera do contribute in

that case, but the k > 1 operators do again factorize out,

⟨Ẑ>
ND,1|αl⟩ = ⟨Ẑ>

ND,1Ẑ
<
N,1 · · · Ẑ<

ND,l⟩ = ⟨Ẑ>
ND,1⟩ ⟨Ẑ<

ND,1 · · · Ẑ<
ND,l⟩ (3.110)

so

Ẑ>
ND,1 |αl⟩ = ZDisk

ND,1 |αl⟩ . (3.111)

The |αl⟩ states thus constructed are, however, not orthogonal to the Hartle-Hawking state.

One of the interesting statements about the construction of a Hilbert space using these corre-

lation functions, i.e., the GNS construction, is the existence of null states. From a gravitational

perspective, these null states form a highly non-trivial relation between states with a different

number of boundaries. For the fixed k < 1 operators ẐND[k < 1, L], the correlators are (up

to multiplicative factors) the Weil-Petersson volumes, and the existence of such null states is
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equivalent to the presence of a highly non-trivial relation between such volumes. Given that

such volumes are polynomial in the Li, one could choose coefficients in a superposition of states

|αl⟩ so that all powers of the Li have vanishing coefficient once the inner product is taken. It

would be interesting to see whether such a system of equations has a non-trivial solution.

Furthermore, although it is not true that the α-states defined with fixed K can easily give

α-states in the theory defined with DD b.c., the reversed statement is true. An α-state in the DD

theory, which would be the original α-states proposed by Marolf and Maxfield, does correspond

to an α-state in the fixed K theory. That is because, in the DD theory, the α-state would be an

eigenstate of ẐDD[ϕ, L] for any ϕ; thus, the Laplace transform gives an eigenstate of ẐND[k, L],

but now for any k, not just k > 1.

3.5.3 Mixed boundary conditions and AdS/CFT

In the previous discussions, we mostly focussed on fixing either member of a canonical pair. This

gave us the four different boundary conditions: DD, ND, DN and NN. In the context of AdS/CFT

however, there is a standard way [106,107] to generalise this to mixed boundary conditions, which

fixes a certain combination of say, the metric and stress tensor. For a well-defined variational

principle, this means that one has to add a multi-trace operator to the boundary field theory,

or said differently, the addition of a multi-trace operator is holographically dual to a change

in boundary conditions, at least to leading order in large N . In [108] this was worked out for

the case of JT gravity on the disk, assuming a putative dual quantum mechanics. In particular

in that case one would start with the JT gravity action with DD boundary conditions, whose

variation gives

δS =

∫

∂M
du

√
guu

(
1

2
Tuuδg

uu +Oδϕ

)
, (3.112)

with (using the Fefferman-Graham gauge (3.14))

Tuu = (−2rguu(1− r∂r)ϕ)|∂ , O = (2r2(1−K))|∂ , (3.113)
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the Hamiltonian density of the dual quantum mechanics and the operator dual to the dilaton,

respectively. The variation (3.112) of course vanishes because we have fixed the metric and

dilaton on the boundary. From the putative dual quantum mechanics, (3.112) is the usual

formula for how the action changes due to a change of the metric and scalar source (in this case

the dilaton).

To change the DD boundary conditions, we want to add to the original action a term that

can combine into something else that instead of just giving δguu or δϕ, could perhaps come from

a linear combination that involves O and Tuu. In [108] this idea was employed to determine the

term needed to impose the DD boundary conditions at finite radial coordinate (see also [109] for

the original proposal). In the present context, let us for instance consider adding the following

term to the action,

Sd.t. = µ

∫
du

√
guuO

2 (3.114)

The variation of this term together with (3.112) can be combined into a variation just like (3.112),

but with Tuu and ϕ now depending on µ,

δStot =

∫
du

√
guu

(
1

2
(Tuu − µguuO

2)δguu +Oδ(ϕ+ 2µO)

)
. (3.115)

Thus for a well-defined variational problem from the bulk point of view, we need to fix ϕ+2µO 28

instead of ϕ, whereas we still fix guu on the boundary. Taking µ large we see that we are basically

fixing (the one-point function of) O, the operator canonically conjugate to the dilaton, which in

term of gravitational variables is just Kr if we scale K = 1+ ϵ2Kr. The addition of O2 therefore

interpolates between DD and ND boundary conditions.

Let us make two comments regarding this standard way of dealing with different boundary

conditions in AdS/CFT. First, the analysis done here is classical and the fate of them at the

quantum level is unclear. We have analysed the problem in the µ = 0 and µ → ∞ limit in

which we could do the computation exactly. However, these two limits are rather special and

28Here we work at the classical level and one should think of fixing ϕ+ 2µO as fixing its one-point function.
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in particular the ND boundary conditions gave us a topological theory. By tuning µ we thus

need to see this transmutation of the theory, which most likely involves a careful analysis of the

quantum theory. Furthermore, as we saw in section 3.2 the sign of 1 − K is also important,

hence the sign of µ will also have to play a crucial role. Second, in contrast to some of the

higher dimensional versions of AdS/CFT, in one dimension, we only know of a theory that

approximately (there are many massless modes) describes the 2d bulk, namely the Sachdev-Ye-

Kitaev (SYK) model. In the IR, this model behaves as a gravitational theory, while in the UV

it is a theory of disorderly interacting Majorana fermions. In the IR theory we can identify the

boundary value of the dilaton with the inverse of the variance of the gaussian disorder in SYK.

The question then remains what is the operator O in SYK model? If we imagine perturbing the

dilaton we induce a rescaling of the couplings Jijkl and the change in the action will then be the

SYK Hamiltonian. A proposal for the operator O would then simply be the UV Hamiltonian of

the SYK model. With this proposal one would then need to check that adding this operator in

the UV and flowing to the IR has the desired effect of changing the IR action by (3.114).

3.5.4 Boundary Conditions in the Minimal String

Finally, one can consider an analogous classification of boundary conditions from the perspec-

tive of minimal gravity. The connection between JT gravity and the minimal string was first

conjectured in [33], who obtained the spectral density of JT gravity from the large p limit of the

(2, p) minimal string. This connection was elaborated in [47]. This motivates us to extend our

classification to this more general setup. We will investigate this connection from an alternate

point of view using the Coulomb gas description of the matter field derived in [110,111] (see also,

Appendix F of [47]). The theory considered here may then be viewed as a Coulomb gas CFT

(χ) with a gravitational dressing described by a Liouville CFT (φ) resulting in a Weyl invariant
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theory with action S = SL[φ, ĝ] + SM [χ, ĝ] + Sgh[b, c, ĝ],
29

SL[φ] =
1

2

∫

M
d2x
√
ĝ
[
(∇̂φ)2 +QR̂φ+ 4πµLe

2bφ
]
+

∮

∂M
du
√
ĥ
[
QK̂φ+ 2πµB

Le
bφ
]

SM [χ] =
1

2

∫

M
d2x
√
ĝ
[
−(∇̂χ)2 − qR̂χ+ 4πµMe

2bχ
]
+

∮

∂M
du
√
ĥ
[
−qK̂χ+ 2πµB

Me
bχ
]

(3.116)

with ĝ a fixed background metric, worldsheet coordinates x, background charges Q = b + b−1,

q = b−1 − b and central charges cL = 1 + 6Q2, cM = 1− 6q2. We have also included the proper

boundary terms. The first term is fixed by the Euler character that controls the string expansion

and a potential FZZT boundary interaction term with fixed boundary cosmological constant.

The parameter b is related to p via b =
√

2
p
.

Using the field redefinitions

φ = b−1ρ− bΦ, χ = b−1ρ+ bΦ, (3.117)

one can establish a correspondence with a ‘p-deformed’ version of JT gravity with a sinh potential

for the dilaton [110,47]

S =

∫

M
d2x
√
ĝ
[
2Φ · ∇̂2ρ+ R̂(ρ− Φ)− 4πµe2ρ sinh

(
2b2Φ

)]

+ 2

∮

∂M
du
√
ĥ
[
K̂(ρ− Φ)− 2πµBeρ sinh

(
b2Φ
)
− Φ∂̂nρ

]
+ Sgh (3.118)

where we also chose µL = −µM = µ and µB
L = −µB

M = µB.

Let us express the above action in terms of a physical (dynamical) metric g which is related

to the fiducial metric ĝ via a conformal factor which we identify with the field ρ, namely gµν =

e2ρĝµν . To express the action in terms of the physical metric, we use the Weyl transformation

29Notice that at the level of the action, one can obtain the matter action from the Liouville action by rotating
b → ib and φ → −iχ to treat both the theories as Liouville fields φ+ and φ− on an equal footing. The central
charges are then c± = 1 + 6Q2

± = 13± (b2 + b−2) and c+ + c− = 26.
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properties,

R = e−2ρ(R̂− 2∇̂2ρ), K = e−ρ
(
K̂ + ∂̂nρ

)
, (3.119)

where hatted quantities are evaluated in the background metric. The action is then given by

S = −
∫

M
d2x

√
g
[
ΦR−Rρ+ 2(∇ρ)2 + 4πµ sinh

(
2b2Φ

)]

− 2

∮

∂M
du

√
h
[
KΦ−Kρ+ 2πµBeρ sinh

(
b2Φ
)]

+ Sgh . (3.120)

In the p → ∞ limit, one recovers ordinary JT with the identification of the physical metric

gµν = e2ρĝµν in terms of the fiducial metric ĝ and by scaling the cosmological constant to large

values such that 4πµb2 = ΛJT = 1 and 2πµBb2 = 1 . In the strict JT limit, the conformal mode

ρ is non-dynamical and kinetic term involving solely ρ may be omitted as it contributes to an

overall constant in the path integral 30

S
b→0≈ −

∫

M
d2x

√
g [Φ(R + 2)]− 2

∮

∂M
du

√
h [Φ(K − 1)] . (3.121)

Hence, we see the correspondence between the degrees of freedom in the two descriptions

(e2ρ)Liouville ↔ (guu)JT, (Φ)Liouville ↔ (ϕ)JT. (3.122)

where all the quantities refer to their boundary values.

To classify the boundary conditions, let us compute the variation of the action

δS = EOM− 2

∮

∂M
du
√
ĥ
(
δΦ(∂̂nρ+ K̂) + δρ(∂̂nΦ− K̂) + 2πµBδ

(
eρ sinh(b2Φ)

))

= EOM− 2

∮

∂M
du
[
δΦeρ(K + 2πµBb2 cosh(b2Φ))

+δ(eρ)
(
∂nΦ−K + ∂nρ+ 2πµB sinh(b2Φ)

)]
. (3.123)

30The same is also true for the ghost part of the action Sgh =
∫
d2z
√
ĝ(b∇̂c+ b∇̂c), which does not depend on

ρ and Φ.
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where in the last equation, we took hµνdx
µdxν = e2ρdu2. We see that the variation vanishes

when fixing ρ and Φ on the boundary. This is analogous to the DD boundary condition in JT

gravity via the identification (3.122) and is consistent with the corresponding boundary term

appearing in (4.28).

Hence, we see that the alternate boundary conditions involve fixing the energy in this theory

or fixing the extrinsic curvature in the physical metric instead of ϕ and ρ via a Legendre transform

to the corresponding conjugate variables. So to complete the mapping, we have

(K + 2πµBb2 cosh(b2Φ))Liouville ↔ (K)JT,

(∂nΦ−K + ∂nρ+ 2πµB sinh(b2Φ))Liouville ↔ (∂nϕ− ϕK)JT , (3.124)

which leads to an analogous four-fold classification of boundary terms. We see that the con-

jugate variables are p-deformed by the boundary interaction. In addition, we also have extra

contributions from the variation of the ρ mode that we have dropped earlier in the JT limit.

This implies that one must be wary of the fact that the operations of varying the action and

taking the JT limit do not commute.

So far, the analysis is exact at the level of the path integral. However, the boundary conditions

implied here only match in the b→ 0 limit when compared to those used in [47]. This is related

to the choice of normal ordering when quantizing this theory. It would be interesting to study

the full quantum mechanical partition function and amplitudes in this theory and its matrix

model dual. It would also be interesting to see if this theory can be directly related to the gas

of defects studied in [112,113].
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3.6 Appendix A : The variation of the bulk action

In this appendix we compute the variation of the bulk action

Sbulk = − 1

2κ2

∫

M
d2x

√
g (ϕR− 2U(ϕ)) (3.125)

In particular, we will focus on the boundary terms, which are of prime importance in the bulk

of the text. We will set 2κ2 = 1. Abstractly the variation will take the form

δSbulk = −
∫

M
d2x

√
g (Eϕδϕ+ Eµνδg

µν +∇µΘµ) (3.126)

The first two terms give the equations of motion:

Eϕ = (R + 2), Eµν =
(
∇µ∇ν − gµν∇2

)
ϕ− gµνU(ϕ), (3.127)

whereas ∇µΘµ gives rise to a boundary term in the variation. To derive the equations of motion

and an explicit form for Θµ, we use

δR = Rµνδg
µν +∇ρ(gµνδΓρ

νµ − gµρδΓν
νµ), (3.128)

with Γ the Christoffel symbol associated to g. Inserting its explicit form, we can write the term

in brackets as

gµνδΓρ
νµ − gµρδΓν

νµ = gνρgαβ(∇βδgαν −∇νδgαβ) (3.129)

and the variation of the bulk action becomes

δSbulk = −
∫

M
d2x

√
g
(
δϕ(R− 2U ′(ϕ))−∇ρϕ(∇αδgαρ − gαβ∇ρδgαβ)

−U(ϕ)gµνδgµν)−
∫

∂M
du

√
hϕnµ(∇αδgαµ − gαβ∇µδgαβ), (3.130)
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with h the induced metric on the boundary. Notice that in 2d we have Rµν = 1
2
Rgµν , Kµν =

Khµν = ∇αn
αhµν and

nµ(∇αδgαµ − gαβ∇µδgαβ) = −2δK +Dν(nνn
αnβδgαβ)− 2Kµνδgµν − nνhαβ∇αδgβν (3.131)

Here Dν is the boundary covariant derivative. After doing a couple of partial integrations it is

straightforward to verify that the equations are as given above. The boundary term takes the

form

δSbulk,∂ = −
∫

∂M

√
hdu

[
(∂nϕ−Kϕ) gαβδgαβ − 2ϕδK

]
(3.132)

This term needs to cancelled by an appropriated boundary term depending on what boundary

conditions are chosen in order to have a well-defined variational problem.

3.7 Appendix B : Schwarzian calculation for fixed K and

guu

Here we will perform a direct Schwarzian calculation of the fixed K boundary path integral in

the asymptotic limit. Let’s start with the disk case first, the fixed K boundary condition can be

obtained from the usual dirichlet boundary condition by doing a functional integral over ϕb =
ϕr

ε
,

this gives us the following boundary integral:

ZND =

∫
Dϕb(u)e

−2
∫ β
0 du

√
guuϕb(u)kZDD(ϕb(u)) =

∫
Dϕr(u)

∫
Df(u)e

∫ β
0 duϕr(u)(Sch(f,u)−κ)

=

∫
Df(u)δ(Sch(f, u)− κ), (3.133)
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where κ = k−1
ε2

is the regularized extrinsic curvature in the asymptotic limit. This integral can

be done by perturbation theory, where we expand

f(u) = tan

(
π

β
(u+ ϵ(u))

)
, ϵ(u) =

∑

|n|≥2

e−
2π
β
inu(ϵ(R)

n + iϵ(I)n ), (3.134)

and we have ϵ
(R)
n = ϵ

(R)
−n and ϵ

(I)
n = −ϵ(I)−n. The integral measure for ϵ is determined by their

symplectic form [33]

Ω = 2
(2π)3

β2

∑

n≥2

(n3 − n)dϵ(R)
n ∧ dϵ(I)n . (3.135)

To the first order expansion of ϵ, the delta function of Schwarzian function is equal to

δ

(
2π2

β2
− κ+

∑

n≥2

2
(2π)3

β3
(n3 − n)(ϵ(R)

n sin
2πnu

β
− ϵ(I)n cos

2πnu

β
)

)

= δ

(
2π2

β2
− κ

)
δ(0)2

∏

n≥2

1

2 (2π)6

β6 (n3 − n)2
δ(ϵ(R)

n )δ(ϵ(I)n ),

(3.136)

where the additional two δ(0)s come from the n = ±1 fourier modes. It is then straightforward

to direct evaluate the path integral

Z
(Disk)
ND = δ

(
2π2

β2
− κ

)
δ(0)2

∏

n≥2

β4

(2π)3
1

n3 − n
= δ

(
2π2

β2
− κ

)
δ2(0), (3.137)

where in the last equality we absorbed the regularized product (which is finite) in δ2(0). Let’s

now look at the trumpet partition funciton with geodesic length b. The perturbation of the

boundary wiggle is

f(u) = e−
b
β
(u+ϵ(u)); ϵ(u) =

∑

|n|≥1

e−
2π
β
inu(ϵ(R)

n + iϵ(I)n ). (3.138)
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The symplectic measure for ϵ is now

Ω = 2
(2π)3

β2

∑

n≥1

(
n3 +

b2

(2π)2
n

)
dϵ(R)

n ∧ dϵ(I)n . (3.139)

The delta function of the Schwarzian variable to linear order in ϵ is equal to

δ

(
− b2

2β2
− κ+

∑

n≥1

2
(2π)3

β3
(n3 +

b2

(2π)2
n)(ϵ(R)

n sin
2πnu

β
− ϵ(I)n cos

2πnu

β
)

)

= δ

(
b2

2β2
+ κ

)∏

n≥1

1

2 (2π)6

β6

(
n3 + b2

(2π)2
n
)2 δ(ϵ(R)

n )δ(ϵ(I)n ).

(3.140)

Putting these together, the single trumpet partition function is given by

Z
(Trumpet)
ND = δ

(
b2

2β2
+ κ

)∏

n≥1

β4

(2π)3
1

n3 + b2

(2π)2
n
= δ

(
b2

2β2
+ κ

)
b

2β2 sinh b
2

, (3.141)

where we use the formula
∑

n≥1

log(n2 + a2) = log
2 sinh aπ

a
. (3.142)

The cylinder result can be obtained by gluing two trumpets with the WP measure of b, this give

us

∫
bdbZ

(Trumpet)
ND (β1, κ1; b)Z

(Trumpet)
ND (β2, κ2; b) =

−2κ1β
2
1

sinh2
(
β1

√
−κ1

2

)δ(κ1β2
1 − κ2β

2
2). (3.143)

To make comparison with formula 3.62 and 3.64, we can define the holonomy λ1,2 = β1,2
√
−2κ1,2.

Then the cylinder partition function and trumpet partition function can be rewritten as:

Z
(Cylinder)
ND =

λ1

4 sinh2 λ1

2

δ(λ1 − λ2), Z
(Trumpet)
ND =

δ(b− λ)

2 sinh b
2

. (3.144)
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3.8 Appendix C : Delta functions and the Weyl integra-

tion formula

Here we consider the different delta functions that appeared in the main text in more detail. We

will first consider the compact group case, exemplified with SU(2) and move on to PSL(2,R)

afterwards. These discussions are just to gain some intuition. The more rigorous unifying

framework to discuss both cases at once is the Weyl integration formula, which we discuss at

the end.

3.8.1 The case for SU(2)

As is well known, the delta function δ(g) on a group manifold G for g ∈ G has two different

interpretations. On the one hand, we can think of the Lie group G as a manifold and locally one

can pick a metric with which one can define the delta function in the usual sense. For instance,

consider the group SU(2). This Lie group is isomorphic to the 3-sphere. A metric on this three

sphere is

ds2 = dα2 + sin2 α dβ2 + sin2 α sin2 β dγ2, α, β ∈ (0, π], γ ∈ [0, 2π), (3.145)

with measure d3x = sin2 α sin β dαdβdγ. In these coordinates SU(2) group elements are

parametrized as

g =



cosα + i cos β sinα eiγ sinα sin β

−e−iγ sinα sin β cosα− i cos β sinα


 (3.146)

The delta function on SU(2) is

δSU(2)(g) =
1

sin2 α sin β
δ(α)δ(β)δ(γ). (3.147)
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This delta function is then defined for smooth test functions f on the three sphere or equivalently

on SU(2). Suppose now that we restrict the space of test functions to only those that depend on

the conjugacy classes of SU(2), which with our parametrisation are parametrized by α. So we

have f = f(α). On the sphere, these are spherical symmetric test functions. For such functions,

the delta function is slightly different as can be seen as follows,

f(0) =

∫
dgδSU(2)(g)f(g) =

∫
d3x

1

sin2 α sin β
δ(α)δ(β)δ(γ)f(α) =

∫ π

0

dα sin2 αf(α)
δ(α)

sin2 α

(3.148)

So on the ’spherically symmetric’ test functions, the delta function is

δc(g) =
δ(α)

sin2 α
(3.149)

with the subscript c referring to ’conjugacy class’. Yet another way of thinking about the delta

function δ(g) is through the character decomposition:

δ(g) =
∑

R

dimR χR(g) (3.150)

where the sum is over all irreducible representations of G. From this expression, it is clear thet

δ(g) is trace class. For G = SU(2) this gives

δ(g) =
∞∑

l=1

l
sin lα

sinα
= −πδ

′(α)

sinα
. (3.151)

This seems different from what we had obtained previously, but a closer look will reveal they

are the same, up to normalisation. Again, we need to integrate this delta function against test

functions that only depend on the conjugacy class of g, i.e. only depend on α and the measure

is important. From the previous calculation, we know the measure is sin2 α, so

∫ π

0

−πδ
′(α)

sinα
f(α) sin2 α = πf(0) , (3.152)
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and hence, upto normalisation this agrees with δc(g).

3.8.2 The case for PSL(2,R)

Let us now consider another example that we focussed on in the main text: G = PSL(2,R).

The manifold for this group is AdS3 with metric

ds2 = da2 − sinh2 a db2 + sinh2 a cosh2 b dc2 (3.153)

with a, b run over the entire real line and c is between 0 and 2π. With this parametrisation we

can represent hyperbolic elements of SL(2,R) as

g =




cosh a+ cos c cosh b sinh a sinhα(cosh b sin c+ sinh b)

sinhα(cosh b sin c− sinh b) cosh a− cos c cosh b sinh a


 (3.154)

In these elements a parametrizes the conjugacy class. Let us consider test functions that are

just functions of a. The delta function on such functional spaces is then given by

δc(g) =
δ(a)

sinh2 a
(3.155)

Here is a subtle difference between SU(2) and SL(2), in SU(2) there is just elliptic elements,

whereas for PSL(2,R) we have two more conjugacy classes, so the element g above only covers

the hyperbolic elements. This is saying the above coordinates are not global AdS3 coordinates.

To understand the general case for PSL(2,R) we invoke Weyl’s integration formula.

3.8.3 Weyl integration formula

Weyl’s integration formula is a formula that relates the integral of a function on the group

integrated over the entire group G to the integral of a slightly different function over the Cartan

subgroups Hi, i = 1, · · · r. Let f(g) be a compactly supported function on G, then Weyl’s
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integration formula is the following statement, (see [114], proposition 5.27 for more details)

∫

G

dgf(g) =
r∑

i=1

1

|WHi
|

∫

Hi

dU |DHi
(U)|2

(∫

G/Hi

dĝf(ĝgĝ−1)

)
. (3.156)

Lets unpack this formula. Here we assumed the group G having r Cartan subgroups with Weyl

group WHi
. The term in round brackets is an integral over the quotient G/Hi. The most

important term here is DHi
(H), which explicitly reads

DHi
(U) = χδ(U)

∏

α∈∆+

(1− χα(U)
−1) =

∏

α∈∆+

(χα/2(U)− χα/2(U)
−1), (3.157)

where χ is the character of the group Hi with the subscript indicating the representation of

the Lie algebra of Hi. Explicitly, for the cases we will consider the Hi will be abelian and the

characters are just exponentials,

χα(U) = eα(u) (3.158)

with u the corresponding Lie algebra element to U . The product in (3.157) is over all positive

roots α and δ half the sum of all positive roots.

Let us now consider out two examples PSL(2,R) and SU(2). In the latter case, there is one

Cartan subgroup H given by elements diag(eiθ, e−iθ). The roots system is well known and there

is only a single positive root. We have χα/2(U) = eiθ. So,

|DH(U)|2 = |eiθ − e−iθ|2 = 4 sin2(θ) (3.159)

Furthermore WH = 2. If we now consider a trace-class function f we just get the volume of

G/H, which is 4π. So we get,

∫

SU(2)

dgf(g) =
1

2

∫ 2π

0

dθ

2π
4 sin2(θ)f(θ), (3.160)

where we normalized the Haar measure so that SU(2) has volume 1.
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Let us now move on to PSL(2,R). In this case there are two non-conjugate Cartan subgroups,

whose algebra is generated by the Pauli matrices iσ2 and σ3. Let us denote these groups by H1

and H2. For the former algebra the situation is the same as the previous discussion, but for

the Cartan algebra generated by σ3, the characters are real: χα(U) = ea with U = eaσ3/2.

Furthermore, we have |WH1 | = 1 and |WH2 | = 2. Considering a trace-class function f we get

∫

PSL(2,R)

dgf(g) = volG

(∫ 2π

0

dθ

2π
4 sin2(θ)f(θ) +

1

2

∫ ∞

0

da

volH2

4 sinh2(a/2)f(a)

)
. (3.161)

Because we took here a function that is trace-class, the integrals diverge and we need to regularize

them. For non-trace-class functions, such divergences will not occur as long as the functions have

compact support.

137



Chapter 4

SYK : Beyond the IR

Given the success of the Schwarzian theory in explaining the maximally chaotic behaviour of

black holes, one might hope to take the next logical step and explore its UV completion, the full

SYK model. It is natural to wonder if the gravitational mode captured by the Schwarzian can

be organised in a systematic expansion involving UV corrections that correspond to a stringy

completion of JT gravity. The double-scaling limit of SYK discussed here provides a promising

avenue for such investigation.

In this section, we will provide hints from several lines of reasoning that such an interpre-

tation does exist. We will first review the double-scaling limit of the SYK model and review

the derivation of the chord diagrams describing double-scaled SYK via a Lorentzian Liouville

effective action first presented in [115]. We will provide evidence for an interpretation of the full

gravitational theory as a sine-dilaton gravity. We then review a construction in minimal string

theory that gives rise to a matrix version of SYK and discuss the relation with the continuum

model. Finally, we will analyse the semiclassical limit of the double-scaled SYK model, making

contact with the large p-SYK model.
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4.1 Double-Scaled SYK

Much attention has been devoted to the solution of the SYK model in the low-energy regime

where the physics is described by Schwarzian quantum mechanics. It is an interesting problem

to study how UV modes can be systematically incorporated into this theory.

One way to study the physics at higher energy scales is to consider the SYK model in a

double-scaling limit [17, 116–119] where tools are available to study the model with greater

analytic control. We take a large number of Majorana fermions p in the SYK interaction (1.1)

that scales with the total number of fermionsN , holding 2p2

N
= λ fixed. In [117], it was shown that

the partition function of the resulting theory can be deduced by summing over chord diagrams.

In these diagrams, one introduces a Hamiltonian factor for each of k vertices on a circle and sums

over all possible chord-like contractions between these vertices to compute Tr(Hk). The Gaussian

disorder average over these contractions leads to a simple rule for computing such diagrams - one

must simply assign a factor of q = e−λ for each intersection of two chords in a given diagram. This

reduces the problem of computing the partition function to a combinatorial problem. A similar

set of combinatorial rules correspond to computation of the correlation functions with additional

rules for the crossing of chords with chords emanating from the bilocal insertion. The sum over

such diagrams can be done by means of a transfer matrix and the resultant expression for the

partition function can be interpreted using the representation theory of the compact quantum

group Uq(su(1, 1)). Here q is a real parameter that goes between 0 and 1 and the q → 1 limit can

be mapped to the classical group SL(2, R) after using a similarity transformation to bring it to

real form. The effective diagrammatic rules follow the same group theoretic structure described

in [25] - the partition function computes the sum over continuous series representations of the

group with the corresponding Plancherel measure and a Hamiltonian described by the Casimir

of the group. Correlation functions involve the additional insertion of 3j and 6j symbols of the

group at the appropriate intersection vertices.

It is worth noting the distinction between this quantum group and the non-compact group

Uq(sl(2, R)) that describes the universal braiding properties of conformal blocks in a 2D CFT
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[120]. The latter also arises more naturally in the solution of Liouville theory via bootstrap [121].

An important qualitative difference is that the Plancherel measure has non-compact support and

the quantum parameter q lives on the unit circle in the complex plane. The groups are equivalent

in the q → 1 limit.

The resultant diagrammatic rules for correlators in the double-scaled theory can be sum-

marised in complete analogy with those of the Schwarzian. Every graph is circumscribed by a

circle, which represents the thermal circle. Inside the circle, we draw a line for every bi-local

operator, which connects the corresponding two points on the boundary circle. Propagators on

the circular boundary and vertices are given in terms of Euclidean time by

τ1τ2

θ

= e−E(θ) (τ2−τ1) ,

θ2

θ1
ℓ = γℓ(θ1, θ2) . (4.1)

where θ runs from 0 to π and labels continuous series representations of Uq(su(1, 1)). The Casimir

takes the following value on these representations

E(θ) =
2J√
1− q

cos θ. (4.2)

Notice that unlike the Schwarzian theory, the energy lives on the bounded interval
(
− 2J√

1−q
, 2J√

1−q

)
.

The Plancherel measure factor associated with each θ variable can be expressed in terms of

the q-Pochhammer symbol,

dθρ(θ) =
dθ

2π
(q; q)

(
e±2iθ; q

)
, (a; q) ≡

∞∏

k=0

(
1− aqk

)
. (4.3)

The time dependent factor represents the usual Schrödinger time evolution of the intermediate

energy eigenstates. The vertex factor takes the following form

γℓ(θ1, θ2) =

√
(q2ℓ; q)

(qℓe±iθ1±iθ2 ; q)
. (4.4)
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This vertex factor represents the matrix element of each endpoint of the bi-local operator between

the corresponding two energy eigenstates and is given by the 3j symbol with 2 continuous series

representations and one discrete series respresentation (labelled by ℓ).

The exact answer for the two point function found in [117] reads 1

⟨V1(0)V2(t)⟩ =
∏

i=1,2

∫
dθ2i

(
q, e±2iθ; q

) θ1

θ2

ℓ (4.5)

=
∏

i=1,2

∫
dθi
(
q, e±2iθ; q

)
e−τ1E(θ1)−τ2E(θ2)

(
q2ℓ; q

)

(qℓe±iθ1±iθ2 ; q)
, (4.6)

where the ± notation denotes the products of all choices of signs2. Here τ1 + τ2 = β denotes the

inverse temperature.

For more general correlation functions, one must assign continuous series labels to all bounded

regions within the thermal circle and introduce an additional rule to include a factor for the R-

matrix for every intersection of lines with discrete series labels,

θsθt
ℓ2 ℓ1

θ1

θ4

= Rθsθt

[
θ4
θ1

ℓ2
ℓ1

]
(4.7)

This factor is related to the 6j symbol of the quantum group and an explicit expression can be

found in Equation (6.3) of [117].

Let us consider more carefully the spectral density of the theory (4.3). It can also be recast

in terms of a single Jacobi theta function,

ρ(θ) = sin θ
ϑ1

(
θ
π
| iλ
2π

)

πq
1
8

. (4.8)

This form makes manifest the transformation of the measure in the opposite channel λ → λ−1.

1We use the notation (a, b; q) = (a; q)(b; q).
2For example f(a± b± c) = f(a+ b+ c)f(a+ b− c)f(a− b+ c)f(a− b− c).
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Using the properties of the theta function under modular transformation, we obtain an equivalent

expression

ρ(θ) = −i
√

2π

λ
e−

2θ2

λ ϑ1

(
2iθ

λ

∣∣∣∣
2πi

λ

)
. (4.9)

As shown in [116,117], the function shows the Schwarzian sinh(2π
√
C(E − E0)) behaviour near

the end-points of the spectrum θ = 0, π. The infrared part of the SYK spectrum (θ ∼ π) has

been studied extensively and corresponds to the the Schwarzian mode in JT gravity. Near the

center, θ = π/2, the spectrum has a peak and can be described by a Gaussian. In the q → 1

limit, the energies become unbounded and the spectrum resembles the ground state wavefunction

of a classical harmonic oscillator. We will further study this limit in chapter 4. A key ingredient

in this identification is that the energies of the double-scaled system (captured by the transfer

matrix) correspond to the position operator in the Aric-Coon q-oscillator algebra. The dominant

contribution to the spectral density in the λ→ 0 limit is

ρ(θ) → 4

√
2

πλ
e−

2π2

λ e−
2
λ(θ−

π
2 )

2

sin(θ) sinh

(
2π

λ
θ

)
sinh

(
2π

λ
(π − θ)

)
. (4.10)

One can make the dictionary with the Schwarzian variables precise in the λ→ 0 limit by zooming

near the IR edge and holding

k =
π − θ

λ
, C =

1

2J λ3/2 . (4.11)

constant in this limit. Upto an overall (divergent) normalisation factor, the measure maps to

ρ(E) ∝ sinh
(
2π
√
C(E − E0)

)
. (4.12)

Likewise, we find the Schwarzian energy spectrum E − E0 =
k2

2C
.

In this limit, we also recover the usual diagrammatic rules of the Schwarzian and obtain

a precise match with the correlators of the theory. This is natural from the quantum group

perspective since the group becomes classical in this regime. The θ parameter also maps to the
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g = 0
0

L

L

τ1

τ2

x1 = τ1 + τ2

x0 = τ1 − τ2

Figure 4.1: The double-scaled theory from a two-dimensional Liouville perspective with periodic
identification in the null directions and vanishing boundary condition at τ1 = τ2. Additionally,
τ1 = τ2 is a line of reflection symmetry for the Liouville field g.

opening angles of the ‘pinched circles’ in the bulk geometric picture of chapter 2 in this limit.

The solvability of the double-scaled limit hence makes it possible to exactly study properties

of the SYK model that are sensitive to this particular UV completion of the Schwarzian theory.

4.2 From Chords to Liouville

In this section, we review the derivation of the diagrammatic structure of the chord diagrams

from perturbation theory in the cosmological constant term of the Liouville effective action of

SYK discussed in [115].

As explained in [122], one can equivalently reformulate the SYK model as an effective theory

in two dimensions instead of a 1d quantum mechanical model with disorder average. This can

be accomplished going by carrying out a Gaussian integral over the disorder field in the path

integral corresponding to Eq (1.1) to obtain a bilocal effective action for the SYK fermions. One

can further carry out the path integral over the fermions ψ by introducing a Lagrange multiplier

identifying the fermion propagator with a two-dimensional bilocal field. The SYK action is then

equivalently described in terms of the fundamental fields G(τ1, τ2) and Σ(τ1, τ2) where the former

143



τ1

τ2

−1
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−1
2

−1
2

−1
2

0

0

0 00

τ
(0)
2

τ
(0)
1

Figure 4.2: Lorentzian free field propagator G(τ1, τ2)/8λ which satisfies the boundary condition
g(τ1, τ2) = g(τ2, τ1) and g(τ, τ) = 0. It vanishes in the region shaded light blue and is constant

in the region shaded darker. The blue dot denotes the location of the source
(
τ
(0)
1 , τ

(0)
2

)
and

the red dot shows the location of the image charge due to vanishing boundary condition at
τ1 = τ2. One can view the two dots as sources for advanced (spacelike) propagators with equal
and opposite charges so that they give the correct Green’s function for τ1 ≥ τ2 and in particular
the superposition vanishes at τ1 = τ2. The τ1 < τ2 region is filled using reflection symmetry.

is identified with

G(τ1, τ2) ≡
1

N

∑

i

ψi(τ1)ψi(τ2), (4.13)

and the latter with the fermion self-energy. Fermion correlators can then be replaced by corre-

lators of this bilocal mean field G(τ1, τ2).

The resulting theory is described by the effective action3 [56]

−SE/N =
1

2
Tr log (∂τ − Σ)− 1

2

∫
dτ1dτ2

[
Σ(τ1, τ2)G(τ1, τ2)−

Ĵ 2

2p2
(2G(τ1, τ2)

p

]
. (4.14)

Analyzing the saddle point equations associated to this action, one finds that in the strong

coupling limit of large LJ the two-point function takes the form G(τ1, τ2) ∼ sgn(τ12)|τ12|−2∆

with scaling dimension ∆ = 1/p. In the UV regime, on the other hand G(τ1, τ2) =
sgn(τ12)

2
takes

the free field form. We will focus now on the large p limit. This means that we can approximate

3We use a hat to distinguish the coupling from a rescaled version that arises in the double-scaling limit that
we will introduce momentarily.

144



the bilocal field in the following way up to 1/p2 corrections

G(τ1, τ2) =
sgn(τ12)

2
e∆g(τ1,τ2) =

sgn(τ12)

2

(
1 +

1

p
g(τ1, τ2)

)
, (4.15)

and study the dynamics of g(τ1, τ2). It is useful to keep in mind that since G is antisymmetric

in τ1 and τ2, g is symmetric in it’s arguments.

Noting that the Σ is O
(

1
p

)
, we can expand the action to O

(
1
p2

)
and do the Gaussian integral

over Σ to obtain an effective Liouville action for g(τ1, τ2) [17],

Seff =
1

2λ

∫
d2τ

[
1

4
∂τ1g∂τ2g − Ĵ 2eg

]
. (4.16)

This bilocal action from the point of view of the original quantum mechanical system becomes

local in the two dimensional kinematic space (τ1, τ2). These two parameters behave like null

coordinates in the flat 2d space (x0, x1) such that z = τ1 = −x0 + x1, z̃ = τ2 = x0 + x1 and

g(τ1, τ2) → g(z, z̃). Then we can use this relabeling to write the action as a 2d Lorentzian theory

for a scalar field g with an exponential interaction term. Note that z and z̃ here are not complex

conjugates.

We can compare this with the usual Liouville CFT. Liouville theory with a cosmological

constant µ and central charge as c = 1 + 6(b+ 1/b)2 is described by the Euclidean action

SL =
1

4π

∫
d2z
[
∂ϕ∂ϕ+ 4πµe2bϕ

]
. (4.17)

To make contact with the SYK action we can rescale 2bϕ → g. This turns the Liouville action

into SL = 1
16πb2

∫
d2z
[
∂g∂g + 4πµ̂eg

]
, where µ̂ = 4µb2.

Despite the similar form, the action (4.16) is inherently Lorentzian. In order to assign a

central charge to this theory, it is essential to analytically continue x0 → ix0. Comparing with

(4.17), we again see that we need to take b2 = iβ2 purely imaginary to make contact with

SYK. Notice that this problem is peculiar in that even though the action under consideration is
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Lorentzian, there is no overall i in front of the action in the path integral. One needs to integrate

the field g in a complex direction to obtain a convergent path integral. Also note that from the

point of view of the Euclidean theory, the modular parameter of the torus on which the theory

lives is purely imaginary. Finally, the corresponding CFT has central charge 13 + iγ for real γ.

In addition to the condition that g(τ1, τ2) is periodic with periodicity L in both arguments,

the action (4.16) is to be supplemented with the condition g(τ, τ) = 0 as the limit of small time

separation coincides with the UV limit.

Following [115], let us treat this problem perturbatively in the coupling J 2. We will denote

the two dimensional coordinates collectively as τM with M = 1, 2. The kinetic term for the free

field can then be inverted by the Green’s function

G(τM) ≡
〈
g(τM)g(τ

(0)
M )
〉
J=0

= −2λ
[
θ(τ1 − τ2)

(
θ(τ1 − τ

(0)
1 )θ(τ2 − τ

(0)
2 ) + θ(−τ1 + τ

(0)
1 )θ(−τ2 + τ

(0)
2 )

− θ(τ1 − τ
(0)
2 )θ(τ2 − τ

(0)
1 )− θ(−τ1 + τ

(0)
2 )θ(−τ2 + τ

(0)
1 )
)

+
(
τ1 ↔ τ2, τ

(0)
1 ↔ τ

(0)
2

)]
(4.18)

satisfying

− 1

4λ
∂τ1∂τ2G(τM) = δ2

(
τM − τ

(0)
M

)
(4.19)

This is the propagator consistent with the boundary condition g(τ, τ) = 0. One can view the

second line as coming from an image charge located at (τ
(0)
2 , τ

(0)
1 ) which implements the boundary

condition for the Green’s function. The last line simply completes the diamond by implementing

the reflection symmetry.

The above expression has a simple physical interpretation - the Green’s function ‘clicks’

whenever the intervals τM and τ
(0)
M intersect and vanishes otherwise.

Now that we have the basic setup for perturbation theory, we consider the partition function.
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We consider the term at order k in the coupling J 2 = Ĵ 2/λ,

1

k!

(J 2

2

)k ∫
d2τ (1) . . . d2τ (k)

〈
eg(τ

(1)
M )+...+g(τ

(k)
M )
〉
J=0

(4.20)

which on applying Wick’s theorem gives

1

k!
J 2k

∫

τ
(i)
1 ≥τ

(i)
2

d2τ (1) . . . d2τ (k) e
1
2

∑
i<j

⟨g(τ (i)M )g(τ
(j)
M )⟩

(4.21)

where the sum in the exponent runs over Wick pairings. In particular, this means using the

expression for the propagator (4.18) that we get −2λ whenever we have an intersection and zero

otherwise. Hence, we pick up the same combinatorial factor as the usual chord diagrams of the

double-scaled SYK, namely the number of intersections

(JL)2k
(2k)!

e−λ×(# of i-j intersections). (4.22)

Here, we fixed the precoefficient as follows. First notice that there is a k! redundancy in assigning

an index to the chords. The unrestricted integral over the τ coordinates would yield a factor of

L2k. Here, however the ordering of the τ coordinates corresponding to a given chord diagram is

fixed resulting in the overall factor L2k

(2k)!
for each chord diagram. Summing over k gives the full

expression for the partition function.

Similarly insertion of bilocal observables gives the combinatorial expression for the correlators

eg. for the two-point function. By expanding at order k and using Wick contractions again

including the combinatorial factor from the τ integrals

⟨eℓλg(τ
(A)
M )⟩J =

∑

m,n

J m+n
2
τm

m!

(L− τ)n

n!
e−λ×(# of i-j intersections)−ℓλ×(# of i-A intersections)

(4.23)

where τ ≡
(
τ
(A)
1 − τ

(A)
2

)
. Here, the capitalised A index denotes the chords corresponding to the

g field inserted in the correlation function and m counts the number of vertices lying inside the
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g = 0

g = 0

Figure 4.3: Using the reflection symmetry across the red line, we reduce the problem to solving
the unoriented Liouville theory on a Möbius strip with vanishing boundary condition for the
Liouville field on the edge.

segment of length τ enclosed by the bilocal operator. n counts the remaining vertices in the

diagram (so m+ n is even) which are restricted to a given order in the L− τ interval.

It is clear that this argument readily generalises to the case where an arbitrary number of

bilocal operators are inserted in any time-order. One can use the transfer matrix approach

of [117] to perform the sum.

From the Liouville perspective, the above analysis suggests that we are performing perturba-

tion theory in the cosmological constant. An important distinction in this case is that the free

propagator of the theory is a step function while it is logarithmic in the Euclidean theory.

One can use the periodicity in the null directions and the symmetric boundary condition

across τ1 = τ2 in this setup to restrict to the fundamental domain geometry that describes the

system. This is the Lorentzian Liouville theory on a Möbius strip with boundary conditions such

that the Liouville field vanishes at the edge of the strip as shown in Figure 4.3.
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4.3 Sine Dilaton Gravity

We now consider an alternate perspective of the connection between the minimal string and JT

gravity derived in [110,47]4. As shwos in section 3.5.4, a ‘p-deformed’ version of JT gravity can

be derived by replacing the (2, p) minimal model with a timelike Liouville CFT and coupling

to gravity through an ordinary (spacelike) Liouville CFT. Using field redefinitions, this theory

is equivalent to a theory of dilaton gravity with a sinh potential for the dilaton as opposed to

a linear potential as in the usual JT theory. This theory corresponds to the deformation of JT

gravity by the quantum group Uq(sl(2, R)) with q = e
2πi
p . The quantum parameter lies on the

unit circle in this case. In the q → 1 limit, with appropriate rescaling of the fields and couplings,

one can recover the linear potential.

We propose here an alternate deformation of the JT theory corresponding to the quantum

group Uq(su(1, 1)). We will study the action S = S[φ, ĝ] + S̃[φ̃, ĝ] + Sgh[b, c, ĝ] with

S[φ] =
1

2

∫

M
d2x
√
ĝ
[
(∇̂φ)2 +QR̂φ+ 4πµe2bφ

]
+

∮

∂M
du
√
ĥ
[
QK̂φ+ 2πµBe

bφ
]

S̃[φ̃] =
1

2

∫

M
d2x
√
ĝ
[
(∇̂φ̃)2 + Q̃R̂φ̃+ 4πµ̃e2b̃φ̃

]
+

∮

∂M
du
√
ĥ
[
Q̃K̂φ̃+ 2πµ̃Be

b̃φ̃
]
(4.24)

Here, we introduced the background metric ĝ. The background charge for the theory is Q =

b + b−1 related to the central charge via c = 1 + 6Q2. Analogous expressions hold for the

quantities with tilde. Moreover, we choose the parameters, b = e
iπ
4 β and b̃ = e−

iπ
4 β for real β so

that b = ib̃ and hence, c+ c̃+ cgh = 0. The boundary interaction is included through a boundary

cosmological constant term.

The field redefinitions

φ = b−1ρ− bΦ, φ̃ = b̃−1ρ− b̃Φ, (4.25)

4See [111,123] for further discussions.
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allow us to recast the action in the following form

S =

∫

M
d2x
√
ĝ
[
2Φ · ∇̂2ρ+ R̂(ρ− Φ)− 4πλe2ρ sin

(
2β

2
Φ
)]

+ 2

∮

∂M
du
√
ĥ
[
K̂(ρ− Φ)− 2πλBe

ρ sin
(
β
2
Φ
)
− Φ∂̂nρ

]
+ Sgh (4.26)

where we also choose the cosmological constants to be related via µ = −µ̃ = −iλ̃ and µB =

−µ̃B = −iλ̃B.

In terms of the dynamical metric, gµν = e2ρĝµν , the action is given by

S = −
∫

M
d2x

√
g
[
ΦR−Rρ+ 2(∇ρ)2 + 4πλ̃ sin

(
2β

2
Φ
)]

− 2

∮

∂M
du

√
h
[
KΦ−Kρ+ 2πλ̃B sin

(
β
2
Φ
)]

+ Sgh . (4.27)

Hence, the ‘q-deformed’ JT gravity takes the form of dilaton gravity with a sine potential.

See [113, 112] for recent discussions of related deformations in JT gravity. This potential is

qualitatively different from the p-deformed theory which is strongly coupled near the cutoff

surface. It is not natural to use the decomposition Φ = Φ0 + ϕ for large Φ0 as is customary in

the JT literature as it no longer splits into a topological piece. We see instead that it is the

parameter β that controls the genus expansion.

In this case, we choose to cutoff the surface at a fixed Φ near the maximum of the potential.

However, the periodic nature of the potential allows us to include additional contributions from

cutoff surfaces at different hills in the potential that appear as instanton-like contributions to

the path integral. This suggests the appearance of additional non-perturbative physics.

In the β → 0 classical limit, one recovers ordinary JT by scaling the cosmological constant

to large values such that 4πλ̃β
2
= ΛJT = 1 and 2πλ̃Bβ

2
= 1 . The conformal mode ρ is

non-dynamical in this limit so that

S
β→0≈ −

∫

M
d2x

√
g [Φ(R + 2)]− 2

∮

∂M
du

√
h [Φ(K − 1)] . (4.28)
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Physically, rescaling the cosmological constant to large values is the analogue of limiting to low

energies so that we restrict ourselves to a single valley in the potential. Consequently, only

perturbative terms survive in the strict JT limit.

Note that one could have equally well interchanged the roles of ρ and Φ in this analysis

to interpret Φ as the conformal metric. Equivalently, one could parametrise b = e
iπ
4 β. This

would yield the JT action but with a positive cosmological constant instead. Since the original

parameter µ for the cosmological constant needs to be continued in the imaginary direction to

make contact with the JT action, one may indeed think of this theory as sitting at an imaginary

cosmological constant in between the postive and negative cases.

4.3.1 Geometric interpretation

It is interesting to study classical solutions in this sine dilaton gravity

S = −
∫

M
d2x

√
g
[
ΦR + 4πλ̃ sin

(
2β

2
Φ
)]

(4.29)

Lorentzian black hole solutions are described by the metric [47],

ds2 = −2πλ

β
2

(
cos(2β

2
r)− cos(2β

2
rh)
)
dt2 +

(
β
2

2πλ

)
dr2

cos(2β
2
r)− cos(2β

2
rh)

(4.30)

with rh = arcsin T
λ
/2β

2
. Here, we have chosen gauge such that the dilaton coincides with the

radial coordinate r. In order to have sensible thermodynamics, we assumed that the geometry

is cutoff before r = π

4β
2 . The geometry leads to the thermodynamic relation

E =
π

β
2

√
λ2 − T 2 (4.31)

Finally, the curvature

R = −8πβ
2
λ̃ cos

(
2β

2
r
)

(4.32)
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interpolates between a constant curvature AdS2 region for r ≪ β
−2

to a flat space region near

the boundary. This is different from the p-deformation where we see an exponentially growing

curvature near the boundary.

4.3.2 Quantum Algebra from Poisson Sigma Model

It is well known that 2-d dilaton gravity with dilaton potential V (X3) can be recast as a Poisson

Sigma model [124]

S =

∫ [
Xa ∧ Dωe

a +X3dω +
1

2
P ij(X)Ai ∧ Aj

]
. (4.33)

with a non-linear Poisson structure on R
3 given by

{X i, Xj} = P ij, P ij = ϵijuk(X). (4.34)

The functions uk(X) are given by

ua = ηabX
b, with a, b = 1, 2 u3 = V (XaX

a, X3) (4.35)

In particular we see that with the sine form of the potential derived above, we obtain the

relation

[X1, X2] = V (X3) = V (ϕ) = 4πλ sin
(
2β

2
X3
)

(4.36)

which after rescaling the generators gives us the quantum algebra of Uq(su(1, 1))

[E,F ] =
K2 −K−2

q − q−1
(4.37)

with the reality conditions K = K∗, E∗ = −F and F ∗ = −E.

Note that using the hyperbolic sine form of the dilaton potential recovers the Uq(sl(2, R))

algebra consistent with the reality condition K = K∗, E∗ = −E and F ∗ = −F of the above

algebra and q now lies on the unit circle. These may be viewed as alternate real forms of the
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Uq(sl(2, C)) quantum algebra. The above algebra reduces to SL(2, R) for the linear dilaton

potential V (ϕ) = ϕ and to ISO(1, 1) for V (ϕ) = 0 corresponding to flat space JT [125].

4.4 SYK Matrix Model from Minimal Strings

The holographic dual theory to the SYK model has JT gravity as its low energy limit [12, 13,

15,14], and it is desirable to learn more about its dynamical content or its UV completion. The

main obstacle to finding this UV complete bulk dual is that the SYK model itself has thus far

not found its home within string theory.

In [3] and [126], we presented a framework for a string realization of the SYK model. Our con-

struction starts from minimal string theory [127,46,128,129] and follows the standard holographic

paradigm based on open-closed string duality [6,130,131]. The main idea is to consider the world-

volume theory of a large number Q of FZZT branes in (p, 1) string theory [44,45,132,133]. Using

the large N matrix description of minimal string theory, we show that the effective theory on the

FZZT branes takes the form of a matrix version of the SYK model with Jψ p interaction. The

SYK fermions represent open strings between the FZZT branes and the ZZ branes that underly

the matrix description of the minimal string. The continuum SYK dynamics arises upon taking

the large Q limit.

The starting point for our construction is the (p, 1) matrix model with Q FZZT brane in-

sertions with locations specified by the matrix XQ which corresponds to the matrix partition

function

ZpQ =

∫
dAdB e−Tr(Vp(A)−AB) det

(
XQ

⊗ 1N−1Q
⊗B

)
(4.38)

with A and B both N×N matrices and Vp represents a polynomial of degree p [134–136]. In the

double scaling limit, this describes the partition function of Q FZZT branes in (p, 1) minimal

string theory. Taking the large N and Q limit and adjusting the locations XQ, this system spans

the complete space of all (p,Q) minimal models and their deformations.

153



One can express the determinant in terms of fermionic variables ψ that are naturally inter-

preted as representing the open strings that stretch between the FZZT brane and the N ZZ

branes that underly the matrix description of the minimal string [129–131,127],

det
(
XQ

⊗ 1N−1Q⊗B
)
=

∫
dψdψ† exp

(
ψ†(XQ

⊗ 1N − 1Q⊗B)ψ
)

(4.39)

with XQ an Q×Q matrix with eigenvalues x1, ..., xQ. Hence the fermions have two indices

ψia, i = 1, ..., N, a = 1, ..., Q (4.40)

indicating that they correspond to strings that stretch betweenN ZZ-branes and Q FZZT branes.

We will call i the color index and a the flavor index.

Starting with equation (4.38) for the partition function ZpQ̂, and after introducing the

fermionic variables via (4.39), one can first integrate out B and then integrate out A with

the help of the resulting delta-function. This results in a fermionic integral

ZpQ̂ =

∫
dAdBdψdψ† exp

(
ψ†(XQ

⊗ 1N− 1Q
⊗B)ψ − TrN(Vp(A)− AB)

)

(4.41)

=

∫
dψdψ† exp

(
ψ†(XQ

⊗ 1N)ψ − TrNVp(ψψ
†)
)

with a non-linear potential given by the trace of an N ×N matrix Vp(ψψ
†).

We can rewrite the potential as a trace of a Q × Q matrix by performing the color-flavor

transformation [137]

TrN
(
(ψψ†)k

)
= trQ

(
(ψ†ψ)k

)
(4.42)
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with ψψ† and ψ†ψ the matrices defined by

(ψψ†)ij=

Q∑

a=1

ψiaψ
†
ja (ψ†ψ)ab=

N∑

i=1

ψ†
iaψib. (4.43)

The partition function of the Q FZZT strings then rearranges itself in the form of a matrix

version of the SYK model

ZpQ =

∫
dψdψ† exp

( N∑

i=1

ψ†
iXQψi −N J̃ 2 trQG

p
)

(4.44)

with

Gab ≡
1

N

N∑

i=1

ψ†
iaψib (4.45)

This effective action can be contrasted with the non-commutative version of the SYK action,

SNCSYK reviewed in [3]. This is a bi-local action in the emergent time variable, or equivalently,

a local action on the non-commutative torus. Introducing the two-point function G and the

fermion self-energy Σ as two independent degrees of freedom living on the non-commutative

torus, the action can be expressed in the following form

SNCSYK =

∫
dudv

2π

( N∑

i=1

ψ†
i

(
∂̂v−Σ

)
ψi +N

(
Σ ∗ G+

J 2

2p2
G∗p

))
(4.46)

Here, ∗ represents the non-local Moyal star product of functions on the non-commutative torus.

In the Q → ∞ limit, this reduces to an ordinary product of functions, provided that we work

with sufficiently smooth functions G and Σ.

In [3], an explicit map was presented between the matrix SYKmodel and the non-commutative

SYK model by employing an ensemble average over a field redefinition of the fermion. In [126],

we show that such a map is not unique. In general, it is possible to enlarge the number of ZZ

branes. The continuum SYK model then arises as the effective dynamics on a subspace of this

enlarged space, either by carefully chosing a reparametrization of the fermions or by employing
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an ensemble average.

There are several formal connections between the SYK model and minimal string theory

that become apparent after taking the double scaling limit with p2/N fixed. We can repeat the

analysis of Section 4.2 but now with the complex field of Eq (4.46). In this limit, the SYK

dynamics is exactly captured by an effective Liouville theory [17]

S[g] =
πN

p2

∫
dudv

2π

(
∂ug∂vg + 4J 2e2g(u,v)

)
(4.47)

This effective lagrangian arises from after first sending Q→∞, then integrating out the fermions

and Σ field, while writing G(u, v) = i sgn(u, v)
(
1+ 2

p
g(u, v)

)
. Note that the lagrangian (4.47)

defines a 2D field theory in Lorentzian signature but appears in the SYK functional integral

without a factor of i in front. In our case, the Liouville field g(u, v) is complex, but satisfies the

reality condition g(u, v)† = g(v, u). Hence instead of defining the model as living on the torus,

we can orientifold the torus into a Möbius strip and introduce two separate Liouville fields via

g+(u, v) = g(u, v), g−(u, v) = g(v, u). (4.48)

This doubles up the lagrangian into a sum

S[g] = S[g+] + S[g−] (4.49)

of two Liouville lagrangians with complex central charge5

c± = 13±i6(β2−β−2), β2=
p2

2πN
(4.50)

The two complex central charges add up to c+ + c− = 26. This result looks coincidental at

first. Taken more seriously, however, it provides a direct hint that the bi-local effective theory

of the double scaled SYK model should be viewed as a 2D worldsheet string theory. This is also

5This result follows from the more standard formula c± = 1+6Q2
± with Q±=b±+1/b± by taking b±= e±iπ/4β.
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precisely the sine-dilaton gravity theory discussed in Section 4.3.

Accordingly, the sum (4.49) of two bi-local actions (4.47) should be treated as a gravitational

theory subject to Virasoro constraints. Indeed, although (4.47) looks like the lagrangian of a 2D

local quantum field theory, all evidence indicates that the 2D dual to the SYK model does not

have a local stress tensor. This formal similarity between double scaled SYK and non-critical

string theory motivated us to look for a possible realization of SYK via D-branes in (generalized)

minimal string theory and matrix models.

The properties of the dual string theory depend on which type of brane dominates and the

precise dictionary one employs to may the matrix SYK model to the continuum version on

the non-commutative torus. Minimal string theory resides in the regime in which the ZZ branes

proliferate. The FZZT branes create a time crystal that in the large Q limit becomes a continuum

emergent time direction. The dynamics of the fermionic ZZ-FZZT open strings organizes itself

in the form of an SYK action.

We have argued that the worldsheet theory of the string dual of the SYK model looks similar

to that of (p, q) minimal string theory, as summarized in the below table

MST SYK

c±=13±6(b2+1/b2) c±=13±i6(β2−1/β2)

b2 = p/q, N → ∞ β2 = p2/2πN, q → ∞

(4.51)

The ratios p/q and p2/N play the role of a worldsheet coupling constant on their respective side,

while 1/N has its usual role as governing the strength of the string interactions.

4.5 Semiclassical Limit of Double-Scaled SYK

Having established the usefulness of the double-scaled limit of SYK as direct probe of the UV

physics of SYK, let us pause to examine what this means in the classical limit. As we have seen,

the Schwarzian theory arises in a triple scaling limit. If we just take the large C limit, we land
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on solutions to the Lorentzian Liouville theory derived in [56]. In this section, we make this

connection precise, starting directly with the results in the double-scaled theory.

4.5.1 Partition function

We saw that the partition function, when we take λ→ 0 and concentrate on low energies, agrees

with the Schwarzian result. Here we consider the regime where λ→ 0, but we keep the energies

finite (that is, do not take θ in the integral to be close to π).

The expression for the partition function is

Z =

∫ π

0

dθ

2π
(q, e±2iθ; q)∞e

− 2βJ
λ

cos θ; (4.52)

We will work up to order 1/λ when we calculate the exponent, since the λ0 order gives finite

terms, while we are interested in term that go as N in the large ‘q’ limit of SYK (in the notation

used in [56]), which will be manifested for us as N
p2

terms.

At this order, we use the fact that

(x; q)∞ ≈ exp

[
−1

λ
Li2(x)

]
. (4.53)

Therefore we can express the large p effective action in a simplified form,

Z =

∫ π

0

dθ

2π
(q; q)∞ exp

[
−1

λ
Li2(e

2iθ)− 1

λ
Li2(e

−2iθ)− 2βJ cos(θ)

λ

]
(4.54)

In this representation, it is easy to use the saddle point approximation. Using the definition of
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the di-logarithm, the saddle point equation is6

− 2i
∞∑

k=1

e2iθk − e−2iθk

k
+ 2βJ sin(θ) = 4

∞∑

k=1

sin(2θk)

k
+ 2βJ sin(θ) = 2(π − 2θ) + 2βJ sin(θ) = 0.

(4.55)

To make contact with [56], we introduce the variable v such that θ = π
2
+ πv

2
, so that the saddle

point equation becomes

βJ =
πv

cos πv
2

(4.56)

The di-logarithms in the exponent also simplify

Li2(e
2iθ) + Li2(e

−2iθ) = 2
∞∑

k=1

cos(2θk)

k2
=
π2

3
− 2πθ + 2θ2 = −π

2

6
+
π2v2

2
(4.57)

Assembling the terms, we obtain the partition function

Z ∝ exp

[
−π

2v2

2λ
− 2βJ cos θ

λ

]
= exp

[
−N
p2
π2v2

4
+
N

p2
πv tan

πv

2

]
(4.58)

which is precisely the free energy computed in [56] using a more direct method.

4.5.2 Two-point function

The expression for the 2-point function is

G̃ =

∫ π

0

2∏

j=1

{
dθj
2π

(q, e±2iθj ; q)∞

}
exp

[
−2τJ cos θ1

λ
− 2(β − τ)J cos θ2

λ

]
(q̃2; q)∞

(q̃ei(±θ1±θ2); q)∞

(4.59)

and we denote q̃ = e−λ̃.

6In performing the sum over k, we had to assume that 0 < 2θ < 2π, which is indeed the case.
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Once again we do not keep finite in λ terms, so that to order 1/λ we have

G̃ ∼ (q; q)2∞(q̃2; q)∞

∫ π

0

dθ1dθ2
(2π)2

exp

[
−S0

λ

]
(4.60)

where we defined

S0 = Li2
(
e±2iθ1

)
+ Li2

(
e±2iθ2

)
− Li2

(
q̃ei(±θ1±θ2

)
+ 2J τ cos θ1 + 2J (β − τ) cos θ2 (4.61)

and by ± we mean that we should sum over all terms with all possible signs.

The saddle point equations are now given by 7

− 2i log
(
1− e2iθ1

)
+ 2i log

(
1− e−2iθ1

)
+ i log

(
1− e−λ̃+i(θ1+θ2)

)
+ i log

(
1− e−λ̃+i(θ1−θ2)

)
−

− i log
(
1− e−λ̃+i(−θ1+θ2)

)
− i log

(
1− e−λ̃+i(−θ1−θ2)

)
− 2J τ sin θ1 = 0

In the second equation, we replace θ1 ↔ θ2 and τ ↔ β − τ .

Let us work up to order O(λ̃1) and use the ansatz

θ1 = θ + αλ̃+O(λ̃2), θ2 = θ − αλ̃+O(λ̃2) (4.62)

After some simplification, working to leading order we obtain the saddle equations,





2θ − π − 2J τ sin θ + 2 arctan(2α) = 0

2θ − π − 2J (β − τ) sin θ − 2 arctan(2α) = 0

. (4.63)

Note that α (which was the O(λ̃) term) enters the O(λ̃0) equations. Also note that adding δλ̃

to both θ1,2, will not affect these equations (this is like shifting θ). Similarly, one can check that

λ̃2 terms will not affect these equations (but will enter in the O(λ̃) equations).

The sum of these two equations gives the same equation for θ as in the partition function,

7We use Li1(x) = − log(1− x).
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and therefore with the definition of v, we get that (4.56) holds. The other equation is given by

πv + 2 arctan(2α) = 2J τ cos
(πv

2

)
. (4.64)

We can now expand the effective action S0 to leading order:

S0 = −π
2

2
+
π2v2

2
− 2πv tan

πv

2
+ λ̃

[
− log

(
cos(

πv

2
)2
)
+ log

(
cos

(
πv

(
1

2
− τ

β

))2
)]

+O(λ̃2).

(4.65)

After plugging in the on-shell action, we get the two-point function to this order

G ∼


 cos πv

2

cos
(
πv
(

1
2
− τ

β

))



2λ̃/λ

(4.66)

In [56] a single fermion was considered, so that λ̃/λ = p̃/p = 1/p in agreement with our result.

Let us try to re-express the saddle point equations (4.61) in a manner that makes the con-

nection with the Schwarzian more manifest. To this end, we use for our parameter range (we

take θ1 ≥ θ2)

d

dθ

[
Li2
(
e−x±iθ

)]
= i
(
log
(
1− e−x−iθ

)
− log

(
1− e−x+iθ

))
= −2 arctan

[
sin θ

ex − cos θ

]
(4.67)

so that the corresponding saddle point equations may be expressed as

(2θ1 − π) + arctan
[

sin(θ1+θ2)
ex−cos(θ1+θ2)

]
+ arctan

[
sin(θ1−θ2)

ex−cos(θ1−θ2)

]
= J τ sin θ1

(2θ2 − π) + arctan
[

sin(θ1+θ2)
ex−cos(θ1+θ2)

]
− arctan

[
sin(θ1−θ2)

ex−cos(θ1−θ2)

]
= J (β − τ) sin θ2

Now, we may use the identifications θi = π − λki, C = 1
2λJ and x = λℓ to zeroth order in λ

to reproduce the saddle equations of the Schwarzian theory.

We can try to introduce angle variables to replace the arctangents in (4.68) to define angle
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Figure 4.4: Diagram computing the time-ordered 2n point correlation function in the large q limit.

variables analogous to those used in Chapter 2,

α1 = arctan

[
sin(θ1 + θ2)

ex − cos(θ1 + θ2)

]
, α2 = arctan

[
sin(θ1 − θ2)

ex − cos(θ1 − θ2)

]
, (4.68)

to obtain an equivalent system of equations in more geometric variables

2θ1 − π + α1 + α2 = J τ1 sin θ1
2θ2 − π + α1 − α2 = J τ2 sin θ2

sin(θ1+θ2+α1)
tanα1

= sin(θ1−θ2+α2)
tanα2

= ex

Despite the simple form of these equations, it is still an open problem to see if this system

also has a geometric interpretation analogous to the one in the Schwarzian case. Note that one

no longer expects the bulk to be described by hyperbolic geometry in this more general setup.

4.5.3 General Recipe for Time-ordered Correlators

We consider the relevant contribution in the double scaled theory of the diagram 4.4. We

henceforth drop constant factors.
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Gn =

∫ (
n+1∏

i=1

dθi
(
e±2iθi ; q

)
e
− 2J√

λ(1−q)
τiθi

)
n∏

i=1

(
1

(e−xi±iθi±iθ; q)

)
(4.69)

where we defined xi ≡ λℓi, θn+1 ≡ θ and
∑
τi = β.

The corresponding equations of motion are

2θi − π + arctan

[
sin(θi + θ)

exi − cos(θi + θ)

]
+ arctan

[
sin(θi − θ)

exi − cos(θi − θ)

]
= J τi sin θi (4.70)

for i = 1, 2 . . . n and for i = n+ 1,

2θ − π +
n∑

i=1

(
arctan

[
sin(θi + θ)

exi − cos(θi + θ)

]
− arctan

[
sin(θi − θ)

exi − cos(θi − θ)

])
= J τn+1 sin θ (4.71)

For the limit at hand, we can rewrite

S0 ≡ −λ logGn =
n+1∑

i=1

(
2θ2i − 2πθi + 2J τi cos θi

)
−

n∑

i=1

Li2
(
e−xi±iθi±iθ

)
(4.72)

Let us consider the ansatz

θi = θ0 + xiαi, i = 1, 2 . . . n, θ = θ0 (4.73)

The equations of motion are

(
θ0 −

π

2

)
+ arctan (αi) = J τi sin θ0 (4.74)

for i = 1, 2 . . . n and for i = n+ 1,

(2− n)
(
θ0 −

π

2

)
−

n∑

i=1

arctan (αi) = J τn+1 sin θ0 (4.75)

With this ansatz, there are exactly as many equations as number of variables (n+ 1).
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The sum of all these equations gives the simple relation

2θ0 − π = βJ sin θ0 = πv = βJ cos
(πv

2

)
(4.76)

where we introduced the notation v of Maldacena-Stanford which may be traded for θ0.

The solution for αi is then simply

αi = − tan

[
πv

2

(
1− 2τi

β

)]
(4.77)

Let us record the contributions of the three different parts of (4.72) at leading and subleading

order using the above ansatz.

The contribution of the measure is

n+1∑

i=1

(
2θ2i − 2πθi

)
= 2(n+ 1)θ0(θ0 − π) +

n∑

i=1

2xiαi (2θ0 − π) (4.78)

The contribution of the energy term is

n+1∑

i=1

(2J τi cos θi) = 2J
n+1∑

i=1

τi cos θi − 2J sin θ0

n∑

i=1

τiαixi (4.79)

To calculate the contribution of the interaction term, we use that

−Li2
(
e−xi±iθi±iθ

)
=
(
2πθ0 − 2θ20

)
−2xi log xi+xi

(
2αi arctan(αi)− αi(−π + 2θ0)− log

[
4 sin2 θ0

])

(4.80)

We can drop the terms depending only on ℓi and focus only on the coefficient of xi. This

gives

logGn ∼ −
n∑

i=1

ℓiαi

(
2θ0 − π + 2 arctanαi − 2J τi sin θ0 − α−1

i log
(
4 sin2 θ0(1 + α2

i )
))

(4.81)

The first three terms here vanish from the equations of motion. Notice, that τn+1 conveniently
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does not make an appearance in the relevant piece of the correlation function.

Hence, consistent with (4.77), the time-ordered correlation function factorises as

Gn ∼
n∏

i=1


 cos πv

2

cos
(
πv
(

1
2
− τi

β

))




2ℓi

(4.82)

By contrast, we do not expect this factorisation for the out of time ordered correlation function

due to the contribution of the R-matrix.

4.5.4 Entanglement Entropy

Next we study the entanglement entropy in partially entangled states corresponding to the

double-scaled two-point functions. Our analysis will closely follow that of chapter 2. In partic-

ular, the diagrams that appear and corresponding phase transitions are completely analogous

with the Schwarzian momentum replaced by the corresponding Uq(su(1, 1)) representations.

Case I: 0 < τ < β/4 (βR < βL)

We need the correlator of 2n operators placed periodically at a distance alternating between 2τ

and β−2τ . For case I the channel that dominates has a contraction between operators separated

a distance 2τ . We define the intermediate channel momenta θi and ϕ.

The configuration has a Zn symmetry of permuting the replicas and a Z2 symmetry of

time reversal. This is important for finding the saddle-point of the classical action giving this

correlator. In general the correlator is given semiclassically as

logGn(τ, β) = S0 + ρ(ϕ) +
n∑

i=1

ρ(θi) +
n∑

i=1

Ĩi(ϕ, θi, ℓ, τ, β) (4.83)

the explicit formula for the terms Ĩi and the saddle-point equations can be obtained from the

general methods explained. Here, ρ(θ) = 2θ(π − θ). Using that θi ≡ θ the correlator simplifies
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to

logGn(τ, β) = S0 + 2πρ(ϕ) + n
[
ρ(θ) + Ĩ(θ, ϕ, ℓ, τ, β)

]
(4.84)

Using this we can compute the Renyi entropy Sn as

Sn = −n2∂n
1

n
logZn = S0 − n2 ∂

∂n

1

n

(
ρ(ϕ) + n

[
ρ(θ) + Ĩ(θ, ϕ, ℓ, τ, β)

])
(4.85)

which leads us to the simple result,

SRenyi
n = S0 + 2ϕ(n)(π − ϕ(n)) (4.86)

where the saddle-point equation defining ϕ(n) and θ(n) is given by

2θ − π + arctan

[
sin(θ + ϕ)

ex − cos(θ + ϕ)

]
+ arctan

[
sin(θ − ϕ)

ex − cos(θ − ϕ)

]
= 2J τ sin θ

2ϕ− π

n
+ arctan

[
sin(θ + ϕ)

ex − cos(θ + ϕ)

]
− arctan

[
sin(θ − ϕ)

ex − cos(θ − ϕ)

]
= J (β − 2τ) sinϕ

Indeed for 0 < τ < β/4 and any ℓ the condition ρ(ϕ(n)) < ρ(θ(n)) is always satisfied.

Now we can take the n→ 1 limit.

Case II: β/4 < τ < β/2 (βL < βR)

After case I, deriving the results for case II is straightforward. The channel that dominates now

has contractions between nearest neighboring operators separated by βL = β − 2τ . The Renyi

entropy is given by the momentum which does not appear with a factor of n in the semiclassical

action. This gives

SRenyi
n = S0 + 2θ(n)(π − θ(n)) (4.87)
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The saddle-point equations are different and now become

2θ − π

n
+ arctan

[
sin(θ + ϕ)

ex − cos(θ + ϕ)

]
+ arctan

[
sin(θ − ϕ)

ex − cos(θ − ϕ)

]
= 2J τ sin θ

2ϕ− π + arctan

[
sin(θ + ϕ)

ex − cos(θ + ϕ)

]
− arctan

[
sin(θ − ϕ)

ex − cos(θ − ϕ)

]
= J (β − 2τ) sinϕ

which coincides with the previous case for n = 1 but in general might be different.

4.5.5 Probe limit

The results of Section 4.5.3 are sufficient to calculate the entanglement of partially entangled

thermal states in the case of double-scaled SYK.

We consider the state prepared by evolution on the Euclidean semicircle with a local operator

insertion after a time τ of Euclidean evolution. Using the rules developed in this section, the

relevant correlator on the n-replica manifold is

Gn =

(
cos πvn

2

cos
(
πvn

(
1
2
− τ̂

n

))
)2ℓn

(4.88)

where we introduced the parameters,

τ̂ = min

(
2τ

β
,
β − 2τ

β

)
, nβJ =

πvn

cos
(
πvn
2

) . (4.89)

This relation implies

∂vn
∂n

=
vn
n

− πvn
2

tan
(πvn

2

)
(4.90)

So that the nth (modular) Renyi entropy is given by

Sn = (1− n∂n) logGn

=
1

2
ℓnπvn

(
tan
(πvn

2

)(
2− nπ tan

(πvn
2

))
−
(
2− (n− 2τ̂)π tan

(πvn
2

))
tan

(
πvn

(
1

2
− τ̂

n

)))
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Notice that when we take n→ 1, vn → 1 with πvn
2

tan
(
πvn
2

)
→ 1, we recover the Schwarzian

result

SSch
n = 2ℓ

(
n− πτ̂ cot

(
πτ̂

n

))
(4.91)

The entanglement entropy is thus

SEE = S0+
1

2
ℓπv

(
tan
(πv

2

)(
2− π tan

(πv
2

))
−
(
2− (1− 2τ̂)π tan

(πv
2

))
tan

(
πv

(
1

2
− τ̂

)))

Plugging in the zero-point contribution (4.58), we obtain

S
(n)
0 =

π2vn
4λ

(
vn − 2vn sec

2
(πvn

2

)
+ n tan2

(πvn
2

)(
2 + πvn tan

(πvn
2

)))
(4.92)

4.5.6 Summary of Limits of Double Scaled SYK

We summarise the various order of limits of the double-scaled SYK partition function/correlators

in Fig 4.5. The effective actions for the two-point function that appear at intermediate stages

are given as follows. We use the notation, x = λℓ, C = 1
2λJ , θi = λki and βJ = πv

cos(πv
2 )

=⇒

v = 1− 2
βJ + 4

(βJ )2
+ . . ..

The effective action for the two-point function in the full double-scaled theory is then

SDS[θ1, θ2, ℓ, λ,J ] = − log
(
q, e±2iθ1 ; q

)
− log

(
q, e±2iθ2 ; q

)
+

2√
1− q

τ cos θ1

+
2√
1− q

(β − τ) cos θ2 + log
(
qℓe±iθ1±iθ2 ; q

)
(4.93)

The intermediate large p effective action follows from the saddle point of the above action,

Sλ[θ1, θ2, x,J ] = Li2
(
e±2iθ1

)
+ Li2

(
e±2iθ1

)
− Li2

(
e−x±iθ1±iθ2

)
+ 2J τ cos θ1 + 2J (β − τ) cos θ2
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Double Scaled SYK:
∫

dθ1dθ2
(2π)2

e−SDS [θ1,θ2,ℓ,λ,J ]

λ → 0
x fixed

λ → 0
θ ∼ π,
C fixed

Quantum Large q:
∫

dθ1dθ2
(2π)2

e−
1
λ
Sλ[θ1,θ2,x,J ]

Quantum Schwarzian:
∫
dk1dk2 e

−C SSch[k1,k2,ℓ,C]

Saddle
Point

Saddle
Point

Large q Saddle:

Sλ[θ
∗
1, θ

∗
2, x,J ]

Schwarzian Saddle:
VUV +

SSch[k
∗
1, k

∗
2, ℓ, C]

Probe
Limit
x → 0

Probe
Limit
ℓ → 0

βJ → ∞
x → 0

(
cos πv

2

cos[πv( 1
2− τ

β)]

)2ℓ

eVUV

(
π

β sin(πτ
β )

)2ℓ

βJ → ∞

Figure 4.5: Web of limits of the two-point function in the double-scaled theory.
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By contrast, the Schwarzian action arises after restricting to the IR region,

SSch[k1, k2, ℓ, C] = − 1

C
log (k1 sinh(2πk1))−

1

C
log (k2 sinh(2πk2)) +

τ

2

(
k1
C

)2

+
(β − τ)

2

(
k2
C

)2

− 1

C
log (Γ(ℓ± k1 ± k2)) (4.94)

The divergent factor VUV denotes an additional contribution coming from the UV modes in the

triple scaling limit that goes to the Schwarzian.
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Chapter 5

Conclusions and Outlook

In this thesis, we have explored 2d holography from various different viewpoints. The new tools

developed here have far-reaching consequences in helping us understand the interplay between

gravity, spacetime and quantum information. These developments have also sparked interest in

several lines of enquiry that motivate future research.

In chapter 2, motivated by the geometric approach of [51] to pure states in the SYK model,

we have studied the holographic dual of a general class of partially entangled thermal states

(PETS) specified by the insertion of the single scaling operators into the euclidean time evo-

lution that creates the thermo-field double state. We studied the bulk dual of a PETS in the

low energy approximation of the SYK model described by the Schwarzian theory. We argued

that the partially entangled thermal states describe a composite black hole with two horizons,

separated by an expanded interior region with a massive bulk particle. We computed the entan-

glement entropy of these states and compared with the usual holographic RT prescription. We

argued, both from an entanglement wedge and a tensor network perspective, that a one-sided

reconstruction can be extended into the interior geometry of the black hole.

It would be interesting to generalize this setup to higher dimensions, maybe using SYK-

like models such as [138–141] or 2D generalizations of the Schwarzian action [142]. The bulk

membrane dual to the PETS might have a more interesting structure in these cases. Another
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interesting application would be to study, even within AdS2, how to apply the GJW teleportation

protocol [143] in this context. Since entanglement is a resource for these kinds of operations, it

should be harder to make the PETS wormhole traversable.

One important point which we leave for future work is to study partially entangled states in

the regime where the entanglement is a finite fraction of N . Semi-classically, these states look

like factorized black hole geometry as indicated in panel c) of figure 2.5. The physics of this

transition depends on the microscopic SYK dynamics. This looks like a hard problem, but may

be tractable using dynamical mean field theory or via numerical methods.

Another interesting modification of the thermo-field double state is obtained by considering

the insertion of a topological interface. A topological interface in a 2D CFT is defined by

considering a boundary state in the tensor product of two identical CFTs and then using the

folding trick [144] [145] to reorient it such that the reflection from left-movers into right-movers

is replaced by a transmission from CFT1 to CFT2 (see e.g. [146]). Since the resulting interface

is topological (commutes with the Virasoro algebra), inserting it into the euclidean path integral

of the TFD state does not lead to any (localizable) gravitational backreaction. In particular, the

effective temperature on both sides will always be the same. Hence the quantum numbers that

specify the topological interface should be considered as non-trivial potential quantum numbers

of the state associated with the ER bridge of a two-sided black hole geometry [147–149].

The results of the chapter are closely related to the developments leading to an explanation

of a unitary Page curve during the black hole evaporation process in [84, 83, 85]. These papers

considered a holographic setup where the bulk theory is coupled to a non-gravitating external

bath which collects the Hawking quanta emitted by the black hole in AdS. As a consequence,

one can restate the black hole information problem in this context as a derivation of the Page

curve for the entropy corresponding to the density matrix of the radiation that is consistent with

unitarity. The central idea behind this derivation is the phase transition that gives rise to a

new quantum extremal surface behind the horizon of the black hole dubbed an ‘island’. In our

treatment of the Schwarzian correlation function, this entropy may be viewed as arising from the

172



mixed density matrix arising from a sum over multiple operators in our multi-partite setup. The

phase transition between the two types of replica diagrams corresponds to the transition between

the entropy of the black hole and the radiation and gives rise to the plateau in the entropy at

the Page time [84]. It would also be interesting to give a derivation of the evaporation process

of a Hawking pair using probe operators in this setup.

In chapter 3, we derived a systematic four-fold classification of boundary conditions in JT

gravity. We gave a geometric interpretation of classical solutions in each case and discussed var-

ious factorisation and ensemble-averaging properties. In particular, we showed that the bound-

aries with K > 1 factorise at the level of the path integral. We also provided a prescription to

insert boundaries with different boundary conditions in the matrix integral language as special

operators in the matrix model.

Thus far, we have only considered two-dimensional dilaton gravities, but most of our analysis

could also be applied to higher-dimensional gravity theories, albeit now with gµν and Kµν as

phase space variables. The DD and DN are relatively straightforward as they map onto the

canonical and microcanonical ensembles in the higher dimensional field theory [74,150]; however,

it would be interesting to figure out the higher-dimensional analogs of the ND and NN boundary

conditions considered in this chapter of the thesis.1

A particularly tractable theory of gravity that shares many features with the theory of gravity

considered here is three-dimensional gravity in its Chern-Simons formulation. In this case, the

gauge algebra is sl(2, R)× sl(2, R) and gives rise to two gauge fields A and A. We can consider

various boundary conditions on these gauge fields that in the second order formulation correspond

to fixing certain components of the metric and extrinsic curvature. The fixed ND boundary

condition would be one where the Chern-Simons theory does not have any boundary terms and

is purely topological. It would therefore be interesting to study the exact computation of the

partition functions in that case.

Recently there has been a great effort in trying to define two-dimensional gravity for finite

1Fixing the trace of the extrinsic curvature in higher dimensional gravity appears to be a better behaved
boundary condition (together with fixing the conformal class of the metric), as reviewed in [151].
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patches of space-time [90, 152, 108].2 In doing so, one deforms the putative quantum mechanics

dual with a particular operator that depends solely on the Hamiltonian and coupling constant.

This is a well-known story in the standard Dirichlet case, but it would be interesting to determine

whether other boundary conditions can also be insightful for defining gravity at finite cutoff. For

instance, the spectrum of the deformed quantum mechanics theory is known to exhibit a com-

plexification of the energy levels at high energy,3 signaling the presence of a UV cutoff. However,

upon Laplace transforming in ϕ (functionally), we arrive at the ND boundary conditions, whose

partition function is simple and topological. It would be interesting to use the simplicity of the

ND partition functions, say for the disk, to study the DD finite cutoff theory in more detail.

In particular, using the techniques above, we can, in principle, determine what happens when

the cutoff surface is brought inside all the way to the center of the disk, where we expect it to

reproduce the Bekenstein-Hawking entropy. Putting the DN boundary conditions (the micro-

canonical ensemble) can also be considered at finite cutoff, which we hope could shed more light

on the complexification of the previously discussed energies. See also [156] for a discussion of

these ideas in three dimensions.

When studying the ND boundary conditions, we have seen that all perturbative corrections

in eϕ0 vanish provided that k > 1. It is then natural to wonder if this statement is also true

non-perturbatively for a UV completion of JT gravity, such as its matrix integral completion.4

In particular, we expect that the kernel presented in section 3.2.3, when integrated against non-

perturbative terms in the partition function, would kill these terms in addition to the perturbative

terms. If the non-perturbative completion is specified by a matrix model, this translates to the

expectation value of the operator (3.82) vanishing.

It would be interesting to use the results of [33] to study a non-perturbative completion of

JT gravity via the corresponding double-scaled matrix model to check if this is true. A complete

2See also, [153] for the original proposal with a three-dimensional bulk, or [154, 155] for higher-dimensional
analogs.

3See [91] for a entirely different approach that did not yield such a complexification.
4Alternatively, requiring that all non-perturbative corrections vanish for k > 1 can be viewed as a condition

on the possible UV completions of JT gravity.
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understanding of this requires detailed knowledge of such non-perturbative corrections, including

their exact form at exponentially small energies. Nevertheless, one cannot rule out the possibility

that a careful application of the integration contour for the kernel, together with some universal

analytic properties of the non-perturbative contributions, can indeed lead to this conclusion.

It would also be interesting to carry out a similar analysis for the supersymmetric cousins

of JT gravity studied in [81] and obtain the analog of our kernel, specifically for the (α ∈

{0, 1, 2}, β = 2) Altland-Zirnbauer ensembles. The advantage of these JT supergravity models

is that their non-perturbative behavior is under much better control than in standard JT. It is

interesting to note that these theories exhibit a truncation in the perturbative series, even with

standard boundary conditions in some cases. Hence, they are better suited to study factorization

properties, α-branes, and non-perturbative phenomena.

In chapter 4, we explored various strategies to study the SYK model beyond the Schwarzian

limit. We derived a matrix version of the SYK model where the role of the continuum time

coordinate was played by a large stack of FZZT branes. We also showed that it was possible

to derive the chord-diagram expansion of double-scaled SYK using perturbation theory in the

cosmological constant operator in Lorentzian signature. These observations hint at a possible

embedding within the framework of non-critical string theory. We also studied the semiclassical

limit of double-scaled SYK commonly referred to as the ‘large-q SYK’ in the literature.

Perhaps the most radical feature of this proposal is that time is emergent. Continuous time

only arises after taking the strict large Q limit. Some earlier hint that time in SYK should be

viewed as possibly discrete are found in the chord diagram expansion of the double scaled SYK

theory [117,116], where time evolution is most effectively captured by means of a transfer matrix

and the energy spectrum runs over a finite range, suggesting an interpretation as a quasi-energy

of a system with a discrete time evolution.

It is also an interesting problem to explore the Liouville theory on the Mobius strip - in par-

ticular one could try to use the unoriented Liouville Mobius strip amplitude [157] and transform

to fixed length basis to reproduce the partition function as well as higher-point functions. This
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would provide very strong evidence for the link between the two theories. Another possibility

avenue to explore is the connection between the double-scaled SYK theory and 3d de-Sitter grav-

ity starting from SL(2, C) Chern-Simons theory. One anticipates the emergence of the compact

quantum group instead of the non-compact quantum group as in the AdS case.

Our story is far from finished. Given the central place of the SYK model as a prototype of

low dimensional holography with the same dynamical properties as a quantum black hole, it is

clearly important to find its connection with string theory. Our analysis aims to take a concrete

step in that direction.
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